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As the famous philosopher Jagger once said
‘You can’t always get what you want’.

— Dr. Gregory House

You’re right, but as it turns out
‘If you try, sometimes you get what you need’.

— Dr. Lisa Cuddy





A B S T R A C T

In numerical methods, correct geometry description and mesh refine-
ment are a challenge. By using a more geometrically based Finite
Element Analysis (FEA) type method called ‘Isogeometric Analysis’
(IGA), exact geometry description can be attained, even on coarse
meshes. Furthermore, mesh refinement is relatively easy, since no com-
munication with a geometry description is necessary. From a maritime
perspective, this method seems to be very interesting. Therefore, a
first step towards an all-inclusive IGA framework for potential flow
problems of ships and offshore structures is made by using IGA to
solve linear free surface waves in a bounded 2D and 3D domain.

The goal of this thesis is twofold. The first goal is finding out which
of three weak formulations is best suited for further development. The
second goal is testing the advantages of IGA in a potential frame work.
A secondary goal is testing MFEM, the C++ finite element library that
was used. These goals were reached by testing the three formulations
on (1) a sloshing wave, (2) an airy wave and (3) a step wave in a square
tank of 1 m2 and (4) a sloshing wave in a cubic tank of 1 m3 with a
cylinder in the middle. The first two have analytical solutions that
can be used for verification and validation, the last two are used to
compare standard FEA with IGA.

The three weak formulations are formed by transforming the strong
problem definition into three different weak forms. The main differ-
ence between these three being the way the boundary conditions are
implemented. The first, reduced formulation is formed by combining
the free surface boundary conditions, the second, mixed formulation
by implementing all three boundary conditions directly and the third
decoupled formulation by decoupling the problem into a free surface
and an interior part. The first formulation is the simplest, but is hard
to extend towards more complicated problems and is therefore used
as a reference solution. The mixed and decoupled formulations are
more complicated but can be extended.

The first two tests showed that the reduced and mixed formula-
tions have identical results. These results were very accurate: the wave
period could be calculated accurately for coarse meshes and, very
important, energy was conserved perfectly. The results for the de-
coupled formulation were significantly worse: more refined meshes
were needed to calculate the wave period accurately and the energy
showed periodic behaviour. The last two tests demonstrated that IGA
offers results comparable to FEA for less degrees of freedom. The more
difficult geometry of the fourth problem was much better represented
by IGA.
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1
I N T R O D U C T I O N

In shipbuilding, prediction of ship resistance and behaviour was,
is and always will be one of the main challenges. How to make this
prediction as easy, fast and accurate as possible, was, is and always will
be one of the main questions. Several methods have been used since the
first people sailed the earth: from the risky old school method of trial
and error, via model towing tank tests to modern-day Computational
Fluid Dynamics (CFD) calculations. Today, most analyses are done
numerically. Either with the slower, but more accurate, CFD-solvers
or by using faster, but less accurate potential flow analysis methods.
In both methods, the correct representation of geometry and mesh
refinement of this geometry can be a challenge. Therefore, a first step
towards the incorporation of the concept of Isogeometric Analysis (IGA)
into shipbuilding is made in this thesis. The ultimate goal is an ‘all-
inclusive’ IGA-framework for potential flow problems of ships and
offshore structures.

1.1 previous research

IGA was introduced by Hughes et al. in 2005 [39, 43]. It is an analysis
method that is similar to Finite Element Analysis (FEA), but is more
geometrically based. This is achieved by using Non-uniform Rational
B-Splines (NURBS) as basis functions and in the mesh definition. NURBS

are commonly used in Computer-Aided Design (CAD)-programs like
‘Maxsurf’ [56] (see figure 1.1) and ‘Rhinoceros’ [64]. By doing so,
the geometry can be represented exactly, even on a coarse mesh.
Furthermore, mesh refinement does not change the geometry. This
offers several potential advantages over traditional Finite Element
Method (FEM).

After its introduction in 2005, the isogeometric analysis method-
ology has gained a lot of interest by researchers. This has lead to a
firm groundwork of the approach. The mathematical study of NURBS-
based IGA can be found in [5]. Other theoretical contributions include
the development of IGA with T-splines [9, 25], with LR B-splines [44],
(hierarchical) refinement of IGA [13, 29, 58, 66, 71] and the contruction
of discrete differential forms [16] and stable elements [17, 19]. Several
succesful algorithms have been proposed to speed up the computation
time [3, 33, 40, 65].

In the recent years the isogeometric analysis methodology has been
succesfully used in various fields of engineering. Without trying to be
complete, a few are mentioned: electromagnetics [18, 70], blood flow

1



2 introduction

Figure 1.1: Example of a Maxsurf CAD-model [24]

and heart-valve computations [6, 8, 36, 37, 45, 73], shape optimization
[12, 21, 62, 67, 72] and structural mechanics and fatigue [10, 11, 57,
59, 68]. In the maritime field, isogeometric analysis is used for fluid
flow computations and fluid-structure interaction. The isogeometric
methods are often employed with the variational multiscale (VMS)
paradigm [26, 27, 38, 41, 42]. For applications in incompressible turbu-
lence see e.g. [1, 4, 7, 23, 27, 35, 47, 51, 63], for free surface flow and
FSI consult [2, 48, 51].

Isogeometric analysis has been used in conjunction with Boundary
Element Method (BEM). For instance, Belibassakis et al. developed an
isogeometric BEM to calculate the wave-resistance in [14] and [15]. The
method is used to calculate the wave resistance of a prolate spheroid,
a Wigley hull and a Series 60 hull. Other examples can be found in
[31, 49, 50, 61].

1.2 advantages of iga in maritime engineering

In the maritime world, CAD-programs are very often used to design
ships and other structures. NURBS are very well equipped to represent
the rounded and fluent shapes that are omnipresent in maritime en-
gineering. In order to predict the behaviour of the design, numerical
calculations of (for instance) the resistance and hydrodynamic coeffi-
cients are often performed. Numerical calculations need some kind of
numerical version of the geometry in the form of a ‘mesh’. However,
rounded shapes are hard to represent with traditional mesh types such
as tetrahedrons. Usually, they can only be approximated. This results
in not-exact geometries, the need to go back to the original CAD-model
if the mesh needs to be refined and a changing geometry as the mesh
is refined. Using the techniques of IGA, that actually originate from
shipbuilding, could solve these problems. Possible applications are
for instance structural mechanics, CFD-calculations and potential flow
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analysis. In this thesis a first step in the direction of potential flow
analysis is made. A possible example of an application would be a
wave resistance estimation code that can be used for hull optimization.

1.3 reading guide

This thesis is divided into three parts. The first part focusses on the
introduction of concepts that are used: potential flow (chapter 2), finite
element analysis (chapter 3) and isogeometric analysis (chapter 4).
These three concepts are complex enough for years of studying, so de-
scriptions are far from complete and only serve as a short introduction.
In the second part, these concepts are used to solve the problem: the
estimation of linear free surface waves in a bounded domain. Three
different weak forms are derived and explained in chapter 5. These
weak forms are discretised in space and time in chapter 6. In chapter
7, some limitations of the used MFEM package are explained. The
results are presented and analysed in the third part. The three for-
mulations are tested on several two and three dimensional problems
in chapters 8 to 11 to see the differences between the formulations
and to see the difference between IGA and ‘standard’ FEA. The report
ends with a chapter dedicated to the conclusions and by giving some
recommendations for future work.





Part I

C O N C E P T S A N D M E T H O D S

The methods that are used in this thesis are introduced in
this part. These three methods are potential flow analysis
(chapter 2), finite element analysis (chapter 3) and isogeo-
metric analysis (chapter 4). Since all three subjects are big
enough for complete books and years of studying, only a
practical introduction is given to them so the reader can
understand them well enough to understand the way the
results are obtained.



2
A N I N T R O D U C T I O N T O I N C O M P R E S S I B L E
P O T E N T I A L F L O W A N A LY S I S

Potential flow is a relatively simple model for fluid flow that is ob-
tained by assuming irrotationality. With this assumption, it is possible
to come to analytical solutions of several flow problems. Furthermore,
it can be used to set up numerical models that are cheaper than the
more complicated CFD-models. However, viscous effects are neglected.
These characteristics lead to a model that is very useful in some ap-
plications, but also has its limitations. For instance: it can be used to
estimate the wave-making resistance of a ship hull or the lift produced
by an airplane wing. It could also be used for optimization purposes.
However, viscous effects like drag cannot be determined.

In this chapter, a short introduction to incompressible potential flow
analysis is given. Many articles and books are written on this topic (see
for instance [46]), so the interested reader is referred there. The deriva-
tion of the governing equations is given in the first paragraph. Several
ways to solve these equations are given in the second paragraph.

2.1 derivation of the governing equations

Incompressible, Newtonian fluids with constant viscosity can be de-
scribed with the incompressible (so density ρ and viscosity µ are
constant) version of the Navier-Stokes equations [46, p. 16]:

∇ · u = 0 (2.1a)

ρ

(
∂u
∂t

+ u · ∇u
)
= −∇p + µ∇2u + ρ f (2.1b)

where u is the velocity vector of the fluid in the direction of the
principal axes in m/s, ρ is the density of the fluid in kg/m3, t is the
time in s, p is the pressure N/m2, µ is the viscosity coefficient in
N·s/m2 and f is the vector of the volume forces in the direction of the
three principal axes in N.

From dimensional analysis, the non-dimensional Reynolds number,
which is a measure of the ratio between the inertial and viscous forces,
can be formulated:

Re =
ρVL

µ
, (2.2)

where V and L are a reference speed and length. If this Reynolds
number is sufficiently large, the viscous terms are very small compared
to the inertial ones. Usually, this is the case in the turbulent flows

6



2.1 derivation of the governing equations 7

around ships. However, the shear flow derivative (∇2u) is large near
solid boundaries, so the µ∇2u term cannot be neglected there. The
flow is therefore often divided into two regions: the outer flow region,
where viscous effects are small, and the boundary layer, where they
are not.

It can be shown that, for high Reynolds numbers, vorticity ξ

ξ = ∇× u

is only generated in the small boundary layer and that it is convected
along with the flow faster than it can be diffused into the outer region.
Therefore, if the outer region is rotation-free, it will remain that way.
So:

∇× u = 0

or

∂w
∂y

=
∂v
∂z

,
∂u
∂z

=
∂w
∂x

and
∂v
∂x

=
∂u
∂y

.

This means the integral of the velocity along an arbitrary line C is
the exact differential of a potential φ:∫

C
u · dl =

∫
C

udx + vdy + wdz = φ(x, y, z).

So the velocity is equal to the gradient of this potential:

u = ∇φ (2.3)

This can be substituted in the continuity equation for incompressible
fluids (2.1a) to form the linear differential equation known as Laplace’s
equation that can be used to obtain the velocity field of an irrotational,
inviscid, incompressible flow:

∇ · u = ∇ · ∇φ = ∇2φ = ∆φ = 0.

By applying the right boundary conditions, the velocity field of a
certain problem can be obtained. For instance, finding the flow that
results from a solid body B moving with velocity uB through an infinite
fluid. In this case, a no-penetration and a far-field boundary condition
are applied to obtain the so-called Neumann exterior problem:

Find φ such that:

δφ = 0, (2.4a)
∂φ

∂n
= n · uB, on ΓB (2.4b)

∇φ = 0. at infinity (2.4c)
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where n is the normal vector of body B.
The pressure in an inviscid incompressible fluid can be determined

with Bernoulli’s equation:

E +
p
ρ
+

1
2

u2 +
∂φ

∂t
= C(t), (2.5)

So the value of the left-hand side of (2.5) is a function of time only.
Bernoulli’s equation can be derived from Euler’s equation:

∂u
∂t

+ u · ∇u = f − ∇p
ρ

(2.6)

and by assuming only conservative body forces f act on the body, so
they can be written as

f = −∇E. (2.7)

If the body force is, for instance, gravity, then this equates to E = −gz.

2.2 solving the potential flow

Since the Laplace equation (2.4a) is a linear differential equation, the
linear combination φsum of two solutions φ1 and φ2 is also a solution:

φsum =
2

∑
i=1

ciφi

This property can be used to form new solutions by combining basic
solutions like ‘point sources’, ‘point doublets’, ‘polynomials’ and ‘vor-
tices’ [46, p. 58-71]. This is a way to obtain analytical solutions and has,
for instance, been used to calculate the lift of wings in the early days
of aeronautics. However, this is usually only possible after simplifying
the geometry and the boundary conditions.

In order to be able to solve for more complex problems, numerical
techniques have been developed. An example is the ‘boundary element’
or ‘panel’ method. In the panel method, singular elements, e.g. sources
σ and doublets µ, are distributed over the surface of boundary SB:

φtot = −
1

4π

∫
SB

(
σ

1
r
− µn · ∇1

r

)
dS + φ∞ (2.8)

where φ∞ is the free-stream potential.
Equation (2.8) is reduced to a set of linear algebraic equations by

dividing the body SB into N surface panels and Nw wake panels on
each of which the boundary condition is specified on a ‘collocation
point’. This point is, for instance, the center of the panel. For each
collocation point a linear algebraic equation with N unknown sources
and doublets can be set up:

N

∑
i=1

Aiµi = −
N

∑
i=1

Biσi.
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This can be done for all N collocation points, which leads to a matrix-
vector system of the form

Aµ = −Bσ.

where matrices A and B contain the influence coefficients. The solution
of the the Laplace equation is not unique from a mathematically point
of view: the combination of sources and doublets is arbitrary and the
amount of circulation around surface SB has to be fixed based upon
physical considerations. Physical problems can then be modelled by
applying (a mix of) Neumann and Dirichlet boundary conditions and
solving the system numerically.

