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a b s t r a c t

Evolvable hardware (EH) architectures are capable of changing their configuration and behavior
dynamically based on inputs from the environment. In this paper, we investigate the feasibility of
using EH to prevent Hardware Trojan Horses (HTHs) from being inserted, activated, or propagated in a
digital electronic chip. HTHs are malicious hardware components that intend to leak secret information
or cause malfunctioning at run-time in the chip in which they are integrated. We hypothesize that
EH can detect internal circuit errors at run-time and reconfigure to a state in which the errors are
no longer present. We implement a Virtual Reconfigurable Circuit (VRC) on a Field-Programmable
Gate Array (FPGA) that autonomously and periodically reconfigures itself based on an Evolutionary
Algorithm (EA). New VRC configurations are generated with an on-chip EA engine.

We show that the presented approach is applicable in a scenario in which (1) the HTH-critical areas
in the circuit are known in advance, and (2) the VRC is a purely combinatorial circuit, as opposed to the
on-chip memory holding the golden reference, which requires one or more cycles to be read/written.
We compare two different approaches for protecting the system against HTHs: Genetic Programming
(GP) and Cartesian Genetic Programming (CGP). The paper reports on experiments on four benchmark
circuits and gives an overview of both the limitations and the added value of the presented approaches.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

With the rise of the Internet of Things (IoT), electronic chips or
integrated circuits (ICs) play an increasingly important role in our
society. Often, ICs process sensitive personal or company-critical
information. Nevertheless, several steps in the development of
ICs are outsourced to different (sometimes untrusted) parties.
This opens the door for the manipulation of ICs to extract secret
information, e.g., through wireless communication or disabling
(parts of) the chip. A malicious building block that is inserted in
an IC to cause this undesired behavior is called a Hardware Trojan
Horse (HTH).

The potential threat of HTHs was first reported by the US
Department of Defense in 2005 [1]. They expressed their con-
cerns on ICs in military applications, mainly related to untrusted
foundries and untrusted actors in the supply chain. Although
there are no HTHs in ICs reported in real-world applications yet,
there are many examples of academic research results, both on

∗ Corresponding author.
E-mail addresses: mlabaf@eng.ui.ac.ir (M. Labafniya), s.picek@tudelft.nl

(S. Picek), etemadi@eng.ui.ac.ir (S. Etemadi Borujeni),
nele.mentens@kuleuven.be (N. Mentens).

injecting and detecting/preventing HTHs. Moreover, there was
recently the alarming disclosure of a tiny chip that was added
to the motherboard of servers of the company Elemental Tech-
nologies [2]. The chip that was not part of the original design
of the motherboard creates a secret connection to each network
in which the server is included. The fact that Elemental’s servers
are massively deployed in US Defense data centers underlines the
severity of the matter. Investigations showed that the chips were
inserted by Chinese subcontractors during the manufacturing
process.

In this paper, we investigate the possibility of using run-time
reconfigurable circuits to prevent the insertion, the activation,
and the propagation of HTHs. More specifically, we explore so-
lutions based on evolvable hardware (EH) architectures, which
are reconfigurable circuits that adapt their behavior dynamically
through interactions with the environment. EH concentrates on
the generation of efficient electronic circuits through the use of
Evolutionary Algorithms (EAs). Originally, EH techniques were
proposed for the efficient design of new circuits, i.e., to do a
fast exploration of potential circuits with a given functionality
at design-time [3]. In this case, the terms ‘‘evolutionary circuit
design’’ and ‘‘evolved hardware’’ are also commonly used. Here,
we consider the scenario in which the generation of new circuits
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Fig. 1. FPGA design flow and potential insertion of HTHs.

is done at run-time, adapting to changes in the environment, as
proposed in [4] for run-time filter updates in image processing
applications.

A popular way of implementing EH architectures is through
a Virtual Reconfigurable Circuit (VRC) [5]. This is a circuit that
consists of programmable elements with a programmable in-
terconnect. As opposed to commercially available configurable
hardware platforms or Field-Programmable Gate Arrays (FPGAs),
VRCs can be reconfigured in only one or a few clock cycles based
on the direct output of an EA.

The contributions of this paper can be summarized as follows:

• We are the first to investigate the use of EH for HTH detec-
tion and prevention.
• We implement a VRC as a virtual overlay architecture on an

FPGA for preventing HTH insertion, activation, and propaga-
tion.
• We compare two approaches for the generation of new

configurations. The first is based on a tree structure using
Genetic Programming (GP), while the second one is based
on a graph structure using Cartesian Genetic Programming
(CGP).
• We evaluate the overhead in FPGA resources, power con-

sumption, and computational delay for four commonly used
hardware circuits, implemented on the VRC architecture.
• We discuss the limitations of the proposed solution and the

application scenarios in which the presented architectures
are of interest.

The paper is structured as follows. Section 2 gives the neces-
sary background information on HTHs in digital circuits, evolvable
hardware, and VRCs. Section 3 discusses related work on HTH
detection and prevention. In Section 4, we propose an FPGA
architecture consisting of a VRC and an on-chip EA engine. In
Section 5, we evaluate the feasibility of our approach based on
four benchmark circuits. Section 6 concludes the paper and gives
an outlook on future work.

