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Abstract. The usage of deep learning in profiled side-channel analysis
requires a careful selection of neural network hyperparameters. In recent
publications, different network architectures have been presented as effi-
cient profiled methods against protected AES implementations. Indeed,
completely different convolutional neural network models have presented
similar performance against public side-channel traces databases. In this
work, we analyze how weight initializers’ choice influences deep neural
networks’ performance in the profiled side-channel analysis. Our results
show that different weight initializers provide radically different behavior.
We observe that even high-performing initializers can reach significantly
different performance when conducting multiple training phases. Finally,
we found that this hyperparameter is more dependent on the choice of
dataset than other, commonly examined, hyperparameters. When eval-
uating the connections with other hyperparameters, the biggest connec-
tion is observed with activation functions.

Keywords: Weight initialization · Deep learning · Side-channel
analysis

1 Introduction

There has been rapid progress in profiled side-channel attacks (SCAs) based on
machine learning techniques in recent years. These techniques proved to be very
successful by outperforming some of the classical attacks [3,14], like template
attacks [4]. Around a decade ago, machine learning algorithms like SVM [9] and
Random Forest [15,19] represented the standard choice for machine learning-
based SCA.

More recently, deep learning-based SCAs started when Maghrebi et al.
demonstrated the strong performance of several neural network types, most
notably, convolutional neural networks [16]. Despite many successes, there are
still many difficulties (and unanswered questions) when training deep neural
networks, especially those related to how to tune hyperparameters. This tun-
ing phase can highly influence the model’s performance, so it is important to
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properly address the issue and have a good strategy for selecting the hyperpa-
rameters. Hyperparameters are all those configuration variables external to the
model, like the number of hidden layers in a neural network. The parameters are
the configuration variables internal to the model and estimated from data (e.g.,
the weights in a neural network).

As there are many hyperparameters, and numerous possible combinations
that can be explored, selecting proper hyperparameters can be a very time-
consuming process. Researchers commonly approach this problem by selecting
the hyperparameters they deem relevant and then conducting a grid search.
While such an approach works well (as confirmed by successful attacks on var-
ious AES implementations), there are also potential drawbacks. Most notably,
grid search skips many possible values while limiting the setup to only cer-
tain hyperparameters, completely disregards other hyperparameters’ influence.
In [23], the authors proposed a methodology to select hyperparameters that are
related to the size (number of learnable parameters, i.e., weights and biases) of
layers in CNNs. This includes the number of filters, kernel sizes, strides, and
the number of neurons in fully-connected layers. In [1], the authors conducted
an empirical evaluation for different hyperparameters for CNNs on the ASCAD
database. Kim et al. investigated how adding noise to the input (thus, serving
as regularization) improves the performance of profiled SCAs [11], which is a
technique that can be used with any neural network architecture.

In this work, we focus on the weight initialization strategies for CNNs in
SCA, and we explore its influence on the performance of the attacks. Thus, we
investigate a hyperparameter, i.e., selecting different weight initializers directly
responsible for weights parameter. Our experiments show that most of the weight
initializers work well. More precisely, there is a decent selection of weight initial-
izers one can use in deep learning-based SCA and expect good results. Next, our
experiments show significant differences concerning key rank results, as within
one guessing entropy experiment, it is common to obtain both perfect attack
and attack that does not work at all. Interestingly, our results indicate that
independent training phases result in significantly different guessing entropy
performances. This means that it is not enough to consider only one training
experiment, but one must conduct a proper statistical analysis for training and
testing phases. We evaluate the evolution of weights and biases concerning the
progress of epochs, and we observe most changes in Convolutional and Batch
Normalization layers. In contrast, the fully-connected layers (those responsible
for classification) remain almost constant throughout the training phase. Finally,
we examine the connection between weight initializers and other hyperparame-
ters, and we determine that the biggest influence comes from the combination
of activation functions and weight initializers. This indicates that future exper-
iments should consider both hyperparameters.
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2 Background

2.1 Side-Channel Analysis

Side-channel analysis is a type of implementation attacks, where instead of
attacking the algorithm itself, adversary attacks the physical device that imple-
ments the algorithm [17]. Profiled side-channel attacks are the most powerful
type of side-channel attacks as they assume that the attacker has access to an
identical copy of a device to build a profile. These attacks have two phases,
namely, profiling and online attack. The profiling phase is a modeling problem,
for which machine learning algorithms perform well. The online phase is the
actual attack on a similar device to recover the secret information and is done
using the profiling phase’s model.

