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Frequently used Notation

u displacement of string

x place indicator

t time

T tension in string

k linear spring stiffness

k2 nonlinear spring stiffness

f(x) initial displacement of string

g(x) intital velocity of string

φ f(−t) + f(t) +
∫ t
−t g(s)ds

A(t) 2(f ′(t) + g(t))

û, f̂ , ĝ, φ̂, Â εu, εf , εg, εφ, εA, for ε > 0 small

MSP Multiple Scales Perturbations

RK4 Fourth Order Runge Kutta

φ̂a approximated φ̂ using MSP method

φ̂n approximated φ̂ using RK4 method
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Summary

In this thesis the nonlinear spring system is considered. This system contains a semi-infinite
string that is modelled by the wave equation with a pair of initial conditions and a nonlinear
boundary condition. The goal of this thesis is to find a good approximation to the solution of
this system. Furthermore we study the behaviour of the string by plotting the reflected waves.
In chapter 2 the nonlinear spring system is described more thoroughly. We also introduce
D’Alembert’s formula. This is a general solution to the wave equation with the corresponding
initial conditions, which is used throughout this thesis for intermediate calculations.
First the nonlinear term is neglected. This results in the linear spring system, which is studied in
chapter 3. Various levels of spring stiffness are considered for which the solution is derived using
D’Alembert’s formula. For a chosen set of initial conditions, the reflected waves are plotted and
studied.
In chapter 4 the nonlinear system is considered. D’Alembert’s formula is applied, which results
in a simpler differential equation.
To solve this equation, an analytical approach is taken using the Multiple Scales Perturbations
method (MSP) in chapter 5. For this method it is necessary to consider only small displacements.
This assumption again leads to a new differential equation. This is the differential equation which
is continued to use in the rest of this thesis.
The MSP method is applied to three different pairs of initial conditions. For these three examples
the approximations are plotted to study the reflected waves at multiple moments in time. A
proof for the accuracy of an approximation using the MSP method is given as well. This proof
holds for a small parameter value, but in practice we do not know what value is small enough.
The accuracy is to be estimated by comparing it to approximations of another method, which
is done in chapter 6
Here, the Fourth Order Runge Kutta method (RK4) is applied to the same three examples of
initial conditions as in the previous chapter. Since this method is not unconditionally stable, the
stability has to be checked for all plots. A few examples on how this is done are also discussed
in this chapter.
The findings of the two methods are compared to each other. By comparing this, we draw
conclusions on the accuracy of the approximations. The final conclusions are drawn in chapter
7.
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1 Introduction

1.1 Problem description

In this thesis we consider a vibrating string described by the well-known wave equation. This is
a second-order partial differential equation. We complement this equation with initial conditions
and boundary conditions. Sometimes this system of equations can be solved exactly, but there
are many other cases where this is impossible. Both cases will be considered in this thesis.
The boundary conditions to this equation will be nonlinear. It describes a spring that is attached
at the beginning of the string and has a nonlinear behaviour.
The goal of this thesis is to find accurate approximations of the solution of this system. We
use an analytical method and a numerical method. We check the accuracy of these methods by
comparing the approximations to each other.
Furthermore we will study the behaviour of the string for several initial conditions. We analyse
this by plotting the reflected waves.

1.2 Thesis structure

In chapter 2 the above mentioned system of equations will be explained more thoroughly.
Before we dive into the nonlinear system, we will start with a spring that behaves in a linear
way. In chapter 3 we find the exact solution of this linear system and analyse the reflected
waves.
In chapter 4 we move on to the nonlinear behaviour of the spring. Here we derive a new differ-
ential equation for the nonlinear system, which we will use in the rest of the thesis.
From this ordinary differential equation we want to approximate the solution. We will do this
with two different methods.
The first method is the Multiple Scales Perturbations method (MSP) in chapter 5. With this
method we will analytically find an approximation of the solution. We apply it to three different
pairs of initial conditions and study the reflections. At the end of the chapter a proof for the
accuracy of this method is given.
We will also use the Runge Kutta Fourth Order method (RK4) in chapter 6 to numerically
approximate the solution of the nonlinear system. We apply this method to the same pairs of
initial conditions and again study the reflections. We will compare the results from the RK4
method to the MSP method.
Finally, we draw conclusions in chapter 7 based on the obtained results.
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2 Equations of Motion

We consider a second-order partial differential equation known as the wave equation. This
equation describes the motion of a semi-infinite string, placed from x = 0 to infinity. u(x, t) is
the vertical displacement of the string, t is the time. To the wave equation we add a pair of
initial conditions and a boundary condition. This results in the following system:

utt − c2uxx = 0, 0 < x, t > 0,

u(x, 0) = f(x), ut(x, 0) = g(x), 0 < x,

Tux(0, t) = ku(0, t) + k2u
2(0, t), t ≥ 0.

where f(x) is a function that describes the initial displacement of the string, and g(x) describes
the initial velocity. Without loss of generality it is assumed throughout this thesis that the wave
speed is given by c2 = 1.
In this thesis we consider a nonlinear boundary condition. We attach a nonlinear spring to the
string at x = 0. We can remove the nonlinear behaviour by taking k2 = 0, which results in a
linear spring system with the spring constant k. T is a value for the tension in the spring. This
system is portrayed in figure 1.
Throughout this research we will make use of D’Alembert’s formula. This is a well-known
formula that describes the general solution of the wave equation with the corresponding initial
velocity and displacement. The expression for the displacement is

u(x, t) =
1

2
f(x+ t) +

1

2
f(x− t) +

1

2

∫ x+t

x−t
g(s)ds,

given the arguments of f and g are greater than zero.
Before we examine the wave reflections due to the nonlinear boundary conditions, we remove
the nonlinear term by taking k2 = 0 and look into the linear system.

Figure 1: The nonlinear spring system
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3 The Linear Spring System

3.1 Introduction

First we want to know how the string behaves when the attached spring acts linearly. This is
when k2 = 0. This linear system looks as follows:

utt − uxx = 0, 0 < x, t > 0,

u(x, 0) = f(x), ut(x, 0) = g(x), 0 < x,

Tux(0, t) = ku(0, t).