2. Preliminaries

2.1. Hardware Trojan horses in digital circuits

HTHs are malicious circuits that intend to leak secret infor-
mation, e.g., through wireless communication, or to cause mal-
functioning at run-time in the chip in which they are integrated.
HTHs can be inserted by untrusted foundries and actors at dif-
ferent stages in the design and development of FPGAs and ASICs
(Application-Specific Integrated Circuits). For example, in a chip
that needs to communicate over the Internet, the hardware com-
ponent that takes care of Internet communication at the physical
layer is typically bought from a third-party vendor. If this core
contains built-in additional functionality that communicates sen-
sitive data from within the chip to the outside world, the security
of the whole chip is compromised. We call this additional func-
tionality an HTH. An HTH consists of two parts: a trigger and
a payload. The trigger usually corresponds to a rare data input
(sequence), while the payload is the activity that causes the data
leakage or the malfunctioning when the HTH is triggered. In the
example of the third-party communication core, the chip will
send out sensitive data to the outside world when a specific
combination or sequence of input signals is applied.

HTHs are usually inserted in special places in the design that
have low testability or high slack time [6–8]. Testability is mea-
sured through two parameters: controllability, which is deter-
mined by the effort needed to change an internal signal by
controlling primary inputs, and observability, which is deter-
mined by the effort needed to observe the effect of an internal
signal variation at the output of the chip. At points with low
testability, HTHs are more difficult to trigger and more difficult
to detect through a read-out of the output values. The slack time
is the difference between the required arrival time of a signal
and the actual arrival time. A high slack time leaves room for in-
serting logic without violating the required critical timing paths.
Inserting HTHs at points in the design with low testability or high
slack time minimizes the chance of HTH insertion to be detected.
This means that we can predict which areas in the design are
most likely to be chosen by attackers for HTH insertion. This
justifies our claim that we can insert our protection mechanism
in well-chosen relatively small parts of the chip.

Since the experiments presented in this paper are performed
on FPGA platforms, Fig. 1 zooms into the different steps in the
design and development of FPGA applications that are suscep-
tible to HTH insertion. We distinguish the steps the FPGA goes
through before it is deployed in an end application. The first place
where HTHs can be inserted is in the foundry that fabricates
and packages the FPGA chip. In this case, we assume that the
foundry is malicious. It modifies the physical design, i.e., it adds
an HTH, before fabrication and packaging. The insertion of an
HTH in this step leads to an FPGA that contains an additional
circuit that, e.g., has access to the internal signals of the benign
FPGA logic and communicates this internal information through
a wireless link or alters the internal signals to induce unwanted
behavior of the FPGA. The design phase is the second step that
suffers from a potential insertion of HTHs, in particular when
third-party Intellectual Property (IP) cores are used. IP cores are
pre-designed building blocks, e.g., for communication or security
purposes, that are based on the IP of the third-party design house
that offers/sells them. An HTH in an IP core uses part of the
configurable logic of the FPGA in a malicious way to retrieve
secret information or to cause malfunctioning of the FPGA. In
this case, we assume that the vendor of the IP core is malicious.
While the designer that buys the IP core trusts the third-party
vendor to deliver an IP core with the requested functionality, the
vendor actually sells an IP core that additionally contains an HTH.
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After the design is ready, Electronic Design Automation (EDA)
tools are used to perform synthesis, placement and routing, and
to generate the bitstream that contains the configuration data.
In this case, we assume that the EDA tool provider is malicious.
The automated processes for synthesis, placement and routing,
and bitstream generation, result in a bitstream that does not
only invoke the requested configuration in the FPGA but also an
additional configuration that holds an HTH. In the final phase, the
actual configuration is performed by storing the bitstream in the
FPGA’s configuration memory.

Note, HTHs are mentioned as an important threat in an
overview of FPGA security by Trimberger and Moore of the com-
pany Xilinx, which is one of the world-leading FPGA vendors [9].
Saar Drimer also gives a comprehensive overview of security
threats on FPGA platforms in [10].

2.2. Evolutionary algorithms and evolvable hardware

Evolutionary algorithms (EAs) are population-based meta-
heuristic optimization techniques inspired by biological evolu-
tion [11]. Candidate solutions to the optimization problem are in-
dividuals in a population, and the fitness function determines the
quality of the solutions. We show pseudocode for evolutionary
algorithms in Algorithm 1.

Algorithm 1: Pseudocode for EA.
Input : Parameters of the algorithm
Output : Optimal solution set
t ← 0
P(0)← CreateInitialPopulation
while TerminationCriterion do

t ← t + 1
P ′(t)← SelectMechanism (P(t − 1))
P(t)← VariationOperators(P ′(t))

end while
Return OptimalSolutionSet(P)

2.3. Genetic programming

Genetic Programming (GP) is a type of EA in which the data
structures that undergo an evolutionary process are executable
computer programs [12]. GP has a history longer than 50 years,
but its full acceptance comes from the work of Koza at the be-
ginning of the 1990s, where he formalized the idea of employing
chromosomes on the basis of tree data structures [13]. GP aims
to automatically generate new programs, and each individual of a
population represents a computer program [12] where the most
common are symbolic expressions representing parse trees. A
parse tree is an ordered, rooted tree that represents the syntactic
structure of a string according to some context-free grammar.
As it makes fewer assumptions about the structure of possible
solutions, GP could be regarded as a more general form of genetic
algorithms (GAs) [14]. Building elements in a tree-based GP are
functions and terminals. Both functions and terminals are known
as primitives.

