
Fleet Design for Last-Mile On-
Demand Logistics

Thesis Report

Cilia Claij





Fleet Design
for Last-Mile
On-Demand
Logistics

Thesis Report
by

Cilia Claij
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Thursday December 15, 2022 at 13:00 AM.

Student number: 4596633
Project duration: November 1, 2021 – December 15, 2022
Thesis committee: Dr. J. Alonso-Mora , TU Delft, supervisor

Dr. S. Sharif Azadeh, TU Delft
Dr. C. Hernandez Corbato TU Delft
Ir. M. Kronmueller, TU Delft, daily supervisor

This thesis is confidential and cannot be made public until December 31, 2023.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/




Abstract

The simultaneous rapidly increasing demand for home delivery of goods and on-demand expectancy
of customers over the past years leaves a tough challenge for the logistical branch. They have to keep
up with this increasing demand and simultaneously they are obliged to satisfy consumer service level
demands to preserve their customers. On the other hand, as economic goals drive these businesses,
they are prompted to operate cost-effectively. As a result, the fleet, deployed to execute the last-mile
delivery, should meet both the requirement of cost-efficiency as well as the requirement for meeting
consumer service level demands. This raises the question of how to efficiently design a fleet for last-
mile on-demand logistics. For a fleet to be able to operate cost-efficiently, the fleet design decisions
are required to take both fixed and variable costs into account. As such, the fleet design decisions need
to include the consideration of the size of the fleet as well as the distance the vehicles travel on daily
basis. Therefore, the goal of this thesis is to develop a novel method for fleet design for last-mile on-
demand logistics. This work contributes by being the first to investigate methods for doing fleet design
specifically for last-mile on-demand logistics considering multiple depots and variable pick-up loca-
tions. The purpose of the method is to determine the operational plans of the individual vehicles, the
number of vehicles needed throughout a certain time period, the pick-up locations for all orders and
the total distance travelled by the full fleet of vehicles. The proposed method builds upon established
fleet design methods for ride-sharing taxi problems. The optimization method is adapted for last-mile
on-demand logistics, yielding the required number of vehicles and their individual operational plans.
The input of the system is a set of trips, which represent a path of a single vehicle to deliver one or
multiple orders from a depot. Connecting two trips, which is called chaining, has the benefit of re-
ducing the number of vehicles used, as chained trips are served by a single vehicle. Additionally, from
multiple available depots where orders can be picked up, the method determines the best depot per
order. This part of the method is called depot re-assignment. Furthermore, the fleet design problem
is modelled as a multi-objective optimisation problem to find the trade-off between fleet size and the
total distance the vehicles travel. Three different modelled datasets, each containing 10.000 order re-
quests in the city centre of Amsterdam, are used to prove the value of the given method. A comparison
between the method with and without depot re-assignment is made, to prove the value of the given
addition of depot re-assignment. It is proven that depot re-assignment is valuable as it decreases or
retains the fleet size for all test cases. The experiments conducted show that a significant decrease of
the required fleet size can be established by a minor increase in total travelled distance. Furthermore,
the optimal trade-off between the fleet size and the total distance travelled can be determined for a
specific operation with the knowledge of operational costs for that operation.

Cilia Claij
Delft, December 2022
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1
Introduction

Last-mile delivery is the term for describing the last step of the delivery of the order to the customer.
With an increased demand for the delivery of goods, the demand for this last-mile delivery has been
rapidly rising over the past few years. Accompanying the increasing demand for goods and widespread
access to the internet, the online shopping market has become very prosperous. The convenience to
save time and not having to go to the shops are among the reasons which justify the choice of cus-
tomers to opt for online shopping instead of physically attending stores [2]. This has led to the de-
scribed increased demand for goods delivery. Simultaneously, the demand for on-demand or same-
day delivery has grown over the past years. A consumer survey showed an increase in interest in same-
day delivery options from 33% in 2020 to 56% in 2022 [3]. The market is also predicted to have a com-
pound annual growth rate of over 20% a year from 2021-2027 [4]. The increase of both the last-mile
and on-demand delivery resulted in rapid combined growth over the last years and expected growth
in the near future.

A particular branch benefiting from the increasing demand for last-mile on-demand deliveries is the
grocery industry. Inherent to the daily need for edible products, the demand for the fast delivery of
them exists. Within a short amount of time, fast delivery companies like Gorillas, Flink and Getir have
established significant market share in the grocery market. As a result, larger companies partner with
them to prevent major loss of market share to them [5, 6]. This market share is an important indi-
cator of competitiveness and a higher market share reasonably leads to higher profit. It is therefore
expected that companies prevent major loss of market share at all costs by the notion: "If you cannot
beat them, join them".

Aiming for the best possible competitive positioning, companies thoroughly strive for the optimal
cost-revenue balance of their products. For last-mile on-demand deliveries, the design of the fleet
used to serve all order requests is essential for obtaining this cost-benefit balance. The design of the
fleet determines both the delivery cost of the products, as well as the customer’s satisfaction rate with
the delivery: having a vehicle deficit causes the delivery times to be high. Because of this, promised
service levels cannot be met, leading to unsatisfied customers. However, with a vehicle surplus, the
asset use is inefficient. As a result, vehicles are idle too often, leading to higher costs than needed.
These high costs cut the company’s profit. Furthermore, the costs of operation do not only depend on
the size of the fleet employed but depend on the variable costs of the fleet as well. With variable costs
taking more than 1/3 of the total fleet-related costs [7], they cannot be disregarded. Variable costs such
as fuel costs, maintenance costs and depreciation are directly related to the fleet mileage. The total
mileage of the fleet is directly related to the fleet size, with a higher total mileage for a smaller fleet
size [8]. As such, both fleet size and fleet mileage need to be taken into consideration for designing a
fleet for cost-efficient operations. It can be concluded that prompted by the demand for cost-efficient
operations and the requirement to uphold high customer service levels, the question of fleet design
for last-mile on-demand delivery is important.

To accurately design a fleet for the last-mile on-demand logistics problem, it is expedient to take into
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2 1. Introduction

account the individual vehicle plans. By considering the operational plans of individual vehicles over
the course of an entire day and thus the capabilities of the individual vehicles to deliver the orders.
Considering the information on individual vehicle plan level is important to operate cost-efficient,
while simultaneously meeting promised service levels. Involving this information in the method en-
sures the orders are delivered within the promised delivery time without inefficient asset use.

This work proposes an optimization method for fleet design for last-mile on-demand logistics, yield-
ing the required number of vehicles and the individual operational plans for each vehicle in the fleet.
From multiple available depots where orders can be picked up, the method determines the optimal
depot per order. The fleet design problem is modelled as a multi-objective optimisation problem to
find the trade-off between fleet size and the total distance the vehicles travel.

1.1. Related Work
This section outlines a concise overview of the related works regarding fleet design for last-mile on-
demand logistics. A more extensive overview of the related literature can be found in the Literature
Survey constructed to support this thesis, which can be obtained from the author of this work upon
request. Section 1.1.1 states the categorization and background of the Last-Mile On-Demand logistics
problem. It is important to consider the nature of the problem to be able to incorporate the decision
on individual vehicle level into the method. In Section 1.1.2, the fleet design problem is contextualized
and the relationship between fleet size and fleet mileage is discussed. Section 1.1.3 elaborates on
different methods which can be used for doing fleet design for the Last-mile on-demand logistics
problem.

1.1.1. Last-Mile On-Demand Delivery Problem
The last-mile on-demand delivery problem can be categorized into the class of dynamic vehicle rout-
ing problems (DVRP). A dynamic vehicle routing problem is a variant of the vehicle routing problem
(VRP), on which an extensive overview can be found in [9, 10]. The VRP is designed to find the set
optimal/least-cost vehicle routes for a fleet of vehicles to service a set of customers, given a set of
constraints. Each customer is visited exactly once by one vehicle, which starts and ends its route at a
depot. In this original VRP, the vehicle routes are determined with all customer information available.
In the DVRP, however, the routes are determined with the initial customer information available, and
new requests can be placed during execution. To service these new requests, the vehicle routes need
to be recalculated.

An example, made by Pillac et al. [1], of one vehicle in a dynamic vehicle routing problem (DVRP)
can be found in Figure 1.1. When the vehicle departs at t0 requests A, B, C, D and E are known. An
algorithm calculates a solution to visit all initial requests. At t1, when the vehicle has already visited A
and B and is on its way to serve customer C, new requests X and Y enter the system. The current route
plan is recalculated to include these new requests in the route plan. Instead of going from D to E to
the depot, the new route plan now consists of going from D to Y to E to X to the depot. This real-time
adaptation requires the recalculation of route plans for new requests. Additionally, in the context of
our logistical problem, the vehicle needs to return to the depot before being able to serve customer Y.
As the content of the order of customer Y is not known in advance, the vehicle must pick up the order
before being able to serve the customer.

Considering city-scale operations, logically, multiple pick-up locations should be considered. Com-
bining this with the dynamic nature of the on-demand delivery problem, the problem can be cat-
egorized as a dynamic multi-depot vehicle routing problem (DMDVRP). Due to the fact that every
problem classified as a VRP is NP-Hard, in some cases, exact methods are mostly incapable of solving
such a problem in finite time. However, different heuristic algorithms are used to approximate solu-
tions for these kinds of problems. For DMDVRPs algorithms, such as ant colony optimization [11, 12],
and particle swarm optimization [13] are used to generate these approximate solutions. Although they
use different methods to solve the problem, the different works use a similar general strategy to obtain
the final solution. By clustering the orders in regions with one depot, the DMDVRP problem is split
into different DVRPs, which are solved using the heuristic methods described above. A more recent
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Figure 1.1: Diagram of one vehicle in a dynamic vehicle routing problem [1]

work by Kronmueller et al. [14] does not use this division into different DVRPs, but directly solves the
DMDVRP problem at hand. The problem is solved by adapting the Vehicle-Group Assignment (VGA)
method [15], which is originally designed to solve a dial-a-ride problem in the logistical context. The
authors claim to be the first to consider multiple depots for a dynamic vehicle routing problem with-
out decomposing it into sub-problems.

1.1.2. Fleet Design Background
According to Jones et al. [16], realistic fleet design problems include the choice from a variety of dif-
ferent vehicle types, purchase of new vehicles, maintenance and replacement. To make the problem
more complex, facts about changing demand for transportation services over time and developments
in vehicle technology influence the operating characteristics and economics regarding the fleet and
the fleet design. Klosterhalfen et al. [17], designing a rail car fleet, split the fleet design problem into a
fleet size problem and a fleet structure problem, focusing on the determination of the size of the fleet
and the type of vehicles used, respectively. Different formulations are used to describe the fleet size
problem and the fleet structure problem, such as fleet dimensioning problem [18] is used for fleet size
and fleet capacity problem [19] is used as a synonym for the fleet structure problem. The combined
problem is described as a fleet composition problem [18] or, in combination with the vehicle routing,
as the Fleet Size and Mix Vehicle Routing Problem (FSMVRP) [20]. The essence of this problem is ob-
taining the number of vehicles and their size to accommodate demand at a minimal cost. It differs
from the normal VRP as it chooses the number and capacities of the vehicles in the fleet, whereas a
normal VRP assumes a fixed number of vehicles. By incorporating the minimization of the number of
vehicles and their corresponding capacity into the objective function, the problem is solved [21]. All
the different terminologies for a fleet design problem are not used consistently for the same problem
and thus add to the complexity of defining the fleet design problem. The interpretation of fleet design
used in this work mainly includes the decisions on fleet size and fleet mileage.

