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Chapter 1 

Introduction 

1 Heading 1 

1.1 Moisture damage in practice 
Practice and many studies have shown that asphalt wearing surfaces which are 
exposed to moisture generally start loosing aggregates prematurely through a damage 
phenomenon that has become known as asphalt ‘stripping’ or ‘ravelling’ [Davidson 
1993], [Curtis 1991, 1993], [Fromm 1979], [Graf 1986], [Hicks 1991], [Ishai 1972], 
[Kanitpong 2003], [Khandhal 1992, 1994, 2001a], [Lytton 2002], [Majidzadeh 1968], 
[McGennis 1984], [Riedel 1953], [Scholz 1993], [Scott 1978] [Stuart 1990], [Takallou 
1984], [Taylor 1983], [White 1987]. Stripping is generally contributed to moisture 
infiltration into the asphalt, causing a weakening of the bituminous binder that holds 
the aggregates together, known as the asphalt mastic, and a weakening of the 
aggregate-mastic bond. Due to the continuing action of moisture and traffic load, 
progressive dislodgement of the aggregates can occur. This initial stripping rapidly 
progresses into a more severe degradation of the wearing surface, and ultimately leads 
to pothole formation, Fig. 1.1.1. 

 

Fig. 1.1.1: Moisture induced damage in asphalt (a) raveling (b) potholing 

In countries that suffer from large amounts of rainfall, like the Netherlands, the 
asphalt wearing surfaces are often constructed of open graded asphaltic mixes. The 
high permeability of these wearing surfaces ensures a fast drainage of the water away 
from the surface, avoiding hydroplaning and bad visibility conditions due to ‘splash 
and spray’, Fig. 1.1.2, and thus improving the overall road safety. An added benefit of 
these mixes turned out to be the ability to not only absorb moisture, but also to absorb 
a part of the traffic noise that is generated upon wheel-pavement contact, creating so-
called ‘silent asphalts’. Therefore, open graded asphaltic mixes seem an ideal solution 
for a densely populated country, where many living communities are at close 
proximity to the major highways and where, with a growing twenty four hour 
economy, road safety and pleasant driving conditions are necessary boundary 
conditions.  
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In the Netherlands these mixes are referred to as Zeer Open Asphalt Beton, or with its 
acronym ZOAB, and in the US as open graded friction courses. Unfortunately, 
because of the open structure of these mixes, moisture resides more or less 
permanently within the mix. As a result, ravelling occurs far too early in their service 
life and progresses much faster than in other mixes [Kandhal 2001b], [Smith 1992], 
[Erkens 2005]. Currently, in order to keep these mixes at an acceptable quality 
standard, a lot of extra maintenance is required, which makes them quite expensive.  

 

Fig. 1.1.2: (a) Bad road visibility conditions and (b)‘splash and spray’ [Erkens 2005] 

Currently, pavement engineers try to prevent moisture induced damage to the 
pavement by selecting asphaltic mixes that perform well in the prescribed moisture 
sensitivity tests, by adding anti-stripping agents to the mix and by maximizing the 
quality control at all stages from hot mix processing to the finished compacted asphalt 
mix and by designing a proper pavement drainage system.  

The quality control issue is of great importance in the pavement industry to avoid a 
difference between the designed asphalt mix composition with the material 
characteristics as determined in the asphalt laboratory, and the asphalt mix which is 
actually constructed on the road. For instance, with regard to moisture induced 
damage, it may occur that the asphalt mix components are exposed to moisture, even 
before construction, Fig. 1.1.3 [Cheng 2003], [Fwa 1994], [Huber 2005], [Rice 1958]. 
Since most aggregates and asphalt binders do absorb moisture when exposed to a wet 
environment, a binder with a significantly changed stiffness characteristics and an 
initially damaged mix would end up on the pavement, Fig. 1.1.4. 

 

Fig. 1.1.3: Wet asphalt mix components before construction [Huber 2005] 
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Fig. 1.1.4: Moisture infiltration in bitumen [Huber 2005] 
(a) moisture absorption in three SHRP binders  

(b) binder stiffness change due to moisture infiltration  

To evaluate the moisture sensitivity of an asphaltic mix a-priori, several moisture 
sensitivity experiments are used. Most of these experiments resulted from a major 
research effort in the later 1970s and during the 1980s under the National Cooperative 
Highway Program of USA [Epps 2000]. In the mid 1980s the US Congress funded a 
Strategic Highway Research Program for the amount of 150 million US$ [Harman 
2006] to undertake asphalt binder research, among which improved performance-
related testing to evaluate moisture susceptibility. In these efforts, evaluation of 
moisture induced damage in asphaltic mixes is generally approached from a 
mechanical point of view, where evaluation of the moisture susceptibility of an 
asphalt mix most often is evaluated using a mechanical test, performed on dry and wet 
specimens, e.g. [Airey 2002], [Kennedy 1991], [Khosla 2000], [Lottman 1974], 
[Terrel 1994]. 

Such moisture damage evaluation methods produce a set of moisture index ratios, Fig. 
1.1.5. The unfortunate realization is that, even though they seem to constitute a quick 
and simple way of comparing the moisture susceptibility of mixes, they are highly 
subject to the specific test boundary conditions, they do not give any fundamental 
insight into the causes and evolution of the damage in time within the mix, nor can 
they be used for mix improvements. Given the fact that asphalt is a composite 
material which, for every different aggregate type, every different bitumen source, 
every different mastic composition, every different mix compaction etc., leads to 
basically a completely different material with changed characteristics, it would take 
an isolation of each characteristic to get any information regarding the controlling 
parameters, which is practically impossible in such a test. 

In addition to this, often, anti-stripping additives, such as hydrated lime and 
surfactants, are added in the asphalt mix to improve the bond between the asphalt 
binder and the aggregates, e.g. [Anderson 1982], [Coplantz 1987], [Kennedy 2001], 
[Lottman 1990], [Maupin 1983], [Tunnicliff 1997]. However, the long-term effect of 
such additives is not always well understood, nor do they provide a general solution to 
the problem of moisture induced damage over a range of materials and construction 
practices. 

 

-80
-70
-60
-50
-40
-30
-20
-10

0
10
20

0 500 1000

Time [hrs]

N
or

m
al

iz
ed

 %
 c

ha
ng

e 
in

 G
*

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 500 1000Time [hrs]

%
 o

f w
at

er
 c

on
te

nt

AAM

AAG

AAD
AAD
AAM
AAG

 3



Fo
rc

e

Strain

F

F*

Fo
rc

e

Strain

F

F*

Moisture index = F*/F

Dry specimen Wet specimen

F F*

 

Fig. 1.1.5: Traditional moisture damage evaluation method 

 

1.2 Aim of this research 
As illustrated in the above, moisture induced damage in asphaltic mixes is recognized 
by the asphalt community and the road authorities as a major issue, in particular in 
open graded asphalts, resulting to the need for frequent maintenance operations. This 
does not only imply high maintenance costs, but also temporary closure of traffic and 
hence increased road congestion. Given the high costs for the road authorities and the 
inconvenience for the road users, it is greatly desired to shift the solution from a repair 
philosophy to a prevention one.  

Prevention of a problem inherently implies knowledge of the causes of the problem. 
Currently, mix designers have no a-priori knowledge of the engineering properties of 
the mix at the time of purchase of the mix components. They purchase a particular 
type of bitumen from one supplier and a particular aggregate from another, both based 
on individual specifications, without actual knowledge if these components will 
interact favourably with each other.  

Given the awareness of the problem of moisture induced damage in asphaltic mixes 
and the lack of quantified fundamental knowledge of its causes and solutions, this 
thesis is aiming at developing a more fundamental approach towards the identification 
and quantification of the moisture induced damage processes and their mechanical 
manifestations. The important starting-point of this thesis is that the problem of 
moisture induced damage in asphalt can not be solved by mechanical considerations 
alone. Clearly, our current asphalt wearing surfaces show that moisture has an effect 
on the material characteristics of the asphalt components and their bond. This implies 
that moisture makes a physical change to the material, which exhibits itself in the 
early development of damage patterns which, without the moisture, may have not 
occurred or may have occurred in a much later stage of its service life. 

Therefore, in this research, both physical and mechanical moisture damage inducing 
processes are taken into consideration. Furthermore, in order to acquire fundamental 
insight into the processes which cause moisture damage, the asphalt mix is considered 
on a micro-scale. This implies that the experimental characterization and the 
computational simulations of the moisture damage inducing processes are dealt with 
at mix component level; i.e. the aggregates, the mastic, the bond between the 
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aggregates and the mastic and the (macro) pore space. Each of these contribute to the 
mechanical performance of the mix as well as to its moisture susceptibility.  

The aim of this research is therefore the development of a computational tool for the 
fundamental analysis of combined mechanical and moisture induced damage of 
asphaltic mixes which includes both physical and mechanical moisture damage 
inducing processes. Such a tool can greatly contribute to an improved material 
selection procedure and give insight into the various competing damage inducing 
processes within the asphalt mix. To achieve this aim, the physical and mechanical 
moisture induced damage processes are identified, the controlling parameters are 
determined, an experimental framework to quantify these parameters is set-up and the 
numerical tools are developed and are demonstrated in this dissertation. In the 
following a short overview is given of the structure of the text. 

1.3 Content overview 
In the following chapter a detailed description is given of the moisture damage 
inducing processes in asphalt, where a separation is made between physical and 
mechanical processes. 

Chapter 3 of this dissertation treats the physical moisture damage inducing processes 
by deriving the governing equation of the processes, Chapter 4 shows their numerical 
formulation, Chapter 5 compares simulations of the physical processes with closed 
form solutions and Chapter 6 describes an experimental plan to determine the 
necessary model parameters.  

In Chapter 7 the mechanical constitutive finite element model for the asphalt 
components are given and Chapter 8 describes a new methodology to determine the 
aggregate-mastic bond strength as a function of moisture content. 

Finally, Chapter 9 develops the combined physical-mechanical moisture induced 
model and shows micro-scale simulations and Chapter 10 gives the conclusions and 
recommendations of this research.  
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Chapter 2 

Identification of Processes 

2 Introduction 

2.1 Moisture infiltration into an asphaltic mixEquation Chapter 4 Section 1 
Moisture induced damage in asphaltic mixes is obviously only an issue if the moisture 
is initially able to penetrate into the mix. For the identification and simulation of the 
moisture damage inducing processes in asphaltic mixes, it is therefore important to 
identify the various moisture infiltration modes.  

First of all, water may enter the mix due to rainfall, which may cause water flow 
through the connected macro-pores of the asphalt wearing surface, Fig. 2.1.1(a). This 
is especially the case for open graded mixes that are designed to have a high 
permeability such as the Dutch ZOAB mixes. Secondly, stationary moisture may 
reside in the macro-pores of the mix, either in liquid or vapour form, Fig. 2.1.1(b). 
This can, for instance, be caused by residual moisture after rainfall, a wet subgrade 
under the wearing surface or a humid environment. Finally, as is mentioned in the 
previous chapter, moisture may be present inside the aggregates even before 
construction of the wearing surface, due to inadequate drying procedures of the 
aggregates  Fig. 2.1.1(c). [Stuart 1990], [Huber 2005], [Fwa 1994], [Rice 1958] 

Fast water flow Moisture in the macro-pores Wet aggregates 
(a) (c) (b)

Fig. 2.1.1: Moisture penetration into the asphalt mix 

In addition to rainfall, fast water flow through the connected macro-pores of the 
asphalt mix may also result locally from a saturated wearing surface, when subjected 
to traffic loading. This phenomenon is often referred to as ‘pumping action’ [Kandhal 
1992, 1994], [Kiggundu 1988], [Taylor 1983] and shall be discussed in more detail 
further on in this chapter.  