2.4. Cartesian genetic programming

Julian Miller introduced a new form of GP in 1999 that rep-
resents programs as directed graphs instead of trees [15]. In
CGP, a program is represented as an indexed graph. The graph
is encoded in the form of a linear string of integers. Termi-
nal set (inputs) and node outputs are numbered sequentially.
Node functions are also numbered separately [16]. CGP has three
parameters that are chosen by the user number of rows nr ,
number of columns nc , and levels-back l. The number of rows

Fig. 2. Extrinsic and intrinsic methods for evolutionary algorithms.

and the number of columns make the two-dimensional grid of
computational nodes. Their product gives the maximal number
of computational nodes. The levels-back parameter controls the
connectivity of the graph, i.e., it determines which columns a
node can get its input from. The genotype is a list of integers that
represents the program primitives and how they are connected.
The genotype is mapped to the directed graph that is executed as
a program. Genotypes are of fixed length, while phenotypes have
a variable length in accordance with the number of unexpressed
genes. Those nodes that constitute the phenotype are called the
active nodes. CGP has been shown to be more computationally
efficient on a number of problems [17].

2.5. Evolution in hardware

EAs can be implemented both in software and hardware. The
software implementation of EAs is easy but has unacceptable
delays that are not desirable for most electronic systems. In
contrast, implementing EAs in hardware, especially with parallel
computing platforms like FPGAs, is more efficient. Because of
the Dynamic Partial Reconfiguration (DPR) capabilities of many
FPGAs, they are proper hardware platforms for implementing
EAs [18]. The DPR feature of FPGAs can be used in different
application domains like the Internet of Things (IoT), image pro-
cessing, and arithmetic circuits. For example, [19] describes how
IoT networks can take advantage of the DPR features of FPGAs in
a secure way.

Evolution in hardware can be classified into three categories:
extrinsic implementations, intrinsic implementations, and VRCs.
In extrinsic implementations, EAs are implemented on an ex-
ternal computing device, and the fitness of all chromosomes
is evaluated by software models and simulators. Only the best
option will be reconfigured on the FPGA as the desired circuit. In
intrinsic implementations, EAs are implemented on an external
computing device, but the evaluation of each chromosome is
done on the FPGA through DPR. The relatively large delay of DPR
makes both the intrinsic and extrinsic methods time-consuming
on an FPGA. Fig. 2 shows the structure of intrinsic and extrinsic
EAs [20]. The extrinsic and intrinsic methods are depicted in
Fig. 2, while the third category, VRCs, is explained in the next
paragraph.

2.6. Virtual reconfigurable circuits

The third model for hardware evolution is implemented com-
pletely on FPGA and is called Virtual Reconfigurable Circuits
(VRC). This model was introduced for evolvable digital hardware
as a way to rapidly reconfigure platforms using conventional
FPGAs. A VRC consists of an array of programmable elements
(PEs) with programmable interconnect. A VRC can be seen as
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Fig. 3. Example of a VRC, configured by a genetic unit.

a structure that is configured by a second reconfiguration layer
(on top of the built-in reconfiguration layer that is part of any
FPGA), which is configured by an EA [5]. Fig. 3 shows a VRC
structure which consists of 25 Programming Elements (PEs), con-
nected through programmable switches. The generation of new
configurations is based on CGP [16]. A genetic unit generates new
configurations that are evaluated for correctness on the VRC. The
flexibility and heuristic approach of the VRC leads to a real-time
application of the EA [18]. In comparison to extrinsic and intrinsic
implementations, VRCs provide a much faster reconfiguration of
the FPGA.

In our work, the golden-reference functionality is stored in an
embedded memory block on the FPGA. We assume that it is much
more difficult to apply HTHs in these memory blocks than in the
FPGA’s configurable logic. This assumption is motivated by the
fact that most memories have built-in error detection/correction
mechanisms, which is also the case for the Block RAM (BRAM)
modules that are used in our implementation [21]. Moreover, the
delay and resource constraints on the BRAM modules are much
more relaxed than on the configurable logic, because the BRAM
memory is accessed only during the golden-reference compari-
son, and because the behavior of only a small circuit is stored
in BRAM. Consequently, additional methods that cause an over-
head in delay and resources, like the widely used Triple-Modular
Redundancy (TMR) technique [22], can easily be applied to the
memory modules without violating delay or resource constraints.

3. Related work

3.1. HTH prevention and detection

To obtain secure systems, methodologies that incorporate De-
sign for Security (DfS) should be used. Both prevention and detec-
tion methods are necessary to prevent adversaries from infecting
a system with HTHs.

In the category of prevention techniques, a new TMR structure
is introduced in [23], called Adapted Triple Modular Redundancy
(ATMR). ATMR uses three different circuits for implementing the
same module, relying on the fact that it is highly unlikely that
the circuits are all triggered simultaneously by HTH activation.
Both the conventional TMR approach and the proposed ATMR
have high area overhead and power consumption due to the
redundant structure. Filling unused space on an FPGA is another
way to protect a circuit from HTH insertion [24]. This method
has a minimized performance and power penalty. Using physical

and logical keys in [25] improves the security of an FPGA system
by obfuscating the FPGA bitstream; the technique is based on a
dedicated configurable architecture. Preventing HTH insertion by
CAD tools is done in [26], where moving FPGA-Oriented Moving
Target Defense (FOMTD) methods are proposed based on three
defense lines. The FOMTD method generates uncertainties for
attackers to make it harder to insert HTHs.

