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Research On ADCN Method for Damage
Detection of Mining Conveyor Belt

Dingran Qu, Tiezhu Qiao, Yusong Pang, Yi Yang , and Haitao Zhang

Abstract—Belt conveyor is considered as a momentous
component of modern coal mining transportation system,
and thus it is an essential task to diagnose and monitor the
damage of belt in real time and accurately. Based on the deep
learning algorithm, this present study proposes a method of
conveyor belt damage detection based on ADCN (Adaptive
Deep Convolutional Network). A deep convolution network
with unique adaptability is built to extract the different scale
features of visible light image of conveyor belt damage, and
the target is classifiedand located in the form of anchor boxes.
A data set with data diversity is collected according to the
actual working conditions of the conveyor belt. After training
and regression, the ADCN model can perfectly capture and
classify the damaged target in the video of the conveyor running. Compared with the SVM based method, the method based
on ADCN can better meet the real-time and reliability requirements of belt damage detection, and it has the positioning
function which SVM does not have.

Index Terms— Deep learning, ADCN, conveyor belt, damage.

I. INTRODUCTION

M INING belt conveyor is the lifeblood of raw coal
transportation system [1], which is considered as the

necessary and expensive large-scale working equipment for
coal mine transportation. As an important part of the belt
conveyor, the belt is used to carry coal transportation. There-
fore, it plays an extremely important role in the operation of
belt conveyor. In the working process of the belt conveyor,
harsh working environment and sudden accidents may lead to
longitudinal tearing of conveyor belt [2], [3], which may lead
to machine damage, production stagnation and even casualties
in serious cases.
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In August 2020, a metal part fell off at the coal falling point
of conveyor belt in China Qingxu, Jinmei Railway Logistics
Co., Ltd. As a result of the conveyor belt had not been
equipped with tear detection equipment, the longitudinal tear
of nearly 400m conveyor belt has been caused, resulting in the
direct loss of 26W RMB and the indirect loss of 10W RMB.
The scene of the accident is shown in Fig.1.

Consequently, it is of particular importance to detect the
longitudinal tear state of the conveyor belt in real time [4].
Compared with traditional detection methods, such as elec-
tromagnetic testing method [5], ultrasonic testing method and
mechanical testing method [6], [7], machine vision detection
technology has better detection speed and accuracy without
the requirement to contact with the detected object [8], and
lower maintenance cost [9]. The existing damage detection
methods for conveyor belt based on machine vision include:
Chen et al. proposed the SVM-based monitoring technology to
detect the damage of mining conveyor belt [10]. Li et al. used
the optimized SSR algorithm to detect the damage of conveyor
belt [11]. Yu et al. proposed a dual-band machine vision
method based on the combination of medium infrared light
and long infrared light to detect belt damage [12]. Hou et al.
employed the multi-spectral image acquisition sensor to
decompose visible light into visible light, medium infrared
light and far infrared light, and integrated the multi-spectral
image for longitudinal tear detection of conveyor belt [13].
Qiao et al. proposed an integrated binocular vision detection
method on the basis of infrared and visible light fusion to
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Fig. 1. Scene of accident.

detect the tearing of the mining conveyor belt [14]. Yang et al.
used the infrared light detection method based on the new
infrared image binarization threshold automatic selection algo-
rithm to detect the tear of conveyor belt [3]. Hou et al.
combined machine vision and GMM-UBM sound recognition
to comprehensively detect the tearing of conveyor belt [15].
However, due to its imaging principle, the method based on
infrared image still has great limitations such as high noise,
high cost and poor effect in the actual experiment. Due to
the fuzzy classification characteristics of different damage in
the conveyor belt, existing machine learning methods, such
as SVM and GMM still have a very large room for the
improvement in both detection accuracy and speed [16], [17].

Consequently, this present study refers to the deep learning
ideas in the field of mechanical defect detection [18], [19],
and takes the lead in putting forward a method of ADCN
to the damage detection of mining conveyor belt. Compared
with traditional machine vision detection methods, such as
SVM, this method has stronger generalization, higher detec-
tion accuracy and faster detection speed. In addition, it can
also accurately locate the specific location of the damage of the
conveyor belt. In this article, the visible light image data of the
real working environment of mine conveyor belt are collected
and processed, and the damage detection data set of mine
conveyor belt is established. Based on the thought of deep
neural network and the special situation of self-made data set,
the ADCN structure of mine conveyor belt damage detection is
established. In addition, the trained network model can be used
to capture and classify the surface scratches and penetrating
tears on the conveyor belt in real time and accurately.