2.2 Machine Learning and Side-Channel Analysis

Machine learning is a subset of artificial intelligence and is based on learning
specific patterns from given data. Since this approach is data-driven, it does not
require explicit instructions and rules. Therefore, such algorithms work well in
modeling problems. Currently, neural networks are a prevalent machine learning
technique in SCA, and in our experiments, we investigate deep learning. Deep
learning represents methods based on artificial neural networks, and some of the
deep learning architectures are multilayer perceptrons (MLPs), recurrent neural
networks (RNNs), and convolution neural networks (CNNs). In our experiments,
we concentrate on CNNs from [23] and [11]. We opt not to consider MLP as
there are less “accepted” MLP architectures in the literature, and the number
of hyperparameters is more limited, which makes it possible to include weight
initialization in the hyperparameter tuning phase.

To understand weight initializers, we first explain neurons, the base building
block of artificial neural networks. Neuron takes input values and calculates the
weighted sum using the weight matrix. For a neural network to learn nonlinear
functions and models, nonlinear activation functions are applied to the weighted
sum. Output of one neuron is described with the equation y = f(b+

∑n
i=1 xiwi),

where, the input x is of size n, w are the weights, b the bias and f is the
activation function. Bias is also a weight for an input x0 with an assigned value
of 1. The equation takes a form y = f(

∑n
i=0 xiwi) where x0 = 1 and w0 = b.

This calculation is done in all neurons of one layer, so we can describe it with
matrices, where features of the input samples can be arranged as columns or
rows. In Keras, the features are arranged as columns, and in this setting the
equation equals:

Y = X ∗ W + B, (1)

where X is the input, W is the weight, and B is the bias matrix. The weight
matrix of a layer l is a matrix of dimension (size of layer l−1, size of layer l), while
the bias matrix is (1, size of layer l), with the size of the layer being the number
of neurons in the layer. Weight initializers are strategies for setting the initial
values of a weight matrix for a neural network layer. Later, in the training phase
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during back-propagation, the weights in the weight matrix are adjusted with
the selected optimization algorithm. Commonly used optimization algorithms
are Stochastic Gradient Descent, RMSprop, and Adam [12], which we use in our
experiments. Here, we explore different weight initialization strategies and how
they impact the performance of deep learning-based SCA.

2.3 Weight Initializers

As mentioned, weight initializers represent how the initial values of a neural
network layer’s weight matrix are set. It is believed that neural networks are
very sensitive to the initial weights [18]. When the deep learning algorithm
was first successfully proposed, it was common to initiate weights with Gaus-
sian noise, setting the mean equal to zero, and the standard deviation to 0.01.
This way of initializing weights was not enough to train deep neural networks
because of problems, such as vanishing gradients, exploding gradients, or dead
neuron [13,18], which significantly hampered its development. In 2010, Glorot
and Bengio [22] analyzed the problem systematically and proposed a formula to
initialize weights depending on the number of input and output units (neurons).
Glorot initializer works well in many cases and is still popular today. In 2015, He
et al. [8] put forward that Glorot initializer does not work with well ReLU acti-
vation function, and extended the formula to meet ReLU based neural networks
through only using the number of input units and increasing the scaling by

√
2.

As more people have devoted themselves to the study of weight initialization,
various methods have appeared. In general, these methods can be divided into
two categories: Zeros and Ones initialization, and Random initialization.

Zeros and Ones Initialization. With all weights initialized to 0 (1), all weights
are the same, and the activation in all neurons is also the same. That way, the
loss function’s derivative is the same for every weight in a weight matrix of a
layer. When all weights have the same value, in all iterations, this makes hidden
layers symmetric. Every neuron of the layer computes the same function, so the
model behaves like a linear model.

Random Initialization. All weight matrix values are set to random numbers,
usually from a normal or uniform distribution. As mentioned, issues with ran-
dom initialization are vanishing and exploding gradients. In vanishing gradients,
weight update is minor, which results in slower convergence, while in exploding
gradients, large gradients can result in oscillation around the optimum.