A few works consider the relationship between the fleet size and the amount of traffic/total distance
travelled. Levin et al. [22] show this dependency for shared autonomous vehicles with and with-
out dynamic ride-sharing. Dynamic ride-sharing enables the use of a car simultaneously with other
users, whereas in the case without dynamic ride-sharing the vehicles would only allow one user at a
time. Without dynamic ride-sharing, the relationship between the fleet size and the number of Vehicle
Miles Travelled (VMT) was found: the more vehicles available to serve the demand, the less VMT, as
fewer connection miles between customers have to be made. With the use of dynamic ride-sharing,
an increase in VMT was found with a higher fleet size. The authors argue this occurred because less
ride-sharing was used. For high fleet sizes, more significant than 14,500 vehicles, the same behaviour
as without dynamic ride-sharing was found, however decreasing more rapidly with the number of ve-
hicles. This is because dynamic ride-sharing is generally more efficient, which results in fewer miles
travelled compared to not dynamically sharing rides. A similar conclusion is found in the work of
Fagnant and Kockelman [23]. Sharing of vehicles induces excess VMT because of unoccupied vehi-
cle re-locations, but ride-sharing also lowers the VMT. Therefore, with a high number of customers
sharing their rides, the VMT is lower than without ride-sharing. It is important to note that the above-
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discussed works do either not include dynamic routing in their solution method, or do not include
routing at all. As stated earlier in this chapter, incorporating the routing decision into the fleet design
method is important to ensure that the orders are delivered within the promised delivery time without
inefficient asset use.

1.1.3. Fleet Design Solution Methods
To accurately design a fleet for the last-mile on-demand logistics problem, as explained, it is expe-
dient to take into account the individual vehicle plans. Considering the information on individual
vehicle plan level is important to operate cost-efficient, while simultaneously meeting promised ser-
vice levels. Involving this information in the method ensures that the orders are delivered within the
promised delivery time without inefficient asset use. Therefore only solution methods incorporating
the individual vehicle operation plans are considered suitable for fleet design for last-mile on-demand
logistics.
The first work designs a Shared Automated Mobility-On-Demand system, focusing on two main per-
formance metrics: quality of service (fast delivery to their destination) and operation cost (minimiza-
tion of fleet size and total energy consumption) [24]. These metrics are stated to be in conflict, which
means they cannot be minimized simultaneously. They propose a way to combine both objectives
into an optimization problem to create trade-off curves, which can be used to make decisions about
the fleet size. To solve this multi-objective problem, they use the Vehicle-Group Assignment method
(VGA) as introduced by Alonso-Mora et al. [15]. The multi-objective replaces the objective function
of the original VGA method, to apply the method to this particular problem. It finds the solution by
generating all possible groups of requests that each vehicle can serve and then by finding an optimal
assignment of such groups to individual vehicles.

Using the way of combining multiple objectives, Wallar et al. propose a better scalable method. The
set of requests is divided into batches with a fixed batch size, which are iterated over backwards in
time. For each batch, the VGA method is used to compute the set of travel schedules to pick up and
drop off requests. The objective minimizes the sum of the delays of the passengers, the transition
times between the current batch and the set of initial travel schedules (to connect schedules between
different batches), and additive costs for ignoring requests and schedules from the previous batch.
After the iteration of all requests is done, a maximum bipartite matching between travel schedules
without outgoing transitions and the set of initial travel schedules is computed. This time a larger
maximum idling time is used while ensuring the delay and waiting time constraints are still satisfied
for all requests. This so-called long-term rebalancing reduces the total number of vehicles needed in
the fleet. The objective of the Integer Linear Program (ILP) is to maximize the number of transitions,
by which it minimizes the total number of vehicles needed in the fleet.
A continuation of this work does not only optimize the fleet size, but also the composition of the fleet
with two capacity classes [25].

Similar to the previous work, the minimum trip cover, the smallest subset of all trips to serve all re-
quests, is calculated using the method described in [15]. To determine the fleet size and composition,
this minimum trip cover is used, by determining which trips can be executed in sequence by the same
vehicle, without violating the quality of service constraints or letting the vehicle idle for too long be-
tween trips, and then the total vehicles needed is minimized. This sequencing problem is formulated
as an ILP, with the objective function minimizing the weighted sum of the fleet size and the unused
capacity of the vehicles.

Using the concept of trips, two works [26, 27] determine the fleet size slightly different. By splitting the
construction of the trips and the determination of the fleet size, the fleet size is determined offline.
Vazifeh et al. assume single orders as trips as input of their system and do not assume ride-sharing.
Qu et al., on the other hand, focus mainly on the creation of the trips and do consider ride-sharing,
allowing multiple orders per trip. While the interpretation of the trips themselves is different, the way
of determining the fleet size is similar. They create a trip graph in which edges in the graph exist if both
trips can be served by the same vehicle without violating constraints. From this graph, a maximum
matching, corresponding to the minimum number of vehicles, is found by using the Hopcroft-Karp
algorithm. This algorithm is focused on only finding the maximum matching, not taking into account



1.2. Contribution Statement 5

other objectives.
Combining the notion of creating a multi-objective optimisation problem with the trip connection

as proposed by Vazifeh et al. a method for fleet design for last-mile on-demand logistics is established.
Instead of using the Hopcroft-Karp algorithm, a multi-objective optimisation is used to take both the
fleet size and the fleet mileage into account. By considering trips as input of the method, the customer
service levels are met using the routing method of Kronmueller et al. [14]. The ambiguity of the use of
depots is covered with a novel method.

1.2. Contribution Statement
The contributions of this work regard the method designed to achieve fleet design for last-mile on-
demand logistics. The main contribution regards the fact that this work is the first to investigate meth-
ods for doing fleet design specifically for last-mile on-demand logistics considering multiple depots
and variable pick-up locations. By allowing the method to assign another depot to a trip, the fleet size
can be decreased significantly. The method allows for operator decisions on the trade-off between the
use of more vehicles or more driven kilometres. In addition to that, the method is scalable for scenar-
ios with thousands of orders/trips. The method is evaluated on different datasets to prove value under
varied conditions.

1.3. Thesis Structure
This thesis report is split into two main parts. Part I contains a scientific paper, proposing a condensed
outline of the thesis work. The main concepts and results are considered in this first part. The second
part of the report, Part II, serves as an extension of the paper in the first part. As the extended report
builds upon concepts as discussed in Part I, it is advised against reading Part II before or without hav-
ing read Part I. This extended report composes a more thorough explanation of some of the concepts
addressed in the method section of the paper in Section 2. A more thorough background on the in-
put data used is illustrated in Section 3. Section 4 reports and discusses an extended version of the
experiments and results section of the paper. Last, a conclusion of the whole thesis and suggestions
for future research are given in Section 5.
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Fleet Design for Last-Mile On-Demand Logistics*

Cilia Claij1, Maximilian Kronmueller1 and Javier Alonso-Mora1

Abstract— Keeping up with the rising demand for last-
mile on-demand goods delivery, companies employ fleets for
this purpose. Simultaneously, these companies are prompted
to operate cost-efficient and satisfy consumer service level
demands. Therefore, the goal of this paper is to develop a novel
method for fleet design for last-mile on-demand logistics. This
work contributes by being the first to investigate methods for
doing fleet design specifically for last-mile on-demand logistics
considering multiple depots and variable pick-up locations.
The purpose of the method is to determine the operational
plans of the individual vehicles, the number of vehicles needed
throughout a certain time period, the pick-up locations for
all orders and the total distance travelled by the full fleet of
vehicles. The proposed method builds upon established fleet
design methods for ride-sharing taxi problems. The input of the
system is a set of trips, which represent a path of a single vehicle
to deliver one or multiple orders from a depot. Connecting two
trips, which is called chaining, has the benefit of reducing the
number of vehicles used, as chained trips are served by a single
vehicle. Additionally, from multiple available depots where
orders can be picked up, the method determines the best depot
per order. This method is referred to as depot re-assignment.
Furthermore, the fleet design problem is modelled as a multi-
objective optimisation problem to find the trade-off between
fleet size and the total distance the vehicles travel. Three
different modelled datasets containing 10.000 order requests
in the city centre of Amsterdam are used to analyse the results
of the given method. It is proven that depot re-assignment is
valuable as it decreases or retains the fleet size for all test
cases. A significant decrease of the required fleet size can be
established by a minor increase in total travelled distance.

I. INTRODUCTION

Last-mile on-demand delivery has been a rapidly growing
branch over the last few years. Last-mile delivery, the last
step in the delivery of the order to the customer, has been
rising due to increased demand for the delivery of goods.
Next to that, the demand for on-demand or same-day deliv-
ery has grown simultaneously, resulting in rapid combined
growth. Fast delivery companies like Gorillas, Flink and
Getir have established significant market share in the grocery
market. As a result, larger companies partner with them to
prevent major loss of market share [1], [2]. This market share
is an important indicator of competitiveness and a higher
market share reasonably leads to higher profit. Similarly,
profit drives the demand for cost-efficient operations. For
last-mile on-demand deliveries, the design of the fleet used to
serve all order requests is essential for obtaining an optimal
cost-revenue balance. Therefore, the research on designing
efficient fleets for last-mile on-demand delivery is crucial. A
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1The authors are at the Department of Cognitive Robotics, Delft Univer-

sity of Technology, Mekelweg 2, 2628CD Delft, Netherlands {C.Claij,
M.Kronmuller, J.AlonsoMora} @tudelft.nl

vehicle deficit causes the delivery times to be high, and as
a result, promised service levels cannot be met, leading to
unsatisfied customers. With a vehicle surplus, the asset use
is inefficient. As a result, vehicles are idle too often, leading
to higher costs than needed which cut the company’s profit.
Additionally, the costs of operation do not only depend on the
size of the fleet employed but depend on the variable costs of
the fleet as well. With variable costs taking more than 1/3 of
the total fleet-related costs [3], they cannot be disregarded.
Variable costs such as fuel costs, maintenance costs and
depreciation are directly related to the fleet mileage. The
total mileage of the fleet is directly related to the fleet size,
with a higher total mileage for a smaller fleet size [4]. As
such, both fleet size and fleet mileage need to be taken into
consideration for cost-efficient operations.
This work proposes an optimization method for fleet design
for last-mile on-demand logistics, yielding the required num-
ber of vehicles. From multiple available depots where orders
can be picked up, the method determines the optimal depot
per order. The fleet design problem is modelled as a multi-
objective optimisation problem to find the trade-off between
fleet size and the total distance the vehicles travel. As can be
seen in Figure 1, the choice of depot determines the distance
the vehicle has to travel. It is assumed that every order will
get delivered and therefore no orders are rejected.

