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ABSTRACT

Thyroid hormones are fundamental in the development and function of the human
body. They are produced by the thyroid and their concentration is regulated by a nega-
tive feedback loop involving also the hypothalamus and the pituitary. Many studies have
shown that each individual has a unique HPT axis set-point, which means that everyone
has his or her own personal level of thyroid hormones. However, when the thyroid is
affected by a disease, such as hypothyroidism, a change in the thyroid function modifies
the levels of thyroid hormones, therefore they do not match the patient’s set-point any-
more. Hence, the aim of this thesis is to investigate the relationship between the thyroid
hormones TSH and FT4 in order to predict each individual’s set-point. Moreover, the
variation in time of the two hormones in patients under medication is studied as well,
which allows to determine around which values the concentrations of TSH and FT4 will
stabilize and, if these are not matching the set-point, to adjust the patient’s medication
dosage. This research was conducted using patients’ datasets from different hospitals.
In particular, datasets of hypothyroid and thyroidectomized patients were included in
this study. The analysis of hypothyroid patients’ measurements shows that TSH can be
expressed as a negative exponential function of FT4. Furthermore, the individual set-
point can be predicted as the point of maximum curvature of that function and this has
been validated using data from thyroidectomized patients. Finally, a model of coupled
differential equations, taking into account the effects of medication, has been developed
to describe how the concentrations of the hormones are changing in time after a patient
starts the treatment.
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1
INTRODUCTION

Thyroid hormones are fundamental in the development and function of the human
body. They are produced by the thyroid and their concentration is regulated by a neg-
ative feedback loop, which involves also the hypothalamus and the pituitary. This con-
figuration of the feedback loop is called hypothalamus-pituitary-thyroid (HPT) axis [1].
Many studies have shown that each individual has a unique HPT axis set-point, which
means that everyone has its own personal level of thyroid hormones. However, when the
thyroid is affected by a disease, such as hypothyroidism, a defect of the thyroid function
modifies the levels of thyroid hormones, therefore they do not match the proper needs
of that individual anymore.

Hypothyroidism is a disease that affects the thyroid and it is characterised by very low
levels of thyroid hormones. It is one of the most common disorders in the general pop-
ulation and currently it is treated with tablets of levothyroxine (LT4). However, 35-60%
of patients treated with levothyroxine do not reach the reference range of TSH. Further-
more, it is estimated that 5-10% of patients still present persistent complaints, despite
their hormone concentrations being within the normal reference ranges [2]. In particu-
lar, in the Netherlands there are already 480.000 patients taking levothyroxine and 15%
of them still have symptoms, even if their thyroid hormone levels are within the refer-
ence ranges. One of the reasons why this happens might be because the hormone levels
of these patients do not match their HPT axis set-point. This is why this topic is an im-
portant issue and it has received increasing attention during the last years. Hence, it is
fundamental to find a mathematical description of the HPT axis, together with a predic-
tion of the individual set-point. In this way, the medication dosage can be adjusted for
every patient such that each individual can reach its own set-point.

The modeling of the HPT axis started more than sixty years ago. However, not all
proposed models are valid and applicable. In particular, the first models involved many
parameters that could not be estimated. In the last years, the modeling of the HPT axis
has focused more on population models. In fact, most of the HPT axis models developed
until now are based on a statistical approach. This means that they involve and combine
data from multiple patients. However, this approach implies that the hormone levels of
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2 1. INTRODUCTION

one individual can influence the hormone values of someone else, which does not hap-
pen in reality. Furthermore, population models cannot be applied to single individuals,
hence they cannot be used to estimate the specific set-point of a patient.

However, recently, a patient-specific mathematical model of the HPT axis has been
developed. This is expressed as a negative exponential function between the concentra-
tions of thyroid-stimulating-hormone (TSH) and free thyroxine (FT4). Furthermore, in
this model the set-point is established as the point of maximum curvature of the expo-
nential function [3]. Thus, the purpose of modeling the HPT axis from a mathematical
perspective is to gain insight into the mechanism of the negative feedback loop and im-
prove the diagnostic process and the treatment of thyroid diseases. The set-point com-
puted in this way can be used to adjust the therapy of thyroid disorders for each individ-
ual, such that the conditions of many patients can improve.

Therefore, the goal of this thesis project is to validate the existing exponential model
for the HPT axis and, possibly, further improve and optimize it. This represents a funda-
mental step towards a personalized treatment of thyroid diseases. The acceptance of this
theory in the medical society will help to improve the condition of many thyroid patients
that still present complaints or have an inaccurate diagnosis. Another focus of the thesis
is the study of the optimal path leading to the set-point, so that patients can reach their
set-points in a shorter time. This will allow patients to feel better after a few weeks from
the start of the treatment, and not after months or years, as it is currently happening.

The remainder of this thesis will be organized as follows. Chapter 2 provides a med-
ical background about the HPT axis, with an explanation of all the terms needed to un-
derstand its functioning. Chapter 3 presents a brief review of the work published so far,
which includes population models and the newly developed exponential model. Chap-
ter 4 includes the problem description, with the research questions formulated to work
on this project. In Chapter 5, the datasets used to work on the project are introduced.
Chapter 6 includes the results obtained from the study of the mathematical relationship
between FT4 and TSH, together with the reconstruction of the set-point. In Chapter 7,
a validation of the set-point theory is carried out using the available datasets. Chapter 8
describes how the set-point can be reached in an optimal way. Finally, conclusions and
further research suggestions are reported in Chapter 9.



2
MEDICAL BACKGROUND

2.1. GENERAL CONCEPTS
The thyroid gland is located below the larynx, anterior to the trachea. It is divided into
two lobes, one on each side of the trachea [1, 4], as shown in Figure (2.1). It is one
of the largest endocrine glands and one of its main functions is to produce two ma-
jor hormones, thyroxine (T4) and triiodothyronine (T3). These hormones increase the
metabolic rate of the body and without them the chemical reactions of the body would
become very slow [1]. Thyroid hormones are fundamental for a correct development,
therefore a lack of them would cause an inhibited growth [4]. Another important effect
of thyroid hormones is to facilitate the growth and development of the brain [1]. The
thyroid gland produces for the most part T4, so only a minimal amount of the hormones
produced by the thyroid consists of T3. However, both hormones are functionally impor-
tant because a significant portion of T4 is converted to T3. In order to produce normal
quantities of T4, it is needed to ingest enough iodine. About half of T4 is then slowly
deiodinated to form additional T3 [1]. Only 20% of the circulating T3 is produced by the
thyroid gland, while the remaining amount is produced by peripheral conversion of T4
[5, 6]. The production of these thyroid hormones is controlled by the thyroid-stimulating
hormone (TSH), also called thyrotropin, which is produced by the anterior pituitary.

The pituitary is a small gland situated in a cavity at the base of the brain. It is con-
nected to the hypothalamus and it is divided into anterior and posterior pituitary. The
anterior pituitary produces TSH, whose function is to stimulate the synthesis and secre-
tion of the thyroid hormones T4 and T3. The hypothalamus is a small region in the brain,
located close to the pituitary gland. Despite its small size, it is responsible for many fun-
damental activities, including the release of hormones. In particular, the hypothalamus
produces thyrotropin-releasing hormone (TRH), whose major function is to stimulate
the secretion of TSH [1] and function as a reference value for FT4 in the pituitary.

A feedback mechanism through the hypothalamus and the pituitary is operated in
order to control the secretion of thyroid hormones. This is essential to guarantee the
correct level of thyroid hormones needed to maintain a normal metabolic activity. TSH
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4 2. MEDICAL BACKGROUND

Figure 2.1: Schematic view of the thyroid anatomy.

is produced by the anterior pituitary and it stimulates the secretory activities of the thy-
roid cells. The first early effect of TSH is to cause the release of T4 and T3 in the blood
stream within the next minutes. All the other effects require hours or days to develop
completely. The secretion of TSH by the anterior pituitary is controlled by a hormone
produced by the hypothalamus, the TRH [1]. This hormone is delivered to the anterior
pituitary in order to increase the synthesis and release of TSH [4]. An increased level of
thyroid hormones in the body decreases the production of TSH. When the rate of secre-
tion of thyroid hormones is around 1.75 times more than the normal rate, the secretion
rate of TSH becomes almost zero, until a following activation condition is initiated. An
increased level of FT4 inhibits the production of TSH by affecting the anterior pituitary
directly. The goal of the feedback is to keep almost a constant concentration of thy-
roid hormones [1]. Figure (2.2) shows a representation of the hypothalamus-pituitary-
thyroid (HPT) axis with its feedback loop.

Another physiological aspect that affects the HPT axis is clock time. In fact, the HPT
axis is regulated by a circadian cycle [8, 9]. The circadian system is an internal process
that repeats every 24 hours and regulates all physiological and behavioural processes,
including the release of hormones. The secretion of TSH follows a daily rhythm. In fact,
during the late afternoon or early evening, the TSH concentration starts to rise, until
it reaches its peak at the beginning of the sleep period. After that, TSH concentration
declines again during the remaining part of the sleep period in order to reach the low
daytime level [8, 9]. The 24-hours cycle of the TSH secretion is stable and robust and
it is not influenced by age or sex. A diurnal variation in thyroid hormones T3 and T4,
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Figure 2.2: HPT axis negative feedback loop. Taken from [7].

however, is not obvious since different studies report discording results [8, 9].
Thyroid hormones are transported in the blood by specific proteins. This is one of

the reasons why total T4 and T3 are measurements with relative large variations, making
them not enough reliable measurements to study changes in the thyroid function. Free
T4 (FT4) and free T3 (FT3) refer to the respective thyroid hormones not bound to serum
proteins. They are considered to be more precise indicators of thyroid dysfunctions [4].
In order to recognise a thyroid disorder, a thyroid function test (TFT) is conducted. In
the current clinical practice, as a first screening, the level of TSH is checked and, if it is
abnormal, the concentration of FT4 is then measured as well [10].

2.2. HYPOTHYROIDISM
A widespread thyroid disorder is hypothyroidism. Hypothyroidism is a pathological con-
dition that refers to thyroid hormone deficiency [2] and it affects around 10% of the
global population. Hypothyroidism affects more often women, Caucasian individuals,
older people and patients with autoimmune diseases [5]. Since the symptoms and clin-
ical manifestations can vary between different individuals, the definition of hypothy-
roidism is based on reference ranges of the fundamental biochemical concentrations,
namely TSH and FT4 [2, 11]. Reference ranges depend on the assay used and the pop-
ulation analyzed. An assay is the investigative procedure that can determine the pres-
ence of a substance and its amount. The reference ranges are defined between the 2.5th
and 97.5th percentiles of a healthy population [2]. The most common used reference
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range for TSH is 0.4−4.0 mU/L, while for many laboratories the normal range for FT4
is 10.0−20.0 pmol/L [12]. However, the reference ranges have been a matter of debate
in the last years. In fact, some studies show that in particular the upper limit of the TSH
reference range tends to increase in older people. Nevertheless, there is not enough evi-
dence to adjust the reference ranges according to age [11].

Hypothyroidism can be divided into different categories: primary (or overt) and sub-
clinical (or mild) hypothyroidism. Primary hypothyroidism is defined as a TSH concen-
tration above the reference range and an FT4 concentration below the normal range [2],
while subclinical hypothyroidism is defined as TSH above the population range and FT4
within the reference range [2, 11]. Another possible classification of hypothyroidism
is into primary, secondary, tertiary and peripheral hypothyroidism. Primary hypothy-
roidism is caused by thyroid hormone deficiency. Secondary hypothyroidism is due to
TSH deficiency, while tertiary hypothyroidism is caused by a shortage of TRH; these two
categories are usually grouped together and referred to as central hypothyroidism. Fi-
nally, peripheral hypothyroidism is due to extra-thyroidal causes [2].

As anticipated, clinical presentation of hypothyroidism can vary significantly be-
tween patients, ranging from life-threatening to no symptoms at all. Even though life-
threatening conditions are very rare nowadays, it is still fundamental to recognise hy-
pothyroidism in its early stages, in order to start immediately with the treatment [2]. The
most common symptoms are weight gain, cold intolerance, fatigue, shortness of breath,
change of voice, constipation, dry skin, hair loss, deterioration of kidney function, im-
paired memory and mood. However, these symptoms can vary with age and sex, there-
fore none of them can be used to identify patients subject to hypothyroidism [2, 11].
Thus, in the current clinical practice, reference ranges are the only instruments used to
identify hypothyroidism.

The standard treatment of hypothyroidism is levothyroxine (LT4) monotherapy, taken
in solid formulation on an empty stomach [2]. Changing different levothyroxine prod-
ucts is not recommended because differences in brand contents can provide unexpected
results due to the narrow therapeutic ranges [5]. In particular, in older patients or in
those patients with a low body weight, a small change in the medication can cause large
effects on TSH concentrations [2]. This is why after the start of medication or after the
adjustment of the dosage, the concentration of TSH should be checked more frequently
until it is stabilised [2, 11]. Both under-treatment and over-treatment should be avoided,
because they can cause serious problems. The current treatment target consists in nor-
malizing the level of TSH and resolving all the complaints. Nevertheless, it is estimated
that 35-60% of the patients does not reach the reference target for the TSH level. There
could be some reasons that prevent patients from reaching their target, such as prescrip-
tion of wrong dosage, non-adherence to the therapy, interaction with other medication.
Around 5-10% of the patients still have persistent complaints, despite being biochem-
ically euthyroid [2, 11], where euthyroidism is the condition of having a thyroid gland
that functions normally.

One of the reasons that explains why this happens might be that the concentrations
of circulating thyroid hormones are regulated by the HPT axis through an individual set-
point, which allows a smaller intra-individual variability than the inter-individual one
[13]. The concept of HPT axis set-point will be explained further in the next sections.
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Therefore, the level of TSH required to reach the concentrations of thyroid hormones
needed by an individual can vary significantly between different patients. This explains
also why patients with similar values of TSH respond differently to the treatment [2, 11].
Population-based reference ranges are not able to define the thyroid status in an indi-
vidual, because average results based on a population cannot be satisfactorily applied to
all the members of the population [14]. Another possible explanation to the persistence
of symptoms in some patients might rely on some flaws of the levothyroxine monother-
apy itself. Furthermore, it should be taken into account that the clinical interpretation
of a normal level of TSH represents euthyroidism at the level of the pituitary, not in all
tissues [2]. From the previous considerations, it is clear that the current situation causes
dissatisfaction both in patients and in doctors. One way of trying to solve this problem
consists in reconstructing the individual set-point, which can give better outcomes than
population-based reference ranges [14]. Hence, this will be the focus of the thesis.

2.3. MEASUREMENTS DETAILS OF TSH, FT3 AND FT4
Thyroid function tests are employed to distinguish hyperthyroid and hypothyroid states
from the euthyroid one. In order to do this, direct measurements of the concentrations
of TSH and total or free T4 and T3 are employed. However, measurement of FT3 is only
used on a limited basis [15]. In fact, in hypothyroid individuals T3 is the last value to
become abnormal, hence many hypothyroid patients still show normal levels of T3 [15].
Reference ranges of TSH and FT4 are established by each laboratory through a statistical
distribution of TSH and FT4 levels, measured from a group of healthy patients belonging
to the general population [16]. The measurement of free hormones (FT4 and FT3) is
usually accepted as an appropriate indicator of the thyroid functional state. Hence, for
diagnostic purposes, the focus should be on free hormones rather than on the total ones
[17, 18].