For deep networks, heuristics can be used to initialize the weights depending
on the nonlinear activation function. Heuristics set the normal distribution vari-
ance to k/n, where k is a constant value that depends on the activation function,
and n is the number of input nodes to the weight tensor or both input and out-
put nodes of the weight tensor. This is adjusted to a uniform distribution, which
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can be seen in the provided list of initializers from Keras library [5]. While these
heuristics do not entirely solve the exploding/vanishing gradients issue, they help
mitigate it to a great extent. Initializers with explained heuristics are LeCun,
Glorot/Xavier, and He initializers.

Different weight initializers available [10] in Keras are listed below with
fan in being the number of input units in the weight tensor and fan out the
number of output units in the weight tensor.

– Zeros: initializes weights to 0.
– Ones: initializes weights to 1.
– Constant: initializes weights to given constant, default is 0.
– RandomNormal: initializes weights with normal distribution, mean = 0,
stddev = 0.05.

– RandomUniform: initializes weights with uniform distribution, minval =
−0.05,maxval = 0.05.

– TruncatedNormal: similar to RandomNormal except that values more than
two standard deviations from the mean are discarded and redrawn.

– VarianceScaling: adapts scale to the shape of weights, default values are
scale = 1,mode =′ fan in′ and normal distribution.

– Orthogonal: random orthogonal matrix, default value of multiplicative factor
to apply to the matrix is 1.

– Identity: identity matrix, multiplicative factor again 1.
– lecun uniform: uniform distribution within [-limit, limit] where limit is
sqrt(3/fan in).

– lecun normal: truncated normal distribution centered on 0 with stddev =
sqrt(1/fan in).

– glorot normal: truncated normal distribution centered on 0 with stddev =
sqrt(2/(fan in + fan out)).

– glorot uniform: uniform distribution within [-limit, limit] where limit is
sqrt(6/(fan in + fan out)).

– he normal: truncated normal distribution centered on 0 with stddev = sqrt(
2/fan in).

– he uniform: uniform distribution within [-limit, limit] where limit is sqrt(
6/fan in).

3 Experimental Setup

Algorithms used for these experiments are taken from [11] and [23], where CNN
hyperparameters were fine-tuned specifically for each dataset the authors used.
We vary available weight initializers in our experiments to investigate the per-
formance difference according to each weight initializer. All of the other hyper-
parameters are taken directly from the mentioned works. We consider these two
architectures as they represent top-performing architectures from related works.
Additionally, they differ in size, which will enable us to evaluate the influence of
weight initializers on architectures of different complexity.
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We will refer to CNN architecture as the Noise architecture for [11], and
the Methodology architecture for [23]. For each architecture, two leakage models
are used: Identity (ID) model [11,23] and Hamming weight (HW) model [20], in
which there are 256 classes and nine classes respectively corresponding to the
output of neural networks. In both architectures, hyperparameters are tuned
with the ID model (as the original works consider only ID model), but we use
the same hyperparameters for the HW model.

Kim et al. [11] used glorot uniform weight initializer, and Zaid et al. [23] used
he uniform weight initializer. In the last layer, [23] does not set weight initializer
to he uniform, but instead, the default weight initializer is utilized, which is
glorot uniform. We are not aware of this implementation’s motivation, so in our
experiments, we vary weight initializers in all layers, including the last layer
with a Softmax activation function. This change causes a difference between our
results with Methodology architecture and ID leakage model compared to results
presented in the work of Zaid et al. [23], as shown later in Sect. 4.

We are not running experiments with Constant, VarianceScaling, Identity,
and Orthogonal initializers from all available Keras weight initializers. Iden-
tity and Orthogonal initializers are not actively used, and Constant and Vari-
anceScaling correspond to Zeros and lecun normal, respectively, when using
default values. We simulate ten times with each initializer and average the results
for comparison with other weight initializers.

We use the public source code provided on GitHub by Zaid et al. [23] in Keras
with Tensorflow backend [5]. We consider three publicly available datasets that
consist of side-channel measurements for the AES cipher for our experiments.
Following, we shortly describe these datasets and then discuss the results for
each dataset in detail.

