
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Dynamic Watercolour
Painting on 3D Surfaces
Master Thesis
Medard Szilvasy

Dynamic
Watercolour Painting

on 3D Surfaces
by

Medard Szilvasy

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Tuesday 14 October at 14:00.

Student number: 5267455
Project duration: 18 December 2024 – 14 October 2025
Thesis committee: Dr. R. Marroquim TU Delft, supervisor

Prof. dr. P. C. Garcia TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

We propose a new method for simulating and rendering watery paint, which provides artists with a tool
to produce watercolour-like textures on 3D models. Our particle-based system replicates most effects
and techniques associated with watercolour, interactively and intuitively, as it is based on a physical
fluid simulation. We show how our system can be applied to 3D surfaces by accurately compensating
for distortions in the surface parametrisation.

i

Contents

Abstract i

1 Introduction 1
1.1 Concepts of Watercolour . 1
1.2 Contributions . 2

2 Related Work 4
2.1 Digital Watercolour . 4

2.1.1 Cell-Based . 4
2.1.2 Particle-Based . 4

2.2 Discontinuity Mapping . 5
2.3 Procedural Textures . 5

3 Discontinuity Mapping 6
3.1 Painting . 6
3.2 Discontinuity Map Construction . 7
3.3 Handling Stroke Boundaries . 8

4 Pigment Model 9
4.1 Sampling . 10
4.2 Simulation . 11

4.2.1 Density . 11
4.2.2 Forces . 11
4.2.3 Motion . 12

4.3 Rendering . 12

5 Implementation 14
5.1 Mesh Setup . 14
5.2 Linked Lists on the GPU . 14
5.3 Data Structures . 15
5.4 Limitations . 16

6 Results 17
6.1 Experiments . 17
6.2 Interpretation . 20
6.3 Comparison with Polygonal Watercolour . 20

7 Conclusion 23
7.1 Future Work . 23

References 24

ii

1
Introduction

Digital tools allow artists to apply the same skills from traditional art forms to entirely new kinds of
media, while also imitating the familiar experiences of drawing and painting on canvas or paper. 3D
graphics are an obvious example, bringing new forms of artistic expression in modelling, texturing, and
animation.

Texturing, for example, bears many similarities to real-world painting, but it also requires artists to
familiarise themselves with material parameters and properties. A common approach is to map a 2D
image onto the surface of a 3D object using a texture map. Software designed for texture editing allows
the user to paint “what you see is what you get” textures directly on a preview of the 3D model [6], and
not have to concern themselves about the structure of the texture map.

One could also paint a texture in 2D painting software and apply that to the mesh, but this approach
has a shortcoming: the scale and orientation of the faces of the mesh can vary, and projecting a 2D
image with details or patterns produced with a flat surface in mind, generally leads to those patterns
appearing distorted in the 3D render. Any tool that replicates a complex brush or generates procedural
details for the purpose of texturing, must therefore also warp those details to match the surface the
texture is meant for.

Performing simulation in texture space adds another layer of complexity, as the elements of the
simulation should move and interact with one another in a way that conforms to the geometry of the
surface, and not its (effectively arbitrary) parametrisation. 3D simulation can work for 3D effects – acting
in model space rather than parameter space. But if we specifically want to emulate a medium which is
functionally 2D, such as watercolour paint, then we should have a 2D simulation which correctly warps
scales and distances.

In this work, we introduce a watercolour simulation well-suited for 3D texturing. Watercolour is an art
form normally associated with painting on a flat piece of paper. Hence, it should preserve all of its 2D
characteristics during the simulation. Many existing approaches to watercolour are cell-based using a
grid [3, 15], and can be expected to face caveats, causing watercolour effects and features which look
normal on a flat plane to appear distorted on a surface, as the projection warps the grid. Our approach
is instead particle-based, and performs rendering and simulation in a way that not only conforms to the
surface being painted but also allows rendering at arbitrary levels of magnification. Figure 1.1 shows an
example painting in our particle-based system.

DiVerdi et al. also proposed a “particle-based” watercolour simulation method [4]. We compare our
method with theirs and how they differ in representing watercolour effects.

1.1. Concepts of Watercolour
We now give a brief introduction to some of the most important characteristics and effects of real-world
watercolours that we seek to reproduce. We describe further characteristics and how we achieve them
in Section 6.3.

1

1.2. Contributions 2

Figure 1.1: Top: watercolour painting on a 3D model; Bottom: a zoomed-in view on the lower part of the scene. We show the
actual render on the left, while the right column shows the individual particles of paint drawn as circles. Notice the mixing of

pigments where the different strokes intersect.

Edge darkening
Darkened edges are a typical characteristic of wet-on-dry watercolour painting, where pigments
accumulate around the edges of a brush stroke as it dries.

Rewetting
The addition of water to a pigment which has not yet fully been absorbed by the paper can cause it to be
advected by the water away from its initial location. An artist may add water around the edges of a
brush stroke to spread the pigment out, giving it a feathered appearance.

Backruns
A backrun, or a bloom, is caused when a new drop of water spreads on a drying region of paint, desorbing
some of the pigment from the paper and carrying it as it spreads [3]. This is often unintentional, and it is
hard to quantify the exact effect that we expect to see, but in real-world watercolours, one can generally
observe complex, branching patterns where the pigment gets deposited.

Glazing
Colour glazing involves adding a thin, pale layer of paint after the previous layers have already dried.
This is used to tint areas of a painting without causing the paint to mix together.

1.2. Contributions
Our method treats the water and pigment application separately, as their artistic uses differ. Wetted
parts of the model are handled by polygonal hulls, while pigments are treated as particles representing
packets of pigment and water. Handling both parts concurrently makes up the main contributions of
this thesis.

When water is applied to a 3D surface, we construct a polygonal hull in the texture space and store it in
a way similar to silhouette maps [13] and vector texture maps [12]. A main characteristic of our method

1.2. Contributions 3

is that it allows an arbitrary amount of overlapping strokes and discontinuities.