Generally, clinical research analyzes data from a population with a statistical ap-
proach. Hence, uncertainties and measurement inaccuracies do not play a relevant role,
since most of the variability is cancelled out when considering aggregated data. How-
ever, when reconstructing the hypothalamus-pituitary (HP) curve for a specific individ-
ual, only measurements from the same laboratory, conducted using the same technique
and with the same calibration accuracy should be used. This is because the way of re-
porting laboratory results and their interpretation changes between different laborato-
ries, causing a big impact on the reconstruction of the HP characteristic. In fact, for
example, in many laboratories the level of FT4 is reported as an integer value, which im-
plies an uncertainty of the real value. When rounding to the nearest integer, an absolute
uncertainty of ±0.5 pmol/L is expected, while, when truncating the decimal digits, the
uncertainty of FT4 becomes ±1 pmol/L. However, in other laboratories, the value of FT4
is rounded by keeping one decimal digit. In addition, it is fundamental that the mea-
surements of TSH and FT4 of a patient are always taken at a fixed time of the day, 24
hours after the last taken dosage and before the daily dose of LT4, in order to prevent
pharmacodynamic effects that might interfere with the measurements [16].

In this thesis project, data that is already available will be used, hence measurements
might come from different laboratories or they may be performed with different tech-
niques. However, for future projects, it will be important to take also into account how
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the data is collected, hence it is fundamental to consider measurements coming from
the same laboratory, taken with the same method and at the same time of the day.

Thyroid hormones are available in the blood in extremely small quantities, hence
it is very hard to measure their concentrations. However, in the 1970s, a very sensitive
method for the measurement of hormones, called radioimmunoassay, was developed
[1]. A radioimmunoassay consists of making a known quantity of an antigen radioactive
and then use it to detect the amount of the same antigen in the patient’s blood sam-
ple. The radioimmunoassay method was first introduced in 1959 by Yalow and Berson
to measure the level of insulin in the blood. After that, methods for measuring the con-
centrations of TSH, T4 and T3 were soon developed [17]. Since then, there have been
many improvements in assays for TSH, FT4 and FT3 [10]. Nowadays, immunoassays
are the most common methods to measure the levels of TSH, FT4 and FT3 [17, 19]. An
immunoassay measures the concentration of a substance by using an antibody or an
antigen. A problem with immunoassays is specificity. In fact, it can happen that when
measuring the concentration of FT4, also a small amount of FT3 can be included in the
measurement because the specificity of immunoassays is not optimal. Furthermore, this
technique might have an impact on the diagnosis and treatment of hypothyroidism. In
fact, sometimes it can happen that samples from hypothyroid patients have thyroid hor-
mone levels below the detectable limits of immunoassays [19].

Recently, research has focused on mass spectrometry methods for the simultaneous
analysis of TSH, T4 and T3. Therefore, mass spectrometry methods now represent a valid
alternative to immunoassays and the instrumentation is becoming widespread in clin-
ical laboratories [19]. A mass spectrometry can measure the mass of a molecule after
having transformed it into a gas-phase ion. Mass spectrometry methods have success-
fully dealt with problems related to many immunoassays for thyroid hormones because
they present higher specificity and accuracy. This can improve diagnostic capabilities
because measurements of thyroid hormones are more reliable. Therefore, mass spec-
trometry is now regarded as the new gold standard and, in the near future, it has the
potential to be applied in clinical assessment routine, in particular for FT4 and FT3 [18].



3
RELATED WORK

3.1. MATHEMATICAL MODELING OF THE HPT AXIS
As described in the previous section, the well-being of many patients is still suboptimal,
despite their TSH and FT4 values being within the reference ranges. This explains the
need for individualised treatment [3] and it is the reason why, in the last years, the math-
ematical modeling of the HPT axis set-point has received increasing attention.

The first model was elaborated in 1956 by Danziger and Elmegreen [20]. Their contri-
bution is fundamental because it points out the importance of mathematical modeling
in endocrine control system. The authors implemented a system of non-linear differen-
tial equations, which can be linearized and eventually solved, if the parameters of the
system are known or can be estimated. Furthermore, the authors emphasised the dif-
ficulty in obtaining measurements, hence the parameters are not known or are known
with little accuracy [20]. Another important contribution was given by DiStefano and
Stear in 1968 [21]. They improved the previous model and presented it in the framework
of feedback control system theory. They developed a system with two coupled differen-
tial equations with 11 parameters and variables. However, not all of them are measur-
able, which makes their model not usable in practice [21]. Next, the publication of Wilkin
et al. in 1977 [22] finally mentioned the importance of the loop gain in the representa-
tion of the HPT axis through control-loop theory. The paper from Leow [23], published in
2007, pointed out the necessity of a simple mathematical model, where only measurable
parameters are involved. Furthermore, this study finally led the way in the implemen-
tation of an exponential model between TSH and FT4 [23]. In 2010, Hoermann et al.
published a study [24] in which they compare the linear model between log(TSH) and
FT4 with a non-linear model based on the error function (erf) between log(TSH) and
FT4. This new non-linear model proved to fit better the data. However, the models were
tested on aggregated data and not on single patients, so this implies a mutual influence
between all the individuals included in the population. Finally, in 2014, Goede et al. [3]
implemented a negative exponential parameterized model between TSH and FT4 and
tested it on datasets belonging to single individuals, not on population data. In fact their
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model is valid on an individual level and the values of the parameters differ from one
patient to another. This model will be explained further in the next section.

There are probably many ways to model the HPT axis with a more complex approach,
however simpler mathematical models are more attractive because easier to understand.
Furthermore, some highly accurate models may not be applicable in practice, because
they might require values of quantities, like TRH, whose measure is either not available
or not reliable. In addition, even these accurate and complicated models cannot include
all the factors influencing the level of hormones. That is why a minimal model includ-
ing only measurable and observable variables is to be preferred. Any model including
many variables might be too complicated for normal use, despite being definitely more
accurate. On the contrary, a simpler model would be less realistic, but more understand-
able and easier to apply, even by non-mathematicians. Hence, it is not necessary that a
mathematical model includes all the relevant factors under consideration, as long as the
assumptions and the limitations are correctly understood and taken into account [23].

3.2. TSH-FT4 EXPONENTIAL MODEL
The relationship between TSH and FT4 has been modelled as a negative exponential in
2014 by Goede et al. [3] and this has remained the standard until now. Even though T3
is the main active hormone, this mathematical model only includes the relationship be-
tween TSH and FT4. In fact, since a model with two degrees of freedom is adopted, the
influence of FT3 can be subsumed within the two model parameters [3]. Generally, the
level of FT3 is kept constant under a large variety of conditions. Hence, a more compre-
hensive model including also FT3 would not contribute to a better model, because the
constant level of FT3 is directly couple with the set-point value of FT4.

In this model, the hypothalamus-pituitary (HP) complex is considered as a master
regulator unit, which calibrates its level of TSH according to the concentration of FT4.
The HP curve should be analyzed in an open loop, without the influence of a healthy
operating thyroid [3]. In fact, in an euthyroid individual, the closed feedback loop is
operating correctly, so every measurement of TSH and FT4 represents the HPT axis set-
point. Therefore it is not possible to derive the HP characteristic. However, this is not
happening in patients affected by thyroid diseases since their feedback loop is not work-
ing properly, so their values of FT4 and TSH change after every adjustment of their med-
ication dosage.

It can be noticed that TSH varies inversely with FT4, in a non-linear way. In par-
ticular, small changes in FT4 can lead to large changes in TSH. When TSH and FT4 are
both represented on a linear scale, the relationship between them resembles a hyper-
bolic, sigmoid or exponential decay curve. Hence, through the years, a log-linear model
between TSH and FT4 has been developed, where TSH has been represented in a loga-
rithmic scale and FT4 in a linear one. If both TSH and FT4 are expressed in a linear scale,
then their relationship can be modelled through a negative exponential function with
two independent parameters [3].

The mathematical model is as follows:

[TSH] = Se−ϕ[FT4].

In this thesis, the square brackets are used to represent the concentration of the hor-
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mones. The model has two degrees of freedom, S, the multiplier, and ϕ, the slope of the
exponential coefficient. Variations of S, with fixed ϕ, translates the HP curve horizon-
tally on the FT4 axis. Variations of ϕ folds or unfolds the shape of the HP curve around
a chosen point. S and ϕ are a set of parameters that describes the HP curve of a spe-
cific individual. In particular, S is associated with the FT4 value of the set-point, while ϕ
is an individual physiological constant related to the TSH set-point value. Exponential
functions are completely determined by two different sets of coordinates. Therefore, it
is possible to recover S and ϕ when two or more measured points are available and dis-
tinct. If ([TSH]1, [FT4]1) and ([TSH]2, [FT4]2) are two distinct measurements belonging to
the same individual, S and ϕ have then the following expressions:

ϕ= 1

[FT4]1 − [FT4]2
ln

(
[TSH]2

[TSH]1

)

S = [TSH]1eϕ[FT4]1 = [TSH]2eϕ[FT4]2 .

The validation of the model is based on an individual application of the model. This
is fundamental, since the HPT axis physiology of every individual is uniquely defined
by S and ϕ. Therefore, this model should not be applied on aggregated random FT4-
TSH data from a population. In particular, this model has been validated by Goede et
al. with two datasets from two different hospitals. Its validity ranges are 5−40 pmol/L
for FT4 and 0.05−100 mU/L for TSH. The model validation is performed on the dataset
available for each individual and then repeated for every patient. This is because the
HPT axis is uniquely defined for each person [3].

3.3. CONTROL THEORY BACKGROUND
The term control can have different meanings. According to [25], control refers to the
use of algorithms and feedback in engineered systems. A modern controller measures
the output of a system, compares it to the desired behaviour, computes the corrections
needed and actuates the system in order to carry out the desired changes. This basic
feedback loop is the fundamental concept in control theory [25]. The term feedback
refers to a situation in which two or more systems are connected together in such a way
that each branch of the feedback loop can influence the other [25]. Hence, the main idea
is that the output of a system can be measured, fed back to a controller and then used to
influence the system itself [26].

Control systems can be classified in closed loop and open loop systems. Figure (3.1)
shows how these two different kinds of systems can be represented. A closed loop sys-
tem is a system in which the components are interconnected in a loop, so, according to
Figure (3.1a), the output of system 1 is the input of system 2 and the output of system 2
is the input of system 1 [25]. Hence, in a closed loop system, the controlled output signal
is measured and fed back in the control computation. A closed loop system can also be
called feedback control [26]. On the contrary, if the connection between the two systems
is not present, the system is defined as open loop. According to Figure (3.1b), the inter-
connection between system 2 and system 1 is removed [25]. Therefore, in an open loop
system, the controller does not use the system output in control computation [26].
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(a) Closed loop (b) Open loop

Figure 3.1: Representation of an open loop system and a closed loop system

Figure (3.2) shows a simple representation of a feedback loop. P represents the plant,
which consists of the central component of the feedback system, whose output is con-
trolled. C is the controller, which is the component that actually computes the desired
control signal. The controller computes the difference between the reference signal and
the controlled output signal and uses it as a measure of the system error [26]. The output

Figure 3.2: Simple feedback loop

of the system, y , is fed back to a comparator, together with the reference value r . After
that, the controller uses e, defined as the difference between the reference value r and
the output y , in order to change the input u of the plant P, which is the system under
control. If the plant P and the controller C are linear and time-invariant then the system
can be analysed using the Laplace transform on the variables, so the following relations
hold:

Y (s) = P (s)U (s)

U (s) =C (s)E(s)

E(s) = R(s)−Y (s).

The first two relations can be re-written as

E(s) = U (s)

C (s)

U (s) = Y (s)

P (s)

and, if combined, they yield to

E(s) = Y (s)

P (s)C (s)
.
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This expression of E(s) can be substituted in the last relation of Y (s), obtaining

Y (s)

P (s)C (s)
= R(s)−Y (s)

⇒ Y (s) = P (s)C (s)

1+P (s)C (s)
R(s).

|P (s)C (s)| is called loop gain. When |P (s)C (s)|À 1, then Y (s) ' R(s). This is why the loop
gain should be greater than 1, because in this case the plant and the controller can still
communicate with each other. This concepts is fundamental in the next section, where
the HPT axis is modelled as a closed loop system.

In the following section, the HPT axis will be represented through a closed-loop sys-
tem. In that case, the controller and the plant, respectively the HP unit and the thyroid,
will be time-invariant but not linear. Hence, the product of the differential gain transfer
function of the pituitary and of the thyroid is necessary to express the loop gain. The sys-
tem function blocks will then be described through linear relations, which will be valid
over a limited range of the input and output values [12]. In fact, when the devices are
nonlinear, the input can be considered only over a small range of values, such that the
output can be assumed linear.

3.4. HPT FEEDBACK CONTROL
The HPT axis can be modelled through control theory, in particular using a negative
feedback loop configuration. The system loop is divided into function blocks, such that
every block is distinguished by its own nonlinear transfer characteristic valid over the
total range of the input and output signals. In this way, the HPT negative feedback loop
can be analyzed through mathematical considerations. Hence, the main components
of the loop, HP and thyroid blocks, are both characterised by distinct relationships be-
tween TSH and FT4 [12]. According to the terms introduced in the previous section, the
HP is the controller, while the thyroid is the plant, because it just satisfies the secretory
demands [27]. Figure (3.3) shows the negative feedback loop of the HPT axis. SFT4 is
the internal set point value of FT4. In fact, the normal operation of a negative feedback
loop implies the existence of a set-point intrinsic to the system. Hence, any alteration of
TSH and FT4 causes a disequilibrium that influences the HP block in order to restore the
system towards the set-point [27].

The HP complex is modelled with FT4 as the primary input signal and TSH as the
output one. As explained previously, TSH can be expressed as a negative exponential
function of FT4

[TSH] = Se−ϕ[FT4].

The HP differential gain factor GHP is defined as the derivative of TSH with respect to
FT4 [12, 27]:

GHP = d [TSH]

d [FT4]
= −ϕS

eϕ[FT4]
=−ϕ[TSH].
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Figure 3.3: Generalized feedback loop of the HPT axis [12]

The thyroid characteristic can be modelled according to an adaptation of the Michaelis-
Menten kinetics, which is very popular in enzyme kinetics, and it results in:

[FT4] = A
(
1−e−α[TSH]) .

where α determines the steepness of the thyroid characteristic and A represents the
maximum secretory value of T4 and T3, and consequently of FT4. α and A are spe-
cific for each individual [27]. The thyroid differential gain factor GT is defined as the first
derivative of FT4 with respect to TSH [27]:

GT = d [FT4]

d [TSH]
= Aαe−α[TSH]

The loop gain GL is given by [12, 27]:

GL = |GHP GT | ,
so its expression is [27]:

GL = ∣∣−ϕ[TSH]Aαe−α[TSH]∣∣=ϕ[TSH]Aαe−α[TSH].

For an optimal and stable control, the loop gain GL should always be greater than 1.
When GL becomes smaller than 1, the interaction between the HP unit and the thyroid
is lost, resulting in an open loop situation [12]. The loop gain is a function of TSH, thus it
is possible to study its maximum by computing the derivative of GL with respect to TSH
and set it equal to 0:

d GL

d [TSH]
= ϕαA−ϕα2 A[TSH]

eα[TSH]
= 0.

This is verified only when [TSH] = 1

α
, so if the set-point value of TSH is known, it is

possible to set

α= 1

[TSH]setpoint
.
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According to the thyroid model, the set-point value of FT4 is then

[FT4]setpoint = A
(
1−e−1) ,

which allows to calculate the value of A. Finally, the maximum loop gain becomes:

GLmax =
Aϕ

e
.

It is clear that the thyroid parameters depend on the set-point values. Furthermore, the
thyroid operates in such a way that the loop gain is at its maximum value at the set-
point. Furthermore, the expression of the loop gain GL provides a simple criterion to
determine the open loop condition because GL has to be larger than 1 for closed loop
operation [12, 27].