Techniques for the detection of HTH insertion can be catego-
rized into two classes: physical analysis and functional analysis:

• Physical analysis performs an inspection of the physical
properties of the chip. This can be done destructively by
decapsulation and delayering, after which the identification
of the HTHs takes place through visual layout inspection [27,
28]. A non-destructive way of performing the physical in-
spection is through the analysis of side-channels, such as
the power consumption or the electromagnetic emanation
of the chip [29]. In [30], the FPGA is divided into different
zones based on trustworthiness, calculated by the frequency
response of Ring Oscillators (ROs) in different positions in
the FPGA.
• The goal of functional analysis is to find rare trigger signals

or sequences that activate the HTH payload. This can be
done externally by testing the input–output behavior of the
chip. Functional analysis of the internal building blocks of
the chip is enabled through built-in self-test (BIST) modules,
under the assumption that the BIST modules do not contain
HTHs [31].

3.2. Evolutionary algorithms for improving electronic circuits

Examples of successful applications of evolutionary algorithms
span diverse domains, e.g., image processing algorithms [32],
the design of fault tolerant systems [18], face recognition [33],
power consumption optimization [34], and arithmetic circuit de-
sign [35]. In [33], a method is proposed to improve the security
of hardware circuits based on EAs by decreasing the number of
rare signals with low testability and increasing the efficiency of
logic encryption. Logic encryption is a method that allows only
authorized users to activate a hardware circuit.

Another type of evolutionary algorithms, genetic algorithms,
have been successfully applied in various digital circuit imple-
mentations [36–38]. In [39], parallel GAs are used for the design
of digital circuits for FPGA-based architectures. The GA employed
involves the use of a linear representation which can be readily
employed for intrinsic evolution systems such as through the
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direct manipulation of the FPGA configuration bitstream. In [36],
the logic circuit is organized on a two-dimensional array of cells
using GAs to have an optimal circuit design in terms of circuit
complexity, power, and time delay.

Other works concentrate on designing digital combinational
circuits using CGP [37,40–43]. In [44], the authors show that
if a CGP-based evolutionary system can produce solutions for
digital design such that the selected parameters for CGP are
close to human-made solutions, the produced results will be
better. In [45], the authors try to minimize the digital circuit size
using CGP. They conclude that a bigger CGP dimension results
in a higher success rate to reach the intended truth table while
scarifying space and time for searching through the chromosome
space. Using CGP to self-reconfigure digital circuits is proposed
in [46] and shown on a full adder FPGA design.

4. Proposed HTH prevention/detection method

In this paper, a new method to protect FPGAs from the in-
sertion of HTHs is presented. Our approach uses virtual partial
FPGA reconfiguration and implements EAs entirely on the FPGA.
We assume that HTHs are inserted in specific subcircuits of the
digital architecture, and, therefore, we concentrate on protecting
those subcircuits. The criteria for selecting the subcircuits are
based on testability and time slack, as explained in Section 2.1,
or on the type of building block with respect to the sensitivity of
the processed data, e.g., cryptographic algorithms might be inter-
esting components for an attacker to insert an HTH. Our method
consists of reconfiguring the selected subcircuit periodically. Con-
sequently, even if an adversary inserts any HTHs, reconfiguration
will modify the circuit such that, in spite of the presence of HTHs,
the functionality of the design will be corrected.

Fig. 4 shows our proposed architecture for securing FPGAs
against HTH insertion by using a CGP structure. There are two
important sections: the main design and the genetic unit. The
FPGA contains the main digital design, of which an important
subcircuit is implemented in the VRC. This subcircuit is carefully
selected, as explained in the previous paragraph. The number
of inputs and outputs of the main design is different for each
benchmark circuit. This number does not change when we secure
the main design. Only if we use an external LFSR to produce
chromosomes, an extra signal will be added to the main design
according to the length of each chromosome. Securing the design
means replacing one or more subcircuits by a VRC, which has
the same number of functional inputs and outputs as the original
subcircuit. Each VRC also has an extra control signal that comes
from the Genetic Unit to reconfigure the PEs. The genetic unit is
controlled by an enable signal and a clock input, which comes
from the on-board or on-chip system clock with a fixed period.
Based on the latency and the idle time of the main design, the
genetic unit will be enabled periodically or at random instances
in time. Whenever the process is activated, an internal Linear
Feedback Shift Register (LFSR) produces a chromosome based on
a random seed at the start of each clock cycle. The produced
chromosome is evaluated, i.e., the VRC is reconfigured, the output
values of the VRC are compared to the required values, and the
fitness of the chromosome is calculated. The fitness function is
based on a truth table that reflects the required functionality of
the subcircuit implemented by the VRC. The truth table is stored
in an embedded memory on the FPGA that is assumed to be HTH-
free. The reason why the truth table is not used as a functional
unit in the main design is that it is much slower than the logic
implemented in the VRC. An optimal chromosome corresponds
to a configuration of the VRC that adheres to the required truth
table. Eqs. (1) and (2) show the fitness function that we use for
evolving the VRC. F (x) is the output of the truth table when the

input is equal to x, and S(x) is the output of the VRC when the
input is equal to x. x is the number of different possible inputs in
the intended truth table. For example, if the truth table has three
inputs, x ranges from 0 to 7.