Now we distinguish 2 special cases before we solve the linear spring system.
The first is when we let k go to infinity. When we rewrite the boundary condition like this:

T

k
ux(0, t) = u(0, t),

we see that for k →∞ it follows that u(0, t)→ 0. We can interpret this as the string being fixed
at x = 0.
For the second case we take k = 0, which basically means that there is no spring attached. Now
we rewrite the boundary condition like this:

k

T
u(0, t) = ux(0, t).

When k = 0 it follows that ux(0, t) = 0. This means that at x = 0 the string moves freely in the
u-direction.

3.2 String fixed at x = 0

We consider the linear spring system with the string being fixed at x = 0:

utt − uxx = 0, 0 < x, t > 0,

u(x, 0) = f(x), ut(x, 0) = g(x), 0 < x,

u(0, t) = 0.

Now we are going to apply D’Alembert’s formula to the boundary condition u(0, t) = 0:

u(0, t) =
1

2
f(t) +

1

2
f(−t) +

1

2

∫ t

−t
g(s)ds = 0.

Remember that f and g are only defined for positive arguments. So we will look for an ex-
pression of f and g for which they are defined for negative arguments. Since f is the initial
displacement and g the initial velocity, f and g are independent functions. We determine g by
taking f = 0 ∀t and vice versa.

f = 0 :

∫ t

−t
g(s)ds = 0,

g = 0 : f(t) = −f(−t).

It follows that f and g are both odd functions. The solution to the problem is:

u(x, t) =

{
1
2f(x+ t) + 1

2f(x− t) + 1
2

∫ x+t
x−t g(s)ds x− t > 0,

1
2f(x+ t)− 1

2f(t− x) + 1
2

∫ x+t
t−x g(s)ds x− t < 0.
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3.3 String freely moving at x = 0

Now we consider the linear spring system which has a free movement in the u-direction:

utt − uxx = 0, 0 < x, t > 0,

u(x, 0) = f(x), ut(x, 0) = g(x), 0 < x,

ux(0, t) = 0.

Just like we did in the previous case, we apply D’Alembert’s formula to the boundary condition:

ux(0, t) =
1

2
f ′(t) +

1

2
f ′(−t) +

1

2
g(t)− 1

2
g(−t) = 0.

Again f and g are only defined for positive arguments. Considering f and g as independent
functions, we get:

f = 0 : g(t) = g(−t),
g = 0 : −f ′(t) = f ′(−t).

We integrate: ∫ t

0
−f ′(s)ds =

∫ t

0
f ′(−s)ds ⇐⇒ −f(t) + f(0) = −f(−t) + f(0),

⇐⇒ f(t) = f(−t).

We see that now f and g are both even functions. Hereby the solution to the problem is:

u(x, t) =

{
1
2f(x+ t) + 1

2f(x− t) + 1
2

∫ x+t
x−t g(s)ds x− t > 0,

1
2f(x+ t) + 1

2f(t− x) + 1
2

∫ x+t
0 g(s)ds+ 1

2

∫ t−x
0 g(s)ds x− t < 0.

3.4 Solving the linear spring system

We have seen that for k →∞ the linear system is described by odd functions, whereas for k = 0
it is described by even functions. Now we want to know what the solution looks like if we have
0 < k <∞.

utt − uxx = 0, 0 < x, t > 0,

u(x, 0) = f(x), ut(x, 0) = g(x), 0 < x,

Tux(0, t) = ku(0, t).

By substituting D’Alembert’s formula into the boundary condition, we get

T (
1

2
f ′(t) +

1

2
f ′(−t) +

1

2
g(t)− 1

2
g(−t)) = k(

1

2
f(t) +

1

2
f(−t) +

1

2

∫ t

−t
g(s)ds).

Again we make use of the independence of f and g for finding the general solution for negative
arguments.
First we take g = 0:

T (
1

2
f ′(t) +

1

2
f ′(−t)) = k(

1

2
f(t) +

1

2
f(−t)),

⇐⇒ f ′(−t)− k

T
f(−t) = −f ′(t) +

k

T
f(t).
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Define y(t) = f(−t).

y′(t) +
k

T
y(t) = f ′(t)− k

T
f(t).

This is a first order differential equation, where the right-hand side is a known function. We
solve this using the Integrating Factor method. The differential equation is of the form:

y′(t) + p(t)y(t) = q(t), with p(t) =
k

T
and q(t) = f ′(t)− k

T
f(t).

Then the following equation holds

d

dt
(µ(t)y(t)) = µ(t)q(t), (1)

where the integrating factor is given by:

µ(t) = e
∫ t
0 p(s)ds = e

k
T
t.

We integrate equation (1) on both sides:

µ(t)y(t)− µ(0)y(0) =

∫ t

0
µ(s)q(s)ds,

⇐⇒ y(t) = y(0)e−
k
T
t + e−

k
T
t

∫ t

0
e
k
T
sq(s)ds,

⇐⇒ f(−t) = f(0)e−
k
T
t + e−

k
T
t

∫ t

0
e
k
T
s(f ′(s)− k

T
f(s))ds.

We can split this into two integrals and apply integration by parts to obtain the expression for
f for negative arguments:

f(−t) = f(t)− 2
k

T
e−

k
T
t

∫ t

0
e
k
T
sf(s)ds.

We do the same for f = 0 to obtain the expression for g.

T (
1

2
g(t)− 1

2
g(−t)) = k(

1

2

∫ t

−t
g(s)ds),

⇐⇒ g′(−t)− k

T
g(−t) = −g′(t) +

k

T
g(t).

Again we substitute y(t) = g(−t) to get a first order differential equation:

y′(t) +
k

T
y(t) = g′(t)− k

T
g(t).

The right-hand side contains only known functions. We again solve this equation with the
Integrating Factor method and obtain the solution:

g(−t) = g(t)− 2
k

T
e−

k
T
t

∫ t

0
e
k
T
sg(s)ds.

