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Abstract

In the noiseless case, the identification of a grey-box model can be posed as a feasibility
problem, i.e. determining if existent - and if so - finding a parameter vector such that the
parametric model equals the actual model (or its associated input-output data). Being that
in this thesis we are interested in continuous-time grey-box identification, we shall be dealing
with models that allow for forming a direct relationship with physical meaningful quantities.
Such models include the state space representation and the matrix differential equation. In
general, identifying such grey-box models turns out to be a non-convex problem. In this
thesis, we initially review a framework which allows us to solve feasibility problems which
have bilinear constraints. It turns out that most of the aforementioned non-convexities can
be captured into a single bilinear matrix equation. However, the resulting feasibility problem,
including the bilinear matrix equations, makes the overall search for the actual parameter
vector NP-hard. In order to come up with numerical tractable algorithms, we use a heuris-
tic known as Sequential Convex Relaxation to relax the bilinear equality constraints. This
iterative scheme is flexible enough to allow for additional (in)equality constraints, possibly re-
sembling any other physical constraints. We explore two different approaches to identify both
the state space model and the matrix differential equation; one, by directly identifying the
model from the given frequency response function; two, by first identifying a black-box model
before performing a small scale optimization problem, transforming the black-box model such
that it fits the grey-box parameterization. In addition, we present a novel method which uses
the Power Spectral Density to estimate a 2nd order model. All methods are numerically
validated.
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Preface

Continuous-time

The laws of physics governing the world around us are continuous of nature; subsequently the
mathematical models capturing this physical reality will also be continuous of nature.

System Identification

Given a descriptive model of some process, one might be interested in the following question:
If I apply input some u, what will be the output y at the other side? System Identification is
however, concerned with the a different kind of problem: supposing I know the input u and
output y at both sides, what is the underlying model?

Grey-Box

When using first principles to derive physical meaningful models, the result is models with
structure. For example when dealing with state space models, knowing that state xi doesn’t
directly influence state xj , means that the state transition matrix contains a zero at the
(j, i)’th position. Knowing that the change of some variable depends on gravity, will mean
that the constant g will enter the equation at some specific position. This is what we mean
by grey-box models; models with structure.

The identification of grey-box models is in general harder than the identification of black-box
models. This is due to the fact that given an identifiable grey-box parametrization and its
associated input-output data, we have to search for a unique parameter vector to describe
the data, where as for a black-box model there are infinitely many such parameter vectors.
The hardness of grey-box identification is also reflected in the non-linear non-convex solution
methods proposed to solve them.

Bilinear

In the case of identifying linear time invariant grey box models, most of these non-convexities
can be captured in a a single bilinear matrix equation. Formulating an identification problem
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x Preface

as such has a great advantage, it means we can apply the method known Sequential Convex
Relaxation to solve it. In this thesis we explore this method in a variety of system identification
settings.

Goal of this thesis

The main goal we set for this thesis is the following:

To develop new algorithms for the purpose of identifying continuous-time systems.

With new it is meant that we shall be exploring the utility of a fairly new bilinear optimization
technique, SCR (2016), applied to problems in the realm system identification problems. As a
direct consequence hereof, we shall be looking for new ways to fit the identification problems
into the bilinear framework. Additionally, with new we mean that we will be looking into
types of input/output data that have previously not been considered for identification of
parametric models e.g. using the input and output spectra to estimate the parameters of a
2nd order model.

Prerequisites

The background required of the reader is a working knowledge of linear algebra and to a
lesser degree calculus. Furthermore, the solution method we employ throughout this thesis,
will use a (iterative) convex relaxation of a non-convex problem. To this extent, some basic
knowledge of convex optimization could prove beneficial, [2] provides a thorough reference
hereon, dealing with the theoretical, numerical and conceptual aspects of the topic.

Outline

Chapter 1 will review some of the basic concepts regarding the Identifiability of models and
the relationship between continuous and discrete time systems. This chapter is intended to
review some of the more general concepts regarding system identification. In the following
chapters, theory regarding the specific problem at hand will be treated in separate sections.

In Chapter 2 we will describe the general framework used to pose the identification problems
in. It turns out that the identification of a system - given noiseless data - is a feasibility
problem. However, the concerned feasibility problems we will be dealing with are non-convex
due to a bilinear matrix equation appearing in the constraints. In this chapter we review a
method, known as SCR to solve such kind of problems. We will give two implementations to
solve the general problem and we will give some illustrative examples.

Chapter 3 will asses the possibility of identifying a state space model given the Frequency
Response Function (FRF). The method we employ, relies on the fact that we can rewrite
the transfer function of the associated system as a set of two bilinear equations. Using this
transformation we have the possibility to apply SCR. We shall see in the numerical example
that we are able to identify a system using a very limited set of (non)-equidistant frequency
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data points. Furthermore we conduct a comparison with Prediction error methods, which are
also capable of estimating parametric models using the FRF.

We will see that the theory developed in Chapter 3 easily extends to Matrix Differential
Equation (MDE)’s, useful in structural identification which we cover in Chapter 4.

In Chapter 5 we again look at 2nd order MDE’s introduced in Chapter 4. However now we
explore the problem of identifying the given system using the input and output spectra only.
Such an identification scheme could prove useful when it is not possible to directly measure the
input, but the statistical properties are known, e.g. white noise. In order to do so, it will be
assumed that we have a full set of sensors (which is not uncommon in literature for identifying
the same system using other input-output data). We conduct a comparison analysis between
SCR and a non-linear, non-convex solver to solve the identification problem. We will see
that the flexibility of SCR (allowing us to impose additional Linear Matrix Inequality (LMI)
constraints) makes all the difference in successfully identifying the system or not.

Chapter 6 again takes a closer look at the identification of state space models. An algorithm
is introduced which initially identifies a black-box model and then performs a small scale
optimization procedure to extract the grey-box model. The concept of this two step procedure
is not new - as a benefit: we can conduct a comparison study between our proposed algorithm
and others.

In chapter 7 we look at MDE’s for the third and final time. The chapter forms a broadening of
chapter 6 and investigates the possibility to identify a 2nd order MDE from an existing black-
box state space representation - once more by virtue of finding a similarity transformation
matrix which relates the black box model to the grey-box parametrization.

Finally in Chapter 8, we summarize and conclude.
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Chapter 1

Preliminaries

1-1 Introduction

This brief chapter is intended to touch upon the very general topics regarding grey-box
identification; what does it mean to say that a system is identifiable, and what are differences
between continuous time and discrete time identification? The chapters hereafter, cover
specific theory regarding the topic at hand in separate sections.

outline

This chapter is organized as follows: §1-2 handles the concept of identifiability. §1-3 treats
continuous-time versus discrete-time models.

1-2 Identifiability

Much of the literature on physical modeling has concentrated on the question of identifiability
of the parameters, before even estimating them. This relates to the more fundamental question
of whether the parameters are structurally identifiable. That is, whether the parameters of
a noise-free model can be determined uniquely from the noise-free data, [3, 4, 5, 6, 7, 8, 9].
Distinctions have been made between global identifiability, structural identifiability and local
identifiability.

Global Identifiability We say that a model is identifiable at θ? if the mapping θ? →M(θ?)
is one-to-one, i.e.

Definition 1.1. [10] A model structureM is globally identifiable at θ∗ if

M(θ) =M(θ?)⇒ θ = θ? (1-1)
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2 Preliminaries

Local Identifiability A system that is locally identifiable may have a set of parameters that
cannot uniquely be estimated from the data. However the number of solutions is finite [8].

Non-Identifiability For non-identifiable parameters, the number of solutions θ is infinite.
For the rest of this text we mostly handle globally identifiable models, if this is not the case,
this is explicitly stated. For a state space model: a necessary condition is that there are
less than n(p + m) free parameters [8]. As an extreme case, if all system matrices are fully
parameterized then they are unidentifiable. However less than n(p+m) does not necessarily
result in the identifiability of the system model. Identifiability also depends on the model
structure. In [4] it is shown that state space model described by the following parameterized
system matrices is unidentifiable even though the number of parameters is strictly less than
n(p+m)

A(θ) =

−θ1 θ3 0
θ1 −(θ2 + θ3) θ4
0 θ3 −θ4

 , B(θ) =

0
0
1

 , C(θ) =
[
1 0 0

]
(1-2)

It has been shown in [4] that the following system structures are identifiable: diagonal, com-
panion form, cascaded compartment structure with only system input and output taking place
at the last compartment. Any identifiable system model under some similarity transformation
is also identifiable.

1-3 Continuous time vs. Discrete time

Consider a parameterized continuous-time linear state-space model as follows

ẋ(t) = A(θ)x(t) +B(θ)u(t)
y(t) = C(θ)x(kT )

, (1-3)

where u(t) ∈ Rm, x(t) ∈ Rn and y(kT ) ∈ Rp are system input, state and output respectively;
θ ∈ Rl is the parameter vector; t and k represent continuous and discrete time respectively;
T denotes the sampling period. Denote the discrete time State-Space matrices as the triplet
(Ad(θ), Bd(θ), Cd(θ)). Then the discrete time system, obtained by the sampling period T with
the system input being piecewise constant between the sampling instants kT , will be related
to the continuous time matrices (A(θ), B(θ), C(θ))

Ad(θ) = eA(θ)T Bd(θ) =
∫ T

τ=0
eA(θ)τdτB(θ) Cd(θ) = C(θ) (1-4)

The above equations make it clear that discrete time matrices are a non-linear function
of their continuous-time counterparts. Thus making identification methods developed for
discrete time systems not directly applicable to continuous time ones. So we need to come
up with a work-around. Options include, using continuous time data to directly estimate
continuous time matrices. We do this in Chapters 3 and 4 using the Frequency Response
Function (FRF). An other option, given the discrete-time matrices is to use the inverse
mapping of (1-3). However, the resulting matrices will still be black box. This means we
need to find a mapping between the continuous-time black-box and grey-box model. We
attempt this in Chapters 6 and 7.
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Chapter 2

Solving Bilinear Equations

2-1 Introduction

As the title of this thesis suggests; we are interested in identifying parametric models. And
although the nature of the problems in the following chapters are different, the way we solve
them is uniform; namely Sequential Convex Relaxation (SCR). SCR provides a technique for
solving optimization problems which are convex in their objective function but have bilinear
constraints, making the overall optimization non-convex. The method relaxes the bilinear
equation into the objective function, by first casting the bilinear equation as a rank constraint,
then by using a heuristic for the rank constraint having the tendency to provide low rank
solutions. The method was first treated in [11], and this chapter is mostly intended as a
synopsis thereof. SCR has successfully been applied in phase retrieval [12] and in robust
static output feedback [13]. We will focus attention how SCR is applicable in a system
identification setting.

outline

The rest of the chapter is organized as follows. §2-2 introduces the general framework used
to pose the identification problems in and reviews SCR. §2-3 introduces a Semidefinite Pro-
gramming (SDP) method to solve the intermediate iterates stemming from SCR. §2-4 gives
an Alternating Direction Method of Multipliers (ADMM) implementation to solve these it-
erates, efficient when there are only linear equalities besides the bilinear equality. §2-5 treats
two illustrative examples of the SCR-technique applied to non-convex problems (not in iden-
tification setting). We see that the method is able to escape local minima and give a visual
interpretation. Finally in §2-6 we summarize.
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4 Solving Bilinear Equations

2-2 Bilinear Equations

In the most general way, the way we pose the identification problems is

find x ∈ Rn such that
A(x)PB(x) = C(x)

D(x) = 0
E(x) � 0

(2-1)

where P ∈ Rk×l is a nonzero matrix. A(x) : Rn → Rj×k,B(x) : Rn → Rl×m, C(x) : Rn →
Rj×m,D(x) : Rn → Rd are affine mappings of the parameter x, i.e.

A(x) = A0 + x1A1 + · · ·+ xnAn (2-2)

similarly for B(x), C(x),D(x). On the other hand E(x) : Rn → Se,

E(x) = E0 + x1E1 + · · ·+ xnEn (2-3)

where Ei ∈ Se, linearly maps x to a symmetric matrix. The statement A(x)PB(x) = C(x)
contains bilinear equations. D(x) = 0 is a set of underdetermined linear equations, it handles
explicit linear constraints on the decision variable. The inequality E(x) � 0 is called an
Linear Matrix Inequality (LMI), and means that E(x) is positive semidefinite, i.e. zTE(x)z ≥
0 ∀z ∈ Re, and is a convex constraint [14].
In general a bilinear matrix equality is NP-hard. To see this note that the bilinear constraint
x1x1 = x1 is equivalent to the constraint x1 ∈ {0, 1}, hence any 0-1 integer program (in which
all variables have to be either 0 or 1) can be formulated as bilinear constraint. Since 0-1
integer programming is hard in general, solving problems with bilinear constraints are also
NP-hard. In the optimization setting, a problem as (2-1) is referred to as a feasibility problem
and can be written as

find x = min 0
s.t. A(x)PB(x) = C(x)

D(x) = 0
E(x) � 0

(2-4)

The feasibility problem is thus to determine whether the constraints are consistent and if so,
find a point that satisfies them. There are two problems with the first constraint in (2-4).
First of all there is the bilinearly appearing decision variable x due the product A(x)PB(x).
The other problem is the equality constraint, which cannot just be relaxed; otherwise the
solution to a relaxed problem is not a solution to the original problem. However it can be
shown that the bilinear constraint is equivalent to a rank constraint[11].

Lemma 1. Rank equivalence [11] The constraint APB = C is equivalent to the rank con-
straint

Rank(M(A,P,B,C,Q,R)) = Rank(P ) (2-5)
where M(·) is defined as

M(A,P,B,C,Q,R) ≡
[
C +APR+QPB +QPR (A+Q)P

P (B +R) P

]
(2-6)

for any matrices Q,R of appropriate size.

W.P. Krijgsman Master of Science Thesis



2-2 Bilinear Equations 5

Lemma 1 lets us rewrite the bilinear equality A(x)PB(x) = C(x), into a rank constraint. In
this rank constraint, the variable x no longer appears bilinearly, but affinely. However our
new optimization problem subject to some rank constraint is still a non-convex problem. A
well known heuristic when minimizing the rank of a matrix is to use the nuclear norm [15].
The relaxation of (2-4) leads to

min
x

‖M(A(x), P,B(x), C(x), Q,R)‖?

s.t. D(x) = 0
E(x) � 0

(2-7)

where ‖ · ‖? denotes the nuclear norm. The above minimization might not produce a desired
solution right away, i.e. (2-5) might not hold. However the freedom to choose the values of
Q,R, lead the authors in [11] to propose the following iterative scheme

Algorithm 2.1 Sequential Convex Relaxation

given some initial matrices Q ∈ Rj×k, R ∈ Rl×m

repeat

1. Update x using

argmin
x

∥∥∥∥∥
[
C(x) +A(x)PR+QPB(x) +QPR (A(x) +Q)P

P (B(x) +R) P

]∥∥∥∥∥
?

s. t. D(x) = 0
E(x) � 0

2. Update Q := −A(x) and R := −B(x)

until maximum number of iterations reached

It is noted that the use of the nuclear norm as a means to minimize the rank of the matrixM(·)
in (2-7) is merely a choice. Other possible choices of heuristic include the log-det heuristic
[16], and the truncated-nuclear norm [17].

Complex Case

In this section it was assumed for explanatory reasons that the decision variable x and all other
matrices are real valued. In later chapters we shall come across complex valued feasibility
problems. By noting that any complex matrix Z = X+jY where X,Y ∈ Rn×m and j =

√
−1,

has a real representation[18], [
X −Y
Y X

]
∈ R2n×2m, (2-8)

the above handled theory is equally applicable.
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6 Solving Bilinear Equations

2-3 SDP

This section treats the optimization of (2-7) via means of SDP. For sake of brevity denote
M(x) : Rn → Rp×q, M(x) = M(A(x), P,B(x), C(x), Q,R). It is well known that the nuclear
norm approximation problem (2-7) can be cast into the SDP-problem[15],

min 1
2(Y + Z)

s.t.
[

Y MT (x)
M(x) Z

]
� 0

D(x) = 0
E(x) � 0

(2-9)

with decision variables x ∈ Rn, Y ∈ Sp, Z ∈ Sq. (2-9) can be solved by interior point methods
available in general purpose software for SDP’s [19, 20, 21]. Solving nuclear norm through
SDP can be computationally intensive. If we for simplicity assume that the dimensions
p and q grow as fast as the number of variables n i.e. q = O(n) , p = O(n) then the
complexity per iteration grow as least as fast as O(n6) [22]. In [22] the authors address this
issue and manage to bring down the complexity to O(n4). Concerning the problems solved
throughout this thesis; this implementation was not used. Advantages to SDP’s are that they
require only a small amount of iterations 10-15 to reach the optimal point which only grows
slightly with problem size. SDP’s also have quadratic convergence near the optimal point
making them very precise for little extra cost [2, 14]. Furthermore by reverting to an SDP
solution it is straightforward to implement additional (generalized)-inequality constraints in
the optimization problem.