In the watercolour simulation, the hull is analogous to the part of the surface made wet by adding water,
and is also used as the boundary for sampling pigment particles.

We also present a particle-based model for the appearance and motion of pigments suspended in water.
Our aim is not about accurately modelling all of the physical properties of watercolour paint. It is rather
about capturing the workflow, dynamic properties, and pleasing aesthetics associated with the medium.
We model pigments as fluid particles in a Smoothed Particle Hydrodynamics (SPH) system [7, 10] and
demonstrate emergent effects including edge darkening, feathering, and backruns.

Further, by using a Lagrangian (particle-based) pigment model, all associated transformations can be
warped to revert any distortions caused by the surface parametrisation. The resulting texture both
conforms to the surface’s geometry and can be magnified in great detail. Such properties are much
harder to achieve with an Eulerian (cell-based or similar) fluid model.

The remainder of this report is structured as follows. Chapter 2 discusses previous work on watercolour
models and texture mapping. We discuss the aforementioned discontinuity mapping algorithm and
pigment model in Chapters 3 and 4, respectively. Chapter 5 gives implementation details, and Chapter 6
experimental results and comparisons. Finally, we conclude our contributions and findings in Chapter 7.

2
Related Work

2.1. Digital Watercolour
There have been numerous efforts to faithfully reproduce the texture and dynamics of real watercolours
in digital painting. We consider two broad approaches to watercolour simulation: the cell-based
approach and the particle-based approach. Our method falls into the second category but, in this
chapter, we discuss some representative examples of either approach.

2.1.1. Cell-Based
Cell-based watercolour simulation uses a cellular automaton to model the flow of water and subsequent
pigment advection. Early work by Curtis et al. [3] (Figure 2.1) demonstrated impressive, realistic
watercolour effects using a simulation of shallow water and pigment absorption in paper represented by
a grid, although (on contemporary hardware) it was not truly a real-time simulation. Subsequent work
by Van Laerhoven et al. [15] achieved interactive frame-rates by solving for time implicitly rather than
explicitly, and also demonstrated oriental black ink and gouache paint styles by varying the parameters
of the physical simulation.

It is unclear how a 2D cell-based paint simulation could be adapted to textures in a way that the flow of
fluid conforms to the surface instead of the underlying grid.

2.1.2. Particle-Based
DiVerdi et al. created a procedural watercolour engine based on small, polygonal splats of pigment
and an underlying “wet map” which constrains their motion [4]. Splat particles may take complex
shapes as each vertex is subjected to an advection algorithm independently. On a zoomed-out scale, the
underlying vector representation becomes unnoticeable, but the variedness of the particles produces
rich watercolour-like textures. Watercolour effects are achieved by adding water to the wet map and
using pre-designed brushes that affect different parameters of the advection algorithm.

Our method is also particle-based, but instead of polygonal pigment particles with moving vertices,

Figure 2.1: Computational watercolour effects presented in the seminal work of Curtis et al. [3]

4

2.2. Discontinuity Mapping 5

our particles represent packets of pigment and water within a Lagrangian fluid model. We opt for
this representation because by using a physically based fluid simulation, we can observe watercolour
effects as an intuitive product of flow processes that exist in the real world. We give a more detailed
comparison of our method to DiVerdi et al. in Section 6.3.

2.2. Discontinuity Mapping
Texture maps are widely supported in graphics applications and effectively model local changes in
material properties. They are also raster-based and have to be filtered to render at an acceptable quality
when magnified. To prevent a typical bilinear filter from blurring intentional discontinuities in the
texture, Sen [13] stores boundary information between adjacent texels, producing a hard edge at all
resolutions where a boundary is present and applying a bilinear filter elsewhere. Similar work includes
contributions by Ray et al. [12] to map discontinuities represented by cubic curves onto a texture map,
drawing complex vector graphics on 3D surfaces.

2.3. Procedural Textures
Key contributions in procedural texturing include Perlin’s inaugural work on solid textures [11], where
a 3D texture is evaluated on the surface points of an object, and procedural surface noise [8], which
projects directly onto the surface. Both methods produce undistorted infinite-resolution textures, and
they do not even require a parametrisation. Our work also produces procedural, noise-like textures on a
surface, but we also provide a simulation to give the artist dynamic control.

3
Discontinuity Mapping

The first stage of our method is to demarcate the outline of the user’s brushstrokes. The next stage
(Chapter 4) relies on this mapping to sample particles and set their boundaries. The resulting hull can
also be rendered directly by performing a texture look-up within the map. Unlike traditional textures,
this map is resolution-independent and maintains the hard edges of the hulls at all levels of zoom.

This follows a previous line of work on discontinuity mapping, the main difference being that our
method allows arbitrarily many hulls and discontinuities to exist in the same area.

3.1. Painting
The user draws a stroke which is first rasterised, and then has its outline extracted using marching
squares [9]. This is followed by a smoothing step where we resample the vertices of the outline by
traversal: starting at an arbitrary location, and placing new vertices at uniform arc length increments.

The brush appears circular on the 3D surface but needs to be warped to maintain its form when
processed in UV space, as shown in Figures 3.1. The process which we use is illustrated in Figure 3.2:
the outer ellipsoid on the right is a circle in UV space, but it has to be reduced to a smaller ellipse in
order to appear circular on the surface (left). Essentially, we want the geodesic length of the orange line
to be the desired radius of the circle.

To do this, we trace the direction of the geodesic in UV space, starting with a desired length, and scale
the remaining length of the line according to the size of the triangle face it is on. If the scaled line crosses
a boundary into a different triangle, then the part of the line which is inside of the other triangle should

Figure 3.1: Left: different brush strokes with the same width on a UV sphere. Right: the corresponding strokes in parameter
space.

6

3.2. Discontinuity Map Construction 7

Figure 3.2: A circular brush must be warped in UV space (right) to remain circular on the 3D surface (left): to do this, we scale the
radius of the initial circle (blue line) to the desired length (orange line) by traversing the triangle mesh.