FEM is another possible numerical method that can be used to
solve potential flow. The big difference with BEM is that the complete
domain is discretised instead of only the boundaries. This results in
larger matrices and therefore, usually, in more expensive computations.
However, the matrices that result from BEM are ‘fuller’ than those in
FEM, which can counter this characteristic. FEM will be described in
more detail in the following chapter.



3
A N I N T R O D U C T I O N T O F I N I T E E L E M E N T
A N A LY S I S

Finite Element Analysis (FEA) is a numerical method that can be
used to solve engineering and mathematical problems numerically.
It is applied in many fields. A few examples are structural analysis,
option pricing, fluid-structure interactions and flow problems [28,
p. v]. Complete studies and books are dedicated to this subject, see
for instance [28, 74]. A short introduction to the practical side of FEA

is given in this chapter.
In general, FEA can be divided in four steps:

1. Write the physical problem in a mathematical form, usually as a
Partial Differential Equation (PDE).

2. Discretise the derived mathematical form and the geometry.

3. Solve the resulting discretised equations.

4. Post-process the results to asses them.

In this chapter, the second step in this process is explained. In the
first paragraph the concept of weak formulations is introduced and
explained. The second paragraph gives a short introduction on the
discretisation of the problem domain into elements. How the weak
formulation in the first paragraph can be discretised is explained in
the third paragraph. In the last paragraph, some examples of basis
functions that are used for this discretisation are given.

3.1 weak formulation

The most common approach to model engineering problems are Partial
Differential Equations (PDEs). For instance, the Laplace problem:

−∆φ = f . (2.4a)

These governing equations are usually referred to as the strong form.
The strong form is continuous and therefore needs to be discretised
in order to solve it numerically. For many problems, it is not possible
to formulate a general solution to this strong form. The strong form
is therefore transformed to a so-called weak form for which accurate
approximate solutions can be found. By doing this, the boundary
conditions are incorporated and the needed order of continuity of the
elements is reduced. The strong form can be transformed into a weak
form in four steps [74, p. 47]:

10
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1. Multiply each PDE with a (weighting) function.

2. Integrate this product over the domain of the problem.

3. Reduce the maximum order of derivatives in this integral by
integration by parts.

4. If possible, introduce the boundary conditions.

As an example, this is done for the Laplace equation (2.4a). First, it
is multiplied by a arbitrary weighting function w that can be chosen
conveniently:

w · −∆φ = w · f .

This is then integrated over the domain Ω:∫
Ω

w · (−∆φ)dΩ =
∫

Ω
w · f dΩ.

Using integration by parts and assuming that the boundary terms are
0, this can be written as:

∫
Ω
(∇w) · (∇φ)dΩ =

∫
Ω
·w · f dΩ. (3.1)

3.2 discretisation of the domain

In order for a computer to be able to approximate a continuous math-
ematical problem with infinite degrees of freedom, it needs to be
discretised on a mesh in order to get a finite number of points. In
finite element methods a certain physical domain, a tank of water
for instance, is subdivided into elements. The simplest form of these
elements are lines (one dimension), triangles (two dimensions) and
tetrahedrons (three dimensions, see figure 3.1). Together, these ele-
ments form the mesh. The degrees of freedom are then associated
with the nodes of this mesh. The continuous problem can then be
approximated by numerical computations of these degrees of freedom.

The generation of good quality meshes is a complicated process
and is a complete study on its own. Some reviews of mesh generation
techniques are given in [34, 52].

3.3 discretisation of the weak formulation

The weak formulation can be discretised by approximating it with the
interpolation operator [28]:

g(x) ≈ gh(x) ≡
n

∑
i=1

γiNi(x). (3.2)
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Figure 3.1: Example of a mesh of tetrahedrons

Here, gh(x) is the approximation of the continuous function g(x), n
is the number of mesh points, γi are the global degrees of freedom
and Ni(x) are the so called basis functions. There are many possible
basis functions, see for some examples paragraph 3.4. The simplest
example is probably a piecewise linear function with coefficients
γi = g(xi), where xi is the ith node in the mesh. An example of
such an discretisation is shown in figure 3.2. Here, a simple cosine is
sampled on a mesh of 10 equally spaced points and interpolated by
assuming the change in y is linear with x.

0 1 2 3 4 5 6

x

−1.0

−0.5

0.0

0.5

1.0

y

Continuous

Discretized

Figure 3.2: Piecewise linear interpolation of y = cos(x)

Using the interpolation operator (3.2) to approximate φ with φh in
the weak form of the Laplace equation (3.1), results in:

φ ≈ φh ≡
n

∑
i=1

φiNi(x). (3.3)
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Equation (3.1) must hold for all possible weightings w, so it can be
chosen freely. 1 Therefore, it is defined as follows:

w ≡ Ni(x). (3.4)

Substituting (3.3) and (3.4) into (3.1) results in:

∫
Ω

(
∇

n

∑
i=1

φiNi(x)

)
·
(
∇Nj(x)

)
dΩ

=
∫

Ω
f (x)Nj(x)dΩ

Swapping the summation and integration results in n equations of the
form:

φi

∫
Ω

(
∇Ni(x) · ∇Nj(x)

)
dΩ =

∫
Ω

f (x)Nj(x)dΩ.

This can be written in matrix form:

Aφ = b,

where the entries of matrix A, Aij, are given by

Aij =
∫

Ω
∇Ni(x) · ∇Nj(x)dΩ,

the entries of vector b are given by

bi =
∫

Ω
f (x)Ni(x)dΩ,

and entries of vector φ are φi. This system can be solved with linear
algebra.

3.4 basis functions

For the discretisation with the interpolation operator (3.2), a basis
function Ni(x) is needed. This function serves as a trial solution or
approximating function. Many basis functions are available. Examples
are Lagrange, Crouzeix-Raviart, Raviart-Thomas, Nédélec [28, p. 25-30]
and Legendre functions.

For figure 3.2, the piecewise linear P1 Lagrange finite elements are
used. These are defined elementwise for i ∈ {0, ..., n + 1} as [28]:

Ni(x) =


1

hi−1 (x− xi−1), if x ∈ Ii−1

1
hi
(xi+1 − x), if x ∈ Ii

0. otherwise

(3.5)

1 This is not completely true: there are mathematical requirements that have to be met.
All these requirements are met by the basis functions used in this thesis.
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Here, xi are the vertices of a certain mesh, Ii is the interval [xi, xi+1]

and hi = xi+1 − xi is the grid size. An example of the resulting ’hat-
functions’ is given in figure 3.3 for the vertices xi = [0, 0.5, 1, 2, 4].
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0.8

1.0

Figure 3.3: First order Lagrange functions

Higher order Lagrange polynomials are shown in figure 3.4 on the
interval [0, 1] with k + 1 equally spaced nodes (each extra degree also
needs an extra node).
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Figure 3.4: Lagrange polynomials of degree 1, 2 and 3



4
A N I N T R O D U C T I O N T O I S O G E O M E T R I C A N A LY S I S

In this chapter, the isogeometric analysis concept is introduced. A
more extensive description can be found in literature such as the 2005

paper by Hughes [39] and the book ‘Isogeometric Analysis: Toward
Integration of CAD and FEA’ by Cottrell et al. [43].

In the first paragraph, a short history of IGA is given. B-splines,
functions that stand at the basis of NURBS, are explained in the second
paragraph. The third paragraph is dedicated to the explanation of
NURBS and its characteristics. How these B-splines and NURBS are used
to discretise PDEs and geometry is explained in the last paragraph.

4.1 a historic perspective on iga

In the days before the advance of computers, ships were designed
by hand. In order to be able to draw continuous, fluent hull shapes,
so-called ‘splines’ were used. These were flexible strips of timber or
steel that were bent and held in place by weights, such as in figure
4.1 [69]. The uniform distribution of stress in the spline results in
smooth lines that can be used to draw fair hull shapes with low drag.
Making a big leap forward to mid-twentieth century, the first days of
the computer, car manufacturers like Citroën, Renault and General
Motors were looking for ways to store and communicate car shapes.
Mathematicians de Casteljau, Bézier and De Boor came up with ways
to do just this in the form of Casteljau’s algorithm, Bézier curves and
B-splines (figure 4.2). These are mathematically quite complex, but
are very simple to use by designers. The shape of the curves can be
altered by moving ‘control points’ around in a way that is similar to
the physical weights that were used in splines. In the 1980’s, NURBS

were developed by aerospace company Boeing. NURBS are basically a
generalization of B-splines. Since then, it has become the standard in
CAD-programs like ‘Maxsurf’ [56] and ‘Rhinoceros’ [64].

With the advance of computers, also Computer Aided Engineer-
ing (CAE) came up: engineers wanted to be able to solve partial dif-
ferential equations numerically. One way to do this is Finite Element
Analysis (FEA). The development of FEA started in the 1950s and 1960s,
so approximately 20 years before NURBS were developed. A numerical
description of geometry is at the basis of FEA, but the geometric de-
scription is very different than in CAD. In the present day, a typical
work flow of an engineer therefore includes the generation of a geo-
metric representation that can be used in FEA from a representation
made in a CAD-program. Sometimes this generation can be automated,

16
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Figure 4.1: Example of a ‘spline’ [69]
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Figure 4.2: Example of a B-spline curve

but most of the times semi-automatically is the best option. Hughes
[39] estimates “that about 80% of the overall analysis time is devoted to
mesh generation". Transforming a CAD geometry to one that is suitable
for FEA usually results in some kind of geometry approximation and
the need for communication with the CAD-model if the mesh needs
to be refined. Hughes argues that, since the size of the CAE industry
is about 20% of that of the CAD industry, the best way forward is “to
attempt to change FEA into something more CAD-like". Hughes et al.
do just this by using NURBS in their method that they called IGA [39].
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4.2 b-splines

At the basis of NURBS are B-Spline basis functions and curves. A B-
spline curve of degree p is defined as a linear combination of control
points Pi and B-spline basis functions Ni,p(x):

C(u) =
n

∑
i=0

Ni(u)Pi. (4.1)

The B-spline basis functions Ni,p(x) can be calculated recursively as
follows:

Let U = {u0, ..., um} be a sequence of non-decreasing real numbers
(ui ≤ ui+1, i = 0, ..., m− 1). The basis function Ni,p is then defined as:

Ni,0(u) =

1, if ui ≤ u < ui+1,

0 otherwise,
(4.2a)

For p is 1, 2, 3, ..., they are defined by

Ni,p(u) =
u− ui

ui+p − ui
Ni,p−1(u) (4.2b)

+
ui+p+1 − u

ui+p+1 − ui+1
Ni+1,p−1(u).

Ni,p is the ith B-spline basis function of degree p and ui is the ith value
of the knot vector U. In case (4.2a) yields 0/0 the function is defined
to be 0.

U is called the ‘knot-vector’ and its entries ui are the ’knots’. A
knot span is the interval between two succeeding knots. Knots do
not need to all have distinct values: U =

(
0, 0, 0, 1, 1, 1

)
is a

perfectly valid (and often used) knot vector where the knots 0 and
1 have multiplicity 3. They also do not need to be spaced uniformly:
U =

(
0, 0, 1/5, 6/7, 1, 1

)
is also valid. Knot multiplicity is

used to control the local continuity of the curve. The knot spacing can
be used to increase the resolution locally. Usually, the knot vector is
chosen to lie between 0 and 1, but this is not necessary. Furthermore,
the first and last value of the knot vector usually have multiplicity
p+ 1. This reduces the continuity at the endpoints from Cp−1 to C0 and
makes the B-spline ‘clamped’. Examples of B-spline basis functions
for the knot vector U =

(
1/4, 2/4, 3/4, 1

)
of order 0, 1 and 2

are given in figure 4.3. Another example is given for the knot vector
U =

(
0, 0, 0, 1/5, 2/5, 2/5, 6/7, 1, 1, 1

)
in figure 4.4.

A spline can be formed from the defined B-spline basis functions
with (4.1). The control polygon P has (m− p− 1) points, where m is
the number of knots. For instance, figure 4.2 is made by using the
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Figure 4.3: Examples of B-spline basis functions of order 0, 1 and 2
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Figure 4.4: B-spline basis function of order 2

B-splines defined by knot vector U = {0, 0, 0, 0, 1/4, 1/2, 3/4, 1, 1, 1, 1},
order p = 3 and using the control net

P =

(
0 1 1 2 2.5 1.8 1

0 0 1 1 −0.2 −0.8 −0.5

)
.

The derivative of a B-spline curve can be determined with

C
′
(u) =

n

∑
i=0

N(k)
i,p (u)p

Pi+1 − Pi

ui+p+1 − ui+1
. (4.3)

B-spline surfaces are defined by taking a linear combination of the
control points in the control polygon and the tensor product of two
basis functions:

S(u, v) =
n

∑
i=0

m

∑
j=0

Ni,p(u)Nj,p(v)Pi,j. (4.4)

4.3 nurbs

B-splines have the major drawback of not being able to represent conic
sections. This problem was solved by the introduction of NURBS. A
NURBS-curve is a rational function of B-splines. Rational functions are
fractions of which both the numerator and denominator are polyno-
mials. A NURBS-curve is formed with

C(u) =

n
∑

i=0
Ni,p(u)wiPi

n
∑

i=0
Ni,p(u)wi

, (4.5)

where wi are values called weights, usually chosen between 0 and 1.
B-spline curves are a subset of NURBS-curves where the weights are
all set to 1. An example of such a NURBS curve is plotted in figure
4.5 together with the B-spline curve described previously. Weights
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are w = [1, 0.5, 1, 0.5, 1, 0.5, 1] and the same knot vector and control
polygon are used. It is clearly visible that the NURBS-curve is further
away from points with smaller weights and closer to points with
weight 1 with respect to the B-spline-curve. This offers quite intuitive
CAD-modelling.