DPA contest v4 (DPAv4) dataset1 is obtained from a masked AES software
implementation [2]. Knowing the masked values, this dataset is easily converted
into an unprotected scenario. We attack the first round of S-box operation, and
identify each trace with Y (i)(k∗) = Sbox[P (i)

0 ⊕ k∗] ⊕ M where P
(i)
0 is the first

byte of the i-th plaintext and M is the known mask.

AES RD dataset2 is obtained from an implementation on an 8-bit AVR micro-
controller with a random delay countermeasure [6]. This countermeasure shifts
each trace following a random variable of 0 to N [0]. The attack is on the
first round S-box operation, as in DPAv4 dataset, where traces are labeled as
Y (i)(k∗) = Sbox[P (i)

0 ⊕ k∗].

1 http://www.dpacontest.org/v4/42 traces.php.
2 https://github.com/ikizhvatov/randomdelays-traces.

http://www.dpacontest.org/v4/42_traces.php
https://github.com/ikizhvatov/randomdelays-traces
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ASCAD dataset3 is obtained from a masked AES-128 implementation on an 8-
bit AVR microcontroller introduced in [21]. The leakage model is the first round
S-box operation, such that Y (i)(k∗) = Sbox[P (i)

3 ⊕k∗]. In contrast to the DPAv4
and AES RD datasets, the third byte is exploited (as this is the first masked
byte).

4 Experimental Results

This section shows the results for different weight initializers. We explore 1) how
weight initializers impact the performance of the utilized CNN architectures, 2)
which one is the best for a specific dataset and architecture, and 3) whether
there is the best weight initializer for all datasets. As explained in Sect. 3, we
use 11 weight initializers available in Keras and execute experiments on com-
monly used DPAv4, AES RD, and ASCAD datasets. For each dataset, we run
four experiments: Methodology architecture with ID and HW model, and Noise
architecture with ID and HW model.

Recall, with Zeros and Ones initialization, the model is no better than a
linear model. In our experiments, we still choose to show the results with Zeros
and Ones weight initialization to show that a linear model is not sufficient for
considered problems. There, all results show that guessing entropy is either stay-
ing at random guessing or increasing with Zeros and Ones weight initialization.
Consequently, when discussing the performance of weight initializers, we usually
ignore the performance of Zeros and Ones, as they never converge.

A good initializer is the one where GE decreases, preferably to zero, in the
least number of traces, and is more stable, as observed from results from multiple
independent experiments. As such, those weight initializers where GE behaves
similarly in multiple experiments, we consider more stable than when this is not
true. To get the best weight initializer, we consider two additional metrics: speed
and stability. We sort the averaged GE value of all weight initializers to evaluate
their “speed”, and compare the consistency in multiple experiments to obtain
the “stability”. The key rank range shows the “best” GE from 10 experiments
to present the range from multiple performed attacks. The “best” GE is the
one that reaches the lowest value, and if multiple GE results reach the same
minimum, then the one that reaches that value with fewer traces is considered
better, and we plot key rank range for that experiment. The range is taken from
the 100 attacks that are executed for calculating the GE. Weights’ evolution
figures show weights for each layer, and the layers in the legend are ordered from
first input layer to the last output layer of the neural network. We provide a
Table 1 as an overview of all experiments and best initializers in each setup.

4.1 Results for the DPAv4 Dataset

As in [23], we use 4 000 traces for the training set, 500 traces for the valida-
tion set, and 500 for attacking the device. Each trace has 4 000 features. The
3 https://github.com/ANSSI-FR/ASCAD.

https://github.com/ANSSI-FR/ASCAD
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Table 1. An overview of all experiments and best initializers in each setup.

Dataset Architecture Best initializer (ID/HW)

DPAv4 Methodology RandomUniform

Noise RandomUniform/RandomNormal

AES RD Methodology he normal/lecun normal

Noise RandomUniform

ASCAD Methodology he normal

Noise lecun normal

GE rankings of the four experiments are shown in Fig. 1. In the two experiments
with the Methodology architecture (Figs. 1a and 1b), most weight initializers per-
form similarly when weight initializer is varied, but RandomUniform is slightly
faster in convergence and more stable with both leakage models. With the Noise
architecture and ID leakage model (Fig. 1c), the best weight initializer is Rando-
mUniform, and with the HW model (Fig. 1d), most weight initializers perform
quite well, but we choose RandomNormal as the best one.