Fig. 1: Example of the importance of the choice of the depot.
A vehicle in the top left has to deliver an order at the location
at the bottom right. Even though the depot on the top right
is closer to the request, following the purple dotted path is
longer than using the depot on the bottom right and following
the dashed orange path.

A. Related Work

The last-mile on-demand delivery problem is categorized
as a dynamic vehicle routing problem (DVRP), as reviewed
in [5], [6]. Finding the fleet size (and vehicle capacity) for
a vehicle routing problem is called the fleet size and mix
vehicle routing problem (FSMVRP) [7], which includes both
finding the fleet size and vehicle capacity as well as the routes
for the individual vehicles. To the knowledge of the authors
of this article, no solution methods for finding the fleet size
for a last-mile on-demand delivery problem exist.



However, allowing ridesharing for the Dial-a-Ride problem
[8], the problem becomes similar to a Last-Mile On-Demand
Delivery problem. The Vehicle-Group Assignment Method
(VGA) of Alonso-Mora et al. [9] allows for ridesharing of
more than two passengers and finds the optimal assignment
to requests for a given vehicle fleet. Using the VGA method,
Kronmueller et al. [10] solve a last-mile on-demand logistics
problem with multiple depots and elaborate on the main
difference between the two problems (Dial-a-Ride vs Last-
Mile On-Demand Logistics): for a logistical context, the
pick-up locations are undefined.
For the Dial-a-Ride problem, different methods to determine
the fleet size exist. Focusing on obtaining the minimum fleet
size, Vazifeh et al. [11] developed a method to find the
minimum fleet size by connecting taxi trips, and picking
and dropping off individuals. This method, however, does
not assume ride sharing, making it inapplicable to logistics
on its own. Cap and Alonso-Mora [12] model a multi-
objective fleet routing problem to compute Pareto-optimal
fleet operation plans which resemble the trade-off between
quality of service and operation cost (fleet size). The method,
however, due to computational heaviness, could only be
evaluated with one minute of taxi demand data. Wallar et
al. [13] overcome this problem by presenting a method to
determine the fleet size with a month of demand data while
allowing ridesharing. In a later work [14] they improved
upon this method by allowing different vehicle capacities,
where the method determines the capacity of the vehicles
and fleet size to meet the demand. The latest work of Cap et
al. [15] introduces a method using the concepts of passengers
travelling with a vehicle simultaneously, called pooling, and
of passengers sharing the same car over the course of the
day. This enhances the method over the method by Vazifeh
et al. [11], by allowing ridesharing.

This article builds upon the method for the Dial-a-Ride
problem of Cap et al. [15], using their chaining method.
The concept of trips as an input of Vazifeh et al. [11] is
used, but instead of transporting single passengers (in this
case packages), the trips are pooled orders. This allows
multiple packages to be transported simultaneously. The
main difference between the two problems (the Dial-a-Ride
problem and the last-mile on-demand delivery problem) is
the pick-up location of an order. In the Dial-a-Ride problem,
a single location for passenger pick-up is used. On the other
hand, the depot to pick up a product is ambiguous in the
last-mile on-demand delivery problem. Therefore, this work
proposes an extension to the method of [15], to determine the
fleet size, the vehicle routes and the order pick-up locations.

B. Contribution Statement

This work contributes by being the first to investigate
methods for fleet design specifically for last-mile on-demand
logistics considering multiple depots and variable pick-up lo-
cations. By allowing the method to assign another depot to a
trip, the fleet size can be decreased significantly. The method
allows for operator decisions on the trade-off between the
use of more vehicles or more driven kilometres. In addition

to that, the method is scalable for scenarios with thousands
of orders. The method is evaluated on different data sets to
analyse it under varied conditions.

II. PROBLEM FORMULATION

Consider a weighted directed graph G = (N,A), N being
a set of nodes and A defining a set of weighted arcs. These
weights represent the traveling times between two connected
nodes. A depot d ∈ D is a special node which serves as a
pickup location for goods. Therefore, all depots conform to
D ⊂ N . It is assumed that the goods inventory of the depots
is always sufficient for pickup. The distance between two
nodes (n1, n2 ∈ N) on the graph is defined by τ(n1, n2).
This distance is defined as the smallest sum of arc weights
of all sets of arcs that span a path between the two nodes.
The demand is given by a set of orders R. A single order
r ∈ R represents the request of one customer to receive their
order on location n at time t. Orders are incorporated into
pooled trips P , which serve as the input to the trip chaining
method. A trip always consists of one pick-up location,
which is the start of the trip nstart, and one or multiple
orders O ⊂ R. These orders O are pooled together into trips
as decribed by Kronmueller et al. [10]. However, in this case,
trips are not assigned to a limited number of vehicles, rather
each trip represents a potential vehicle v. These vehicles are
potential as, upon the connection of two trips, one potential
vehicle is eliminated and the other is used to serve all orders
of both trips.

A trip p = (v, nstart, nend, tstart, tend, L) ∈ P , represents
a potential vehicle v which can be used to serve all orders
of the trip in time. The set L holds the locations n of a set
O ⊂ R. v represents the potential vehicle created to serve
the orders O, with locations L, of the trip. The trip starts at
location nstart at time tstart and ends at location nend at
time tend. The starting location of a trip, nstart, is the depot
which is closest to the first order of the trip. This depot is
chosen initially as when the vehicle starts at the depot, this
is the closest and therefore the best depot choice for a trip
to start. However, the pick-up location could change without
causing any inconvenience to the customer and we allow it
to be changed if a better pick-up location exists. This could
occur if an existing vehicle, which previously delivered other
requests, has to deliver this order and therefore does not start
at the given depot.

Given an operational environment G and a set of pooled
trips P , the fleet design problem can be described as follows:
”Find a set of operation plans Ω, defining the number of
vehicles V needed to serve all trips P , the corresponding
pick-up locations of all orders of each trip and the total
distance T the vehicles travel, given that a vehicle v ∈ V
is available at each nstart on or before tstart.” The goal of
this study, therefore, is to determine the fleet design while
considering the operational costs. This results in a multi-
objective function to minimize the cost of operation, as both
the cost of vehicles as well as the cost of distance travelled
are considered. This multi-objective function is described as:



Fig. 2: Overview of the trip chaining method. During the bipartite network creation, all potential connections between trips
are found. The depot re-assignment step assigns a new depot to a trip if this decreases the total distance travelled. The trip
connection step solves the bipartite matching problem to find the best bipartite edge selection. The output of the system is
a set of chained trips.

min
Ω

β · crejtotal(Ω) + (1− β) · ρ(Ω). (1)

The crej describes the rejection cost of the use of a vehicle,
so the cost the operator needs to pay to start an additional
vehicle for a trip. Its total sum crejtotal(Ω) depends on the
number of vehicles used. The ρ describes the total distance
travelled, i.e. the sum of all travelled distances of all vehicles
during the whole day following their corresponding plan in
Ω. As both the fleet size and the distance travelled need
to be taken into account, the objective function is defined
as a combination of both objectives to determine the fleet
size as the number of vehicles V used. The weight factor
β controls the focus of the objective. For β = 0 the total
distance travelled ρ is minimised and for β = 1 the focus
is on minimising fleet size, while potentially increasing the
distance travelled significantly.

III. METHOD

Every trip p ∈ P resembles a potential vehicle v to deliver
the respective orders O. However, a vehicle can serve another
trip, after finishing the previous one, when it can reach the
starting location nstart of the next trip before or at it’s
starting time tstart. This idea of connecting trips is often
referred to as chaining. By chaining two trips, the number
of potential vehicles to serve all trips is reduced by one. The
connection of two trips is defined as a chain. Finding chains
for all trips results in a set of chains. The number of vehicles
used is represented by the number of chains, created from
the trips. Therefore, the method to solve the fleet problem,
as defined in Section II, is to determine in which way the
individual trips can be chained together. This results in a set
of operation plans Ω while considering the time constraints,
tend0 + τ(n0, n1) ≤ tstart1 , and the distance travelled.
A rough outline of the proposed method, as illustrated in
Figure 2, is given in this paragraph. A detailed explanation
of the method can be found later on in this section. In the
first step, all feasible potential connections for all pairs of
trips are computed. The depot re-assignment step uses these
connections to determine the best depot to use for these
combinations of trips. This decision is dependent on both
trips of a potential connection and is therefore conducted
for every potential connection of trips. The edges and trips

are then updated according to the outcome of the depot
re-assignment step. The updated potential connections are
finally used in the trip connection step to determine the best
edge selection to connect the trips. The output of the trip
connection step is a set of chained trips, where the number
of chains specifies the number of vehicles needed. The trips
now contain the right pick-up location, according to the chain
they are included in.

A. Bipartite Network Creation

Each trip can be chained to all other trips that satisfy the
time constraints of the trips as described above. To determine
the feasible connections, we model a bipartite graph B =
(U,W,E). A bipartite graph consists of two rows of nodes,
U and W , with edges E as connections between these nodes.
Every trip is represented by a node u ∈ U and w ∈ W on
either side of the graph. If a feasible chain between two
trips i and j exists, an edge e ∈ E exists between their
corresponding nodes. The cost of such an edge is used to
determine whether it is beneficial to make the connection
between the two trips i and j, or deploy a new vehicle for
trip j. This is dependent on the cost of deploying a new
vehicle, as well as the cost to transfer a vehicle from trip i
to trip j. Therefore, the edge cost between vertices i and j
is described as:

cij = −crej∗β+(1−β)∗
[
τ(nend

i , nstart
j )+γ∗τ(nstart

j , l1)

]
.

(2)
The cost of transferring a vehicle to the start of trip j is

given in between the square brackets. The chain distance,
(τ(nend

i , nstart
j )), describes the length of the edge connect-

ing trips i and j. However, only including this length is
not sufficient. With the starting location of a trip j being
ambiguous, the distance from the depot to the first request
depends on the depot that is used, as can be seen in Figure
3. It is, therefore, expedient to include this distance in the
edge cost, to simultaneously determine the best depots and
the best trip connections. As including this distance in the
cost function does influence both the fleet size and the total
distance, another weight factor, γ, is introduced. This weight
factor controls how much of this distance (from the depot to



the first request) is incorporated into the total edge cost. The
extent of this inclusion, and therefore the knowledge of the
cost-optimal solution, is with the system operator. Adding a
weight factor facilitates the decision-making process of the
operator and thus the finding of the optimal combination
of total distance travelled and fleet size for that specific
operation. The addition of the weight factor changes the costs
of the edges. As these costs are the foundation of the decision
later on in the method, this leads to different chaining options
and, therefore, different solutions (different fleet sizes and
total travelled distance). With γ = 0, the focus of depot
re-assignment is purely on decreasing the fleet size. With
γ = 1, the distance between the depot and the first request
is included in the objective. As this distance is increased
with depot re-assignment, the focus of the objective shifts to
minimizing the total distance travelled.