Using the expressions we found for f(−t) and g(−t), we get the general solution to the problem:

u(x, t) =


1
2f(x+ t) + 1

2f(x− t) + 1
2

∫ x+t
x−t g(s)ds x− t > 0,

1
2f(x+ t) + 1

2f(t− x)− k
T e

k
T
(x−t) ∫ t−x

0 e
k
T
sf(s)ds+

1
2

∫ x+t
0 g(s)ds− 1

2

∫ t−x
0 g(s)ds+ e

k
T
(x−t) ∫ t−x

0 e
k
T
sg(s)ds x− t < 0.
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3.5 Visualizing the reflected waves

Until now we worked with arbitrary initial conditions. To get an idea of how a wave is reflected,
we choose functions for f(x) and g(x). When g(x) = f ′(x), the entire wave moves to the left,
so to x = 0. We take the following functions:

f(x) =


0 0 < x < 2π,

sin(x) 2π ≤ x ≤ 3π,

0 3π < x,

g(x) =


0 0 < x < 2π,

cos(x) 2π ≤ x ≤ 3π,

0 3π < x.

Figure 2a shows the initial wave on the positive x-axis and the reflected wave for k →∞ on the
negative x-axis. Earlier we found that for k →∞, f and g are extended as odd functions. This
is in line with the odd reflection of the wave in the plot.
In figure 2b the wave is reflected for the case k = 0. For this case f and g were extended as even
functions. We see this again in the even reflection of the wave. Figure 3 shows the reflected wave

(a) k → ∞ (b) k = 0

Figure 2: Reflected waves for cases k →∞ and k = 0

for the linear system for multiple values of k
T . For the tension in the string we take T = 8000,

and we take different levels of stiffness for the linear spring. k
T = 0 shows an even reflection.

This corresponds with the findings in the case k = 0. k
T = 5 describes a really stiff spring. This

reflection is close to matching the case k →∞, where the wave has an odd reflection. In figure
4a it is shown more clearly that indeed for a larger k the wave is reflected oddly.
In figure 3 we see that for k

T = 1
4 , the amplitude is smaller on both sides of the x-axis compared

to the initial wave. But when k
T = 1 the amplitude underneath the x-axis gets even bigger then

the amplitude of the initial wave. We look at figure 4b. Here we see that when k
T > 1

2 , the

amplitude remains big below the x-axis. But for values 0 < k
T < 1

2 , the absolute displacement
is smaller than the initial displacement.

3.6 Conclusions

In this chapter we studied the linear spring system. We expressed the displacement u(x, t) as
a combination of functions f and g. For the initial conditions we took a singular sine wave

13



Figure 3: Reflected waves for the linear system

(a) (b)

Figure 4: Reflected waves for the linear system

and studied the reflected waves. We found that for a large k
T , the wave had an odd reflection.

Whereas for k
T = 0 the wave is reflection evenly.
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4 The Nonlinear Spring System

4.1 Introduction

After analysing the linear spring system, we now allow the nonlinear term to play a part in the
system. The nonlinear system is described in the following manner:

utt − uxx = 0, 0 < x, t > 0,

u(x, 0) = f(x), ut(x, 0) = g(x), 0 < x,

Tux(0, t) = ku(0, t) + k2u
2(0, t).

We won’t be able to find an exact solution to this system, but we will be looking for an accu-
rate approximation of the solution. We will do this analytically by using the Multiple Scales
Perturbations method (MSP), and numerically by using the Fourth Order Runge Kutta method
(RK4). We will compare the approximations of both methods, so we can draw conclusions about
the accuracy.

4.2 Deriving the displacement function

We apply D’Alembert’s formula to the boundary conditions.

T (f ′(t) + f ′(−t) + g(t)− g(−t)) = k(f(t) + f(−t) +

∫ t

−t
g(s)ds)+

k2(
1

2
(f(t))2 + f(t)f(−t) +

1

2
(f(t))2 + f(t)

∫ t

−t
g(s)ds+ f(−t)

∫ t

−t
g(s)ds+

1

2
(

∫ t

−t
g(s)ds)2).

(2)

For simplification we define:

φ(t) = f(−t) + f(t) +

∫ t

−t
g(s)ds.

Then equation (2) can be rewritten to:

φ′(t) +
k

T
φ(t) +

k2
2T

φ2(t) = A(t), with A(t) = 2(f ′(t) + g(t)).

The left-hand side contains the unknown function φ, but the right-hand side is a known function.
Notice that this differential equation is still nonlinear. The goal is to find an approximation for
φ, which we call φ̂a (analytical) or φ̂n (numerical). We write this in the definition of φ:

φ̂a,n(t) ≈ f(t) +

∫ t

0
g(s)ds+ f(−t) +

∫ 0

−t
g(s)ds.

We can rewrite this to let the unknown functions be expressed in known functions:

f(−t) +

∫ 0

−t
g(s)ds ≈ φ̂a,n(t)− f(t)−

∫ t

0
g(s)ds.

The approximation for the displacement u(x, t) then is

u(x, t) ≈

{
1
2f(x+ t) + 1

2f(x− t) + 1
2

∫ x+t
x−t g(s)ds x− t > 0,

1
2f(x+ t) + 1

2

∫ x+t
0 g(s)ds+ 1

2(φ̂a,n(t− x)− f(t− x)−
∫ t−x
0 g(s)ds) x− t < 0.

(3)

Now that we have found an expression for the approximated displacement, it is time to find
φ̂a,n. In chapter 5 we will use the MSP method for the analytical approach and in chapter 6 the
RK4 method for the numerical approach.
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4.3 Conclusions

In this section we considered the nonlinear spring system. We defined the function φ(t) to
simplify the problem to a first order differential equation. From this we found an expression for
u(x, t) in functions of f , g and φ̂a,n.
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5 Analytical Approach using the MSP Method

5.1 Introduction to perturbation theory

From now on we consider only small displacements. We set u = εû for a small ε > 0 and as a
consequence φ = εφ̂, f = εf̂ , g = εĝ and A = εÂ. We obtain the new differential equation:

φ̂′(t) +
k

T
φ̂(t) + ε

k2
2T

φ̂2(t) = Â(t). (4)

Now the nonlinear term is just a small disturbance of order ε, so equation (4) is close to a
solvable equation. This type of a problem, we can address with perturbation theory.
With perturbation theory you will find an approximation that is a composition of the exact
solution of the solvable part and higher-order terms caused by the perturbed part. We do this
by writing φ̂(t) as the power series

φ̂ = φ̂(t) = φ̂0(t) + εφ̂1(t) + ε2φ̂2(t) + · · · .