−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

−0.5

0.0

0.5

1.0
B-spline curve

Control polygon

NURBS-curve

Figure 4.5: Example of a NURBS curve

NURBS-surfaces can be calculated in similar fashion:

S(u, v) =

n
∑

i=0

m
∑

j=0
Ni,p(u)Nj,q(v)wi,jPi

n
∑

i=0

m
∑

j=0
Ni,p(u)Nj,q(v)

(4.6)

Some characteristics of NURBS and B-splines are mentioned in [32]
and [60]:

1. Local support: Ni,p(u) = 0 if u is outside of the half open inter-
val [ui, ui+p+1). This property makes it possible to deform the
geometry locally. If one control point is moved or its weight
changed, it only affects the curve on the interval u ∈ [ui, ui+p+1).

2. Within a given knot span [uj, uj+1) at most p + 1 B-splines are
non-zero.

3. Non negativity: the basis splines are never smaller than 0.

4. All derivatives of Ni,p(u) exist in the interior of a knot span. At
a knot, it is p− k times continuously differentiable, with k the
multiplicity of a knot.

5. If the B-splines are clamped they form a partition of unity:
n
∑

i=0
Ni,p = 1

6. The B-splines attain exactly one maximum value, except if p = 0.

7. The basis functions always form a linear independent basis.
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8. Variation diminishing property: if the degree of a B-spline is
increased, a change in the control points has a smaller influence
on the curve.

These characteristics lead to the following geometric characteristics
of NURBS-curves:

1. The first and last points of the NURBS-curve coincide with the
first and last points of the control polygon.

2. An affine transformation of the curve can be applied by applying
the transformation to the control points.

3. The curve can be differentiated infinitely in the interior of a knot
span and p− k times at a knot with multiplicity k.

4. Variation diminishing: the curves always lie in the convex hull
spanned by the control polygon and the curve always ’wiggles’
less then the control polygon.

5. No line or plane has more intersections with the curve than with
control polygon.

4.4 numerical analysis with nurbs

A NURBS-mesh can be formed by defining NURBS-curves (2D) or -
surfaces (3D) and use these to construct a coarse mesh of two or three
dimensional NURBS-elements. By doing this, the domain is divided into
elements by the knot spans. The geometry of the domain can then be
formed by defining the control points. The unknown fields (in this case
potential φi and wave height ηi, but in other problems these could for
instance be temperature or displacement) are approximated with (3.2)
with the basis functions that are also used for the geometry definition.
This is known as the isoparametric concept. The coefficients in the
control polygon P are the control variables, or degrees-of-freedom.
The matrices and arrays that were formed in paragraph 3.3 for FEA,
can be formed in the same way for NURBS meshes.

The variation diminishing property of NURBS ensures that Gibbs
phenomena are not present in IGA. Gibbs phenomena are the oscillations
in the finite element interpolation that occur when the interpolation
function is used to fit discontinuous data. A nice comparison between
similar and dissimilar concepts of FEA and IGA is made in table 1 of
[39], which is repeated in this thesis in table 4.1.



4.4 numerical analysis with nurbs 23

finite element analysis isogeometric analysis

Nodal points Control points

Nodal variables Control variables

Mesh Knots

Basis interpolates nodal points
and variables

Basis does not interpolate con-
trol points and variables

Approximate geometry Exact geometry

Gibbs phenomena Variation diminishing

Subdomains Patches

Compact support

Partition of unity

Isoparametric concept

Affine covariance

Patch tests satisfied

Table 4.1: Comparison of finite element analysis and isogeometric analysis
based on NURBS [39]





Part II

P R O B L E M D E F I N I T I O N

The methods described in the first part are used to for-
mulate the linear, free surface potential flow problem in
this second part. The problem is first defined in a strong
form and then turned into three different weak forms in
chapter five. To solve these weak forms numerically, they
are discretised in space and time in chapter six.



5
S T R O N G A N D W E A K F O R M S

In this thesis, the main problem is the calculation of free surface
waves in a tank via potential theory, introduced in chapter 2. By
using potential theory, viscous effects are neglected. As explained in
chapter 3, the way to do this in FEA and IGA is write a governing set of
equations in the form of partial differential equations, usually called
the strong form. To solve this strong form numerically, it is written in a
weak form that is subsequently discretised.

Three different weak forms are discussed: a reduced form, a mixed
form and a decoupled form. The reduced form is quite simple to solve,
but hard to expand towards (for instance) non-linear waves and will
serve as a reference solution, the decoupled formulation is often used
in literature and the mixed formulation offers a different approach
to the problem. The difference between these three is the way the
boundary conditions are imposed. Behaviour of the three formulations
will be compared in later chapters to see the differences and to see
which one can be best used for further development.

5.1 strong form

The theory of potential flow is explained in chapter 2. As is shown
there, the main equation in potential flow is the Laplace equation (2.4a)
that needs to be satisfied on the whole domain Ω of the problem:

∆φ = 0.

In order to define the problem, boundary conditions need to be
defined. Two different boundary types are defined: the free surface
boundary Γ f s and the remaining, non free surface boundary Γn f s.
Boundary conditions can be set up by assuming pressure is constant
across the free surface and that a particle on the free surface will stay
there. Furthermore, it is not possible for fluid to go through watertight
boundaries.

A dynamic boundary condition is imposed to ensure pressure is
constant across the free surface Γ f s. This is done using Bernoulli’s
equation (2.5). Setting E = gη, p/ρ = C(t) and noting that u2 =

∇φ · ∇φ, results in the dynamic boundary condition

φt +
1
2
∇φ · ∇φ + gη = 0,

where φt the partial derivatives of φ with respect to time and g is the
gravitational acceleration.

26
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A particle at the free surface stays at the surface, if the normal
velocity of a particle on this free surface is equal to the normal velocity
of the surface. This can be used to form the kinematic boundary
condition:

ηt +∇2φ∇2η − φz = 0.

where ηt is the partial derivatives of η with respect to time, φz is
the partial derivative of φ in vertical direction and ∇2 is the two-
dimensional gradient operator.

On the non free surface part of the boundary Γn f s, a no-penetration
boundary conditions is imposed. This ensures no fluid can go through
the walls:

n · ∇φ = 0

The complete strong formulation of the problem is:

∆φ = 0 in Ω (5.1a)

φt +
1
2
∇φ · ∇φ + gη = 0 on Γ f s (5.1b)

ηt +∇2φ∇2η − φz = 0 on Γ f s (5.1c)

n · ∇φ = 0 on Γn f s (5.1d)

Here, Ω is the domain of the tank, Γn f s is the non free surface part
of the boundary of the domain and Γ f s is the free surface part of the
boundary.

These equations are linearised by assuming the amplitude of the
waves is small with respect to the wavelength. The quadratic terms
∇φ · ∇φ and ∇2φ · ∇2φ are consequently even smaller and can be
neglected. This results in the linearised strong form that will be used
in the rest of this thesis:

∆φ = 0 in Ω (5.2a)

φt + gη = 0 on Γ f s (5.2b)

φz = ηt on Γ f s (5.2c)

n · ∇φ = 0 on Γn f s (5.2d)

5.2 weak formulation one : reduced form

The first weak formulation is formed by reducing the number of
boundary conditions. This can be done by combining the boundary
conditions on the free surface Γ f s: (5.2b) and (5.2c). This is done by
differentiating (5.2b) with respect to time, which results in:

φtt + gηt = 0
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Using (5.2c) to substitute ηt with φz, this leads to the following set of
equations:

∆φ = 0 in Ω (5.3a)

φtt + gφz = 0 on Γ f s (5.3b)

n · ∇φ = 0 on Γn f s (5.3c)

This strong form can be written in weak form by multiplying both
sides by weighting function w and integrating over Ω. This results in∫

Ω
w(∆φ)dΩ = 0.

The maximum order can be reduced with a rearranged form of Green’s
first identity:

∫
Ω

w∆φdΩ =
∮

Γ
w(n · ∇φ)dΓ−

∫
Ω
∇w · ∇φdΩ

The circle integral around the boundary is equal to the sum of the
integral over the free surface Γ f s and the integral over the non free
surface boundaries Γn f s∮

Γ
w(n · ∇φ)dΓ =

∫
Γ f s

w(n · ∇φ)dΓ +
∫

Γn f s

w(n · ∇φ)dΓ

The boundary term on Γn f s is equal to 0, because of the no-penetration
boundary condition (5.3c). The free surface boundary term can be
substituted by − 1

g φtt, since it follows from the linearisation that n ·
∇φ = φz and from (5.3b) it follows that φz = − 1

g φtt. So:

∮
Γ

w(n · ∇φ)dΓ = −
∫

Γ f s

w
(

1
g

φtt

)
dΓ

The reduced weak form can then be written as:∫
Ω
∇w · ∇φdΩ +

1
g

∫
Γ f s

w · φttdΓ = 0

Using inner product notation, the reduced weak form can be written
as:
Find φ such that

(∇w,∇φ) +
1
g
(w, φtt)Γ f s

= 0. (5.4)

5.3 weak formulation two : mixed form

A second weak formulation can be formed where the two free surface
boundary conditions are not combined. Instead, strong formulation
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(5.2) is used. This results in a mixed weak formulation in which both
the potential φ and the wave height η need to be solved.

Again multiplying the Laplace equation with w, integrating over Ω
and applying Green’s first identity results in∫

Ω
∇w · ∇φdΩ +

1
g

∫
Γ f s

w · (n · ∇φ)dΓ = 0.

Boundary condition (5.2c) can be used to substitute n · ∇φ with ηt.
The result is written in inner product notation as

(∇w,∇φ)− (w, ηt)Γ f s = 0. (5.5)

The other boundary condition on the free surface (5.2b) needs to be
satisfied as well. A possible weak form can be obtained by multiplying
it by weighting function

(
ξ + α

g w
)

and integrating along the free
surface:(

ξ +
α

g
w, φt + gη

)
Γ f s

= 0 (5.6)

Equations (5.5) and (5.6) multiplied by 1/2 can be added to obtain
the final second weak formulation of the system:

Find φ and η such that

(∇w,∇φ)− (w, ηt)Γ f s +
1
2

(
ξ +

α

g
w, φt + gη

)
Γ f s

= 0 (5.7)

The coefficients 1/2 and weighting function ξ + α
g w are chosen to ob-

tain good coercivity, boundedness and accuracy. These are numerical
concepts that will not be discussed any further in this thesis.

5.4 formulation three : decoupled form

A third option is decoupling the interior and free surface problem
which results in two weak forms instead of one. The interior problem
can be written in strong form as:

∆φ = 0 in Ω (5.8a)

φ = φ̃ on Γ f s (5.8b)

n · ∇φ = 0 on Γn f s (5.8c)

Where φ̃ is defined on the free surface and follows from the strong
form of the free surface problem:

φt + gη = 0 on Γ f s (5.8d)

ηt = φz on Γ f s (5.8e)

The weak form associated with the interior problem can be obtained
in similar fashion as for the reduced form. However, the free surface
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is not part of the interior problem, so the boundary term on the free
surface

(∫
Γ f s

n · ∇φdΓ
)

is not part of the equation.
The weak form for the free surface problem can be obtained by

multiplying (5.8d) with weighting function w and (5.8e) with weight-
ing function g2/α2ξ. This is again done to obtain good coercivity,
boundedness and accuracy. The resulting weak forms are:

Find φ and η such that

(∇w,∇φ) = 0 in Ω (5.9a)

for the interior problem and

(w, φt + gη)Γ f s +
g2

α2 (ξ, ηt)Γ f s =
g2

α2 (ξ, φz)Γ f s on Γ f s

(5.9b)

for the free surface problem.
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D I S C R E T I S AT I O N O F T H E W E A K F O R M S

In chapter 5 the governing equations were formulated in strong form
(5.2). This strong form was transformed into three different weak
forms: (5.4), (5.7) and (5.9). The main difference between the three
is the way the boundary conditions are imposed. In order to solve
these weak formulations with FEA, the weak forms need to be discret-
ised. The discretisation of the variables and weighting functions are
defined in the first paragraph and applied to the three weak forms in
paragraphs two to four. The implicit temporal discretisation of these
equations is defined in the fifth paragraph. To asses the results, a
discrete approximation of the energy is used. This is defined in the
last paragraph.

6.1 spatial discretisation

The continuous variables potential φ and wave height η are approxim-
ated with the interpolation operator (3.2). So:

φ(x, t) ≈ φh(x) ≡
n

∑
i=0

φi(t)Ni(x), (6.1a)

η(x, t) ≈ ηh(x) ≡
n

∑
i=0

ηt(t)Ni(x). (6.1b)

Here, Ni(x) are the basis functions and φi and ηi are the degrees of
freedom. In FEA, the basis functions could be Lagrange polynomials
for instance. In IGA, these would be NURBS.