Figure 3.3: Left: a stroke that might be rendered within our system, showing all vertices and their normals. Right: a close-up of a
particular line segment. The cell centred at A is at the overlap between two segments, while B is only inside one. C is internal to

the stroke but not near the boundary, and D is external without any incident line segments.

be scaled to that triangle face instead. This process is repeated iteratively until we find the end point of
the line – it is greatly accelerated by maintaining a data structure with adjacency information between
triangles.

Generally, this algorithm only has to traverse a small number of triangles before it reaches the end of a
geodesic: in Figure 3.2, only the triangle we filled-in needs to be traversed.

3.2. Discontinuity Map Construction
The discontinuity map is a grid in which each cell stores information about what hulls are close to it.
For each hull, it stores any of the edges that a point in the cell should be compared against to see if it is
inside the hull or not. We also want to compute the shortest distance from a point to its closest hull
outline – which requires us to store edges in more than just the cells that they intersect, but also in any
other cells that are close enough to be taken into consideration.

When constructing the map, we draw edges as buffered line segments (see Figure 3.3, right) to include
all cells in their neighbourhoods when rasterised.

We give more detail about the system of linked-lists that we used to implement arbitrarily large buckets
per cell in Section 5.2.

3.3. Handling Stroke Boundaries 8

Figure 3.4: An example of an ambiguity that can happen at the intersection of two line segments, where the marked cell (top-left)
is covered by the buffer of one line segment (blue) but not the other (red). The area highlighted in yellow should not be checked
against the left segment, because it is on the other side of the dividing line, but it cannot be checked against the right segment

either.

3.3. Handling Stroke Boundaries
For the simple case when there is only one line segment incident on a cell, as is the case for the cell at B
in Figure 3.3, it is easy to determine if a point is inside the respective stroke. We compute the cross
product of the point and the line segment and determine whether it is inside based on the sign of the
result, and the distance to the boundary based on its magnitude.

We have to be careful when treating multiple incident line segments from the same stroke, however. We
always consider the segment that has the shortest distance to the point being evaluated, and update it
whenever another segment from the same stroke with a shorter distance is found. To prevent adjacent
line segments with a shared vertex (such as cell A in Figure 3.3) from intruding on one another, we use
the vertex normal as a dividing line, so that only the line segment on one side of the normal is evaluated
for a given point.

There is an important edge case that needs consideration, pictured in Figure 3.4. Here, the centre of
the cell in the top-left is covered by the buffer of the line segment on the left (blue outline), but not the
buffer of the right line segment (red). Using the aforementioned rasterisation process, this cell would
not be “aware” of the stroke on the right, but part of the cell is to the right of the normal dividing line
between the two segments. When we want to determine which side of the boundary a point is on – in
an area such as this one (marked in yellow) – we check it against the tangent to the vertex: the point is
exterior if it is above the tangent, and interior if it is below it.

The process we just described can be used to find every hull that a given UV coordinate falls inside of.
In the next chapter, we will describe the pigment model, which makes use of the discontinuity map for
its sampling and boundary conditions. The hulls can also be drawn on their own (as in Figure 3.1), in
which case the discontinuity map is accessed by the fragment shader similarly to performing a texture
lookup.

4
Pigment Model

Our goal is to procedurally reproduce watercolour characteristics with an approximate simulation of
pigment advection in water. The wetted parts of a model in our simulation are represented by vectorised
hulls, as described in the previous chapter. For the pigments, we adapt the SPH-based approach to fluid
simulation described by Müller et al. [10].

Our approach is to model parcels of pigment as particles of fluid, with boundary conditions set by
the hull, so that pigments gradually diffuse down the concentration gradient where water is present.
By using an appropriate sampling method and carefully tuning the parameters of the simulation, the
paint produces varied, cloudy textures from variations in pigment density. Watercolour effects emerge
naturally from the simulation, reproducing characteristics such as darkened edges and feathering
(Figure 4.1).

These particles act as a metaphor for water as much as they do for the pigments suspended in them. For
instance, the backrun in Figures 4.3 and 4.4 was induced by adding transparent particles in the area, as
though more water was being added to the canvas, but without pigment.

We will first describe our method of sampling particles (Section 4.1), then introduce the fluid model
(Section 4.2), and finally describe how we composite and render the results in real-time (Section 4.3).

Figure 4.1: Some strokes made with our algorithm demonstrating different paint effects. From left to right: the first stroke was
added to a dry surface and left untouched as it dried. The second has a feathered edge where extra water was added. The third
stroke features an intentional bloom effect. Finally, the rightmost stroke was drawn on a wet surface to demonstrate wet-on-wet

painting.

9

4.1. Sampling 10

Figure 4.2: Appropriate and inappropriate samples of points on a sphere which is heavily distorted at its equator. The line on the
left is oversampled above the equator and undersampled around it, while the line on the right is sampled correctly according to

the surface geometry.

4.1. Sampling
When the user draws a stroke, and after the hull is vectorised and mapped, we sample a uniform random
distribution of points inside its boundary. We invoke a shader program on each cell of the discontinuity
map to generate new points using rejection sampling.

Here, we have to take care if we want a sample that conforms to the surface, and not to the parametrisation.
Figure 4.2 shows how, if we naïvely try to sample the same density of points across the grid, then faces
with a higher relative size in parameter space will have a higher density of points on the surface itself
than those of a smaller scale.

We analyse each triangle in a cell separately, establishing a bounding box around the part of it that is
inside the bounds of the cell. The surface area of the bounding box is 𝐴uv in parameter space and 𝐴surf
in 3D. Let 𝐶uv be the area of the cell in parameter space. Then the mean number of points inside a
bounding box is

𝜆 = 𝜆uv
𝐴surf
𝐴uv

· 𝐴uv
𝐶uv

(4.1)

for a common 𝜆uv, but since all grid cells have the same size, we use

𝜆 = 𝜆ref𝐴surf (4.2)

where the user chooses 𝜆ref before drawing the stroke. We draw 𝑘 samples from the Poisson PMF with
mean 𝜆 to determine the number of points in each box.