From the above possible modes for moisture infiltration into an asphaltic mix, some 
are more relevant for open graded asphaltic mixes and others are more relevant for 
densely graded ones. Regardless of the mix composition, asphaltic mixes with 
moisture will suffer in due time from moisture induced damage. In practice, this 
damage exhibits itself as a dislodging process of the aggregates, a process which has 
become known as ravelling or stripping of the asphaltic mix [Lytton 2002]. The 
dislodging of aggregates from an asphalt wearing surface may show either a 
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pronounced cohesive (i.e. within the mastic) or a pronounced adhesive (i.e. within the 
aggregate-mastic bond) failure pattern, or a combination thereof, Fig. 2.1.2.  

Cohesive failure Adhesive failure  

Fig. 2.1.2: Cohesive versus adhesive dislodging of an aggregate from the mix 

Once the wearing surface starts to degrade, progressive physical moisture induced 
damage, in combination with traffic loading, may lead to even more severe forms of 
moisture induced damage, like pothole forming. The ravelling or stripping of an 
asphaltic wearing surface is a failure pattern which is undoubtedly related to a 
combined action of mechanical damage and moisture infiltration, where, weakening 
of the mastic film will promote a cohesive failure pattern and weakening of the 
aggregate-mastic bond will promote a pronounced adhesive failure pattern.  

In the following, the processes which results into the weakening of the asphalt 
components are identified. 

2.2 Weakening of the aggregate-mastic bond 
The properties of the aggregate-mastic bond play a crucial role in the performance of 
asphaltic mixes. The reason that asphalt mixes do not qualify as ‘unbound granular 
materials’ is the presence of the mastic component, which serves as the binding ‘glue’ 
that holds the aggregate matrix together under loading. Essential in this is the 
adhesion of the mastic to the surface of the aggregates. An asphaltic mix which 
consists of a mastic-aggregate combination which has ‘bad adhesion’ will have bad 
mechanical performance and will show undoubtedly a pronounced adhesive failure 
pattern.  

It is known that mastic-aggregate adhesion improves with an increased aggregate 
surface roughness, Fig. 2.2.1(a). Clearly, more surface area to adhere to will create a 
better bond, since the transferred loads will be spread over a larger area. Since mastic 
is mixed with the aggregates while it is in liquid form, an increased aggregate surface 
roughness will maximize the mechanical interlock between the mastic and the 
aggregates, due to the ability of mastic to flow into the surface pores of the aggregates 
while in liquid form, and thus creating mastic ‘fingers’ inside of the aggregate surface 
when it solidifies, Fig. 2.2.1(b). Such mastic fingers greatly improve the strength of 
the mastic-aggregate bond, since it requires additional forces to ‘unlock’ them from 
the aggregate. However, the interlocking phenomenon rely on the ability of the mastic 
to come into close contact to the aggregate surface. An asphalt mix which has a mastic 
component which is not able to spread properly on the aggregate surface, will not 
benefit from the increased adhesive bond, as described above, since it will not be able 
to fill some of the surface pores Fig. 2.2.1(c). The ‘spreading capacity’ of mastic on an 
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aggregate surface is often referred to as the ‘wetting’ capacity of the mastic, and can 
be related to the surface energy properties of the components.  

Adhesion is often categorised as thermodynamic, chemical or mechanical adhesion. 
Thermodynamic adhesion refers to equilibrium of interfacial forces or energies, work 
of adhesion and wetting, chemical adhesion refers to adhesion involving chemical 
bonding at the interface and mechanical adhesion arises from the mechanical 
interlocking over substantial portions of the interface. Despite the various definitions 
for adhesion, none seem to be completely satisfactory or generally accepted. 
However, a satisfactory definition for the adhesion of a mastic film on an aggregate 
surface should somehow account for the thermodynamical as well as the physio-
chemical and mechanical aspects of adhesion. Nevertheless, the physio-chemical 
phenomena which contribute to the adhesion of two materials will, and should, 
manifest themselves into the mechanical bond properties, which are measurable. The 
behaviour of the mastic-aggregate interface can therefore be modelled, based on 
thermodynamically sound relationships in which the physio-chemistry is controlled 
by internal state variables. 

 

(a)

(b)

(c)

Fig. 2.2.1: Mastic-aggregate interface surface characteristics  
(a) rough aggregate surface (b) good mastic wetting (c) bad mastic wetting 

In the previous section, several moisture infiltration modes were discussed. However, 
having moisture in either a stationary or a moving fashion inside of the macro-pores 
of the asphalt mix, does not explain directly the weakening of the aggregate-mastic 
bond. Clearly, for the interface to be weakened, moisture must first be able to reach it. 
Disregarding, for the time being, the possibility of moisture being present in the 
aggregate itself, and assuming a continuous mastic film without any cracks, moisture 
can only reach the aggregate-mastic interface by moving through the mastic film. 
Since mastic has a negligible porosity, the only physical process which explains 
moisture infiltration into the mastic is molecular diffusion [Cheng 2002, 2003], 
[Thunqvist 2001], [Masad 2005].  

In Fig. 2.2.2 a schematic is given of an aggregate, coated in mastic film, which is 
exposed to a stationary moisture field. Initially, the mastic is exposed to moisture at 
the moisture-aggregate interface and the mastic film and the aggregate-mastic 
interface have zero moisture content. Then, moisture shall gradually start infiltrating 
through the mastic film, because of the moisture concentration gradient difference 
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inside the mastic. Depending on the moisture diffusion coefficients of the mastic and 
on the thickness of the mastic film, moisture will eventually reach the aggregate-
mastic interface. Common sense indicates that one molecule of moisture reaching the 
interface, will not cause an abrupt debonding effect. As moisture diffusion through the 
mastic film continues and the moisture concentration gradient diminishes, a 
significant amount of moisture will reach the aggregate-mastic interface and shall 
cause progressive debonding of the mastic from the aggregate, Fig. 2.2.3. An asphaltic 
mix with poor moisture diffusion characteristics of the mastic and an aggregate-
mastic bond which is sensitive to moisture, shall eventually exhibit a predominantly 
adhesive failure pattern, when exposed to moisture for long periods.  

 

 

Fig. 2.2.2: A coated aggregate exposed to a stationary moisture field 

Stationary moisture 

 

 

Fig. 2.2.3: Damage of the mastic-aggregate bond due to moisture infiltration 
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2.3 Weakening of the asphaltic mastic 
As discussed in section 2.1, asphaltic mixes with an open graded structure are often 
designed to serve as a drainage system of the pavement. This means that, at wet 
periods, water flows through the connecting macro-pores of the mix. Fig. 2.3.1.  

 

Fig. 2.3.1: A coated aggregate exposed to a water flow field 

Depending on the mastic desorption characteristics, the ongoing action of water 
flowing past the mastic film may have a ‘scraping’ effect on the films and cause 
mastic particles to be removed. This is a physical moisture induced damage process 
that continues in the presence of a fast water flow, and which depends on the 
desorption characteristics of the mastic.  

Water flow 

The loss of mastic particles as a consequence of a fast water flow is referred to as 
‘washing away’ of the mastic, Fig. 2.3.2. 

 

Fig. 2.3.2: Loss of mastic concentration due to a water flow field 

As described in the previous section, moisture can infiltrate into the mastic film via 
molecular diffusion. The building-up of moisture content inside of the mastic, may 
locally cause a weakening of the mastic itself and can actually assist the washing 
away effect by increasing the desorption characteristics of the mastic, causing an even 
greater loss of mastic concentration, Fig. 2.3.3. 
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Fig. 2.3.3: Increased loss of mastic due to weakening of the mastic,  
caused by moisture diffusion 

In practice, the loss of concentration of mastic means that the asphalt mix is slowly 
loosing the flexibility of its binding component and, as such, is becoming weaker and 
more prone to a cohesive failure pattern, Fig. 2.1.2(b).  

In addition to this, thinner mastic films and/or more porous mastic films will promote 
the movement of moisture towards the aggregate-mastic interface, and therefore 
contribute also to the loss of the aggregate-mastic bond.  

The ‘washing away’ effect shall also be referred to from here on as advective 
transport of the mastic, since this is the approach which is used in this research for its 
simulation. 

2.4 Pumping action due to traffic loading 
Another process which is identified in this research as a contributor to moisture 
induced damage is due to the combination of a wet asphaltic mix, exposed to traffic 
loading. When some of the macro-pores in an asphaltic pavement are saturated, the 
fast traffic load will locally cause intense water pressure fields in these pores. These 
excess pore pressures shall even be generated away from the actual wheel path, since 
the water has no time to redistribute itself within the mix, Fig. 2.4.1. These pore 
pressures contribute extra stresses within the asphaltic mix, which may cause added 
mechanical damage within the asphalt components. [Kandhal 1992, 1994], [Kiggundu 
1988], [Taylor 1983] 

 

Fig. 2.4.1: Pumping action on a pavement 
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In contrast to the previously described processes, pumping action is categorized in 
this research as a mechanical moisture induced damage process, since it is directly 
related to the application of loading to the asphaltic mix. However, this process does 
have implications for the physical moisture induced damage processes. For example, 
the intense pore pressures will locally create a fast water flow field which contributes 
to the washing away of the mastic particles which, in turn, affects the diffusivity 
characteristics of the mastic. Obviously, mechanical damage of the material, which 
would also occur under dry circumstances is also included in the model and is 
discussed in Chapter 7. 

2.5 New approach towards moisture induced damage  
Clearly, all the above described processes are in reality coupled, and it is their 
combined effect which results into the eventual moisture damage pattern that the 
asphalt wearing surface shall exhibit. 

In summary, in this research, moisture induced damage processes are divided into 
physical and mechanical processes: 

The physical processes that are included as important contributors to moisture 
induced damage are molecular diffusion of moisture and a ‘washing away’ process of 
the mastic, named from here on advective transport, due to a fast water flow field. 
Fig. 2.5.1(a).  

The mechanical damage process that is identified as a contributor to moisture damage 
is the occurrence of intense water pressure fields inside the mix caused by traffic 
loads and referred to as ‘pumping action’.  

In this research, these physical material degradation processes interact with a model 
for the mechanical damage to produce the overall moisture-mechanical damage in the 
mix, Fig. 2.5.1(b).  

Eventually, moisture induced damage will follow from the combined effect of the 
physical and mechanical moisture damage inducing processes, which result into a 
weakening of the mastic and a weakening of the aggregate mastic bond, Fig. 2.5.1(c). 

 

 

Fig. 2.5.1: Schematic of the new approach towards moisture induced damage 
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The above described processes are implemented in a new finite element tool, named 
RoAM (Raveling of Asphaltic Mixes), which was developed in this research as a sub-
system of the finite element system CAPA-3D. The formulations and numerical 
implementation of the physical moisture induced damage processes, Fig. 2.5.1(a), are 
derived in Chapter 3 and 4 of this dissertation, the mechanical moisture induced 
damage processes, Fig. 2.5.1(b), and related issues are discusses in Chapter 7 of the 
text. In Chapter 8 and 9 of this dissertation the formulations of the coupling between 
the physical and the mechanical moisture induced damage processes and several 
simulations with the developed tool are shown. 
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Chapter 3

Simulation of the Physical Processes Inducing Moisture 
Damage in Asphaltic Mixes 

3 Introduction 

3.1 IntroductionEquation Section 3 
This dissertation aims at the development of a computational finite element tool for the 
fundamental analysis of moisture induced damage of asphaltic mixes, in which the physical 
and mechanical moisture induced damage processes, as described in the previous chapter, are 
included. This new tool is named RoAM (Raveling of Asphaltic Mixes), and is developed in 
this research as a sub-system of the finite element system CAPA-3D. [Scarpas 2000]. 