3.5. HPT-AXIS SETPOINT
The term homeostasis refers to the maintenance of almost constant conditions in the
internal environment. All organs and tissues of the body perform functions in order to
maintain these conditions in a small stable range [1]. The HP characteristic contains
the set of all possible points of homeostasis [3]. In fact, the normal reference ranges of
TSH and FT4 fall within the knee region of the HP curve, which corresponds to the most
pronounced bend of the negative exponential curve, hence this leads to think that the
set-point should be in that interval [27]. The knee region of the HP function includes
also the point of maximum curvature, which is the point characterised by the minimum
radius of curvature [3]. Thus, it is natural to assume that the set-point of the HPT axis
corresponds to the point of maximum curvature of the HP function [27]. Figure (3.4)
shows the HP curve with its set-point corresponding to the point of maximum curva-
ture. The red lines are the limits of the reference ranges for TSH and FT4, which are used
in the graph in order to delimit the knee region of the exponential curve. It can be no-
ticed that the set-point is located within the knee region of the HP curve, as expected.
Furthermore, it should be noticed that this graph was realized by keeping the same scale
on both the TSH and FT4 axes, in order to clearly identify the knee region.

The curvature K is defined as K = 1

R
, where R is the radius of the curvature circle.

For the HP curve the curvature K is

K =
d 2[TSH]

d [FT4]2(
1+

(
d [TSH]

d [FT4]

)2)3/2
.

When computing the derivatives, the curvature becomes

K = ϕ2Se−ϕ[FT4](
1+ϕ2S2e−2ϕ[FT4]

)3/2
.
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Figure 3.4: The black solid line represents the exponential HP curve. The red dashed
lines represent the limits of the reference ranges of TSH and FT4, corresponding to the
knee region of the exponential curve. The blue point, defined as the set-point, corre-
sponds to the point of maximum curvature

In order to study when the curvature is maximum, it is possible to compute the derivative
of K with respect to FT4 and set it equal to 0:

dK

d [FT4]
= ϕ3Se−ϕ[FT4]

(
1+ϕ2S2e−2ϕ[FT4]

)1/2 (
2ϕ2S2e−2ϕ[FT4] −1

)(
1+ϕ2S2e−2ϕ[FT4]

)3 = 0.

This leads to

2ϕ2S2e−2ϕ[FT4] −1 = 0,

which results in

[FT4] = ln
(
ϕS

p
2
)

ϕ
.

The corresponding value of TSH is

[TSH] = 1

ϕ
p

2
.

Hence, these are the coordinates corresponding to the set-point of the HPT axis [27].
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Goede et al. tried to develop another independent mathematical proof in order to
show that the HPT axis set-point corresponds to the point of maximum curvature [27]. As
presented in the previous section, the HPT axis can be modelled through control theory,
in particular using a negative feedback loop configuration, where each function block
is distinguished by its own nonlinear transfer characteristic. For the HPT axis, the main
components of the loop are the HP and the thyroid blocks. The HP complex is modelled
through an exponential decay,

[TSH] = Se−ϕ[FT4],

while the thyroid function is

[FT4] = A
(
1−e−α[TSH]) .

As described previously, the loop gain of this system is maximum at the set-point. In
fact, given the loop gain

GL =ϕ[TSH]Aαe−α[TSH],

its maximum can be computed by setting

d GL

d [TSH]
= ϕαA−ϕα2 A[TSH]

eα[TSH]
= 0.

This is verified when

α= 1

[TSH]setpoint
.

Using the expression of the thyroid model, it is also possible to derive

A = [FT4]setpoint(
1−e−1

) .

Based on the relations for α and A, the thyroid function becomes

[FT4] = [FT4]setpoint(
1−e−1

) (
1−e

− [TSH]
[TSH]setpoint

)
.

In order to plot the thyroid function on the same graph as the HP curve, it is necessary
to invert it:

[TSH] =−[TSH]setpoint ln

(
[FT4]setpoint − [FT4]

(
1−e−1

)
[FT4]setpoint

)
.

The set-point is computed as the point of maximum curvature of the HP exponential
function. If the set-point is available, it is then possible to derive the corresponding HP
curve that has that point as point of maximum curvature. Furthermore, when evaluating
the thyroid function at [FT4]=[FT4]setpoint, it is possible to obtain

[TSH] =−[TSH]setpoint ln

(
[FT4]setpoint − [FT4]setpoint

(
1−e−1

)
[FT4]setpoint

)
=

=−[TSH]setpoint ln(1−1+e−1) = [TSH]setpoint.
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Figure 3.5: The HP and the inverted thyroid functions are intersecting in the point of
maximum curvature

According to Goede et al. [27], this proves that the HP curve and the inverted thyroid
function are intersecting in the point of maximum curvature, thus the set-point [27].

However, this mathematical proof presents some pitfalls. In fact, it seems that actu-
ally the inverted thyroid characteristic can intersect the HP curve even if the set-point
is predicted in a different way and not as the point of maximum curvature. The previ-
ous calculations only prove that the inverted thyroid characteristic is intersecting the HP
curve in the point ([FT4]setpoint, [TSH]setpoint) and not specifically in the point of maxi-
mum curvature of the HP function. Furthermore, the analysis of the loop gain only de-
termines that the loop gain is maximum in the set-point value of TSH and there is no
reference to the set-point value of FT4.

3.6. POPULATION MODELS
The majority of models for the HPT axis proposed until now present a statistical ap-
proach. A population curve is obtained from a cross-sectional study, involving multiple
patients, and it is the result of simultaneous plots of TSH and FT4 values belonging to a
large number of individuals [28]. Thus, cross-sectional studies include data from differ-
ent individuals, where each of them presents a different HPT axis set-point [29]. HP and
thyroid curves of single individuals, as described in previous sections, are independent
from each other. However, in a population context, different HP and thyroid curves can
influence each other [28]. Furthermore, it is not clear how population models can be
applied to single individuals, since each person has different HP and thyroid functions,
with a different set-point for the HPT axis [29]. Therefore, since population models de-
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scribe the behaviour of a population from a statistical perspective, individual measure-
ments are not relevant in this context. Thus, population models cannot describe the
behaviour of single individuals, because they are supposed to be valid over the entire
population.

Population models are widespread in clinical research and biomedicine [30]. How-
ever, this approach considers that all the individuals in a population have an influence
on each other. In particular, in this case it means that the TSH concentration of an in-
dividual can affect the FT4 concentration of someone else and vice versa, which is not
reasonable [31]. Biomedicine relies on advanced statistical techniques, even though a
statistical approach is not always adequate to describe physiological processes and, on
the contrary, its results could even be misleading [30]. In fact, population-based analy-
sis, which relies on a statistical approach, is subject to amalgamation problems, so it is
better to adopt a patient-specific approach instead [32].

In 1990 Spencer et al. introduced a population-based model where the relationship
between TSH and FT4 is considered log-linear [33],

log[TSH] = a +b[FT4I].

This model was derived by analysing a population of individuals with different states of
the thyroid function, ranging from hypo- to hyperthyroidism. It was possible to derive
this relationship because of some improvements in the immunoassays used to measure
TSH and FT4 [33]. In fact, the increased sensitivity of the new TSH assay allowed them
to grasp new insights regarding the mechanism of the HPT axis. Therefore, Spencer et
al. were able to confirm some previous studies regarding the log-linear relationship be-
tween TSH and FT4 and extend this result also to subnormal levels of TSH [33].

Hence, from this study, the population model of the HPT axis started to be consid-
ered log-linear. However, some years ago, new cross-sectional studies analyzed the re-
lationship between log(TSH) and FT4 and came to the conclusion that it can be bet-
ter described by non-linear models. This is probably due to the improvements in TSH
and FT4 measurements, which are now more precise and provide more reliable results.
Therefore, some studies have proposed more complex models, based in particular on
the error function, on negative sigmoid functions and on higher order polynomials.

In 2010, Hoermann et al. proposed a population model between log(TSH) and FT4
based on the error function [24],

log[TSH] =
p
πk

2q
erf(q([FT4]−a))+d([FT4]−a)+b,

where erf represents the error function, which has the following expression

erf(z) = 2p
π

∫ z

0
e−t 2

d t .

In 2012, Clark et al. conducted a cross-sectional study of the thyroid function in an
older population and found that the relationship between log(TSH) and FT4 is better
described by a fourth order polynomial [34]. The authors investigated the relationship
between log(TSH) and FT4 with non-linear models based on higher order polynomials,
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up to the fourth power of FT4, and compared it with the common linear model. The re-
sults of this study showed that the relationship between log(TSH) and FT4 is non-linear
and that it can be better described by a fourth order polynomial of FT4. Clark et al. sug-
gest that a more complex model for the relationship log(TSH)-FT4 may be needed.

In 2013, Hadlow et al. proposed a different non-linear model, based on two sigmoid
curves, in order to describe the relationship between log(TSH) and FT4 [35]. In this
study, the relationship between TSH and FT4 presented non-linear properties even after
the logarithmic transformation of TSH. Hence, a negative sigmoid curve of the following
form

log[TSH] = A+ B

1+e−(C−[FT4])/D

was adopted. In particular, the sigmoid curve was used in two stages, which means that
the relationship between log(TSH) and FT4 can be described by two sigmoid curves,
implying a discontinuity in the relationship between TSH and FT4. Therefore, it was
also necessary to determine a threshold value for the concentration of FT4 in order to
define the validity of the two curves.



4
PROBLEM DESCRIPTION

After these introductory chapters presenting the medical background and the related
work on the HPT axis available so far, it is clear that there are still many patients with
thyroid disorders that present complaints, even if their biochemical situation seems eu-
thyroid. Therefore, a mathematical description of the HPT axis might be helpful in order
to improve the diagnosis and medication of patients suffering from thyroid disorders. In
particular, it is important to develop a model that can be applied to each single individ-
ual and that does not involve a statistical approach including many unrelated individ-
uals. To this purpose, the research questions presented in the following sections have
been analysed in order to work on this thesis project.

4.1. RESEARCH QUESTIONS
This thesis project is based on the following research questions:

• How can the HPT axis be modelled from a mathematical perspective? How can the
existing model be improved?

In order to answer these questions, the exponential model by Goede et al. [3] will be con-
sidered as the starting point. It will be implemented and tested with the available data.
After that, it would be possible to determine if the model is a good fit for the available
datasets or if it can be somehow improved.

• How can the set-point of an individual be predicted?

Once the relationship between TSH and FT4 has been modelled, a prediction of the set-
point should be found. If the model is the exponential one, then it should be verified
that the set-point corresponds to the point of maximum curvature. Otherwise, if the
exponential model has been modified and improved, it should be determined which
point of the curve represents the HPT axis set-point. It could also be proved why, from a
physiological perspective, it is reasonable to assume that that specific point of the curve
corresponds to the set-point.

21
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• Once a prediction of the set-point is available, how can it be proved that it corre-
sponds to the actual set-point?

If any data from the pre-disease period is available, it should be verified if the predicted
set-point matches the real one. This question might be answered using data of patients
that underwent thyroidectomy, since in most of the cases a couple of measurements for
pre-surgery TSH and FT4 are available. However, in this case it is important to interpret
the data in the correct way. It should be noted that it might not be possible to verify this,
it depends on the available data.

• How can the optimal path leading to the desired HPT set-point be found? How
much time is needed to reach the set-point?

A healthy person is in a situation of dynamic equilibrium, hence the measurements of
TSH and FT4 will not vary much during time. The situation is completely different in
case of a hypothyroid patient, when the concentration of FT4 decays in time. According
to the current guidelines, it can take several months before the concentrations of TSH
and FT4 reach again normal levels. Therefore, this last question regards the study of
the instationary situation. Since time in the treatment of a disease is important, it is
fundamental to study the optimal path to reach the new desired HPT state. Hence, the
goal is to predict how a patient can reach a new equilibrium, corresponding to the set-
point, and how long this process will take.



5
DATA

5.1. DATASETS
Different datasets are used to work on this project. In particular, one dataset of hypothy-
roid patients is specifically used to study the relationship between TSH and FT4, while
other two datasets of thyroidectomized patients, one from the University Radboud Med-
ical Centre in Nijmegen and one from the Erasmus Medical Center in Rotterdam, are
used for validating the set-point theory.

5.1.1. HYPOTHYROID PATIENTS
A dataset containing measurements of 28 hypothyroid patients is used to investigate the
relationship between TSH and FT4 and its set-point. This dataset contains information
of patients belonging to different hospitals. Therefore, general reference ranges for TSH
and FT4 have to be adopted when analyzing this dataset, because the ones character-
ising each hospital are not specified. Hence, the reference range considered for TSH
is 0.4-4.0 mU/L, while the one for FT4 is 10.0-20.0 pmol/L. Multiple measurements are
available for every patient, but the dates and times in which the measurements were
collected are not available. Furthermore, for all the patients included in the dataset,
the TSH measurements are expressed with one or two decimal digits. However, this is
not happening for the FT4 values. In fact, in some cases, the FT4 measurements are
reported with one decimal digit, which is good enough in terms of accuracy, while in
other cases these measurements are expressed with integers, which causes a higher in-
accuracy. However, even though this dataset might not be optimal, it is still fine for the
purpose of studying the relationship between TSH and FT4.

5.1.2. NIJMEGEN DATASET
A dataset from the Radboud hospital in Nijmegen is used to validate the set-point the-
ory. This dataset contains the measurements of 20 thyroidectomized patients. For each
patient, at least one pre-thyroidectomy measurement and several post-thyroidectomy
TFTs are available. 12 patients are women, while the remaining 8 patients are men. All

23



24 5. DATA

the patients underwent thyroidectomy between 2014 and 2015. The available TFTs in-
clude a measurement for TSH and one for FT4. The reference ranges adopted for this
dataset changed during time. In fact, until the 10th of September 2015, the reference
range for TSH was 0.40-4.00 mU/l, while the one for FT4 was 8-22.0 pmol/L. After the
10th of September 2015, the reference ranges became 0.27-4.20 mU/L for TSH and 10.0-
23.0 pmol/L for FT4. In this dataset, the TSH values are expressed with two decimal
digits, while the FT4 levels with one decimal digit. The time interval between the mea-
surements is variable. In some cases, the available pre-thyroidectomy measurements are
conducted a couple of months before the surgery, while in other cases the measurements
date back to several months prior to the operation. Even when multiple pre-operative
measurements are available, the time stamp between two consecutive measurements
is not fixed. Regarding the post-thyroidectomy measurements, in some cases, the first
available measurement is conducted a few weeks after the surgery, but for other patients
it is dated months after the operation. Furthermore, in just a few patients the time stamp
between consecutive measurements is maintained almost constant, around 2-4 months.
In the majority of cases, the time interval between consecutive measurements is vari-
able. It should also be noticed that for most of the patients, the measurements are always
taken at different times during the day.

5.1.3. ERASMUS MEDICAL CENTER DATASET

A dataset of thyroidectomized patients from the Erasmus Medical Center is used for mul-
tiple purposes. The dataset contains information about 30 patients. However, only 11
patients present pre- and post-thyroidectomy measurements, the remaining 19 patients
present only post-operative TFTs. Therefore, only the 11 patients with pre-surgery TFTs
can be used to validate the set-point theory, while the other patients can be used to in-
vestigate the TSH-FT4 relationship. When available, the pre-thyroidectomy measure-
ments are one or two, while the post-thyroidectomy ones are at least 3 for every patient.
The reference ranges adopted by the Erasmus Medical Center are 0.4-4.3 mU/L for TSH
and 11-25 pmol/L for FT4. The date and time in which the measurements were con-
ducted are not reported. It is just known that all the 30 patients included in the dataset
have been diagnosed with thyroid cancer between 2013 and 2017. In this dataset, TSH
is expressed using 3 decimal digits, while FT4 measurements are reported with one dec-
imal digit.

5.2. OUTLIERS

Before starting to study the relationship between TSH and FT4 and its set-point, it is im-
portant to determine if a dataset contains any outlier. An outlier is an observed point
that clearly differs from the other measurements. This is a quite vague definition, be-
cause it is up to who analyses the data to determine if a certain measurement does not
follow the behaviour of all the other data points and, therefore, should be considered as
an outlier. After the outliers have been detected, it is necessary to remove them from the
analysed dataset because they can influence the model by providing poor results.