The discrete approximations of the several partial derivatives are
defined equivalently:

φt(x, t) ≈ φh
t (x, t) ≡

n

∑
i=0

φ̇i(t)Ni(x), (6.1c)

φtt(x, t) ≈ φh
tt(x, t) ≡

n

∑
i=0

φ̈i(t)Ni(x), (6.1d)

φz(x, t) ≈ φh
z (x, t) ≡

n

∑
i=0

φi(t)
∂

∂z
Ni(x), (6.1e)

ηt(x, t) ≈ ηh
t (x) ≡

n

∑
i=0

η̇i(t)Ni(x, t). (6.1f)

31
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Weighting functions w and ξ are defined as

w ≡ Ni(x), (6.2a)

ξ ≡ Ni(x). (6.2b)

These approximations are used to discretise the three weakforms
(5.4), (5.7) and (5.9).

6.2 spatial discretisation of the reduced form

The reduced weak form

(∇w,∇φ) +
1
g
(w, φtt)Γ f s

= 0. (5.4, repeated)

can be discretised with (6.1a) and (6.1d) and by setting w according to
(6.2a). This results in(

∇Ni,∇
n

∑
j=0

φjNj

)
+

1
g

(
Ni,

n

∑
j=0

φ̈jNj

)
Γ f s

= 0.

This results in

n

∑
j=0

φj
(
∇Ni,∇Nj

)
Ω +

n

∑
j=0

φ̈j
1
g
(

Ni, Nj
)

Γ f s
= 0.

which can be written in matrix-vector form as

Kφ +
1
g

Mφ̈ = 0 (6.3)

where the entries of stiffness matrix K are

Kij =
(
∇Ni,∇Nj

)
Ω ,

and the entries of mass matrix M are

Mij =
(

Ni, Nj
)

Γ f s
.

Vectors φ and φ̈ have entries φi and φ̈i.

6.3 spatial discretisation of the mixed formulation

Following the same methodology as for the reduced formulation, the
mixed form

(∇w,∇φ)− (w, ηt)Γ f s +
1
2

(
ξ +

α

g
w, φt + gη

)
Γ f s

= 0 (5.7, repeated)
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can be discretised. This is done with (6.1a), (6.1c), (6.1b) and (6.1f).
The bilinear forms in (5.7) can be written as

(∇w,∇φ) ≈
n

∑
i=0

φi
(
∇Ni,∇Nj

)
= K ·φ,

(w, ηt)Γ f s
≈

n

∑
i=0

η̇i

∫
Γ f s

Ni · NjdΓ = M · η,

(ξ, φt)Γ f s
≈

n

∑
i=0

φ̇i

∫
Γ f s

Ni · NjdΓ = M · φ̇,

(w, φt)Γ f s
≈

n

∑
i=0

φ̇i

∫
Γ f s

Ni · NjdΓ = M · φ̇,

(ξ, ηt)Γ f s
≈

n

∑
i=0

η̇i

∫
Γ f s

Ni · NjdΓ = M · η̇,

(ξ, η)Γ f s
≈

n

∑
i=0

ηi

∫
Γ f s

Ni · NjdΓ = M · η,

(w, η)Γ f s
≈

n

∑
i=0

ηi

∫
Γ f s

Ni · NjdΓ = M · η.

The weak form must hold for all test functions w and ξ. Therefore,
they are alternately set to 0 to be able to write them in matrix-vector
form. In other words: w is set according to (6.2a) and ξ to 0, after
which w is set to 0 and ξ to (6.2b). By doing this, (5.7) can be written
in matrix-vector form as:

Aẋ = −Bx, (6.4)

where matrices

A =

[
1
2

α
g M −M

1
2 M 0

]
and B =

[
Kw

1
2 αM

0 1
2 gM

]
.

And vectors

ẋ = [φ̇0, . . . , φ̇n, η̇0, . . . , η̇n]
T and x = [φ0, . . . , φn, η0, . . . , ηn]

T .

6.4 spatial discretisation of the decoupled form

Again using the same methodology, the decoupled form

(∇w,∇φ) = 0 (5.9a, repeated)

(w, φt + gη)Γ f s +
g2

α2 (ξ, ηt)Γ f s =
g2

α2 (ξ, φz)Γ f s (5.9b, repeated)

can be discretised. This is done by using the discretisations used for
the mixed form with the addition of the approximation of (ξ, φz) by

(ξ, φz) ≈
n

∑
i=0

φi

∫
Γ f s

Ni ·
∂

∂z
NjdΓ = F ·φ.
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Furthermore, stiffness matrix Kn f s is formed by setting the rows in
stiffness matrix K that are associated with values of φ at the free-
surface to 0. This again leads to a system that can be written as:

Aẋ = −Bx, (6.6)

where this time

A =

[
M 0

0 g2

α2 M

]
and B =

[
Kn f s gM
g2

α2 F 0

]
.

6.5 temporal discretisation

The first, reduced weak formulation is a second order PDE, whereas
the second (mixed) and third (decoupled) formulations are first order.
They therefore need slightly different temporal discretisations. The
first order mixed and decoupled formulations are discretised in time
first, followed by the reduced formulation.

mixed and decoupled formulation In order to calculate the
time derivative of the mixed and decoupled form implicitly, the value
of x at time step n + a is approximated by

xn+a = xn + a∆tẋn+a (6.7)

where ∆t is the time step between time step n and n+ 1 and 0 ≤ a ≤ 1.
The value of ηn+a is approximated equivalently. Substituting this in
(6.4) or (6.6) results in

Aẋn+a + B
(
xn + ∆tẋn+a) = 0.

which can be written as

(A + ∆tB) · ẋn+a = −B · xn.

So the derivative at time step n + a is

ẋn+a = (A + ∆tB)−1 · B · xn. (6.8)

The value of xn+1 can then be found with

xn+1 = xn + ∆tẋn+a (6.9)

For the implicit midpoint method, a is set to 1
2 . Setting it to 1 results

in the backward Euler method.
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reduced formulation Since the reduced formulation is a
second order PDE, it needs a little different approach to the time
discretisation. An implicit method can be found by assuming

φn+a = φn + a∆tφ̇n+a,

φ̇
n+a

= φ̇
n
+ a∆tφ̈n+a.

The value of φ̈
n+a can be found by substituting these into (6.3):

K
(

φn + a∆tφ̇n
+ (a∆t)2φ̈

n+1
)
+

1
g

Mφ̈
n+a

= 0

So the value of φ̈
n+a can be found with

φ̈
n+a

=

(
1
g

M + a2∆t2K
)−1 (

−K
(
φn + aφ̇

n)) . (6.10)

In reality, the inverse is not really determined. Instead, the system is
solved linearly. The resulting φ̈

n+a is used to calculate φn+1 and φ̇
n+1

with

φn+1 = φn + ∆tφ̇n+a, (6.11a)

φ̇
n+1

= φ̇
n
+ ∆tφ̈n+a. (6.11b)

6.6 post processing

Energy conservation is an important measure of the behaviour of the
formulations. It will therefore be used to assess the results of the three
weak forms. In order to do this, a numerical approximation of the
energy is needed. This numerical approximation is explained in this
paragraph.

The energy can subdivided in potential and kinetic energy
(
Epot

and Ekin). The total energy Etot is defined as the sum of these two.
The numerical approximation of the kinetic energy is explained first,
followed by the potential energy.

kinetic energy The density of the water is assumed to be con-
stant and a measure for the kinetic energy therefore is

Ekin =
1
2

∫
Ω
(∇φ)2 dΩ, (6.12)

To determine the kinetic energy numerically, potential φ is again
approximated by

φh(x, t) ≡∑
n

φi(t)Ni(x).
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The kinetic energy can then be approximated with

Eh
kin =

1
2

∫
Ω

(
∇φh

)2
dΩ

=
1
2

∫
Ω

(
∇

n

∑
i=0

φiNi

)2

dΩ

=
1
2

∫
Ω

(
∇

n

∑
i=0

φiNi

)
·
(
∇

n

∑
j=0

φjNj

)
dΩ

=
1
2

n

∑
i=0

φi

n

∑
j=0

φj

∫
Ω
(∇Ni) ·

(
∇Nj

)
dΩ,

which can be written in matrix-vector notation as

Eh
kin =

1
2

φTKφ, (6.13)

where stiffness matrix K and vector φ are equal to the ones in para-
graph 6.2, 6.3 and 6.4 without the free surface rows set to 0.

potential energy The potential energy Epot is a relative quantity.
In this thesis, it is considered relative to the still fluid. So, Epot = 0
if the wave height η = 0 over the whole free surface. A measure can
then be found with

Epot =
∫

Γ f s

1
2

gη2dΓ (6.14)

which can be written as

Epot =
∫

Γ f s

1
2g

φ2
t dΓ (6.15)

with boundary condition (5.2b).
For the reduced formulation, the potential energy can be determ-

ined numerically by discretising φt in (6.15) by assuming it can be
approximated as

φh
t (x, t) ≡

n

∑
i=0

φ̇i(t)Ni(x).
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The potential energy can then be approximated by

Eh
pot =

∫
Γ f s

1
2g

φ2
t dΓ

=
1

2g

∫
Γ f s

(
n

∑
i=0

φ̇iNi

)2

dΓ,

=
1

2g

∫
Γ f s

(
n

∑
i=0

φ̇iNi

)
·
(

n

∑
j=0

φ̇jNj

)
dΓ,

=
1

2g

n

∑
i=0

φ̇i

n

∑
j=0

φ̇j

∫
Γ f s

Ni · NjdΓ,

which can be written in matrix-vector notation as

Eh
pot =

1
2g

φ̇
T Mφ̇, (6.16)

where mass matrix M is equal to the one in paragraph 6.2 and

φ̇ = [φ̇0, . . . , φ̇n]
T .

For the mixed and decoupled formulation, wave height η is available,
so (6.14) is used. It is discretised by approximating η as

ηh ≡
n

∑
i=0

ηi(t)Ni(x).

Substituting this in (6.14) results in

Eh
pot =

1
2

g
∫

Γ f s

(
n

∑
i=0

ηiNi

)2

dx,

=
1
2

g
∫

Γ f s

(
n

∑
j=0

ηjNj

)
·
(

n

∑
i=0

ηiNi

)
dx,

=
1
2

g
n

∑
i=0

ηi

n

∑
j=0

ηj

∫
Γ f s

Nj · Nidx,

which can be written in matrix-vector form as

Epot =
1
2

gηT Mwη. (6.17)
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M F E M C O D E O V E RV I E W

The systems derived in chapter 6 will be solved with open-source,
finite element C++ library MFEM [55]. This library was developed
at Lawrence and Livermore National Laboratory (LLNL) and a list of
contributors is available at mfem.org/about/. It offers support for a
variety of 2D and 3D finite element spaces, most importantly for this
thesis: NURBS spaces for isogeometric analysis. Furthermore, multiple
time solvers are readily available.

Some adaptions are made to the block matrices that were derived
in chapter 5. These adaptions are explained in the first paragraph.
Furthermore, Some practical problems were encountered. These are ex-
plained in the second paragraph where the reasons and consequences
are explained. For a more in depth discussion of the MFEM codes, the
reader is directed towards appendix C.

7.1 mfem time solver

In the MFEM package, many ODE solvers are available. These solvers
need a function in which the time derivative is calculated. In this thesis,
only implicit solvers are used. Implicit formulations of the three weak
forms are formed in paragraph 6.5: (6.10) for the reduced formulation
and (6.8) for the mixed and decoupled formulations. The matrices that
are needed for the reduced formulation are used without any changes.
This is not the case for the matrices for the other two formulations.
For these two formulations, a dummy Laplace problem will be solved
such that η is not only defined on the free surface, but also on the
interior. This is done to prevent the matrices from being singular and
can be used in a later stage to solve non-linear waves. The dummy
Laplace problem is defined as:

Find η such that

∆η̃ = 0 in Ω (7.1a)

η̃ = η on Γ f s (7.1b)

n · ∇η̃ = 0 on Γn f s (7.1c)

where η follows from the the main problem. This results in

B =

[
KAC

1
2 αMBC

0 1
2 gMBD + KBD

]
(7.2)

for the mixed formulation and in

B =

[
KAC gMBC

g2

α2 FAD KBD

]
(7.3)

38
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for the decoupled formulation.
A second order implicit midpoint solver is not available in MFEM,

the reduced formulation will therefore be solved with a generalized-α
solver [22] with ρ∞ set to 1. By doing this, the generalized-α solver is
effectively equivalent to the implicit midpoint solver. Formulations
two and three will be solved with the implicit midpoint solver.

7.2 practical limitations of the mfem package

Most techniques and functions are implemented for both ‘standard’
finite element meshes and NURBS meshes. However, some things are
not implemented for NURBS meshes yet. This is not because it is
impossible to implement these, but it is simply not done yet. These
limitations did influence the research.

1. Periodic NURBS meshes are not available.

2. There is no method to calculate the integral
∫

Γ f s
Ni · ∂

∂z NjdΓ for
NURBS meshes. This integral used to form F matrix in the de-
coupled formulation.

The consequence of this second limitation that it is unfortunately
not possible to test the third, decoupled formulation with an NURBS

mesh.
Another difficulty is visualisation. At this moment, the lightweight

visualisation program GLVis [30], also developed at LLNL, can be used
to visualize the meshes and the results. It supports NURBS. However,
it does not offer the same possibilities as the heavier visualisation
program Visit [20]. Visit does not fully support NURBS yet. Supervisor
Akkerman is working on an adaption of Visit that does support NURBS,
but this is not openly available. Where possible, GLVis is therefore
used, but some figures could only be made in Visit.