In this research, the asphaltic mix is considered on a micro-scale. This implies that the 
experimental characterization and the computational simulations of the moisture damage 
inducing processes are dealt with at mix component level; i.e. the aggregates, the mastic, the 
aggregates-mastic interface and the macro-pores. Each of these components has its own 
permeability, porosity and hydraulic conductivity characteristics, whereby the macro-pores in 
the mix are modeled by assigning substantially higher values for each of these 
characteristics. The macro-permeability of the asphalt mix would therefore result from the 
arrangements of the components within the finite element mesh. From here on, when in the 
text reference is made to the various material characteristics of the components, unless stated 
otherwise, the micro-scale characteristics are intended. 

In this chapter, the formulations that are needed for the simulation of the physical moisture 
induced damage processes are derived and the terminology used in later chapters is 
established. 

3.2 Moisture flow in an asphalt mix 

3.2.1 Generic Mass Balance Equation 
The mass balance equation of water flowing through a differential volume can be established 
by considering a fluid flow with velocity field  given by v

 1 2u v w 3= + +v e e e  (3.1) 

Consider the rate of fluid mass out of a differential volume , 1 2 3dx dx dx d= Ω Fig. 3.2.1.  
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Fig. 3.2.1: Fluid flow through a differential volume 

The fluid mass that flows in through the face ABCD during time interval dt  is  

  (3.2) ABCD
in 2 3F udx dx dt= ρ

in which ρ  is the density of the fluid. The fluid mass that flows out of the face EFGH during 
time dt  is 

 ( )EFGH
out 2 3F u u dx dx d

x
⎛ ⎞∂

= +⎜ ⎟∂⎝ ⎠
ρ ρ 1

1

x dt  (3.3) 

Similar expression can be obtained for mass flow in and out of the other faces. The net mass 
that passes through the differential volume dΩ  during  is dt

 ( ) ( ) ( )dV dV dV
net out inF F F u v w d

x x x
⎡ ∂ ∂ ∂

= − = + + Ω⎢∂ ∂ ∂⎣ ⎦
ρ ρ ρ

1 2 3

dt
⎤
⎥  (3.4) 

which can be rewritten as 

 ( )dV
netF div d d= ρv tΩ  (3.5) 

The increase in fluid mass during dt  is 

 dV
increaseF

t
d dt∂

= Ω
∂
ρ  (3.6) 

Hence the mass balance equation for a fluid in the spatial description can be found to be 

 ( )dV dV
increase netF F div d dt

t
∂⎡ ⎤+ = + Ω =⎢ ⎥∂⎣ ⎦
ρ

ρv 0  (3.7) 

or 
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 ( )div 0
t

∂
+ =

∂
ρ

ρv  (3.8) 

The same philosophy of water mass conservation can be applied for an asphaltic mix, 
whereby the mix is considered as a non-homogeneous composite material, as discussed 
earlier.  

The movement of moisture in an asphaltic mix is, however, not solely due to a potential 
gradient driven flow, as discussed in the above. Moisture can also move, through the asphalt 
component via a molecular diffusion process. Moisture diffusion is considered to be a 
microscopic process, which is driven by a moisture concentration gradient and the molecular 
diffusion characteristics of the host material, for instance the mastic.  

Here, the approximation is made that the existence of a relatively slow moisture diffusion 
flux through the components of the mix will not influence the fast water flow through the 
mix, since the time-scales differ greatly. The governing equations for the simulation of the 
water flow are discussed in the following section and the governing equation of moisture 
diffusion will be discussed in section 3.2.3. 

3.2.2 Moisture Mass Balance in an Asphaltic Mix 
Consider a volume  of an asphaltic mix. The mass of the water  present in this volume is v m

  (3.9) w
v

m S d= φ∫ ρ v

where  is the water density, wρ φ  is the effective porosity of the component under 
consideration 

 pores

total

V
V

φ =  (3.10) 

and S  is the degree of saturation in the component under consideration 

 water

pores

VS
V

=  (3.11) 

As shown in the previous section, the change of water mass that can take place as a result of 
net fluid flow out of the volume v  across the boundary surface ∂Ω  is described by the net 
transport of mass flux 

  (3.12) a wF
∂Ω

= ⋅∫ ρ v n ds

where  is the water flow velocity and is the outward unit normal to .  v n ∂Ω

If the water mass is conserved (i.e. neglecting chemical reactions or phase changes), the rate 
of change in fluid mass in the region is equal to the water flux out of the region 

 a
Dm F
Dt

= −  (3.13) 

Based on the above, the water mass balance can be written as 
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 w w
v

D S dv d
Dt ∂Ω

φ = − ⋅∫ ∫ρ ρ v n s  (3.14) 

Applying the divergence theorem, the r.h.s. of Eq. (3.14) can be rewritten as 

 ( )w
v

D S dv div dv
Dt Ω

φ = −∫ ∫ρ ρ vw  (3.15) 

Since the region of integration v  depends on time itself, integration and time differentiation 
do not commute. Therefore, the total time derivative needs to be rewritten according to 
Reynolds’ transportation theory 

 ( ) ( )w w w
v

D S dv S div S dv
Dt tΩ

∂⎡φ = φ + φ⎢∂⎣ ⎦∫ ∫ρ ρ ρ va
⎤
⎥  (3.16) 

where  is the velocity of the deforming asphalt components due to the water pressure. av

Substituting Eq. (3.16) into Eq. (3.15) yields 

 ( ) ( ) ( )w w a wS div S dv div dv
tΩ Ω

∂⎡ ⎤φ + φ = −⎢ ⎥∂⎣ ⎦∫ ρ ρ ρv ∫ v  (3.17) 

Since the balance of mass must be true for an arbitrary volume element, the integral sign can 
be removed, and the water mass balance equation in the asphalt mix becomes 

 ( ) ( ) (w w aS div S div
t

)w
∂

φ + φ = −
∂

ρ ρ v ρ v  (3.18) 

The first term of Eq. (3.18) can be expanded as 

 ( ) w
w w w

SS S S
t t t t

∂∂ ∂φ ∂
φ = + φ + φ

∂ ∂ ∂
ρ

ρ ρ ρ
∂

 (3.19) 

Substituting this into Eq. (3.18) gives 

 ( ) (w
w w w a

SS S div S div
t t t

∂∂φ ∂⎛ ⎞+ φ + φ + φ = −⎜ ⎟∂ ∂ ∂⎝ ⎠

ρ
ρ ρ ρ v )wρ v  (3.20) 

The second term in Eq. (3.18) can be expanded as follows 

 
( ) ( ) ( )
( ) ( )w

w w

wdiv S

div S S div S

S div

φ = φ + φ ∇

≈φ φ

ρ ρ

ρ ρ

v v v

vv
a a a

a a

wρ  (3.21) 

whereby making the approximation that ( )wS 0∇ →ρ .0  

Substituting this into Eq. (3.20)gives 

 ( ) (w
w w w

SS S S div div
t t t

∂∂φ ∂⎛ ⎞+ φ + φ + φ = −⎜ ⎟∂ ∂ ∂⎝ ⎠

ρ
ρ ρ ρ va )wρ v  (3.22) 

this can be conveniently rearranged into 
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 ( ) (w
w w

SS S div di
t t t

∂ ∂ ∂φ⎛ ⎞ ⎛ ⎞φ + φ + + φ = −⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠

ρ
ρ ρ ρva )wv v  (3.23) 

The second term in Eq. (3.23) can be replaced, following mass continuity of the asphalt mix 
components:  

 

( ) ( ) ( )( )

( ) ( ) ( )( ) ( )

( ) ( )

( ) ( )

a a a

aa

a

a

a a
0

a a

D 1 1 div 1 0
Dt t

1 div 1 1
t

div 0
t

div d

D 1
Dt
D 1

iv

Dt
D 1

tDt
0

→

∂
−φ ρ = −φ ρ + −φ ρ =

∂
∂

= ρ −φ +ρ −φ + −φ ∇ρ−φ ρ

−φ ρ

−φ

=
∂
∂φ

= −ρ +ρ −φ =
∂

∂φ
= − + − φ =

∂
ρ

v

v v

v v

v v

a

a a

a a

a a

0
 (3.24) 

From which it can be seen that 

 ( )div div
t

∂φ
+ φ =

∂
va va  (3.25) 

Substituting this into Eq. (3.23) gives 

 (w
w w

SS S div di
t t

∂ ∂⎛ ⎞φ + φ + = −⎜ ⎟∂ ∂⎝ ⎠

ρ
ρ ρ ρva )wv v  (3.26) 

The flux of the asphalt mix velocity due to the water pressure can also be interpreted as a 
change in the effective porosity of that material [Selvadurai 2000] 

 d p pdiv
dp t t
φ ∂ ∂

= = α
∂ ∂

va  (3.27) 

in which  is the consolidation coefficient of the asphalt components. α

Replacing this into Eq. (3.26) yields 

 (w
w w

S pS S di
t t t

∂ ∂ ∂⎛ ⎞φ + φ + α = −⎜ ⎟∂ ∂ ∂⎝ ⎠

ρ
ρ ρ ρ v)wv  (3.28) 

It may also be assumed that the degree of saturation is pressure dependent, , and 
therefore 

S S(p)=

 S S
t p

p
t

∂ ∂ ∂
=

∂ ∂ ∂
 (3.29) 

Replacing this into Eq. (3.28), and assuming the water incompressible w 0
t

∂
→

∂
ρ

, gives 

 ( )w w w
S pS div
p t

⎛ ⎞∂ ∂
φ + α + =⎜ ⎟∂ ∂⎝ ⎠
ρ ρ ρ v 0  (3.30) 

Postulating Darcy’s law for the movement of the water within the components of the mix 
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 = − ∇Φv K  (3.31) 

where the hydraulic gradient  is defined as the sum of the pressure potential and the datum 
potential 

Φ

 
w

p z
g

Φ = +
ρ

 (3.32) 

where  is the gravity, and the hydraulic conductivity tensor  is related to the intrinsic 
permeability tensor  via 

g K

k

 
xx xy xz

w w
xy yy yz

zx zy zz

k k k
g g k k k

k k k

⎡ ⎤
⎢ ⎥

= = ⎢ ⎥μ μ ⎢ ⎥
⎣ ⎦

ρ ρ
K k  (3.33) 

where μ  is the dynamic viscosity of the water. 

Substituting Eq. (3.32) and Eq. (3.33) into Eq. (3.31), Darcy’s law can be rewritten as 

 ( w
1 p g z= − ∇ + ∇
μ

ρv k )  (3.34) 

Substituting Eq. (3.34) into Eq. (3.30) and rearranging the terms, gives 

 ( )w w w w
1div p g z S

p t
⎛ ⎞ ⎛ S p⎞∂ ∂

∇ + ∇ = α + φ⎜ ⎟ ⎜μ ∂⎝ ⎠⎝ ⎠
ρ ρ ρ ρk ⎟ ∂

 (3.35) 

The product of the effective porosity and the degree of saturation can be replaced by the 
moisture content θ   

 poreswater water

total total pores

VV V S
V V V

θ = = ⋅ = φ  (3.36) 

which gives 

 ( )w w w w
1div p g z

dp dt
⎛ ⎞ ⎛ θ

∇ + ∇ = α + φ⎜ ⎟ ⎜ φ⎝ ⎠ ⎝
ρ ρ ρ ρ

μ
k

dS dp⎞
⎟
⎠

 (3.37) 

Replacing the water pressure  with the reference pressure head p

 
w

ph
g

=
ρ

 (3.38) 

gives 

 ( )w
w w w w

g dS dhdiv h z g
dh dt

⎛ ⎞ ⎛ θ
∇ + ∇ = α + φ⎜ ⎟ ⎜ φ⎝ ⎠⎝ ⎠

kρ
ρ ρ ρ ρ

μ
⎞
⎟  (3.39) 

Dividing Eq. (3.39) by  gives wρ
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 ( )w
w

g dS dhdiv h z g
dh dt

⎛ ⎞ ⎛ θ
∇ +∇ = α +φ⎜ ⎟ ⎜ φ⎝ ⎠⎝ ⎠

kρ
ρ

μ
⎞
⎟  (3.40) 

Defining the modified compressibility of each component as 

  (3.41) wg∗α = αρ

which can be substituted into Eq. (3.40) as follows 

 ( )w g dS dhdiv h z
dh dt

∗⎛ ⎞ ⎛ θ
∇ +∇ = α + φ⎜ ⎟ ⎜μ φ⎝ ⎠ ⎝

kρ ⎞
⎟
⎠

 (3.42) 

The term between brackets on the right side of Eq. (3.42) can be replaced by the storage 
coefficient L  

 dSL
dh

∗θ
= α + φ
φ

 (3.43) 

Substituting this into Eq. (3.42) gives 

 ( )w g dhdiv h z L
dt

⎛ ⎞
∇ +∇ =⎜ ⎟μ⎝ ⎠

kρ  (3.44) 

Since (wg h z= − ∇ +∇
μ
ρ

v k ) , the governing equation for the water balance in the asphalt 

components can be formulated as 

 ( )dhL +div
dt

0=v  (3.45) 

3.2.3 Moisture diffusion through the mastic film 
The movement of moisture through the mastic film is considered to be a process that occurs 
on molecular level. To simulate the process of moisture diffusion into the components of the 
asphalt mix, Fick’s phenomenological law of diffusion is employed [Fick 1855].  