However, in this project, the aim is to determine the fewest possible outliers in each
dataset. In fact, it is important not to remove too many measurements, in order to pre-
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serve the general behaviour of the dataset. Furthermore, it was noticed that the selection
of different outliers can lead to quite different results. That is why a method to detect
outliers has been developed, so that the choice of outliers is not totally dependent on
who is working on the dataset but there are at least some guidelines to follow.

First of all, it is suggested to plot all the measurements belonging to one patient on
the same graph. In this way it is possible to get an idea of the general behaviour of the
measurements. Usually it is better to consider as outliers all the measurements with FT4
values smaller than the reference range, for example those with FT4<8-10 pmol/L. In
fact, these measurements are usually isolated, therefore it is hard to determine if their
corresponding TSH values are valid. Another step that can be immediately performed is
checking if there are measurements with TSH levels that are too high or too low for their
corresponding FT4. If this is the case, it is possible to directly remove these measure-
ments from the dataset. An example of this situation is presented in Figure (5.1), where
it is clear that two measurements have TSH values too low for their corresponding FT4
levels, therefore these measurements can directly be considered outliers.

Figure 5.1: Plot of the TFTs of Patient 1 from the Nijmegen dataset. It is evident that
two of the measurements are outliers, because their TSH levels are too small for their
corresponding FT4 values.

After this initial procedure, it is possible to perform a more accurate outlier detection
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to determine if there are other outliers. This consists in fitting the data with the appro-
priate function, using a robust method instead of the usual least-squares method. In
particular, it is suggested to use the Least Absolute Residual (LAR) method.

The aim of least-square methods is to find the parameters of a function that best fit
the data. The ordinary least-squares method aims to find the optimal parameter values
by minimizing S, the sum of the squared residuals [36],

S =
n∑

i=1

(
yi − f (xi )

)2 .

(
xi , yi

)
represent the observed values, so in this specific case they correspond to the

measurements ([FT4]i , [TSH]i ), while f is the function that should fit the observed data.
Therefore, the term residual indicates the difference between the actual observation and
the value predicted by the model function [36]. The LAR method is an alternative to
the common least-squares approach, in the sense that it is robust to outliers. The LAR
method finds a curve that minimizes S, which in this case is defined as the sum of the
absolute values of the residuals [37],

S =
n∑

i=1

∣∣yi − f (xi )
∣∣.

With this approach, extreme values have a smaller influence because the LAR method
gives equal importance to all the observations, which is not happening with the ordinary
least-squares method. In fact, by squaring the residuals, more emphasis is given to large
residuals, which might actually correspond to outliers.

Therefore, after fitting the data with the LAR method, it is possible to detect immedi-
ately the measurements that do not follow the behaviour of the fitted curve and are very
far from the model. It is possible to determine these outliers by using a visual approach
or by computing the distance between the measurements and the fitted curve. The dis-
tance between a data point ([FT4], [TSH]) and a curve y = f (x) can be computed in the
following way:

D =
√

(x − [FT4])2 + (y − [TSH])2 =

=
√

(x − [FT4])2 + ( f (x)− [TSH])2.

Since a distance is always positive and the square root is an increasing function, it is
possible to study D2 instead of D. Therefore, it is possible to compute the derivative of
D2 with respect to x and set it equal to 0,

dD2

d x
= 2(x − [FT4])+2 f ′(x)( f (x)− [TSH]) = 0,

in order to find the value of x for which the distance will be minimum. Once the value
of x is available, it can be substituted back into the expression for D in order to find the
value of the distance between the point and the curve.

It is possible to define a threshold for the distance according to the dataset analyzed,
so if the distance between one measurement and the model is larger than the specified
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Figure 5.2: Plot of the TFTs of Patient 1 from the Nijmegen dataset with the fitted func-
tion. In addition to the outliers detected previously, it is clear, even with a visual ap-
proach, that the dataset contains one more outlier, marked in green.

threshold, that measurement will be considered an outlier. Figure (5.2) continues the
example of Patient 1 from the Nijmegen dataset presented previously. After having al-
ready excluded the two previous outliers, it is clear that one more measurement is quite
far from the fitted curve, hence it can be considered an outlier and it is marked with a
green "X".
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HP CURVE AND ITS SET-POINT

The first goal of this research is to investigate the relationship between TSH and FT4.
For this purpose, two datasets can be used, the one of hypothyroid patients and the one
from the Erasmus Medical Center, as presented in the previous chapter. The dataset of
hypothyroid patients includes measurements collected in different hospitals, therefore
general reference ranges for TSH and FT4 are used, in particular 0.4-4.0 mU/L for TSH
and 10.0-20.0 pmol/L for FT4. All 28 patients’ datasets are taken into account to study
and define the relationship between TSH and FT4. Regarding the Erasmus dataset, the
19 thyroidectomized patients that do not present pre-operative measurements are used
to study the relationship between TSH and FT4. For this dataset, the reference ranges
are 0.4-4.3 mU/L for TSH and 11-25 pmol/L for FT4. The results obtained through the
two datasets can be presented together because they are comparable and do not show
any substantial difference.

As a first step, each patients’ dataset is fitted with different models, such as the expo-
nential, logarithmic, polynomial, power functions. In this way, it is possible to check how
different models approximate the TSH-FT4 relationship. In this phase, it is not necessary
to remove any outlier from the patients’ datasets because the aim is to find a general
model that describes the TSH-FT4 relationship, therefore there is no need to study each
individual dataset too accurately. The results of some of these experiments are shown in
Figure (6.1). In this initial step, the software Graph 4.4.2 was used because it is very intu-
itive and visual, therefore it is useful for plots and for analysing the relationship between
TSH and FT4.

It is already clear from Figure (6.1) that some of the functions used for fitting the data
are not representing the behaviour of the data in an accurate way. From a mathematical
perspective, different models can be compared by computing their goodness-of-fit R2,
which is defined as

R2 = 1− SSE

SST
.

29
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(a) Exponential function [TSH] = aeb[FT4]. (b) Power function [TSH] = a[FT4]b .

(c) Second-order polynomial [TSH] = a[FT4]2+
b[FT4]+ c.

(d) Third-order polynomial [TSH] = a[FT4]3 +
b[FT4]2 + c[FT4]+d .

(e) Logarithmic function [TSH] = a ln[FT4]+b. (f) Saturation-growth rate [TSH] = a[FT4]
b+[FT4] .

Figure 6.1: Measurements belonging to the hypothyroid patient AP05 fitted with differ-
ent functions.
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SSE is the residual sum of squares and it is defined as

SSE =∑
i

(yi − fi )2,

while the total sum of squares SST is

SST =∑
i

(yi − y)2,

where yi are the observed measurements from the dataset, fi are the fitted values and y
is the mean of the observed values. In this case, yi correspond to the TSH measurements,
while fi correspond to the TSH values approximated through the model. The best case
happens when R2=1, because it means that the fitted values match the observed ones.

However, even if from a mathematical perspective some models seem accurate be-
cause of a high goodness-of-fit, they actually might not be good approximations of the
measurements. Referring to Figures (6.1c) and (6.1d), it is clear that fitting the data
points with polynomial functions does not provide good results. In fact, even though the
values of R2 are high for both cases, the fitted functions do not represent the behaviour
of the measurements in an accurate way. Furthermore, in order to fit the data with a
second-order polynomial it is necessary to have at least 3 TFTs, for a third-order polyno-
mial at least 4 measurements should be available and so on. However, sometimes only
a couple of measurements might be available for a patient, hence it is better to prefer a
model requiring less data points.

From Figure (6.1e), it is evident that also the logarithmic function is not represent-
ing the behaviour of the measurements accurately. Furthermore, the [TSH] values com-
puted through the logarithmic model assume negative values for [FT4]>14.63 pmol/L,
which is not realistic because the concentration of TSH should always be positive.

The saturation-growth rate model presented in Figure (6.1f) has some problems as
well. At first sight it might seem acceptable, however the model is characterised by the
presence of two asymptotes, one vertical and one horizontal. Therefore, the range of val-
ues that the model can take in the first quadrant, which is the one of interest because the
concentrations should always be positive, is reduced. In this particular example, there
is a vertical asymptote for [FT4]=5.205 pmol/L, therefore the TSH levels corresponding
to FT4 values in the range 0-5.205 pmol/L are negative, which is not acceptable. Simi-
larly, there is a horizontal asymptote at [TSH]=5.3668 mU/L, hence negative FT4 values
provide TSH concentrations in the interval 0-5.3668 mU/L. Hence, this model has to be

discarded. Similar results are obtained also with hyperbolic models, [TSH] = a + b

[FT4]
,

and reciprocal functions, [TSH] = 1

a[FT4]+b
, therefore these models are not appropri-

ate to describe the TSH-FT4 relationship either.
As a result of the experiments conducted on all the analyzed patients, two models

have to be preferred, the exponential function and the power function, presented in Fig-
ures (6.1a) and (6.1b), respectively. The exponential function has the following expres-
sion

[TSH] = Se−ϕ[FT4],
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where S > 0 and ϕ> 0, while the power function is

[TSH] = a[FT4]b ,

where a > 0 and b < 0. First of all, it is important to notice that both models require
at least two measurements of TSH and FT4 for each individual, which is a positive as-
pect because both models can be applied to all the available datasets, since all of them
consists of at least two measurements.

When two TFTs are available for a patient, ([FT4]1, [TSH]1) and ([FT4]2, [TSH]2), the
model parameters of the exponential model can be computed as

ϕ= 1

[FT4]1 − [FT4]2
ln

(
[TSH]2

[TSH]1

)
,

S = [TSH]1eϕ[FT4]1 = [TSH]2eϕ[FT4]2 ,

while for the power function the parameters are defined as

b =
ln

(
[TSH]2

[TSH]1

)
ln

(
[FT4]2

[FT4]1

)
a = [TSH]1

[FT4]b
1

= [TSH]2

[FT4]b
2

.

When more than two TFTs are available for a patient, one way to determine the model
parameters consists in using a least-squares approach, through which it is possible to
estimate the parameters that provide the best fit of the measurements.

The software package Matlab can be used to study in depth the differences between
these two models. In order to fit the measurements with the two different models in
Matlab, it is possible to use the built-in function fit, because, through a least-squares
method, it returns the parameters that provide the best fit of the data.

For the majority of the patients’ datasets, both the exponential and power functions
present high values for the goodness-of-fit R2, usually more than 90%. In fact, in these
cases, the values of R2 are very similar to each other, so it is impossible to determine
which of the two models is better by basing the decision only on the values of R2. An
example of this situation is presented in Figure (6.2), where, also visually, it is difficult to
distinguish the two functions because they are very similar to each other. In this case,
the goodness-of-fit for the exponential function is 99.98%, while for the power function
is 99.87%, hence both models present extremely high values of the goodness-of-fit.

However, there are some datasets that present lower values of R2. In some cases, it
is possible to detect some outliers through the procedure described previously and re-
move them from the dataset. When the outliers are removed, the goodness-of-fit might
improve. An example of this situation is presented in Figure (6.3). For both the expo-
nential and the power function models presented in Figure (6.3a), the goodness-of-fit is
around 61%, which is a quite low value. Therefore, it is necessary to detect some outliers
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Figure 6.2: Plot of the measurements of the hypothyroid patient BP01, fitted with the
exponential model (in red) and the power function (in green).

in order to improve the goodness-of-fit for the two models. Figure (6.3b) presents the
case where the outliers have been removed. In this case the goodness-of-fit for both the
exponential and power functions is much higher, around 89%. As it can also be appre-
ciated in the figures, after removing the outliers, the two models are visually even more
similar.

In other cases, however, it can happen that there is not any outlier, or, even if the
outliers are removed, the goodness-of-fit does not improve. This might be due to sev-
eral reasons. In fact, if the measurements are mostly expressed using integers, this might
have an influence on the accuracy of the model. Furthermore, it can happen that mea-
surements with different values of FT4 present the same value for TSH and vice versa,
which is not realistic. However, this happens because the measurements are actually ap-
proximations of the real values. Furthermore, this is more likely to happen if there are
many measurements available for a single individual. This situation is presented in Fig-
ure (6.4). In this example, the goodness-of-fit for the exponential function is 51%, while
for the power model is 45%. Both values of R2 are quite low, however the goodness-of-
fit cannot be improved in any way, hence the poor performance of both models might
be due to the low quality of the measurements. Furthermore, the two curves are quite
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(a) Exponential and power functions fitted con-
sidering all the measurements.

(b) Exponential and power functions fitted re-
moving the outliers.

Figure 6.3: Measurements belonging to the hypothyroid patient SP03 fitted with the ex-
ponential and power functions, with and without outliers.

different from each other.
The exponential and power functions can also be inspected visually, in order to check

which of the two models simulates better the behaviour of the TSH-FT4 measurements.
By doing so, in some cases it can be noticed that the exponential model is better than
the power function. This can be seen in the example reported in Figure (6.5). In fact, the
exponential model represents the curvature of the TSH-FT4 measurements in a better
way. The goodness-of-fit for both models is very high, nevertheless, as it can be seen in
the figure, the exponential function represents better the behaviour and the curvature
of the measurements, while the power function, even if it still provides a high goodness-
of-fit, is above the measurements and it does not model their curvature in a precise way.
Therefore, the two curves are quite different from each other.

However, it is hard to determine which model is better based only on the results of
this visual approach. Therefore, an idea would be to compute also the set-points of the
two models and compare the results in order to determine which function is more ap-
propriate to describe the TSH-FT4 relationship.

For both models, the set-point is computed as the point of maximum curvature of
the function. According to Goede et al. [3], the set-point of the exponential function is
defined as the point of maximum curvature. This is because it corresponds to the point
where the sensitivity for any change around this point is maximal. The same reasoning
can be applied to the power function, so also in that case the set-point can be computed
as the point of maximum curvature.

The general expression for the curvature of a function is

K =
d y2

d x2(
1+

(
d y

d x

)2)3/2
,
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Figure 6.4: Plot of the measurements of the hypothyroid patient SP04, fitted with the
exponential model (in red) and the power function (in green).

hence for the exponential model [TSH] = Se−ϕ[FT4] the curvature is

K = ϕ2Se−ϕ[FT4](
1+ϕ2S2e−2ϕ[FT4]

)3/2
,

while for the power function [TSH] = a[FT4]b the curvature has the following expression

K = ab(b −1)[FT4]b−2(
1+ (ab[FT4]b−1)2

)3/2
.

In order to study when the curvature is maximum, it is necessary to solve

dK

d [FT4]
= 0.

By doing so, it is possible to derive the coordinates of the set-point. For the exponential
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Figure 6.5: Plot of the measurements of the hypothyroid patient SP44, fitted with the
exponential model (in red) and the power function (in green).

model, the set-point is defined by

[FT4]set-point =
ln

(
ϕS

p
2
)

ϕ

[TSH]set-point = 1

ϕ
p

2
.

For the power function, the coordinates of the set-point are

[FT4]set-point =
(

2−b

a2b2 −2a2b3

)1/(2b−2)

[TSH]set-point = a

(
2−b

a2b2 −2a2b3

)b/(2b−2)

.

Therefore, comparing the set-points of the two models might give more insights into
determining which of the two functions describes better the relationship between TSH
and FT4.