𝑃(𝑘) = 𝜆𝑘 𝑒−𝜆

𝑘! (4.3)

These points may still be rejected if they fall outside of the triangle. This finally gives us a distribution
that is uniform over the surface.

4.2. Simulation 11

4.2. Simulation
We apply a simulation in four stages similar to Harada et al. [7]. The first stage is to generate buckets of
nearby particles, which we elaborate on more in Section 5.2. The properties of the particles are updated
in the next three stages: we first compute the density of particles around a pigment, then we apply the
forces from nearby particles and update its momentum, and finally we move it to its new position.

We use the same kernels and formulae to compute density and forces as Müller et al. [10], except that we
do not include a mass. A pigment particle instead has a wetness parameter 𝑤𝑖 , which decreases with
time and forces it to slow as it dries. The velocity of a particle is

v𝑖 = 𝑤𝑖p𝑖 (4.4)

where p𝑖 is its momentum.

4.2.1. Density
The density of pigment at location r is given by

𝜌(r) =
∑
𝑗

𝑤 𝑗𝑊(|r − r𝑗|, ℎ) (4.5)

where we apply the following weight kernel on all nearby particles.

𝑊poly6(𝑟, ℎ) =
315

64𝜋ℎ9 (ℎ
2 − 𝑟2)3 (4.6)

Where 𝑟 is the distance of the point from the centre and ℎ is the radius of the kernel. Note that we have
to scale these distances to match the surface distortion, using the same method mentioned in Section 3.1.

4.2.2. Forces
Nearby particles may repel one another, forcing a fluid to spread to where its density is lower. This is
modelled by a local pressure

𝑃𝑖 = 𝑘𝜌𝑖 (4.7)

where 𝑘 is constant. Then the force applied on a particle by all others with which it interacts is:

Fpress
𝑖

= −
∑
𝑗

𝑤 𝑗

𝑃𝑖 + 𝑃𝑗

2𝜌 𝑗
∇𝑊spiky(r𝑖 − r𝑗 , ℎ) (4.8)

using

∇𝑊spiky(r, ℎ) =
45
𝜋ℎ6 (ℎ − |r|)3 r

|r| (4.9)

By having a carefully tuned viscosity force, we preserve random details such as clusters of particles that
formed during sampling.

Fvisc
𝑖 =

∑
𝑗

𝑤 𝑗

v𝑗 − v𝑖

𝜌 𝑗
∇2𝑊visc(r𝑖 − r𝑗 , ℎ) (4.10)

∇2𝑊visc(r, ℎ) =
45
𝜋ℎ6 (ℎ − |r|) (4.11)

4.3. Rendering 12

Figure 4.3: Dried paint rendered using a disc-shaped kernel with sharp edges (left) and the smooth 𝑊poly6 density kernel (right).
Note the single black particle drawn with the kernel in the bottom-right corner of either image. All particles have the same size,

but the disc appears to produce details at various scales.

This helps prevent such features from diffusing completely.

We additionally apply a friction force if (and only if) a pigment falls outside of all hull boundaries; it is
on a dry surface, so it rapidly comes to a stop.

Ffrict
𝑖 = −𝜇𝜌p𝑖 (4.12)

4.2.3. Motion
Once all forces have been applied, the change in momentum is

𝑑p𝑖

𝑑𝑡
=

F𝑖

𝜌𝑖
(4.13)

And we apply Equation 4.4 to find the velocity. Before we update the particle’s position, we must also
scale the displacement according to the parametric distortion using the same method we described
previously.

4.3. Rendering
Arguably, the most faithful way to render pigments is to use the same 𝑊poly6 kernel (Equation 4.6) for
the local intensity as is already the direct metaphor for local pigment density in the fluid simulation.
However, there is an entirely different kernel we can use for rendering to enhance the texture of the
paint at no extra cost.

In his work on Spot Noise [16], van Wĳk noted how the convolution of a Poisson point process and
a simple, disc-shaped noise kernel with sharp edges could produce noise with a cloudy texture and
fractal detail. We also use a Poisson point process in our method to sample initial pigment locations.
Although the simulation affects this distribution, it still remains mostly unstructured. Therefore, our
model also benefits from using this kernel, as seen in Figure 4.3.

4.3. Rendering 13

Figure 4.4: A close-up of the upper part of Figure 4.3 with pigment particles explicitly drawn as coloured circles. The white
points on the right-hand side of the image were added after the blue stroke and made completely transparent, but they influence

the flow of the paint nonetheless.

These properties are strongly desired. We expect to see fractal detail stemming from turbulent flow in
the water, which occurs at all scales, but our fluid model only deals with particles that are relatively
large compared to the scale at which they are rendered. Previous work [2], tracing back to Perlin’s
turbulence textures [11], achieves the same effect by compositing several successive octaves of noise. To
attempt something similar, we would have to sample and simulate pigments at multiple scales, with
an exponentially growing sample size as we add more octaves. Eventually, it would render real-time
simulation prohibitively expensive. Our alternative rendering approach imitates what we would expect
to see in a more fine-grained model, even though the resulting detail does not come from the simulation.

Regardless of the choice of kernel, particles are composited by accumulating the intensity of nearby
kernels and averaging their colours weighted by intensity. Because this operation is order-independent
(as are the other simulation steps), the buckets used to track nearby particles do not have to be sorted.

5
Implementation

We created an interactive application using C++ and OpenGL 4.6 for painting, rendering, and simulating
watercolour on the GPU, using the methods described in this thesis. In this chapter, we present the
details of the implementation, and in Chapter 6 we will give an overview of its performance.

Figure 5.1 shows our application in use. The user may set the size, density and color of pigments, as
well as several properties of the particles in the fluid simulation: the coefficients of pressure and friction,
the viscosity, and the drying rate. It is also possible to change the diffuse colour and specular properties
of the paint hull.