The difference between φ̂0(t) and the exact solution to equation (4) should be of the order of
the next term, εφ̂1(t), so order ε. The difference between φ̂0(t) + εφ̂1(t) and the exact solution is
of order ε2, and so on. A problem occurs when for an arbitrary k, φk(t) is unbounded on a time
scale of t = O(1ε ). These so-called secular terms cause resonance in the system. The Multiple
Scales Perturbations method, (Murdock, 1999, pp. 227–238), is a method that can remove these
unwanted secular terms.

5.2 Introduction to the Multiple Scales Perturbations method

To prevent resonance on a time scale of t = O(1ε ), we use a two-scale expansion. We introduce
the variable τ = εt, which we treat independently from t. When t = O(1ε ), the τ is still of order

1. The approximation φ̂ will now be of the form:

φ̂ = φ̂(t, τ) = φ̂0(t, τ) + εφ̂1(t, τ) + ε2φ̂(t, τ) + · · · .

We will substitute this in the differential equation (4), where we will get a new equality for each
time scale. From this we could derive φ̂k(t, τ) for each O(εk). Here it becomes clear which are
the unwanted secular terms. The conditions to get rid of those terms can be solved and will
provide an approximation to the solution.
We will only be deriving φ̂0(t, τ), as this has an error of order ε when t = O(1ε ). This will
be shown in chapter 5.6.1. Note that this only holds for an ε that is small enough, since the
perturbation theory holds for ε → 0. In practice we don’t know which value of ε > 0 is small
enough for the wanted accuracy. We will find out by comparing the approximations to the results
from the RK4 method in chapter 6.3. If it turns out that φ̂0 is not a very good approximation,
one could add the term εφ̂1. The downside to this is that it brings along more calculations.

5.3 Solving the nonlinear spring system using the MSP method

We substitute φ̂(t, τ) in equation (4):

φ̂0t +
k

T
φ̂0 + (φ̂1t + φ̂0τ +

k

T
φ̂1 +

k2
2T

φ̂2)ε+ (φ̂2t + φ̂1τ +
k

T
φ̂2 +

k2
T
φ̂0φ̂1)ε

2 + · · · = Â(t).

From this we derive the following equations for each time scale:

O(1) φ̂0t +
k

T
φ̂0 = Â(t),

O(ε) φ̂1t +
k

T
φ̂1 = −φ̂0τ −

k2
2T

φ̂20,

O(ε2) φ̂2t +
k

T
φ̂2 = −φ̂1τ −

k2
T
φ̂0φ̂1.

· · ·

(5)
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We are only interested in the first two problems of equation (5). These are needed to construct
a φ̂0 that is bounded on a time scale of t = O(1ε ). Adding the next φ̂k’s to the approximation
will add a perturbation that is negligible small, assuming we choose an ε sufficiently small.
First we solve equation O(1):

φ̂0t +
k

T
φ̂0 = Â(t). (6)

This is a partial differential equation without a derivative to τ . This means we can treat it like
an ordinary differential equation. First we find the homogeneous solution:

φ̂0,hom(t, τ) = B0(τ)e−
k
T
t,

where B0(τ) is a function of τ .
To find the particular solution, we use the Variation of Constants method.

Assume B0(τ) depends not only on τ , but also on t. By filling φ̂0(t, τ) = B0(t, τ)e−
k
T
t in equation

(6), we get the solution:

φ̂0(t, τ) =B0(t, τ)e−
k
T
t,

=(B0(0, τ) +

∫ t

0
Â(s)e

k
T
sds)e−

k
T
t,

where B0(0, τ) is yet to be determined. For that we must use the equation O(ε):

φ̂1t +
k

T
φ̂1 = −φ̂0τ −

k2
2T

φ̂20. (7)

When we fill in φ̂0(t, τ) in this expression, it becomes clear which terms in the right-hand side
of equation (7) lead to unbounded terms in φ̂1 on a time scale of t = O(1ε ). We then choose

B0(0, τ) in such a way that φ̂1 will not go past its order for large t.

5.4 Removing secular terms

Here are three examples of initial conditions. In all examples it is shown how to remove the
secular terms and subsequently how the approximation is derived.

5.4.1 Example 1: string with constant speed

The string starts with zero displacement. It has an initial velocity of 1 at all x > 0. Therefore
the initial conditions are as follows:

u(x, 0) = f̂(x) = 0,

ut(x, 0) = ĝ(x) = 1.

This means
Â(t) = 2(f̂ ′(t) + ĝ(t)) = 2.

We derive φ̂0:

φ̂0(t, τ) = (B0(0, τ) +

∫ t

0
Â(s)e

k
T
sds)e−

k
T
t,

= (B0(0, τ)− 2
T

k
)e−

k
T
t + 2

T

k
,

= C(τ)e−
k
T
t + 2

T

k
with C(τ) = B0(0, τ)− 2

T

k
.
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We fill this in equation (7) to find out which terms cause resonance.

φ̂1t +
k

T
φ̂1 = −C ′(τ)e−

k
T
t − k2

2T
(C(τ)e−

k
T
t + 2

T

k
)2,

= (−C ′(τ)− 2k2
k
C(τ))e−

k
T
t − 2Tk2

k2
− k2

2T
C2(τ)e−

2k
T
t.

We want to choose C(τ) such that

−C ′(τ)− 2k2
k
C(τ) = 0,

or else φ̂1 will gain unbounded terms. The following C(τ) suffices:

C(τ) = C(0)e−
2k2
k
τ .

Then φ̂0 becomes

φ̂0(t, τ) = C(0)e−
2k2
k
τe−

k
T
t + 2

T

k
,

= −2
T

k
e−

2k2
k
τe−

k
T
t + 2

T

k
.

Note that we took C(0) = −2Tk so φ̂0(t = 0) = 0 holds. Then φ̂0 is continuous in zero.
The obtained approximation is:

φ̂a(t) = −2
T

k
e−

2k2
k
εte−

k
T
t + 2

T

k
.