The diffusion flux of moisture  is defined as Jd

 d Cm= − ∇J D  (3.46) 

where  is the current moisture concentration in the material. The diffusion of the material 
is determined by the diffusion tensor  

mC
D

 = ⊗ =∑ τ δD e eij i j m ij
i,j

D a  (3.47) 

where  is the molecular diffusion coefficient,  is the tortuosity of the material and δ  is 
the Kronecker delta. 

ma τ ij
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Eq. (3.46) assumes that the process of moisture diffusion into the mastic film is solely 
attributed to mixing on a micro-scale, depending on a spatial gradient of moisture 
concentration.  

Posing the conservation of mass principle, it can be found 

 ( ) ( )m dC div div C
t
∂

= − = ∇
∂

J D m  (3.48) 

which is also known as Fick’s second law.  

The moisture content  within the material is defined as θ

 m
max
m

C
C

θ =  (3.49) 

where  is the maximum moisture concentration uptake of the material. The mass of 
moisture, present in the mastic at time  is therefore controlled by both the diffusivity  and 

the maximum moisture concentration C  uptake in the mastic, 

max
mC

t D
max
m Fig. 3.2.2. 

 

Fig. 3.2.2: Schematic of moisture diffusion in two different materials 

From Fig. 3.2.2 it can be seen that a material which has a high moisture diffusion coefficient 
(material ) does not necessary have the highest moisture uptake. Even though material β α  
has a lower diffusion coefficient, it eventually absorbs a bigger amount of moisture, due to 
its higher moisture uptake capacity, .  max

mCα

Due to the differences in time scales, the mass balance law for water which infiltrates into 
the asphalt mix via a pressure gradient driven process, as discussed in the previous section, 
and moisture which infiltrates into the mix via a concentration gradient driven diffusion 
process, are modelled separately.  

material 
material 

α
β

Time

Moisture mass 

max
mC Vα α⋅  

max
mC Vβ β⋅

α
ma

β
ma  
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3.3 Moisture inducing damage of the mastic film 
The mastic film is an important component in asphaltic mixes; it is the ‘glue’ that keeps the 
aggregates together. It also gives the visco-elasto-plastic and self-healing characteristic to the 
asphalt. Damage of the mastic, due to moisture infiltration is modeled in this research via 
two physical processes. The first is related to a weakening of the mastic due to moisture 
diffusion and the second is related to an erosion of the mastic, due to traffic related high 
water pressures in the macro-pores of the asphalt mix. 

In this section, the governing equation for the modeling of erosion of mastic, or loss of 
mastic concentration, due to water pressure is derived. 

Considering an asphaltic mix exposed to water, mastic particles can be present in the mix in 
two different forms: adsorbed or desorbed. Adsorbed mastic particles are still part of the mix 
and contribute to the overall mix characteristics. Desorbed mastic particles have been 
separated from the mix and are being transported via the water out of the mix, they are no 
longer contributing to the mechanical or physical characteristics of the asphalt.  

In the following the mastic that is desorbed from the mix, and is no longer contributing to the 
mechanical strength of the mastic, is shown as the dissolved mastic concentration   dC

 desorbed _ mastic
d

water

M
C

V
=  (3.50) 

The mastic which is still part of the asphalt is shown as the adsorbed mastic content aC  

 
m

a m
0

C ρ
=
ρ

 (3.51) 

where  is the, undamaged, reference density of the mastic and m
0ρ

mρ  is the current density. 

Considering the spatial scalar field ( )C C , t= x  that describes the concentration of mastic at 
time . Assuming  to be continuously differentiable, the current amount of mastic mass 

 in some three-dimensional region 
t C

m(t) Ω  with volume  given time  may be 
characterized by the scalar-valued function 

v t

  (3.52) m(t) C( , t)dv
Ω

= ∫ x

The concentration mastic at a given place in the asphalt mix can consist of desorbed or 
adsorbed mastic particles 

 ( ) m
d 0C , t SC C= φ +ρx a  (3.53) 

where φ  is the porosity and S  is the degree of saturation at time  on location x . t

The change of mastic mass in the volume Ω  might take place as a result of an advective and 
a diffusive flux across the boundary surface ∂Ω .  

The advective flux  is defined as aF
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  (3.54) a dF C
∂Ω

= ⋅∫ v n ds

ds

m

The diffusive flux  is defined as  dF

  (3.55) d dF C
∂Ω

= − ∇ ⋅∫ D nm

where  is the diffusion/dispersion tensor and  denotes the outward unit normal acting 
along the boundary surface ∂Ω  

D n

The diffusion/dispersion tensor [Bear, 1972] is depicted as  

 ( )-= ⊗ = + +∑D τ θ δ δe e v
v
i j

ij i j m ij t ij l t
i,j

v v
D a a a am  (3.56) 

where  is the molecular diffusion coefficient,  is the tortuosity,  is the transverse 
dispersivity and  is the longitudinal dispersivity.  

ma τ ta

la

Similar to the mass balance of moisture, the mastic mass balance can be written as 

 ( ) ( )m
d 0 a d d

D SC C d div C C dv
Dt Ω

φ +ρ = − − ∇∫ ∫ Dv m
v

v  (3.57) 

where  is a moving volume containing a constant amount of material and  is a fixed 
volume in space that instantaneously coincides with the moving material volume . 

v Ω
v

The term on the left of Eq. (3.57) is the total time derivative of the spatial distribution of the 
mastic mass. Since the region of interest depends on time itself, integration and time 
differentiation do not commute. Therefore, the total time derivative needs to be rewritten 
according to Reynolds’ transport theorem 

 ( ) ( ) ( )m m m
d 0 a d 0 a d 0 a c

D SC C d SC C dv SC C div ds
Dt tΩ ∂Ω

∂
φ +ρ = φ +ρ + φ +ρ

∂∫ ∫ ∫ v
v

v  (3.58) 

where  can be considered as the consolidation velocity.  cv

Eq. (3.58) shows that the rate of change of mass, considered in a moving material volume , 
is equal to the rate of change of the mass taken over the fixed volume  and the flux 
through the bounding surface . 

v
Ω

∂Ω

Applying the divergence theorem to Eq. (3.58) and after substituting in Eq. (3.57), it results 

 
( ) ( ) ( )

( )

m
d 0 a d d

m
d 0 a c

SC C dv div C dv div C dv
t

                                                                               div SC C dv

Ω Ω Ω

Ω

∂
φ +ρ + − ∇

∂

⎡ ⎤= − φ +ρ⎣ ⎦

∫ ∫ ∫

∫

D

v

v m

 (3.59) 

Since the volume element is arbitrary, Eq. (3.59) can be written without integral signs 
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 ( ) ( ) ( ) ( )m m
d 0 a d d d 0 a cSC C div C div C div SC C

t
∂ ⎡ ⎤φ +ρ + − ∇ = − φ +ρ⎣ ⎦∂

Dv vm  (3.60) 

The consolidation term can be replaced by 

 
( ) ( ) ( )

( )

m m
d 0 a c d 0 a c c d 0 a

m
d 0 a c

div SC C SC C div + grad SC C

                                        SC C div

⎡ ⎤φ +ρ = φ +ρ φ +ρ⎣ ⎦

≈ φ +ρ

v v v

v

m

 (3.61) 

where the second term on the r.h.s. of Eq. (3.61)1 is a product of two small vectors and is 
therefore neglected. 

The divergence of the consolidation velocity of a porous material can be approximated by 

 c
dpdiv
dt

= αv  (3.62) 

where α  is the compressibility coefficient of the component under consideration. 

Substituting Eq. (3.62) and Eq. (3.61) into Eq. (3.60) results to 

 ( ) ( ) ( ) ( )m m
d 0 a d d d 0 a

pSC C div C div C SC C
t t
∂ ∂

φ +ρ + − ∇ = − φ +ρ α
∂ ∂

v mD  (3.63) 

Replacing the moisture content Sφ  by θ , according to Eq. (3.36), the governing equation 
becomes 

 
( )

( ) ( ) ( )
m

d 0 a m
d d d 0

C C pdiv C div C C C
t t

∂ θ +ρ ∂
+ − ⋅∇ = − θ +ρ

∂ ∂
v mD a α  (3.64) 

where 
( )m

d 0 aC C

t

∂ θ +ρ

∂
 represents the change of mass accumulation,  represents 

the net change of mass flux due to advection, 

( ddiv C v)

( )ddiv C⋅∇mD  is the net mass flux due to 

dispersion and diffusion and ( )m
d 0 a

pC C
t

∂
θ +ρ α

∂
 is the change of mass ‘production’ due to 

consolidation of the medium. 

The change of mass accumulation term of Eq. (3.64) can be expanded into 

 
( ) ( ) ( )m m

d 0 a 0 ad md
d 0

C C CC C C
t t t t t

∂ θ +ρ ∂ ρ∂ θ aC
t

∂ ∂∂θ
= + = θ + +ρ

∂ ∂ ∂ ∂ ∂ ∂
 (3.65) 

The advective flux term of Eq. (3.64) can be written as 

 ( )d ddiv C C div Cd= + ∇v v v  (3.66) 

From the balance of the fluid mass in Eq.(3.45) the divergence of the velocity field is known 

 hdiv L
t

∂
−

∂
v=  (3.67) 
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Substituting Eq. (3.67) into the advective flux term Eq. (3.66) yields 

 ( )d d
hdiv C C L C
t d

∂
= − + ∇

∂
v v  (3.68) 

Substituting Eq. (3.68), Eq. (3.65), Eq. (3.41) and Eq. (3.38) into Eq. (3.64) yields the 
governing equation of the mastic: 

 ( ) ( )m md a
0 d d d 0 a

C C h hC div C C C L C
t t t t t

∗∂ ∂ ∂ ∂ ∂θ⎛θ +ρ + ∇ − ⋅∇ = − θ +ρ α + −⎜∂ ∂ ∂ ∂ ∂⎝ ⎠
v mD d

⎞
⎟  (3.69) 

The relationship between the adsorbed mastic content C  and the desorbed concentration of 
mastic C  can be described via an isotherm. The type of isotherm that is used in the analysis 
to define this relationship (e.g. linear, Langmuir, Freundlich) can be based on experimental 
data and shows the desorption characteristics of the mastic in the presence of a water field. A 
few examples of isotherms can be found in 

a

d

Fig. 3.3.1, based on the Langmuir relation 

 d
a

d

CC
1 C
α

=
+β

 (3.70) 

where α  and β  are coefficients of the Langmuir isotherm. 
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Fig. 3.3.1: Examples of desorption isotherms, based on the Langmuir relation 

3.4 Conclusions 
In this chapter, the formulations that are needed for the simulation of the physical moisture 
induced damage processes were derived and the terminology used in later chapters was 
established. In the following chapter the here presented formulations are formulated in 
notation, suitable for implementation into the finite element method. 
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Chapter 4 

Numerical Formulations of Physical  
Moisture Damage Inducing Processes 

4 Introduction 

4.1 IntroductionEquation Chapter 4 Section 1 
In the previous chapter, the governing equations for the simulation of water flow and 
advective transport were derived as part of the physical moisture inducing damage 
processes. These equations need to be restructured, to become applicable for 
implementation into the finite element method. As mentioned previously, the aim of 
this research was the development of a computational finite element tool to enable a 
fundamental approach towards moisture induced damage in asphaltic mixes. To do so, 
RoAM was developed as a new sub-system of CAPA-3D to simulate the physical 
moisture damage processes. The interaction between RoAM and CAPA-3D results to 
a computational tool which enables the simulation of combined physical and 
mechanical moisture induced damage. In this chapter the numerical formulations of 
the physical moisture induced damage processes, as discussed in the previous chapter, 
are derived. The mechanical moisture induced damage processes are discussed from 
Chapter 7 on. 