G(x) =
{
1 S(x) == F (x)
0 S(x)! = F (x).

(1)

Fitness =
2(number of inputs in truth table)

−1∑
x=0

G(x). (2)

The VRC reconfiguration consists of reconfiguring the func-
tionality of the processing elements (PEs) and the programmable
switches. Fig. 4 shows, for example, four PEs in a VRC. The number
of PEs is chosen based on the application. If the circuit is complex
and/or large, the EA module will not converge with a small num-
ber of PEs, so a large number must be selected. But for small and
simple circuits, a small amount of PEs suffice. We start designing
the circuit using the smallest size 2 ∗ 2, and then if it does
not converge, we gradually move towards larger VRCs until the
system converges to the desired output. It is important to notice
that the evaluation of chromosomes is done according to the
current situation of the unsecured section. If any HTH is inserted
in the circuit, the evaluation is done in spite of the presence of
HTHs, and the system will repair itself in the existence of HTHs.
We use both CGP and GP to implement our solution and compare
both methods.

In the method presented in Fig. 4, we depict CGP operation.
One Linear Feedback Shift Register (LFSR) produces the initial
population in each run. After producing four children by mutation
from the parent, the evaluation on the VRC is done. In this phase,
four chromosomes are evaluated according to a truth table that
corresponds to the expected behavior of the circuit. For each
input combination, the outputs of the candidate individual are
evaluated and compared with the originally required outputs, as
described in the truth table of the digital function to be imple-
mented. Bitwise comparison is done in this case, incrementing
the fitness value with each output line match. This is accumulated
over all possible input combinations. In our case, the selected
function has three inputs, which produce eight different outputs,
so the maximum fitness is equal to eight.

In the last module in Fig. 4, we select the chromosome with
the highest fitness value. All the other individuals are discarded.
If the fitness function with the value 8 is acquired by the best
chromosome, the algorithm finishes, and the VRC keeps its cur-
rent configuration. Otherwise, the algorithm must continue with
the mutation mechanism to produce four new children from
the parent. Table 1 contains the fixed parameters for imple-
menting and comparing the GP and CGP structures. We use a
‘‘3-tournament’’ selection mechanism for GP (where the worst
from the 3 randomly selected individuals is eliminated) and (1+
4) evolution for CGP (where the offspring are favored over parent
when they have a fitness better than or equal to the fitness of
the parent). Other parameters for CGP and GP are presented later
as we investigate various configurations. Finally, we use node
replacement mutation and subtree crossover.

Note, for reducing the hardware overhead, the number of
chromosomes in the population must be small. A larger popula-
tion size consumes more FPGA resources for saving and process-
ing the chromosomes. The maximum number of generations for
each population is 50. This number is determined by exploration
through simulation: optimal chromosomes are calculated before
the 50th generation. If, after 50 generations from the initial pop-
ulation, the optimum individual is not found, the new population
is produced randomly, and again 50 generations will be produced.
The termination condition is finding an optimal individual or
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Fig. 4. Proposed structure for protection of FPGA against HTHs.

Table 1
Fixed parameters for the CGP and GP approach.
Parameters CGP GP

Selection mechanism 1+ λ = 1+ 4 3-tournament
Population size 1+ 4 5
Max generations 50 50
Termination condition 500 500

reaching the 500th run for producing a new population. For
synthesis, we neglect the overhead of the LFSR for producing
random chromosomes. Note that the LFSR can also be replaced by
a Pseudo Random Number Generator (PRNG) or a True Random
Number Generator (TRNG). Each PE in the VRC has two inputs
and one output. The function set is AND, OR, NAND, NOR, NOT,
BUFFER (i.e., pass-through), XOR, and XNOR.

An important feature of the proposed protection method is
that the system will not fail or denial service after the detection
of an HTH. It can repair itself and stay alive. This is in contrast to
the work in [47] that presents an FPGA solution that shuts down
the system when an HTH is detected.

The structure of each chromosome depends on the number of
PEs in the VRC. In the following section, the proposed scheme is
described in more details, and simulation results are given.

5. Evaluation results

This section describes the details of the proposed scheme
in this paper through the implementation of four benchmark
circuits. The first one is Mem-ctrl, a memory controller from the
IWLS benchmark [48] because a desirable place for an attacker
to insert an HTH is at the control input of a memory. On this
benchmark circuit, we perform an investigation on the use of
CGP and GP for HTH protection. We also evaluate the resource
occupation and the power consumption of three other benchmark
circuits: AES-core, an encryption core, AC97-ctrl, an audio codec
controller, and Ethernet, an Ethernet communication core.

5.1. The Mem-ctrl benchmark circuit and the expected behavior of
the HTH protection mechanism

The behavioral code for the Mem-ctrl benchmark circuit is
shown in Fig. 5a. The corresponding truth table that is evaluated
by the genetic unit is represented in Table 2. After activating the
enable signal in Fig. 4, the genetic unit reconfigures the VRC until

Fig. 5. Behavioral code to activate the ‘‘rmw-en’’ signal (a), and different chro-
mosomes implemented on the VRC that generate the correct output behavior
(b, c, and d).

a correct output for ‘‘rmw-en’’ is observed for all input values.
Examples of three chromosomes that function exactly like the
behavioral code in Fig. 5a and the truth table in Table 2 are
presented in Figs. 5b, 5c, and 5d. As the output of the truth table
in Table 2 does not depend on ‘‘wb-cyc-i’’, a simplified form that
omits the ‘‘wb-cyc-i’’ input is used in Figs. 5b, 5c and 5d. For
different truth tables, all inputs might be used.