5.4.2 Example 2: singular sine wave

We take the initial conditions as the ones we also used for the linear spring system:

û(x, 0) = f̂(x) =


0 0 < x < 2π,

sin(x) 2π ≤ x ≤ 3π,

0 3π < x,

ût(x, 0) = ĝ(x) =


0 0 < x < 2π,

cos(x) 2π ≤ x ≤ 3π,

0 3π < x.

Then

Â(t) = 2(f̂ ′(t) + ĝ(t)) =


0 0 < t < 2π,

4cos(t) 2π ≤ t ≤ 3π,

0 3π < t.

We derive φ̂0:

φ̂0(t, τ) = (B0(0, τ) +

∫ t

0
Â(s)e

k
T
sds)e−

k
T
t,

=


B0(0, τ)e−

k
T
t 0 < t < 2π,

(B0(0, τ)− 4kT
T 2+k2

e2
k
T
π)e−

k
T
t + 4T

T 2+k2
(T sin(t) + k cos(t)) 2π ≤ t ≤ 3π,

(B0(0, τ)− 4kT
T 2+k2

(e3
k
T
π + e2

k
T
π))e−

k
T
t 3π < t.
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For equation (7) we need φ̂0τ (t, τ) and φ̂20(t, τ):

φ̂0τ (t, τ) = B′0(0, τ)e−
k
T
t,

φ̂20(t, τ) =


B2

0(0, τ)e−
2k
T
t 0 < t < 2π,

(B0(0, τ)− 4kT
T 2+k2

e2
k
T
π)2e−

2k
T
t + ( 4T

T 2+k2
(T sin(t) + k cos(t)))2 2π ≤ t ≤ 3π,

(B0(0, τ)− 4kT
T 2+k2

(e3
k
T
π + e2

k
T
π))2e−

2k
T
t 3π < t.

We see that φ̂0τ is the only problematic part, which gives rise to unbounded terms in φ̂1.

If we take a constant for B0(0, τ), then B′0(0, τ)e−
k
T
t = 0 and φ̂1 will be bounded for t = O(1ε ).

We pick B0(0, τ) = 0 for the continuity of φ̂0 in zero. Now that we have removed the secular
terms, we obtain the approximation

φ̂a(t) =


0 0 < t < 2π,

− 4kT
T 2+k2

e2
k
T
πe−

k
T
t + 4T

T 2+k2
(T sin(t) + k cos(t)) 2π ≤ t ≤ 3π,

− 4kT
T 2+k2

(e3
k
T
π + e2

k
T
π)e−

k
T
t 3π < t.

5.4.3 Example 3: continuous sine wave

In this example we consider a string that is a continuously moving sine wave. This matches the
following initial conditions:

û(x, 0) = f̂(x) = sin(x),

ût(x, 0) = ĝ(x) = cos(x).

This means
A(t) = 2(f̂ ′(t) + ĝ(t)) = 4 cos(t).

We derive φ̂0

φ̂0(t, τ) = (B0(0, τ) +

∫ t

0
A(s)e

k
T
sds)e−

k
T
t,

= (B0(0, τ)− 4
4Tk

T 2 + k2
)e−

k
T
t + 4

T (T sin(t) + k cos(t))

T 2 + k2
.

Substitute this in equation (7):

φ̂1t +
k

T
φ̂1 =−B′0(0, τ)e−

k
T
t − k2

2T
[(B0(0, τ)− 4

4Tk

T 2 + k2
)2e−2

k
T
t

+ 8
T (T sin(t) + k cos(t))

T 2 + k2
(B0(0, τ)− 4Tk

T 2 + k2
)e−

k
T
t + 16(

T (T sin(t) + k cos(t))

T 2 + k2
)2].

Just as in the previous example, B′0(0, τ) has to be zero, or else φ̂1 has a term that goes past its
order for t = O(1ε ). And again for continuity of φ̂0 we choose B0(0, τ) = 0.
We obtain the approximation

φ̂a(t) = − 4Tk

T 2 + k2
e−

k
T
t + 4

T (T sin(t) + k cos(t))

T 2 + k2
.

5.5 Visualising the reflected waves

We have found approximations of the solution using the Multiple Scales Perturbations method
for three different examples. The next step is to visualize them and see how the wave is reflected.
From equation (3) we deduce the approximated displacement:

û(x, t) =

{
1
2 f̂(x+ t) + 1

2 f̂(x− t) + 1
2

∫ x+t
x−t ĝ(s)ds x− t > 0,

1
2 f̂(x+ t) + 1

2

∫ x+t
0 ĝ(s)ds+ 1

2(φ̂a(t− x)− f̂(t− x)−
∫ t−x
0 ĝ(s)ds) x− t < 0.
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5.5.1 Example 1: string with constant speed

For equation (3) we need:

φ̂a(t− x) = −2
T

k
e−

2k2
k
ε(t−x)e−

k
T
(t−x) + 2

T

k
.

We will consider two different values of ε : 0.01 and 0.1. For each ε, three values of k
T are plotted.

k2 = 4000 and T = 8000 are fixed.
First we consider ε = 0.01 in figure 5. The string starts at x = 0 ∀x > 0 and moves up as a
whole with a constant speed. Even though the string will continue to move upwards, the spring
will try to hold it down. In figure 5a this is shown for t = 8. At t = 16 in figure 5b the string
has moved even further up, but the spring still holds it in place at x = 0. A really stiff spring,
k
T = 5, will keep the string down at almost a zero displacement. Whereas a softer spring, k

T = 1
4 ,

keeps the string a little bit higher, at u = 4.
For ε = 0.1 in figure 6 the same is happening, except for one difference. The string bounces up
before it is pulled down.

(a) t = 8 (b) t = 16

Figure 5: Example 1: reflected waves for ε = 0.01

(a) t = 8 (b) t = 16

Figure 6: Example 1: reflected waves for ε = 0.1
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5.5.2 Example 2: singular sine wave

In this example we have:

φ̂a(t− x) =


0 0 < t− x < 2π,

− 4kT
T 2+k2

e2
k
T
πe

k
T
(x−t) + 4T

T 2+k2
(T sin(t− x) + k cos(t− x)) 2π ≤ t− x ≤ 3π,

− 4kT
T 2+k2

(e3
k
T
π + e2

k
T
π)e

k
T
(x−t) 3π < t− x.