Part III

R E S U LT S

The three weak forms that were formulated in part II are
tested on two two-dimensional problems and one three-
dimensional problem. These problems are defined by their
initial conditions and the used mesh. The two-dimensional
problems are a sloshing wave (chapter 8) and an airy wave
(chapter 9). These two problems have analytical solutions
that can be used to verify and validate the results. Since
these two problems are relatively simple, they are not used
to test the differences between ‘standard’ FEA and IGA. This
test is performed in chapters ?? and 11. In chapter ??, a step
wave is used In chapter 11, a three-dimensional showcase
is given in which the mixed weak form is used to see the
differences between IGA and standard FEA.
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T E S T C A S E I : T W O - D I M E N S I O N A L S L O S H I N G WAV E

The first verification of the code is done by simulating a sloshing-type
wave with standard finite element analysis. This is a simple problem
for which an analytical solution is available. That solution can be used
to verify and validate the weak forms and to verify the developed C++
codes. The wave is simulated by setting the right initial conditions.
These are described in the first paragraph. The analytical solution is
derived in the second paragraph. In the third paragraph the results
for the three different formulations are given and compared to the
analytical solution.

8.1 initial conditions

In the sloshing wave problem, one wave in a bounded square tank of
1 m2 is simulated. This tank is discretised with a quadrilateral mesh.
The problem is initialized by setting the potential to

φ(x, z, t = 0) = a cos(kx) cosh(kz), (8.1)

where a is the wave amplitude and k is the wave number defined as

k ≡ 2π

λ
, (8.2)

where λ is the wavelength. The initial wave height is set to η = 0.
The initial condition is illustrated in figure 8.1, where the domain is
deformed with the value of potential φ (note: not with wave height
η!).

Figure 8.1: Illustration of the initial value of φ for the sloshing wave

This initial condition satisfies the Laplace equation (5.2a) and the
boundary conditions (5.2b) to (5.2d). Prove of this is given in appendix

42
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variable analytical value

ω
√

kg tanh(kz) 7.851 rad/s

Ta
p 2π/ω 0.8003 s

Amp of Ea
kin

1
8 a2k sinh(2k) 0.1126 m4/s2

Ea
tot

1
8 a2k sinh(2k) 0.1126 m4/s2

Table 8.1: Analytical solution for the sloshing wave

A.1. For the initialization, wavelength λ = 1 m and wave height
a = 0.001 m are used. This results in a wave number k = 2π.

8.2 analytical solution

An analytical solution can be found with the help of separation of
variables. This is done in appendix A.2. This results in

φ(x, z, t) = a cos(kx) cosh(kz) cos(ωt) (8.3)

where ω is given by the dispersion relation

ω2 = kg tanh(kH). (8.4)

The mass density is assumed to be constant, so a measure of the
kinetic energy at t = 0 when η = 0 can be calculated with (6.12):

Ekin =
∫

Ω
(∇φ)2 dΩ =

∫ 1

0

∫ H

0
(∇φ)2dzdx. (8.5)

which results in

Ekin =
1
8

a2k sinh(2k) (8.6)

The full derivation is also shown in appendix A.2.
This is the maximum value of the kinetic, because the velocity of

the wave is at a maximum if η = 0. Kinetic energy is transformed into
potential energy as the wave height η increases. The total energy Etot

is defined as the sum of potential and kinetic energy. Since no energy
is dissipated, it is constant:

Etot = Ekin + Epot = constant

Ekin = 0 if the wave is at a peak, so the amplitude of the potential
energy is equal to that of the kinetic energy and is 1

4 Tp behind.
For a = 0.001 and λ = 1 the kinetic energy is calculated with

(8.6) and is approximately 0.1126. The derived analytical solutions are
summarised in table 8.1.
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8.3 results for the three formulations

The three different weak formulations that are derived in chapter
5 and discretised in chapter 6 are used to solve the sloshing wave
problem. This is done for increasing degrees of freedom, keeping the
Courant-Friedrichs-Lewy (CFL) number constant. The CFL number for
problems in n dimensions is defined as

C = ∆t
n

∑
i=1

uxi

∆xi
. (8.7)

The CFL number is used in the CFL condition, which states that
C ≤ Cmax is a necessary condition for convergence. Since the velocity
u is constant for constant wave length and depth, the relation between
time step ∆t and grid size ∆xi is linear.

The formulations are solved with the first and second order versions
of the implicit midpoint solvers described in 6.5. The calculations are
done for 0 ≤ t ≤ 3.3Ta

p . These test parameters are summarised in table
8.2. The number of mesh nodes n in horizontal direction is increased
from 5 to 65 in four refinement steps. This results in the test matrix in
table 8.3.

parameter value

Mesh type Quadrilateral

Solver Implicit midpoint

Order 2

Final time 3.3Ta
p

Table 8.2: Parameters for the sloshing wave problem

test 1 test 2 test 3 test 4 test 5

∆t/Ta
p 0.1 0.05 0.025 0.0125 0.00625

n 5 9 17 33 65

Table 8.3: Parameters for the sloshing wave problem

The results will be compared on basis of:

1. Period Tp,

2. Amplitude of the kinetic energy Ekin,

3. Value of the total energy Etot.
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first verification A first verification is done by looking at
the time traces of the numerically determined potential φh and the
analytically determine φa at the free surface at x = 0.5. As an example,
the time trace for n = 9 is shown in figures 8.2a (mixed formulation)
and 8.2b (decoupled formulation). The results for the the reduced and
mixed formulations are very similar, so only the time trace for the
second one is shown. Looking at figure 8.2a, it is clear that the reduced
and mixed formulations result in a wave that resembles the analytical
solution very closely. The time trace in figure 8.2b is very similar as
well, but the period is clearly overestimated.

0.0 0.5 1.0 1.5 2.0 2.5

Time t [s]

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

φ

φa

φh

(a) Mixed formulation

0.0 0.5 1.0 1.5 2.0 2.5

Time t [s]

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

φ

φa

φh

(b) Decoupled formulation

Figure 8.2: Time traces of potential φ at (x, z) = (0.5, 1) - Implicit midpoint
solver with n = 9 and ∆t = 0.05Ta

p

A second verification is done by looking at the potential, kinetic
and total energy. These are calculated as described in paragraph 6.6.
Typical figures for the three formulations for n = 9 are shown in
figures 8.3 and 8.4. The results for the reduced and mixed formula-
tions are again almost identical, which is why only the results for the
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mixed formulation are shown. Several things can be noted from the
figures. Firstly, the total energy is underestimated with all three the
formulations. More importantly however: the decoupled formulation
shows periodic behaviour of the total energy instead of staying con-
stant. This seems to come from the not purely sinusoidal behaviour
of the kinetic energy. A possible reason is the presence of φz in the
decoupled formulation. Since the mesh is quite coarse with only 9

degrees of freedom in both directions, the differential in z-direction is
not precise enough. The amplitude of the periodic difference reduces
to insignificant values for refinement meshes.
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Figure 8.3: Time trace of Epot, Ekin and Etot - mixed form with n = 9 and
∆t = 0.05Ta
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further verification A more in-depth verification is done by
comparing the numerically determined period and Eh

tot(t = t3) to the
analytically determined ones. The numerically determined period Th

p
is calculated with

Th
p =

t3 − t0

3
, (8.8)

where t3 is the time of the third peak of the time trace of φ(0.5, 1.0)
and t0 the time of the first peak.

The values of Th
p are shown in table 8.4 and figure 8.5. The reduced

and mixed formulations give equivalent results and give a very accur-
ate period for grid sizes of n = 9 and higher. The total energy Etot is
constant for the reduced and mixed formulation for all n. The total
energy Etot at t = t3 is shown in figure 8.6. The percentage difference
with the analytically detemined value is shown in table 8.5. The nu-
merically determined energy is lower than the analytical value. This
underestimation reduces for more refined meshes and is smaller than
0.2% for n ≥ 17

The decoupled formulation needs a much more refined mesh and
smaller time step to calculate the period with similar accuracy. The
period is overestimated for smaller time steps. It is calculated accur-
ately for a time step ∆t ≤ 0.0125Ta

p . The total energy Etot is underes-
timated more than with the reduced and mixed formulations. The
difference is clearly visible on coarse meshes.

n = 5 n = 9 n = 17 n = 33 n = 65

Analytical 0.8003

Red. form 0.8403 0.8003 0.8003 0.8003 0.8003

Mixed form 0.8403 0.8003 0.8003 0.8003 0.8003

Dec. form 0.8803 0.8203 0.8103 0.8003 0.8003

Table 8.4: Tp of the sloshing wave

n = 5 n = 9 n = 17 n = 33 n = 65

Analytical 0.112607

Red. form -3.41% -0.691% -0.110% -0.016% -0.002%

Mixed form -3.41% -0.691% -0.110% -0.016% -0.002%

Dec. form -16.1% -0.748% -0.111% -0.017% -0.002%

Table 8.5: Etot at t = 3Tp of the sloshing wave

conclusions It can be concluded that the results for the reduced
and mixed formulations are equivalent and are quite satisfactory:
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Figure 8.5: Convergence of Tp for the sloshing wave

• Period Tp is calculated accurately for n ≥ 9 and ∆t ≤ 0.05Ta
p .

• Energy is conserved exactly.

• Total energy Etot is underestimated, but the underestimation is
lower than 0.2% if n ≥ 9.

Results for the decoupled formulation are less accurate:

• Period Tp is calculated accurately for n ≥ 33 and Tp ≤ 0.0125Ta
p .

• Energy is conserved, but shows periodic behaviour. The amp-
litude is smaller for refined meshes.

• Total energy Etot is underestimated more than for the other two
formulations, especially on coarser meshes.

The most probable reason for the underestimation of the total en-
ergy Etot is the fact that it is calculated on a discrete mesh. The most
probable reason for the less accurate results of the decoupled formula-
tion is the presence of the ∂

∂z term in the formulation. This derivative
cannot be calculated accurate enough on coarse meshes. The results
might be improved by using a mesh with smaller elements near the
free surface. The derivative can then be calculated more accurately.
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A slightly more complicated problem than the sloshing wave of chapter
8 is the simulation of an airy wave. In this problem, a wave does not
only change in vertical direction, but also moves in horizontal direction.
This problem is therefore used to test the three weak forms more.
Again, an analytical solution is available. This is used to calculate the
period and the kinetic, potential and total energy analytically. The
results of the three weak forms are compared with these analytical
ones.

The airy wave problem is initialised by setting the conditions that
are described in the first paragraph. A two-dimensional, quadrilateral,
periodic mesh is used. This periodic mesh is created by connecting
the points on the left edge to those on the right edge so they behave
exactly the same. By doing this, everything that goes out of the right
edge comes into the left edge and vice versa, effectively creating an
infinite mesh. The analytical solution of this problem is given in the
second paragraph. In the third paragraph, the results are shown and
compared with the analytical solutions. In the last paragraph, the
mixed weak formulation is used to calculate the period for different
wave lengths. These results are compared to the dispersion relation.

9.1 initial conditions

A airy wave of length λ = 1 meter is simulated on a square 1 m2

mesh that is periodic in the horizontal (or x-) direction. The standard
formulation of an airy wave in two dimensions is

φ(x, z, t) = a
ω

k
cosh(k(h + z)

sinh(kH)
sin(kx−ωt), (9.1)

where a is the wave amplitude, ω is the wave frequency that can be
calculated with the dispersion relation (8.4) and k the wave number
that is defined in (8.2). In this equation, z = 0 at the still free surface
instead of at the bottom. It can be shown that formulation (9.1) satisfies
the strong problem definition (5.2). This is done in appendix B.1.

Formulation (9.1) is used to define the initial values by setting t = 0:

φ(x, z, t) = a
ω

k
cosh(k(h + z))

sinh(kh
) sin(kx),

Wave height η is set to

η = a cos(kx), (9.2)

51
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which follows from boundary boundary condition (5.2b):

η = −1
g

φt = a
ω2

kg
cosh(kh)
sinh(kh)

cos(kx)

and noting that ω2/(kg) = 1 and cosh(2π)/sinh(2π) ≈ 1, because
k = 2π and h = 1.

This initialisation is illustrated in figure 9.1, where the domain and
the elevation η along the free surface are plotted.

Figure 9.1: Illustration of the initial value of η for the airy wave

9.2 analytical solution

The mass density is again assumed to be constant, so an analytical
measure of the kinetic energy can be calculated by splitting (6.12) into
an interior and a free surface part:

Ekin =
∫ 1

0

∫ η

−h
(∇φ)2dzdx

=
∫ 1

0

(∫ 0

−h
(∇φ)2dz +

∫ η

0
(∇φ)2dz

)
dx (9.3)

An analytical measure of the potential energy can be calculated with
(6.14):

Epot =
∫ 1

0

1
2

gη(x)2dx. (6.14, repeated)

These equations are linearised by assuming η is small. The kinetic
energy can then be approximated with

Ekin ≈
∫ 1

0

∫ 0

−h
(∇φ)2dzdx.

This results in

Ekin =
1
4

a2g.
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and

Epot =
1
4

a2g.