Fig. 1. Averaged GEs for all weight initializers with the DPAv4 dataset.

Figure 2 shows the key rank range for the best (Fig. 2a) and the worst ini-
tializer (Fig. 2b) with the Noise architecture and ID model for the DPAv4
dataset when ignoring the Zeros and Ones. While the GE is slowly converg-
ing with he uniform initializer, in Fig. 2b, we can see significant differences in
the key rank results from multiple performed attacks within one guessing entropy
experiment.
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Fig. 2. The key rank range of Noise architecture with ID model for decreasing GE in
DPAv4 dataset.

When looking at the weights’ evolution, we observe the change of weights
and biases in every neural network layer in every epoch and find that weights
and biases change in Convolutional layers and Batch Normalization layers, and
other layers such as dense layers do not exhibit much change. In the Methodology
architecture, both weights, and biases change significantly, while in the Noise
architecture, only biases change, and weights stay almost constant. According
to the result, we can peek into the training processes of the two architectures.
The iterative processes of the two architectures are radically different: in the
Methodology architecture, both weights, and biases are trained, while in the
Noise architecture, biases are the main training objects. This indicates that
the Noise architecture is more “robust” as there is not much need for weight
improvement to reach strong attack performance. More precisely, there seems
to be more weight optima for the Noise architecture than for the Methodology
architecture.

In the weights’ evolution for the DPAv4 dataset, the random initializers
without heuristics perform best for the Methodology ID setting and very similar
to Glorot initializers. Weight initializers He and LeCun in this setting performed
a bit worse, and their weights’ evolution is also similar, but visually different from
the weights’ evolution of the other initializers. Similar weights’ evolution is seen
with the HW model.

For the Noise architecture, in Figs. 3a and 3b, we show weights’ evolution of
the best and worst initializer, respectively. It seems as the he normal (Fig. 3b)
could improve with more epochs and reach the performance of, at least, Glorot
initializers. Additionally, we show corresponding experiments of the same initial-
izer to show their stability in Figs. 3c and 3d. Here, both are stable: RandomU-
niform is performing well, and he normal consistently has a slow convergence.
This is again visible through weights’ evolution because the weights and biases’
variance is not large. The performance of different weight initializers with both
architectures and models on the DPAv4 dataset is quite similar, and most of the
initializers reach GE of zero.

Lastly, we simulate experiments with the Methodology architecture and both
leakage models to explore the influence of the weight initializer in the last fully-
connected layer, similar to [23]. More precisely, we keep all hyperparameters
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Fig. 3. Weights’ evolution and experiments with Noise ID setting on the DPAv4
dataset.

of the two experiments except that the setting of the last layer in the neural
network is the same as paper [23]. The results for the two experiments show
that it has no impact on the outcome, and the performances of all the weight
initializers in the ID and HW model are almost the same.

4.2 Results for the AES RD Dataset

AES RD dataset is a protected implementation, where adding random delays to
the normal operation of AES makes it more difficult to conduct attack as features
are misaligned. The dataset consists of 50 000 traces of 3 500 features each, where
20 000 traces are used for the training set, 5 000 for the validation, and 25 000
for the attack set. The GE rankings for the AES RD dataset are illustrated in
Fig. 4. By observing all weight initializers’ speed and stability, we get the best
weight initializers in all scenarios: he normal, lecun normal, RandomUniform,
and RandomUniform, respectively.

Like the DPAv4 dataset, weights and biases change mostly in Convolutional
layers and Batch Normalization layers, but not in other layers. We can also see
that in the Methodology architecture, both weight and bias change significantly,
while in the Noise architecture, only biases change, and weights remain almost
constant.

Figures 5a and 5b display the best and the worst initializer respectively in
weights’ evolution for the Methodology architecture on the AES RD dataset. The
difference in the initializers’ performance stems from their stability because all
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Fig. 4. Averaged GEs for all weight initializers with the AES RD dataset.