Fig. 3: Illustration of depot re-assignment. A chain between
a trip i and a trip j, connects the last request of trip i, nend

i ,
and the starting location (depot) of trip j, nstart

j . Another
path using depot d2, however, does exist, which results in an
overall shorter distance to collect the item from this depot
and deliver it to the order location l1. It can be seen that the
new route, the dashed green line, is overall shorter than the
old connection, the dotted blue line.

B. Depot Re-assignment

Every trip consists of a depot and a minimum of one order.
The depot initially selected to deliver the order(s) of a trip
will always be the one closest to the first order. However,
this does not mean this depot is the most efficient one after
chaining trips together. In the example shown in Figure 3,
depot nstart

j is the depot originally assigned as the pick-up
location for the orders of trip j, with the first order location
being l1. However, as trip 1 is chained to the last order of
trip 0, nend

0 , the total driven distance would be shorter when
using depot d2 instead of the initially assigned depot nstart

1 .
It is, therefore, expedient to check for every potential trip
connection whether another depot can be assigned. This is
checked for all depots, using the inequality:

τ(nend
i , d2) + τ(d2, l1) < τ(nend

i , nstart
j ) + τ(nstart

j , l1).
(3)

That is to say, if there is a depot for which Equation (3)
holds, the depot of the corresponding trip is re-assigned from
nstart
j to d2. If multiple depots satisfy the equation, the one

with the lowest τ(nend
i , d2)+ τ(d2, l1) is used. The trip will

be updated with the new depot and the bipartite edges e ∈ E
for which this re-assignment occurs, have their cost updated
according to the new depot. The re-assignment of a depot
changes both the chain distance τ(nend, nstart) as well as
the distance from the depot to the first request τ(nstart, l1).
As the original depot is the closest to the order, the distance
from the depot will increase. Hence, the chain distance has
to decrease with a re-assignment (due to Equation (3)). With
a shorter connection distance, it becomes more beneficial
to connect trips instead of using separate vehicles. Depot re-
assignment itself, therefore, affects the fleet size and the total
distance travelled, and is controlled by the weight factor γ.

C. Trip Connection Selection

To find the chains to be used, the optimal edge selection of
the bipartite network has to be determined. This problem can
be modelled as an integer linear program and solved using
available solvers. The objective function has to minimize the
cost of the edges and therefore takes into account the cost
of operating an extra vehicle or the distance to be travelled.

As the time constraints of all trip connections are already
accounted for in the edge creation of the bipartite network
in III-A, the optimisation problem, modelled as an integer
linear program, for trip connection becomes as follows:

Trip Connection Problem Given the edges E of the
bipartite graph, solve:

min
i,j∈E

∑
cij ∗ xij (4a)

subject to∑
j∈W

xij ≤ 1 ∀i ∈ U (4b)∑
j∈U

xji ≤ 1 ∀i ∈ W. (4c)

The integer optimisation variable xij ∈ {0, 1} takes the
value of 1 if the edge eij between bipartite nodes i and j
is selected and 0 otherwise. Practically a value of xij = 1
means the chaining of trips i and j, which will be served
by the same vehicle. The objective is constrained by the fact
that every node can only have one incoming (Equation (4b))
and one outgoing (Equation (4c)) connection as each vehicle
can only serve one trip at a time.

To solve this problem in polynomial time, a Hungarian
Algorithm [16] can be used. The problem can also be solved
with available solvers such as Gurobi [17] or Mosek [18].

Theoretically, this method can be used to solve for all trips
and thus consider all potential connections. However, if the
problem is too large, considering all potential connections
results in too many optimization variables to be solved
efficiently. Therefore, to solve a large problem, a heuristic
can be applied. Instead of considering all trips and potential
connections, the trips are divided into batches for which the
chains are calculated separately. On top of that, an extra
iteration is done to chain in between different batches. Trips
which are the first or last of a chain and thus have no trip
connected in front or after them are candidates for chaining



to trips with the same conditions as other batches. Similarly,
trips which are not part of any formed chain and therefore
have no trips connected in front or after them are also
candidates for inter-batch chaining. This allows for long
chains to be made and, thus, vehicles to be used over the
course of the entire day. The output of the system is a set of
chained trips. Concatenation of the connected trips provides
full chains which correspond to the route one vehicle has to
drive. These chains are the set of operation plans Ω, whereas
the number of these chains represents the number of vehicles
used for the whole operation.

IV. EXPERIMENTS AND RESULTS

The methodology is evaluated on three generated datasets,
simulating a potential day of order requests in the city
centre of Amsterdam. A directed graph of 2717 nodes and
5632 edges represents the city. The depots are distributed
onto this graph following a k-center algorithm. The travel
distance between two nodes is calculated as the distance in
meters divided by a constant speed of 36 km/h. A set of
orders is created with a uniform spacial distribution and a
temporal distribution, including a noon and evening peak.
These request orders are pooled into trips , which are then
used by the method as described. Three different datasets,
with ten thousand orders each, are used to produce the
average results as shown in this section.
To evaluate the proposed depot re-assignment method, a
comparison to the same method without re-assignment is
made. From here on the method without re-assignment is
called the base method. The average results over all datasets
for both methods over a variety of β-values are shown in
Figure 4, displaying the effect on the fleet size and the total
distance travelled. The logarithmic value of the fleet size is
plotted to show the trend in fleet size and simultaneously
visualising the difference between the two methods. For
β = 0, the distance travelled is minimised, and for β = 1
the focus is on minimising the fleet size. Both effects clearly
stand out in Figure 4. For all values of β, the fleet size is
either smaller or equal for the method with re-assignment,
compared to the base method. A saturation effect can be
noticed for high β-values. This occurs because the chosen
value for crej multiplied by β is higher than the value of the
distances (multiplied by β) of the right side of the edge cost,
Equation (2), for high values of β. As the value for crej is
significantly higher than the potential chaining distance, in
(almost) all cases, connecting two trips is considered a better
option than deploying a new car. This effect occurs for β-
values close to and 1.0.
However, in combination with the chosen crej , this effect
already emerges for β = 0.5, seen in the fact that this
fleet size is almost the same value as for β = 1.0. It
was determined that for β values of 0.5 and higher, at
peak times 108 out of 112 vehicles were used, achieving
a fleet utilization of 98%. The total distance travelled can
either increase or decrease compared to the base method due
to depot re-assignment, as can be seen for β-values 0.25
and 1.0, respectively. This effect occurs as re-assignment

Fig. 4: Average results for different values of β. Top: The
logarithmic value of the fleet size for the method with re-
assignment and the base method. Bottom: The total distance
travelled in kilometres for both methods.

decreases the length of the connection between the two trips,
and increases the path from the depot to the first request.
For a value of γ = 0.5, the increase from the depot to
the first request is not fully incorporated into the objective
function, thus making it possible to surpass the decrease
in chain length. This leads to an overall increase in the
total distance travelled. Interestingly this is dependent on the
value of β. For β = 0.25, the base method outperforms the
method with re-assignment with regard to the total travelled
distance. The difference between the methods becomes minor
for β = 0.5, whereas for β = 0.75, the method with
re-assignment outperforms the base method slightly. For
β = 1.0, the method with re-assignment clearly outperforms
the base method with regards to the total distance travelled.
Thus, it can be concluded that re-assignment lowers the fleet
size for the cost of increasing the total distance for low β-
values. For high β-values, the method does not affect the
fleet size, but does decrease the total distance.
As depot re-assignment influences both the fleet size and the
total distance travelled, the decision variable γ is introduced.



To study the effect of the value γ, a sensitivity analysis for
this variable has been conducted. Results for various γ values
(Equation (4)) in the range of 0 to 1 in terms of fleet size
and travelled distance are visualized in Figure 5. The figure
shows that a significant trade-off between the total distance
travelled and fleet size exists.

Fig. 5: Average fleet size compared to the average total
distance travelled for different values of γ.

Fully including the distance from the depot results in the
highest fleet size, but on the other hand, the lowest total
distance travelled. For a value of γ = 0, the opposite is true:
it results in one of the lowest fleet sizes, and the highest
total distance travelled. The other values can be found in
between these. The fact that the fleet size for γ = 0 is 1
higher than for γ = 0.1 is most likely due to an edge with
a cost value of 0 among the connected trips. The increase
of γ from 0 to 0.1 has a significant impact on the distance
travelled with no increase in fleet size. However, for higher
values of γ, ranging from 0.7 - 1.0, this impact on the total
distance is almost negligible concerning the increase in fleet
size it causes. This graph can be used for operator decision-
making, to which the value of travelled kilometres and the
use of extra cars are known. It can be used to find for which
value of γ the operation runs the most cost-efficient.

V. CONCLUSION

This work presented an optimization method for fleet
design for last-mile on-demand logistics, yielding the re-
quired number of vehicles. Given a graph and a set of
trips, the method determined the fleet size, the order’s pick-
up locations and the total distance travelled for each order
concerning a last-mile on-demand logistics problem. This
is done by determining the chaining of trips, by solving
a multi-objective problem with an ILP. Chaining two trips
has the benefit of reducing the number of vehicles used,
as chained trips are served by a single vehicle. The output
of the method is the number of vehicles needed to serve
all trips, the individual operational plans of these vehicles,
the pick-up locations of all requests and the total distance
all vehicles travel. Three datasets, each containing 10,000
order requests in the city centre of Amsterdam, were used
to analyse the results of the given method. It is shown
that the method is proven to be effective in determining
the fleet size for a last-mile on-demand logistics problem,
with a fleet utilization of 98%. On top of that, a significant
decrease of the required fleet size was established by a minor

increase in total travelled distance. The optimal trade-off
between the fleet size and the total distance travelled can
be determined for a specific operation with the knowledge
of operational costs for that operation. Future research could
include the addition of depot re-assignment for infeasible
edges of the bipartite network. As depot re-assignment
shortens the distance to the first order of a trip, connections
could become feasible because of that. In addition, with the
shorter distance to the first order of a trip, the total delivery
time of all orders of a trip decreases. As such, future research
could determine the effect of allowing a variable pick-up
time according to possible depots. Moreover, this study only
includes experiments with generated datasets. Additionally,
future research case studies on real-life data and/or different
cities can be done.
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2
Additional Information on Method

The basics of the method to solve the fleet design problem are described in the method section of Part I
of this report. In this extended method section, several concepts of the description in Part I, which are
in need of a more thorough elaboration, are revisited with an in-depth explanation and illustration.
Section 2.1 describes the effect of chaining and the influence of the value of cr e j on this. Section 2.3
illustrates the need for the γ value, and it’s effect on the bipartite network and corresponding trip con-
nection. The next section, Section 2.2, outlines the choice of method to find alternative depots within
the depot re-assignment step. Section 2.4 illustrates the method-wise difference between solving the
trip connection step of the method as an Integer Linear Program or with a Hungarian Algorithm. The
last section of this chapter, Section 2.5, contains the pseudo-code of the method, describing the algo-
rithms used to get from the input of trips to the individual vehicle plans.