In many cases, especially if the power and exponential functions have a very simi-
lar behaviour, as shown in Figure (6.6), the two set-points are almost indistinguishable
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Figure 6.6: Plot of the measurements of the hypothyroid patient SSP30, fitted with the
exponential model (in red) and the power function (in green).

from each other. However, other datasets give more interesting results. First of all, this
experiment shows that for the exponential function all the datasets, except one, present
the set-point within the reference ranges. However, for the power the function, many
datasets present a set-point outside the normal reference ranges, in particular because
of a high value of TSH. Figure (6.7) presents an example in which the set-point of the ex-
ponential function is within the reference ranges, while the set-point of the power func-
tion is outside these reference ranges. In particular, the TSH value of the set-point of the
power function is much larger than the reference range. Furthermore, it can visually be
noticed that the exponential function simulates better the behaviour of the data points
also in this case. After this analysis, it is finally possible to conclude that the TSH-FT4
relationship is best modelled by a negative exponential function, because it provides a
more reasonable prediction of the set-point, which should be found within the reference
ranges.
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Figure 6.7: Plot of the measurements of the hypothyroid patient SSP22, fitted with the
exponential model (in red) and the power function (in green).



7
VALIDATION OF THE SET-POINT

THEORY

After having established that the TSH-FT4 relationship can be represented through a
negative exponential function, it is fundamental to validate the set-point theory. This
means that it is required to prove that the set-point of the HPT axis actually corresponds
to the point of maximum curvature of the HP curve. This can be done by using mea-
surements of patients that underwent a thyroidectomy. In fact, in these cases, TFTs are
conducted both before and after the removal of the thyroid. Therefore, this allows a
comparison between the pre- and post-thyroidectomy set-points, in order to verify the
validity of the latter.

First of all, it should be reminded that a healthy thyroid produces only 20% of the
total amount of T3, while the remaining amount is produced by a peripheral conversion
of T4 [5, 6]. Hence, in thyroidectomized patients, it is necessary to increase the dose
of LT4 in order to compensate also for the amount of T3 that is normally produced by
the thyroid. In particular, around 25% of the originally secreted T4 should be added to
the compensating dose of LT4 in order to obtain the same level of pre-operative FT3.
Therefore, the post-thyroidectomy level of FT4 is expected to be 25% larger than the pre-
operative one. On the other hand, there is no evidence to believe that the TSH level of
the set-point should change before and after a thyroidectomy.

The first step in the process of validating the set-point theory is to consider the post-
operative data and use it to reconstruct the post-operative HP curve. This can be done by
fitting the measurements with the negative exponential function presented previously.
After the post-thyroidectomy HP curve is available, it is possible to compute its set-point
as the point of maximum curvature of the exponential function, using the formulas pre-
sented in the previous chapter. After this, it is necessary to compute a prediction of the
pre-operative set-point. According to the previous considerations, it is well established
that the level of TSH before and after the thyroidectomy should remain the same, while
the post-thyroidectomy level of FT4 should be 25% larger than the pre-operative one.

39
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Hence, the predicted pre-operative set-point is

[TSH]predicted = [TSH]post-operative

[FT4]predicted = [FT4post-operative

1.25
.

After this step, two different approaches can be adopted to validate the set-point the-
ory. The first method consists in directly comparing the patients’ pre-operative measure-
ments with the predicted set-points. According to Andersen et al. [13], one TFT describes
the individual set-point with a precision of ±25% for FT4 and ±50% for TSH. Therefore,
in this case, the set-point theory is considered validated if the predicted TSH and FT4
set-point values are found within a distance of 50% and 25% from the pre-operative mea-
surements of TSH and FT4, respectively.

On the contrary, the second approach consists in reconstructing the pre-operative
HP curve and its set-point. In fact, this method does not consider the pre-surgery mea-
surements as indicators of the real pre-operative set-points because, even if they are
within the reference ranges, they might still deviate from the real set-point. As explained
previously, TSH is considered constant before and after the thyroidectomy. Therefore,
the TSH level of the pre-thyroidectomy set-point should be equal to the post-operative
one. Hence, using the expression of the set-point value of TSH, [TSH] = 1

ϕ
p

2
, it can be

concluded that the model parameterϕ of the pre-operative HP curve is actually the same
as the parameter ϕ in the post-thyroidectomy HP curve. This means that the only pa-
rameter changing in the model is S. In order to determine S in the pre-operative expo-
nential function, it is necessary to use the pre-operative measurements in the following
way:

S = [TSH]preeϕ[FT4]pre .

Once the pre-operative model is available, it is possible to compute its set-point as the
point of maximum curvature and compare it with the predicted one. The TSH level of the
pre-thyroidectomy set-point is equal to the one of the predicted set-point. Therefore, it
is necessary to compare only the predicted and actual pre-thyroidectomy levels of FT4.
The set-point theory is considered validated for a patient if the actual pre-thyroidectomy
FT4 concentration is maximum 10% larger or smaller than the predicted FT4 level.

In order to validate the set-point theory with both approaches, two datasets have
been used, the one from the Nijmegen hospital and the one from the Erasmus Medical
Center.

7.1. COMPARISON WITH THE PRE-OPERATIVE MEASUREMENTS
The Nijmegen and the Erasmus dataset were analyzed with the first approach, consisting
in a direct comparison between the predicted set-point and the pre-operative measure-
ments. In particular, the Nijmegen dataset consists of measurements belonging to 20
patients, however only 16 of them could be used, because the other 4 patients’ dataset
do not allow to reconstruct the post-operative HP curve. On the other hand, all the 11
patients’ dataset of the Erasmus Medical Center could be taken into account to validate
the set-point theory.
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(a) Pre-operative measurements belonging to
Patient 24 - 001.032 from the Erasmus dataset.

(b) Pre-operative measurements belonging to
Patient 17 from the Nijmegen dataset

Figure 7.1: Examples of pre-operative measurements that are clearly different from each
other.

The results obtained through the two datasets are comparable, hence they can be
presented together. The first issue that can be noticed is when multiple pre-thyroidectomy
measurements are available. There is a total of 14 datasets that present multiple pre-
operative measurements. In only 5 datasets the pre-operative measurements are quite
similar, so in these cases it is possible to carry out the comparison with the predicted
set-point. However, in most of the cases, the measurements are very different from
each other, therefore it is impossible to choose the pre-thyroidectomy measurement that
should be compared to the predicted set-point. Hence, in such cases, it is not possible to
verify the validity of the set-point theory. Figure (7.1) shows two examples in which the
pre-operative measurements are not similar. Figure (7.1a) is extracted from the Erasmus
Medical Center dataset. In this case there are two pre-operative measurements, which
have both the FT4 and TSH levels very different from each other. Figure (7.1b) shows a
more extreme example, taken from the Nijmegen dataset. In this case, the difference be-
tween the smallest and largest TSH concentrations is more than 1 mU/L, which is quite
significant considering the typical scale of values for TSH. Similarly for FT4, the differ-
ence between the smallest and largest concentrations is almost 6 pmol/L, which also in
this case represents a quite remarkable dissimilarity.

Therefore, it is possible to take into account only the datasets presenting one pre-
operative measurement and the few ones with multiple pre-thyroidectomy measure-
ments similar to each other. In the majority of cases, the discrepancy between the pre-
dicted set-point and the pre-operative measurements is larger than the accepted differ-
ence presented previously. Figure (7.2) presents two examples in which the predicted
set-point is very different from the pre-operative TFT. For 7 patients, it happens that
either the predicted FT4 or TSH values are within the accepted interval of the corre-
sponding pre-operative levels, however the other quantities are not matching. Figure
(7.3a) shows an example in which the predicted TSH level is similar to the one of the pre-
operative measurement, while the FT4 values are different. Figure (7.3b) presents the
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(a) In Patient 7 from the Nijmegen dataset, the
predicted set-point is different from the pre-
operative measurement.

(b) In Patient 21 from the Erasmus dataset, the
predicted set-point is different from the pre-
operative measurement.

Figure 7.2: Two datasets in which the predicted set-point is not matching the pre-
operative TFT.

opposite situation, so the FT4 concentration of the pre-operative measurement and the
predicted one are very similar, but the TSH levels are not matching. In only a few datasets
the predicted concentrations of TSH and FT4 are both similar to the corresponding pre-
thyroidectomy measurements. Figure (7.4) presents two cases in which the set-point
theory seems validated according to this approach.

These results lead to two possible conclusions: the prediction of the set-point might
be wrong, therefore the set-point cannot be computed as the point of maximum curva-
ture, or the preoperative measurements cannot be considered as set-points. However.
as it is shown also in the figures presented previously, the analysis of the datasets pro-
vide a large variety of different results. In fact, none of the datasets presents similar be-
haviours that might allow to derive a different prediction of the set-point. For example,
in some cases pre-operative TSH is larger than the predicted one, while in other cases it
is smaller. The same happens with FT4 as well. Therefore, what can be concluded from
this approach is that the pre-thyroidectomy measurements might not always coincide
with the real set-point. Moreover, the fact that multiple pre-operative measurements are
usually very different from each other is another element in support of this thesis.

7.2. RECONSTRUCTION OF THE PRE-OPERATIVE HP CURVE AND

SET-POINT
The datasets of thyroidectomized patients from the Nijmegen hospital and the Erasmus
Medical Center have then been analyzed with the second approach, consisting in recon-
structing the pre-operative set-point and comparing it with the predicted one. The total
amount of patients included in the two datasets is 31, however not all of them could
be used to validate the set-point theory. In fact, in a few cases the post-thyroidectomy
measurements do not allow to reconstruct the HP curve, so these datasets have to be ex-
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(a) In Patient 1 from the Nijmegen dataset, the
predicted TSH level is similar to the TSH con-
centration of the pre-operative measurement,
while the FT4 concentrations are very different.

(b) In Patient 6 from the Nijmegen dataset, the
predicted FT4 level is similar to the FT4 concen-
tration of the pre-operative measurement, while
the TSH concentrations are very different.

Figure 7.3: Two datasets in which either the predicted FT4 or TSH values are similar to
the corresponding pre-operative levels.

(a) In Patient 14 from the Nijmegen dataset, the
predicted set-point and the pre-operative mea-
surements are very similar.

(b) In Patient 18 - 001.025 from the Erasmus
dataset, the predicted set-point and the pre-
operative measurement are very similar.

Figure 7.4: Two datasets in which the predicted set-point coincides with the pre-
operative measurements.
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(a) Patient 15 should be excluded because its
post-operative TFTs do not allow to reconstruct
the negative exponential HP curve.

(b) Patient 18 should be excluded because its
post-operative TFTs do not allow to reconstruct
the negative exponential HP curve.

Figure 7.5: Two of the datasets from the Nijmegen hospital that have to be excluded.

cluded. The results obtained with this approach are encouraging. In fact, for about half
of the datasets the set-point theory is validated because the predicted FT4 level and the
actual pre-thyroidectomy FT4 concentration are matching almost perfectly. Regarding
the datasets in which the set-point theory is not validated, there are multiple reasons
that might explain why this happens. In some cases, it might be because of the pre-
thyroidectomy measurements, which might cause an inaccurate reconstruction of the
HP curve and, consequently, of the set-point. In other cases, the reason might be due to
an autonomous production of FT3 [38]. In fact, this causes the pre-thyroidectomy FT4 to
be lower than expected because an extra source of T3 inhibits the production and release
of TRH, which results in a lower FT4 set-point value. Moreover, this is also supported by
the fact that, when the set-point theory is not validated, the predicted FT4 value is always
larger than the reconstructed one.

A more detailed analysis of the results obtained with the Nijmegen and Erasmus
datasets is presented in the following sections. Furthermore, the Appendix contains the
code implemented to verify the set-point theory and an overview of the results obtained
with each individual patient.

7.2.1. NIJMEGEN DATASET

The Nijmegen dataset contains measurements of 20 thyroidectomized individuals, how-
ever not all of them can be used to validate the set-point theory. 5 datasets cannot be
taken into account because their post-operative measurements do not allow to recon-
struct the HP curve. Two examples of the excluded patients are depicted in Figure (7.5).
The other 3 datasets have a very similar behaviour.

For the remaining 15 datasets, the goodness-of-fit of the post-thyroidectomy HP
curve is always higher than 93%, and in the majority of cases it is even larger than 97%.
The results from the comparison between the predicted and reconstructed pre-operative
FT4 concentrations show that for 7 patients they are very similar, while in the remaining
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8 datasets there is a discrepancy between the two values. Figure (7.6) shows an example
of one of the 7 cases in which the set-point is validated. As it can be seen in the figure,

Figure 7.6: In Patient 6 the predicted and reconstructed pre-operative set-points are
matching perfectly.

the predicted and reconstructed set-points are matching almost perfectly. One reason to
explain the difference between the predicted and actual pre-thyroidectomy set-points in
the other 8 datasets might be an autonomous production of T3. In fact, many patients
contained in this dataset present pre-operative FT4 measurements with very small val-
ues, towards the lower boundary of the reference range, combined with low-normal lev-
els of TSH. This might be a hint for an unknown source of T3, which causes a lower con-
centration of FT4. Figure (7.7) presents an example of a dataset in which the set-point
theory is not validated.

7.2.2. ERASMUS MEDICAL CENTER DATASET

As already presented in Section 5, the Erasmus dataset contains measurements belong-
ing to 30 thyroidectomized patients, however only 11 of them present pre-thyroidectomy
TFTs. Therefore, these are the datasets that can be used to verify the set-point theory.
Of the 11 patients that can be taken into account, only 9 of them can actually be used.
In fact, the measurements of the two excluded datasets do not seem reliable, therefore
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Figure 7.7: In Patient 11 the predicted and reconstructed pre-operative set-points are
very different.

this does not allow a comparison between the pre- and post-thyroidectomy set-points.
Figure (7.8) presents the two datasets that should be excluded from the analysis. In par-
ticular, for Patient 5 - 001.008, Figure (7.8a), the pre-thyroidectomy measurement of TSH
is outside the reference range adopted by the hospital. Patient 21 - 001.029, Figure (7.8b)
should not be included because its pre-operative TFT presents a very low level of TSH
and the post-thyroidectomy measurements do not resemble an exponential behaviour.

When reconstructing the post-thyroidectomy HP curves, all the datasets present a
goodness-of-fit higher than 90%, with the majority of datasets having a goodness-of-fit
larger than 97%. The results obtained from the comparison between the predicted and
reconstructed pre-thyroidectomy set-point show that in 7 cases the set-point theory is
validated. In fact, in these datasets the two set-points are very similar to each other.
In Figure (7.9) the predicted and reconstructed pre-operative set-points are matching
perfectly, hence this is an example in which the set-point theory is validated. In the re-
maining two cases, the predicted FT4 level of the set-point is much larger than the pre-
operative one. This might be caused by a pre-operative unknown source of T3, which
can influence the level of FT4 of the set-point. Figure (7.10) is one of the two cases in
which the set-point theory is not validated because the predicted set-point is very differ-
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(a) Patient 5 - 001.008 should be excluded be-
cause the pre-operative TFT is outside the ref-
erence range.

(b) Patient 21 - 001.029 should be excluded be-
cause of the behaviour of the post-operative
TFTs.

Figure 7.8: Datasets from the Erasmus Medical Center that have to be excluded.

ent from the reconstructed one. In particular, the predicted set-point is larger than the
reconstructed one. As explained in the previous sections, this might happen for differ-
ent reasons. It might be caused by an inaccurate post-operative HP curve. In fact, in this
case this was reconstructed using only 3 measurements that do not present a high vari-
ability, therefore the resulting exponential curve might not be precise. Another possible
reason might be the autonomous production of pre-operative T3, which might cause a
reduction of the pre-thyroidectomy FT4 level.
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Figure 7.9: In Patient 25 - 001.033 the predicted and reconstructed pre-operative set-
points are matching perfectly.
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Figure 7.10: In Patient 3 - 001.005 the predicted and reconstructed pre-operative set-
points are different.





8
OPTIMAL PATH TOWARDS THE

SET-POINT

8.1. RELATED WORK
Some work regarding the optimal path towards the set-point has already been developed
by Goede et al. [39]. Before presenting it, it is necessary to introduce the concept of half-
life. Every molecule in the human body subjected to metabolism is characterised by a
specific half-life, which is defined as the time needed to decrease its concentration by
50%. The notion of half-life is associated with a negative exponential decay process,

A(t ) = A0e−
t
τ

or

A(t ) = A0e−δt ,

where τ = 1

δ
[39]. Since the initial concentration is A0, the half-life t1/2 can be found in

the following way:

1

2
A0 = A0e−

t1/2
τ

⇒ − t1/2

τ
= ln

1

2
⇒ t1/2 = τ ln2.