The program provides some debug views, which were used to make many of the images in this report.
These include toggles for explicitly drawing pigment particles (as seen in Figure 4.4), drawing hull
outlines and vertices, or highlighting which pigments are in the kernel range of the cursor. The user can
also switch between the default 3D view and a 2D view showing the unpacked texture as it exists in
parameter space.

5.1. Mesh Setup
The program can load a triangular mesh with a pre-existing parametrisation given by per-vertex UV
coordinates. The UV map is subject to certain limitations under which our technique is well-defined.

We make the (reasonable) assumption that the mapping is invertible with no overlaps, such that any
point on the two-dimensional UV map can be traced back to a single location on the surface of the
model. We require this for distortion compensation, as we cannot conform a transformation to the
surface if multiple different faces of it share the same UV coordinates.

We also do not handle distortion compensation in degenerate triangles, where barycentric coordinates
are undefined.

After the mesh is loaded, it is normalised, and we construct a grid of linked lists for quick triangle
lookup in parameter space. We also store adjacency information for each triangle by saving the index of
the neighbour at each of its edges. As we mentioned before, this helps speed up processes where we
trace a line in parameter space and apply scaling from every triangle it crosses – a common operation in
distortion compensation.

5.2. Linked Lists on the GPU
Several stages in our method demand quick look-ups of all nearby elements of a type around a location:
to determine which surface triangle covers a UV position, to discern the outline of a paint hull, or to
apply a kernel on all particles surrounding a spot. The number of elements is arbitrary.

Modern graphics APIs, including OpenGL 4.6, provide atomic memory operations that are useful for
constructing a linked list, or a grid of them with a shared buffer, entirely on the GPU [17]. List nodes are
placed in a buffer using an atomic counter to assign indices, and each node stores the index of the next

14

5.3. Data Structures 15

Figure 5.1: The painting application in use. The green paint was added first, followed by the teal paint with the same parameters.
A large stroke with no pigments (only the wet hull) was then added to make the teal paint diffuse, and the purple stroke was

added last – in the water – with a higher viscosity and faster drying to produce a wet-on-wet stroke that does not diffuse as much.
Not all pigments had dried when this screenshot was taken.

one in the list. A grid only has to store the head of each list, and we can construct a map that lists all
elements incident at a grid cell, with the only limit being the size of the shared node buffer.

5.3. Data Structures
We now give a brief summary of how we set up the data structures related to the paint model. The
memory usage of our method can be quite substantial, so we will justify how this configuration helps
reduce the memory load. We provide more detailed metrics of memory usage in Chapter 6.

Table 5.1 shows the types related to the model and how they are structured. The types with Node in
their names are linked-list nodes (Section 5.2). Pointer attributes are shown with an arrow followed by
the type that they point to. Here, a “pointer” is simply an index to the element being pointed to in the
related buffer. Each type has its own buffer.

The most numerous instances in a typical session are the linked list nodes – a single hull, line segment,
or pigment, usually has multiple nodes pointing to it from all grid cells in its area. For example, there
may be hundreds of thousands of populated cells in the grid of PigmentNode lists, each of them tens
of nodes in length to keep track of all pigments inside or close to the cell. To keep memory usage
reasonable, the size of a linked list node is therefore the bare minimum needed to point to the element(s)
it pertains to and to the next node in the list.

Individual Pigment and HullVertex instances are much less numerous in comparison to the list nodes
that refer to them. They store the properties related to that element in the paint model. A Pigment also
points to the Triangle it is inside, which is information that is reused between simulation stages.

The entry point for discontinuity mapping is the HullNode, which points to a Stroke instance storing
the optical properties of that hull, as set by the user. The Stroke type is also used for properties that are
common to all pigments added in the same stroke, including their colour and simulation parameters.
A new Stroke instance is only created when the user draws a stroke, so the size of its buffer is truly
negligible. A HullNode can also point to the head of a LineNode list, which stores nearby line segments
on the edge of the hull (see Chapter 3).

5.4. Limitations 16

Stroke (112 bytes)
Hull properties...
Pigment properties...

Triangle
Vertex positions...
Vertex UVs...
Adjacent Triangles...

Pigment (40 bytes)
stroke_id → Stroke
triangle_id → Triangle
pos
force
momentum
density
wetness

PigmentNode (8 bytes)
pigment_id → Pigment
next → PigmentNode

HullVertex (16 bytes)
pos
normal

LineNode (12 bytes)
next → LineNode
i0 → HullVertex
i1 → HullVertex

HullNode (12 bytes)
stroke_id → Stroke
next → HullNode
line → LineNode

Table 5.1: Most of the structs used in our paint model. Pointers (which are just buffer indices) are shown with an arrow, followed
by the type being referenced. We give the size of each struct under OpenGL’s std430 layout rules in bytes.

5.4. Limitations
There are certain limitations in our implementation that we believe are not too complex to overcome,
but were outside the scope of this work.

Dried particles, whose wetness has reached 0, should no longer be included in the simulation – they
do not have an effect on nearby pigments, and their positions do not need to be updated or redrawn.
Once a pigment has dried, it could safely be drawn to a dried pigment grid, which is only involved in
rendering but not simulation. We have not implemented this, but it would significantly bring down the
runtime of the program while working on complex scenes.

Similarly, we do not delete water hulls at any point, which makes wetted parts of the model remain wet
indefinitely. Ideally, the hulls would also dry over time using a timing set by the user.

We also do not allow brush strokes or particles to cross seams, where the UV mapping is not continuous.
However, including adjacency information along seams could allow the user to draw over them without
restriction.

6
Results

We conducted some experiments to evaluate the performance of our implementation. The main metrics
we tested were the speed of the individual simulation and rendering stages, and the time-memory
trade-off associated with the pigment model.

All tests were run on a laptop with Radeon 780M integrated graphics on an AMD Ryzen 7 8840U CPU.
Rendering was on a viewport 2560 pixels by 1494 pixels in size.