2.1. The Purpose of Connecting Trips
The trip connection step uses all potential chaining connections to select the optimal connection
between the trips. Recall, these potential connections are the connections as created with the bipartite
network. The edge cost as described in Equation 2 in Part I of this report is used to compare the
different potential chaining connections. The most simplified version of a set of bipartite edges is a
set consisting of only one potential edge. Such a set is used in this section to demonstrate the effect
of chaining with respect to the effect of no chaining. Considering a set with one edge and decision
variable values cr e j = 600, β = 0.5, γ = 0, three different scenarios can occur as displayed in Figure
2.1. Every scenario consists of a potential trip connection with a certain (edge) cost. Dependent on
this cost, the situation following the arrow happens. This is either a chaining or the deployment of
a new vehicle. With an edge cost lower than the cr e j = 600, the first scenario occurs as depicted in
Figure 2.1a. For these values, making the chaining connection is beneficial according to the objective
function. As the value of the connection is 400 and the decision variables are as described, the edge
cost has a value of -100 (−600·0.5+400·0.5 =−100). Comparing this to the option of no chaining, which
does not add value to the objective, it is beneficial for the chaining to take place. Because of this, only
one vehicle is needed to serve both trips. An edge cost value larger than the cr e j = 600 results in the
third scenario, visualised in Figure 2.1c. As the cost of connecting the two trips is larger than the cost
of deploying a new vehicle, chaining is not beneficial in this case. As the total edge cost is now positive
(−600 ·0.5+800 ·0.5 = 100), the option of not chaining will result in a lower objective. Therefore, the
chaining does not occur and a new vehicle is deployed to serve the second trip. For an edge cost value
equal to the cr e j = 600, the outcome is indifferent, as shown in Figure 2.1b. The cost to deploy a new
vehicle to serve the second trip is exactly the same as the cost of transferring the existing vehicle to the
second trip’s starting location, resulting in an objective value of 0 (−600·0.5+600·0.5 = 0). In this work,
as the cost is equal, either of the outcomes is selected by the solver and are considered equivalent.

2.2. Depot Selection for Depot Re-Assignment
The depot re-assignment step determines which depot is the best to pick up the orders of a trip after
delivering the orders of another trip. Equation (3) of Part I is used to determine whether a depot is
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(a) Chaining occurs

(b) Indifferent

(c) Chaining does not occur

Figure 2.1: Three different examples of whether chaining occurs with certain distance values. Every scenario consists of a
potential trip connection with a certain (edge) cost. Dependent on this cost, the situation following the arrow happens, which
is either a chaining or the deployment of a new vehicle. Decision variable values are cr e j = 600, β= 0.5, γ= 0

strictly better than the depot initially assigned to the trip. The equation is used for all depots and the
depot with the lowest sum of distances is used as the new depot. This results in the pseudo-code given
in Algorithm 1.

Algorithm 1: Depot re-assignment method

1 f astest ← τ(nend
i ,nst ar t

j )+τ(nst ar t
j , l1);

// Find re-assignment depot in set of all depots
2 for d ∈ D do
3 if τ(nend

i ,d)+τ(d , l1) < f astest then
4 f astest ← τ(nend

i ,d)+τ(d , l1);
5 new_depot ← d ;
6 end
7 end

For the number of depots used in this work, the method as described in Algorithm 1 is sufficient
with respect to computational time. As the computational time linearly scales with the number of
depots, an alteration of the method could be necessary for a high number of depots. A first suggestion
on improving this is illustrated in Figure 2.2. To determine which depot is the best, first an estimate of
applicable depots can be made. In Figure 2.2, the distance from the first trip to the depot of the second
trip (connection distance) is visualised in orange. The distance from the depot to the first request of
the second trip is visualised in pink. A depot is strictly better than the current depot when it shortens
the total distance from the last request of the first trip via the depot to the first request of the second
trip. This means that all depots lying within this total distance from both the last request of the first trip
and the first request of the second trip, can be qualified as potentially applicable for re-assignment.
The set of potentially applicable depots can be found in the overlapping region of the two circles in
Figure 2.2. From the set of applicable depots, the strictly better depots can be determined, by checking
if depots in this subset decrease the distance to and from the depot as described in Equation (3) of Part
I. Recall, a depot is strictly better than another depot if the total distance from the last request of the
first trip via the depot to the first request of the second trip is lower for that depot. Using this method
of doing depot re-assignment, thus, first requires the determination of the set of potentially applicable
depots after which this set is used to determine whether another depot is strictly better than the other
depots of the set and the originally assigned depot. This method is described in Algorithm 2.

However, as the first step of the algorithm requires looping over all depots, Algorithm 2 is not better
regarding computational time. In fact as this algorithm requires a second step to loop over the subset
of depots, the computational time has increased. Therefore, the method as proposed in Algorithm 2
is more complex and computationally worse than Algorithm 1, so not beneficial to use.
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Algorithm 2: Find depot re-assignment in applicable depots zone

1 r adi us ← τ(nend
i ,nst ar t

j )+τ(nst ar t
j , l1);

2 D∗ ← [];
// find potentially applicable depots

3 for d ∈ D do
4 if τ(nend

i ,d)) < r adi us & τ(d , l1) < r adi us then
5 append d to D∗;
6 end
7 end
8 f astest ← r adi us;
9 new_depot ← 0;
// Find re-assignment depot in potentially applicable set of depots

10 for d ∈ D∗ do
11 if τ(nend

i ,d)+τ(d , l1) < f astest then
12 f astest ← τ(nend

i ,d)+τ(d , l1);
13 new_depot ← d ;
14 end
15 end

However, the method in Algorithm 2 could be slightly altered to fit the purpose. This proposal is
described in Algorithm 3. Instead of looping over every node on the graph, the distance to all depots
can be predetermined and saved. These distances can be sorted from shortest to longest, for each
node. Another look-up table contains the distances from the depots to every node on the graph. In the
depot re-assignment step, only the depots up to the depot with a larger distance than the distances of
the current depot will be considered. This differs from the method described above as the depots that
are too far from the requests are now discarded before doing any calculations instead of afterwards.
The second part of the algorithm is identical to the second part as described in Algorithm 2.

Algorithm 3: Find subset of Depots

1 import look_up_dis_to_depot;
2 import look_up_dis_from_depot;
3 D∗ ← [];
// find potentially applicable depots

4 for d ∈ D do
5 if look_up_di s_to_depot < τ(nend

i ,nst ar t
j ) then

6 append d to D∗;
7 end
8 else if look_up_di s_to_depot < τ(nst ar t

j , l1) then

9 append d to D∗;
10 end
11 else
12 break
13 end
14 end

2.3. Impact of Depot Re-Assignment Variable γ on Trip Connection
To more thoroughly demonstrate the impact of γ and thus including the distance from the depot to
the first request in the edge cost function, the example in Figure 2.3 is used. This example does not
represent a real scenario and is solely used for explanatory reasons. Similarly, the depot re-assignment
used is an arbitrary example to showcase the two different scenarios. The values of decision variables
used are as follows: β= 0.5 and cr e j = 10.
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Figure 2.2: Illustration of the area to search for the subset depots to be used in the depot re-assignment step. The circles drawn
have a radius of the distance travelled to connect the last order of the first trip and the first order of the second trip. Depots
within the joined (grey) area of the two drawn circles could be applicable for depot re-assignment. Depots within this subset of
depots could reduce the distance travelled to connect the two trips, making them options for re-assignment.

In the left top of Figure 2.3, a small bipartite graph is displayed. The graph consists of three nodes
on either side of the graph marked by the vehicle icon on the left and the depot icon in the middle,
connected with edges and their corresponding edge costs. Next to the bipartite graph another row
of nodes is displayed, marked by the house icon. These nodes represent the first request of the sec-
ond trip and the edges represent the connection distance from the depot to the first request of that
particular trip on the right side of the bipartite graph. Solving this connection problem with the trip
connection step without depot re-assignment results in the graph on the top right, with the selected
edges displayed in green. The combination of the green edges results in the lowest possible objective
of -3.5 (−10 ·0.5+9 ·0.5−10 ·0.5+4 ·0.5 = −3.5), resulting in this selection of connections. Using the
same bipartite network, but applying an arbitrary depot re-assignment for the connection between
the first trip on the left and the second trip on the right, results in the network in the bottom centre of
the figure. The arbitrary depot re-assignment decreases the connection distance from 8 to 3 and in-
creases the distance from the depot to the first request from 2 to 6 (as 3+6 < 2+8, depot re-assignment
takes place). In this scenario, the connection between the first trip on the left and the second trip on
the right has another depot assigned. The connection distance between the trips is changed from 8
to 3 and the distance from the depot is changed from 2 to 6. Since the distance from the depot is not
changed for the connection between the third trip on the left and the second trip on the right, the
distance two is still present in the graph. As the depot re-assignment improves the connection dis-
tance and for γ = 0 only the connection distance is included in the objective function, the edge with
the re-assigned depot is now selected as in the middle right graph. However, next to the decrease in
trip connection distance, the distance from the depot to the first request increases. As this change is
not included in the objective function for γ= 0, this increase is unbounded and leads to a higher total
distance travelled. To prevent this from happening, the distance from the depot to the first request
is included in the objective function for every γ ̸= 0. In the given example, this results in not select-
ing the edge with the re-assigned depot, as the increase of the distance from the depot outperforms
the decrease in trip connection distance. Although the scenario with γ = 0 (middle right) results in
more connections and therefore a smaller fleet size, an increase in the total distance travelled hap-
pens. This increase is due to the higher number of connections as well as the change due to depot
re-assignment. This trade-off between fleet size and total distance travelled shows the importance of
including the distance from the depot in the objective function, controlled by the decision variable
γ. For γ = 0 re-assignment is solely used for decreasing the fleet size independent of the increase of
the distance from the depot to the first request. γ = 1 completely incorporates the distance from the
depot to the first request in the objective function and, therefore, the focus lies on decreasing the total
distance travelled.
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Figure 2.3: The impact of γ on the bipartite network and the trip connection. An example network is given in the top left and
is exposed to the method without re-assignment (top) and the method with re-assignment (bottom). The method with re-
assignment is separated in two trip connection problems with values γ = 0 and γ = 1. The method with re-assignment and a
value of γ= 0 has more selected edges and therefore a smaller fleet size, but the distance travelled is increased. With a value of
γ= 1, the original edge selection is made to prevent this increase in distance travelled. Decision variables: β= 0.5 and cr e j = 10

2.4. Solving the ILP
The trip connection problem, composed as an Integer Linear Program in Equation 4 of Part I of this re-
port can be solved with a Hungarian Algorithm. However, to be provided with a solution, the program
has to be slightly changed. For a Hungarian Algorithm to be used, the connecting constraints need
to be altered. To be applicable for the use of a Hungarian Algorithm, every trip has to be connected
to exactly one other trip. As this would eliminate the possibility of unconnected trips and therefore
finishing or newly starting vehicles, another addition has to be made. This results in the altered Trip
Connection Problem:

min
i , j∈E

∑
ci j ∗xi j

subject to∑
j∈W

xi j = 1 ∀i ∈U∑
j∈U

x j i = 1 ∀i ∈W.