2-4 ADMM

In the case that there are no (generalized)-inequalities in (2-7), i.e. E(x) is not present, there
exists an efficient Alternating Direction Method of Multipliers (ADMM) implementation to
solve the given optimization problem. First note that the minimization problem (2-7) can be
reformulated as

min
x,Y

‖Y ‖?

s.t. Y = M(A(x), P,B(x), C(x), Q,R)
D(x) = 0

(2-10)

Applying the ADMM optimization technique [23] to the constrained optimization problem
(2-10), we obtain the steps outlined in Algorithm 2.2

Algorithm 2.2 ADMM implementation for SCR

given matrices Q,R

initialize Y := M(Q,R, P,Q,R) and Λ := 0
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repeat

1. Update x using

x := argmin
x

∥∥∥∥Y −M(A(x), P,B(x), C(x), Q,R) + 1
ρ

Λ
∥∥∥∥2

F

s.t. D(x) = 0

2. Update Y

Y := argmin
Y
‖Y ‖? + ρ

2

∥∥∥∥Y −M(A(x), P,B(x), C(x), Q,R) + 1
ρ

Λ
∥∥∥∥2

F
3. Update the dual variable

Λ := Λ− ρ
(
Y −M(A(x), P,B(x), C(x), Q,R)

)
until stopping criterion is satisfied

‖xi+1 − xi‖/‖xi‖ ≤ ε

The main advantage of using this ADMM formulation in the identification problems is that
both updates (1) and (2) have analytic solutions. In (1), the matrix valued function M(·) is
parameterized affinely in x, hence it can always be recast as a Least Squares (LS)-problem
(constrained or unconstrained depending on the existence of D(x)). Furthermore, (2) is of
the form

argmin
Y
‖Y ‖? + λ‖Y − C‖2F (2-11)

and has the analytic optimal solution, commonly referred to as ’singular value threshhold-
ing’ [24],

Ŷ = UCT (Σ)V T
C (2-12)

where T (Σ) = max{σi − 1
2λ , 0} and UC and VC denote the left and right singular vectors of

C respectively. A proof is discussed in Appendix A-2.

Note that an ADMM implementation is equally applicable given that we do have generalized
inequalities resembled in E(x) � 0. The difference being that step 2. in Algorithm 2.2 would
have this LMI, E(x) � 0 as an additional constraint. However in such an instance the ADMM
approach would no longer be efficient as this exact step is an SDP, requiring an interior point
method to solve.

2-5 Examples

In this section we give two examples of how SCR can be be applied to solving non-convex
functions. In the first example we show that SCR has the ability to escape local minima, in
the second example we review SCR applied to the Rosenbrock function, which is an industry
standard for testing optimization algorithms. It is shown that the Rosenbrock function can
be written as an optimization problem with a convex objective function subject to bilinear
constraints. Furthermore we will use this example to give an illustrative interpretation of
convex relaxation.
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8 Solving Bilinear Equations

2-5-1 Escaping local minima

The authors in [25] show that their identification method using a Difference of Convex Pro-
gramming (DCP) technique has the ability to climb out of local minima. We show that the
SCR technique, which we employ has the same ability. For the purpose of illustrating this,
we use the same example as in [25]. Suppose we have to deal with the following optimization
problem

min
α,β

α2 + 0.1β2

s.t α+ 1 = (β − 1)2
(2-13)

where α, β ∈ R are scalar variables. It can be found that the objective function above has only
one local minimum at α = 0, β = 0, which is also the global minimum of (2-13). However,
the constrained optimization problem has two local minima, as can be seen from Figure 2-1.
By substituting the constraint α = (β − 1)2 − 1 into the objective function, we have that

min
β

[(β − 1)2 − 1]2 + 0.1β2 (2-14)

The above objective function is 4th order polynomial which has local minima at β = 0 and
β = 1.947. The optimization problems (2-13) and (2-14) are equivalent. However minimizing
(2-14) may end up in β = 0.1947 while minimizing (2-13) by relaxing the quadratic constraint
leads to the minimum. Using Lemma 1 we can write the quadratically constrained problem
(2-13) into the rank constrained problem

min
α,β

α2 + 0.1β2

s.t. Rank
[
(α+ 1)− 2(β − 1)x+ x2 (β − 1)− x

(β − 1)− x 1

]
= 1

(2-15)

for any x ∈ R. Using the SCR method with a regularization on the nuclear norm relaxation
of the rank constraint of λ = 0.1, and using initial estimates α = 1, β = 2, i.e. the initial x
becomes x = β − 1 = 1, we iteratively solve the problem. Note that the initial point is quite
close to a local minimum such that gradient-type optimization schemes such as Gauss-Newton
method will get stuck in the local minimum. The SCR method however is able to escape the
local minimum by relaxing the associated rank constraint. It should however be noted that
this does not imply that SCR is able to find the global minimum of any given function.

2-5-2 Rosenbrock Function

In mathematical optimization, the Rosenbrock function is often used as a performance test
problem for optimization algorithms. Because of its shape it is often referred to as the banana
function. The function is defined by

f(x, y) = 100(y − x2)2 + (1− x)2, (2-16)

and is non-convex. The optimum lies within a a long, narrow parabolic shaped flat valley,
and has a global minimum at (1, 1) where f(x, y) = 0. Finding the valley is trivial, however
to converge to the global minimum is hard. We will see that SCR can be used to minimize
the Rosenbrock function.
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Figure 2-1: Iterative estimation of α, β

First of all note that f(x, y) is a fourth order polynomial. Using the substitution a = y−x2 we
can write the minimization as a quadratic objective function subject to a quadratic constraint,
i.e.

min
x,y,a

100a2 + (1− x)2

s.t. x2 = y − a
(2-17)

which is equivalent to the rank constrained function

min
x,y,a

100a2 + (1− x)2

s.t. Rank
[
y − a+ 2xr + r2 x+ r

x+ r 1

]
= 1

(2-18)

for any r ∈ R. For ease of reference we give the procedure to solve the above function using
the theory outlined in §2-2.

Algorithm 2.3 Rosenbrock minimization with SCR

given initial r ∈ R, regularization λ ∈ R++

repeat

1. Update x, y, a using

argmin
x,y,a

100a2 + (1− x)2 + λ

∥∥∥∥∥
[
y − a+ 2xr + r2 x+ r

x+ r 1

]∥∥∥∥∥
?

2. Update r := −x

until stopping criterion is satisfied

We will analyze the effects of the regularization parameter λ, by solving the Rosenbrock
function for λ ∈ {0.1, 1, 10}, as a staring point we choose (−1.9, 2) which lies at the other side
of the valley. The results are depicted in Figure 2-2. We see that for a high regularization
term the iterates follow a path similar to a path generated by a gradient based algorithm.
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10 Solving Bilinear Equations

This not a entirely surprise as a high regularization term λ means that we would very much
like to enforce the constraint a = y − x2. Enforcing this constraint means we are solving the
original problem. On the other hand when we have a low regularization term λ = 0.1, the first
step ends up in (x1, y1) = (0.9000,−6.0300) having objective value of f(x, y) = 5405. This
might not seem as an improvement from our initial starting point, but one should remember
we are no longer solving the minimization of f(x, y) but the convex relaxation hereof. Denote
gi(x, y, a) as the i’th relaxation of f(x, y), of which the first two are depicted in Figure 2-3.
From this figure it is clear that the point (0.9000,−6.0300) does in fact minimize the relaxed
objective function. The second iterate has the minimum in (0.999, 0.998), which is very close
to the global optimum (1, 1).

2-6 Summary

In this chapter we have reviewed Sequential Convex Relaxation [11], which provides a tech-
nique for solving optimization problems which are convex in the objective function and have
bilinear constraints. These bilinear constraints make the overall optimization problem non-
convex. Using the fact that a bilinear matrix equality can be written as a rank constraint, and
using the nuclear norm’s property of producing low-rank solutions, the non-convex problem
can be turned into a convex one. However the nuclear norm doesn’t always provide optimal
solutions, by using an iterative technique we can improve upon the results.

Furthermore, we have reviewed the concept of a feasibility problem. A feasibility problem is
an optimization problem where the only objective is to check if the constraints are consistent,
and if they are to find a parameter vector satisfying these constraints. All of the identification
problems treated in the next chapters will be written as such a problem.

Finally we have treated two examples which illustrate the flexibility of SCR. In the first
example we showed that the method has the capability of escaping local minima, in the
second we gave an intuitive interpretation of the concept of convex relaxation.
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(a) λ = 10

(c) λ = 1

(b) λ = 0.1

Figure 2-2: Solving the Rosenbrock function using SCR for different regularization values
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12 Solving Bilinear Equations

(a) 1st iteration

(b) 2nd iteration

Figure 2-3: Slice of the first and second convex relaxation of the Rosenbrock function (a = 0),
per iteration showing starting point and minimum. Note that the second iterate seems to be non-
convex, however this due to the logarithmic scale, chosen to emphasize change in z-direction.
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Chapter 3

State Space
via

Frequency Response

3-1 Introduction

In this chapter we give a new method to identify continuous-time structured state space model
given the Frequency Response Function (FRF). A great feature of frequency domain data
is that it can handle continuous-time measurements and thus can directly be used for the
identification of continuous-time systems. The FRF can be obtained for any Linear Time-
Invariant (LTI) system and special instruments such as spectrum analyzers can be used for
this purpose. Another option is to obtain the FRF from the discrete Input Output (IO)-data.
To do so, the reader is referred to [26], which dedicates an entire chapter to the estimation of
FRF-data given finite length data sequences. Also [27] contains an interesting discussion on
continuous-time system identification using frequency data.

Assuming that the parameters are distributed among the (A,B,C) matrices (See §3-2), the
transfer function non-linearly depends on the parameters. Furthermore, retrieving the pa-
rameters directly from the FRF, turns out to be a highly non-convex problem. The method
we propose uses a certain substitution for the inverse term in the transfer function so that
we can describe the transfer function as two distinct bilinear equations. Having the transfer
function in bilinear equality form, we can apply Sequential Convex Relaxation (SCR) to solve
the optimization problem. However, rewriting the transfer function as two bilinear equations
comes at the expense of introducing new variables in the optimization problem. In the nu-
merical example in §3-6 and §3-7, we asses if this leads to an easier optimization problem
compared to the direct estimation of the parameter from the FRF with Prediction Error
Method (PEM).
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14 State Space via Frequency Response

Outline

This chapter is organized as follows: §3-2 reviews the theory regarding the state space model
and its associated transfer function. In §3-3 we introduce the problem formulation. §3-4
treats the literature. In §3-5 we develop an algorithm to estimate a parameterized State
Space (SS)-model given the FRF. In §3-6 the method is validated on a numerical example
and in §3-7 is compared to the prediction errror method. Finally in §3-8 we conclude.

3-2 State Space Model

The state space model for an LTI model consists of a set of n coupled first-order Ordinary
Differential Equation (ODE), defined in the matrix A and B, and in a set of output equations
expressed in terms of the matrices C and D

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(3-1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, and where u is the input of the system,
y the output and x the state. The number of components of the state vector x is called the
order of the model. The matrices A and B are properties of the system and are determined by
the system structure and elements. The matrices C and D are determined by the particular
choice of output variables. In cases there is no direct feedthrough from the input u(t) to the
output y(t), D is the zero matrix.

Consider (3-1), with no direct feedthrough, as we will do throughout the rest of the thesis.
Applying the Fourier transform with zero initial condition leads to

jωX(ω) = AX(ω) +BU(ω)
Y (ω) = CX(ω)

(3-2)

As we are interested in the ratio of Y (ω), U(ω), we solve for the state equations for X(ω).

jωX(ω)−AX(ω) = BU(ω)
(jωI −A)X(ω) = BU(ω)

X(ω) = (Ijω −A)−1BU(ω)
(3-3)

We can now put the expression for X(ω) in the output equation

Y (ω) = C(Ijω −A)−1BU(ω) (3-4)

and can solve for the transfer function

H(ω) = Y (ω)
U(ω) = C(Ijω −A)−1B (3-5)

The transfer function of a given system is unique, note however that there are many State
Space realizations that will result in the same transfer function. Clearly H(ω) in (3-5) must
have dimensionality p × q, so for every input there are p transfer functions, one for each
output.
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3-3 Problem formulation
Consider a parameterized continuous-time linear state space model as follows

ẋ(t) = A(θ)x(t) +B(θ)u(t)
y(t) = C(θ)x(t)

(3-6)

where u(t) ∈ Rm, x(t) ∈ Rn, y(t) ∈ Rp; θ ∈ Rl. We assume that the structured system
matrices are affine with respect to θ, i.e. they have the same structure as given in Eq. (??).

problem of interest Given a set of measured frequency function matrices

H(ωi, θ) = C(θ)(Ijωi −A(θ))−1B(θ) for i = 1 . . . s (3-7)

that are generated from Eq. (3-6) for a certain value θ∗, the concerned grey-box identification
problem is to estimate the parameter vector θ∗ from the measurements.

To address the concerned identification problem, the following assumptions are made

1. The system model in Eq. (3-6) is minimal and stable, and the system order is known.

2. The system model in Eq. (3-6) is identifiable

3. The generated FRF for the system model Eq. (3-6) are noise-free.

3-4 Overview

According to [27] the prediction error approaches such as PEM implement variants of the
minimization problem

θ̂N = arg min
θ

N∑
i=1
|Y (ωi)−H(ωi, θ)U(ωi)|2 (3-8)

where Y (ω) and U(ω) are defined as in (3-5). The above optimization problem forms a natural
least squares estimate, but could also be weighted to represent varying reliability and relevance
of the measurements at different frequencies [27]. A whole different class of identification
schemes to estimate parameters in continuous-time state space representations, consist of first
estimating a black-box state space model before solving a small scale optimization problem
to transform the black-box model so that it fits the grey-box representation. Given that
we develop our own such method in Chapter 6, the reader is referred to §6-4 for literature
regarding such methods. In this chapter we will be focusing on the identification of continuous-
time state space systems directly from the frequency data.

3-5 Identification Method

Consider a single measurement in Eq. (3-7),by introducing the notation

Γi = (Ijωi −A(θ))−1B(θ) (3-9)
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where Γi ∈ Cn×m. For sake of clarity denote Hi = H(ωi). Using (3-9) it is possible to write
a frequency measurement (3-7) as the pair of bilinear equations

jωΓi −B(θ) = A(θ)Γi (3-10a)
Hi = C(θ)Γi (3-10b)

In a similar fashion we can apply the substitution,

Ψi = C(θ)(Ijωi −A(θ))−1 (3-11)

letting us write the transfer function (3-5) as the two bilinear equations

jωiΨi − C(θ) = ΨiA(θ) (3-12a)
Hi = ΨiB(θ) (3-12b)

Equations (3-9) and (3-12) are equivalent in the following sense,

given θ,Γi such that
(
jωΓi −B(θ) = A(θ)Γi

Hi = C(θ)Γi

)
then Hi = C(θ)(Ijωi −A(θ))−1B(θ)

(3-13)

given θ,Ψi such that
(
jωiΨi − C(θ) = ΨiA(θ)

Hi = ΨiB(θ)

)
then Hi = C(θ)(Ijωi −A(θ))−1B(θ)

(3-14)

Meaning that we only need to find the doublet (θ,Γ1, . . . ,Γs) or the doublet (θ,Ψ1, . . . ,Ψs)
in order to meet the problem statement given in §3-3. However for reasons discussed in the
note at the end of this section we opt to use both equations (3-10,3-12) simultaneously in the
feasibility problem, resulting in

find θ ∈ Rl,Γi ∈ Cn×m,Ψi ∈ Cp×n for i = 1, . . . , s
subject to

jωiΓi −B(θ) = A(θ)Γi
Hi = C(θ)Γi

jωiΨi − C(θ) = ΨiA(θ)
Hi = ΨiB(θ)

 for i = 1, . . . , s
(3-15)

which contains 4 × s bilinear equations in the constraint set. Using the theory outlined in
§2-2 it is possible to lift each bilinear constraint into the objective function, assigning to each
individual relaxation a weighting parameter, possibly reflecting confidence in the measured
FRF at the given frequency, see Algorithm 3.1. Furthermore as (3-15) contains no inequalities,
it is efficient to use the Alternating Direction Method of Multipliers (ADMM) implementation
as discussed in §2-4 to solve the relaxed problem. If the weighting parameters are to be chosen
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3-6 Simulation 17

uniform, we can also write the feasibility problem as

find θ ∈ Rl,Γi ∈ Cn×m,Ψi ∈ Cp×n for i = 1, . . . , s
subject to [

jω1Γ1 −B(θ) . . . jωsΓs −B(θ)
H1 . . . Hs

]
=
[
A(θ)
C(θ)

] [
Γ1 . . . Γs

]
jω1Ψi − C(θ) H1

...
...

jωsΨs − C(θ) Hs

 =

Ψ1
...