4.2 Numerical Approximation of the Flow Equation 

4.2.1 Galerkin finite element formulation 
The flow equation was derived in Eq. (3.36) as 

 ( ) { }( )hL h div h z 0
t

∂
− ∇ +∇ =

∂
K  (4.1) 

Before applying the finite element method to solve Eq. (4.1), it is necessary to 
transform the equation into a more suitable form. To do so, the so called weak 
formulation can be derived. Originally the weak formulation has been introduced by 
mathematicians to investigate the behavior of the solution of partial differential 
equations, and to prove existence and uniqueness of the solution. Later on numerical 
schemes have been based on this formulation which leads to an approximate solution 
in a constructive way. 

The weak form of Eq. (4.1) can be derived by multiplying both terms by a function 
 and integrate over the domain iw

 ( ) { }( )i
V

hw L h div h z dV 0
t

∂⎛ ⎞− ∇ +∇ =⎜ ∂⎝ ⎠∫ K ⎟  (4.2) 

whereby  are so called test or weighting functions, see Appendix 4.1 for more 
details. 

iw
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Splitting the integral in Eq. (4.2), gives 

 ( ) { }( )i i
V V

hw L h dV w div h z dV 0
t

∂
− ∇ +∇ =

∂∫ ∫ K  (4.3) 

For sake of convenience, the Darcy’s flux term is temporarily replaced by the velocity 
vector  v

 { }h z∇ +∇ =K v

i∫ v

 (4.4) 

The second integral in Eq. (4.3) can then be written as 

  (4.5) { }( )i
V V

w div h z dV w div dV∇ +∇ =∫ K

It can be shown that the r.h.s. of Eq. (4.5) can be reformulated as 

 ( )( )i i
V V

w div dV div w w dV= −∇ ⋅∫ ∫v v i v  (4.6) 

From the divergence theorem, the volume integral over the divergence term in Eq. 
(4.6) can be replaced by a surface integral 

 ( )i i
V S

div w dV w dS= ⋅∫ ∫v v n  (4.7) 

Based on the above, Eq. (4.3) can be rewritten as 

 ( )i i i
V S V

hw L h dV w dS w dV 0
t

∂
− ⋅ + ∇ ⋅ =

∂∫ ∫ ∫v n v  (4.8) 

Back substituting Eq. (4.4) into Eq. (4.8) gives 

 ( ) { } { }( )i i i
V S V

hw L h dV w h z dS w h z dV 0
t

∂
− ⋅ ∇ +∇ + ∇ ⋅ ∇ +∇ =

∂∫ ∫ ∫n K K  (4.9) 

By rearranging Eq. (4.9), the weak form of the flow equation is found as 

 ( ) ( ) { } ( )i i i i
V V S V

hw L h dV w h dV = w h z dS w z dV
t

∂
+ ∇ ⋅ ∇ ⋅ ∇ +∇ − ∇ ⋅ ∇

∂∫ ∫ ∫ ∫K n K K  (4.10) 

By using the finite element method to solve the above equation, the following 
approximations can be made 

 j jh h N=  (4.11) 

 iw Ni=  (4.12) 

where Eq. (4.12) follows from the Galerkin criterion, j  is the hydraulic head 
amplitude at nodal point  and  and  are the shape functions of the nodal points 

 and , respectively. 

h
j iN jN

i j

The shape functions for the 8-noded serendipity elements are defined as 
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 ( ) ( )( )( )k k k k
1N , , 1 1 1 k 1,2,...,8
8

ξ η ζ = + ξξ +ηη + ζζ =  (4.13) 

Substituting the hydraulic head and the weighting function into Eq. (4.10) gives 

 
( )

( )

n n
j

i j i j j
j 1 j 1V V

i i
S V

dh
N L h N dV  N N dV  h

dt

                                      N h z dS N z dV

= =

⎛ ⎞ ⎛ ⎞
+ ∇ ∇⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= ⋅ ∇ +∇ − ∇ ∇

∑ ∑∫ ∫

∫ ∫

K

n K K
 (4.14) 

Which can be written in matrix form as 

 [ ] [ ]{ } { } { }dhM S h B
dt

⎧ ⎫+ = +⎨ ⎬
⎩ ⎭

G

V  ⎟⎟

V  ⎟⎟

 (4.15) 

where  (4.16) [ ] ( )
n

i j
j 1 V

M N L h N d
=

⎛ ⎞
= ⎜⎜

⎝ ⎠
∑ ∫

represents the mass matrix resulting from the storage term,  

  (4.17) [ ]
n

i j
j 1 V

S N N d
=

⎛ ⎞
= ∇ ∇⎜⎜

⎝ ⎠
∑ ∫ K

represents the stiffness matrix resulting from the action of conductivity,  

 { } ( )i
S

B N h z d= ⋅ ∇ +∇∫ n K S  (4.18) 

represents the boundary conditions, where the pressure head or the pressure gradient 
can be described as a boundary condition, and  

 { } i
V

G N z= − ∇ ∇∫ K dV  (4.19) 

represents the load vectors from gravity, and finally 

 
n

j

j 1

dhdh
dt dt=

⎧ ⎫ =⎨ ⎬
⎩ ⎭

∑  (4.20) 

and 

 { }
n

j
j 1

h
=

= h∑  (4.21) 

Reformulation of the flow equation into a summation of matrices, allows for the 
implementation of the numerical approximation of this non-linear equation. The first 
step for this approximation is the replacements of the integrals by the Gaussian 
summations convention, to allow for a numerical integration. 
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4.2.2 Numerical integration 
In order to complete the matrices of Eq. (4.15), the integrals on the r.h.s. of Eq. (4.16) 
through Eq. (4.19) need to be evaluated for every element in the mesh: 

 ( )
e

e e e
ij i j

V

M N L h N d= ∫ V

dV

 (4.22) 

  (4.23) 
e

e e e
ij i j

V

S N N= ∇ ∇∫ K

 ( )e e
i i

S

B N h z d= ⋅ ∇ +∇∫ n K S

dV

1i

2i

3i

 (4.24) 

  (4.25) e e
i i

V

G N z= − ∇ ∇∫ K

Since Eq. (4.22) - Eq. (4.25) are written in global coordinates and the shape functions 
in Eq. (4.13) are in local coordinates, a mapping between the two coordinate systems 
is needed 

  (4.26) 

( )

( )

( )

n

1 i
i 1

n

2 i
i 1
n

3 i
i 1

x N , , x

x N , , x

x N , , x

=

=

=

= ξ η ζ

= ξ η ζ

= ξ η ζ

∑

∑

∑

where  are the actual coordinates in the global coordinate system, 
 are the actual coordinates of the nodes i , where 

1 2 3x , x  and x

1i 2i 3ix , x  and x 1 i n≤ ≤ , and  are 
the same shape functions as Eq. 

iN
(4.13). The fact that the same interpolation functions 

are used for the interpolation of the element coordinates and the hydraulic pressures is 
the basis of the isoparametric finite element formulation. 

The differential volume dV  over which Eq. (4.22), Eq. (4.23) and Eq. (4.25) are 
integrated can be expressed in the global coordinates as 

 1 2 3dV dx dx dx=  (4.27) 

where the volume  is contained by the vectors ,  and  dV 1dx 2dx 3dx

 
1 1 1

2 2

3 3

d dx
d dx
d dx

2

3

=
=
=

x e
x
x e

e  (4.28) 

with  as the normalized unit coordinate (base) vectors of the global 
system. 

1 2 3,  and e e e

Since a volume that is contained by the vectors ,  and , can be found from u w v
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 ( )
1 1 1

2 2 2

3 3 3

u w v
dV det u w v

u w v

⎡ ⎤
⎢ ⎥= × = ⎢ ⎥
⎢ ⎥⎣ ⎦

u w vi  (4.29) 

Eq. (4.27) can be also found from 

  (4.30) ( )
1

1 2 3 2 1 2

3

dx 0 0
dV d d d det 0 dx 0 dx dx dx

0 0 dx

⎡ ⎤
⎢ ⎥= × = =⎢ ⎥
⎢ ⎥⎣ ⎦

x x xi 3

This differential volume  needs to be ‘mapped’ into a differential volume that is 
defined in the local coordinate system 

dV

 ˆdv d d d= ξ η ζ  (4.31) 

Using the same philosophy as above, the differential volume dv  is contained by the 
vectors 

 
1

2

3

ˆd d
ˆd d
ˆd d

= ξ

= η

= ζ

e

e

e

ξ

η

ζ

 (4.32) 

with  as the normalized unit coordinate (base) vectors of the local system. 1 2 3ˆ ˆ ˆ,  and e e e

The vectors that contain the global differential volume can be expressed in the local 
coordinates as 

 

1 1 1
1 1 1 1 2 3

2 2 2
2 2 2 1 2

3 3 3
3 3 3 1 2

x x xˆ ˆd dx d d d

x x xˆ ˆd dx d d d

x x xˆ ˆd dx d d d

3

3

ˆ

ˆ

ˆ

∂ ∂ ∂
= = ξ + η + ζ

∂ξ ∂η ∂ζ
∂ ∂ ∂

= = ξ + η + ζ
∂ξ ∂η ∂ζ
∂ ∂ ∂

= = ξ + η + ζ
∂ξ ∂η ∂ζ

x e e e e

x e e e

x e e e

e

e

 (4.33) 

Using the above definitions, the differential global volume can be found from the 
differential local volume as 

 [ ]

3 31 2 1 2

3 31 2 1 2

3 31 2 1 2

x xx x x xd d d

x xx x x x ˆdV det d d d det d d d det J dv

x xx x x xd d d

∂ ∂⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂
ξ ξ ξ⎢ ⎥ ⎢ ⎥∂ξ ∂ξ ∂ξ ∂ξ ∂ξ ∂ξ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥∂ ∂∂ ∂ ∂ ∂
= η η η = ξ η ζ =⎢ ⎥ ⎢ ⎥∂η ∂η ∂η ∂η ∂η ∂η⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥∂ ∂∂ ∂ ∂ ∂
ζ ζ ζ⎢ ⎥ ⎢ ⎥∂ζ ∂ζ ∂ζ ∂ζ ∂ζ ∂ζ⎣ ⎦ ⎣ ⎦

 (4.34) 

where 
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 [ ]

31 2

31 2

31 2

xx x

xx xJ

xx x

∂⎡ ⎤∂ ∂
⎢ ⎥∂ξ ∂ξ ∂ξ⎢ ⎥
⎢ ⎥∂∂ ∂

= ⎢ ⎥∂η ∂η ∂η⎢ ⎥
⎢ ⎥∂∂ ∂
⎢ ⎥∂ζ ∂ζ ∂ζ⎣ ⎦

 (4.35) 

is called the Jacobian tensor. The determinant of this matrix is often referred to as ‘the 
jacbian’ and relates the volume from one coordinate system to another. 