The input image size of the ADCN is 416 × 416 × 3. The
backbone of the network consists of 14 layers of convolu-
tion layer, and each convolution layer includes convolution
operation, BN normalization and Mish activation function.
In the neck part of neural network, both SPP module and
FPN structure are adopted. In addition, the head part is to
output three size feature maps corresponding to three size
anchor boxes respectively. In this article, CIoU_loss function
is selected as the Bounding Box Regression Function, and
DIoU_NMS function is employed to screen the prediction
boxes.

The remainder of this article is arranged as follows:
Section 2 represents the structure of the ADCN for damage
detection of mining conveyor belt, which is divided into four
network modules for separate explanation. Section 3 describes

the experimental process of this study, evaluates the exper-
imental results and analyzes the data with four evaluation
indexes we presented. Finally, the conclusion of this article
and the direction of future development will be provided in
Section 4.

II. ADCN STRUCTURE

The network structure used in the ADCN method for
damage detection of mining conveyor belt is a special network
structure customized according to the application scenarios
in the present study. The ADCN is divided into four parts
for explanation: input is the input end, which is responsible
for image input. Backbone is the main part of the network,
which accounts for the characteristic extraction of the input
images. The neck part exists between the backbone and the
head, making it better use of the predictor layer to take
advantage of the image features extracted by backbone by
adding a series of complex network structures or algorithms.
As the prediction part, the head is responsible for obtaining
the output content of the neural network, and predicting the
target through the features extracted from the neural network
model. In the following, we will elaborate the four parts of
the neural network structure respectively.

The structure of ADCN is shown in Fig.2.
In the ’CBL(x×y×n)’,’Conv(x×y×n)’ and
‘Con2D_BN_Mish(x×y×n)’ in Fig.2, ‘x×y’ is the length
and width of the convolution kernel, ‘n’ is the quantity of
the convolution kernel. In ‘Feature map(x×y×n)’, ‘x×y×n’
represents the size of the feature map. In addition, ‘//2’ means
that the step size of convolution kernel is 2, and other steps
are 1 by default.

A. Input
The data set used in this study is the pictures of the

lower surface of the conveyor belt in work. The data set is
small in scale, and the target classification requiring to be
predicted is only surface scratch and penetrating tear. It has the
characteristics of less target types, single target shape types,
few small targets and mostly medium targets as well as strong
visibility of targets [20]. Consequently, we scale the image size
to 416 × 416 × 3 and input it into feature extraction network
directly.

B. Backbone
The backbone part of the network structure is mainly used

for feature extraction. In this article, the backbone part of the
network structure is a convolution block with 32 convolution
kernels of size 3 × 3 × 3 and step size of 2, four Resblocks
and a convolution block with 1024 convolution kernels with
size of 1 × 1 × 512 and step size of 1 [21]. The convolution
block in this present study includes 2D convolution operation,
BN normalization and Mish activation function. Therefore,
the backbone of this network structure has 14 layers of
convolution layer, which determines that the network will have
enough feature extraction ability and fast running speed.

The Mish function is shown in equation (1) and Figure 3.

m (x) = xe2x + 2xex

e2x + 2ex + 2
(1)
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Fig. 2. ADCN structure.

Fig. 3. Mish activation function.

Resblock includes three convolution blocks, and the acti-
vation function of each convolution block still used Mish
function. The convolution kernel size of the first convolution
layer in Resblock is 3 × 3, and the step size is 2, thus the
feature image will be under-sampling once. The feature image
passing through the convolution block will continue to pass
through two convolution layers with convolution kernel size

Fig. 4. Module Resblock.

of 3 × 3 and 1 × 1, and the step size is 1. The feature
extracted by three-layer convolution was ‘shortcut’ with the
feature obtained only through the first convolution layer. This
means that the tensors are added and the dimensions are
constant. the Resblock module divides the feature mapping of
the base layer into two parts, and then combines them through
the cross-stage hierarchy structure to optimize the gradient
information repetition problem in the network. This not only
reduces the amount of inference calculation and memory cost,
but also ensures the detection accuracy. The Resblock structure
is shown in Figure 4.