Ψs

 [A(θ) B(θ)
]

(3-16)

The feasibility problem (3-16) contains 2 bilinear matrix equations compared to the 4 × s
equations in Eq. (3-15). Although the bilinear equations are now substantially larger com-
pared to (3-15), (3-16) can still be be more efficiently solved by the methods discussed in
Chapter 2.

Note The simultaneous use of (3-10) and (3-12) in the feasibility problem (3-15) might seem
redundant, especially considering it leads to a doubling of the number of bilinear constraints in
(3-15) or (3-16). However it should be noted that during the bilinear optimization procedure
(SCR) all of the constraints in (3-15) are relaxed. Using both constraint pairs, we have that
the matrices B(θ), C(θ) are simultaneously sitting in equations which relate them directly to
the transfer function H(ω) and to the A(θ) matrix. It has been found that this is beneficial
w.r.t. being able to converge to the global optimum, and makes it less necessary to weight
individual relaxations.

3-6 Simulation

The following example is extracted from [28], which aims to identify the physical parameters
governing a printer belt drive system. The associated system matrices are parameterized as
follows:

A(θ) =

 0 −1 0.15
0.2 0 0
θ1 θ2 θ3

B(θ) =

 0
0
θ4

 C =
[
0 1 0

]
. (3-17)

The true parameter vector is set to be

{θ1, θ2, θ3, θ4} = {−1,−0.5,−0.2,−0.15}. (3-18)

The bode plot of the system is depicted in Figure 3-1 - from which we see that the system has
a frequency spike at roughly 0.6 Hz. Because these spikes contain information, it is chosen to
use this spike for the identification of the system. We sample the spike in the frequency range
0.4− 0.6 Hz in a logspaced manner. The resulting 10 data points - also visible in Figure 3-1 -
are used for the identification method as given in Algorithm 3.1. Concerning the initialization
of the matrices: all matrices are initialized as zero matrices.

In Figure 3-2 a convergence plot is given showing the difference of the objective function
with respect to the optimal value, per iteration. It not only shows the value of the overall
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18 State Space via Frequency Response

Figure 3-1: Bode plot of the driver belt (3-17) showing the used frequency samples for Identifi-
cation.

Figure 3-2: Error versus iteration k.
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3-7 Comparison 19

objective function, but also four separate functions fq(x) which together form the overall
objective function. Each separate fq(x) is a measure for the equality violation of the q’th
constraint in (3-15), it is the summation of the relaxations of the q’th constraint in (3-15),
e.g.

f1(x) =
s∑
i=1

∥∥∥∥∥
[
Γijωi −B(θ) +A(θ)Gi + AΓi + AGi A(θ) + A

Γi + Gi I

]∥∥∥∥∥
?

, (3-19)

where x contains all decision variables. Similarly for f2(x), f3(x), f4(x) - also see Algo-
rithm 3.1. By looking at the convergence plot in (3-2), we see that the total objective error
has not yet been reduced to zero by the 500’th iteration. On the other hand, we do see that
f1(x), f2(x) have converged to practically zero around the 425’th iteration, meaning that the
first two constraints in (3-15) hold for all i. By (3-13), we then conclude we should have
solved the problem. And this is indeed the case, the estimated parameter vector equals:

θ̂ =
[
−1.000 −0.500 −0.200 −0.15

]T
, (3-20)

with an estimation error equalling:

‖θ − θ̂‖2 = 3.4987 · 10−7. (3-21)

Thus we conclude we were able to successfully identify the system using only the 10 frequency
data points as shown in Figure 3-1.

3-7 Comparison

In the overview we saw that an other method which is able to directly estimate grey-box
models using FRF-data is PEM. In this section we will be assessing if PEM has the ability
to extract the unknown parameter vector in (3-17). To do so we make use of the commands
provided by the System Identification Toolbox [29] in Matlab. Initially, the system of (3-17)
is put into a identifiable grey-box object with idgrey. Using the FRF-data in an iddata-
object we are then ready to estimate the model using the greyest command. It turns out
that PEM finds it a hard problem to solve. At first, the initialization of the algorithm θ0 is
set to be zeros. This leads to a fit of the estimation data of −8, 5% and an estimated param-
eter vector θ̂ =

[
0.0010 0.0005 0.1575 −0.0013

]T
. Hereafter we try a series of random

initialization of θ0, using a Gaussian distribution. We try this 10 times, and then pick the
solution which leads to the highest estimation data fit. In this case, this leads to a fit of 68.5%
and an associated estimated parameter vector θ̂ =

[
−0.8846 1.6125 0.2406 −0.2042

]T
.

Even when we pick the initial estimate relatively close to the parameter vector, e.g. pick-
ing θ0 =

[
−0.5 −0.5 −0.2 −0.1

]T
, PEM is not able to converge to the global optimum.

We presume this to be a consequence of the highly non-convex optimization problem which
PEM tries to solve. The conclusion is that our proposed algorithm outperforms PEM for this
problem instance.
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20 State Space via Frequency Response

3-8 Summary

In this chapter we have given a novel method to identify a parameterized state space model
using the Frequency Response Function. By introducing two substitutions for certain parts of
the transfer function we were able to write the transfer function as a set of bilinear equations.
Finding the parameter vector, then turned out to be solving a feasibility problem subject to
some bilinear constraints. Utilizing the fact that such a problem can be solved using SCR
we were able to come up with an algorithm. The algorithm has been tested on physical
example. We saw that the proposed algorithm was able to extract the unknown parameter
vector, whereas the Prediction Error Method failed.

Algorithm 3.1 Estimate parameters in State Space model given
FRF-data

given frequency samples H(ωi) ∈ Cp×m for i = 1, . . . , s

initialize A,B,C and Gi,Pi for i = 1, . . . , s

do

1. Update the decision variables θ,Γ1, . . . ,Γs,Ψ1, . . . ,Ψs, using

min
θ,Γ,Ψ

s∑
i=1

(
λi

∥∥∥∥∥
[
Γijωi −B(θ) +A(θ)Gi + AΓi + AGi A(θ) + A

Γi + Gi I

]∥∥∥∥∥
?

+ . . .

γi

∥∥∥∥∥
[
Hi + C(θ)Gi + CΓi + CGi C(θ) + C

Γi + Gi I

]∥∥∥∥∥
?

+ . . .

δi

∥∥∥∥∥
[
Ψjωi − C(θ) + PiA(θ) + ΨiA + PiA Ψi + Pi

A(θ) + A I

]∥∥∥∥∥
?

+ . . .

ρi

∥∥∥∥∥
[
Hi + PiB(θ) + ΨiB + PiB Ψi + Pi

B(θ) + B I

]∥∥∥∥∥
?

)
‘

2. Update
A := −A(θ) B := −B(θ) C := −C(θ)
Gi := −Γi, Pi := −Ψi for i = 1, . . . , s

until stopping criterion satisfied
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Chapter 4

Matrix Differential Equation
via

Frequency Response

4-1 Introduction

In the preceding chapter we have developed a technique for estimating parameters in struc-
tured state-space models using frequency domain data. In this chapter we will extend this
theory and apply it to Matrix Differential Equation (MDE)’s. MDE’s form a way of represent-
ing a differential equation. The second-order variant of the MDE is an often studied object
in the field of structural identification. In this case the matrices represent physical quantities
such as the mass, damping and stiffness of the given system. In addition, due to first order
principals the associated matrices are positive definite, this make them an interesting object
of study.

Outline

This chapter is organized as follows: §4-2 treats the MDE and the 2nd order instance we
will be focusing on this chapter. §4-3 formulates the problem statement. §4-4 treats the
concerning literature. In §4-5 a new identification algorithm is proposed to deal with the
problem statement, and treats two special cases. §4-6 the proposed method is applied to a
physical example. §4-7 gives some possibilities for future work. Finally in §4-8 we conclude.
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22 Matrix Differential Equation via Frequency Response

4-2 Matrix Differential Equation

The state space representation of a system replaces a q’th order differential equation with q
first-order Ordinary Differential Equation (ODE)’s. A different representation is to leave q’th
order differential equations intact and collect them into a MDE

Aqx
(q)(t) +Aq−1x

(q−1)(t) + · · ·+A0x(t) = Bu(t)
y(t) = Cqx

(q)(t) + Cq−1x
(q−1)(t) + · · ·+ C0x(t)

(4-1)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp.
Given that we have 2nd order differential equation and only measure displacement, (4-1)
reads as,

Mẍ(t) + V ẋ(t) +Kx(t) = Bf(t)
y(t) = Cx(t)

(4-2)

where B ∈ Rn×m, C ∈ Rp×n and due to the principal of reciprocity M,V,K ∈ Sn++. Com-
monly M is referred to as the mass matrix, V to the damping matrix and K the stiffness
matrix. For acceleration measurements the output equation in (4-2) becomes y(t) = Cẍ(t)
The dynamical equations of motion are related to the state space representation in the fol-
lowing way[30], [

ẋ(t)
ẍ(t)

]
=
[

0 I
−M−1K −M−1V

] [
x(t)
ẋ(t)

]
+
[

0
−M−1B

]
u(t)

y(t) =
[
C 0

] [x(t)
ẋ(t)

] (4-3)

We remark that when parameterizing physical systems, the dynamical equations lend them-
selves far better to construct affine parameterizations w.r.t. the parameter vector θ, because
in (4-3), the matrix M is inverted.

4-3 Problem formulation

Consider a parameterized continuous-time linear state space model as follows,

M(θ)ẍ(t) + V (θ)ẋ(t) +K(θ)x(t) = Bu(t)
y(t) = Cx(t)

(4-4)

where u(t) ∈ Rm, x(t) ∈ Rn, y(t) ∈ Rp; θ ∈ Rl. We assume that the structured system matri-
ces are affine with respect to θ. We will assume that M(θ), V (θ),K(θ) are positive definite
matrices due to reciprocity, and are fully or partially unknown. Furthermore we will assume
that B,C are known a priori which is common in literature.

problem of interest Given a set of measured frequency function matrices

H(ωi, θ) = C(−ω2
iM(θ) + jωiV (θ) +K(θ))−1B for i = 1 . . . s (4-5)
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4-4 Overview 23

that are generated from Eq. (4-4) for a certain value θ∗, the concerned grey-box identifi-
cation problem is to estimate the parameter vector θ∗ from the measurements.

To address the concerned identification problem, the following assumptions are made

1. The system model in Eq. (3-6) is minimal and stable, and the system order is
known.

2. The system model in Eq. (3-6) is identifiable

3. The generated Frequency Response Function (FRF) for the system model Eq. (3-6)
are noise-free.

4-4 Overview

Models fitting the description (4-2) are often used in Finite Element Modeling, Structural
Analysis and Modal Analysis. These fields largely use black-box descriptions of the matrices
M,V,K and are mostly interested in finding the resonant frequencies and the associated mode
shapes [31, 32, 33].

A Maximum Likelihood algorithm is used in [34] for Bayesian finite element updating. They
test the method on the parameterized model of the form (4-4).

4-5 Identification Method

Consider a single measurement in Eq. (4-5), by introducing the substitution

Γ(ωi, θ) = (−ω2
iM(θ) + jωiV (θ) +K(θ))−1B (4-6)

We can write a single measurement as

B =
[
M(θ) V (θ) K(θ)

]  −ω2
i Γ(ω)

−jωiΓ(ωi)
Γ(ωi)


H(ωi) = CΓ(ωi)

(4-7)

Where M(θ), V (θ), C,K(θ) are (partially-)parameterized matrices, Γ(ω) is fully parameter-
ized, and G(ω), ω, C,B are fully known to us. Now supposing we have s frequency samples
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24 Matrix Differential Equation via Frequency Response

we can write the problem directly into optimization form

find θ,Γ
subject to

B =

A(x)︷ ︸︸ ︷[
M(θ) V (θ) K(θ)

]
Pi︷ ︸︸ ︷−ω2
i I

−jωiI
I


Bi(x)︷ ︸︸ ︷
Γ(ωi) for i = 1, . . . , s

[
H(ω2) . . . H(ωs)

]
− C

[
Γ(ω1) . . . Γ(ωs)

]
︸ ︷︷ ︸

D(x)

= 0

M(θ) � 0
V (θ) � 0
K(θ) � 0

(4-8)

Because we have s bilinear equations in (4-8) it is needed to relax every bilinear equation
individually into the objective function. This leads to the minimization over the summation
of s nuclear norms. Due to the individual relaxations, it is possible to assign a weight λi to
every term, possibly reflecting the confidence in frequency measurement H(ωi). Furthermore
(4-8) contains generalized matrix inequalities, hence the Semidefinite Programming (SDP)
formulation §2-3 can be applied to solve the optimization problem.

Velocity and/or acceleration measurements

It should be noted that in the above we have considered position measurements only, this is
for exposition reasons. In the case we have velocity measurements, or accelerations measure-
ments, the generic description is

C = −ω2Ca + jωCv + Cp (4-9)

where Cp, Cv, Ca denote the output matrices of the position, velocity and acceleration respec-
tively.

4-5-1 Special Cases

We identify two cases where the the solution can be obtained in a linear manner. The first
is the case when we have as many sensors as there as second order modes. The other being
that the number of second order modes equals the number of actuators. We briefly review
both instances here.

Full set of Sensors In case the matrix C is known a priori and is of full rank the bilinear
problem reduces to a linear problem. Because C is invertable we can solve the following,

argmin
θ∈R

s∑
i=1

∥∥∥(−ω2
iM(θ) + jωiV (θ) +K(θ))C−1H(ωi)−B

∥∥∥2

F
(4-10)

which can be written as a standard Least Squares (LS).
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Full set of Actuators In the event that we have as many actuators as there are second order
modes we have that B is square and invertible. We can then write

argmin
θ∈R

s∑
i=1

∥∥∥H(ωi)B−1(−ω2
iM(θ) + jωiV (θ) +K(θ))− C

∥∥∥2

F
(4-11)

The above problem is a summation of Frobenius norms linear in the argument θ, thus equiv-
alent to a linear LS.

Note that the above two LS are only stricly valid in the noiseless case, when equality holds.
In the case of noise; and defining the modeling miss-match error as

ε = H(ω)− C(−ω2M(θ) + ωV (θ) +K(θ))B, (4-12)

we are in effect minimizing

(−ω2
iM(θ) + jωiV (θ) +K(θ))C−1ε (4-13)

and
εB−1(−ω2

iM(θ) + jωiV (θ) +K(θ)) (4-14)

in (4-11) and (4-10) respectively.

4-6 Simulations

In this section we give two numeric examples validating the methodology. We will consider
the special case where B is full rank as well as the general case. We omit a validation of C
being full rank, because the case that B is full rank, is almost alike, (4-10) (4-11).