It is also possible to re-write the expression for A(t ) as

A(t ) = A02−
t

τ ln2 ,

and, since t1/2 = τ ln2, it becomes

A(t ) = A02
− t

t1/2 .

51
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The appearance process of LT4 can be studied by considering incremental discrete
steps of 24 hours, so t assumes integer values because it represents the days. It is known
that T4 has an average half-life t1/2 of 7 days [39], so it follows that for T4

τ= t1/2

ln2
= 7

ln2
' 10 days

and

δ= 1

τ
= 1

10
= 0.1

1

days
.

It is possible to consider an example in which the daily administered dose of LT4 is
equal to 100 µg. Therefore, based on the previous considerations, the initially absorbed
amount of 100 µg of LT4 taken at the beginning of the day results in a remaining amount
of 100e−0.1·1 = 90.48 µg after 24 hours. However, the next day a new dose of 100 µg is
added and so forth, until the dose equilibrium has been reached. The dose equilibrium
is defined as the steady-state level Ae and it occurs when the daily administered dose is
equal to the metabolic loss over 24 hours [39]. From this definition, the steady-state Ae

can be derived as follows:

Daily dose = Ae (1−e−δ)

⇒ Ae = Daily dose

1−e−δ
.

In the previous example characterised by a daily dose of 100 µg of LT4, the steady-state
would be

Ae = 100

1−e−0.1 = 1050 µg .

It is also possible to derive a generalized form of the equation for the steady-state Ae ,
where it is assumed that the medication is based on periodical doses administered every
n days:

Ae = Periodical dose in µg over n days

1−enδ
.

Figure (8.1) shows that the accumulation of T4 behaves as an asymptotically accumulat-
ing characteristic, saturating at a steady-state level from which no higher accumulation
will occur. The continuous time function for the accumulated T4 can be derived as

Ae (t ) = Dd + (Ae −Dd )(1−e−δt ) =
= Ae + (Dd − Ae )e−δt ,

where Dd represents the daily dose, while Ae is the steady-state [39]. Figure (8.2) presents
a plot of this function for Dd = 100 µg and Ae = 1050 µg.

It should be pointed out that it is possible to achieve the desired steady-state faster
by increasing the daily dose of FT4. In fact, still considering the previous example, the
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Figure 8.1: Accumulation process of T4 based on a daily dose of 100 µg of LT4, with a
zoom of the equilibrium situation.
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Figure 8.2: Continuous-time accumulation process of LT4 based on a daily dosage of 100
µg, with a steady-state of 1050 µg.

steady-state of 1050µg, based on a daily dose of 100µg of LT4, can be reached in a shorter
period when the medication dosage on the first days is allowed to be increased up to 300
µg of LT4 per day. In fact, starting with a first dose of 300 µg of LT4 on day 0, a second
dose on day 1 and so on, it is possible to find out that after only four days the steady-state
level is basically reached. At the beginning of day 4 it is necessary to administer a dose
of just 110 µg of LT4 and, from the next day, the medication should be continued with
100 µg of LT4 on a daily basis. Figure (8.3) depicts the rapid accumulation to the desired
steady-state level with four daily doses of 300 µg of LT4, starting at day 0, followed by
the normal daily dosage of 100 µg of LT4 once the steady-state has been reached. The
benefit of this procedure is to reduce the period required to reach the steady-state, which
can help resolving hypothyroid sympoms faster. However, this approach should always
be adopted in consultation with the physician, in order to analyse all the possible contra-
indications to high doses of LT4. Moreover, if such a strategy is followed, it is important
to appropriately monitor the health status of the patient [39].

On the other hand, in some situations it might also be necessary to achieve a reduced
steady state. Therefore, if that is the case, it is required to stop the medication for a few
days until the new steady-state has been reached. The current steady-state is defined as
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Figure 8.3: Accumulation process of LT4 based on a daily dosage of 300 µg from day 0 to
day 3, of 110 µg on day 4 and continuing with a daily dose of 100 µg from day 5.

A1, while the reduced steady-state is A2. As presented previously, the natural decay is

A(t ) = A1e−δt .

Therefore, since it is necessary to reach A2, which is smaller than A1, the following holds

A2 = A1e−δt .

From this equation, it is possible to derive for how many days it is required to suspend
the medication as

t =
⌈
− 1

δ
ln

(
A2

A1

)⌉
.

It should be noticed that t should be approximated to the nearest higher integer, be-
cause t represents the days, therefore it must be expressed by an integer value. The state
reached after t days will be slightly lower than A2 because of the approximation to the
higher integer value, therefore the next day it will be necessary to compensate this dif-
ference by ingesting a dose of LT4 equivalent to

∆A = A2 − A′
2,
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where A′
2 = A1e−δt , computed using the t found in the previous formula [39]. From the

next day, the daily dose that should be ingested in order to keep the steady-state at A2 is

Daily dose = A2(1−e−δ).

Figure (8.4) shows an example in which the reduced steady-state of 700 µg is reached
starting from an initial steady-state of 1050µg. In this example, it is necessary to suspend
the treatment for 5 days and, after that, the medication can be resumed with a dose of 63
µg of LT4 on the first day and continued with a daily dose of 66 µg of LT4 for the following
days. As in the previous case, this approach should be adopted in consultation with the
physician, in order to evaluate all the possible benefits and contra-indications.

Figure 8.4: Accumulation process of LT4 when it is required to reach a reduced steady-
state.

8.2. FT4 AS A FUNCTION OF TIME
After the analysis of the work that has already been published by Goede et al. [39], the
aim is to expand it to investigate an alternative method to express FT4 as a function of
time, in order to study its behaviour when a certain amount of medication is admin-
istered. Based on the previous considerations, when the administered dose of LT4 is
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constant over a certain period, the behaviour of FT4 over time is similar to the one of the
accumulated T4 presented in the previous section. In fact, first of all, it is important to
underline that T4 and FT4 have the same half-life. The average half-life of T4 is around 7
days, but it varies from person to person in a range around 5-9 days. Furthermore, as ac-
cumulated T4 tends to its steady-state presented previously, also FT4 tends to a certain
saturation level, which should correspond to the set-point value when the administered
dosage of LT4 is correct. An example of the expected behaviour of FT4 over time is pre-
sented in Figure (8.5).

Figure 8.5: FT4 behaviour over time when the treatment for hypothyroidism is carried
out.

Hence, similarly to the continuous-time function for the aggregated T4, Ae (t ) = Ae +
(Dd−Ae )e−δt , FT4 can be represented as a function of time with the following expression

[FT4](t ) = a +be−ct ,

which requires to determine the parameters a, b and c. These parameters depend on the
FT4 saturation level, on the residual activity of the thyroid and on the half-life of FT4. The
parameter c is equivalent to the parameter δ used in the formula for the accumulated T4,
because T4 and FT4 have the same time constant, therefore this allows to compute the
specific half-life of FT4 of the individual taken into account. Furthermore, when t = 0 the
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concentration of FT4 is equal to the residual FT4 still produced by the thyroid before the
start of the treatment. When t →∞, the concentration of FT4 approaches its saturation
level. So, after these considerations, the formula of FT4 over time can also be written
with the following expression:

[FT4](t ) = [FT4]saturation + ([FT4]0 − [FT4]saturation)e−δt ,

where [FT4]0 represents the residual FT4 produced by the thyroid before the start of the
treatment. It should be pointed out that when the administered dose of LT4 is correct
for the specific individual taken into account, the saturation level of FT4 is targeted to be
equal to the set-point level of FT4.

Since it is required to compute 3 parameters, it is necessary to have at least 3 dis-
tinct measurements of FT4 conducted at different times in order to reconstruct the FT4
function. As pointed out before, it is mandatory to conduct a measurement right before
the start of the treatment in order to establish the start value of FT4, necessary to re-
construct the curve. Furthermore, the TSH concentrations should be measured as well,
because this allows to compute the set-point of the patient using the negative exponen-
tial function. In this way, it is possible to compare the FT4 level of the set-point to the
asymptotic value of the FT4 function. In fact, if the medication is not administered in
an appropriate dosage, the FT4 curve will not approach the set-point value but a higher
value, if the administered dose is larger than needed, or a smaller value, if the daily dose
is lower than what it should be. Therefore, this analysis allows to understand if the med-
ication is adequate or if it should be adjusted. Furthermore, once the parameter δ is
calculated, it is also possible to compute the half-life of T4 as

t1/2 = ln2

δ
.

It follows an example to display this theory in practice. It is assumed that an indi-
vidual is administered a daily dose of 100 µg of LT4 and that 3 TFTs are conducted, one
before the treatment is started and the other two after 7 and 14 days from the beginning
of the treatment, where the measurements are presented in the following table:

t (days) [FT4] pmol/L [TSH] mU/L

0 6.6 35.06
7 10.0 8.90

14 11.1 5.52

First of all, it is better to start fitting the (FT4, TSH) measurements with the negative
exponential function in order to derive the set-point, as done in Figure (8.6). In this case,
the set-point is FT4 = 13.99 pmol/L and TSH = 1.74 mU/L. Next, the FT4 measurements
should be plotted against time and fitted with the model presented previously,

[FT4](t ) = a +be−ct .

This can be easily done through the fitting tool in Matlab. In this way, the parameters a,
b and c can be approximated and, for this specific case, they have the following values:
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Figure 8.6: HP curve and set-point.

a = 11.63 pmol/L, b = −5.026 pmol/L and c = 0.1612
1

days
. As explained previously,

c corresponds to δ, therefore it is possible to derive the half-life of T4 specific of the
individual:

t1/2 = ln2

δ
= ln2

0.1612
= 4.3 days.

The parameter a corresponds to the saturation level of the FT4 function, therefore it can
be compared with the set-point FT4 value to check whether the medication dosage is
appropriate for the individual. In this case, the saturation level of FT4 is 11.63 pmol/L,
while the set-point FT4 value is 13.99 pmol/L. This means that the daily dosage of LT4
should be increased, so that the patient can reach its own set-point.

The new amount of medication that should be administered can be computed in
the following way. If 100 µg of LT4 allow the patient to reach a FT4 steady-state of 11.63
pmol/L, then x amount of medication is needed to reach 13.99 pmol/L:

100 : 11.63 = x : 13.99

⇒ x = 13.99 ·100

11.63
= 120.3 µg .
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Figure 8.7: FT4 as a function of time, with the comparison between the set-point and the
saturation level.

This formula can be generalized as

New daily dose = [FT4]set point ·Current daily dose

[FT4]saturation
.

There can be different ways to reach the new state. One option is to reach the new state
slowly, therefore, from the next day, the dose can be increased up to 120 µg of LT4, so
this allows to reach the correct steady state in about 30/40 days. Another approach is
to administer 100 + 120 = 220 µg on the 15th day and then continue the medication
with a daily dose of 120 µg. In this way, the new steady state is reached within a day.
Obviously, the specialist should consider all the contra-indications and benefits of these
approaches and choose the best one for the patient.

8.3. MODEL WITH DIFFERENTIAL EQUATIONS
Another approach to study the optimal path towards the set-point consists in developing
a model of coupled differential equations that simulates how the concentrations of TSH
and FT4 are changing in time after a hypothyroid patient starts the treatment. Therefore,
the idea is to take into account only TSH and FT4 as variables, because they are the two
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quantities that have been considered so far.

8.3.1. LOTKA-VOLTERRA MODEL
The first model taken into account to study the time behaviour of TSH and FT4 is a sys-
tem of Lotka-Volterra equations, based on the paper published by Koós [40]. This ap-
proach is general and not specific for the HPT axis, therefore it can be applied to all the
glands included in the endocrine system. In this case, the two glands considered to build
the model are the pituitary and the thyroid, which are producing TSH and FT4, respec-
tively. Therefore, in this situation, the Lotka-Volterra system becomes

d [TSH]

d t
= (A−B [FT4])[TSH], [TSH](t0) = [TSH]0,

d [FT4]

d t
= (−C +D[TSH])[FT4], [FT4](t0) = [FT4]0,

where the model parameters A, B, C and D are positive.

The model presents two equilibrium states. The first one is at [TSH] = C

D
, [FT4] = A

B
,

representing the levels at which the hormone concentrations stabilizes after a few weeks
from the start of the medication. The second equilibrium state is at [TSH] = 0, [FT4] =
0, which does not have a physiological meaning and therefore does not seem reason-
able. A stability analysis around the equilibrium points can help to determine if differ-
ent choices for the model parameters can provide solutions with different behaviours.
In order to do so, the system has to be linearised around the equilibrium states as

d [TSH]

d t

d [FT4]

d t

=
(

A−B [FT4]eq −B [TSH]eq

D[FT4]eq −C +D[TSH]eq

)(
[TSH]− [TSH]eq

[FT4]− [FT4]eq

)
,

where
(
[FT4]eq, [TSH]eq

)
represents the equilibrium state.

When considering the equilibrium point (0, 0), the linearised matrix becomes(
A 0
0 −C

)
.

Its eigenvalues are λ1 = A and λ2 = −C , so, since all the model parameters are positive,
one of the eigenvalues is negative, while the other one is positive. This does not depend
on the specific values of the parameters. Therefore, the equilibrium point (0, 0) is always
unstable.

When considering the other equilibrium point,

(
C

D
,

A

B

)
, the linearised matrix be-

comes  0 −BC

D
AD

B
0

 .
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In this case, the eigenvalues are λ1,2 =±i
p

AC . Since the real part of the eigenvalues is 0,
it is not possible to conclude anything about the non-linear system from this analysis. It
is then necessary to derive the first integral, which is

F ([TSH],[FT4]) =−C ln([TSH])+D[TSH]− A ln([FT4])+B [FT4].

F ([TSH],[FT4]) is a Morse-function in a neighbourhood of

(
C

D
,

A

B

)
, so it can be expanded

as

F ([TSH],[FT4]) = F

(
C

D
,

A

B

)
+ D2

2C

(
[TSH]− C

D

)2

+ B 2

2A

(
[FT4]− A

B

)2

+ ...

This shows that the orbits around the equilibrium point

(
C

D
,

A

B

)
are closed, so it follows

that the solutions of TSH and FT4 are periodic. From this analysis it is clear that the
solution presents an oscillatory behaviour, which, once again, is not dependent on the
value of the parameters. This model might be more appropriate to describe the daily
behaviour of the negative feedback loop instead of describing the change of FT4 and
TSH in a hypothyroid person taking medication.

Nevertheless, it follows an example in which the system has been solved by selecting
some arbitrary values for the parameters. They have been chosen in such a way that the
equilibrium state is [FT4] = 15 pmol/L, [TSH] = 1 mU/L. The values of the equilibrium
state have also been chosen in an arbitrary way, hence they do not have a specific mean-
ing but they just represent a plausible set-point. Therefore, the values selected for the
parameters are

A = 15
1

day

B = 1
L

pmol day

C = 0.1
1

day

D = 0.1
L

mU day
.

Furthermore, the initial values are set arbitrarily at [FT4] = 6 pmol/L, [TSH] = 40 mU/L.
Even if the parameters and the initial conditions have different values, the behaviour of
the solution is still the same. The system has been numerically solved using the sym-
plectic Euler method [41], defined as{

un+1 = un +h f (un+1, vn)

vn+1 = vn +hg (un+1, vn).

The solution obtained from the system using these values is presented in Figure (8.8).
As explained previously, this is not the expected behaviour, because the solution is not
supposed to show these oscillations. Therefore, this model based on the Lotka-Volterra
equations can be discarded.
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Figure 8.8: Solution of the Lotka-Volterra system.