6.1. Experiments
We created a series of simple scenes, each with approximately double the complexity of the previous,
and timed the durations of those stages of the model that run once per frame. This includes the three
stages of the fluid simulation described in Chapter 4, the creation of buckets (linked lists as described in
Section 5.2) for looking up nearby pigments, and rendering the paint and the surface in 3D. Results are
listed in Table 6.1 and plotted in Figure 6.3.

The scenes used, as seen in Figure 6.2, were set up by drawing each spot of paint with the same
parameters. Pressure and viscosity coefficients were set to 4e−10, the friction coefficient to 1, and the
drying rate to 0, to ensure that all of the pigments remained in motion as the test continued. The
simulation was left to run for a minimum of 2 minutes each time a new set of spots was added, to allow
the new pigments to have time to diffuse.

Scene Pigment SPH Buckets Render TotalCount Density Force Motion
1 2,028 0.73 0.75 0.02 2.04 4.33 7.87
2 4,117 1.35 1.37 0.03 3.7 5.24 11.69
3 8,208 1.58 1.48 0.04 3.74 5.03 11.87
4 16,382 2.41 2.24 0.06 5.73 5.7 16.14
5 32,406 4.32 4.62 0.14 10.76 8.26 28.1

Table 6.1: Duration (in milliseconds) of each simulation and rendering step on the scenes in Figure 6.2. All times are averaged
over 100 frames.

We noticed that bucket generation is often the slowest task. As previously mentioned, buckets are part
of a uniform grid of pointers to the head of each list – having a denser grid will bring a proportionally
higher memory usage, but we also expect it to improve the speed of kernel lookups, shortening the
runtime of the fluid simulation and rendering.

To test this theory, we rendered the scenes in Figure 6.1 with 5 different dimensions of the bucket grid;
the previous experiment involved a 1024 × 1024 grid. The results (Table 6.2) suggest that 1024 × 1024 to
2048 × 2048 are good choices of grid size for these models, with modest-to-low memory demands for
storing the pointer grid and all of the PigmentNodes.

17

6.1. Experiments 18

Figure 6.1: Some models which have been partially painted using our implementation, with unwrapped views of the underlying
textures.

6.1. Experiments 19

Figure 6.2: Scenes 1-5 (from left to right) used for evaluating the performance of our application. The images show the state of the
scene when screenshots were taken of the program’s metrics. The top row shows the view that was rendered, and the bottom row

shows the texture map for each.

4,000 8,000 16,000 32,000
0

5

10

15

20

25

Pigment Count

Ti
m

e
[m

s]

SPH
Bucket Creation

Rendering
Total

Figure 6.3: Runtime of each simulation/rendering step during the experiment shown in Figure 6.2. Apart from one outlier, we
observe a linear relation between the number of pigments and simulation time, while rendering time is affected less by increasing

complexity.

6.2. Interpretation 20

Teapot (15,704 triangles; 29,651 pigments)

Grid Node Memory Cost SPH Buckets Render TotalDimensions Count Nodes Grid Density Force Motion
256x256 239,780 1.9MB 2.1MB 24.68 24.74 0.04 14.43 28.75 92.64
512x512 460,223 3.7MB 8.4MB 11.7 11.82 0.04 12.71 15.63 51.9
1024x1024 1,118,362 8.9MB 33.6MB 8.09 8.17 0.04 12.15 11.57 40.02
2048x2048 3,298,436 26.4MB 134MB 7.37 7.41 0.04 12.11 11.44 38.37
4096x4096 11,115,935 88.9MB 537MB 9.63 9.62 0.04 14.24 14.97 48.5

Bunny (65,630 triangles; 81,467 pigments)

Grid Node Memory Cost SPH Buckets Render TotalDimensions Count Nodes Grid Density Force Motion
256x256 1,495,627 12.0MB 2.1MB 110.55 104.08 0.12 88.34 90.67 393.76
512x512 3,035,853 24.3MB 8.4MB 49.03 47.98 0.13 74.03 43.34 214.51
1024x1024 7,773,177 62.2MB 33.6MB 29.9 30.53 0.12 62.25 28.59 151.39
2048x2048 23,837,803 191MB 134MB 23.94 24.62 0.12 59.93 25.8 134.41
4096x4096 82,316,167 659MB 537MB 30.62 30.41 0.12 68.8 41.16 171.11

Dragon (19,332 triangles; 197,915 pigments)

Grid Node Memory Cost SPH Buckets Render TotalDimensions Count Nodes Grid Density Force Motion
256x256 2,097,991 16.8MB 2.1MB 104.32 99.13 0.31 115.53 63.15 382.44
512x512 4,347,896 34.8MB 8.4MB 49.28 48.53 0.32 99.91 34.02 232.06
1024x1024 11,237,701 89.9MB 33.6MB 34.53 35.12 0.32 91.33 25.54 186.84
2048x2048 34,620,697 277MB 134MB 31.74 33.56 0.33 96.29 26.81 188.73
4096x4096 119,824,351 959MB 537MB 33.48 36.21 0.34 104.49 39.33 213.85

Table 6.2: Comparison of memory usage and runtime while performing the full simulation on the models in Figure 6.1. Times are
given in milliseconds. We tested different sizes for the pigment bucket grid; these are shown in the first column.

6.2. Interpretation
The simulation times in Table 6.2 may seem concerningly high, but as mentioned in Section 5.4, this is a
result of all particles being involved in the simulation; even those which have dried. This shows the
need to remove dried particles from the simulation, as these are not interactive frame rates. Regardless,
the rendering time is low and lends itself to real-time rendering of complex textures once the simulation
is stopped.

The experiment shown in Figures 6.2 and 6.3 is indicative of simulation times in a scenario where only a
(comparatively) small number of pigments are simulated at once, which is what we would expect during
the typical workflow in a more complete program. We observe interactive simulation and rendering
times scaling linearly with the complexity of the simulation.