4-6-1 Full set of Actuators Truss Structure

In the first numerical example we consider the two-dimensional truss structure as depicted
in Figure 4-1. We use it to validate the LS-formulation of (4-11), possible when B is full
rank. The example has previously been studied in [1]. The system has a total number of
eight nodes of which four are fully restrained, and hence the total number of active Degree Of
Freedom (DOF)’s is 8 (one vertical and one horizontal per each node). The mass, damping and
stiffness matrices are presented in (4-15). The second-order matrices contain the coefficients
only for the unrestrained DOF’s and are ordered such that the displacement vector can be
written as x(t) =

[
u1(t)v1(t) . . . u4(t)v4(t)

]
, where ui(t), vi(t) are the horizontal and vertical

DOF of node i respectively.
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26 Matrix Differential Equation via Frequency Response

Figure 4-1: [1] Truss structure with eight unrestrained DOF’s (one horizontal and one vertical
for each of the nodes denoted by 1,2,3,4)

M =


100.0 0 0 0 0 0 0 0

0 100.0 0 0 0 0 0 0
0 0 100.0 0 0 0 0 0
0 0 0 100.0 0 0 0 0
0 0 0 0 100.0 0 0 0
0 0 0 0 0 100.0 0 0
0 0 0 0 0 0 100.0 0
0 0 0 0 0 0 0 100.0



V =


136.0 0 0 0 −50.0 0 −17.7 −17.7

0 86.4 0 −50.0 0 0 −17.7 −17.7
0 0 136.0 0 −17.7 17.7 −50.0 0
0 −50.0 0 86.4 17.7 −17.7 0 0

−50.0 0 −17.7 17.7 136.0 0 0 −50.0
0 0 17.7 −17.7 0 86.4 0 0

−17.7 −17.7 −50.0 0 0 0 136.0 0
−17.7 −17.7 0 0 −50.0 0 0 86.4



K =


27071.0 0 0 0 −10000.0 0 −3535.5 −3535.5

0 17071.0 0 −10000.0 0 0 −3535.5 −3535.5
0 0 27071.0 0 −3535.5 3535.5 −10000.0 0
0 −10000.0 0 17071.0 3535.5 −3535.5 0 0

−10000.0 0 −3535.5 3535.5 27071.0 0 0 0
0 0 3535.5 −3535.5 0 17071.0 0 −10000.0

−3535.5 −3535.5 −10000.0 0 0 0 27071.0 0
−3535.5 −3535.5 0 0 0 −10000.0 0 17071.0



(4-15)

We will assume no prior knowledge of the internal couplings of the modes and we will use full
symmetric parameterizations of M(θ), V (θ),K(θ), i.e.

M =


θ1 θ9 θ16 θ22 θ27 θ31 θ34 θ36
θ9 θ2 θ10 θ17 θ23 θ28 θ32 θ35
θ16 θ10 θ3 θ11 θ18 θ24 θ29 θ31
θ22 θ17 θ11 θ4 θ12 θ19 θ25 θ28
θ27 θ23 θ18 θ12 θ5 θ13 θ20 θ24
θ31 θ28 θ24 θ19 θ13 θ6 θ14 θ21
θ34 θ32 θ29 θ25 θ20 θ14 θ7 θ15
θ36 θ35 θ31 θ28 θ24 θ21 θ15 θ8

 (4-16)

similarly for V (θ),K(θ). The frequency response of the truss structure is simulated by cast-
ing M,V,K matrices from (4-15) into State Space (SS) form, see (4-3), and obtaining the
frequency response from there1. By inspection of the bode plot of the system we see that
most information is contained in the 5rads−1 − 25rads−1 frequency band. 20 samples H(ωi)
are taken from this frequency band in a log-spaced manner. These samples are used for the
identification algorithm from (4-11). The resulting matrices are given in Eq. (4-17).

1MATLAB command freqresp
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Figure 4-2: Bode plot of the 8 DOF Truss structure from Figure 4-15

M(θ∗) =


100.0 0 0 0 0 0 0 0

0 100.0 0 0 0 0 0 0
0 0 100.0 0 0 0 0 0
0 0 0 100.0 0 0 0 0
0 0 0 0 100.0 0 0 0
0 0 0 0 0 100.0 0 0
0 0 0 0 0 0 100.0 0
0 0 0 0 0 0 0 100.0



V (θ∗) =


136.0 0 0 0 −50.0 0 −17.7 −17.7

0 86.4 0 −50.0 0 0 −17.7 −17.7
0 0 136.0 0 −17.7 17.7 −50.0 0
0 −50.0 0 86.4 17.7 −17.7 0 0

−50.0 0 −17.7 17.7 136.0 0 0 −50.0
0 0 17.7 −17.7 0 86.4 0 0

−17.7 −17.7 −50.0 0 0 0 136.0 0
−17.7 −17.7 0 0 −50.0 0 0 86.4



K(θ∗) =


27071.0 0 0 0 −10000.0 0 −3535.5 −3535.5

0 17071.0 0 −10000.0 0 0 −3535.5 −3535.5
0 0 27071.0 0 −3535.5 3535.5 −10000.0 0
0 −10000.0 0 17071.0 3535.5 −3535.5 0 0

−10000.0 0 −3535.5 3535.5 27071.0 0 0 0
0 0 3535.5 −3535.5 0 17071.0 0 −10000.0

−3535.5 −3535.5 −10000.0 0 0 0 27071.0 0
−3535.5 −3535.5 0 0 0 −10000.0 0 17071.0



(4-17)

The normalized differences between actual system matrices and estimated matrices are

‖M −M(θ∗)‖F
‖M‖F

= 3.7964 · 10−9

‖V − V (θ∗)‖F
‖V ‖F

= 4.7592 · 10−9

‖K −K(θ∗)‖F
‖K‖F

= 4.8011 · 10−9

(4-18)

And the conclusion is that the system matrices have successfully been identified.
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Figure 4-3: 2DOF-Mass Damper system

4-6-2 General Case Mass Damper

The next example is used to validate the general case, thus: B and C are rank deficient.
We review a classical text book example, namely the 2DOF mass damper system as given
in Figure 4-3. We will assume that the mass m1 is excited by the force f(t), and that the
only output is the position of m1. Note that in this specific instance we have p + m =
n actuators and sensors and hence, even the most permissible of formulations [1] is not
applicable. However we will see that due to additional imposed structure onM(θ), V (θ),K(θ)
that we can still obtain the actual physical constants. The dynamical equations of motion
read as [

m1 0
0 m2

]
ẍ(t)

[
c1 + c2 −c2
−c2 c2

]
ẋ(t)

[
k1 + k2 −k2
−k2 k2

]
x(t) =

[
1
0

]
f(t)

y(t) =
[
1 0

]
x(t)

(4-19)

The physical parameters for this problem are chosen to be

{m1,m2, c1, c2, k1, k2} = {1, 1, 0.1, 0.3, 2, 1} (4-20)

By eyeballing the bode plot in Figure 4-4, it is observable that most information lies within
the 0.5− 2 rads−1 frequency band. As input data for the algorithm, 30 logspaced samples are
taken from this frequency band.
From the equations of motion, the following parameterization is derived

M(θ) =
[
θ1 0
0 θ2

]
V (θ) =

[
θ3 + θ4 −θ4
−θ4 θ4

]
K(θ) =

[
θ5 + θ6 −θ6
−θ6 θ6

]
(4-21)

A uniform regularization parameter over all frequencies λi = 1 for i = 1, . . . , s is chosen. At
first the algorithm is initialized with a variable vector of all zeros, however this leads to a
local minimum where m̂1, k̂1, v̂1 = 0. Hereafter the algorithm is initialized with a variable
vector where the entries are taken from the normal distribution, we get the solution

M(θ) =
[
1.00 0.00
0.00 1.00

]
V (θ) =

[
0.40 −0.10
−0.10 0.10

]
K(θ) =

[
3.00 −1.00
−1.00 1.00

]
(4-22)

Which is consistent with the true parameter vector. The convergence plot of the this problem
instance is given in Figure 4-5.
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Figure 4-4: Bode plot of the 2DOF mass-damper system Figure 4-3. The stemplots represent
the 10 data points used for identification. Note that although the data points seem linearly spaced
they are in fact log-spaced between 0.6 and 2 rad/s.

4-7 Future Work

In Chapter 3 we applied a pair of substitutions to the transfer function of the state-space
model. It was shown that is helpful during the optimization procedure, because we then
have the same matrices, distributed among multiple equations, in different contexts. This
leads to a better balanced optimization problem. It is presumed that applying such a double
substitution for the 2nd order MDE’s transfer function could also be beneficial, leading to a
improved solvable optimization problem. However, we have not yet studied its potential.

4-8 Summary

In this chapter we have discussed how we can directly identify parameters in a q’th order
MDE’s using frequency domain data. We have focused our attention on 2nd order models
which are widely used in structural identification. We have seen that given a full rank input or
output matrix the problem reduces to a linear LS. However in the general case the problem
is harder, but can be posed as a bilinear feasibility problem, meaning it is solvable with
Sequential Convex Relaxation (SCR). We have tested the method on a physical example. It
was shown that we were able to identify a model, which other identification methods cannot.
We did this by exploiting additional known structure of the model. The proposed methodology
can handle all types of measurements (i.e. displacements, velocities,and/or accelerations).
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(a) linear scale

(b) logarithmic scale

Figure 4-5: Convergence plot of the mass-damper problem. On the x − axis the iteration
number, on the y − axis the difference of f(x) w.r.t. the optimal value. Every traced line
shows the the convergence for a certain initialization of x where each entry in x is take from a
normal distribution with zero mean and unit variance. Out of the 10 initializations, the algorithm
manages to converge to the optimal point 6 times within 200 iterations, the 2 traces around 20
are still converging and eventually do get to the global optimum after 258, two traces near 31 do
not converge and are stuck, for this case m̂1, k̂1, v̂1 = 0. Also by looking at log-scaled plot: note
the super-linear convergence near the optimal point.
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Chapter 5

Estimating 2nd Order Models
via

Power Spectral Density

5-1 Introduction

Classically one applies a measurable input to a system under investigation and measures its
output. These measurements can be used in a variety of different identification methods,
which lead to the experimental model. However there are cases when one does not have the
possibility to apply an artificial measurable force, one then has to rely on ambient excitation
sources. It is however virtually impossible to measure this ambient excitation. In these
cases one has to rely solely on the output measurements and the statistical knowledge of
the input. The statistical average of a certain signal or sort of signal (noise), as analyzed in
terms of its frequency content, is called its spectrum. We will use this spectrum, input- and
output- to identify second order models. [35] provides a thorough reference, how to obtain
the power spectrum given discrete data. For a compact reference the reader is referred to [26].
Furthermore, the focus lies on processes which are a function of time, but one can similarly
apply the technique to spatial problems where the power spectral density is given in terms of
spatial frequency.

Outline

This chapter is organized as follows: §5-2 reviews some import properties of the Power Spectral
Density (PSD). §5-3 gives the problem statement. §5-4 treats the literature regarding the
problem at hand. In §5-5 an identification algorithm is proposed to address the problem
statement. In §5-6 a numerical example is looked upon. In §5-7 we solve the same problem
using Non-Linear Least Squares and make a comparison. §5-8 presents some future work.
Finally in §5-9 we conclude.
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5-2 Spectral Density

Energy spectral density describes how the energy of a signal is distributed with frequency
The energy spectral density function Φu(ω) of a finite energy signal continuous-time signal
x(t) is by

Φx(ω) = |X(ω)|2 (5-1)

Property 5.1 (Real-valued). The spectrum of a real valued process is real and an even
function of frequency

Φx(−ω) = Φx(ω) (5-2)

White noise is a random signal having equal intensity at different frequencies, giving it a
constant PSD

5-3 Problem formulation

problem of interest Given a system with m inputs, p outputs, state dimension n, and
given spectral densities Φy(ωi) ∈ Cp×p,Φu(ωi) ∈ Cm×m for i = 1..s, which have the
following relationship

Φyy(ωi) = H(ωi, θ)Φuu(ωi)HH(ωi, θ) for i = 1, . . . , s (5-3)

where
H(ωi, θ) = C

(
− ω2

iM(θ) + jωV (θ) +K(θ))−1B for i = 1 . . . s (5-4)

are generated from the parameterized model (4-4) for a certain value of θ?. The problem
of interest is to find the parameter vector θ?. For the rest of the chapter we will assume
we have a full set of actuators, i.e. p = n, which is not uncommon in literature.

5-4 Overview

In [36] the authors also review the question of estimating a 2nd order model whilst not being
able to measure the inputs. Using the same equation as (4-3), and given an immeasurable
input, the second order system is said to be equivalent to the purely stochastic system

xk+1 = Axk + wk

yk = Cxk + vk
(5-5)

where wk, vk are zero mean identically distributed normal vectors. Using the outputs {y1, . . . , yN}
the maximum likelihood of the given output is maximized using the innovation form repre-
sentation in an iterative scheme. After having obtained A,C the matricesM,K are extracted
in modal form, i.e. M,K diagonal. The authors claim that the input should be white-noise
inorder to be succesful.
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5-5 Identification Method

Given that C is full rank, (5-3) can be written as,

X(θ, ωi)C−1Φyy(ωi)C−HX(θ, ωi)H = BΦuu(ωi)BH for i = 1 . . . s (5-6)

where, for readability we have written

X(θ, ωi) = −ω2
iM(θ) + jωiV (θ) +K(θ) for i = 1, . . . , s (5-7)

Notice that (5-6) is a quadratic matrix equality constraint, however as we have seen in §2-2,
x(x − 1) = 0 is also a quadratic equality constraint but still NP-hard. Using the notation
Pi = C−1Φyy(ωi)C−H and Qi = BΦuu(ωi)BH , the feasibility problem we would like to solve
is the following,

find θ

such that
X(θ, ωi)PiX(θ, ωi)H = Qi for i = 1 . . . s
M(θ) � 0
V (θ) � 0
K(θ) � 0

(5-8)

which, using Sequential Convex Relaxation (SCR), can be solved by the procedure outlined
in Algorihtm 5.1.

Algorithm 5.1 Estimate 2nd order system from Spectra

given initial estimate θ ∈ Rl, spectra Φyy(ωi),Φuu(ωi) for i = 1..s
repeat
1. Update Yi := −X(θ, ωi) for i = 1, . . . , s
2. Update θ using

argmin
θ

s∑
i

∥∥∥∥∥
[
Qi + YiPiX

H
i +XiPiY

H
i + YiPiY

H
i (Xi + Yi)Pi

Pi(Xi + Yi)H Pi

]∥∥∥∥∥
?

subject to
M(θ) � 0
V (θ) � 0
K(θ) � 0

where

Xi = −ω2
iM(θ) + jωiV (θ) +K(θ)

Pi = C−1Φyy(ωi)C−H

Qi = BΦuu(ωi)BH

until stopping criterion is satisfied
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Figure 5-1: Pink-noise, input power spectrum.

Figure 5-2: Figural representation of magnitude of the output power spectrum Φyy(ω). The
i, j’th subplot depicts the absolute value of Φyy

i,j(ω) for 0.01 ≤ ω ≤ 100.

5-6 Simulations

In this section we consider a numerical example, The system under investigation is depicted
in Figure 5-4. The mass, damping, stiffness matrices are chosen as the following.

M =

 5 −1 0
−1 2 −0.5
0 −0.5 1

 V =

 5 −0.1 −0.1
−0.1 0.2 −0.1
−0.1 −0.1 1.1

 K =

 4 −2 0
−2 4 −2
0 −2 22

 (5-9)

We will assume that all Degree Of Freedom (DOF)’s are directly measured, and that the
input is applied only in the x-direction, i.e. the input and output matrices read as

H =

1 0 0
0 1 0
0 0 1

 F =

1
0
0

 (5-10)
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Figure 5-3: Figural representation of the phase angle of the output power spectrum Φyy(ω).
The i, j’th subplot depicts the phase of Φyy

i,j(ω) for 0.01 ≤ ω ≤ 100.

To show that the method works equally well for white as coloured noise, a pink noise input
spectrum is artificially generated. Pink noise or 1/f noise is a signal or process with a
frequency spectrum such that the PSD is inversely proportional to the frequency of the signal.
They occur widely in nature and are a source of considerable interest in many fields. We create
the pink noise by using 170 logspaced frequency points between ω = 0.1 and ω = 100 rads−1

and applying

Φuu(ωi) = ω−0.5
i (5-11)

The resulting spectrum is shown in Figure 5-1. Using the quintuple of matrices (M,V,K, F,H)
and the input spectrum Φuu(ωi) for i = 1, . . . , 170, we generate the output spectrum Φyy(ωi)
using (5-3). The magnitude and phase of the output spectrum as a function of frequency are
shown in Figure 5-2 and Figure 5-3 respectively.