The obtained solution does not depend on k2 neither does it on ε. Because ∀ε > 0 the solutions
will be equivalent, it follows that the obtained approximation will be the solution of the linear
spring system. Notice that figure 7 shows the same results as in figure 3 when we plot the
reflected waves using the same values.
To take the perturbed part into consideration, one should derive φ̂1 as well to obtain the ap-
proximation φ̂b = φ̂0 + εφ̂1. However, in this thesis we limit the approximation to φ̂a = φ̂0.
Figure 8 shows the transition from the initial wave to the reflected wave. In figure 8a we see that
the spring first expands to double the amplitude of the initial wave. After that it transitions
through figure 8b to the reflected wave.

Figure 7: Example 2: reflected waves at t = 16

5.5.3 Example 3: continuous sine wave

For the continuous sine wave we have:

φ̂a(t− x) = − 4Tk

T 2 + k2
e−

k
T
(t−x) + 4

T (T sin(t− x) + k cos(t− x))

T 2 + k2
.

Again the solution does not depend on k2 or on ε. Therefore the nonlinear term has no effect
on the system.
For multiple values of k

T the approximations are shown in figure 9. We again took T = 8000.
The wave is reflected with sinusoidal functions which amplitude changes back and forth. The
amplitude goes from about u = 2 to u = 0 and then mirrors in the x-axis. For k

T = 5 in figure
9a we see the moment when the amplitude has come down to almost zero.
In figure 9b we see that the the amplitude of the wave caused by stiffer springs are not necessarily
lower then those caused by the softer springs.
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(a) t = 7.8 (b) t = 9

Figure 8: Example 2: transition to reflected wave

(a) t = 8 (b) t = 16

Figure 9: Example 3: reflected waves

5.6 Proof accuracy φ̂a

5.6.1 Introduction

For this proof we assume that ε > 0 is small enough for the perturbation theory to hold.
Until now we assumed that φ̂a = φ̂0 was an accurate approximation of the solution. We suspected
φ̂b = φ̂0 + εφ̂1 would make a change that is significantly small. In this section, we are going to
prove this conjecture. We do this by showing |φ̂− φ̂a| = O(ε), where φ̂ is the exact solution of
the differential equation (4).
We find an upper estimate using the triangle inequality.

|φ̂− φ̂a| = |φ̂− φ̂0| = |φ̂− (φ̂0 + εφ̂1) + εφ̂1| ≤ |φ̂− (φ̂0 + εφ̂1)|+ |εφ̂1| = |φ̂− φ̂b|+ |εφ̂1|.

In section 5.4, we chose B0(0, τ) such that |εφ̂1| = O(ε). So it suffices to show that |φ̂−φ̂b| = O(ε).
First we fill in φ̂b in equation (4) to find the error which we will call the remainder. After that
we find an expression for the exact solution φ̂ and the approximation φ̂b. We do this by taking
the differential equations and transforming them into integral equations. Lastly, we subtract
these expressions and look for an upper estimate using Gronwall’s Theorem.
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5.6.2 Determine the remainder

We can rewrite equation (4) to

Lφ̂(t)− Â(t) = φ̂′(t) +
k

T
φ̂(t) + ε

k2
2T

φ̂2(t)− Â(t),

= 0.
(8)

Using that φ̂b depends on t and τ both, we get

Lφ̂b(t)− Â(t) = φ̂0t +
k

T
φ̂0 − Â(t) + ε(φ̂1t + φ̂0τ +

k

T
φ̂1 +

k2
2T

φ̂20),

= −ε2(φ̂1t +
k2
T
φ̂0φ̂1)− ε3

k2
2T

φ̂21.

(9)

To obtain the remainder R, we subtract equation (9) from (8):

Lφ̂(t)− Lφ̂b(t) = ε2(φ̂1t +
k2
T
φ̂0φ̂1) + ε3

k2
2T

φ̂21,

= ε2R(t, τ, ε).

We can see that R is bounded for t = O(1ε ).

5.6.3 Finding expressions for φ̂ and φ̂b

When we convert the differential equations for φ̂ and φ̂b to integral equations, we get the following
expressions:

φ̂′(t) = − k
T
φ̂(t)− ε k2

2T
φ̂2(t) + Â(t),

⇒ φ̂(t) = e−
k
T
tφ̂(0)− εe−

k
T
tk2
T

∫ t

0
φ̂2(s)e

k
T
sds+ e−

k
T
t

∫ t

0
Â(s)e

k
T
sds,

φ̂′b(t) = − k
T
φ̂b(t)− ε

k2
2T

φ̂2b(t) + Â(t) + ε2R(t, τ, ε),

⇒ φ̂b(t) = e−
k
T
tφ̂b(0)− εe−

k
T
tk2
T

∫ t

0
φ̂2b(s)e

k
T
sds+ e−

k
T
t

∫ t

0
Â(s)e

k
T
sds+ ε2e−

k
T
t

∫ t

0
R(s, τ, ε)e

k
T
sds.

By subtracting these two, we get an estimate of the form:

|φ̂− φ̂b| ≤ e−
k
T
t|φ̂(0)− φ̂b(0)|+ εe−

k
T
t k2
2T

∫ t

0
|φ̂2(s)− φ̂2b(s)|e

k
T
sds+ ε2e−

k
T
t

∫ t

0
|R(s, τ, ε)|e

k
T
sds.

We will find an upper estimate for each term. By adding these up, we will obtain an upper
estimate for |φ̂− φ̂0|.