(2.1)

The bipartite network is extended with a set of dummy nodes and dummy edges. These dummy
edges make sure the constraints can be met while allowing finishing and newly starting vehicles. Due
to the addition of these dummy nodes and edges, the summations do now consider E∗,U∗ and W ∗,
which resemble the original E ,U and W respectively but include the dummy nodes and edges. The
number of added dummy nodes is identical to the number of nodes already existing (equal to the
number of trips) per side of the bipartite network. The newly added edges are constructed in three
different steps:

1. Every node is connected to their respective dummy node in the other column (node 1 on the
left is connected to dummy node 1 on the right).
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2. Every edge existing in the original bipartite network is inversely added to the dummy part of the
network (an edge between node 2 on the right and node 3 on the left is added to the dummy
nodes as edge between node 3 on the left and node 2 on the right). As all dummy nodes also
require exactly one connecting edge, this option can be used when the edge in the ’real’ network
is selected.

3. All edge cost for the dummy edges is set to 0, to prevent direct influence on the objective func-
tion.

The new bipartite graph edges E∗, including the original ones and the dummy ones, can now be used
to solve the altered trip connection problem. The output of the Hungarian algorithm contains the
selected edges, and with the elimination of the dummy edges, the chained trips can be found.

For an ILP solver such as Mosek or Gurobi, such change is not needed as the original constraints can
be used. However, to present the edges and their corresponding cost to the algorithm, they are fitted
into a two dimensional matrix. As the rows and columns correspond to the bipartite nodes of the left
and right side respectively, also non-existent edges are now involved. To make sure these non-edges
are not selected accidentally, their edge cost in the matrix is set to the maximum integer value. The
results of using the Hungarian algorithm or the ILP are optimally equivalent. This means the objective
value obtained by either method were equal. However, as the computation of the dummy nodes and
edges caused longer runtimes upon execution, the ILP implementation was chosen to conduct the
experiments. Due to memory problems occurring with the implementation of the ILP solver Mosek
during runtime, another implementation was made in Gurobi.

2.5. Pseudo-Code of the Method
This section will contain the pseudo-code of the method as described in the method section of Part I of
this report. Algorithm 4 describes the creation of the bipartite network, creating the edges for potential
trip connections according to the time constraints. The algorithm used for the depot re-assignment
step is given in Algorithm 1 in Section 2.2. For all depots, it is checked whether Equation (3) of Part
I of this report holds with respect to the depot which has the shortest distance at that point. At first,
this is the originally assigned depot, but this changes when a certain depot shortens the distance (as
described by Equation (3)), causing this depot to become the fastest. Algorithm 5 describes the trip
connection step to determine the ultimate connection of trips. This is done by solving the ILP of
Trip Connection Problem (4). At last, Algorithm 6 describes the reconstruction of the vehicle plans.
From every start of a vehicle plan, the whole plan is created by following the connections between the
different trips. This results in the set of operational plansΩ and the fleet size |Ω|. The fleet mileage is
determined by tracking the routes of the vehicles through all orders and trip connections.

Algorithm 4: Bipartite Network Creation

1 Function CreateBipartiteNetwork(τ,P,β,γ,cr e j ):
2 U ← [1,2, ...,P ];
3 W ← [1,2, ...,P ];
4 E ← [];

// Create edges for potential trip connections within time constraints
5 for u ∈U do
6 for w ∈W do
7 if t end

u +τ(u, w) ≤ t st ar t
w then

8 create euw ;

9 euw .cost ←−cr e j ∗β+ (1−β)∗
[
τ(nend

u ,nst ar t
w )+γ∗τ(nst ar t

w , l1)
]

;

10 append euw to E ;
11 end
12 end
13 end
14 return E ,U ,W
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Algorithm 5: Trip Connection

1 Function TripConnection(E ,U ,W ):
2 for i ∈U do
3 for j ∈W do
4 ci , j ←∞;
5 end
6 end
7 for i , j ∈ E do
8 xi , j ← 0;
9 ci , j ← ei , j .cost ;

10 end
11 xi , j ← solve Trip Connection Problem (4) using the sets of nodes U and W and the set of

potential connections E ;
12 return xi , j

Algorithm 6: Individual vehicle plans reconstruction

1 Function ReconstructVehiclePlans(xi , j ):
2 Y ← [];
3 Ω← [];

// add the starting trip of every chain to the set Y
4 for i ∈U do
5 for j ∈W do
6 if xi , j == 1 & x j ,i == 0 then
7 append i to Y ;
8 end
9 end

10 end
11 ω← [];

// create vehicle plans by tracking the trip connections from start to
end

12 for y ∈ Y do
13 i ← y ;
14 append y to ω;

// track the trip connections till the end
15 while

∑
j xi , j ̸= 0 do

16 for j ∈W do
17 if xi , j == 1 then
18 append j to ω;
19 i ← j ;
20 end
21 end
22 end
23 append ω toΩ;
24 end
25 returnΩ





3
Generation of Input Data

To evaluate the proposed method, experiments have to be conducted and analysed. At the time of
conducting these experiments, to the best of the knowledge of the authors, no open-source (bench-
mark) datasets applicable to evaluate the capabilities of the proposed methodology exist. Therefore,
an operational environment of the city of Amsterdam was created, as described in Section 3.1. Addi-
tionally, three different trip datasets were generated as described in Section 3.2

3.1. Operational Environment
The operational environment is represented as a directed and weighted graph. The graph used in this
work is a representation of the city centre of Amsterdam. A directed graph of 2717 nodes and 5632
edges is constructed representing the city as displayed in Figure 3.1. The arc weights resemble the
travel times between two, by an arc connected, nodes calculated as the distance in metres divided by
a constant speed of 36 km/h. The distance between two nodes on the graph is defined as the smallest
sum of arc weights of all sets of arcs that span a path between the two nodes. The distances between
every node on the graph are assembled into a lookup table to be used during runtime. The depot
locations on the graph are determined using a k-center algorithm. With a greedy implementation, the
first depot is placed on a random node and the other depots are, iteratively, located furthest from the
existing depots. This procedure is done twenty times accounting for the random starting node. With
the algorithm minimizing the maximum distance of all nodes to their closest depot, the iteration with
the lowest of this maximum distance is the selected set of depots. As the distance used in this work is
represented as traveltime, the distances in meters are divided by a constant speed of 36 km/h.

(a) Map of Amsterdam (b) Graph with 15 depots

Figure 3.1: Map of area of Amsterdam and the corresponding graph G = (N , A) in blue with 15 numbered depots in red. The 15
depots D are displayed on the map for correspondence between the two.

25
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3.2. Trip Data
The datasets containing the trip data are generated, using the graph as described above. Three differ-
ent datasets, each consisting of trips containing a total of 10.000 orders, with similar characteristics,
are used. This section describes the temporal and spacial characteristics of these datasets. Although
the examples given comply with one of the datasets, similar results could be expected from the other
datasets.
The temporal characteristics of the trip data are shown in Figure 3.2. The start time of the trips over
the course of the day are visualised in the left part of the figure, Figure 3.2a. Every bar represents a time
segment of ten minutes and their height corresponds to the trips starting in that particular segment.
At the start of the day the number of orders rises to a peak around noon. A second peak occurs at the
end of the afternoon, followed by a decrease in orders during the evening. The duration of the trips is
visualised in Figure 3.2b. The bars contain the trips with the duration slots as noted on the horizontal
axis, with their height representing the number of trips concentrated in the particular slot. It can be
observed that more than 50% of the trips have a duration between 140 and 190 seconds. The trips
higher than 210 seconds are grouped together for visualisation reasons, but range up to 695 seconds.
As the quantity of these high value durations is low, the mean value of the total set is approximately
174 seconds.

(a) Start time of trips over the course of a day

(b) Duration of trips

Figure 3.2: Temporal characteristics of one trip dataset. On the left the distribution of the starting time t st ar t for all trips p ∈ P
is visualised. Each bar resembles the number of trips starting within that ten minutes. On the right, the duration of the trips is
visualised. Every bar resembles the number of trips with the duration of the range given for that specific bar.

The spatial characteristics of the datasets used comprise the information on the spatial distribution
of the orders and depots upon the graph. All sets used consist of a uniform distribution of orders over
the graph, as in Figure 3.3. The spatial distribution of the depots is accomplished with the use of a
k-center algorithm. Due to the nature of this algorithm, depots tend to be placed along the graph
boundaries, as shown in the graph images in Figure 3.4. In combination with the uniform distribution
of the orders upon the graph, the distribution of orders among the depots is not uniform. To be clear,
as this comprises the input data of the method, the characteristics shown were made without the
use of depot re-assignment. The effect of depot re-assignment on the spatial characteristics will be
shown in Chapter 4. Over the whole range of numbers of depots in Figure 3.4, the depots located
more towards the centre of the graph, for example depot 3 and depot 7, serve significantly more orders
than the other depots. Similarly, depots on outskirts of the graph, such as depot 1, 9 and 15, serve
significantly less orders than other depots. These characteristics remain visible with the increase of
the number of depots, however in strict numbers the depots have to serve less orders.
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Figure 3.3: Spacial distribution of order locations n for all order requests R on the graph. The color of the points on the graph
represents the occurrence of the location in the set of order locations as given by the bar on the right.

(a) 10 Depots

(b) 15 Depots
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(c) 20 Depots

(d) 25 Depots

(e) 30 Depots

Figure 3.4: Spacial distribution of depots with corresponding order distribution per depot for different total numbers of depots.
The graphs on the left show the distribution of the depots on the graph for different numbers of depots. The figures on the right
represent the distribution of trips starting at the depot as numbered on the horizontal axis (nst ar t for all p ∈ P ). Depots located
in the centre area of the graph can be seen to have more trips started than the other depots.



4
Extended Experiments, Results and

Discussion

This chapter serves as an extension of the Experiments and Results section of Part I. Due to the page
restrictions in the paper, the results of the experiments are only briefly illustrated and discussed. This
extended experiments, results and discussions chapter builds on these results and provides an ex-
tended view on them. Next to that, the results are discussed throughout the chapter to provide more
insight and a critical view on them. Section 4.1 directly extends the results of Part I by providing a more
thorough analysis on the figures in this part. In Section 4.2 a sensitivity analysis for the different values
of the added vehicle cost cr e j is conducted. The final section of this chapter, Section 4.3 analyses the
effect of different numbers of depots.

4.1. Extended Analysis of Main Results
This section analyses the results as shown in Figure 4 of Part I more thoroughly. All illustrations in this
section are visualisations of only one of the three datasets, as the results shown are very similar over
all three datasets.