At first the algorithm is initialized such that each Yi in Algorithm 5.1 is equal to identity,
however this leads to a non-global minimum, hereafter it is found that fast convergence and
a high chance of converging to the global optimum are obtained by initializing each Yi as a
high valued random positive definite matrix, this is done by randomly generating a matrix
Zi where each entry is taken from a normal distribution with zero mean and a variance of
102, i.e. zij ∼ (0, 100). The positive definite matrix is then created by Yi = ZiZ

H
i . The

converge plot using these initial conditions is given in Figure 5-5. Given that the algorithm
has converged to the global minimum, a certain realization of the given difference in estimated
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Figure 5-4: Schematic depiction of a spring-mass-damper system in two dimensions. The problem
discussed in (7-17) has 3 dimensions, so one should imagine an additional set of spring and damper
Cz, kz lateral to the paper. The input u are applied to the first mode, the outputs are measured
in the x, y and z direction.

Figure 5-5: Error versus iteration k for 5 initializations. 4 out of 5 times maximum accuracy is
attained within 7 iterations.
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mass, damping, stiffness matrices is given in (5-12).

M −M(θ̂) = 10−5

 0.388 −0.7629 0.1737
−0.7629 1.507 −0.3429
0.1737 −0.3429 0.0778


V − V (θ̂) = 10−6

 0.4446 −0.7931 0.1828
−0.7931 1.471 −0.3386
0.1828 −0.3386 0.0759


K −K(θ̂) = 10−5

 0.7829 −1.524 0.3476
−1.524 2.971 −0.6772
0.3476 −0.6772 0.1493



(5-12)

It is shown that the error is in magnitude of 10−5, thus it is concluded that the system
matrices have accurately been retrieved.

5-7 Comparison

An alternative approach to identify the parameter vector as stated in the problem statement
§5-3, is to pose the problem as a Non-Linear Least Squares (NLLS) problem. The problem
would then look like

min
θ∈Rl

s∑
i=1
‖Φyy(ωi)− CX−1

i HΦuu(ωi)HHX−Hi CH‖2F (5-13)

where Xi = −ω2
iM(θ) + jωiV (θ) +K(θ), or variants hereof (using the invertibility of C,X).

The optimization problem (5-13) can be solved using a variety of functions in Matlab’s opti-
mization toolbox[37]. The function lsqnonlin exclusively handles NLLS problems, fminunc
can be used for unconstrained optimization problems, whereas fmincon is also applicable
for constrained optimization. Although, fmincon can deal with equalities and inequalities it
cannot explicitly deal with generalized inequality constraints in the form of Linear Matrix
Inequality (LMI)’s as in (5-8). We show in the next paragraph that the inclusion of the three
LMI’s in (5-8) makes all the difference in successfully retrieving the parameter vector.

Unconstrained Solver

In this section we apply Matlab’s non-linear unconstrained solver, fmincon to the NLLS
formulation from (5-13). 20 attempts were made, at each attempt intializing the parameter
vector θ0 with entries from the normal distribution. From these 20 initialization none of the
attempts converged to the global optimum. Below the matrices are shown, extracted from
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the attempt with the lowest final objective value, f(x?) = 0.064485.

M(θ̂) =

 6.42 −3.554 0.05659
−3.554 6.476 −0.2365
0.05659 −0.2365 2.385


V (θ̂) =

 5.676 −1.177 −1.42
−1.177 1.912 1.635
−1.42 1.635 11.06


K(θ̂) =

 4.508 −1.797 −12.91
−1.797 1.205 24.49
−12.91 24.49 1.741



(5-14)

The magnitudes of the entries seem to be of the same order as the ones of the original system
(5-9), but that is all we can say, most estimates are way of their actual values.

Sequential Convex Relaxation without Linear Matrix Inequatities

To emphasize the fact that the triplet of constraints M(θ) � 0, V (θ) � 0,K(θ) � 0, really do
make a difference, and the mismatched models in (5-14) are not for instance a result of the
inverse in (5-13), it is possible to solve the feasibility problem (5-8) without the three LMI’s.
After again multiple (20) initializations with the same distribution of values we used for the
initialization of the original algorithm, the one with the lowest objective value is singled out.
The resulting matrices are:

M(θ̂) =

 306.6 −611.4 137.1
−611.4 1207.0 −275.2
137.1 −275.2 70.62


V (θ̂) =

 34.36 −63.96 13.33
−63.96 118.8 −27.28
13.33 −27.28 15.85


K(θ̂) =

 630.3 −1223.0 274.2
−1223.0 2384.0 −552.6

274.2 −552.6 319.8



(5-15)

which by no means resemble the actual system matrices as given in (5-9). Thus we conclude
that the flexibility of SCR, allowing us to incorporate additional LMI constraints, is decisive
in estimating the actual parameter vector θ.

5-8 Future Work

It was assumed in this chapter that the output matrix H is of full rank. This assumption
lead us to a bilinear optimization problem with the number of decision variables exactly equal
to the number of unknowns in the matrices M(θ), V (θ),K(θ). In chapter 4, we reviewed the
concept of input-output equivalence, we saw that given a full rank input- or output matrix
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there exists a Least Squares (LS) solution to retrieve the unknown parameter vector θ. It
would be interesting to think if there exists such equivalence in the spectral identification
setting, i.e. given the fact that B is of full rank: is it possible to pose the identification
optimization problem in such a way that we do not introduce additional decision variables?
And thus leading to an equally hard bilinear optimization problem as is the case with a full
rank C matrix.

Consider for example again the truss-structured from Figure 4-1, It would be likely that the
wind (possibly modeled as white noise) affects all 8 nodes. With the algorithm described in
this chapter we would need as many sensors as nodes to identify the bridge, but maybe a
single sensor could be enough.

5-9 Summary

In this chapter an algorithm was presented that takes the Power Spectral Density of the
input and the output, and extracts the mass, stiffness and damping matrices. Given that we
have a full set of sensors, it turns out that the problem can be posed as bilinear feasibility
problem, with the number of decision variables equal to the number of unknown parameters.
The bilinear feasibility problem is infact a quadratic feasibility problem, but as such, is still
non-convex. Using the SCR algorithm the non-convex problem can be solved in an iterative
way. Furthermore the flexibility of SCR allows us to incorporate additional knowledge of
the structure into the constraints; due to reciprocity the parameterized physical matrices are
positive definite, which in the form of LMI’s can be incorporated into the constraints. The
incorporation of these LMI’s make the problem less non-convex, as the search space is now
contained within the cones associated with the generalized inequalities. The method has been
validated on a physical example.
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Chapter 6

State Space
via

Similarity Transformation

6-1 Introduction

In this chapter an alternative approach to the grey-box identification problem is proposed.
The method consists of first estimating an unstructured, black-box model using e.g. Subspace
Identification (SI) methods, followed by the recovery of the physical parameters embedded in
the concerning structured model. The classical SI methods such as MOESP [38] and N4SID
[26], do not consistently estimate the system matrices, but converge to models that give the
true matrices up to a similarity transformation. The second step turns out to be a small-scale
non-convex optimization problem. The proposed algorithm framework introduces additional
variables to represent the inverse of the similarity transformation. A bilinear constraint is
employed to enforce the relationship between transformation matrix and its inverse. The
algorithm can be be applied to the realization of non-identifiable grey-box models.

Outline

The chapter is organized as follows: §6-2 reviews the similarity transformation. §6-3 formu-
lates the problem statement. §6-4 reviews the literature concerning the grey-box identification
problem via the similarity transformation. In §6-5 we provide an alternative way to solve the
identification problem. §6-6 demonstrates the performance of the proposed identification
method applied to a physical example. In §6-7 we compare the algorithm with other methods
followed by some conclusions in §6-8.
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6-2 Similarity Transformation

Consider again the State Space (SS) model

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(6-1)

It is possible to define a new set of independent variables (i.e., T is invertible) by

z(t) = Tx(t) (6-2)

This set of new variables can be used as state variables. Start by solving for x(t) = T−1z(t),
we can then write the SS equation as

˙z(t) = TAT−1z(t) + TBu(t)
y(t) = CT−1z(t)

(6-3)

Which is recognized as the SS representation

˙z(t) = Az(t) + Bu(t)
y(t) = Cz(t)

(6-4)

where
A = TAT−1, B = TB, C = CT−1 (6-5)

The original state space equation and the transformed system describe exactly the same
system, they have the same input to output mapping, only different state-variable coordinates.
This shows that the SS representation is non-unique, however the transfer function is unique,

H(s) = C(sI − A)−1B
= CT−1(sI − TAT−1)−1TB

= C(T−1(sI − TAT−1)T )−1B

= C(sI −A)−1B = H(s)

(6-6)

6-3 Problem Formulation
Consider a parameterized state space model as given in Eq. (3-6), the problem of interest
is then given as

problem of interest Given the quadruple of matrices (A,B,C, DT ) in an unknown sate
basis , determine the parameter vector θ satisfying;

C(sI − A)−1B = C(θ)(sI −A(θ))−1B(θ) (6-7)
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6-4 Overview

There are multiple routes to solving the algebraic problem in Eq. (7-3). One is to simulta-
neously estimate the similarity transformation T and the parameter vector θ. Other routes
involve directly solving Eq. (7-3) at the expense of non-convexity. Furthermore, there is a
method where we use the transposed matrices to simulate a system response, which in turn
we use to estimate the true system matrices.

6-4-1 Using the Similarity Transformation

Eq. (7-3) means that there exists a similarity transformation T such that

TA = A(θ)T (6-8a)
TB = B(θ) (6-8b)
C = C(θ)T (6-8c)

From that it is possible to formulate the minimization problem

min
T,θ
‖TA−A(θ)T‖2F + ‖TB−B(θ)‖2F + ‖C− C(θ)T‖2F (6-9)

The above optimization problem is bilinear in θ and T . To solve this problem various methods
have been proposed. In [39] an alternating minimization method was presented, a gradient
descent method was given in [26] and a null-space-based optimization method was developed
in [40]. Even if the above methods can find a global optimum (T ?, θ?), It might not be
meaningful for the identification purpose stated in Eq. (7-3). The reason is that the optimal
solution T ? might be singular and the obtained transfer function C?(sI − A?)−1B? might
not be equal to C(sI − A)−1B. In fact equations (7-3) and (6-8) are equivalent if and only if
T is non-singular [41]. To deal with this problem, a condition-number constraint on T was
considered in [28], which turns out to be a non-smooth and highly non-convex optimization
problem.

6-4-2 Minimize the model-matching Criterion

Another route is to minimize the model-matching criterion ‖G(s, θ)−G(s, θ)‖ using either H2
norm or H∞ norm, as suggested in [42]. The H∞ norm based matching has been investigated
in [43] and [44]. Compared with the minimization Eq. (6-9), the H∞ method reduces the
number of variables, but at the price of a semi-infinite and non-smooth program.

6-4-3 Using the Hankel Matrix of Impulse Response

Additionally in [25] a method is proposed which takes a slight detour; a block Hankel matrix
of the system impulse response is created. By exploiting the low-rank property of this matrix
with its shift structure, the problem is formulated as a structured low-rank matrix factor-
ization problem. Using a difference of convex programming technique, this is numerically
solved. Because this method doesn’t make use of a similarity transformation matrix, the
method circumvents issues concerning the singularity of the transformation matrix.
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6-5 Identification Method

In this section we propose a new method at solving Eq. (7-3). The method also aims estimating
the transformation matrix T , and the parameter vector θ. By introducing a substitution for
the inverse of T , we can pose the problem in a bilinear fashion, which is equivalent to the
original problem statement, in the sense that if we solve the bilinear problem, we have a
non-singular T and thus solve Eq. (7-3).

6-5-1 Construction of Bilinear form

Consider the equations from Eq. (6-8), by pulling T to the other side in (6-8a) and (6-8c),
then applying the substitution S = T−1 we can write

A(θ) = TAS (6-10a)
B(θ) = TB (6-10b)
C(θ) = CS (6-10c)

I = ST (6-10d)

where the last equation is needed to describe the relationship between S and T . In the above
equation set we have two linear equations namely (6-10b) and (6-10c) and two bilinear ones
(6-10a) and (6-10d). Note that the equation (6-10d) implies that the matrix pair S, T are
invertible by Definition 6.1, making the set of equations (6-10) equivalent to the problem
statement (7-3).

Definition 6.1. [18] A square matrix A ∈ Rn×n is said to be invertible if and only if there
exists another square matrix B ∈ Rn×n such that

AB = BA = In (6-11)

The proposed identification scheme uses a relaxation of the bilinear constraints in an indirect
manner. It is therefore proposed to not only use the constraint I = ST but also its counterpart

I = TS (6-12)

Note that it would also have been possible to directly deal with the equation set from
(6-8). However as stated earlier, the invertibility of the similarity transformation matrix is
not guaranteed.
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6-5-2 Standard form

Casting the identifcation problem into the standard optimization form leads to

find θ, T, S

subject to
TAS = A(θ)
TS = I

ST = I

TB−B(θ) = 0
CS − C(θ) = 0

(6-13)

Note that the above problem has three bilinearities contained in the constraints, however we
can still apply the relaxation technique as discussed in Chapter 2. By relaxing each bilinear
constraint individually into the objective function with the relaxation parameter λ ∈ R chosen
to be equal for the relaxation of ST = I and TS = I we get

min
θ,T,S

∥∥∥∥∥
[
A(θ)− TAS̄ − T̄AS + T̄AS̄ (T − T̄ )A

A(S − S̄) A

]∥∥∥∥∥
?

+

λ

∥∥∥∥∥
[
I − ST̄ − S̄T + S̄T̄ S − S̄

T − T̄ I

]∥∥∥∥∥
?

+ λ

∥∥∥∥∥
[
I − T S̄ − T̄ S + T̄ S̄ T − T̄

S − S̄ I

]∥∥∥∥∥
?

subject to B(θ) = TB, C(θ) = CS (6-14)

The summary of the identification procedure is the following

Algorithm 6.1 parameteric State Space Identification using the
Similarity Transformation matrix

given IO data u(k), y(k) for k = 1 . . . N

do

1. Estimate discrete time black box state space model using
subspace technique

2. Apply zero order hold to the discrete time model to obtain
continuous time model

3. Run the Sequential Convex Relaxation (SCR) algorithm

6-6 Simulation of an E-Nose model

This simulation example takes the same model as the one treated in [40]. Consider the three
layer compartment system shown in Figure 6-1. where si(t) and kij are respectively, the con-
centration of a chemical compound at time t (in mg/l) and the kinetic rate constant in units
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Figure 6-1: Three compartment e-nose sensor model

of time−1, associated with the mass leaving the j’th compartment and arriving at the i’th
compartment. The light blue region denotes the delineation of the three imaginary compart-
ments representing a simplified model of a physical system. The accuracy will be governed
by the number of compartments representing the system. Notice that each compartment
allows interaction allows interaction from their upstream and downstream neighbouring com-
partments. The input u(t) is a gas released at t = 0 and allowed to disperse through the
sensor chamber. The conservation of mass principle states that the rate of change of mass
accumulation within the i′th compartments is equal to the mass flow rate-in minus the mass
flow rate-out of the compartment at time t. Thus we have three state equations of the form

ṡ1(t) = u(t)− (k01 + k21)s1(t) + k12s2t (6-15a)
ṡ2(t) = k21s1(t)− (k12 + k32)s2(t) + k23s3(t) (6-15b)
ṡ3(t) = k32s2(t)− k23s3(t) (6-15c)

and with the system being initially at rest, the initial conditions are si(0) = 0, for i = 1, 2, 3.
The output of the system is the sum of the concentrations in each compartment. i.e. y(t) =
f(s1(t) + s2(t) + s3(t)) where f is a proportion of the total concentration of the gas in the
system. The values of the parameters used in this study are the same as in [40],

{k01, k21, k12, k32, k23, f} = {0.1, 0.3, 0.2, 0.4, 0.25, 0.15} (6-16)

The concerned actual state space matrices then read as

A =

−0.4 0.2 0
0.3 −0.6 0.25
0 0.4 −0.25

 B =

1
0
0

 C =
[
0.15 0.15 0.15

]
(6-17)

6-6-1 n4sid

The first step of the procedure consists of estimating a fully parameterized state-space model
(A,B,C). In order to be realistic with respect to standard use of such a system, the e-nose
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Figure 6-2: Bode plot of the real system (A,B,C) and the initial model (A,B,C)

sensor model is excited with a Gaussian pulse input signal. Second the N4SID algorithm1 [26]
is applied to the acquired data set. Because this subspace-based method leads to a discrete-
time model, its continuous counterpart is computed using the zero-order hold technique2 [45],
leading to matrices

A =

−0.6773 0.7994 −0.1172
0.2979 −0.4156 −0.2437
−0.6528 0.7859 −0.1571

 B =

 0.1233
−0.1025
0.0645

 C =
[
2.4717 −0.0417 −2.4254

]
(6-18)

The initial model is validated by comparing the frequency response with the actual system
Figure 6-2.