Examples of circuits that are infected by an HTH and corrected
through VRC reconfiguration are shown in Figs. 6 and 7. Fig. 6b
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Table 2
Truth table that produces ‘‘rmw-en’’ based on ‘‘rst’’, ‘‘wb-ack-o’’, and ‘‘wb-cyc-i’’
in the Mem-ctrl benchmark.
Inputs Output

rst wb-ack-o wb-cyc-i rmw-en

0 0 0 0
0 0 1 Do not care
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

Fig. 6. (a) original circuit; (b) HTH inserted in the circuit; (c) EA-based
reconfiguration to correct the output.

shows an infected version of a circuit from Fig. 6a that forces
the output to be zero for inputs (‘‘rst’’, ‘‘wb-ack-o’’, ‘‘wb-cyc-i’’)
= (0, 1, 1) and (‘‘rs’’, ‘‘wb-ack-o’’, ‘‘wb-cyc-i’’) = (0, 1, 0). After
the execution of the EA and the reconfiguration of the VRC, the
functionality of the circuit is corrected, as shown in Fig. 6c. The
HTH in Fig. 6 affects the interconnection of the VRC, while the
HTH in Fig. 7 only modifies the functionality of a PE. Fig. 7b
shows an infected version of a circuit from Fig. 7a. The HTH forces
the output to be 1 for the inputs (‘‘rst’’, ‘‘wb-ack-o’’, ‘‘wb-cyc-
i’’) = (1, 1, 1) and (‘‘rst’’, ‘‘wb-ack-o’’, ‘‘wb-cyc-i’’) = (1, 1, 0).
The EA evolves the circuit to repair itself and make an attack
unsuccessful. Fig. 7c shows the repaired circuit.

5.2. CGP versus GP on the Mem-ctrl circuit

We evaluate both tree- and graph-based structures in different
dimensions with the parameters given in Table 1. The imple-
mentation results are generated using the Vivado 2018.2 EDA
tool (64-bit version) for the xc7vx485tffg1157-1 device, which

Fig. 7. (a) original circuit; (b) HTH inserted in the circuit; (c) EA-based
reconfiguration to correct the output.

is a Virtex-7 FPGA of Xilinx. It has 600 IOBs, 303600 LUTs, and
2800 DSPs. Four LUTs and eight flip-flops form a slice, and two
slices form a configurable logic block (CLB). We use Verilog as a
hardware description language for all the proposed designs.

Tables 3 and 4 show the implementation results for the Mem-
ctrl benchmark circuit based on the tree-based approach. Tables 5
and 6 show the results for the graph-based approach. In total,
eight strategies are evaluated, called Strat0 to Strat7. All strate-
gies have same number of inputs, ni = 3, and outputs, n0 = 1.
The depth of the tree structure in the GP approach is varied
from #levels = 2 to 4 in Table 3. Although the logic circuit is
assumed to be organized in a two-dimensional array of cells, most
configurations do not use at least some of the cells. The dimension
of the array is equal to #levels = nr = nc for each GP strategy
in Table 3. In the CGP approach based on a graph structure in
Table 5, the number of feedback levels is varied from #fb = 1 to 4
and the dimension is varied between nr ∗ nc = 2 ∗ 2 and 4 ∗ 4.
Both Tables 3 and 5 indicate the length of the chromosome (len)
and when the first optimal chromosome is found among all 500
populations (#pop) and 50 generations (#gen). The number of
PEs used by the first found optimal chromosome is indicated as
well (#PE). The resource consumption of the applied strategies on
FPGA, expressed in number of Look-Up Tables (LUTs), is indicated
in both tables in the #LUT column. The #opt parameter indi-
cates the total number of configuration options that are possible
through the applied strategy.

Tables 4 and 6 compare three different parameters for the
node replacement mutation operator that is applied 2 or 3 times,
respectively. The first parameter in the tables is the calculated
mutation rate (mutrate), which is equal to the percentage of bits
that are mutated in the chromosome. The second parameter in
the tables is the average fitness value (avgfit) of all produced
chromosomes, which is below 8. The success rate (sucrate) in-
dicates the percentage of all optimal chromosomes with fitness
value equal to 8 after 500 runs.

In Strat0 to Strat2, the output of the VRC can only be con-
nected to the last PEs. Each PE can get its inputs from each PEs in
the previous columns. These three strategies have a tree structure
of which the depth is indicated by #levels, and the number of
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Table 3
Explored parameters for the implementation of Mem-ctrl based on a tree structure.
GP ni no #levels len First optimal chrom #LUT #opt