Fig. 5. Weights’ evolution and experiments with Methodology ID setting on the
AES RD dataset.

reach GE equal to zero in several of ten simulations, which can be seen in Figs. 5c
and 5d. The stability of the weight initializer is also seen in weights’ evolution.
Since we show the mean of the weights and the range for the ten simulations:
the more the weights’ evolution varies, the more GE is also likely to vary.
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Finally, we investigate the weight initializer’s influence in the last dense layer
for the Methodology architecture. All hyperparameters are the same, except for
the weight initializer in the last layer, which is set as default, according to the
settings in paper [23]. The new results show that the change in the last layer also
does not have a big effect on the initializer’s stability, but it impacts the speed.
With the HW model, the convergence for all weight initializers is slower. The
best weight initializers for ID and HW model are he normal and lecun normal,
respectively.

4.3 Results for the ASCAD Dataset

Next, we compare the performance of different weight initializers for the ASCAD
dataset. We use the ASCAD dataset with 60 000 traces of 700 features without
desynchronization. The dataset is divided into 45 000 training traces, 5 000 vali-
dation traces, and 10 000 attack traces. In Fig. 6, we show the GE rankings. In
the experiment with the Methodology ID setting (Fig. 6a), increasing the number
of attack traces leads to an increase of the GE for the correct key byte, even with
he uniform, which was used in paper [23] in all layers except for the last layer.
By comparing the stability, we get that he normal is the best one. We observe
that the GE value of weight initializers with heuristics converges to zero with
the HW model (Fig. 6b). he normal is the fastest one. In the setting with the
Noise architecture (Figs. 6c and 6d), the best weight initializers, lecun normal,
can be easily chosen by observing the speed.

Fig. 6. Averaged GEs for all weight initializers with the ASCAD dataset.

Figure 7 shows the key rank range for he normal initializer where GE reached
zero (Fig. 7a), and RandomUniform where GE increases with an increased num-
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ber of traces (Fig. 7b). Again, we see that even when the GE is increasing, some
key rank results are showing perfect attacks.

Fig. 7. The key rank range of Methodology architecture with HW model for decreasing
and increasing GE in ASCAD dataset.

Next, we observe the weights and biases change of every layer throughout
the epochs. Like the previous two datasets, weight and bias change mostly in
Convolutional layers and Batch Normalization layers, but not in other layers.
Once again, it can be seen that in the Methodology architecture, both weights
and biases change significantly, while for the Noise architecture, only biases
change and weights are almost constant.

In Fig. 8, we show the weights’ evolution of the best initializer (Fig. 8a) and
average performing one (Fig. 8b). The corresponding experiments are shown in

Fig. 8. Weights’ evolution and experiments with Noise HW setting on the ASCAD
dataset.
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Figs. 8c and 8d for the Noise architecture and the HW model. In these experi-
ments, the worst initializer, RandomUniform (see Fig. 6d), performed similarly
to Zeros and Ones, as in every experiment, GE was increasing.

Finally, to explore the influence of weight initializers in the last layer, we run
experiments with the Methodology architecture, using all the hyperparameters
of the two experiments except the setting of the last layer in the neural network.
Like [23], the weight initializer of the last layer is a default one. The new results
show that weight initializer has a significant influence on the outcomes. In the
experiments with the Methodology ID setting, the average GE values of all weight
initializers (except Zeros and Ones) decrease, but there is a difference in the
stability of the initializers. The best weight initializer is he normal. With the
Noise architecture, the average GE values of all weight initializers increase. The
best weight initializer is lecun uniform, since, for two out of ten simulations, GE
converged to zero.

5 Weight Initializer Influence on Other Hyperparameters

Based on the best weight initializers that we find to provide better performance
for specific neural network architectures and datasets, we now analyze whether
a weight initializer’s performance depends on its combination with other hyper-
parameters or if a weight initializer method is connected to the dataset itself.
In other words, we wish to understand if the selection of a weight initializers
is optimal for a restricted group of hyperparameters or if it is more dependent
on the nature of the side-channel traces, meaning that any small variations on
hyperparameters would still lead to a successful attack in the majority of tests.

We select the Methodology convolutional neural network architecture used
in the previous sections and make small variations in their hyperparameters to
investigate the influence on the best found weight initializer. To do this analysis,
we select ASCAD dataset. For this dataset and the Methodology CNN archi-
tecture, we find that he normal weight initializer provide better results. Table 2
shows the ranges of hyperparameters that we vary in different CNN training
phases. In total, we train 400 CNNs, and we use the HW leakage model.

Table 2. Hyperparameter variations in the Methodology architecture.