6-6-2 Identifiable model

The state and output equations can be written as

A(θ) =

−θ1 − θ2 θ3 0
θ2 −θ3 − θ4 θ5
0 θ4 −θ5

 B(θ) =

1
0
0

 C(θ) =
[
θ6 θ6 θ6

]
(6-19)

where the unknown parameters gathered into the vector θ are related the physical parameters
governing the behaviour of the system as follows

θ1 = k01 θ2 = k21 θ3 = k12 θ4 = k32 θ5 = k23 θ6 = f (6-20)

As far as the identifiability of the parameterization in (6-19) goes, it is possible to show that
the structure is identifiable. This can be shown by calculating the transfer function of the

1The Matlab function n4sid is used to get the initial discrete time black-box model
2The Matlabfunction d2c is used for this.
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system

H(s) = α1s
2 + α2s+ α3

s3 + α4s2 + α5s+ α6s
(6-21)

Where αi for i = 1 . . . 6 are well-defined combinations of the physical parameters {k01, k21, k12, k32, k23, f}
which by inspection can be uniquely extracted from the αi’s.

The proposed algorithm is applied to restructure the initial black-box model (A,B,C) into
the grey-box structure (A(θ), B(θ), C(θ)). At first the matrices S, T are initialized as zero
matrices, however the method fails to converge to the global minimum for this initialization.
On the other hand initializing the optimization algorithm with S and T with entries drawn
from a random distribution lets us converge to the global minimum after a few trials. Roughly
3 out of every 10 of these initialization lead to the global minimum.

6-6-3 Non-Identifiable model

As it was shown in the foregoing, it can be really time consuming and difficult to to find the
unique optimal point. The authors in [28] note that their estimation method requires at least
2 hours of computation on a recent computer in order to converge the local minimum θ∗, T ∗.
The authors explain the huge computational load by the existence of long and tight valleys in
the involved cost function. Therefore the authors in [28] and [40], instead of focusing on the
unique point suggest to 1) estimate a manifold containing the unique point; 2) extract the
identifiable model among all the models included in the afore-estimated manifold by resorting
to an analytic procedure. In the subsequent paragraph this two step procedure is studied.

Reparameterize the state-space model as

A(θ̂) =

θ̂1 θ̂2 0
θ̂3 θ̂4 θ̂5
0 θ̂6 −θ̂5

 B(θ̂) =

1
0
0

 C(θ) =
[
θ̂7 θ̂7 θ̂7

]
(6-22)

The unknown parameters θi are now related to the physical parameters as such

θ̂1 = −(k01 + k21) θ̂2 = k12 θ̂3 = k21

θ̂4 = −(k12 + k32) θ̂5 = k23 θ̂6 = k32 θ̂7 = f
(6-23)

Regarding the identifiability of the model: there are 7 parameters, a quantity larger than
n(p+m) = 6. Having less parameters than n(p+m) is a necessary condition; therefore the
structure involving the parameters is not identifiable [10]. As opposed to the identifiable case
it now takes 30 seconds to find the estimate:

A(θ̂) =

−0.3732 0.2024 0
0.2732 −0.5753 0.3015

0 0.3827 −0.3015

 B(θ̂) =

1
0
0

 C(θ̂) =
[
0.1500 0.1500 0.1500

]
(6-24)

and the similarity transformation matrices

T =

7.2953 −5.6330 −7.2749
4.2219 1.7436 −5.2115
4.9706 3.6115 −3, 6827

 S =

 0.1223 −0.4637 0.4146
−0.1025 0.0917 0.0728
0.0645 −0.5360 0.3594

 (6-25)
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which is indeed a similarity transformation pair, as can be validated by computing TS. The
matrix triplet (A(θ̂),B(θ̂),C(θ̂)) can be validated by its frequency response, which is identical
to the responses shown in Figure 6-2. Because of the identifiability problem stressed earlier,
the values of the estimated parameters are not equal to those of the system. We can by-
pass this problem by determining a unique similarity transformation Q such that QA(θ̂)Q−1

satisfies the structure of A(θ) and the constraint θ̂2 + θ̂4 + θ̂6 = 0 is verified, as the system
does. Note that right from the start, such an analytic approach is possible. We would then
apply the analytic procedure to the unstructured matrix triple (A,B,C). This is however not
straightforward and further studies are needed to find the analytic solution efficiently. By
first the estimating the manifold θ̂ there is a lot more structure to be exploited in the sym-
bolic computation. Furthermore, note that such a procedure is problem specific and requires
insight from the user. From the equation B(θ) = QB(θ̂) we know that the structure of Q
must be of the form

Q =

1 q4 q7
0 q5 q8
0 q6 q9

 (6-26)

From QC(θ) = C(θ̂) we have that each column of Q should sum up to one. Using symbolic
computational software, in our case MAPLE, we then perform a symbolic computation of Q,
leading to3

Q =


1 −0.09800000000 0.0

0 1.098000000 −0.147747119

0 0.0 1.147747119

 (6-27)

and

QA(θ)Q−1 =


−0.399973599999999985 0.199983594899817846 0.0

0.299973600000000007 −0.600022595301730632 0.250003804703748889

0.0 0.400039000401912537 −0.250003804698269605


(6-28)

which is fairly precise if we compare it to the original system (6-17).

6-7 Comparison study

In this section we compare the workings of the proposed method. For comparison purposes,
the Alternating Least Squares (ALS)-method [39], the Null-Space based method (NS) [40, 28],
and a Gradient Based (GB)-method [28, 46] are simulated alongside the own SCR-method.
A detailed derivation of the gradients used in NS are given in [47]. The gradients used for
the GB method are derived in Appendix C-2. We will review two cases: 1) the user has no
initial information on the parameter vector, hence all the methods will be initialized as stated
in their specific papers 2) there is prior information available on the parameter vector. To
simulate this: we will corrupt initial guess with varying degrees of noise, to review how well
the methods are still able to converge.

3Special thanks to Guillaume Mercère (Université de Poitiers) and Olivier Prot (Université de Limoges) for
providing the MAPLE code
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6-7-1 No a priori knowledge

The first simulation study is to evaluate the success rate of the algorithms vs. the number
of unknowns present in the system. We do this by generating a stable Single Input Single
Output (SISO) Continuous Time (CT) model4 of order 5 with entries of the system being

A∗ =


−3.486 3.635 3.689 −3.899 −1.933
−2.634 −1.386 4.419 4.286 −0.859
−0.874 −5.314 −2.373 5.46 5.883
1.213 −0.935 −6.277 −3.904 5.637
6.049 1.803 −4.571 −3.182 −3.719


B∗ =

[
−1.636 0.173 0.828 0.217 −1.909

]T
C? =

[
0.205 1.193 −0.802 −1.266 −0.149

]
(6-29)

The input data for the algorithms will be the similarity tranformed triplet (A,B,C) , which
have been obtained by balancing5 the system (6-29). Note that this balancing operation could
also have been done after a subspace scheme followed by ZOH, which would have led to the
same model. The transformation is merely applied straight away to ensure we have a hundred
percent valid transformed initial model.

A =


−0.007884 0.9789 0.1331 0.01995 0.05165
−0.9789 −7.531 −7.473 −0.6011 −1.801
0.1331 7.473 −5.651 −8.332 −6.007
−0.01995 −0.6011 8.332 −0.09533 −0.3607
−0.05165 −1.801 6.007 −0.3607 −1.585


B =

[
−0.08139 −1.966 0.774 −0.09207 −0.2538

]T
C =

[
−0.08139 1.966 0.774 0.09207 0.2538

]
(6-30)

The identification of a fixed number of randomly generated entries of the actual system
matrices (6-29) will be performed by four algorithms whose details are given below.

• SCR is setup using a maximum number of outer-iterations of 500 nuclear norm iterations
and 500 truncated nuclear norm iterations, the number of inner-iterations per outer-
iteration is set to 30. The regularization parameter λ is fixed to be 10.

• The ALS-method is setup with a stopping criterion of

‖zi+1 − zi‖
‖zi‖

≤ 10−6 (6-31)

where z is a vector collecting all the variables and i is the iteration number.

• The NS-method is solved using the Matlab command fminunc, using the analytic
gradients as given in [47], the default step tolerance is used of 10−6, together with the
default optimallity tolerance 10−6.

4Matlabcommand rss
5Matlabcommand balreal
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Figure 6-3: Performance comparison of different identifications when there is no prior knowledge

• The GB-method is solved using the Matlabcommand fminunc using the analytic gra-
dients as discussed in Appendix C-2. The default step tolerance is used of 10−6, together
with the default optimallity tolerance 10−6.

To evaluate the identification performance, the normalized estimation error criterion will be
used,

NEE = ‖θ
? − θest‖
‖θ?‖

(6-32)

where θ? is the true system parameter vector. The number of parameters to be identified run
from 1 to 10. Note again that 10 is maximum number of parameters in a system of n(p+m).
For each fixed number of parameters 100 experiments are carried out by randomly selecting
the matrix entries to identified, and the criterion success rate defined as

100∑
r=1

1(NEEr ≤ 10−3)% (6-33)

where 1(·) is an indicator function. Figure 6-3 shows the performance of the four tested
methods against the number of system parameters. We notice that:

• SCR is out-performed by ALS and GB for an unknown number of parameters up to
7. From 8 onward SCR performs better. Note that for the an unknown number of
parameters of 10, so the maximum number of unknown parameters for this system,
SCR performs the other methods with at least a factor two. A possible reason for this
is, that the other methods estimate near singular transformation matrices, while SCR
still manages to estimate a non-singular T .

• GB and ALS roughly follow the same curve. This is not entirely surprising as they
both minimize the same objective function, the difference being ALS does the updates
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sequentially and GB simultaneously. The figure shows that for (at least this problem
instance) the simultaneous update performs better.

• NS has generally poor performance for this problem instance.

6-7-2 A priori knowledge

In this subsection we test the workings of the proposed algorithm given there exists a priori
information on the parameter to be estimated. We will assume that the user has enough
affinity with the system that he or she can make an initial guess of the parameter vector. To
simulate this we let the initial guess θ̂0 be a realization of a stochastic process with the true
theta as mean and σ2

i variance, i.e.
θ0 = θ? + εi (6-34)

where εi ∈ Rdim(θ) is a stochastic variable with the statistical properties

ε ∼
(
0, σ2

i Idim(θ)
)

(6-35)

The experiment is then conducted with a multitude of variances σ2
i to represent different

qualities of the initial guess. The goal of this experiment is to see how the error of the initial
guess affects the error of the final estimate.

σ2 ∈ {0.01, 0.1, 1, 10, 100} (6-36)

Driver Belt For the simulation example we use the driver belt example from [48]. The
parameterized state matrices are

A =

 0 1 −1
1 0 0
θ1 θ2 θ2

 B =

 0
0
θ4

 C =
[
0 1 0

]
(6-37)

As the true parameter vector θ we pick all θi’s equal

{θ∗1, θ∗2, θ∗2, θ∗3} = {−10,−10,−10,−10} (6-38)

in order to let the offsets induced by σ2ε have the same effect on all θi’s. For each variance
level σ2

i we run the simulation 10 times. The results are depicted in Figure 6-4. We observe
the following:

• The errors in ALS appear to be mostly in a narrow band just around 10−1 , this
could be due to the slow convergence properties of the method in combination with the
maximum number of iterations of 10000. Note however all points in this band provide
good enough estimates to find the exact minimum, with for instance the GB-method.
For higher errors the method fails more often, but still manages to find to optimum in
roughly 50% of the cases.
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Figure 6-4: Plot depicting the error of the initial guess vs. the error of the estimated θ measured
in the 2-norm. The dotted line resembles the equality of the initial error and final error.

Master of Science Thesis W.P. Krijgsman



54 State Space via Similarity Transformation

• We see that the NS-method as opposed to the other problem instance is very effective.
Over almost the entire band of initial errors, the method is able to find the global
minimum. Only for large errors (>100) the method fails a few times.

• GB and SCR have similar profiles: they are able to find the minimum for initial errors
up to σi = 40, thereafter the initial offset is too large to be able to converge to the
global minimum.

6-8 Summary

In this chapter we have proposed a new grey-box identification method that takes a fully
parameterized realization of an LTI state-space model and extracts the unknown physical pa-
rameters of a same dimensional physical state-space model. The algorithm initially carries out
a similarity transformation between the fully parameterized model and the physical model.
The resulting bilinear equation is then turned into a rank constraint. This rank constraint
is in turn relaxed with help of the nuclear norm. Because the nuclear norm has a tendency
to produce sub-optimal results an iterative scheme is used to sequentially come closer to the
optimal point. Furthermore, by applying a substitution for the inverse of the similarity trans-
formation and constraining their multiplication to Identity, we are able to invoke solutions
which have non-singular transformation matrices.
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Chapter 7

Differential Matrix Equation
via

Similarity Transformation

7-1 Introduction

It is well known that, given a set of second-order differential equations, one can easily construct
a corresponding set of first-order equations in quite a straightforward fashion. The inverse
problem on the other hand is much more complex. In this chapter we extend the similarity
transformation approach developed in the previous chapter to Matrix Differential Equation
(MDE)’s. The problem we asses is the following: given a black-box state space representation
identified from a 2nd order model, and given the parameterization of the mass-,damper-
,stiffness-matrices, can we extract the true parameter vector?

Outline

The chapter is organized as follows: §7-2 briefly reviews the MDE and especially its con-
nection to State Space (SS)-models. §7-3 formulates the problem statement. §7-4 reviews
the literature concerning the identification of MDE’s. In §7-5 we provide a new method to
estimate parameters in a (partly-)parameterized MDE. §7-6 demonstrates the performance
of the proposed identification method applied to some physical examples. In §7-7 we describe
some possible future work, followed by some conclusions in §7-8.
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56 Differential Matrix Equation via Similarity Transformation

7-2 Preliminaries

We will assume that the input matrix F and the output matrix H are known. The internal
dynamics presented by the coefficients in the mass matrix M , damping matrix V , stiffness
matrix K, may have 0 or more unknown values to us, leading to

M(θ)ẍ(t) + V (θ)ẋ(t) +K(θ)x(t) = Fu(t)
y(t) = Hx(t)

(7-1)

where M(θ), V (θ),K(θ) ∈ Sn++. By defining q(t) =
[
x(t)T ẋ(t)T

]T
, we can write (7-1) into

state space form

q̇(t) =
[

0 I
−M(θ)−1K(θ) −M(θ)−1V (θ)

]
︸ ︷︷ ︸

A

q(t) +
[

0
M(θ)−1F

]
︸ ︷︷ ︸

B

u(t)

y(t) =
[
H 0

]
︸ ︷︷ ︸

C

q(t)
(7-2)

7-3 Problem Formulation

Consider a parameterized state space model as given in Eq. (3-6), the problem of interest
is then given as

problem of interest Given the triple of matrices (AT , BT , CT ) in an unknown sate basis,
determine the parameter vector θ satisfying;

CT (sI −AT )−1BT = H(s2M(θ) + sV (θ) +K(θ))−1F (7-3)

7-4 Overview

In [49] a continuous time subspace technique is proposed to estimate the M,V,K matrices.
The proposed method involves a two step procedure, initially a recursive scheme based on
N4SID is employed to find a structured state space model, namely one of the form (4-3).
Hereafter a convex optimization is performed to extract the matrix triplet (M,V,K). The
convex optimization imposes positive definiteness on these matrices. To this authors knowl-
edge, no further structure is imposed. Also the authors assume full information of the state
vector.