#pop #gen #PE

Strat0 3 1 2 28 5 27 3 126 83

Strat1 3 1 3 65 11 49 5 313 84

Strat2 3 1 4 114 24 5 7 2548 815

Table 4
Effect of the mutation rate on the effectiveness of the Mem-ctrl benchmark
circuit based on a tree structure.
GP 2-node replacement mutation 3-node replacement mutation

mutrate avgfit sucrate mutrate avgfit sucrate

Strat0 7.1 6.5 4 10.7 7 5.2
Strat1 3 6.9 8.6 4.6 7 8.8
Strat2 1.7 6.9 9.2 2.6 7.06 13

levels back is zero. The VRC of Strat0 is shown in Fig. 8. It consists
of a tree structure with three PEs. The component generates the
‘‘rmw-en’’ signal, one of the memory control signals, based on
three inputs: ‘‘Rst’’, ‘‘Wb-ack-o’’, and ‘‘Wb-cyc-i’’. Each PE has two
inputs and one output. In addition to three inputs/outputs for
each PE, three bits are necessary to define the functionality (i.e.,
to select one of the eight functions listed in Section 4) for the
VRC to adhere to the truth table of the desired circuit. Moreover,
two configuration bits are needed for each input to determine the
connectivity. This leads to seven configuration bits for each PE. As
a result, for 4 PEs, the length of the chromosome is equal to 28
bits.

In Strat3 to Strat7, the output of the VRC can be connected to
each of the PEs in all rows and columns. In these strategies, the
PEs can get their inputs from other PEs on their left side or from
the primary inputs based on the number of levels back (#fb). In
Strat4 and Strat7, which have full feedback, each PE can get its
inputs from all PEs on its left side or primary inputs. In Strat5,
each PE can get its input from the PEs in the first column on its
left or from the primary inputs. In Strat6, each PE can get its input
from the PEs in the first and second column on its left or from the
primary inputs.

These different strategies result in a different level of security.
Enabling more variety will cause a higher level of security, but
will come at the cost of a higher energy and resource consump-
tion. According to the evaluated results, Strat0 is the best solution
with respect to FPGA resource consumption. However, in terms of
effectiveness, it is not the best solution, since it can generate only
83 different VRC configurations, which limits the HTH recovery
capabilities of the circuit. Strat5 offers the best trade-off with 816

possible VRC configurations, but a high FPGA resource consump-
tion of 4016 LUTs is not desirable. Moreover, increasing resource
consumption also increases the dynamic power consumption of
the chip. The implementation results of both Strat0 and Strat5
are shown in Table 7. In general, the implementation results of
the explored strategies show that increasing dimensions of the
VRC, improve the success rate and the average fitness value.
Larger dimensions also lead to larger chromosome length, which

Table 6
Effect of the mutation rate on the effectiveness of the Mem-ctrl benchmark
circuit based on a graph structure.
GP 2-node replacement mutation 3-node replacement mutation

mutrate avgfit sucrate mutrate avgfit sucrate

Strat3 5.7 5 0.6 8.5 5.5 0.8
Strat4 1.9 6.4 1.2 2.9 6.7 4
Strat5 1.3 6.5 2.6 2 6.8 5.2
Strat6 1.1 6.7 3.4 1.7 6.8 4.6
Strat7 1.1 6.7 3.4 1.7 6.8 5.2

results in a higher number of LUTs. Moreover, an increased muta-
tion rate leads to a higher success rate and average fitness value.
The comparison between GP and CGP shows that the VRC circuits
implemented with CGP have a higher success rate and average
fitness value at the expense of a larger number of LUTs.

To show the added value of the GP and CGP approach over
a method that randomly searches the solution space, we per-
formed a random search for both the tree and the graph struc-
ture. Because the tree structure is simple and the outputs are
independent of each other, it was possible to find optimal so-
lutions through a random search, but it took more clock cycles
in comparison to the GP approach. For the graph structure, the
random search did not find any optimal solution after searching
30000 options. Therefore, we conclude that GP and CGP are more
efficient and effective for the considered use case.

5.3. Attack analysis

The proposed VRC structure can protect against HTH insertion
by changing the circuit to a new configuration that is found
at run-time through the use of EAs. The approach prevents the
propagation of the effect of an HTH by repairing the circuit at
fixed time intervals or whenever the subcircuit is idle. Since the
proposed method evaluates the functionality of new configura-
tions on the fly and directly on the configurable hardware, any
malfunctioning due to HTH insertion will be repaired. That means
that we protect against:

• HTHs inserted during FPGA fabrication: this type of HTH
introduces a permanent change in the FPGA fabric. Nev-
ertheless, the introduced ‘‘error’’ will only have an effect
on the functional behavior of the protected subcircuit for a
subset of possible configurations. Our proposed technique
will dynamically find the configurations that lead to the
correct functionality, canceling out the effect of the HTH.
This means that the permanent HTH will still be there in the
FPGA fabric, but the effect of the HTH will not be noticed.

Table 5
Explored parameters for the implementation of Mem-ctrl based on a graph structure.
CGP ni no nr ∗ nc #fb len First optimal chrom #LUT #opt

#pop #gen #PE

Strat3 3 1 2*2 2 35 2 32 3 141 84

Strat4 3 1 3*3 3 103 34 26 2 459 89

Strat5 3 1 4*4 1 148 3 9 4 4016 816

Strat6 3 1 4*4 2 175 2 16 5 5582 816

Strat7 3 1 4*4 4 175 3 36 6 5900 816
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Fig. 8. Schematic of the tree structure used to implement the Mem-ctrl benchmark.