C. Neck
In the neck part of our network, we adopted Leaky_ReLU

activation function in the convolution layer, and used SPP
module and FPN to build the network structure [22], [23].
In the SPP module, the feature images entered the
Max-Pooling operation of convolution kernel = {1 ×1, 5 ×5,
9 × 9, 13 × 13}, and then the four different scale feature
images were concatenated and created. Padding operation was
adopted for Max-Pooling. Compared to the KxK Max-Pooling
method, SPP module has a variety of advantages, such as
effectively increasing the receiving range of backbone features,
significantly separating the most important context features,
and improving the average accuracy value under the condition
of almost constant computing cost. FPN is the abbreviation
of Feature Pyramid Networks, which is used to transfer and
fuse the high-level feature information by up-sampling, and
get the feature map for prediction. FPN layer conveys strong
semantic features from top to bottom, and aggregates features
from different backbone layers to different detection layers.
This can greatly improve the ability of feature extraction of
neural network. However, it will increase a large amount of
calculation for the whole network structure. The FPN layer
has three feature maps of different sizes, which are 13 × 13,
26 × 26, 52 × 52, respectively. They are corresponding to the
largest medium and the smallest anchor box [24].

The Activation function of Leaky_ReLU is shown in equa-
tion (2).

yi =
{

xi , i f xi ≥ 0
xi

2
, i f xi < 0

(2)
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Fig. 5. Module CBL.

Fig. 6. FPN structure.

Figure 5 shows the network structure of CBL module.
Fig. 6 is the schematic diagram of FPN for image feature
fusion.

D. Head
The Head part of the network structure in this article

converts the three feature graphs input by the neck layer
into three feature maps with dimensions of 13 × 13×14,
26 × 26×14 and 52 × 52×14, through a CBL module and
a convolutional layer to achieve the prediction effect. The
14 shown here is the feature graph dimension, which is defined
by (anchor_num/3)x(5+classes_num).

The loss function of the neural network model in this
article consists of two types, including Classification Loss
and Bounding Box Regression Loss during target detection.
CIoU_loss function is adopted in the Bounding Box Regres-
sion Loss, which makes the regression of neural network
model prediction box faster and more accurate than using
IoU_Loss.

CIoU_Loss function is shown in equation (3). “C” is the
CIoU_loss function value. When C exceeds the threshold
of the score, the anchor box returns. In this article, we set
score_threshold to 0.5. “B” is the Predicted Bounding Box.
“Bgt”is the Ground-truth Bounding Box. “ρ” is the square
of the distance between the predicted bounding box and the
ground truth bounding box. “c” is the diagonal length of
the minimum bounding box that can contain the Predicted
Bounding Box and the Ground-truth Bounding Box. “α” is
used as a trade-off parameter. The definition is shown in
equation (4). In equation (5), “υ” is used as a parameter for
measuring consistency of aspect ratio. “W” is the width of
the Predicted Bounding Box while “wgt ”is the width of the
Ground-truth Bounding Box. “h” is the height of the Predicted
Bounding Box while “hgt ” is the height of the Ground-truth

Fig. 7. Actual working condition of belt conveyor.

Bounding Box.

C = 1 −
∣∣B ∩ Bgt

∣∣
|B ∪ Bgt | + ρ2(B, Bgt)

c2 + αυ (3)

α = υ( |B∩Bgt |
|B∪Bgt |

)
+υ

(4)

υ = [2(arctan wgt

hgt − arctan w
h )

π
]
2

(5)

Classification Loss adopts DIOU_nms [25]. Compared with
IOU, this method has better performance in detecting overlap-
ping targets. DIOU_NMS function is shown in equation (6).
“D” is the DIoU_loss function value. When D exceeds the
iou_threshold, we choose this anchor box. In this study, we set
iou_threshold to 0.3.

D = 1 −
∣∣B ∩ Bgt

∣∣
|B ∪ Bgt | + ρ2(B, Bgt)

c2 (6)

III. EXPERIMENTAL PROCESS AND RESULT ANALYSIS

A. Construction of Experimental Platform
1) Mining Conveyor Belt Damage Detection Platform: To

test the reliability and real-time performance of the ADCN
diagnosis method for mining conveyor belt damage, according
to the actual working situation of the conveyor belt, we set up
two experimental platforms for mining conveyor belt in the
laboratory after the on-the-spot investigation in China Qingxu,
Jinmei Railway Logistics Co., Ltd. Fig.7. shows the actual
working condition of belt conveyor. Fig.8. presents the data
acquisition platform and test platform of mining conveyor
belt. The length, width and thickness of the conveyor belt
are 11m, 0.8m and 15mm respectively. The maximum speed
of conveyor belt is 4m/s. The image acquisition equipment
used a visible light camera with a frame rate of 60FPS and a
resolution of 1280×1024, fully satisfying the requirements of
the image detection experiment of the mining conveyor belt.