The most restrictive formulation is given [50], where the requirement is having as many sen-
sors and actuators as modes. This was improved upon in [51], where the requirement was
loosened to having only the number of sensors equal to the number of modes. This in turn
was further generalized in [52], requiring that the number of sensors be equal to the number
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of second order modes. The most permissive formulation is given in [1], The minimum re-
quirement for the methodology is that all Degree Of Freedom (DOF)’s should contain either
an actuator or a sensor, with at least one co-located actuator-sensor pair.

The authors [53] avoid having to estimate a similarity transformation by estimating the con-
tinuous time parameters directly from a discrete input-output sequence, using an Orthogonal
complement approach. The method requires the most restrictive, sensor actuator setup,
namely a full set of actuators and sensors. In the same paper a similarity transformation
approach is discussed.

7-5 Identification Method

The identification is a two step procedure: 1) the determination of a first order model of the
system in continuous time, and 2) the transformation of such an identified model into a second-
order model. From general input-output data, it is possible to use subspace techniques [26]
to acquire a discrete state space realization. Using the zero-order hold technique [45] it is
then possible to transform his description into continuous time, leading to a black-box model
of the form

ż(t) = Az(t) + Bu(t)
y(t) = Cz(t)

(7-4)

where now A ∈ R2n×2n,B ∈ R2n×m,C ∈ Rp×2n. If the first-order model of (7-4) was identified
using data actually originating from the second-order model of (7-1), the models represented
by (7-2) and (7-4) are different models of the same system. As shown in the previous chapter,
two equidimensional models of the same system are related by a non-singular transformation
matrix T , such that

TA = AT

TB = B

C = CT

(7-5)

For the identification of the M,V,K matrices we make a distinction between different cases;
the special instance where the input matrix or output matrix is full rank, and the general
cases where this is not the case. We will see that for the special cases we can solve both
problems by solving a set of linear equations.
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7-5-1 General Case

Using the special structure of A,B,C, multiplying by the right with T−1 and substituting
this inverse with S as explained in §6-5-1, we can rewrite (7-5) as

ST = I (7-6a)
TS = I (7-6b)

TAS =
[

0 I
−M(θ)−1K(θ) −M(θ)−1V (θ)

]
(7-6c)

TB =
[

0
M(θ)−1F

]
(7-6d)

CS =
[
H 0

]
(7-6e)

In Equations (7-6c) and (7-6d) there still exists the inverse of the parameterized mass matrix,
M(θ)−1. This makes that the Equations (7-6c) and (7-6d) are not bilinear. However, instead
of using the parameterization of the mass matrix in the optimization procedure, we use the
linear parameterization of the inverse of the mass matrix, i.e.

M−1(τ) instead of M(θ)−1 (7-7)

Because M(θ) is constrained to be positive semidefinite, so is the parameterized inverse
M−1(τ). If M(θ) has diagonal structure, then we can parameterize M(τ)−1 as a diago-
nal matrix. If M(θ) is fully parameterized, so will M(τ)−1, however if M(θ) contains zeros
in some locations i, j it will not be the case in general that M(τ)−1 will contain a zero at i, j
or even a zero in general. In that case it is needed to use a full parameterization of M(τ)−1.
Using this new parameterization (7-6c) reads as

TAS =
[

0 I
−M−1(τ)K(τ) −M−1(τ)V (τ)

]
(7-8)

which still contains bilinearities on both sides of the equation, however it is possible to rewrite
(7-8) to a single bilinearity, namely

[
T

0
M−1(τ)

] [
A 0
0 I

] [
S

K(τ) V (τ)

]
=
[
0 I
0 0

]
(7-9)
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The final identification/feasibility problem reads as

find τ, T, S

subject to[
T

0
M−1(τ)

] [
A 0
0 I

] [
S

K(τ) V (τ)

]
=
[
0 I
0 0

]
ST = I

TS = I

TB =
[

0
M−1(τ)F

]
CS =

[
H 0

]
M−1(τ) � 0

V (τ) � 0
K(τ) � 0

(7-10)

Once we obtain the solution τ , we determine M(θ) by computing the inverse of M−1(τ).

7-5-2 Special Cases

We identify two special cases: the case when the input matrix or the output matrix is of full
rank. By expanding the equations TA = A(θ)T, TB = B, C = CT , a lot of additional
structure can be perceived. By partitioning the matrices as

T =
[
T1 T2
T3 T4

]
A =

[
A1 A2
A3 A4

]
B =

[
B1
B2

]
C =

[
C1 C2

]
, (7-11)

the expanded equations read as

T1A1 + T2A3 = T3 (7-12a)
T1A2 + T2A4 = T4 (7-12b)
T3A1 + T4A3 = −M(θ)−1K(θ)T1 −M(θ)−1V (θ)T3 (7-12c)
T3A2 + T4A4 = −M(θ)−1K(θ)T2 −M(θ)−1V (θ)T4 (7-12d)
T1B1 + T2B2 = 0 (7-12e)
T3B1 + T4B2 = M(θ)−1F (7-12f)

C1 = HT1 (7-12g)
C2 = HT2 (7-12h)

Full set of sensors

In the case that we have as many independent sensors as there are states within the system, we
have that matrices H,C1,C2 are invertible in (7-12), and the solution follows rather trivially.
We can determine T1 and T2 from (7-12g) and (7-12h). T3 and T4 then follow from (7-12a)
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and (7-12b). Having obtained the similarity transformation matrix, the mass matrix now
follows from (7-12f), V (θ),K(θ) can now be extracted from a Least Squares (LS) solution
applied to (7-12c) and (7-12d).

Full set of actuators

In the event that there exist as many actuators as there are states, the solution follows
somewhat less trivial, but can still be obtained by solving sets of (over-)determined linear
equations. The basis of the solution depends on writing all sub-matrices of the transformation
matrix as a function of T1. We have that in the full set of actuator case, that F,B1,B2 are
invertible. From (7-12a,7-12b,7-12f) we can write

T2 = −T1B1B−1
2

T3 = T1(A1 − B1B−1
2 A3)

T4 = T1(A2 − B1B−1
2 A4)

(7-13)

Using the expression for T3, T4 and (7-12f) we can express the inverse of the mass matrix as

M(θ)−1 = T1
(
(A1 − B1B−1

2 A3)B1 + (A2 − B1B−1
2 A4)B2

)
F−1 = T1Q (7-14)

Combining all expressions in (7-12c,7-12d) leads till

��T1(A1 − B1B−1
2 A3)A1 +��T1(A2 − B1B−1

2 A4)A3 = −��T1QK(θ)T1 −��T1QV (θ)T1(A1 − B1B−1
2 A3)

��T1(A1 − B1B−1
2 A3)A2 +��T1(A2 − B1B−1

2 A4)A4 = ��T1QK(θ)T1B1B−1
2 −��T1QV (θ)T1(A2 − B1B−1

2 A4)
(7-15)

If we now apply the substitution X = K(θ)T1 and Y = V (θ)T1 , we can uniquely determine
the 2n2 unknowns in X and Y from the 2n2 linear equations in Eq. (7-15). Having obtained X
and Y , we would now like to obtain V (θ),K(θ), T1 which can be done by solving the following
set of equations

XT−1
1 = K(θ) (7-16a)

Y T−1
1 = V (θ) (7-16b)

C1T
−1
1 = H (7-16c)

Note that we would like to solve for n2 variables in T−1
1 together with n(n+ 1)/2 variables in

V (θ) and n(n + 1)/2 in K(θ) making a total of 2n2 + n variables. If the number of outputs
p = 1, then (7-16) has 2n2 + n equations, leading to a unique solution. If p > 1 then (7-16)
is easily transformed into a LS. M(θ) hereafter follows from (7-14).

Recap

The entire optimization procedure is summarized in the following table:

Algorithm 7.1 Estimate 2nd order Matrix differential equation
through Similarity Transformation
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given IO data u(k), y(k) for i = 1 . . . N

do

1. Estimate discrete time state space model using subspace tech-
nique

2. Convert model to continuous time using Zero Order Hold
(ZOH)

3. Estimate the Mass, Damping, Stiffness matrix using opti-
mization (7-10).

7-6 Simulation

In order to verify the proposed method we simulate a few examples, mostly taken from other
papers. All results were obtained by using MOSEK 8.1 [19] in conjunction with Matlab and
YALMIP [54].

7-6-1 Mass Damper

The first simulation example is a two-dimensional spring-mass-damper system as depicted
in Figure 7-1, the example is much like the one treated in [49]. Such a setup leads to a
non-diagonal mass-matrix in the MDE. The physical parameters are chosen as follows

M =

 5 −1 0
−1 2 −0.5
0 −0.5 1

 V =

 5 −0.1 −0.1
−0.1 0.2 −0.1
−0.1 −0.1 1.1

 K =

 4 −2 0
−2 4 −2
0 −2 22


H =

[
0 1 0
0 0 1

]
F =

 1 1
−1 1
0 0


(7-17)

Leading to a frequency response as given in Figure 7-2. The method proposed in [49], uses
a full rank H matrix, Identity to precise, and furthermore the success of the their method
depends on the diagonal structure of the input matrix F . Hence we opt to test the algorithm
on a non-diagonal input matrix, and rank-deficient output matrix. The system is simulated
with a continuous time state space model with parameter matrices

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−0.6452 0.0645 −1.1613 −0.4323 0.0032 −0.0355
0.7742 −1.6774 −5.8065 −0.1613 −0.0839 −0.2774
0.3871 1.1613 −24.9032 0.0194 0.0581 −1.2387


B =



0 0
0 0
0 0

0.0968 0.3548
−0.5161 0.7742
−0.2581 0.3871


C =

[
0 1 0 0 0 0
0 0 1 0 0 0

]
D =

[
0 0
0 0

]
(7-18)
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Figure 7-1: Schematic depiction of a spring-mass-damper system in two dimensions. The problem
discussed in (7-17) has 3 dimensions, so one should imagine an additional set of spring and damper
Cz, kz lateral to the paper. The inputs u1, u2 are applied diagonally to the mass in the xy-plane,
the outputs are measured in the y and z direction.

The sampling time used in the simulation equals ts = 0.001 and N = 5000 data points were
used. The A,B,C are estimated using N4SID[26] followed by ZOH, and lead to

A =



−2.0055 0.5081 0.8634 3.2443 −0.8011 −2.1785
−0.2879 −1.1741 −1.0625 −1.5843 1.3832 0.5346
−1.1301 0.65188 0.2561 0.6697 −0.55112 −1.5559
−3.2937 1.2658 −0.2243 0.4310 0.8212 1.7693
0.8924 −1.2032 0.33622 −1.0434 0.0521 0.0940
2.2319 −0.4929 1.4974 −1.7734 −0.0800 0.0080


B =



−0.2150 0.6992
0.4815 0.2971
0.0740 −0.2028
0.1094 −0.2258
−0.0036 0.1005
−0.0254 0.0105


C =

[
−0.3118 0.0339 −0.5499 −0.6235 −0.3418 −0.9562
−0.0527 0.0077 −0.0682 −0.0844 0.0136 0.0283

]
D =

[
0 0
0 0

]
(7-19)

The M−1(τ), V (τ),K(τ) matrices are parameterized as symmetric matrices, i.e.

M−1(τ) =

τ1 τ4 τ6
τ4 τ2 τ5
τ6 τ5 τ3

 V (τ) =

 τ7 τ10 τ12
τ10 τ8 τ11
τ12 τ11 τ9

 K(τ) =

τ13 τ16 τ18
τ16 τ14 τ17
τ18 τ17 τ15


(7-20)

together with the 36 variables in T and 36 variables in S, makes a total of 87 decision variables.
After running the proposed algorithm with the regularization parameter λ = 10, we get

M−1(τ) =

0.2273 0.1288 0.0645
0.1288 0.6447 0.3255
0.0645 0.3255 1.1612

 V (τ) =

 4.9664 −0.0984 −0.0996
−0.0984 0.1998 −0.1002
−0.0996 −0.1002 1.0992


K(τ) =

 3.9614 −1.9816 −0.0000
−1.9816 3.9989 −2.008
−0.000 −2.008 22.0007


(7-21)
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Figure 7-2: Bode diagram of the three-dimensional spring-mass-damper system. In blue the
original system, in purple the final estimate using using the estimated M,V,K matrices.

We have that V (θ) = V (τ),K(θ) = K(τ) and that the estimate of the mass matrix is obtained
by inverting M−1(τ), leading to

M(θ) =
(
M−1(τ)

)−1
=

 4.9612 −0.9912 −0.002
−0.9912 1.9994 −0.5003
−0.002 −0.5003 1.001

 (7-22)

By comparing (7-21) and (7-22) with (7-17), we see there exists a slight discrepancy between
the actual physical parameters and the estimated physical parameters. This discrepancy is
probably not due to numerical issues as the error is much higher than machine precision. The
problem, probably lies in the subspace estimation step using N4SID. If we compare the original
model (A,B,C) with the estimated (A,B,C) triplet, and compare the frequency response of
both models it can be observed that the maximum absolute difference in magnitude of both
models also lies around 10−2. Furthermore a convergence plot is given in Figure 7-3.

7-7 Future Work

In this section we give some Ideas to further improve the methodology discussed in this
chapter.

7-7-1 Structure

In §7-5-2 we derived alternative solutions for special cases: if the input or output matrix
is full rank there exists a linear solution. We came up with this solution by expanding out
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64 Differential Matrix Equation via Similarity Transformation

Figure 7-3: Error versus iteration k for different initial conditions, all continuous lines depict
initializations where the entries in x are taken from the normal distribution, the dashed line is the
case where S, T are initialized as the Identity matrix. The dotted line: S, T as the zero matrix.
p? is equal to ‖A‖? +λ6n and is obtained when bilinear equality holds in the relaxation of (7-10).
Note that the error, given convergence is still around 10−2, which is rather large. Also note the
trace which after 4000 iterations still manages to converge.

the equations in TA = A(θ)T, TB = B, C = CT . By doing so, we saw there exist a
lot of linear dependencies in the equation, also within the transformation matrix. Equations
(7-12a) and (7-12b) reflect these internal dependencies. However, concerning the general
case: we have not used these inter-dependencies, although they could in effect be used to
halve the number of decision variables within T . Maybe one could use the equations (7-12)
as a starting point to create a smaller scale optimization problem in the number of decision
variables. Alternatively one could, by using the approach discussed in [55] straightforwardly
transform the triplet (A,B,C) into a triplet (A,B, C) with structure

A =
[

0 I
A3 A4

]
B =

[
0
B2

]
C =

[
C1 0

]
(7-23)

where A2,A3 ∈ Rn×n, C1 ∈ Rp×n,B2 ∈ Rn×m are fully parameterized unstructured matrices.
And continue from there. This would mean (slightly abusing notation) that B1,C2,A1 equal
the zero matrix in (7-12). The combination of equations (7-12e) with (7-12h) then provide
p × n + n × m equations to solve for n × n unknowns in T2. Assuming that p + m ≥ n,
this would be enough to uniquely determine T2. These reductions combined make it possible
to have n2 variables in T instead of (2n)2, meaning a quadratic reduction in the number of
decision variables within the transformation matrix.
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7-7-2 Linear Mass Matrix parameterization

During this chapter we have used the linear parameterization of the inverse mass matrix
M−1(τ). This is not a problem when we don’t have any prior information on the entries
in M . However, if we do have prior knowledge, this parameterization makes it hard to
incorporate this knowledge into this matrix, unless the mass matrix is known to be diagonal.

7-7-3 Measurements

The methodology discussed in this chapter focused on position measurements exclusively, but
is easily extended to allow for velocity measurements. This is done by substituting the the
output matrix in (7-2) by

C =
[
0 H

]
(7-24)

However, future work needs to be done to allow for acceleration measurements. Possibly
inspiration can be found in [1],[51], which contain methods that can also deal with acceleration
and mixed type of measurements.

7-8 Summary

In this chapter we have presented an algorithm for identifying the physical parameters in
physical structures. This problem has adequately been solved with non-iterative schemes for
cases where there exists at least one co-located sensor-actuator pair and the number of sensors
and actuators complies p + m > n. On the other hand, the methodology we propose allows
to incorporate prior information into the matrices. By exploiting structure of the physical
system at hand or using known a piori constants in the matrices M,V,K we can determine
the unknown values in these matrices using less sensors and actuators. Furthermore, in the
chapter we have given two special cases, for which we do not need to apply bilinear techniques.
When we have as many sensors or as many actuators as there are states, the solution can be
obtained by solving a number of over-determined linear programs.