The full derivation is given in appendix B.2. The resulting analytical
solutions are summarised in table 9.1.

variable analytical value

ω
√

kg tanh(kz) 7.851 rad/s

Ta
p 2π/ω 0.8003 s

Ea
kin

1
4 a2g 2.453 · 10−4 m4/s2

Ea
tot

1
4 a2g 4.905 · 10−4 m4/s2

Table 9.1: Analytical solution for the airy wave

9.3 results for the three weak formulations

The three weak forms are used to solve the airy wave problem on a
square mesh of quadrilateral elements that is periodic in horizontal
direction. The periodicity results results in one element less in this
direction then in vertical (or z-) direction. Experiments are done using
second order basis functions with the first and second order versions
of the implicit midpoint solver described in paragraph 6.5. The para-
meters used for the airy wave experiments are summarised in table
9.2. Experiments are run from t = 0 to t = 3.3Ta

p . The mesh is refined
four times while keeping the CFL number (defined in 8.7) constant.
This results in the test-matrix in table 9.3, where n is the number of
mesh nodes in horizontal (or x-) direction.

parameter value

Mesh type Periodic, quadrilateral

Solver Implicit midpoint

Order 2

Final time 3.3Ta
p

Table 9.2: Parameters for the airy wave problem

first verification Just like the previous problem, a first veri-
fication is done by looking at the time traces of the numerically de-
termined potential φh at x = 0.5 on the free surface. Examples of
this time trace are given in figures 9.2a (mixed formulation) and 9.2b
(decoupled formulation). Again, the results for the reduced and mixed
formulations are identical, so only the mixed formulation is shown.
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test 6 test 7 test 8 test 9 test 10

∆t/Ta
p 0.1 0.05 0.025 0.0125 0.00625

n 4 7 13 25 49

Table 9.3: Parameters for the airy wave problem

The resulting time traces are similar to those for the sloshing wave
problem of chapter 8. The results for the reduced and mixed for-
mulations are just a little bit off, for the decoupled formulation the
differences are bigger.
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Figure 9.2: Time traces of potential φ at (x, z) = (0.5, 1) - Implicit midpoint
solver with n = 7 and ∆t = 0.05Ta

p

A second verification is done by looking at the potential, kinetic and
total energy. Typical time traces are shown in figure 9.3 for the mixed
formulation and in figure 9.4 for the decoupled formulation. The
energy is again underestimated with both formulations. The reduced
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and mixed formulations result in a perfectly constant Etot. The kinetic
and potential energy should remain constant, since the shape of the
wave does not change. However, they show periodic behaviour. The
reason is probably that the wave moves over the mesh and is thereby
discretised differently.

The resulting figures for the decoupled formulations are, again, con-
siderably less accurate. A much more refined version is plotted, n = 25
instead of n = 7, because the limits of the y-axis would otherwise
need a much larger reach. The method is energy conservative, but
the total energy does not remain constant. Furthermore, the kinetic
and potential energies are not constant for the decoupled formulation
either. Even worse: the kinetic energy does not even behave purely
sinusoidal.
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further verification The numerically determined period Th
p ,

Etot(t = t3) and ∆Ekin are used for further verification. Th
p is calculated

with (8.8). ∆Ekin is defined as the difference between the maximum
and the minimum value of Ekin.

The periods Tp for the five experiments and three formulations are
shown in table 9.4 and figure 9.5. The results for the reduced and
mixed formulations are identical and are equal to the analytical value
for all experiments. The decoupled formulation needs n ≥ 25 and
∆t ≤ 0.0125Ta

p for the same accuracy.
The percentage difference between Etot at t = 3Ta

p and the analyt-
ically determined Ea

tot is shown in table 9.5. All three formulations
underestimate the total energy. Results for the reduced and mixed
formulations are identical. The difference with the analytical value is
smaller than 0.3% if n ≥ 13 and ∆t ≤ 0.025Ta

p . The decoupled formu-
lation needs one refinement step extra to reach the same accuracy in
this respect.

The convergence of the amplitude of the kinetic energy is shown in
figure 9.6. It is clear that the amplitude is smaller ánd goes to 0 quicker
with the reduced and mixed forms than the decoupled formulation.

n = 4 n = 7 n = 13 n = 25 n = 49

Analytical 0.8003

Red. form 0.8003 0.8003 0.8003 0.8003 0.8003

Mixed form 0.8003 0.8003 0.8003 0.8003 0.8003

Dec. form 0.8403 0.8270 0.8070 0.8003 0.8003

Table 9.4: Tp of the airy wave

n = 4 n = 7 n = 13 n = 25 n = 49

Analytical 4.905 · 10−4

Red. form -7.00% -1.48% -0.247% -0.036% -0.005%

Mix. form -7.00% -1.48% -0.247% -0.036% -0.005%

Dec. form -8.67% -2.64% -0.780% -0.215% -0.054%

Table 9.5: Etot at t = 3Tp of the airy wave

conclusions Just like in the sloshing wave experiment of chapter
8, the reduced and mixed formulations have identical results. The
results for these formulations can be summarised as:

• The period is calculated accurately for all n and ∆t.

• Energy is conserved exactly for all n.
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Figure 9.5: Convergence of Tp for the airy wave
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• The total energy is underestimated.

• The potential and kinetic energy show periodic behaviour. The
amplitude of the kinetic energy is smaller than 10−7 for n ≥ 13

And, also like in the previous problem, the results for the decoupled
formulation are less accurate:

• The period is calculated accurately for n ≥ 25 and ∆t ≤ 0.025Ta
p .

• Energy is conserved, but shows periodic behaviour.

• The total energy is underestimated.

• The potential and kinetic energy show periodic behaviour. The
minimal amplitude of the kinetic energy is bigger than 10−6,
even for the most refined mesh.

Likely reasons for some of these results are already given in chapter
8. The main difference is the periodic behaviour of the kinetic and
potential energy, that should really remain constant for this problem.
The most probable reason is the fact that the airy wave moves over the
mesh and is therefore discretised a little differently at different time
steps, resulting in a periodic difference.

9.4 results for different wavelengths

The mixed formulation is used to check if Tp can be calculated accur-
ately for different wave numbers. Therefore the wave number is varied
by changing the wavelength and the length of the tank. This is done
so there is always exactly one wave initialised along the complete free
surface. The wave and domain length are varied from 0.5 to 28 meter
and are set according to the test matrix in table 9.6. The experiments
are performed using the parameters shown in table 9.7.

λ [m] 0.5 1 1.5 2.0 4.0 8.0

k [rad/m] 12.57 6.283 4.189 3.142 1.571 0.7854

λ [m] 12 16 20 24 28

k [rad/m] 0.5240 0.3927 0.3142 0.2618 0.2244

Table 9.6: Test matrix for wavelength comparison

results The period Tp is shown in figure 9.7, for the values of k
in table 9.6. The dispersion relation (8.4) is plotted in the same figure.
The results are very accurate: no optical difference can be seen.



9.4 results for different wavelengths 61

parameter value

Solver Implicit midpoint

Order 2

Time step ∆t 0.025Ta
p

n 13

Final time 3.3Ta
p

Table 9.7: Constant parameters for wavelength comparison
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Figure 9.7: Tp for varying wave number k
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The problems described in chapters 8 and 9 have been tested and
behaviour has been shown to be satisfactory. In order to see the benefits
of IGA and NURBS meshes, a spatially more demanding problem will
be thrown at the developed code in this chapter. This is done by
initialising it with a step wave. A true Heaviside-like step function
would demand a C0-continuous point at the step. Instead, the step
is imposed with a tanh-function. As described in chapter 7, the third
formulation does not work on NURBS meshes. Only the reduced and
the mixed formulations are therefore tested.

The initial conditions are given in the first paragraph. Tests are done
for the settings in the second paragraph. The results of these tests are
presented and analysed in the third paragraph.

10.1 initial condition

The step wave is initialised on a tank of 1 m2. This tank is meshes
in two different waves: with NURBS and with quadrilateral elements.
A step wave is initialised by setting the value of the potential to
φ(x, z, t = 0) = 0 and the wave height according to

η = a tanh(b(x− 0.5))
cosh(2πz)
cosh(2π)

, (10.1)

or equivalently, the time derivative of the potential φ to

dφ

dt
= −ag tanh(b(x− 0.5))

cosh(2πz)
cosh(2π)

. (10.2)

Here, a is the wave height. The factor b is used to control the ’sharpness’
of the step. It is set to 20, which results in a step that is quite sharp but
can still be projected onto the coarsest mesh. Setting a = 0.01 results
in an initial wave height at the free surface as shown in figure 10.1.

10.2 test parameters

The second order implicit midpoint solver is used for the reduced
formulation and the first order implicit midpoint solver for the mixed
formulation. Calculations are done for t = 0 to t = 5 seconds. Second
order finite elements are used. These settings are summarised in table
10.1.

The number of nodes n in x-direction is increased from 5 to 65 in 4
refinement steps. The CFL number (8.7) is kept constant by decreasing

62
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Figure 10.1: Initial wave height along the free surface for the step wave

time step ∆t. This results in the test matrix in table 10.2. The corres-
ponding number of Degrees-Of-Freedom (DOFs) is also shown in table
10.2 for the Finite Element (FE) and NURBS meshes. A FE mesh results
in more DOFs, because every element only shares the DOFs with other
elements that are on the boundaries with those elements.

parameter value

Mesh types Quadrilateral

NURBS

Solver Implicit midpoint

Order 2

Final time 5 [s]

Table 10.1: Parameters for the step wave problem

parameters values

∆t 0.1 0.05 0.025 0.0125 0.00625

n 5 9 17 33 65

DOFs FE 81 289 1089 4225 16641

DOFs NURBS 36 100 324 1156 4356

Table 10.2: Parameters for step wave experiments

10.3 results and analysis

As described in paragraph 6.6, the potential, kinetic and total energy
can be calculated. Results for two formulations are, again, identical.
Typical resulting time traces are shown in figure 10.2. The results for
standard FEA and IGA are plotted in the same figure. Both methods
show to be exactly energy conservative in this more complicated prob-
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lem. The differences between the results for the FE and NURBS meshes
are small. For n = 17 and ∆t = 0.025 seconds, the measured difference
between the total energy for the two mesh types is in the order of
10−8. However, the NURBS mesh results in far less unknown degrees
of freedom. So the same accuracy is obtained with less computations.
This is illustrated in figure 10.3 where the initial value of the total
energy E0

tot is plotted for the five experiments.
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Figure 10.2: Time trace of Epot, Ekin and Etot - mixed form with n = 17 and
∆t = 0.025 s

From an engineering perspective, it is interesting to look at a single
value as well. For instance, the wave height at a certain point. As an
example, the wave height at (x, z) = (0.25, 1) is calculated at every
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Figure 10.3: Convergence plot for Etot(t = 0)

time step with both formulations. The resulting time traces are shown
in figure 10.4 for three different mesh sizes and time steps. Differences
between the FE and NURBS meshes are small and are only visible for
the smallest mesh sizes.

To see differences more clearly and see how the wave height con-
verges, the convergence of the maximum wave height in the first 5

seconds is plotted in figure 10.5. The the time of this maximum is
also plotted in this figure. In this plot, it is clearly visible that with a
NURBS mesh, the same accuracy can be obtained with less degrees of
freedom.



66 test case iii : two-dimensional step wave

0 1 2 3 4 5

t

−0.010

−0.005

0.000

0.005

0.010

η

Standard

NURBS

(a) n = 5 and ∆t = 0.1

0 1 2 3 4 5

t

−0.010

−0.005

0.000

0.005

0.010

η

Standard

NURBS

(b) n = 17 and ∆t = 0.025

0 1 2 3 4 5

t

−0.010

−0.005

0.000

0.005

0.010

η

Standard

NURBS

(c) n = 65 and ∆t = 0.00625

Figure 10.4: Time traces of η at (x, z) = (0.25, 1) for three mesh sizes - mixed
form
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T E S T C A S E I V: T H R E E - R D I M E N S I O N A L S L O S H I N G
WAV E

As a showcase and further test of the possibilities of IGA and NURBS

meshes, a three-dimensional problem is treated as an example in this
chapter. In this problem, the behaviour of a sloshing wave in a cubic
tank with a monopile in the middle of the tank is calculated. The tank
is 1 m3 and the monopile is a cylinder with a radius of

√
0.005 meter.

The geometry is shown in figure 11.1. Only the mixed formulation
is used to calculate the behaviour of the waves in the tank during
the first 5 seconds. Two mesh types are used: a NURBS mesh and a
tetrahedron mesh. These two mesh types are described in the first
paragraph. The initial conditions and test parameters are explained in
the second and third paragraph. The last paragraph is dedicated to
the results of the two meshes.

Figure 11.1: Geometry for the fourth test case: a cubic tank with a monopile

11.1 meshes

Two different meshes are made: a second order NURBS mesh and a tet-
rahedron mesh. The tetrahedron mesh is made with GMSH, the NURBS

mesh was coded by hand. A geometry file was with GMSH made that
was used to generate four meshes with an increased refinement. In

68
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parameters values

∆t 0.05 0.025 0.0125 0.00625

n (NURBS) 5 9 17 33

DOFs FE 332 841 3674 23368

DOFs NURBS 192 720 3600 22032

Table 11.1: Parameters for three-dimensional wave experiments

generating the mesh an important advantage and a disadvantage of
the NURBS mesh became clear. The advantage is that the NURBS mesh
can be refined without going back to a geometry file, because the
geometry is exact from the coarsest grid. This is clearly not the case
for the tetrahedron mesh, because the cylinder is approximated with
several straight lines. The geometry is better represented by increasing
the number of lines, but to obtain a more refined mesh the mesh needs
to be generated from the defining geometric file all over again. The
disadvantage is that the creation of the initial NURBS mesh needed to
be done by hand.