8.3.2. MODEL BY PANDIYAN ET AL.
In 2011, Pandiyan proposed a mathematical model that analyses the negative feedback
loop of the HPT axis in patients affected by the Hashimoto thyroiditis, which is a disease
affecting the size and function of the thyroid [42]. This mathematical model involves
four clinical variables: TSH, FT4, anti-thyroid peroxidase antibodies (TPOAb) and the
functional size of the thyroid (T). Anti-thyroid peroxidase antibodies are a kind of an-
tibodies that are mainly detected in patients affected by the Hashimoto disorder, while
the functional size of the thyroid refers to the size of the active and operating part of the
thyroid [42, 43]. This model consists of a system of four differential equations describing
how the four variables change in time:

d [TSH]

d t
= k1 − k1[FT4]

ka + [FT4]
−k2[TSH], [TSH](t0) = [TSH]0,

d [FT4]

d t
= k3T[TSH]

kd + [TSH]
−k4[FT4], [FT4](t0) = [FT4]0,

dT

d t
= k5

(
[TSH]

T
−N

)
−k6[TPOAb]T, T(t0) = T0,

d [TPOAb]

d t
= k7[TPOAb]T−k8[TPOAb], [TPOAb](t0) = [TPOAb]0.
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The rates of changes of both TSH and FT4 are equal to the difference between the secre-
tion rates and excretion rates of TSH and FT4, respectively. Secretion refers to the release
of a substance, while excretion refers to the process of waste removal from the body. In
the differential equation for TSH, the secretion rate is expressed by two terms, where the
first term k1 represents the maximum secretion rate of TSH in the absence of FT4 from

the blood, while the other term,
k1[FT4]

ka + [FT4]
, describes the inhibition rate of TSH and it

is modelled through Michaelis-Menten kinetics. The excretion rate of TSH is propor-
tional to the concentration of TSH itself, hence it is modelled as k2[TSH] [42]. For FT4,
the secretion rate is considered proportional to the functional size of the thyroid and it

is modelled through Michaelis-Menten kinetics as
k3[TSH]T

kd + [TSH]
. Also in this case, the ex-

cretion term of FT4 is assumed proportional to the concentration of FT4. [43]. The rate
of change of the functional size of the thyroid is modelled as the difference between the
growth rate and the destruction rate of the thyroid. Finally, the last differential equation
describes the rate of change of the anti-thyroid peroxidase antibodies as the difference
between the production rate and the loss rate of TPOAb [43].

8.3.3. MODEL ADAPTED TO A GENERAL SITUATION

The next step is to use the model developed by Pandiyan et al. [42, 43] as a starting
point and adapt it to the more general situation studied in this thesis. In particular, the
model should be generalized, so that it can be applied to all hypothyroid patients and not
only to those affected by Hashimoto thyroiditis. Furthermore, it would be reasonable to
have a model including only the variables that have been considered so far, namely the
concentrations of TSH and of FT4.

Therefore, the model by Pandiyan et al. [42, 43] presented in the previous section
can be modified by removing the last two differential equations. The equation for the
antithyroid antibodies TPOAb should be removed because these antibodies are only typ-
ical for people affected by the Hashimoto disorder. The differential equation for the
functional size of the thyroid should be removed because the thyroid’s size cannot be
measured in practice and it is a variable that has not been considered so far. However,
the size of the thyroid appears also in the differential equation for FT4, hence in this
case it can be considered a constant. In this way, its value can be incorporated into the
parameter k3. Therefore, the model becomes

d [TSH]

d t
= k1 − k1[FT4]

ka + [FT4]
−k2[TSH], [TSH](t0) = [TSH]0,

d [FT4]

d t
= k3[TSH]

kd + [TSH]
−k4[FT4], [FT4](t0) = [FT4]0.

The initial conditions of the model correspond to the concentrations of TSH and FT4
right before the treatment is started. This model contains 6 parameters and they are
all considered positive. However, not all of them need to be estimated every time the
model is applied to a different patient. In fact, according to Pandiyan [42], some of the
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parameters can be found in the literature, so it can be assumed that

k1 = 5000
mU

L day

k2 = 16.63
1

day

k4 = 0.099
1

day
.

k1 refers to the maximum amount of TSH that can be secreted when [FT4] = 0 pmol/L,
while k2 and k4 are related to the half-lives of TSH and FT4, respectively. The remaining
parameters have to be computed specifically for every individual. Pandiyan et al. esti-
mate the parameters by using the equilibrium values of TSH and FT4, which corresponds
to the set-point of the individual taken into account [43].

Therefore, this implies that the set-point should be known before applying this model
to a specific individual. However, it might be appropriate to find the parameters in a dif-
ferent way that does not involve the set-point. Hence, an idea would be to determine the
parameters of the model through an optimisation problem that minimises the distance
between the measurements of TSH and FT4 and the solution of the system of differential
equations. A general formulation of the optimisation problem would be

Find the model parameters such that∑
i
||y(ti )− yi ||22

is minimized,

where y(ti ) is the solution of the differential equation evaluated at ti , while yi repre-
sents the i th measurement. In this case, the model consists of a system of two coupled
differential equations, so y(t ) and yi are vectors, hence the problem can be formulated
as

Find the parameters ka , kd and k3 such that

∑
i

∣∣∣∣∣∣([TSH](ti )− [TSH]i

[FT4](ti )− [FT4]i

)∣∣∣∣∣∣2

2

is minimized,

where [TSH](t), [FT4](t) is the solution of the system, while ([TSH]i , [FT4]i ) are the mea-
surements of the individual taken into account.

8.3.4. TEST WITH ARTIFICIAL DATASETS
The model has been first tested with two artificial datasets to check how the solution be-
haves and to make some improvements according to the results. The artificial datasets
have been obtained by selecting two arbitrary exponential functions and extracting mea-
surements from the curves. In particular, the first dataset is extracted from the expo-
nential curve with set-point (point of maximum curvature) equal to [FT4] = 13 pmol/L,
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t (days) [FT4] pmol/L [TSH] mU/L

0 8 40
1 8.5 24.09
2 8.9 18.16
5 9.9 8.95

10 11.1 3.83
15 11.9 2.18
20 12.3 1.64
30 12.7 1.24
40 12.9 1.07
50 12.96 1.03

Table 8.1: Artificial dataset 1

[TSH] = 1 mU/L. The measurements considered are presented in Table (8.1). The second
dataset is extracted from the exponential curve with set-point FT4 = 15 pmol/L, TSH
= 0.8 mU/L. Table (8.2) presents the measurements belonging to the second artificial
dataset. For both cases, a total of 10 measurements was taken into account. In the first

t (days) [FT4] pmol/L [TSH] mU/L

0 10 66.44
3 11.3 21.06
6 12.2 9.50
9 12.9 5.12

12 13.5 3.01
15 13.9 2.12
18 14.2 1.62
21 14.4 1.36
24 14.5 1.24
27 14.7 1.04

Table 8.2: Artificial dataset 2

dataset, the time-stamp between consecutive measurements is variable, while for the
second dataset it is always equal to 3 days.

The model presented in the previous section has been tested with the two artificial
datasets. Figure (8.9) shows the solution of the system obtained using the first artificial
dataset. All the ten measurements have been used and the values of the estimated pa-
rameters are ka = 0.34 pmol/L, kd = 0.00 mU/L and k3 = 1.50 pmol/(L day).

The first thing that can be noticed in this experiment is that the solution for TSH is
very steep and it does not reproduce precisely the behaviour of the TSH measurements.
Therefore, the model should be adjusted in order to obtain a more accurate solution. In
order to do so, the work proposed in two different studies based on the original model of
Pandiyan should be taken into account [44, 45]. In both papers, the authors modify the
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Figure 8.9: Solution of the model applied to the first artificial dataset.

Michaelis-Menten terms in the differential equations for TSH and FT4 as

d [TSH]

d t
= k1 − k1[FT4]n1

ka + [FT4]n1
−k2[TSH], [TSH](t0) = [TSH]0,

d [FT4]

d t
= k3[TSH]n2

kd + [TSH]n2
−k4[FT4], [FT4](t0) = [FT4]0.

Therefore, the exponents n1 and n2 have to be estimated as well.
Since the goal is to study the time behaviour of the hormones after the start of treat-

ment, the model should also include a term taking into account the effect of medication.
Therefore, it is appropriate to add a constant k5 to the equation of FT4, because the
treatment is supposed to directly influence the concentration FT4. The model becomes
then

d [TSH]

d t
= k1 − k1[FT4]n1

ka + [FT4]n1
−k2[TSH], [TSH](t0) = [TSH]0,

d [FT4]

d t
= k3[TSH]n2

kd + [TSH]n2
−k4[FT4]+k5, [FT4](t0) = [FT4]0,

where the parameters to be estimated are ka , kd , k3, k5, n1 and n2.
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The results of new experiments run using both artificial datasets on the improved
model show that the values of the estimated parameters change significantly according
to the number of measurements included in the optimisation problem, which is not ex-
pected. An example is presented in Figure (8.10). In this case, two experiments have been
conducted with the second artificial dataset, one considering the first 9 measurements
from the dataset, while the other one takes into account all the 10 TFTs. The solutions of
the model presented in Figure (8.10) are very similar from a visual perspective. However,
the values of the estimated parameters are very different in the two cases. The values of
the parameters estimated from 9 measurements are

ka = 9281.82
pmol

L

kd = 9.88
mU

L

k3 = 0.23
pmol

L day

k5 = 1.45
pmol

L day

n1 = 4.86

n2 = 10.70,

while the parameters obtained when considering the entire dataset are

ka = 10880.20
pmol

L

kd = 145.48
mU

L

k3 = 1.67
pmol

L day

k5 = 0.00
pmol

L day

n1 = 4.94

n2 = 17.17.

The only parameter remaining almost constant in all the experiments, even when
considering the two different datasets, is n1, with a value around 4. Therefore, it is pos-
sible to manually set n1 = 4, so that this parameter does not need to be approximated.
Another adjustment that can be made is to estimate the parameter k2 for every individ-
ual instead of using the value from the literature. In fact, the solution for TSH is still
very steep, as it can also be noticed in Figure (8.10), and does not reflect properly the
behaviour of the measurements. Hence, an idea to fix this issue consists in estimating
the parameter k2 for every patient. Other experiments can then be conducted and the
results show that, once n1 has been manually fixed, n2 assumes incredibly high values,
which is not reasonable. Therefore, through a different approach, the parameter n2 can
be manually set equal to 1, so that the remaining parameters can be estimated. The ex-
periments conducted in this setting show that the solution obtained with n2 = 1 is still
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(a) Solution of the model obtained using 9 measurements for the parameter estimation

(b) Solution of the model obtained using 10 measurements for the parameter estimation

Figure 8.10: Experiments conducted using a different number of measurements for the
parameter estimation.
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very accurate and similar to the one obtained when the parameter n2 is approximated
as well. However, a closer analysis show that, regardless of the values of the parameters,

the first term in the equation of FT4,
k3[TSH]n2

kd + [TSH]n2
, is constant for every value of TSH,

therefore this term can be removed from the equation because its contribution can be
taken into account in the constant parameter k5. Hence, the final model is

d [TSH]

d t
= k1 − k1[FT4]n1

ka + [FT4]n1
−k2[TSH], [TSH](t0) = [TSH]0,

d [FT4]

d t
= k5 −k4[FT4], [FT4](t0) = [FT4]0,

where k1 = 5000 mU/(L day), n1 = 4 and k4 = 0.099 1/day, so the only parameters that
need to be estimated are ka , k2 and k5. This implies that it is necessary to have only 3
TFTs of an individual in order to apply this model.

This final model presents one steady-state,

[FT4]eq = k5

k4

[TSH]eq = 1

k2

(
k1 −

k1[FT4]n1
eq

ka + [FT4]n1
eq

)
.

A stability analysis around the equilibrium point can be conducted in order to deter-
mine if different values of the parameters can lead to solutions with different behaviours.
Therefore, the system has to be linearized around the steady-state as

d [TSH]

d t

d [FT4]

d t

=

−k2 −k1kan1[FT4]n1−1
eq(

ka + [FT4]n1
eq

)2

0 −k4

(
[TSH]− [TSH]eq

[FT4]− [FT4]eq

)
.

The eigenvalues of the linearized matrix are λ1 = −k2 and λ2 = −k4, so, since all the
model parameters are positive, both eigenvalues are negative. This means that the equi-
librium state is always stable.

Furthermore, the analytical solution of FT4 can easily be computed as

[FT4](t ) =
(
[FT4]0 − k5

k4

)
e−k4t + k5

k4
.

The analytical solution for TSH can also be found by using a mathematical solver for
differential equations.

8.3.5. TEST WITH REAL DATASETS
The next step is to apply the final model from the previous section to some of the avail-
able datasets. Therefore, it is first necessary to detect which datasets are suitable for
this. The datasets of hypothyroid patients and the datasets from the Erasmus Medical
Center have to be excluded because the measurements do not present the date in which
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they were conducted and this does not allow to apply the parameter estimation proce-
dure. Hence, the only suitable datasets are the ones from the Nijmegen Medical Center.
However, not all of them can be used. In fact, some of them present measurements con-
ducted after several months, which does not allow to reproduce accurately the behaviour
of the measurements over time. Another issue is that the medication dosage taken by the
patients is not known and it is not specified if it changed during time. In fact, the model
of differential equations should be applied when the administered amount of LT4 is con-
stant because, when it is adjusted, the value of the parameter k5 changes.

Nevertheless, the model can be applied to 7 patients from the Nijmegen dataset. An
example is presented in Figure (8.11), where the model is applied to Patient 9 from the
Nijmegen dataset. The measurements and the date when they were conducted are pre-
sented in Table (8.3). Only the first 3 measurements are taken into account when ap-

Date [TSH] mU/L [FT4] pmol/L

27/08/2015 18.22 15
27/11/2015 1.54 27.5
25/01/2016 2.04 27.7
20/05/2016 0.01 38.1
01/07/2016 0.03 36.9
05/08/2016 0.01 34

Table 8.3: Measurements of Patient 9 from the Nijmegen dataset.

plying the model and the parameter estimation procedure, because the other TFTs are
conducted after a quite long period and the medication dose might have changed. The
values of the estimated parameters are

ka = 269.24
pmol

L

k2 = 1.30
1

day

k5 = 2.73
pmol

L day
.

The steady-state of TSH is 1.8 mU/L, while the steady-state of FT4 is around 27.5 pmol/L.
The set-point of this patient, computed as the point of maximum curvature of the expo-
nential function obtained by fitting the data, is [FT4] = 23.3 pmol/L and [TSH] = 3.68
mU/L, therefore in this case it might be better to decrease the daily dosage in order to
reach the set-point.
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Figure 8.11: Solution of the model applied to Patient 9 of the Nijmegen dataset.



9
CONCLUSION

The aim of this thesis was to investigate and develop a mathematical model of the HPT
axis that can be applied on an individual level to every hypothyroid patient. In particular,
the focus was on the relationship between the hormones TSH and FT4 and the predic-
tion of each patient’s set-point. The optimal path leading to each patient’s set-point was
analysed as well. This was done by studying how the concentrations of TSH and FT4 are
changing over time in hypothyroid patients taking medication, so that a shorter amount
of time can be spent to reach every individual’s set-point.

The relationship between TSH and FT4 was studied by fitting the measurements of
each patient’s dataset with different functions. Two models provide the best fit: the expo-
nential and the power functions. However, a closer analysis, involving the goodness-of-
fit R2 and a visual approach, determines that the TSH-FT4 relationship is best described
by a negative exponential curve, [TSH] = Se−ϕ[FT4]. This result is in agreement with the
previous work published by Goede et al. in 2014 [3].