4.1.1. Individual Vehicle plans and Their Activity During the Day
The goal of the trip connection method is to connect different trips, and therefore eliminate potential
vehicles. The chaining of two trips eliminates the vehicle potentially used by the second trip, as the
vehicle serving the first trip now also serves the second trip. Chaining over the course of the whole
day leads to long chains of trips, each individually served by a single vehicle. These individual vehicle
plans are visualised from their start to end time in Figure 4.1a. The individual chains served by a single
vehicle are plotted as horizontal lines, one for each vehicle. The lines start at the starting time of the
first trip of the chain and end at the end time of the last request of the last trip of the chain. It can
be seen that chaining indeed creates single-vehicle journeys over the course of the whole day. Several
bumps can be identified in the plot, which are caused by the way the problem is solved. As stated
in the method section of Part I, the trips are divided into batches for which the chains are calculated
separately. On top of that, an extra iteration is done to chain in between different batches. The jumps
in the plot correspond with the boundaries of these different batches. The chains created within one
batch mostly span the time of the full batch. Additionally, the number of potential vehicles needed
to serve the trips of one batch are not by default identical over the different batches. This results in
a situation where, upon connecting between different batches, some chains cannot be inter-batch
connected. As these chains tend to start at the batch boundary, time-wise, bumps tend to appear on
batch boundaries.
Using the timeline information of the chains, the status of the vehicles over the course of the day can
be visualized as done in Figure 4.1b. The dark blue area corresponds to the number of vehicles actively
participating in the system. These vehicles are either delivering orders, driving to the start of another
trip or waiting at a location to resume their route at a later moment in time. The yellow and pink areas,
respectively, correspond to vehicles that have not yet entered and vehicles that are finished and have
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(a) Timeline of individual full chains over the course of the day

(b) The size of the fleet and the status of each vehicle over
time. The dark blue area corresponds to the active
vehicles and the yellow and pink areas respectively

correspond to vehicles that have not yet entered and
vehicles that have left the system.

Figure 4.1: Timeline of the individual chains and the status of the vehicles over the course of a day. Decision variables: β= 0.5,
cr e j = 600,γ= 0.5, re-assignment is used

left the system. It can be seen that of the total fleet size, most of the vehicles are actively used during
the day. Similarly, the peak in the vehicles active in the system is close to the fleet size, addressing the
need to have a fleet of this size available. In other words, vehicles are utilized efficiently and remain
active for long periods of time. The majority of vehicles finish after most of the vehicles have started,
confirming this efficient management.

4.1.2. Change of Depot Use due to Depot Re-Assignment
Depot re-assignment changes the distribution of trips starting at a certain depot as originally depicted
in Figure 3.4. The effect of depot re-assignment on this distribution for 20 depots is visualized in
Figure 4.2a. The other values for the decision variables used are as follows: β= 0.5,cr e j = 600,γ= 0.5.
The change in the number of uses of a depot is visualised per depot, split into the increase (green)
and decrease (red) of the number of uses for that specific depot. Figure 4.2b visualizes the change in
depot per depot. The x-axis holds the depot numbers of the originally assigned depots, whereas the
y-axis holds the depot numbers of the new depots. A dot on the intersection of an old and new depot
exists when a trip changes from the depot number on the x-axis to the depot on the y-axis. The color
of the dot depends on the occurrence of the particular changes. Comparing these two figures to the
locations of the depots and the initial distribution among these depots in Figure 3.4c, some interesting
conclusions can be drawn. It can be seen that depots 3, 12 and 20 receive the largest increase in
uses because of depot re-assignment. For these depots, it can be concluded from Figure 4.2b that
this increase mostly originates from the same one or two depots as originally assigned locations. For
depot 3, the most re-assignments come from depot 18, for depot 12 they come from depot 7 and for
depot 20 they come from depot 9 and 17. This is logically explainable, as for all three depots, as the
originally assigned depots are neighbouring depots. Neighbouring depots have a higher chance of
being candidates for re-assignment, as they are more likely to be on the route to the depot. When a
depot is on route to another depot, it is a candidate for re-assignment. The reason these depots have
the highest increase in depot use is due to their location. For example, looking at depot 20, it can be
seen that to go to depot 9 to pick up an order from any node of the map, in most cases a vehicle must
travel through or close to depot 20. Therefore depot 20 is the better one to use. For the other depots,
similar situations occur: from 18 to 3 and from 11 and 7 to 12.

Depots 7, 17 and 18 receive the largest decrease in use due to depot re-assignment. Due to their central
location on the graph, the original number of uses is relatively high with respect to most other depots.
As the areas of orders initially assigned to these depots are large, the radii of these areas are also large.
This means orders are prone to be located further from a depot, which increases the chances of an-
other depot being more suitable for pick-up upon trip connections. Depots 8, 9 and 15 are located on
the outskirts of the graph and therefore have the lowest increase in uses due to depot re-assignment.
Additionally, depots 8 and 9 have another depot in their close proximity, making them prone to a sig-
nificant decrease in depot uses. In the end, almost half of their uses end up being done by another
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(a) Increase and decrease of depot use due to depot re-assignment per individual depot.

(b) Shift of depot use from the initial situation to after depot re-assignment. A dot appears when at least one
request was first served by the depot number on the x-axis and is now served by the depot on the y-axis. The

color of the dot represents the occurrence of a particular shift.

Figure 4.2: The changes in depot uses due to depot re-assignment. Depot re-assignment causes an increase and decrease in the
number of uses per depot as shown in the top graph. The specifications of these changes are visualised in the bottom graph,
illustrating the shifts from individual depot to individual depot. Decision variables: β= 0.5,cr e j = 600,γ= 0.5.

depot. To conclude, it is shown how the individual depot uses shift due to depot re-assignment. The
impact of the shift on an individual depot depends on its location on the graph, the close proximity of
other depots, the density of orders in their initial use area and the initial number of uses. It is impor-
tant to take this information into account for initial depot placement, suggesting to evenly spread the
uses over all depots.
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4.1.3. Pattern Change in Distance due to Depot Re-Assignment
The depot re-assignment method influences both the distance from the last request of the one trip to
the depot of the other trip (connection distance) as the distance from the depot to the first request. For
all selected trip connections, their connection distance is plotted against the distance from the depot
to request 1, to analyse how depot re-assignment specifically affects these distances. This is visualised
in Figure 4.3. The values for the other decision variables used are as follows:cr e j = 600,γ = 0.5. The
connections which are unaffected by depot re-assignment are visualised in pink, whereas the affected
connections are visualised in purple for the situation before depot re-assignment and in yellow after
re-assignment. The situation before depot re-assignment assumes the trip connections which have
another depot assigned by the method, but with their initial depot. A clear shift from the purple region
to the yellow region can be observed in the figure due to the depot re-assignment. The reason for this
shift is a decrease in the connection distance and an increase in the distance from the depot to request
1. This is exactly what can be expected from depot re-assignment. As explained in the method section
of the paper, the initial choice of depot for a trip is the closest to the first request. As a result of this,
with depot re-assignment the distance from the depot to the first request will increase. Due to Equa-
tion (3) of the paper, with an increase in distance from the depot to the first request, the connection
distance has to decrease. Another interesting fact in the plot is the fact that all unaffected connections
are located in the left bottom of the figure. This implies that the larger the connection distance, the
more likely a trip connection is to have another depot assigned. Similarly, a small connection distance
is less likely to be influenced by the depot re-assignment. This is logical, as for smaller connection
distances, it is less likely that another depot will make this connection distance even smaller. With a
larger connection distance this is more likely and thus more depot re-assignments occur.

Figure 4.3: Effect of depot re-assignment on connection distance and distance from depot to the first request. The connections
unaffected by depot re-assignments are visualised in pink. The affected connections are visualised in purple using the initially
assigned depot (before depot re-assignment) and in yellow using the new depot. The trend shift from purple to yellow is inher-
ent to the depot re-assignment method. Decision variables: β= 0.5,cr e j = 600,γ= 0.5.

4.1.4. Absolute Change in Distances due to Depot Re-Assignment
As shown in the previous section, depot re-assignment induces a trend shift in the connection distance
to the depot and the distance from the depot to the first request. To analyse the effect of these changes
on the total distances as shown in Figure 4 of Part I of this report, the changes in total, trip and connec-
tion distance are visualised for the different β-values in Figure 4.4. The values for the other decision
variables used are as follows:cr e j = 600,γ = 0.5. These distances are the summation of all individual
vehicle plans. The trip distance includes all distances travelled within the trips, and the connection
distances includes all distances travelled in between trips. The absolute values plotted in the figure
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are the difference with respect to the base method. Therefore, a negative value represents a decrease
with respect to the base method and a positive value an increase with respect to the base method. In
Figure 4 of Part I of this report, the trend of the total distance difference due to depot re-assignment is
visible.

Figure 4.4: Change in total, trip and connection distances for different values ofβdue to depot re-assignment. The trip distances
always increase due to depot re-assignment, whereas the connection distances can both increase or decrease. The total distance
changes according to the magnitude of the changes of the other two distances. Decision variables: cr e j = 600,γ= 0.5.

Figure 4.4 gives more context on where this distance originates from. It can be seen that for β= 0.25,
both the trip distance and the connection distance increase due to depot re-assignment, resulting in
an increase in the total distance. The trip distance always increases due to depot re-assignment. As
the initial depot is the closest to the order, changing this depot will always result in a larger trip dis-
tance. Surprisingly, the connection distance increases as well. At first glance, this is counter-intuitive
as depot re-assignment should only happen when the connection distance is decreased. However, it
can be explained due to the decrease in fleet size caused by depot re-assignment. A decrease in fleet
size is due to an increase in the number of trip connections. With a higher number of trip connections,
it can be logically explained that the total trip connection distance is higher as well. This effect is less
prominent for the other β-values, as the difference in fleet size is less prominent as well. For β= 0.5,
the effect is less present but still causes the total distance to increase due to depot re-assignment. For
β = 0.75 and β = 1.0, there is no difference in fleet size for the two methods, and as such, the total
distance decreases due to depot re-assignment. The trip distance increases from β = 0.75 to β = 1.0,
which can be explained by the presence of more re-assignments in the selected trip connections. To
conclude, the difference in total distance between the base method and the method with depot re-
assignment is mostly related to the increase or decrease of the connection distance.