Hyperparameters Original Minimum Maximum Step

Filters 4 4 8 1

Kernel Size 1 1 4 1

Neurons 10 5 15 1

Layers 2 2 3 1

Learning Rate 5e−3 1e−3 1e−2 1e−4

Mini-Batch 100 100 400 100

Activation function (all layers) SELU ReLU, Tanh, ELU, or SELU
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Figure 9 shows that Tanh is the only activation function that does not provide
successful key recovery in any of the experiments. For the ReLU, ELU and SELU
activation functions, the different trained CNNs architectures can return low GE.

Fig. 9. Activation functions and guessing entropy.

Concerning the number of filters in the single convolution layer of this archi-
tecture, the usage of four filters tends to maximize the attack’s success, as demon-
strated in Fig. 10. Increasing the filter size decreases the probability of the attack
to be successful. Regarding kernel sizes, we observe that small variations on this
hyperparameter do not significantly affect the results. In Fig. 11, for kernel sizes
varying from 1 to 4, the density of low GE values is similar in all the cases.

Fig. 10. Filters and guessing entropy.

Fig. 11. Kernel sizes and guessing entropy.

Finally, we also observe that making small variations in the number of layers
and neurons also does not provide too much effect on the final GE. As shown
in Figs. 12a and 12b, more layers, and more neurons tend to provide a subtle
increase in the concentration of low GE values. These variations are insufficient
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Fig. 12. Different layers and neurons variations and their relation to final GE results.

to assume that the combination of architecture hyperparameters and weight
initializer strictly depends on a specific number of layers and neurons.

We also do not observe a significant effect on the final GE results for different
mini-batch sizes (from 100 to 400) and different learning rates (from 0.001 to
0.01). Therefore, this analysis’s main conclusion is that the choice of a weight ini-
tializer for the Methodology CNN architecture (when using the ASCAD dataset
with the Hamming weight model), depends mostly on the activation function
rather than the rest of hyperparameters. However, for this scenario, a more
precise conclusion would be to assume that for a specific dataset (and leakage
model), there is an optimal combination of activation function and weight initial-
izer. Weight initializers with heuristics are derived based on certain assumptions
on the activation functions. For example, the Glorot initializer assumes that the
activations are linear. This assumption is not valid for ReLU activation func-
tions, so He et al. [8] derived a new initialization method, and it allowed their
deep models to converge as opposed to the Glorot initialization method. There-
fore, we see that weight initializers are closely related to activation functions,
which supports our conclusion.

6 Conclusions and Future Work

In this paper, we evaluate the influence of the weight initializer choice on the
performance of CNNs in the profiled side-channel analysis. We consider 11 weight
initializers, three datasets, two leakage models, and two CNN architectures. We
evaluate the weight initializer performance by observing guessing entropy, the
stability of results, and the evolution of weights through the training process.

Our results show that when the dataset is easy to attack, it is not important
what weight initializer to use. Going toward more difficult datasets, we observe
more influence stemming from this selection. Interestingly, we see that specific
key rank experiments can behave extremely well or extremely badly from the
guessing entropy results. What is more, we see significant differences in individual
training processes, which means that weight initializers play a significant role in
the training process, and it is necessary to run multiple training phases (and not
only attacks to obtain guessing entropy). Next, most of the changes in weights
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happen in the Convolutional and Batch Normalization layer, while we observe
almost no change in weights in dense layers. Finally, we analyze the intercon-
nection between weight initializers and other hyperparameters. Our results show
a strong connection with activation functions and only marginal connection to
other commonly explored hyperparameters. This is supported by the fact that
the weight initializers with heuristics are designed based on certain properties
of activation functions. However, more experiments could further support this
observation. Mathematical explanations of weight initialization strategies were
out of scope for this work, but this is an interesting and broad research topic
that contributes to a deeper understanding of the deep learning models.

For future work, we see two particularly interesting directions. The first one is
to explore the influence of weight initializers and activations functions. Indeed,
our results indicate that changes in activation functions influence the results
from different weight initializers significantly. The second direction is to explore
the unsupervised pre-training setup. Results are showing that autoencoders can
be used to assign weights to each layer in an unsupervised manner, which helps
to guide the learning towards basins of attraction of minima that support better
generalization from the training dataset [7].
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