 
Figure 4.2.1Mapping of an element in a global Cartesian coordinate system into a 

local isoparametric coordinate system 

Following Eq. (4.34), an integral over a global differential volume can be replaced by 
a local volume integral as 

  (4.36) 
1 1 1 1 1 1

e 1 1 1 1 1 1

ˆdV J dv J d d d
− − − − − −

= = ξ∫ ∫ ∫ ∫ ∫ ∫ ∫ η ζ

Using Eq. (4.36) and the Gaussian quadrature rule, a function  that is 
integrated over a differential volume  can be found as a summation over the 
integration points 

1 2 3g(x , x , x )
dV

1x

2x

3x

η

( )1,1, 1− −

ξ

ζ

( )1,1, 1− −
( )1, 1, 1− − −

( )1,1,1

( )1,1, 1−

( )1,1,1−

( )1, 1,1− −

( )1,1,1−

J
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  (4.37) 
( )

( )

1 1 1

1 2 3
e 1 1 1

n n n

i j k i j k
i 1

1 2
e k

3
j 1 1

g(x , x , x )dV

g(x , x , x )dV g , , Jd d d

g , , w w w

− − −

= = =

= ξ η ζ ξ η ζ

= ξ η ζ

∫

∫

∫ ∫ ∫

∑∑∑

where  are the associated weight functions of the  Gaussian point, and  are the 
number of integration points. 

lw thl n

Eq. (4.37) can be used to replace the volume integrals in Eq. (4.22), Eq. (4.23) and 
Eq. (4.25).  

Eq. (4.18) makes use of a surface integral. In order to find the mapping function that 
brings a differential surface area dS  from the global coordinate system to a 
differential surface area  in the local coordinate system, a surface S  is defined 
by the function 

d dξ η

 ( )1 3S f x , x=  (4.38) 

η

 
Figure 4.2.2: Defining of a surface area in a local coordinate system 

On this surface, a point  is located, O Figure 4.2.2, whose location is defined by a 
vector P   

  (4.39) 
1

2 1 1 2 2 3

3

x
x x x x
x

⎧ ⎫
⎪ ⎪ = + +⎨ ⎬
⎪ ⎪
⎩ ⎭

P = e e 3e

The tangent vectors to the coordinate curves at point O  are given by 

 d∂
= η
∂η
Pu  (4.40) 

1x

2x

3x

P

3e 1e

2e

O 

S 

ξ

∂ dη
η∂
P

∂ dξ
ξ∂
P
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 d∂
= ξ
∂ξ
Pv  (4.41) 

The area contained by two vectors u  and  can be found as the magnitude of their 
cross product 

v

 dS = ×u v  (4.42) 

where the cross product can be found from 

 
1 2 3

1 2 3

1 2 3

det u u u
v v v

⎡ ⎤
⎢ ⎥× = ⎢ ⎥
⎢ ⎥⎣ ⎦

e e e
u v  (4.43) 

Substituting Eq. (4.40) and Eq. (4.41) into Eq. (4.43) gives 

 

1 2 3 1 2 3

3 31 2 1 2

3 31 2 1 2

PP P P Pd d det d d d det d d

P PP P P Pd d d

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢∂∂ ∂ ∂ ∂∂ ∂

η× ξ = η η η = ξ η⎢ ⎥ ⎢∂η ∂ξ ∂η ∂η ∂η ∂η ∂η ∂η⎢ ⎥ ⎢
⎢ ⎥ ⎢∂ ∂∂ ∂ ∂ ∂

ξ ξ ξ⎢ ⎥ ⎢∂ξ ∂ξ ∂ξ ∂ξ ∂ξ ∂ξ⎣ ⎦ ⎣

e e e e e e
P P P

⎤
⎥
⎥
⎥∂
⎥
⎥
⎥
⎥
⎦

 (4.44) 

where the determinant term can be rewritten as 

 

1 2 3 1 2 3

3 31 2 1 2

3 31 2 1 2

3 32 1

1 2
3 32 1

P xP P x xdet det

P xP P x x

x xx x

det det
x xx x

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥∂ ∂∂ ∂ ∂ ∂

=⎢ ⎥ ⎢ ⎥∂η ∂η ∂η ∂η ∂η ∂η⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥∂ ∂∂ ∂ ∂ ∂
⎢ ⎥ ⎢ ⎥∂ξ ∂ξ ∂ξ ∂ξ ∂ξ ∂ξ⎣ ⎦ ⎣ ⎦

∂ ∂∂ ∂⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥∂η ∂η ∂η ∂η⎢ ⎥ ⎢ ⎥= − +

∂ ∂∂ ∂⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥∂ξ ∂ξ ∂ξ ∂ξ⎣ ⎦ ⎣ ⎦

e e e e e e

e e

1 2 3

1

2

3

1 2

3
1 2

1 x 2 x 3 x

x

x

x

x x

det
x x

J J J

J

J

J

∂ ∂⎡ ⎤
⎢ ⎥∂η ∂η⎢ ⎥
∂ ∂⎢ ⎥
⎢ ⎥∂ξ ∂ξ⎣ ⎦

= − +

⎧ ⎫
⎪ ⎪⎪ ⎪= −⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

e

e e e

 (4.45) 

Back substituting the result of Eq. (4.45) into Eq. (4.44) gives 
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1

2

3

x

x

x

J

d d J d

J

⎧ ⎫
⎪ ⎪∂ ∂ ⎪ ⎪ dη× ξ = − ξ⎨ ⎬∂η ∂ξ ⎪ ⎪
⎪ ⎪⎩ ⎭

P P
η  (4.46) 

Finally, the new expression for the surface  can be found by taking the norm of this 
vector 

dS

 
1

2 1 2 3

3

x
2 2 2

x x x x

x

J

dS d d J d d J J J d d

J

⎧ ⎫
⎪ ⎪∂ ∂ ⎪ ⎪= η× ξ = − ξ η = + + ξ⎨ ⎬∂η ∂ξ ⎪ ⎪
⎪ ⎪⎩ ⎭

P P
η  (4.47) 

Based on the above, to map a surface integral from the global to the local coordinate 
system, the following convention can be used 

 ( ) ( )
1 1

2 2 2
1 2 3 x y z

S 1 1

F x , x , x dS , J J J d d
− −

= φ ξ η + + ξ η∫ ∫ ∫  (4.48) 

Eq. (4.48) can be used to replace the surface integral of Eq. (4.24). Rewriting this 
integral using the Gaussian quadrature rule, gives 

 
( ) ( )

( ) ( )1

1 1
2 2 2

1 2 3 x y z
S 1 1

n n
2 2 2

i j x y z i
i 1

2 3
j 1S

F

F x , x , x

x , x ,

dS

x dS , J J J d d

, J J J w w

− −

= =
j

= φ ξ η + + ξ η

= φ ξ η + +

∫

∫

∫ ∫

∑∑
 (4.49) 

In summary, Eq. (4.22) through Eq. (4.25) can be rewritten as 

  (4.50) ( )
n n n

e e e
i j k

i 1 j 1 k 1
M N L h N wαβ α β

= = =
=∑∑∑ w w

w w  (4.51) 
n n n

e e e
i j k

i 1 j 1 k 1
S N N wαβ α β

= = =
= ∇ ∇∑∑∑ K

 ( )
n n

e e 2 2 2
x y z i

i 1 j 1
B N h z J J J wα α

= =
= ⋅ ∇ +∇ + +∑∑ n K jw

w w

 (4.52) 

  (4.53) 
n n n

e e
i j k

i 1 j 1 k 1
G N z wα α

= = =
= − ∇ ∇∑∑∑ K

4.2.3 In time approximation 
In paragraph 4.2.1, the flow equation was reformulated in matrix form as 

 [ ] [ ]{ } { } { }dhM S h B
dt

⎧ ⎫+ = +⎨ ⎬
⎩ ⎭

G  (4.54) 
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In the previous section it is explained how the integrations over the volume and the 
surface are performed numerically and results in a system of ordinary differential 
equations of the shape Eq. (4.54). In order to solve this system of equations any 
classical method for the solution of ordinary differential equations may be used. In 
general a distinction is made between explicit and implicit methods and between one-
step and multi-step methods. In Appendix 4.2 a more detailed description of time 
approximation methods is given. 

In RoAM a so called -method of time integration [Bathe 1996], [Hughes 1987], 
[Press 1989] is implemented, which is a one-step method where the value of 

α
α  

dictates if it is an explicit of implicit method. The one-step method means that, to 
compute the solution at a certain time-step, only information of the preceding time-
step is used and not of older time-steps. The method is considered explicit if the terms 
are only evaluated at the present time level and implicit if they are also evaluated at 
the next time level. 

To apply the -method of time integration, the r.h.s. of Eq. α (4.54) is replaced by a 
single force vector 

 [ ] [ ]{ } { }dhM S h
dt

⎧ ⎫+ =⎨ ⎬
⎩ ⎭

F  (4.55) 

The initial value problem consists of finding a function ( )t=h h  satisfying Eq. (4.55) 

and the initial condition , where  is given. ( ) 00 =h h 0h

The time of simulation  can be subdivided into time steps  with  to 
, where  is the number of time steps and  is the end of the simulation. 

E0 t t≤ ≤ ntΔ n 1=

TSn TSn Et

In the -method of time integration method Eq. α (4.55) can be written as 

 [ ] [ ]{ } { }n
n

dhM S h
dt +α

+α

⎧ ⎫ + =⎨ ⎬
⎩ ⎭

F  (4.56) 

where 
n

dh
dt +α

⎧ ⎫
⎨ ⎬
⎩ ⎭

 and { }nh +α  are the approximations of ( )nt +αh  and . ( )nt +αh

The values of { }nh +α  are determined on the basis of { }nh  and { }n 1h + , where the 
contribution of each vector depends on a weighting parameter α , taken to be in the 
interval [ ]0,1 : 

 { } ( ){ } { }n nh 1 h h n 1+α = −α +α +  (4.57) 

Assuming a constant time step 

 E
n

TS

tt t
n

Δ = Δ =  (4.58) 

the time differential 
n

dh
dt +α

⎧ ⎫
⎨ ⎬
⎩ ⎭

 can be determined via 
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 { } { }( n 1 n
n

dh 1 h h
dt t +

+α

⎧ ⎫ = −⎨ ⎬ Δ⎩ ⎭
)  (4.59) 

Substituting Eq. (4.57) and Eq. (4.59) into Eq.(4.56), the flow equation becomes 

 [ ] { } { }( ) [ ]( ){ } [ ]{ } { }n 1 n n n 1
M

h h S 1 h S h
t + − + −α +α =

Δ
F+  (4.60) 

By rearranging Eq.(4.60), the values of { }n 1h +  can be found from 

 [ ] [ ] { } { } [ ] [ ]( ) { }n 1 n
M M

S h F S 1 h
t t+

⎛ ⎞ ⎛ ⎞
+ α = + − −α⎜ ⎟ ⎜ ⎟Δ Δ⎝ ⎠ ⎝ ⎠

 (4.61) 

where [ ]M , [ ]S  and [ ]F  are evaluated at t t+αΔ . 

For the case of , the above method is also known as the explicit forward Euler 
method. For the case of  the method is known as the Crank-Nicholson, the 
implicit Heun or the trapezoidal method and for

0α =
0.5α =

α=1.0 the method is known as the 
implicit backward Euler method. 

Eq. (4.61) can be written as a matrix equation 

 [ ]{ } { }T h Y=  (4.62) 

where [ ]T  is the matrix, { }h  is the unknown vector to be found and represents the 

values of discretized pressure field at a new time, and { }Y  is the load vector.  