The number of mesh nodes n in x−direction of the NURBS mesh is
increased from 5 to 33 in three refinement step. The time step ∆t is
decreased to keep the CFL-number (8.7) constant. The parameters for
the mesh generation of the tetrahedron mesh are chosen in such a way
that it results in a similar amount of degrees of freedom as the NURBS

mesh when used with second order finite elements. This results in the
text matrix in 11.1. Examples of the two mesh types are given in figure
11.2.

11.2 initial conditions and test parameters

A wave is initialised version of the sloshing wave in chapter 8 by
projecting a potential that is described by

φ(x, t = 0) = 0.001 cos(2πx) cos(2πy)
cosh(2πz)
cosh(2π)

. (11.1)

Wave height η is set to 0.
Second order basis functions are used on both mesh types. The wave

is simulated until t = 5 seconds with a time step chosen according
to table 11.1. An implicit midpoint solver is used. These settings are
summarised in table 11.2

11.3 results

The results for the two meshes are compared on the following four
points:
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(a) Tetrahedron mesh with 841 degrees of freedom

(b) NURBS mesh with 720 degrees of freedom

Figure 11.2: Examples of the mesh for the tank with monopile
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parameter value

Mesh types Tetrahedron

NURBS

Solver Implicit midpoint

Order 2

Final time 5 [s]

Table 11.2: Parameters for the three-dimensional sloshing wave problem

1. First the time traces of the three energy measures are compared
to check the overall behaviour.

2. Secondly, a convergence plot is made of the values of the initial
total energy.

3. Thirdly: out of engineering interest, the time trace of the wave
height at x = (0.25, 0.25, 1.0) is plotted.

4. Finally, the convergence of the value of the last maximum at
x = (0.25, 0.25, 1.0) is plotted.

energy An example of the time traces of the kinetic, potential and
total energy is shown in figure 11.3. It is clear that even for this even
more difficult problem, energy conservation is exact. The convergence
plot of the initial value of Etot is shown in figure 11.4. Furthermore,
it is clear that the initial projection is better for NURBS meshes. This
can be concluded from the fact that Etot at t = 0 does not change
significantly if the NURBS mesh is refined. This is what was expected
and promised, since the geometry is exact even on the coarsest mesh.

wave height and potential As an example of a value that
could be interesting from an engineering perspective, the value of
the potential φ and the wave height η at (x) = (0.25, 0.25, 1.0) are
calculated. The time traces for the coarsest meshes result in very
distorted graphs. These are therefore not shown. Results for the other
six, more refined meshes are shown in figures 11.5a,11.5b, 11.6a, 11.6b,
11.7a and 11.7b. It can be concluded from these plots that the time
trace for the NURBS mesh is smoother and that the time traces seem to
converge. As a convergence test, the value of ηmax is given in figure
11.8, where ηmax is defined as the value of the peak closest to t = 1.5.
This is approximately the time of the maximum wave height of the
most refined NURBS mesh. The time t at which this maximum occurs
is plotted in the same figure. The value of ηmax has not converged, but
is within a band of around 10%.
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Figure 11.3: Time trace of Epot, Ekin and Etot - mixed form with DOFs= 841
and ∆t = 0.025 - standard finite elements
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11.4 illustration of the resulting sloshing wave

The resulting sloshing wave can be illustrated with Visit. As an ex-
ample, a few pictures of the resulting wave are shown in figures 11.9
and 11.9.
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Figure 11.5: Time traces of φ and η at (0.25, 0.25, 1) - mixed form - refined
once
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(a) t = 0.0375 s

(b) t = 0.15 s

Figure 11.9: Illustration of the 3D sloshing wave - mixed formulation with a
NURBS mesh, DOFs= 22032 and ∆t = 0.00625s
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(c) t = 0.3875 s

(d) t = 1.1 s

Figure 11.9: Illustration of the sloshing wave - mixed formulation with a
NURBS mesh, DOFs= 22032 and ∆t = 0.00625 s
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C O N C L U S I O N S A N D F U T U R E W O R K

In this thesis, a first step is made towards an ‘all-inclusive’ IGA-
framework for potential flow problems of ships and offshore structures.
The first goal of this research was finding out which of three different
weak formulations is best suited for further development. The second
goal was testing the advantages of IGA in a potential frame work. A
secondary goal is testing MFEM, the C++ finite element library that
was used.

followed methodology The linearised potential free surface
problem was first written in strong form. This strong form was sub-
sequently transformed into three different weak formulations by im-
plementing the boundary conditions in three different ways. The first,
reduced formulation is formed by combining the kinematic and dy-
namic boundary conditions on the free surface into one boundary
condition, the second, mixed form by imposing the three boundary
conditions directly and the third, decoupled form by decoupling the
problem into a free surface and an interior problem.

The three formulations are first verified and validated by solving
two simple two-dimensional problems that have analytical solutions.
This is only done with FEA, because these problems are geometrically
too simple to really see the differences with IGA. To see the advantages
of IGA, the formulations are subsequently used to solve two more
complex problems. The results are compared on the basis of the
period and the kinetic/potential energy. The four problems are: (1) a
sloshing wave, (2) an airy wave and (3) a step wave in a square tank of
1 m2 and (4) a sloshing wave in a cubic tank of 1 m3 with a cylinder
in the middle.

results The formulations are first used to solve the two-dimensional
sloshing and airy wave problems. Results of the reduced and mixed
formulations are nearly identical and are very satisfactory. The period
for the sloshing and airy wave problems are calculated exactly for
quite coarse meshes and time step. Furthermore, energy is conserved
exactly. This is a big feat and is very promising. Results for the
decoupled formulation are less accurate: a more refined mesh and
time step are needed to calculate the period with the same precision.
Furthermore, the total energy is not constant. Instead, it show periodic
behaviour. The most probable reason is the presence of the partial
derivative in vertical direction in the formulation. This derivative
cannot be calculated with sufficient accuracy on coarser meshes.
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The step wave and three-dimensional sloshing wave problems are
solved subsequently. Here, some limitations of MFEM became ap-
parent. The current MFEM version does not support periodic NURBS

meshes. On top of this, the third, decoupled formulation could not
be used with NURBS meshes, because the partial derivative in vertical
direction is only implemented for conventional meshes. However, it
was already clear from the first tests that the reduced and mixed
formulations performed much better. Therefore, only those two are
used in the other two experiments. These two experiments made clear
that both methods were also energy conservative for more complic-
ated problems. It is again stressed that this a big feat! Comparing the
results for the step waves for FEA with those for IGA showed that IGA

results in comparable accuracy for less degrees of freedom. So the
calculations are less expensive. The other big advantage of IGA became
apparent on the geometrically more challenging three-dimensional
sloshing wave problem. The results for the coarser meshes were much
closer to those for the refined mesh with IGA than with FEA. This
was expected, because the coarse NURBS mesh already represents the
geometry exactly and refinement does not change the geometry. This
is a big advantage, especially on geometries that have rounded shapes,
which are ubiquitous in the maritime world.

Concluding, the two goals of this thesis are reached: the mixed
formulation is the best formulation to develop further and it is shown
that this formulation works well with IGA. Very important to note is
the fact that the mixed formulation has shown to conserve energy
exactly, even for more complicated geometries and problems.

future work Some missing MFEM features have been identified
that would be welcome additions to the library. Firstly, addition of peri-
odic NURBS meshes would be very welcome. Secondly, the decoupled
formulation could be made available with NURBS meshes if a method
to form the F matrix would be implemented. Additionally, Visit has
been used to visualize the data. This visualizer does not fully support
NURBS. Full support of NURBS is under development by supervisor
Akkerman and will hopefully be available in a future release.

Another addition that would be necessary if the developed codes
are used to solve real life engineering problems, is an easier method to
generate NURBS meshes. A way to use a CAD program, like Rhinoceros,
to create a NURBS geometry and be able to export this to a mesh file
would be ideal.

Lastly, the code can be extended and enhanced to support external
forces and inhomogeneous boundary conditions. This could be used
to simulate the sloshing waves in, for instance, a moving LNG tank.
Another improvement would be extending the code to be able to
simulate non-linear waves.
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A
S L O S H I N G WAV E

a.1 prove that the initial conditions satisfy the bound-
ary conditions

The Laplace equation in two dimensions is satisfied:

∆φ =
∂2φ

∂x2 +
∂2φ

∂z2

= −ak2 cos(kx) cosh(kz) + ak2 cos(kx) cosh(kz)

= 0,

That the no-penetration boundary condition (5.2b) is also satisfied can
be shown as follows:

n · ∇φ = n ·
[
−ak sin(kx) cosh(kz)

ak cos(kx) sinh(kz)

]

At the bottom, where z = 0 and n = (0,−1), this equates to

n · ∇φ = (0,−1) ·
[
−ak sin(kx) · 1
ak cos(kx) · 0

]
= 0

and at the left and right side, where x = 0 or x = λ and n = (±1, 0)
to:

n · ∇φ = (±1, 0) ·
[
−ak sin(kx) · 0
ak cos(kx) · 1

]
= 0

The initial surface elevation η can be defined with free surface
boundary condition (5.2b):

η = −1
g

φt = −
1
g
· 0 = 0

So (8.1) also satisfies the other free surface boundary condition:

φz(x, z = 0) = ak cos(kx) sinh(k · 0) = 0

a.2 derivation of the kinetic and potential energy

It is assumed that the potential can be written as

φ(x, z, t) = X(x, z)T(t). (A.1)
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Setting X(x, z) equal to the initial condition (8.1) it follows that T(0) =
1. A logical trial solution for T(t) = cos(ωt). The angular frequency ω

can be calculated from the combination of the free surface boundary
conditions (5.2b) and (5.2c):

φz = −
1
g

φtt

Differentiating (8.1) with respect to z results in

φz = ak cos(kx) sinh(kz)T(t)

and differentiating twice with respect to time results in

φtt = −ω2a cos(kx) cosh(kz)T(t).

So

1
g

ω2 cosh(kz) = k sinh(kz),

which is equal to well-known dispersion relation:

ω =
√

kg tanh(kz).

Since the mass of the water in the tank is constant, a measure of the
kinetic energy can be calculated with

Ekin =
∫

A

1
2
(∇φ)2 (A.2)
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Wavelength λ is always a fraction of the length of the tank, so k = 2nπ

with n = 0, 1, 2, .... At t = 0 the free surface elevation η = 0, so:

Ekin =
∫ 1

0

∫ 1

0

1
2
[
(−a · k sin(kx) cosh(kz))2

+ (a · k cos(kx) sinh(kz))2

− 1
2

a2k2 sin(2kx) sinh(2kz)
]
dxdz

=
1
2

a2k2
∫ 1

0

∫ 1

0

[
sin2(kx) cosh2(kz) + cos2(kx) sinh2(kz)

− sin(2kx) sinh(2kz)
]
dxdz

=
1
2

a2k2
∫ 1

0

[(
x
2
+

1
4k

sin(2kx)
)

cosh2(kz)

+

(
x
2
− 1

4k
sin(2kx)

)
sinh2(kz)

+
1
2k

cos(2kx)sinh(2kz)
]1

0
dz

=
1
2

a2k2
∫ 1

0

[
1
2

cosh2(kz) +
1
2

sinh2(kz)
]

dz

=
1
2

a2k2
[

1
2

(
z
2
+

1
4k

sinh(2kz)
)

+
1
2

(
− z

2
+

1
4k

sinh(2kz)
)]1

0

=
1
2

a2k2
[

1
4k

sinh(2k)
]

=
1
8

a2k sinh(2k)



B
A I RY WAV E

b.1 prove that the initial conditions satisfy the bound-
ary conditions

Using (9.1) with t = 0 in (2.4a) results in

∆φ =
∂2φ

∂x2 +
∂2φ

∂z2

= −kaω
cosh(k(h + z)

sinh(kh)
sin(kx) + kaω

cosh(k(h + z)
sinh(kh)

sin(kx)

= 0.

So the Laplace equation is satisfied. The no-penetration boundary
condition only needs to be satisfied on the bottom, because there are
no left and right boundaries. (5.2d) is satisfied, because

n · ∇φ = n ·
(

aω
1

sinh(kh)

[
cosh(k(h + z)) cos(kx)

sinh(k(h + z)) sin(kx)

])
.

and on the bottom the normal n = [0,−1] and z = −h.
The boundary condition (5.2c)) can be used to define η:

η = −1
g

φt =
1
g

a
ω2

k
cosh(k(h + z))

sinh(kh)
cos(kx−ωt).