5.6.4 Finding an upper estimate for |φ̂− φ̂a|

The first thing we know is that |φ̂(0)− φ̂b(0)| = O(ε2).
Second, we know that ∀t : φ̂(t) exists and is unique. Therefore, φ̂2(t) is a Lipschitz continuous
function. Then ∃c1 > 0 : |φ̂2(s)− φ̂2b(s)| ≤ c1|φ̂(s)− φ̂b(s)|.
Earlier we found that R(t, τ, ε) is bounded for t = O(1ε ), so the third thing we know is that
∃c2 > 0 : t ≤ c2

ε . We use this for finding an upper estimate of the remainder term:

ε2e−
k
T
t

∫ t

0
|R(s, τ, ε)|e

k
T
sds ≤ ε2tmax |R(t, τ, ε)| ≤ c2εmax |R(t, τ, ε)| = c2O(ε).
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Combining these three estimates, we obtain the following:

|φ̂− φ̂b| ≤ c1ε
k1
2T

∫ t

0
|φ̂(s)− φ̂b(s)|ds+O(ε2) + c2O(ε).

Now we can apply Gronwall’s Theorem. We use the theorem as it was stated by Verhulst (1996,
p. 7):
Gronwall’s Theorem
Assume that for t0 ≤ t ≤ t0 + a, with a a positive constant, we have the estimate

Φ(t) ≤ δ1
∫ t

t0

ψ(s)Φ(s)ds+ δ3,

in which, for t0 ≤ t ≤ t0 + a,Φ(t) and ψ(t) are continuous functions, Φ(t) ≥ 0 and ψ(t) ≥ 0; δ1
and δ3 are positive constants. Then we have for t0 ≤ t ≤ t0 + a

Φ(t) ≤ δ3e
δ1

∫ t
t0
ψ(s)ds

.

We apply this theorem, setting ψ(t) = 1. We get

|φ̂− φ̂b| ≤ (O(ε2) + c2O(ε))eεc1
k2
2T
t.

Then for t = O(1ε ) : |φ̂− φ̂b| = O(ε), and therefore |φ̂− φ̂a| = O(ε).
This proves the conjecture.

5.7 Conclusions

In this chapter we considered only small displacements. By doing that we could apply the
Multiple Scales Perturbations method to find an approximated solution to the nonlinear spring
system.
We considered three examples of initial conditions. For all three we applied the method and
found the approximated solution φ̂a and therefore also û(x, t). In the first example, the solution
was dependent on the nonlinear term, so the perturbed part. Whereas in the second and third
example, the nonlinear term did not play any role in the solution.
At last we proved that for an ε > 0 small enough, the error to the solution of this method is of
order ε.

25



6 Numerical Approach using the RK4 Method

6.1 Introduction

In the previous section we found the approximated solution φ̂a for three examples of initial
conditions. We want to find out how good these approximations were. A way to do this is to
apply another method to the same problems and thereafter compare the results to each other.
In this section, we look for a solution with a numerical approach. We will use the Fourth Order
Runge-Kutta method. It is not necessary here to consider only small displacements. But by
sticking to the differential equation (4), we can study the solution for the same values of ε. In this
way we can compare the solutions to those we obtained from the Multiple Scales Perturbations
method.

6.2 Introduction to the Fourth Order Runge Kutta method

The Fourth Order Runge-Kutta method, (C.Vuik, Vermolen, Gijzen, & M.J. Vuik, 2016, pp.
77–78), is an iterative method for solving systems of the form:{

y′(t) = F (t, y) t > t0,

y(t0) = y0.

Let w denote the numerical approximation of y. First the predictors must be computed:

k1 = hF (tn, wn),

k2 = hF (tn +
1

2
h,wn +

1

2
k1),

k3 = hF (tn +
1

2
h,wn +

1

2
k2),

k4 = hF (tn + h,wn + k3),

where h is the step size. At tn+1 the following solution is approximated:

wn+1 = wn +
1

6
(k1 + 2k2 + 2k3 + k4).

The truncation errors made in this method rely on the chosen time step. The local truncation
error, the error made in a certain iteration, is O(h5). The global truncation error, |yn − wn|,
is O(h4). These errors only hold when the method is stable. In chapter 6.4 we will check the
stability of this method on our differential equation.

6.3 Comparing MSP to RK4

The initial-value problem is as follows:{
φ̂′(t) = F (t, φ̂) = − k

T φ̂(t)− ε k22T φ̂
2(t) + Â(t) t > 0,

φ̂(0) = 0.

We take step size h = 1/10. Then when stability holds, the global truncation error is O(10−4).
We will take the same three examples from the previous chapter and solve these numerically. By
plotting the solution φ̂n from the RK4 method and φ̂a from the MSP method, we can study the
difference in the two approximations. In these plots we use the same values as in the previous
chapter.
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6.3.1 Example 1: string with constant speed

In figure 10 the φ̂a from the MSP method and the φ̂n from the RK4 method are shown for
ε = 0.01. For k

T = 1 and k
T = 5 the approximations are about the same. For k

T = 1
4 the

approximation is a bit higher for the MSP method then for the RK4 method.
The two approximations for ε = 0.1 are plotted in figure 11. Again they look the same for k

T = 1

and k
T = 5. For k

T = 1
4 the difference has become a lot bigger.

For both values of ε there is a difference in the plots. But we definitely see that the approxima-
tions of the solution with ε = 0.01 are a lot better then the approximations with ε = 0.1.
We also see that for a stiffer spring, the value of ε barely affects the accuracy of the approxima-
tion. Remember that for the MSP method we considered only small displacements. This could
be a reason why the approximations differ so much for the softer spring.

(a) φ̂a (b) φ̂n

Figure 10: Example 1: approximations φ̂a and φ̂n for ε = 0.01

(a) φ̂a (b) φ̂n

Figure 11: Example 1: approximations φ̂a and φ̂n for ε = 0.1

6.3.2 Example 2: singular sine wave

In this example the approximation φ̂a shown in figure 12 did not depend on ε. This means that
in this approximation the nonlinear term is fully neglected.
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In figure 13b we see that φ̂n for ε = 0.1 takes lower values than φ̂a for k
T < 1. Whereas for

ε = 0.01 in figure 13a the approximation φ̂n is about the same as φ̂a for all values of k
T . Therefore

we say that these are accurate approximations to the solution.
We see that the more ε approaches zero, the more φ̂n approaches φ̂a.
Notice that we did not plot k

T = 0 for φ̂n. This is because the method was unstable for these
values. Instead we took the smallest values for which the method was stable. The fact that we
used different values is another reason why the solutions might not look the same.