Table 7
FPGA resource occupation of the four implemented benchmark circuits based on Strat0 and Strat5.
Bench- Resource occupation Power consumption
marks (LUTs + FFs) (static + dynamic)

Without With EA With EA Without With EA With EA
EA (strat0) (strat5) EA (strat0) (strat5)

Mem-ctrl 1041 + 990 1167 + 990 5057 + 990 0.2 + 0.03 0.2 + 0.04 0.2 + 0.09
AES-core 627 + 406 753 + 406 4643 + 406 0.2 + 0.11 0.2 + 0.14 0.2 + 0.23
AC97-ctrl 939 + 1032 1065 + 1032 4955 + 1032 0.2 + 0.02 0.2 + 0.05 0.2 + 0.07
Ethernet 1949 + 2348 2075 + 2348 5965 + 2348 0.2 + 0.03 0.2 + 0.06 0.2 + 0.08

• HTHs inserted in the EDA flow (during synthesis and place-
ment & routing, or during bitstream generation): this type
of HTH results in a modified bitstream that ends up in the
configuration memory. Because we dynamically reconfigure
the content of the configuration memory, we make the HTH
disappear after reconfiguration.

The shortcomings of our approach can be summarized as
follows:

• Since we only repair the circuit periodically, an attacker
can aim at temporarily inserting malicious functionality into
the FPGA during the interval in which no repairing is done.
Nevertheless, we suggest to always reconfigure in the idle
time of the circuit, such that we only leave time for an
attacker to insert an HTH while the circuit is active. But
reconfiguring the circuit while it is active is not possible,
leaving almost no possibility for an attacker to leave the
insertion of HTHs undetected.
• The subcircuits that are replaced by VRCs are relatively

small, which leaves room for an attacker to focus on the
other parts of the FPGA. Nevertheless, the VRCs are well-
positioned in places where HTHs are most likely to be in-
serted, i.e. at points with low testability or high time slack,
or in components that process sensitive data, like crypto-
graphic cores. This way, we maximize the effectiveness of
our approach.
• We rely on a golden reference to evaluate the functionality

of the VRC configuration. An attacker can undermine the
security of the proposed system by tampering with the
golden reference. Nevertheless, we assume that the golden
reference is, e.g., stored in an embedded memory block.
The likeliness that a memory block contains well-chosen
malicious functionality is very low. Thus, it is reasonable
to assume that the memory is free from HTHs. The added
value of implementing the required functionality in the
configurable logic of the FPGA over just implementing it in
embedded memory is the lower latency that can be achieved
with FPGA logic; it takes one or more cycles to read/write
from/to embedded memory.

5.4. Resource and power consumption

Table 7 shows the FPGA resources and the power consumption
of the design without the proposed protection mechanism and
with the proposed protection mechanism, including the Genetic
Unit. The timing constraint used for all the examples is a clock
period of 10 ns. One of the control signals in the Mem-ctrl code
is driven by a VRC. The other implemented IWLS benchmarks
are also shown in Table 7. In the considered sample codes, one
of the full adders is implemented by two different VRCs, one
following Strat0 and another one following Strat5. It must also
be noticed that we can use one EA module for securing different
subcircuits with the same truth table. They can be reconfigured
simultaneously without any additional hardware overhead.

We are using the same number of PEs for all benchmarks.
During reconfiguration, the functionality of the PEs (different
logic gates or a simple pass-through) and the connections be-
tween the layers are changed, but the overhead with respect to
resource occupation is the same for all benchmarks: 126 LUTs for
Strat0 and 4016 LUTs for Strat5. As indicated in Table 7, the EA,
which consists of the Genetic Unit and the VRC, only uses LUTs.
The Genetic Unit, excluding the LFSR, is a combinational circuit,
without any clock input. The VRC is a combinational circuit as
well because we use it to replace a combinational subcircuit
in the main design, not a sequential one. In fact, we secure a
combinational part of the main design. As a result, the EA does not
consume any Flip-Flops. The implementation results in Table 7
shows that the smallest VRC structure (Strat0) that converges
to the predefined truth table is the best choice in terms of low
resources and low dynamic power consumption while offering an
acceptable level of security as indicated in Table 3.

The operating frequency for producing random chromosomes
is 83 MHz and is determined by the critical path of the EA
module, which is a combinational circuit when Strat0 is used. The
hardware overhead of our proposed method by using Strat0 is
significantly lower than the overhead in work presented in [23],
which also secures a portion of the circuits, just like our mecha-
nism. The results reported in [23] lead to an increase of factor 5,
while our work shows an increase in hardware overhead of less
than 50%. The overall power overhead in [23] is doubled, while
the power overhead of our method shows an increase of less
than 50%. Note that we did not take into account the hardware
overhead of the LFSR for the generation of the chromosomes.
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6. Conclusions

In this paper, we propose a new protection mechanism against
Hardware Trojan Horse (HTH) insertion. The proposed method is
based on a Virtual Reconfigurable Circuit (VRC), implemented on
a Field-Programmable Gate Array (FPGA). The VRC is reconfigured
with an on-chip genetic unit that implements an Evolutionary
Algorithm (EA). The VRC is implemented in selected parts of
the FPGA that are susceptible to HTH insertion. Through peri-
odic reconfiguration into valid alternative configurations, the VRC
automatically recovers from HTH insertion. As this is the first
work proposing the use of VRCs for HTH protection, we explore
a tree-based approach (GP) as well as a graph-based approach
(CGP) with different parameter sets. We evaluate the imple-
mentation results of four representative benchmark circuits and
conclude that our approach offers a valid solution for effective
HTH protection with an acceptable overhead in FPGA resource
occupation.
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