This can be used to check the other boundary condition on the free
surface (5.2c):

φz = aω
sinh(k(h + z)

sinh(kh)
sin(kx−ωt),

which equates to

φz(x, z = 0, t = 0) = aω sin(kx) (B.1)

at the surface. Furthermore

ηt =
1
g

a
ω3

k
cosh(k(h + z))

sinh(kh)
sin(kx−ωt)

87



88 airy wave

which can be rewritten with the help of the dispersion relation (8.4 as:

ηt(x, z = 0, t = 0) =
1
g

a
ω3

k
cosh(kh))
sinh(kh)

sin(kx)

=
1
g

a
ω · g · ktanh(kh)

k
cosh(kh))
sinh(kh)

sin(kx)

= aω
sinh(kh)
cosh(kh)

cosh(kh))
sinh(kh)

sin(kx)

= aω
sinh(kh)
sinh(kh)

sin(kx)

= aω sin(kx)

which is equal to (B.1), so the boundary condition is satisfied.
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b.2 derivation of the kinetic and potential energy of

the airy wave

Ekin =
∫ 1

0

∫ 0

−h

[
aω

cosh(k(h + z))
sinh(kh)

cos(kx)

+aω
sinh(k(h + z))

sinh(kh)
sin(kx)

]2

dzdx

= ω2 a2

sinh2(kh)

∫ 1

0

∫ 0

−1

[
cosh2(k(h + z)) cos2(kx)

+ sinh2(k(h + z)) sin2(kx) + 2 cosh(k(h + z)

· sinh(k(h + z) cos(kx) sin(kx)] dzdx

= ω2 a2

sinh2(kh)

∫ 1

0

∫ 0

−1

[
1
2

cosh(2k(h + z))− sin2(kx) +
1
2

+
1
2

sin(2kx) sinh(2k(h + z))
]

dzdx

= ω2 a2

sinh2(kh)

∫ 1

0

[
1

2 · 2k
sinh(2k(h + z))− sin2(kx)z +

1
2

z

+
1

2 · 2k
sin(2kx) cosh(2k(h + z))

]0

−1
dx

= ω2 a2

sinh2(kh)

∫ 1

0

[
1
4k

sinh(2kh)− sin2(kx) +
1
2

+
1
4k

sin(2kx) cosh(2kh)− 1
4k

sin(2kx)
]

dx

= ω2 a2

sinh2(kh)

[
1
4k

sinh(2kh)x− x
2
+

1
4k

sin(2kx) +
1
2

x

− 1
8k

cos(2kx) cosh(2kh) +
1
8k

cos(2kx)
]1

0
dx

= ω2 a2

sinh2(kh)

[
1
4k

sinh(2kh)
]

= ω2 a2

4k sinh(kh)
.

With the dispersion relation (8.4) and h = 1 this can be written as

Ekin =
1
4

a2g

Setting z = 0 as the base line, a measure for the potential energy
can be calculated with:

Epot = Agh =
∫ 1

0
η(x) · 1

2
ηdx =

∫ 1

0

1
2

gη(x)2 (B.2)
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where η(x) is defined according to (9.2), this results in

Epot =
1
2

g
∫ 1

0

(
1
g

a
ω2

k
1

tanh(kh)
cos(kx)

)2

dx

.

Which can be rewritten with the dispersion relation (8.4) as:

Epot =
1
2

g
∫ 1

0
(a cos(kx))2 dx

=
1
2

g
∫ 1

0

(
a2 cos2(kx)

)
dx

=
1
2

g
[

a2
(

x
2
+

1
4k

sin(2kx)
)]1

0

So the potential energy is

Epot =
1
4

a2g (B.3)

and the total energy

Etot = Ekin + Epot =
1
2

a2g (B.4)
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M F E M C O D E D E S C R I P T I O N

The code for all three formulations can be divided into 5 steps:

1. Set up the variables, parameters and other options.

2. Read the mesh file and apply optional refinement and set the
boundary conditions.

3. Apply the initial conditions.

4. Set up the wave operator in which the (block)matrices defined
in chapter. 6 are set up.

5. Perform time integrations by looping with time step dt.

The first, third and fourth steps are described in more detail in the
following paragraphs. The other steps are quite straightforward and
are assumed to be self-explanatory.

c.1 code initialization

The developed MFEM codes can be used to solve many types of
problems by offering a range of choices. For instance: what mesh and
what solver to use. Furthermore, several parameters, such as the time
step and order of the finite elements, can be set to define this problem.
These options can be set from the command line. All the available
parameters are shown in table C.1.

c.2 initialization of the gridfunctions

Gridfunctions phi_gf and dphidt_gf (reduced form), phi_gf and eta_gf
(mixed and decoupled forms) are defined on the finite element space.
The initial conditions are projected onto these gridfunctions. This
projection is done in a project function. In this project function, a
linear function b and bilinear form integrator M are defined on the
finite element space domain. The initial conditions are set as the
coefficient for the linear form integrator b. The domain mass integrator
M is inverted with a conjugate gradient method which is allowed a
maximum of 500 iterations to reach a convergence of 10−10 after
being preconditioned with a Jacobi-type smoother. The respective grid
functions g f are then calculated with

g f = M−1b.
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92 mfem code description

id usage type comments

-m Mesh file name Const char

-f Free surface id num-
ber

Array of ints

-r Number of refine-
ment

Integer

-o Finite element order Integer

-s Solver type 1 Integer e.g. 10 for gen-α or 32

for imp-midpoint

-Tp Expected period [s] Double

-tf End time simulation Double

-dt Number of steps per
period

Double

-l Initialization function
library

Const char

-vs Visualization steps Integer Visualize every n-th
step

Table C.1: Command line options for the codes

After this, the vectors phi and dphidt (reduced form) or eta (mixed
and decoupled forms) are formed and filled with the true degrees of
freedom. These vectors are used in the MFEM solvers to calculate the
next time step. The true degrees of freedom of the gridfunctions are
then refilled with the values at the new time step.

c.3 wave operator

In chapter 5, the problem is discretized in space and time. This dis-
cretization resulted in several (block)matrices. These matrices need
to be set up in MFEM in order to solve the problem. This is done in
the so-called ’wave operator’. The wave operator has four functions:
the initialization, the implicit solver, the explicit solver and a post pro-
cessor. In the initialization function, the matrices that do not depend
on time step ∆t are set up. The implicit and explicit functions are used
by the MFEM solvers (like the mentioned generalized-α and implicit
midpoint solvers) to calculate the values of the time derivatives. In
these functions, time step dependent matrices are set up. Furthermore,
the functions to calculate d2φ

dt2 , dφ
dt and/or dη

dt are implemented. In the
fourth function, the post processor, the kinetic, potential and total
energy are calculated according to paragraphs 6.6. The matrices are
set up with the help of the (bi)linear form integrators that are defined
on domains or boundaries. Many integrators are readily available in
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MFEM. The available integrators are described on the MFEM website
([54] for linear form integrators and [53] for bilinear form integrators).
Since the matrices for the three formulations differ significantly, the
wave operators for those three are described separately.

wave operator for the reduced formulation The reduced
formulation is derived in paragraph 6.2 as

Kφ +
1
g

Mφ̈ = 0, (6.3, repeated)

where the entries of stiffness matrix K are

Kij =
(
∇Ni,∇Nj

)
Ω ,

and the entries of mass matrix M are

Mij =
(

Ni, Nj
)

Γ f s
.

The two matrices K and M are formed in the initialization function
of the wave operator. Two bilinear forms are needed: a diffusion
integrator K for the whole domain Ω and mass integrator M for the
free surface boundaryΓ f s. The class of domain integrators is available
for both the FE and the NURBS meshes, but the class of boundary face
integrators is not available for NURBS meshes. Therefore, the boundary
integrator class is used. The 1

g factor is included in the mass integrator
M. Both integrators are assembled and finalized to form matrices K
and M. Subsequently, the parameters that are used to estimate the
inverse matrix T−1 are set: a conjugate gradient method is used with a
maximum of 500 iterations to reach a convergence of 10−8. These two
values can be changed to obtain more accurate results or, oppositely, a
faster code. Lastly, a Jacobi-smoother is set as pre-conditioner.

An explicit expression to calculate φ̈ at time step n + 1 cannot be
defined, since the initial condition is Kφ = 0, so φ̈ = M−1 (−Kφ) = 0.
Therefore, the explicit function is set to give the error message “This
wave formulation only works for implicit time integrators".

An implicit method is available. A backward Euler method to calcu-
late φ̈

n+1can be written as

φ̈
n+1

=
(

M + ∆t2K
)−1

(−Kφn)

= T−1 (−Kφn) .

In the code, the matrix T is defined as

T = M + f ac0K,

where f ac0 is defined by the used solver. For instance: in a backward
Euler solver it would be set to ∆t2. In some methods, the factor f ac0

changes while it is a constant in other methods. Therefore, T is only
recalculated if f ac0 has changed.
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Finally, the post processor function is set to calculate the kinetic
energy with

Ekin =
1
2

φ (Kφ) ,

the potential energy with

Epot =
1
2

φ̇
(

Mφ̇
)

and the total energy as a sum of those two:

Etot = Ekin + Epot.

wave operator for the mixed formulation The discretized
form of the mixed formulation is written in paragraph 6.4 as

Aẋ = −Bx, (6.4, repeated)

where block matrix

A =

[
1
2

α
g M −M

1
2 M 0

]
and B =

[
Kw

1
2 αM

0 1
2 gM

]
.

The entries of the two block matrices A and B are formed in the
initialization function. Again, two bilinear forms are defined on the
finite element space: a diffusion integrator K on the whole domain
and a mass integrator M on the free surface boundary. However, the
diffusion integrator K is used to form two different stiffness matrices:
one for the potential φ (Kφ), but also one for wave height η: Kη . This
second matrix is used to solve a dummy Laplace problem for the wave
height on the whole domain. This is done to obtain an invertible matrix
and can be changed in further development of the code towards the
inclusion of non-linear waves. This leads to a slightly altered B-matrix
that is called Kb in the code. The entries of the stiffness matrix Kη

that are associated with the free surface are set to 0 so it does not
interfere with boundary mass matrix M. Subsequently, the parameters
that are used to estimate the inverse matrix T−1 are set: a generalized
minimal residual method (GMRES) method is used which is allowed a
maximum of 500 iterations to reach a convergence of 10−8. These two
values can be changed to obtain more accurate results or, oppositely, a
faster code. Lastly, a Gauß-Seidel smoother is set as pre-conditioner to
calculate the inverse of T .

The explicit function is again not available and set to give the
error message “This wave formulation only works for implicit time
integrators".

The implicit function is available and can be written as

ẋn+1 = (A + ∆tKb)−1 (−Kbxn)

= Tb−1 (−Kbxn)
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So in order to calculate ẋn+1, block matrices Tb and Kb are formed
from the stiffness matrices Kφ and Kη and the mass matrix M:

Kb =

[
Kφ

1
2 αM

0 1
2 gM

]
(C.1)

and

Tb =

[
∆tKφ + 1

2
α
g M −M + 1

2 ∆tαM
1
2 M 1

2 gM + Kη

]
(C.2)

At every step, it is checked if time step ∆t has changed. If this is the
case, the block matrices are recalculated.

In the post processor, the three energy measures are calculated with:

Ekin =
1
2

φ
(
Kφφ

)
Epot =

1
2

gη (Mη)

Etot = Ekin + Epot

wave operator for the decoupled formulation The dis-
cretized form of the decoupled formulation was derived in paragraph
6.4 as

Aẋ = −Bx, (6.6 repeated)

where this time

A =

[
M 0

0 g2

α2 M

]
and B =

[
Kn f s gM
g2

α2 F 0

]
.

This time, three different bilinear form integrators are needed and
set up in the initialization function. Apart from the diffusion and mass
integrators an integrator F is needed to determine

(
Nj, ∂

∂z Ni

)
Γ f s

. This

is done with a discontinuous Galerkin diffusion integrator, part of the
boundary face integrator class, which is defined as

− 〈Q∇u · ñ, v〉+ σ 〈|u| , {Q∇v · ñ}〉+ κ
〈
{h−1Q}u, v

〉
where Q is set to 1 and σ and κ are set to 0. Applied to the free surface
where ñ = (0, 1), this reduces to

−
(

v,
∂

∂z
φ

)
.

However, this integrator is not implemented in the boundary integ-
rator class and cannot be used with NURBS meshes. Therefore, the
decoupled formulation cannot be used with NURBS meshes. Hopefully
this integrator will be implemented in a later version of MFEM.
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The three integrators (K, M and F) are assembled and finalized and
are used to form sparse matrices. The domain diffusion integrator is
used to form two different stiffness matrices: Kc and Km. The rows
in Km that are associated with the free surface are eliminated to form
Kn f s. This is not done with Kc, so this matrix can be used to calculate
the kinetic energy in the post processor. Integrator F is used to form
sparse matrix Fm and mass integrator M is used to form sparse matrix
Mm. The parameters that are used to calculate the inverse of matrix
T are set: again, a GMRES solver is used with a tolerance of 10−8

and a maximum of 500 iterations to reach convergence. The inverse is
preconditioned with a Gauß-Seidel smoother.

For the decoupled formulation, ẋn can be determined explicitly with

ẋn = T−1
e (−Kbexn)

where blockmatrix

Te =

[
0 gMm

Fm 0

]
and

Kbe =

[
Km + Mm 0

0 Km + Mm

]
The inverse T−1

e is calculated with the same settings as the implicit
T−1. This inversion is done in the initialization function and the
inverted matrix can subsequently be used to determine ẋn in the
explicit function of the wave operator.

In the implicit function, ẋn+1 is determined with

ẋn+1 = T−1 (−Kexn)

where the block matrices are (re)calculated if ∆t has changed or in the
first run with:

T =

[
∆tKm + Mm ∆tgMm

∆ g2

α2 Fm ∆Km + g2

α2 Mm

]
and

Kb =

[
0 gMm

g2

α2 Fm 0

]
.

Finally, in the post processor the three energy measures are calcu-
lated with

Ekin =
1
2

φ (Kcφ) ,

Epot =
1
2

gη (Mmη)

and

Etot = Ekin + Epot
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