Figure 12: Example 2: approximations φ̂a

(a) ε = 0.01 (b) ε = 0.1

Figure 13: Example 2: approximations φ̂n

6.3.3 Example 3: continuous sine wave

Just like in example 2, the φ̂a in figure 14 does not depend on ε. Therefore we should again have
that for ε→ 0⇒ φ̂n → φ̂a.
In figure 15b φ̂n is shown for ε = 0.1. We see that the approximation is about the same as φ̂a
for the stiff springs. But for k

T = 1
4 , φ̂n takes lower values than φ̂a.

In figure 15a the approximation φ̂n is very accurate to the approximation φ̂a. These findings
are in line with our suspicion.
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Figure 14: Example 3: approximations φ̂a

(a) ε = 0.01 (b) ε = 0.1

Figure 15: Example 3: approximations φ̂n

6.4 Checking the stability conditions

To determine the stability of the numerical method, we check the condition |Q(λh)| ≤ 1 for all
λ = ∂f

∂φ̂
(ti, φ̂ni), where φ̂ni is the numerical approximation at ti. Q(λh) is called the amplification

factor. For the RK4 method, the amplification factor is given by

|Q(λh)| = |1 + λh+
(λh)2

2
+

(λh)3

6
+

(λh)4

24
|.

We consider two cases for checking if the method is stable or not. We consider the system
with the singular sine wave used for example 2. We take the values ε = 0.01, k2 = 4000, and
T = 8000. λ is given by

λ =
∂f

∂φ̂
(ti, φ̂ni),

= − k
T
− εk2

T
φ̂ni .
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In the first case we take k
T = 0. We find that ∀i : −0.0297 ≤ φ̂ni ≤ 3.9646. But for the lowest

value of φ̂ni it holds that

λ = −0− 0.01 ∗ 1

2
∗ −0.0297 = 0.0001485.

Substituting this value for λ it follows that

|Q(λh)| ≈ 1.000015 > 1.

Therefore the method is not stable for these values.
In the second case we consider k

T = 1
4 . Now ∀i : −1.3367 ≤ φ̂ni ≤ 3.1879. Then

λ = −1

4
− 0.01 ∗ 1

2
∗ φ̂ni ,

and so
|Q(λh)| < 1 ∀φ̂ni .

This means the method is stable and therefore the global truncation error is O(h4).

6.5 Conclusions

In this chapter we used the Fourth Order Runge Kutta method to find the numerical approxi-
mation φ̂n. We made sure stability of this method held for our system. Therefore we concluded
that the global truncation error of φ̂n to the exact solution is O(h4).
We compared the plots of φ̂a from the analytical approach to φ̂n from the numerical approach
to determine the accuracy of the two approximations.
In example 1, where the approximation is influenced by the nonlinear part, we saw that for a
stiff spring the approximations were the same and therefore accurate. This was not true for the
softer spring, which was approximated poorly for ε = 0.1. For ε = 0.01 the approximation was
better, but still not too accurate.
In example 2 and 3, where the approximation is not influenced by the perturbed part, we found
that when ε approaches zero, the approximation φ̂n approaches φ̂a.
In the cases where φ̂a lacked accuracy, one could derive φ̂1 or even φ̂2 to add to the approxima-
tion. This provides an extra order term to the approximated solution.
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7 Conclusions

In this thesis we considered a semi-infinite string described by the wave equation which was com-
plemented with initial conditions and boundary conditions. The boundary condition described
a spring that behaves in a nonlinear way.
The goal of this thesis was to find accurate approximations of the solution of this nonlinear
spring system.
The solution was approximated using two different approaches.
First we tried an analytical approach, using the Multiple Scales Perturbations method. Before
we applied this method, we had to consider only small displacements. Second we took a numer-
ical approach, using the Fourth Order Runge Kutta method. For this method we had to check
the stability of the solution. We compared the findings of the two methods to determine the
accuracy of the approximations and concluded the following.

• We found that for bigger displacements, the two approximations could differ. Remem-
ber that we considered only small displacements for the MSP method. This is a logical
explanation why the approximations could be off.

• For some pairs of initial conditions, the nonlinear part was fully neglected in φ̂a. For
those cases the MSP method did not deliver any insight on the nonlinear behaviour of the
system. To avoid this problem, one could add the next order term to the approximation.

• For some values, the RK4 method was not stable. To avoid studying the unstable solution,
we plotted the nearest values for which the solution was stable. This was another reason
why the approximations differed from each other.

• We found that the more ε approached zero, the more the numerical approximation φ̂n and
analytical approximation φ̂a were similar. From this we conclude that for ε approaching
zero, the approximations are very accurate. But of course the smaller ε is, the less the
nonlinear behaviour is included.
Taking a bigger ε to include the nonlinear behaviour more would decrease the accuracy
of φ̂a. One should consider the approximation φ̂b = φ̂0 + εφ̂1 instead, or even add more
terms of extra orders if the accuracy is to be maintained.

If the reflections of waves induced by a nonlinear spring at the boundary are to be studied, the
solution to the nonlinear spring system is to be approximated. By the research done in this
thesis we attained knowledge on the accuracy of the approximations found by the considered
methods.
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8 Discussion

Since in practice the approximation φ̂a = φ̂0 from the MSP method did not always acquire
the wanted accuracy, one could consider the approximation φ̂b = φ̂0 + εφ̂1. This requires more
calculations, since φ̂2 has to be derived in such a way that it is bounded on a time scale of O(1ε ).
The upside is that it will probably produce an approximation closer to the solution. Again, this
can be checked by comparing φ̂b to another method.

In this thesis we approximated φ̂n using the RK4 method. A problem occurred when the method
was not stable. Therefore the approximation could not always be studied for the wanted values.
One could use another numerical method that has unconditional stability. In this way the ap-
proximations can be compared using the wanted values.

Finally, further research could be done by changing the boundary condition. For example,
one could change the behaviour of the nonlinear spring by adding an extra nonlinear term:

Tux(0, t) = ku(0, t) + k2u
2(0, t) + k3u

3(0, t).

Or one could add a damper to the system:

Tux(0, t) = ku(0, t) + k2u
2(0, t) + αut(0, t).
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