After this, according to Goede et al. [3], the set-point of each individual was com-
puted as the point of maximum curvature of the exponential function. This had never
been verified before with real measurements, therefore the natural next step was the val-
idation of the set-point theory. This was done using data belonging to thyroidectomized
patients from the Erasmus Medical Center and from the Radboud hospital. In about
half of the datasets analyzed, the set-point theory is validated because the predicted set-
point is very similar to the reconstructed one. Therefore, this is a positive and encourag-
ing result, supporting the theory that a patient’s set-point corresponds to the maximum
point of curvature of his exponential function. However, this set-point theory is not ver-
ified in all the analysed datasets. A reason that might explain the discrepancy between
the predicted and reconstructed set-points is an autonomous production of T3, which
results in a lower pre-operarive FT4 set-point level. Therefore, this issue still needs to be
further explored.

Finally, the time behaviour of TSH and FT4 was studied by developing a model of
differential equations. The final model allows to predict the steady-state at which the
concentrations of TSH and FT4 will stabilize. This model is particularly useful when the
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measurements are collected a few days after the start of the treatment. In fact, if the TFTs
are conducted after 6-8 weeks from the start of the treatment, as it is currently done, their
values already represent the steady-states, so in that case the model is not really useful.
However, if the measurements are taken one or two weeks after the start of the treatment,
it is possible to predict where the concentrations will stabilize and, in case these values
do not coincide with the set-point, the medication can be adjusted in order to satisfy the
patient’s needs.

9.1. DATA LIMITATIONS
The data used in this thesis presents some limitations. In fact, the dataset of hypothy-
roid patients and the dataset from the Erasmus Medical Center do not provide the date
and time at which the measurements were conducted, which is not optimal. The mea-
surements included in the dataset from the Radboud hospital in Nijmegen present the
date and time in which they were collected. This shows that, for every patient, the mea-
surements are always conducted at different times during the day. This is not a good
practice, because circadian effects can influence the measurements, causing the pres-
ence of outliers. Another negative aspect is that the LT4 dosage taken by the patient at
the time of the measurement is not specified, which makes it difficult to apply the model
with differential equations to the available datasets.

9.2. FUTURE RESEARCH
There are still several opportunities for further research and for improving the mathe-
matical model of the HPT axis developed so far. First of all, for future experiments, it
is suggested to collect measurements specifically for this scope, so that they can be as
accurate as possible. In fact, it would be ideal to measure the concentrations of TSH and
FT4 from blood samples collected always at the same time, in the morning, 24 hours af-
ter the last intake of levothyroxine. This is in order to avoid circadian effects that might
influence the measurements. Furthermore, it is important to communicate the concen-
trations of FT4 using at least one decimal digit and not by approximating the value to
the nearest integer, because this can cause some inaccuracies. Finally, the medication
dosage taken by the patient when the measurements are collected should also be taken
into account.

Even though the relationship between TSH and FT4 has been extensively studied and
the results obtained in this thesis are confirmed by the research published by Goede et
al. [3], it might still be beneficial to use data collected specifically for this purpose in
order to study the influence of outliers.

An aspect of this research that still requires attention is the validation of the set-point
theory. In particular, for this purpose it might be helpful to measure also the concentra-
tion of T3 before and after the thyroidectomy. In fact, this might provide some insights
into the autonomous production of T3. After this, it is useful to conduct a trial in order
to check whether patients actually feel better when the medication is administered to
specifically satisfy their set-point.

Once it has been established that patients feel better when their TSH and FT4 con-
centrations correspond to their set-point, it might be appropriate to further explore the
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time behaviour of TSH and FT4 after the start of the treatment. In fact, in order to prove
the benefits of this model, it is important to collect a couple of measurements during the
first two weeks from the start of the treatment. In fact, this allows to predict the steady-
states at which TSH and FT4 will stabilize and, in case they do not coincide with the
set-point, it is possible to adjust the medication dosage. Therefore, an improvement in
this direction might show that, through this path, patients can feel better soon.

Finally, for future research, it might also be helpful to develop a model taking into
account the circadian rhythms of TSH and FT4, so that it is also known how the set-
point changes during the day. This will also allow to relate the measurements conducted
at different times of the day with the set-point. However, it should be noted that the
diurnal pattern of TSH and FT4 are fundamentally different in a healthy person or in a
patient with a thyroid disorder. Furthermore, these results could be considered as an
additional help for clinicians to improve the diagnostic process and as a guide to the
optimal values of FT4 and TSH in patients treated for hypothyroidism.





ABBREVIATIONS

FT3 Free triiodothyronine

FT4I Free thyroxine index

FT4 Free thyroxine

HPT Hypothalamus-pituitary-thyroid axis

LT3 Liothyronine

LT4 Levothyroxine

T3 Triiodothyronine

T4 Thyroxine

TFT Thyroid function test

TPOAb Anti-thyroid peroxidase antibodies

TRH Thyroid-releasing hormone

TSH Thyroid-stimulating hormone
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UNITS OF MEASURE

mU/L Unit of measure of TSH, corresponding to milliunits per litre. U is the interna-
tional unit, which measures the amount of a substance.

pmol/L Unit of measure of FT4 and FT3, corresponding to picomole per litre.
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A
CODE

OUTLIERS DETECTION

1 function [d] = outliers_detection(all_tft)
2

3 FT4 = all_tft(:,1);
4 TSH = all_tft(:,2);
5

6 % First plot the measurements to check the general behaviour and to
detect the outliers that are clearly visible

7 figure(1)
8 scatter(FT4, TSH, ’Linewidth’, 1)
9

10 % Fit the measurements with the required function, using a robust
method --> Least Absolute Residual (LAR) method

11 [f, g] = fit(FT4, TSH, ’exp1’, ’Robust’, ’LAR’);
12 x = 0:0.1:60;
13 hp_curve = f.a*exp(x*f.b);
14

15 % Plot of the fitted function
16 figure(2)
17 plot(FT4, TSH, ’o’, ’Linewidth’, 1)
18 hold on
19 plot(x, hp_curve, ’Linewidth’,1)
20

21 % Compute the distance between the measurements and the model
22 syms X
23 for i = 1:length(FT4)
24 x_solve = double(vpasolve( 2*(X-FT4(i)) + 2*f.a*f.b*exp(f.b*X).*(

f.a*exp(f.b*X) - TSH(i)) == 0 ));
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25 distance(i) = sqrt( (x_solve-FT4(i))^2 + (f.a*exp(f.b*x_solve) -
TSH(i))^2 );

26 end
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VALIDATION OF THE SET-POINT THEORY

1 close all
2 clear all
3 clc
4

5 % Pre-thyroidectomy TFTs
6 pre_data = [2.19 14.7];
7 TSH_pre = pre_data(:,1);
8 FT4_pre = pre_data(:,2);
9

10 % All the post-thyroidectomy TFTs
11 all_tft = [0.9 20; 0.04 25.3; 0.06 23.9; 0.06 23.4; 0.06 23.4; 0.06

19.8];
12

13 % Outliers detection
14 d = outliers_detection(all_tft);
15

16 % Post-thyroidectomy measurements without outliers
17 post_data = [0.9 20; 0.04 25.3; 0.06 23.9; 0.06 23.4; 0.06 23.4];
18

19 outliers = [0.06 19.8];
20

21 TSH_post = post_data(:,1);
22 FT4_post = post_data(:,2);
23

24 % Fit the post-thyroidectomy measurements with the exponential
function

25 [f, g] = fit(FT4_post, TSH_post, ’exp1’);
26

27 S = f.a;
28 phi = - f.b;
29

30 x = 0:0.1:60;
31

32 HP_post = S*exp(-phi*x);
33

34 % Compute the set-point
35 FT4_sp_post = log(phi*S*sqrt(2))/phi;
36 TSH_sp_post = 1/(phi*sqrt(2));
37

38 % Predicted pre-thyroidectomy set-point
39 FT4_pred = FT4_sp_post/1.25;
40 TSH_pred = TSH_sp_post;
41
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42 % Predicted pre-thyroidectomy HP curve
43 phi_pred = 1/(TSH_pred*sqrt(2));
44 S_pred = exp(phi_pred*FT4_pred)/(phi_pred*sqrt(2));
45

46 HP_pred = S_pred*exp(-phi_pred*x);
47

48 % Compare the predicted set-point to the pre-operative measurements
49 figure(1)
50 plot(FT4_post, TSH_post, ’ro’, ’Linewidth’, 1)
51 hold on
52 plot(outliers(:,2), outliers(:,1), ’rx’, ’Linewidth’, 1)
53 plot(FT4_pre, TSH_pre, ’go’, ’Linewidth’, 1)
54 plot(x, HP_post, ’b’, ’Linewidth’, 1)
55 plot(FT4_sp_post, TSH_sp_post, ’b*’, ’Linewidth’, 1)
56 plot(x, HP_pred, ’k--’)
57 plot(FT4_pred, TSH_pred, ’k*’, ’Linewidth’, 1)
58 xlabel(’[FT4] pmol/L’, ’Fontsize’, 16)
59 ylabel(’[TSH] mU/L’, ’Fontsize’, 16)
60

61 % Actual pre-thyroidectomy HP curve
62 phi_pre = phi;
63 S_pre = mean(TSH_pre) * exp(phi_pre * mean(FT4_pre));
64

65 HP_pre = S_pre * exp(-phi_pre*x);
66

67 % Actual pre-thyroidectomy set-point
68 FT4_sp_pre = log(phi_pre*S_pre*sqrt(2))/phi_pre;
69 TSH_sp_pre = 1/(phi_pre*sqrt(2));
70

71 % Plot of the pre- and post-thyroidectomy HP curves with their set-
points

72 figure(2)
73 plot(FT4_post, TSH_post, ’ro’, ’Linewidth’, 1)
74 hold on
75 plot(outliers(:,2), outliers(:,1), ’rx’, ’Linewidth’, 1)
76 plot(FT4_pre, TSH_pre, ’go’, ’Linewidth’, 1)
77 plot(x, HP_post, ’b’, ’Linewidth’, 1)
78 plot(FT4_sp_post, TSH_sp_post, ’b*’, ’Linewidth’, 1)
79 plot(x, HP_pred, ’k--’)
80 plot(FT4_pred, TSH_pred, ’k*’, ’Linewidth’, 1)
81 plot(x, HP_pre, ’m’, ’Linewidth’, 1)
82 plot(FT4_sp_pre, TSH_sp_pre, ’m*’, ’Linewidth’, 1)
83

84 xlabel(’[FT4] pmol/L’, ’Fontsize’, 16)
85 ylabel(’[TSH] mU/L’, ’Fontsize’, 16)
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86 title(’Patient 6’, ’Fontsize’, 20)
87 legend(’Post-operative measurements’, ’Outliers’, ’Pre-operative

measurements’, ’Post-operative HP curve’, ...
88 sprintf(’Post-operative set-point, \n TSH = %.2f, FT4 = %.2f’,

TSH_sp_post, FT4_sp_post), ...
89 ’Predicted HP curve’, sprintf(’Predicted set-point, \n TSH = %.2f

, FT4 = %.2f’, TSH_pred, FT4_pred), ...
90 ’Pre-operative HP curve’, sprintf(’Pre-operative set-point, \n

TSH = %.2f, FT4 = %.2f’, TSH_sp_pre, FT4_sp_pre), ...
91 ’Location’, ’northeast’, ’Fontsize’, 16)
92 axis([0 25 0 60])
93 set(gca,’box’,’off’)
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MODEL WITH DIFFERENTIAL EQUATIONS AND PARAMETER ES-
TIMATION

1 function Y = solve_system(param, t)
2

3 % Solve the system of differential equations
4 y0 = [40 8];
5 [T, Yv] = ode45(@diff_eq, t, y0);
6

7 % Model of differential equations for TSH and FT4
8 function dY = diff_eq(t,y)
9 dydt = zeros(2,1);

10 dydt(1) = 5000 - 5000*y(2).^4./(param(1)+y(2).^4) - param(2)*
y(1);

11 dydt(2) = - 0.099*y(2) + param(3);
12 dY = dydt;
13 end
14

15 Y = Yv;
16

17 end

1 close all
2 clear all
3 clc
4

5 % Time
6 t = [0; 1; 2; 5; 10; 15; 20; 30; 40; 50];
7

8 % Measurements
9 y = [40 8; 24.09 8.5; 18.16 8.9; 8.95 9.9; 3.83 11.1; 2.18 11.9; 1.64

12.3; 1.24 12.7; 1.07 12.9; 1.03 12.96];
10

11 % Initial values for the parameters
12 param0 = [1 1 1];
13

14 % Least-squares to estimate the parameters
15 [param] = lsqcurvefit(@solve_system, param0, t, y, zeros(size(param0)

));
16

17 fprintf(1,’\tParameters:\n’)
18 fprintf(1, ’\t\t ka = %8.5f ’, param(1))
19 fprintf(1, ’\t\t k2 = %8.5f ’, param(2))
20 fprintf(1, ’\t\t k5 = %8.5f\n’, param(3))
21
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22 % Solve the system with the estimated parameters
23 tv = linspace(min(t), max(t));
24 Yfit = solve_system(param, tv);
25

26 figure(1)
27 plot(t, y(:,1), ’co’, ’Linewidth’, 1.5, ’Markersize’, 10)
28 hold on
29 plot(t, y(:,2), ’o’, ’Color’, [0.9 0.6 0.1], ’Linewidth’, 1.5, ’

Markersize’, 10)
30 plot(tv, Yfit(:,1), ’b’, ’Linewidth’, 1.5)
31 plot(tv, Yfit(:,2), ’r’, ’Linewidth’, 1.5)
32 xlabel(’time (days)’, ’Fontsize’, 16)
33 ylabel(’TSH (mU/L) - FT4 (pmol/L)’, ’Fontsize’, 16)
34 legend(’TSH measurements’, ’FT4 measurements’, ’TSH solution’, ’FT4

solution’, ’Fontsize’, 16)
35 title(’Solution after parameter estimation’, ’Fontsize’, 20)
36 set(gca,’box’,’off’)





B
RESULTS

VALIDATION OF THE SET-POINT THEORY WITH THE NIJMEGEN

DATASET

TSHpost-op FT4post-op TSHpre-op FT4pre-op FT4expected Validated
P01 1.17 21.40 1.17 13.30 17.12 No
P02 2.00 19.40 2.00 13.18 15.52 No
P03 1.21 17.08 1.21 10.21 13.67 No
P05 2.04 25.19 2.04 16.33 20.15 No
P06 0.94 19.95 0.94 15.82 15.96 Yes
P07 0.72 23.80 0.72 16.23 19.04 No
P08 0.78 14.84 0.78 10.68 11.85 Yes
P09 3.68 23.33 3.68 9.47 18.66 No
P11 1.28 22.11 1.28 11.27 17.69 No
P12 0.49 17.97 0.49 13.69 14.37 Yes
P13 0.69 15.27 0.69 11.82 12.21 Yes
P14 2.27 11.77 2.27 9.50 9.41 Yes
P16 2.49 16.93 2.49 11.78 13.55 No
P17 0.99 18.23 0.99 13.77 14.59 Yes
P20 2.70 16.35 2.70 14.01 13.08 Yes

93



94 B. RESULTS

VALIDATION OF THE SET-POINT THEORY WITH THE ERASMUS

DATASET

TSHpost-op FT4post-op TSHpre-op FT4pre-op FT4expected Validated
001.005 2.14 21.90 2.14 14.04 17.52 No
001.006 1.97 20.64 1.97 15.69 16.52 Yes
001.017 1.90 19.76 1.90 12.18 15.81 No
001.019 1.13 19.70 1.13 14.65 15.76 Yes
001.025 1.72 22.78 1.72 17.09 18.22 Yes
001.027 0.27 21.29 0.27 17.73 17.03 Yes
001.032 0.64 23.61 0.64 19.44 18.89 Yes
001.033 1.17 19.34 1.17 15.62 15.48 Yes
001.034 1.71 24.59 1.71 18.0 19.67 Yes
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