Since tearing usually occurs near the coal falling point of
the conveyor belt, the image sensor should be installed near the
front of the coal falling point. In addition, as shown in Fig.9,
first of all, the lower part of the conveyor belt has a large
space, which will not be covered by coal, and the longitudinal
tearing of the conveyor belt is easier to be detected due to the
large downward radian. Longitudinal tearing at the top of the
belt can be also detected below. Therefore, we installed the
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Fig. 8. a. Data acquisition platform. b. Test platform.

Fig. 9. Lower part of conveyor belt.

Fig. 10. Hardware installation location diagram.

camera on the lower part of the conveyor belt. The hardware
installation position of the experimental platform is presented
as Fig.10.

2) Data Processing Module Configuration: The experimental
data processing module uses HP OMEN5 64-bit computer;
Windows 10. CPU adopts Intel I7 9750H and RAM size of

16G. Single GPU uses Nvidia GeForce RTX 2060 with 6G
video memory.

The software environment version used in this experiment
is: python3.6, CUDA10.1, tensorflow-gpu2.2.0rc2, keras2.4.3,
numpy1.19.1, and opencv3.3.1.

B. Experimental Process
1) Data-Set: Longitudinal tear is the key target to be

detected in this experiment, and scratch external defects are
the precursors of longitudinal tear [26], so in this experiment,
we divided the damage into tear and scratch.

We used the camera to collect the damage images of the
conveyor belt in the dark light environment. We collected
damage images of different angles, sizes and positions on
the data acquisition platform, including 300 tear samples and
300 scratch samples, which were used as the training set of
this experiment. The training set samples is shown in Fig.11.

2) Network Model Training: In this article, Kmeans algorithm
is adopted to cluster the damage data of mining conveyor
belt [27], so as to obtain anchor boxes with pertinency
and adaptability. In this present study, the size of the input
image is 416 × 416 × 3, the number of anchor boxes is
6. Six anchor boxes are equally divided by three output
tensors, and each of them takes its own anchor boxes in
accordance with the size of large, medium and small. Fig.12.
shows kmeans algorithm to obtain anchor boxes standard-
ized value. Therefore, the anchor boxes used in this article
are((104,410)(36,408)(41,407)(47,411)(18,407)(72,405)).

In this article, the training parameters of the neural network
model were set as: mini_batch = 32; Epoch = 500; and
Image_size = (416 × 416 × 3). The training time in this
condition is 286 mins.

3) Experimental Test: The test experiments were carried
out on the test platform. we set the running speed of the
belt conveyor to 3.15m/s (the data is provided by the China
Qingxu, Jinmei Railway Logistics Co., Ltd.), and then used
the camera to test the target detection in three positions of the
mounting frame, which are left, middle and right.

In order to carry out the test experiment, we created 13.68m
continuous tear and 19.32m continuous scratch on different
positions of the conveyor belt on the test platform. After image
data acquisition, 260 tear samples and 368 scratch samples
were obtained. This article set the prediction parameters as:
score_ threshold = 0.5; iou_threshold = 0.3.

We carried out 5 detection experiments in a row to obtain
more accurate performance index data.

Figure 13 presents the diagnosis results of the image under
ADCN method.

In order to highlight the advantages of the conveyor belt
damage detection method based on ADCN, We used the
detection method based on SVM with the same test data in
the same experimental environment to carry out a group of
comparative experiments, and compared the experimental data.

C. Analysis of Experimental Results
We choose 3 indicators to describe the performance of the

diagnosis method for the test results, respectively, AR(average
recall), AP(average precision), TAfps(total average FPS).
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Fig. 11. a. Training set samples of scratch. b. Training set samples of
tearing.

Fig. 12. Getting anchor boxes by kmeans.

The calculation method of recall rate is presented in
formula (7).

R = T Ps + T Pt

T Ps + T Pt + F N s + F N t
(7)

The calculation method of precision rate is presented in
formula (8).