Given the general case, so no full set of actuators or sensors, the method uses the fact that the
identification problem can be cast into a bilinear feasibility problem. This bilinear problem can
be turned into a rank constraint and relaxed using the Sequential Convex Relaxation (SCR)
technique. It was presumed that this convex relaxation technique has better characteristics
being able to converge to the global optimum compared to other techniques, such as Newton-
based methods. However, further tests are needed to validate this for this problem instance.
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Chapter 8

Conclusion and Discussion

In this chapter we asses if we have reached the goals we set ourselves, and to give possible
further research directions.

Goal

In the preface of this thesis we set ourselves the goal,

To develop new algorithms for the purpose of identifying continuous-time systems.

In order to do so, we looked at the applicability of Sequential Convex Relaxation (SCR) in
the system identification setting, which had not previously been done. We explored differ-
ent approaches to extract the unknown parameter of parameterized models; one, where we
directly used Frequency Response Function (FRF)-data; and one where we used a black-box
representation as input data. We did so for state space models and 2nd order models alike.
It is generally the case in grey-box estimation that the associated optimization is non-convex.
This means that local-optimality does not imply global optimality. The quest in the iden-
tification community is, despite this, to find algorithms which do have a high probability of
finding the global optimal solution. It was - at an early stage - supposed that SCR could
be an effective means to meet this end. In §2-5, we saw that the method has the ability to
escape local minima and this gave the first incentive (although this property is not guaran-
teed). In the previous chapters we have compared our own proposed algorithms with other
(state-of-the-art) methods, to validate this initial expectation.

Results

In Chapter 3 we saw that the problem of identifying a state space model from the FRF - is
indeed better solvable by transforming the transfer function into a set of bilinear equations
and then solving them with SCR. This compared to identifying the model with the Prediction
Error Method (PEM).
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Chapter 4 we investigated the problem of identifying a parametric 2nd order model using
the FRF. We gave an example where we were able to extract the parameter of 2 Degree Of
Freedom (DOF) mass damper system. Even the most permissible of existing formations was
not able to do such a task, because there was no co-located actuator-sensor pair. We saw
that the use of the additional imposed physical structure of system made the difference in
successfully extracting the parameter.

In Chapter 5 we introduced a novel method, which is applicable for estimating 2nd order
models from the Power Spectral Density (PSD). In this chapter we assumed a full rank C
matrix, which is not uncommon in literature for estimating the same system using FRF-data.
Using the principles of reciprocity, .i.e. positive definiteness of the physical matrices lead
us to an optimization problem with bilinear matrix equalities, and Linear Matrix Inequality
(LMI)’s, which can be solved using SCR. Because others have not tempted to address such an
identification scheme we could not make a comparison study. However, by exclusively looking
at the outcomes of the method applied to a physical example; the results seem promising.

Chapter 6 we for the first time looked at a different identification strategy. This is to say, by
estimating a continuous-time black-box representation prior to converting this representation
into form such that it fits the grey-box model. This is a much studied problem in literature,
so it was interesting to see how the method holds up compared to others.

Chapter 7 again looked into Matrix Differential Equation (MDE)’s. Now we looked into the
problem if we could identify such a system

Conclusion

Even though we gave different approaches to tackle the same problem: through the FRF, and
through a black-box estimation, it is hard to state that one approach is exclusively better than
the other. For example the physical example we gave in Chapter 3, we could identify through
the FRF, but not through a similarity transformation approach as discussed in Chapter 6.
A possible reason here for is that the actual similarity transformation matrix between the
black-box model and grey-box model had a very high condition number.

On the other hand using the similarity transformation approach discussed in Chapter 7 we
were able to identify 2nd order models, some of which we could not have identified through
the FRF-method from Chapter 4. The FRF - method would not identify the smaller modes
of the model and only fit the high peaks. In the similarity transformation approach such
problems were not encountered.

Recommendations

In this thesis we assumed a noiseless setting. We could do so because the input data used for
the concerning identification schemes was already pre-processed, i.e. the FRF can be obtained
almost perfectly, given that the original time series is long enough. The same holds for the
black-box models used as input data in Chapter 6 and 7. Done right, these can be obtained
from the raw input-output data, even in high noise cases. However, it could be investigated
how the methods hold up, if these are not exactly obtained.
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Furthermore it is possible to improve on the underlying algorithms we use to solve the iterates
in the SCR scheme. For the case there are no inequality constraints, we use Alternating
Direction Method of Multipliers (ADMM). However, ADMM is known to be slow, having
only linear convergence properties. Many alternative ways exist to solve the nuclear norm
minimization problem. If the proposed algorithms were to be applied to larger systems, it
could be worthwhile to explore such methods. Also the Semidefinite Programming (SDP)
solution used to solve the SCR iterates when dealing with inequality constraints could be
improved. We saw in chapter 2, that such problems scale poorly (n6). It could be an option
to look into the implementation of [22] to get better scaling.

Finally, the MDE formulation we gave in Chapter 4 allows us to retrieve parameters from
a q’th order MDE. We confined ourselves to 2nd order ones, as most physical processes are
not higher than 2nd order. However, there are processes in the world, which are governed by
3rd order differential equations. It would be very interesting to try to identify such a process
using the method from Chapter 4.

Master of Science Thesis W.P. Krijgsman



70 Conclusion and Discussion

W.P. Krijgsman Master of Science Thesis



Appendix A

Mathematical background

In this appendix we give a brief overview of some used Identities used. The treatment is by
no means complete.

A-1 Vectorization

Vectorization is often used in combination with the Kronecker product to express matrix
multiplication as a linear transformation on matrices. In particular, let A ∈ Rk×l, B ∈
Rl×m, C ∈ Rm×n then −−−→

ABC = (CT ⊗A)−→B (A-1)

A-2 Singular Value Thresholding

The Singular Value Thresholding (SVT) was first presented in [24]. Here we discuss the SVT
algorithm, it almost entirely an extract from [12]. Consider the minimization of the form

argmin
X
‖X‖? + λ‖X − Y ‖2F (A-2)

Let Y = UY ΣY V
T
Y be the singular value decomposition of Y ∈ Cn×m.

Lemma 2. The solution X̂ to (A-2) has singular vectors UY and VY

Proof. Let X = UXΣV T
X be a singular value decomposition of X. Then

‖X‖? + λ‖X − Y ‖2F = trace(ΣX) + λ(〈X,X〉+ 〈C,C〉 − 2〈X,C〉)

Using Von Neumann’s trace inequality we get

min
X

trace(ΣX) + λ(〈X,X〉+ 〈Y, Y 〉 − 2〈X,C〉)

≥ min
X

trace(ΣX) + λ(〈X,X〉+ 〈Y, Y 〉 − 2〈ΣX ,ΣY 〉)
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With equality holding true when C and X are simultaneously unitarily diagonizable. The
optimal solution to X to (A-2) therefor has the same singular vectors as Y , i.e. UX =
UY , VX = VY .

i Denote the singular values of Y in descending order as σY,1, . . . , σY,2n, and those of X
similarly, Thanks to Lemma 2, A-2 can be simplified to

argmin
σX,i

n∑
i=1

(σX,i + λ
(
σX,i − σC,i)2

)
(A-3)

This problem is completely decoupled in σX,i and the optimal solution to A-2 is computed
with

σX,i = max{0, σY,i −
1

2λ}, i = 1, . . . , n
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Appendix B

Least Square Updates

This appendix is concerned with the Least Squares (LS) updates in the Alternating Direction
Method of Multipliers (ADMM) algorithm as desribed in §2-4,

B-1 From Frobenius-norm to 2-norm

The x updates in the ADMM implementation are always of them form

argmin
x

∥∥∥∥∥
[
W1 0
0 I

] [
C(x) +A(x)PR+QPB(x) +QPR (A(x) +Q)P

P (B(x) +R) P

] [
W2 0
0 I

]
−
[
M11 M12
M21 M22

]∥∥∥∥∥
F

s.t D(x) = 0
(B-1)

where P,Q,R,W1,W2,Mij are of appropriate size and A(x) : Rn → Rj×k,B(x) : Rn →
Rl×m, C(x) : Rn → Rj×m,D(x) : Rn → Rd are affine maps, i.e. of the form

A(x) = A0 + x1A1 + . . . xnAn (B-2)

similarly for B(x), C(x),D(x). Applying the vec operator on A(x) leads to

−−−→
A(x) = Ax+ a (B-3)

where x =
[
x1 . . . xn

]T
, A =

[
~A1 . . . ~An

]
, a = ~A0. Likewise

−−→
B(x) = Bx+ b
−−→
C(x) = Cx+ c
−−−→
D(x) = Dx+ d

(B-4)
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Denote the vectorized versions ofMij in (B-1) by mij . Using the vectorization formula (A-1),
we can define the vectorized residuals in the cost function as

ε11 = (W T
2 ⊗W1)(Cx+ c) + ((PRW2)T ⊗W1)(Ax+ a) + (W T

2 ⊗W1QP )(Bx+ b) +−−−−−−−−→W1QPRW2 −m11

ε12 = (P T ⊗W1)(Ax+ a) +−−−−→W1QP −m12

ε21 = (W T
2 ⊗ P )(Bx+ b) +−−−−→PRW2 −m21

(B-5)
The minimization of the Frobenius norm in (B-1) is then equivalent to the minimization of
the 2-norm in

argmin
x

‖Fx− h‖22
s.t Dx = −d

(B-6)

where

F =

((PRW2)T ⊗W1)A+ (W T
2 ⊗W1QP )B + (W T

2 ⊗W1)C
(P T ⊗W1)A
(W T

2 ⊗ P )B

 (B-7)

and

h =

m11 − ((PRW2)T ⊗W1)a− (W T
2 ⊗W1QP )b− (W T

2 ⊗W1)c−−−−−−−−−→W1QPRW2

m12 − (P T ⊗W1)a+−−−−→W1QP

m21 − (W T
2 ⊗ P )b+−−−−→PRW2

 (B-8)

B-2 Constrained Least Squares

The constrained LS-problem in (B-6), has the optimal solution x̂[
2F TF DT

D 0

] [
x̂
v

]
=
[
2F Th
−d

]
(B-9)

which can be derived from the KKT-conditions. The left hand side usually referred to as the
KKT-matrix and is invertible if and only if D has independent rows and[

F
D

]
(B-10)

has independent columns [2]. Because the KKT matrix is symmetric, there exist efficient
methods to solve the set of linear equations in (B-9). These methods include the LDLT
factorization of KKT matrix, or if F TF is non-singular computing a Cholesky factorization
of F TF and using this factorization in a block solve manner, see [2] for more details. All of
these methods have computational complexity of O(n3) to factor the KKT-matrix, and O(n2)
complexity for each subsequent solve. If D is non-existent in (B-9), then the optimal solution
x̂ reduces to x̂ = F †h, where F † is the pseudo inverse of F .
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Other Methods

This appendix is devoted to two of the methods used in the comparison study conducted in
§6-7. Both methods solve the cost function

F (θ, T ) = ‖TA−A(θ)T‖2F + ‖TB−B(θ)‖2F + ‖C− C(θ)T‖2F (C-1)

The difference being that the Alternating Least Squares (ALS)-method solves (C-1) sequen-
tially over T and θ, and that the Gradient Based (GB)-method solves then non-linear problem
(C-1) using a quasi-Newton method, simultaneously updating T and θ. For the Null-Space
based method (NS)-method the reader is referred to [40].

C-1 Alternating Least Squares

TheALS method as proposed in [39], tries to solve the optimization problem by sequentially
minimizing the objective function with respect to the parameter vector θ and the similarity
transform matrix T , i.e. sequentially solve

min
T
F (θ, T ) (C-2)

min
θ
F (θ, T ) (C-3)

until some stopping criterion holds. Because θ, T individually appear linearly in the arguments
of the frobenius norms in F (θ, T ), we can write both above optimization as standard least
square problems. Using the relationship ‖X‖2F = ‖vec(X)‖22, and

vec(A(θ)) = KAθ + κA (C-4)
vec(B(θ)) = KBθ + κB (C-5)
vec(C(θ)) = KCθ + κC (C-6)
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where KX and κX are constant matrices and vectors of appropriate size respectively, we can
write

min
T
F (θ, T ) = min

T

∥∥∥∥∥∥∥
(AT ⊗ In)− (In ⊗A(θ))

BT ⊗ In
Ip ⊗ C(θ)

 vec(T )−

 0
vec(B(θ))
vec(C)


∥∥∥∥∥∥∥

2

2

(C-7)

and

min
θ
F (θ, T ) = min

θ

∥∥∥∥∥∥∥
TATB
C

−
(T T ⊗ In)

I
(T T ⊗ Ip)



KA

KB

KC

 θ +

κAκB
κC



∥∥∥∥∥∥∥

2

2

(C-8)

C-2 Gradient Based Method

The GB-method [28] aims at finding a local minimum for the cost function F (θ, T ), using a
quasi-Broyden-Fletcher-Goldfarb-Shannon (BFGS) method. In order to set up the method,
the gradients of the cost function F with respect to θ, and T have to be computed. To
compute these gradients, the following relationships are useful [56]

‖X‖2F = tr(XTX) (C-9)

∂

∂X
tr(AXB) = ATBT ∂

∂X
tr(AXTB) = BA (C-10)

And the chainrule for matrix derivatives. Let U = f(X), the goal is to find the derivative of
g(U) with respect to xi. As derived in [56] this is equivalent to

∂g(U)
∂xi

= tr
[(

∂g(U)
∂U

)T ∂U
∂xi

]
(C-11)

The gradient of F (θ, T ) with respect to T is found by applying (C-9) followed by (C-10),
leading to

∇TFA(θ, T ) =2
(
TAAT −A(θ)TAT −AT (θ)TA +AT (θ)A(θ)T

)
+ 2

(
CT (θ)C(θ)T − CT (θ)C

)
+ 2

(
TBTB−BT (θ)B

) (C-12)

The gradient of F (θ, T ) with respect to θ, can be obtained by initially regarding the partial
derivative ∂F (θ, T )/∂θi, namely

∂F (θ, T )
∂θi

= tr
[(

∂F (θ, T )
∂A(θ)

)T ∂A(θ)
∂θi

]
+tr

[(
∂F (θ, T )
∂B(θ)

)T ∂B(θ)
∂θi

]
+tr

[(
∂F (θ, T )
∂C(θ)

)T ∂C(θ)
∂θi

]
(C-13)

The partial derivatives of the parameterized matrices with repsect to θi are

∂

∂θi
A(θ) = ∂

∂θi
(A0 + θ1A1 + · · ·+ θiAi + · · ·+ θlAl) = Ai (C-14)
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similarly for ∂B(θ)/∂θi and ∂C(θ)/∂θi. Using the partial derivatives we are now ready to set
up the gradient, resulting in

∇θF (θ, T ) = −2

tr(M
T
AA1)
...

tr(MT
AAl)

− 2

tr(M
T
BB1)
...

tr(MT
BBl)

− 2

tr(M
T
CC1)
...

tr(MT
CCl)

 (C-15)

where

MA = (TA−A(θ)T )T T (C-16)
MB = TB−B(θ) (C-17)
MC = (C− C(θ)T )T T (C-18)
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List of Acronyms

LTI Linear Time-Invariant

SS State Space

ODE Ordinary Differential Equation

PSD Power Spectral Density

SDP Semidefinite Programming

FRF Frequency Response Function

SISO Single Input Single Output

SI Subspace Identification

DOF Degree Of Freedom

SVT Singular Value Thresholding

LS Least Squares

ZOH Zero Order Hold

DCP Difference of Convex Programming

SCR Sequential Convex Relaxation

PEM Prediction-Error Method

NS Null-Space based method

ADMM Alternating Direction Method of Multipliers

CT Continuous Time

MDE Matrix Differential Equation
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BFGS Broyden-Fletcher-Goldfarb-Shannon

ALS Alternating Least Squares

GB Gradient Based

IO Input Output

LMI Linear Matrix Inequality

PEM Prediction Error Method

NLLS Non-Linear Least Squares
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