4.2. Sensitivity Analysis for Added Vehicle Cost cr e j

In the Problem Formulation section of Part I of this work, the value of cr e j is described as the rejection
cost of the use of a vehicle. This influences the chaining as described in Section 2.1. According to
the cr e j value, a new vehicle is deployed, or an existing vehicle is used to serve another trip. Low
values of cr e j will result in less chaining and therefore a lower total distance travelled and a higher
fleet size. High values of cr e j will result in the opposite: high total distance travelled and low fleet size.
To analyse this effect, a sensitivity analysis for different values of cr e j is conducted. Figure 4.5 displays
the effect of different values of cr e j on both the method with and without depot re-assignment. The
values for the other decision variables used are as follows: β= 0.5,γ= 0.5. The above-described trends
are visible in the figure, namely the low total distance travelled and high fleet size for low values of cr e j

and vice-versa for high values of cr e j .
For low values of cr e j , the total distance is low as described above. For a value of cr e j = 200 the re-
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(a) Total distance for different values of cr e j edit for legend (b) The logarithm of the fleet size for different values of cr e j

Figure 4.5: Total distance and fleet size for different values of cr e j . Both the effect on the method with and without depot
re-assignment are displayed. Decision variables: β= 0.5,γ= 0.5.

assignment has the largest impact on the total distance travelled with respect to the base method.
This is interesting, as for this value the number of potential connections is the lowest. Therefore, the
percentage of chains with re-assignment must be higher with respect to the other cr e j values. This
can be explained by the fact that for lower values of cr e j , re-assignment makes a more significant
impact on the edge cost. Relatively more edges can have their edge cost changed from a positive
to a negative value, making them available for edge selection. For higher values of cr e j this effect
does not appear as the cr e j value is significantly larger than the distances included in the edge cost
(τ(nend

i ,nst ar t
j ),τ(nst ar t

j , l1)). A similar effect as described in the previous section appears between

the method with re-assignment and the base method. The total distance is increased for low values
of cr e j and for higher values this increase shifts to a decrease, which becomes saturated with higher
values of cr e j . This saturation effect appears as the largest part of the objective value consists of the
left part of the edge cost in Equation 2 of Part I of this report. This effect starts taking place at values
of cr e j = 800 and higher. This occurs because the chosen value for cr e j in combination with the β-
value is that high, it outperforms the value of the distances of the right side of the edge cost already for
values of cr e j > 800. As the value for cr e j ·β is significantly higher than the potential chaining distance,
in all cases a chain is considered a better option than deploying a new vehicle. As the left hand side
of Equation 2 of Part I solely determines the outcome of the trip connection method, re-assignments
do not significantly alter the trip connection (as the changes in edge cost are mostly overshadowed by
the left hand side of the equation). Therefore the effect of re-assignment is almost identical for values
cr e j > 800.
The fleet size of the method with re-assignment is always better or equal with respect to the base
method independent of cr e j . The largest difference occurs for the lowest values of cr e j . This is due
to the higher percentage of re-assignments as explained for the total distance travelled plot in the
previous paragraph. The effect of the re-assignment decreases with the increase of cr e j , until around
cr e j = 1200 no difference between the methods can be observed. This is due to the fact that for high
cr e j values, all bipartite edges (all possible chaining options timewise) will have a negative edge cost
before the depot re-assignment step. The re-assignment will therefore not create chaining options
which were not available in the base method (because their positive edge cost changed to negative),
and the effect of the re-assignment is not significant enough to change the edge selection. Due to the
high value of cr e j , the relative influence of the re-assignment on the edge cost is low. Therefore, the
re-assignment does not change the edge selection and the same fleet size as with the base method is
established. As the edges themselves are influenced by the re-assignment, the total distance travelled
is affected and thus lower than the base method.

4.3. Analysis of Different Numbers of Depots
The experiments, as described before, are all conducted using a fixed number of depots, namely 20.
To analyse the effect of the number of depots used, a comparison for different numbers of depots
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is constructed. Using one dataset, the results of the method with and without depot re-assignment
using different numbers of depots are visualised in Figure 4.6. The depot locations used can be found
in Figure 3.4. The values for the decision variables used are as follows: β = 0.5,cr e j = 600,γ = 0.5.
For both methods, the increase of the number of depots leads to a decrease in both the fleet size
and the total distance travelled. This is due to the fact that with more depots available, the distance
to deliver an order is shorter on average and deliveries become more efficient. As vehicles spend less
time delivering orders, more chaining options become available and less vehicles are needed to deliver
all orders. This effect is more significant among the low depot numbers, as adding a depot on a graph
with a small number of depots decreases the distance of orders to a depot more significantly than
adding a depot to a graph with a higher number of depots. This can be seen in Figure 3.4, where the
addition of, for example, depots 11 and 12 are more significant in decreasing the distance of orders
to a depot than the addition of depots 26 and 27. For all depot numbers tested, the method with
re-assignment performs better than the method without re-assignment.
In all cases, a significant decrease in fleet size is visible, with a small increase in total distance travelled.
What is interesting to see is that this increase in total distance travelled decreases with the number of
depots. The effect of the re-assignment, measured in the difference between the method with and
the method without re-assignment, increases with the number of depots used. This is logically ex-
plainable as with more depots present, the chances for re-assignment are higher. Therefore, more
re-assignments take place and a more significant effect is visible.

Figure 4.6: Fleet size against total distance for different numbers of depots for the base method and the method with re-
assignment. Decision variables: β= 0.5,cr e j = 600,γ= 0.5.





5
Conclusion

This chapter contains the conclusion of this thesis report and suggestions for future research.

5.1. Conclusion
This work presented an optimization method for fleet design for last-mile on-demand logistics, yield-
ing the required number of vehicles. The method determined the fleet size, the total distance travelled
for each order concerning a last-mile on-demand logistics problem. This included the determination
of the optimal pick-up location for the order requests, as it is ambiguous which depot should supply
the requested goods. This work contributed by being the first to investigate methods for doing fleet
design specifically for last-mile on-demand logistics considering multiple depots and variable pick-
up locations.

Given a graph representing the operation environment and a set of trips required to be delivered,
the method determined the optimal chaining of the trips. Chaining two trips has the benefit of reduc-
ing the number of vehicles used, as chained trips are served by a single vehicle. First, the time-wise
feasible connections between pairs of trips were calculated. Per these connections, the method deter-
mined the optimal pick-up location. The last step of the method was to find the ultimate trip connec-
tion, which is done by solving an ILP. The output of the method was the number of vehicles needed to
serve all trips, the individual operational plans of these vehicles, the pick-up locations of all requests
and the total distance all vehicles travel.

Different experiments were conducted to prove the value of the depot re-assignment method com-
pared to the method without depot re-assignment. The re-assignment method decreased or retained
the fleet size while decreasing or increasing the total distance travelled. The increase in total distance
travelled proved the existence of a trade-off between the fleet size and the total distance travelled. The
way the method was designed allowed for operator choice on the trade-off between more kilometres
travelled for a smaller fleet size and vice versa. It was shown that a significant decrease of the required
fleet size could be established by a minor increase in total travelled distance. The optimal trade-off
between the fleet size and the total distance travelled could be determined for a specific operation
with the knowledge of operational costs for that operation. A sensitivity analysis showed the effect
of the method’s decision variables on the fleet size and the total distance travelled. The described
trade-off between fleet size and the total distance travelled was evident over the different values of the
decision variables. Therefore, with an appropriate selection of values of the decision variables, based
on the operational scenario at hand, the best trade-off for that scenario can be found and an efficient
utilization of the fleet can be established.

In general, the results were promising, allowing the operator to make such operational decisions with
the results of the proposed method. Most importantly, as this was the main goal of this research, the
method was proven to be effective in determining the fleet size for a last-mile on-demand logistics
problem, with a fleet utilization of 98%.
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5.2. Future Work
Future research could include the addition of depot re-assignment for infeasible edges of the bipartite
network. The depot re-assignment, as it is implemented now, is part of the trip connection method.
Because of this, only the already existing potential connections between trips are applicable for de-
pot re-assignment. Doing so ignores the connections which at first are not feasible, as the time con-
straints do not allow these connections. However, with depot re-assignment unfeasible connections
between trips can become feasible, as depot re-assignment decreases the connection time between
the trips. Therefore, by allowing depot re-assignment upon creating the set of potential connections,
more potential connections can be found. This has the potential of creating better operational plans
and further decreasing the fleet size.

In addition, with the shorter distance to the first order of a trip, the total delivery time of all orders
of a trip decreases. This decrease in time is not used to its full benefit. The orders of a trip are not
shifted in time, which results in the time benefit being used as waiting time. By allowing the order
delivery times to be changed, earlier completion times of the trips can be established. As well as the
previous suggestion, this has the potential to lead to more potential connections and, thus, better op-
erational plans. As such, future research could determine the effect of allowing a variable pick-up time
according to possible depots.

Moreover, the execution of the method could be altered. As was stated in the method section, the
trips are handled in batches for computational reasons. These different batches are then connected
with a second iteration. This is sufficient, however, it prevents certain trip connections from being
made and therefore influences the final trip connection and the fleet size. Despite the second itera-
tion, and, therefore, the ability to make inter-batch connections, the batch boundaries cause bumps
in the number of active vehicles. To prevent this, future research should include investigating this is-
sue and finding a way to facilitate a more smooth transition over the batch boundaries.

On top of that, the execution with different batches and the second iteration has one limitation. A
situation in which a small number of connections is made during the batch iterations, for example for
a low β-value, can prove to be computationally too expensive for the second iteration. A low number
of connections in the batches results in a high number of connections in the second iteration, to the
extent in which it cannot be solved efficiently. Future research could include finding a way to prevent
this and make even these problems efficiently solvable. A first thought on this would be to divide the
second iteration into sub-iterations, whereas every sub-iteration makes the connection between two
neighbouring batches of the first iteration. This will cover most inter-batch connections and further
investigation has to determine whether a third iteration has to be done to connect the starts and ends
of each chain created per sub-iterations (similar to how the second iteration currently connects the
different batches).

Furthermore, this study only includes experiments with five different generated trip datasets. While
this is sufficient to prove the capabilities and value of the method at hand, this will not suffice for prac-
tical usage and accurate operational decisions. To decide on the values of the decision variables for a
particular use case and implementation in practice, more and more varied datasets need to be used.
Ideally, this data is close to the real-life application.



A
Spacial and Temporal Information

Different Datasets

This appendix contains the spacial and temporal information figures similar to Figures 3.2 and 3.3 for
the other two datasets used.

(a) Start time of trips over the course of a day

(b) Duration of trips

Figure A.1: Temporal characteristics of the second trip dataset. On the left the distribution of the starting time t st ar t for all trips
p ∈ P is visualised. Each bar resembles the number of trips starting within that ten minutes. On the right the duration of the
trips is visualised. Every bar resembles the amount of trips with the duration of the range given for that specific bar.

Figure A.2: Spacial distribution of order locations n for all order requests R on the graph of the second trip dataset. The color of
the points on the graph represent the occurrence of the location in the set of order locations as given by the bar on the right.
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(a) Start time of trips over the course of a day

(b) Duration of trips

Figure A.3: Temporal characteristics of the third trip dataset. On the left the distribution of the starting time t st ar t for all trips
p ∈ P is visualised. Each bar resembles the number of trips starting within that ten minutes. On the right the duration of the
trips is visualised. Every bar resembles the amount of trips with the duration of the range given for that specific bar.

Figure A.4: Spacial distribution of order locations n for all order requests R on the graph of the third trip dataset. The color of
the points on the graph represent the occurrence of the location in the set of order locations as given by the bar on the right.
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