P = T Ps + T Pt

T Ps + T Pt + F Ps + F Pt
(8)

“T Ps” is the number of Scratch classes correctly predicted
as Scratch classes;”T Pt ” is the number of Tearing classes

Fig. 13. The detection results under ADCN method.

TABLE I
DETECTION RESULT OF SCRATCH

correctly predicted as Tearing classes; ”F Ps” is the number of
false predictions of other situations as Scratch classes;”F Pt ”
is the number of false predictions of other situations as
Tearing classes;”F N s” is the number of missed predictions of
Scratch class;”F N t ” is the number of missed predictions of
Tearing class.

The AR obtained after a group of experiments is shown
in formula (9). AP is presented in formula (10). TAfps is
shown in formula (11). “Rn” is the recall rate of the nth
experiment;”Rmin” is the minimum recall rate of a group
of experiments;”Rmax” is the maximum recall rate of a
group of experiments; “Pn” is the precision rate of the nth
experiment;”Pmin” is the minimum precision rate of a group
of experiments;”Pmax” is the maximum precision rate of a
group of experiments;”Af psn” is the average FPS obtained in
the nth experiment◦

AR = (
∑5

n=1 Rn) − Rmin − Rmax

3
(9)

AP =
∑5

n=1 Pn − Pmin − Pmax

3
(10)

TAfps =
∑5

n=1 A f psn

5
(11)

Table I presents the scratch class detection results obtained
by 5 test experiments under ADCN model.

Table II presents the tearing class detection results obtained
by 5 test experiments under ADCN model.

Table III presents the recall, precision and average FPS data
obtained from 5 test experiments under the ADCN model.

Table IV shows the detection results of scratch class by
5 test experiments under SVM method.

Table V shows the detection results of tearing class by 5 test
experiments under SVM method.

Table VI presents the recall, precision and average FPS data
obtained from 5 test experiments under the SVM model.

The performance index of the detection method based on
ADCN and SVM is shown in Table VII.
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TABLE II
DETECTION RESULT OF TEARING

TABLE III
PERFORMANCE OF ADCN

TABLE IV
DETECTION RESULT OF SCRATCH

TABLE V
DETECTION RESULT OF TEARING

TABLE VI
PERFORMANCE OF SVM

According to the experimental data obtained from two
groups of experiments, the AR and AP of the mine con-
veyor belt damage detection method based on ADCN reach
95.81% and 97.40% respectively, the total average detection
speed (TAfps) is 24.32 FPS, and the AR,AP and total average
detection speed of the damage detection method based on
SVM reach 88.85%, 90.69% and 7.08 FPS. By comparing
with the SVM, the AR, AP and TAfps of the method in
this article are improved by 6.96%, 6.71% and 243.50%.

TABLE VII
PERFORMANCE COMPARISON

Therefore, the method based on ADCN can fully meet the
real-time and reliability requirements of conveyor belt damage
detection in actual industry. Moreover, it is stronger than the
traditional machine learning method.

IV. CONCLUSION

In order to monitor, diagnose and warn the damage of
mining conveyor belt in real time and avoid the occurrence
of production accidents, the ADCN method is proposed for
damage detection of mine conveyor belt.

We balanced the AR, AP and detection speed as well as
realized the existing optimal network model for mine con-
veyor belt damage detection. This method has never been put
forward in the field of mine conveyor belt damage detection.
In addition, we have built two experimental platforms for
mining conveyor belt damage detection in the laboratory. The
damage detection method based on ADCN model was verified
through the test platform, and the experiment was compared
with the traditional machine learning method based on SVM.
According to the experimental results, the average detection
speed of the proposed method is over 20fps, which fully meets
the purpose of real-time monitoring of mining conveyor belt.
In the aspect of damage identification, ADCN method can
accurately identify and locate two types of damage on the
conveyor belt surface, namely, Scratch and Tearing. The AR
of this method is 95.81%, the AP is 97.40%, and the TAfps
is 24.32fps. Compared with the SVM based method, AR,
AP and TAfps are increased by 6.96%, 6.71% and 243.50%
respectively. Therefore, the ADCN method for damage detec-
tion of mining conveyor belt can satisfy the real-time and
reliability requirements of the industrial field conveyor belt
damage detection, and it is stronger than traditional machine
learning methods.
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