For  0.0α =

 
[ ] [ ]

{ } { } [ ] [ ] { }n

M
T

t
M

Y F S h
t

=
Δ

⎛ ⎞
= + −⎜ ⎟Δ⎝ ⎠

 (4.63) 

For  0.5α =

 
[ ] [ ] [ ]

{ } { } [ ] [ ] { }n

M
T 0.5 S

t

M
Y F 0.5 S h

t

⎛ ⎞
= +⎜ ⎟Δ⎝ ⎠

⎛ ⎞
= + −⎜ ⎟Δ⎝ ⎠

 (4.64) 

For  1.0α =

 
[ ] [ ] [ ]

{ } { } [ ]{ }n

M
T S

t

M
Y F h

t

⎛ ⎞
= +⎜ ⎟Δ⎝ ⎠

= +
Δ

 (4.65) 
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4.3 Numerical approximation of the mastic transport 
equation 

4.3.1 Introduction 
The mastic transport equation, as presented in Eq. (3.61) combines advective (i.e. 
flow-field or pressure gradient driven) and diffusive (i.e. concentration gradient 
driven) transport of the dissolved mastic particles. This combination of advective and 
diffusive (or dispersive) terms is known to cause some numerical difficulties which 
generally are not encountered in the governing equation of the flow field. The nature 
of diffusion-advection equations can be conveniently characterized by the 
dimensionless Peclet number 

 eP h / m= αv  (4.66) 

where  is the velocity vector,  is a characteristic length and v h mα  is the molecular 
diffusion coefficient. For example, in the case when an inert species is spreading due 
to molecular diffusion and advection in a one-dimensional velocity field, the 
governing equation can be written as 

 
2

e2
C C P
t xx

C∂ ∂
= −

∂
∂ ∂∂

 (4.67) 

where C  is the concentration of species. 

Clearly, when the Peclet number is small, diffusion dominates and the equation is 
parabolic in character. However, when the Peclet number is large, advection 
dominates and the character of the equation becomes hyperbolic. In non-uniform flow 
fields, like the ones occurring through an asphalt mix, where the velocity is not 
constant, the Peclet number may vary from point to point both in space and time. As a 
result of this variation, the diffusion-advection equation may vary in character within 
a given field and time, being predominantly parabolic in some regions and 
predominantly hyperbolic in others. Physically, this means that the way of transport of 
a particle can vary from place to place as well as in time. This poses a challenge on 
the capabilities of the numerical tool to actually capture the concentrations correctly. 
Since this problem is known for quite some time, several methods have been 
developed over the years to treat it. The most conventional numerical methods for 
solving this problem can be classified into three major categories: Eulerian, 
Lagrangian or mixed Lagrangian-Eulerian. In Appendix 4.3 a more detailed 
discussion about these three methods is given. 

In the Eulerian approach the equation is discretized by a finite difference or finite 
element grid fixed in space, where the Eulerian form of the transport equation is 
solved at the nodes of the grid. Since the advective and diffusive terms in this method 
still need to be solved simultaneously, the numerical instabilities as described above 
need to be avoided. The Eulerian approach often uses weighting functions that are one 
or two orders higher than the base functions as a form of stabilization, where the 
weighting factors are dependent on the direction of the flow. A popular method within 
this category is the streamline upwinding by the Petrov Galerkin method (SUPG) 
[Hughes 1987], [Belytschko 2001]. 
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In the Lagrangian approach, either a deforming grid or a fixed grid in deforming 
coordinates is used, where the physical quantities are computed at a set of point 
moving with the fluid. The numerical instabilities are in this case avoided because the 
advective term is no longer treated explicitly by solving the Lagrangian form of the 
transport equation in grids moving with the particles. Lagrangian approached are less 
popular than the other methods for solving the transport equation because of the 
complexities arising from the highly distorting grid.  

In a mixed Lagrangian-Eulerian approach a combination of the two above methods is 
used. The method employs, just like the Eulerian method, a fixed grid. However, the 
advective term is computed via a Lagrangian approach using a particle tracking 
method. This way the advective term vanished from the governing equation, which 
then can be solved with either finite difference, finite element or some other variant 
numerical method [Neuman, 1981], [Neuman, 1984], [Hughes, 1987], [Belytschko, 
2001], [Franca, 2005].  

In RoAM the latter approach has been implemented, where the Lagrangian 
concentrations are computed via a single-step reverse tracking method [Galeati, 1992] 
and the diffusive part is computed via a Eulerian finite element method. In the 
following the numerical approximation of the mastic transport equation is further 
elaborated. 

4.3.2 Hybrid Lagrangian-Eulerian formulation 
The mastic transport equation is simulating the movement of dissolved mastic 
particles inside a partially or fully saturated asphalt mix, where both advective 
transport and gradient driven (diffusion) processes are considered. 

The mastic transport equation was derived in Eq. (3.61), and is repeated here for the 
sake of convenience 

 
( )

( )

md a
0 d d

m
d 0 a

C C C div C
t t

h h                                            C C L C
t t t

∗

∂ ∂
θ +ρ + ∇ − ⋅∇

∂ ∂
∂ ∂ ∂θ⎛ ⎞= − θ +ρ α + −⎜ ⎟∂ ∂ ∂⎝ ⎠

v mD

d

d

 (4.68) 

This equation involves two unknowns, the adsorbed  and the desorbed  mastic 
particles. In order to solve this equation, a relation between these two quantities must 
be defined. In addition to the Langmuir relationship, which was discussed in chapter 
3, other relationships that can be chosen are, for instance, a linear isotherm 

aC dC

 a dC K C=  (4.69) 

where  is the desorption coefficient, or a nonlinear (Freundlich) isotherm dK

 n
aC Cd= γ  (4.70) 

where  is the Freundlich coefficient and n  is a power index [Bear 1990]. The choice 
of the isotherm and the corresponding parameters, should follow from experimental 
data, see chapter 8 for a more detailed discussion. 

γ

By choosing the linear isotherm for the adsorbed-desorbed mastic relation, Eq. (4.68) 
becomes 
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( ) ( )

( )

m d
0 d d d

m
0 d d d

CK C div C
t

h h                                              K C L C
t t

∗

∂
θ+ρ + ∇ = ⋅∇

∂
∂ ∂⎛ ⎞−α θ+ρ + −⎜ ⎟∂ ∂⎝ ⎠

v mD

t
∂θ
∂

 (4.71) 

By choosing the non-linear isotherm, i.e. Eq. (4.70), Eq. (4.68) becomes 

 
( ) ( )( )m md a d

0 d d d 0 a d
d

d

C dC C hC div C C C C
t dC t t

h                                                                                                L C
t t

∗∂ ∂ ∂
θ +ρ + ∇ = ⋅∇ − θ +ρ α

∂ ∂ ∂

∂ ∂θ⎛ ⎞+ −⎜ ⎟∂ ∂⎝ ⎠

v mD

 (4.72) 

Eq. (4.71) and Eq. (4.72) describe the transport of mastic from an Eulerian (or fixed) 
framework for a linear and a non-linear constitutive relation, respectively.  

As discussed previously, the combination of advective and dispersive/diffusive terms 
in the mastic transport equation could cause numerical difficulties. These difficulties 
have been well documented in the literature and various attempts to handle them have 
been summarized by many authors, e.g. [Neuman 1981], [Kinzelbach 1987], [Lobo 
Ferreira 1987], [Casulli 1990], [Selvadurai 2005,2006]. 

In RoAM, a Lagrangian-Eulerian method is implemented. Lagrangian-Eulerian 
methods generally solve the advective part of the problem by a ‘method of 
characteristics’ and the diffusive part by Eulerian grid methods, such as finite 
elements. The traditional ‘method of characteristics’ is explicit and tracks particles 
forward in a manner which is computationally intensive. Therefore, in RoAM a 
modified method is used which is implicit and has good numerical stability. In this 
method the path lines of the particles are traced backwards according to a single step 
reverse algorithm [Neuman 1981], [Douglas and Russel 1982], [Baptista 1984], 
[Casulli 1987]. In Appendix 4.3 a more detailed discussion about Lagrangian, 
Eulerian and hybrid formulations is given.  

Following [Neuman 1981, 1984], the total time derivative of  is computed by dC

 

( ) ( ) ( )

( ) ( )

d d d i

i

d
d

d

DC , t C , t C ,

DC , t
D

t x
Dt t x

,
tt

t
C t

C ∗

∂ ∂ ∂
= +

∂ ∂ ∂

∂
= +∇

∂

x x

x

x

x
v

 (4.73) 

where  is the velocity of a particle that moved in the flow field, also known as the 
‘seepage velocity’ and is equal to 

∗v

 
( )m

0 dK
∗

θ +ρ

vv =  (4.74) 

Eq. (4.73) describes changes with time along particle lines. For convenience, the 
arguments  of the tensor quantities are omitted in the following. ( , tx )
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The partial time derivative dC
t

∂
∂

 can therefore, according to the above, also be written 

as 

 d d
d

C DC C
t Dt

∗∂
= −∇

∂
v  (4.75) 

By substituting Eq. (4.75) into the l.h.s. of Eq. (4.71), the l.h.s. of the governing 
equation with the linear isotherm becomes 

 
( ) ( )

( ) ( ) ( )( )

m md d
0 d d 0 d d d

m m md
0 d d 0 d

d
0 d d

CK

C DCK C K C C
t Dt

DC K C
Dt

K
t

C ∗∂
θ+ρ +

∂ ⎛ ⎞θ +ρ + ∇ = θ+ρ −∇ ∗ + ∇⎜ ⎟∂ ⎝ ⎠

= θ+ρ +∇∇ θ
∂

+ρ

v v

v v

v

-v

 (4.76) 

Substituting the seepage velocity, Eq. (4.74), into Eq. (4.76), the advective term 
vanishes  

 ( ) ( )m d d
0 d d 0 d

C DCK C
t Dt

mK∂
θ+ρ + ∇ = θ+ρ

∂
v  (4.77) 

Back substituting Eq. (4.77) into Eq. (4.71) gives the governing equation (for a linear 
isotherm) in a Lagrangian formulation 

 ( ) ( ) ( )m md
0 d d 0 d d d

DC h hK div C K C L C
Dt t t t

∗ ∂ ∂⎛θ+ρ = ⋅∇ −α θ+ρ + −⎜∂ ∂⎝ ⎠
mD

∂θ ⎞
⎟∂

 (4.78) 

Similarly, by substituting Eq. (4.75) into Eq. (4.72), the temporal term in the 
governing equation with the non-linear isotherm becomes 

 

( )

d d
d d

d
d d

dC

C DCC C
t Dt

DC CC
Dtt

∗

∗

∂ ⎛ ⎞θ + ∇ = θ −∇ + ∇⎜ ⎟∂ ⎝ ⎠
∂

θ = θ +∇ − θ+ ∇
∂

v v

v v

v

v

dC
 (4.79) 

Where now the seepage velocity ∗v  is defined as 

 ∗

θ
vv =  (4.80) 

Substituting this into Eq. (4.79), again the advective term vanishes 

 d
d

C C
t D

dDC
t

∂
θ + ∇ = θ

∂
v  (4.81) 

Back substituting Eq. (4.81) into Eq. (4.72) gives the governing equation (for a 
nonlinear concentration isotherm) in a Lagrangian formulation 

 
( ) ( )( )m md a d

0 d d 0 a d
d

d

DC dC C hdiv C C C C
Dt dC t t

h                                                                                        L C
t t

∗∂ ∂
θ +ρ = ⋅∇ − θ +ρ α

∂ ∂

∂ ∂θ⎛ ⎞+ −⎜ ⎟∂ ∂⎝ ⎠

mD

 (4.82) 
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Both Eq. (4.78) and Eq. (4.82) no longer include the hyperbolic advective term. The 
equations could now be solved using a full implementation of the Lagrangian 
approach, i.e. using a moving coordinate system. Because of the challenges occurring 
due to a highly deforming grid, in RoAM a mixed Lagrangian-Eulerian approach is 

implemented, whereby the advective term of the total material time derivative dDC
Dt

 

is separately evaluated in a Lagrangian manner by a single-step reverse particle 
tracking methodology. In the following this methodology is explained. 