6.3. Comparison with Polygonal Watercolour
Our method is suitable for painting on a flat 2D plane just like any existing system. We previously
mentioned that cell-based watercolour algorithms may not be suitable for texturing. On the other hand,
a different particle-based model, such as that introduced by Diverdi et al. [4] (which we hereby refer to
as “Polygonal Watercolour”), may also be adaptable to painting on 3D surfaces. For this, we would
suggest applying our discontinuity mapping method from Chapter 3 to draw the polygons.

Given these similarities, we now give a comparison of this method to our own (Figure 6.4) and describe
how they produce certain effects.

6.3. Comparison with Polygonal Watercolour 21

a b

c
d e f

Figure 6.4: Similar effects produced with our algorithm (left) and an implementation of [4] (right).

Effect Fig 6.4 DiVerdi et al. Ours
Edge Darkening a Pre-defined wet-on-dry brush Consequence of the simulation

Rewetting b Discretised wet map Polygonal hulls
Wet-on-Wet c Intuitive Intuitive
Backruns d Limited New fluid brings increased pressure

Colour Blending e Overlapping strokes rewetted Same, but particles also interact
Glazing f Front-to-back compositing Limited

Granulation - Paper texture Random particle clustering

Table 6.3: Both our method and [4] reproduce similar watercolour characteristics, but the way these behaviours emerge in the two
systems are different. This table gives a brief overview of the differences.

Edge darkening
In real-world watercolours, darkened edges are observed as a result of evaporation occurring faster
around the boundary of a pool of water and getting replenished by water from the inside of the pool,
which carries more pigment, causing it to concentrate around the edges of the stroke.

Our method does not explicitly model this process, as there is no evaporation or surface tension in our
fluid model. Edge darkening instead occurs because the outside of a stroke has a lower fluid density
than the inside, forcing particles outwards. The added friction force when a particle goes outside of the
stroke boundary means they do not go too far, causing a few layers of pigment to accumulate around
these edges.

In contrast, edge darkening does not occur as a result of physical simulation in the Polygonal Watercolour
system. DiVerdi et al. instead describe a wet-on-dry brush specifically designed to produce this effect by
placing splats with an outwards motion bias from the centre of the brush, so that these splats accumulate
around the edges of the stroke. This method does have the advantage of producing thinner and more
explicit outlines than ours. While the effect is more subtle in our system, it does not require conscious
brush choices from the artist and instead occurs on all wet-on-dry strokes, closer to how it does in reality.

Rewetting
Vectorised polygonal hulls, which represent wetted parts of paper, are an important element of our
simulation. They are essentially the container for pigment particles, and adding more of them to a
stroke will give the particles more room to diffuse.

The Polygonal Watercolour counterpart to this is actually a rasterised “wet map”: despite the pigments
being vector-based, water is represented by a map with fixed resolution. It could be possible to use our
approach instead. However, their wet map also stores a water velocity component, which would have to
be adapted to be compatible with a vectorised wet map.

Wet-on-Wet
Both our system and Polygonal Watercolour can faithfully reproduce wet-on-wet painting, where the
paper is wetted in advance of adding the paint. DiVerdi et al. also describe a special brush which
intentionally places a larger pool of wetness around a pair of concentric inner splats, which allows the
user to produce a feathered stroke without wetting the paper in advance.

6.3. Comparison with Polygonal Watercolour 22

We find that this style of painting benefits from a shorter drying time in our simulation. Using a long
drying time, which we find necessary for pleasant-looking wet-on-dry strokes, could cause wet-on-wet
strokes to diffuse too much.

Backruns
With our particle-based model handling pigments and water as one, we found that we often observed
even accidental backruns in our simulation when mixing paint together. We could reproduce the effect
intentionally as well, by adding transparent particles to a stroke when it has almost dried. This acts
like water without (or with fewer) pigments, which forces other particles away by pressure. This is not
the same as rewetting the canvas by adding new hulls as mentioned above, since wetness and water
pressure are properties of the particles and not the hulls.

It is not clear the extent to which backruns occur in Polygonal Watercolour. DiVerdi et al. make brief
mention of it, but the effect appears much less profound in their examples than in our work. This does,
however, mean that unintentional blooms are unlikely to occur within their system.

Colour Blending
When two wet strokes of different colours overlap, we expect to see some mixing from the pigments of
either stroke being advected by the water in both. Our model additionally has the characteristic that the
particles from both strokes interact, forming unique textures at the intersection.

However, the way in which we mix colours in our model (averaging over RGB space), does not appear
to follow the patterns of real-world paint, and we believe it may be possible to achieve more realistic
results with physically-based compositing such as the Kubelka-Munk model [5]. The same could also
benefit Polygonal Watercolour.

Glazing
Because DiVerdi et al. use front-to-back compositing, the glazing effect can be achieved naturally in their
work.

This sort of order-preserving compositing is missing from our implementation, but it should also be
possible to implement front-to-back compositing within our method: we would have to differentiate
between pigments that should be blended together, and pigments that should be composited in order.
A user-friendly approach could be as simple as having multiple layers, or “washes”, which the user can
add, move, delete, or choose which one to paint on, just like in most common 2D image editing software.

Granulation
The unique texture of watercolour paint is largely due to the way in which pigment gets deposited
unevenly on paper. DiVerdi et al. mention using a rasterised paper texture to drive this effect, although
they do not use it in their iPad application, and we left it out of our implementation that was used for
Figure 6.4. The primary concern that was expressed with regard to the paper texture was that it could
not be represented in vector image format.

Our system does not use a paper texture, but we do observe patterns that are similar to granulation,
nonetheless. This occurs in part due to pigments forming random clusters during sampling and
simulation, and in part thanks to the complex details emerging from our choice of kernel, as mentioned
in Section 4.3.

7
Conclusion

We have developed a system for painting and manipulating watercolour textures on polygon meshes
in real-time. Our method is particle-based and has the benefits of infinite resolution rendering and
distortion compensation to conform to the geometry of the 3D surface.

Our solution comes in two parts. In the first (Chapter 3), we process user strokes in model space and
convert them into a polygonal representation in texture space. On its own, this already provides a useful
painting system where polygonal strokes can be rendered on the surface at any magnification.

The second part of our system (Chapter 4) is a pigment model. We use the discontinuity map from the
first part to represent the wetted parts of the surface and delimit the sampling area of pigment particles.
We apply a physically based fluid model to drive particle motion and observe similar effects to those
associated with real-world watercolour paint.

7.1. Future Work
Some further improvements would render the method more robust, such as a method for strokes and
particles to cross seams in the texture map, using a physically based model for pigment composition [5],
and ordering particles so that artists can reproduce the glazing effect.

We note that one of the shortcomings of our particle model is that all particles in the same brush
stroke have the same shape and size, which harms the fidelity of small-scale details – particularly
darkened edges, which are notably thicker in our model than in other models and in the real world.
Stam et al. [14] bring more detail out of fluid models by warping the particles, and DiVerdi et al. [4] use
polygonal particles with several independent vertices. Ideally, we could reach a compromise that allows
anisotropic particles shaped by physical simulation, without going so far as to model each vertex of the
particles separately.

We previously mentioned that cell-based paint models may not be suitable for this type of texture
generation due to their reliance on a square grid. However, future work could explore this possibility.
One possibility could be to represent the medium of the surface as a network of connected nodes instead
of a grid, with the density of these nodes being scaled to the geometry of the surface.

We would also like to explore the avenue of research in the context of non-photorealistic rendering.
This would involve drawing particles of paint in screen space rather than texture space, similar to some
other methods [1, 2], but with the benefit of the effects being deliberately produced by an artist using an
interactive approach, rather than being automatically generated from an existing texture. This would
come with the challenge of dynamically projecting features such as blending or darkened edges from
the surface onto the screen.

23

References

[1] Pierre Bénard et al. “A dynamic noise primitive for coherent stylization”. In: Computer Graphics
Forum. Vol. 29. 4. Wiley Online Library. 2010, pp. 1497–1506.

[2] Adrien Bousseau et al. “Interactive watercolor rendering with temporal coherence and abstraction”.
In: Proceedings of the 4th international symposium on Non-photorealistic animation and rendering. 2006,
pp. 141–149.

[3] Cassidy J Curtis et al. “Computer-generated watercolor”. In: Proceedings of the 24th annual conference
on Computer graphics and interactive techniques. 1997, pp. 421–430.

[4] Stephen DiVerdi et al. “Painting with polygons: A procedural watercolor engine”. In: IEEE
Transactions on Visualization and Computer Graphics 19.5 (2012), pp. 723–735.

[5] Chet S Haase and Gary W Meyer. “Modeling pigmented materials for realistic image synthesis”.
In: ACM Transactions on Graphics (TOG) 11.4 (1992), pp. 305–335.

[6] Pat Hanrahan and Paul Haeberli. “Direct WYSIWYG painting and texturing on 3D shapes”. In:
ACM SIGGRAPH computer graphics 24.4 (1990), pp. 215–223.

[7] Takahiro Harada, Seiichi Koshizuka, and Yoichiro Kawaguchi. “Smoothed particle hydrodynamics
on GPUs”. In: Computer Graphics International. Vol. 40. SBC Petropolis. 2007, pp. 63–70.

[8] Ares Lagae et al. “Procedural noise using sparse Gabor convolution”. In: ACM Transactions on
Graphics (TOG) 28.3 (2009), pp. 1–10.

[9] William E Lorensen and Harvey E Cline. “Marching cubes: A high resolution 3D surface
construction algorithm”. In: Seminal graphics: pioneering efforts that shaped the field. 1998, pp. 347–353.

[10] Matthias Müller, David Charypar, and Markus Gross. “Particle-based fluid simulation for
interactive applications”. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on
Computer animation. 2003, pp. 154–159.

[11] Ken Perlin. “An image synthesizer”. In: ACM Siggraph Computer Graphics 19.3 (1985), pp. 287–296.
[12] Nicolas Ray, Xavier Cavin, and Bruno Lévy. “Vector texture maps on the GPU”. In: Inst. ALICE

(Algorithms, Comput., Geometry Image Dept. INRIA Nancy Grand-Est/Loria), Tech. Rep. ALICE-TR-05-
003 (2005).

[13] Pradeep Sen. “Silhouette maps for improved texture magnification”. In: Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on Graphics hardware. 2004, pp. 65–73.

[14] Jos Stam and Eugene Fiume. “Depicting fire and other gaseous phenomena using diffusion
processes”. In: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques.
1995, pp. 129–136.

[15] Tom Van Laerhoven and Frank Van Reeth. “Real-time simulation of watery paint”. In: Computer
Animation and Virtual Worlds 16.3-4 (2005), pp. 429–439.

[16] Jarke J Van Wĳk. “Spot noise texture synthesis for data visualization”. In: Proceedings of the 18th
annual conference on Computer graphics and interactive techniques. 1991, pp. 309–318.

[17] Jason C Yang et al. “Real-time concurrent linked list construction on the GPU”. In: Computer
Graphics Forum. Vol. 29. 4. Wiley Online Library. 2010, pp. 1297–1304.

24

	Abstract
	Introduction
	Concepts of Watercolour
	Contributions

	Related Work
	Digital Watercolour
	Cell-Based
	Particle-Based

	Discontinuity Mapping
	Procedural Textures

	Discontinuity Mapping
	Painting
	Discontinuity Map Construction
	Handling Stroke Boundaries

	Pigment Model
	Sampling
	Simulation
	Density
	Forces
	Motion

	Rendering

	Implementation
	Mesh Setup
	Linked Lists on the GPU
	Data Structures
	Limitations

	Results
	Experiments
	Interpretation
	Comparison with Polygonal Watercolour

	Conclusion
	Future Work

	References