4.3.3 Particle tracking method 
By formulating the total material time derivative of the desorbed concentration and 
replacing the partial time derivative of the governing equation, Eq. (4.78) and Eq. 
(4.82) no longer include the advective term [Baptista 1984], [Casulli 1987, 1990], 
[Douglas 1982], [Galeati 1992], [Kinzelbach 1987], [Neuman 1981, 1984]. 

The material time derivative dDC
Dt

 can now be approximated from 

 ( ) ( ) ( )d t t d td
C , t t CDC , t

Dt t

∗ ∗
Δ + Δ −

=
Δ

+x xx , t

∗

t

 (4.83) 

To find the concentration C at time , consider a fictitious particle that moves from a 

location  at time  to a new location x  at time 
d t

i
∗x t i t + Δ , the latter coinciding with 

node , n Figure 4.3.1. 

*
*

( )i t t+ Δx

( )i tx

*
*

( )i t t+ Δx

( )i tx

∗n

 
Figure 4.3.1: Movement of a fictitious particle 

Since the movement of the particle is along the characteristic line with the seepage 
velocity , the initial particle location ∗v ( )i t∗x  can be found from 

dt∗  (4.84) ( ) ( ) t t
i i t

t t t
+Δ∗ = + Δ − ∫x x v

where the time integral is taken along the particle flow path. 

If  is located outside of the element under consideration ( )i t∗x ( )tΔτ x  must be found 
such that 
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 ( ) ( )
( )it

*
i i

t

t t

∗+Δτ
∗ = + Δτ − ∫

x

x x v dt  (4.85) 

will be located within the element boundaries. 

Once the backward particle position ( )i tx  is known, the corresponding concentration 

 can be obtained by interpolating between nodal values according to (d iC , t∗ ∗x )

)x

)mD

  (4.86) ( ) ( ) ( )(
n

d i j j i
j 1

C , t C t N t∗ ∗ ∗

=
=∑x

The diffusion equation  is then solved using a fixed (Eulerian) 

coordinate system. The particle tracking procedure is explained in more detail in 
section 

( ddiv C⋅∇

4.3.5. 

4.3.4 Galerkin formulation of the governing equations 

4.3.4.1 Linear isotherm 
The weak form [Hughes 1987], see Appendix 4.1, of the Lagrangian governing 
equation with the linear isotherm, can be found by multiplying Eq. (4.78) with a 
weighting function  and integration over the domain iw

 
( ) ( ) ( )m md

0 d d 0 d d

i
V d

DC hK div C K C
Dt tw d

h                                                      L C
t t

∗ ∂⎛ ⎞θ+ρ − ⋅∇ +α θ+ρ⎜ ⎟∂⎜ ⎟ =
∂ ∂θ⎛ ⎞⎜ ⎟− −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

∫
mD

V 0  (4.87) 

Integrating by parts gives 

 
( ) ( )

( )

md
i 0 d i d

V V

m
i 0 d d i d

V V

DCw K dV w div C dV
Dt

h h             w K C dV w L C dV 0
t t

∗

θ + ρ − ⋅∇

∂ ∂⎛ ⎞
t

∂θ
+ α θ+ρ − − =⎜ ⎟∂ ∂⎝ ⎠

∫ ∫

∫ ∫

mD

∂

 (4.88) 

The diffusion term is temporarily replaced by a vector 

 dC⋅∇ = smD  (4.89) 

It can be shown that 

 
( ) ( )( )

( ) ( ) ( )i

i i
V V

i i
V VV

w div dV div w w dV

div w dVw d w dViv dV

− = − − ∇

= −− + ∇

∫ ∫

∫ ∫∫

s s s

s s s

i

 (4.90) 

By making use of the divergence theorem, the first volume integral on the r.h.s. of Eq. 
(4.90) can be replaced by a surface integral 
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 ( ) ( )i i
V S

div w dV w dS= ⋅∫ ∫s s n  (4.91) 

Back substituting Eq. (4.89) through Eq. (4.91) into Eq. (4.88), yields 

 
( ) ( )

( )

md
i 0 d i d d i

V S V

m
i 0 d d i d

V V

DCw K dV w C dS C w dV
Dt

h h             w K C dV w L C dV 0
t t

∗

θ + ρ − ⋅∇ + ⋅∇ ∇

∂ ∂ ∂⎛ ⎞
t
θ

+ α θ+ρ − − =⎜ ⎟∂ ∂ ∂⎝ ⎠

∫ ∫ ∫

∫ ∫

n m mD D

 (4.92) 

The variable desorbed concentration term can be approximated by a summation of the 
nodal values  multiplied by a shape function  j jN

  (4.93) 
n

d
d j

j 1
C N

=
=∑ jC

i

Since the weighting functions  can be taken equal to the shape functions , in the 
Galerkin method  

iw iN

 iw N=  (4.94) 

Replacing Eq. (4.93) and Eq. (4.94) into Eq. (4.92) and summing over the volumes of 
the individual elements, the finite element approximation of the governing equation 
(with a linear isotherm) becomes 

 

( ) ( )
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j 1 j 1V V
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m d
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m
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D
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⎞
⎟⎟
⎠

 (4.95) 

Recall that the storage term  consists of the following terms L

 SL
h

∗ θ ∂
= α + φ

φ ∂
 (4.96) 

The saturation  was shown in the previous chapter as the moisture content S θ  
divided by the porosity φ  

 S θ
=
φ

 (4.97) 

Replacing Eq. (4.97) into Eq. (4.96) 

 L
h

∗ θ ∂θ
= α +

φ ∂
 (4.98) 
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Since the storage term is multiplied by the rate of the hydraulic head in Eq. (4.95), the 
partial derivative of the moisture content w.r.t. the hydraulic head becomes the rate of 
moisture content 

 h S h hL
t h t t

∗ ∗⎛ ⎞∂ θ ∂ ∂ θ ∂
= α + φ = α +⎜ ⎟∂ φ ∂ ∂ φ ∂⎝ ⎠ t

∂θ
∂

 (4.99) 

Substituting Eq.(4.99) into Eq. (4.95), gives 
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 (4.100) 

Eq. (4.100) can be written in the following matrix format 

 [ ] [ ] [ ]( ){ } { } { }d
d

DCM D K C Q
Dt

⎧ ⎫+ + = +⎨ ⎬
⎩ ⎭

B  (4.101) 

where the mass matrix [ ]M  is given by 

 ( )
e

d
je m e

ij i 0 d j
e V

DC
M N K N dV

Dt

⎛ ⎞
⎜= θ+ρ
⎜ ⎟
⎝ ⎠

∑ ∫ ⎟  (4.102) 

the diffusion matrix [ ]D  is given by 

  (4.103) (
e

e e
ij i j

e V

D N N
⎛ ⎞
⎜= ∇ ⋅∇
⎜ ⎟
⎝ ⎠

∑ ∫ mD )dV ⎟

the matrix [ ]K  associated with the first order terms is given by 

 ( )
e

e m
ij i 0 d j

e V

h hK N K N
t t

∗ ∗
⎛ ⎞⎡ ∂ θ ∂⎜ ⎟= α θ+ρ −α⎢⎜ ⎟∂ φ ∂⎣ ⎦⎝ ⎠

∑ ∫ edV⎤
⎥  (4.104) 

and the boundary condition vector { }B  is given by 

  (4.105) 
e

e
i i d

S

B N C d= ⋅ ⋅∇∫ n mD S

where either a concentration or a concentration flux can be given as boundary 
conditions. 
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4.3.4.2 Non-linear isotherm 
Using the same procedure as above for the governing equation with the non-linear 
isotherms, Eq. (4.82), the weak form can be written as 

 
( )

( )( )

md a d
i i 0 i d

dV V V

m
i d 0 a d i d

V V

DC dC Cw dV w dV w div C dV
Dt dC t

h hw C C C dV w L C dV
t t t

∗ 0

∂
θ + ρ − ⋅∇

∂

∂ ∂ ∂θ⎛ ⎞+ θ +ρ α − − =⎜ ⎟∂ ∂ ∂⎝ ⎠

∫ ∫ ∫

∫ ∫

mD

 (4.106) 

Since the isotherm between the adsorbed and desorbed mastic particles is not linear 
here, the hydraulic rate term in Eq. (4.106) needs to be slightly rewritten into 

 

( )

( )

m m a a
i d 0 a i d 0 a d d

d d

m
i

V V

m a
i d 0 d

dV

m
i 0 a

d 0 a
V

dC dCh hw C C dV w C C C C dV
t dC dC

dC hw C C dV
dC t

                                                        

hw

     

C

 w C

C dV
t

∗ ∗

∗∗

⎛ ⎞⎛ ⎞∂ ∂
θ +ρ α = θ +ρ + − α⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

⎛ ⎞ ∂
= θ +ρ α⎜

∂
θ +ρ α

∂ ⎟ ∂⎝ ⎠

+ ρ

∫ ∫

∫ ∫

t

a
d

dV

dC hC dV
dC t

∗⎛ ⎞ ∂
− α⎜ ⎟ ∂⎝ ⎠

∫

 (4.107) 

Back substituting Eq. (4.107) into Eq. (4.106) gives 

 

( )md a d
i i 0 i d

dV V V

m ma
i d 0 d i 0 a d

d dV V

i d
V

DC dC Cw dV w dV w div C dV
Dt dC t

dC dCh hw C C dV w C C dV
dC t dC t

hw L C dV 0
t t

∗ ∗a

∂
θ + ρ − ⋅∇

∂

⎛ ⎞ ⎛ ⎞∂ ∂
+ θ +ρ α + ρ + − α⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∂ ∂θ⎛ ⎞− − =⎜ ⎟∂ ∂⎝ ⎠

∫ ∫ ∫

∫ ∫

∫

mD

 (4.108) 

By following the same procedure as for the governing equation with the linear 
isotherm, the finite element approximation of Eq. (4.108) can be found as 

 

( )

d dn n
j jm a

i j i 0 j
dj 1 j 1V V

n
d

i j j
j 1 V

n
m da

i 0 j j
dj 1 V

n
d

i j j
j 1 V

i d

DC CdCN N dV N N dV
Dt dC t

N N dV C

dChN N dV C
t dC

hN N dV C
t

N C dS

= =

=

∗

=

∗

=

⎛ ⎞ ⎛ ⎞ ∂
θ + ρ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞
+ ∇ ⋅∇⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞⎛ ⎞∂

+ α θ+ρ⎜ ⎟⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞θ ∂

− α⎜ ⎟⎜ ⎟⎜ ⎟φ ∂⎝ ⎠⎝ ⎠

= ⋅ ⋅∇

∑ ∑∫ ∫

∑ ∫

∑ ∫

∑ ∫

n

m

m

D

D m a
i 0 a d

dS V

dChN C C
t dC

∗ ⎛ ⎞∂
− α ρ + −⎜ ⎟∂ ⎝ ⎠

∫ ∫ dV

 (4.109) 

 46



Eq. (4.109) can be written in the following matrix representation 

 [ ] [ ]( ){ } { } { }I IId d
d

DC dCM M D K C Q
Dt dt

⎛ ⎞⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤+ + + =⎨ ⎬ ⎨ ⎬⎜ ⎟⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭⎝ ⎠
B+

⎤
⎦

 (4.110) 

where the mass matrices  and IM⎡⎣
IIM⎡ ⎤

⎣ ⎦  are given by 

  (4.111) 
e

I e e
ij i j

e V

M N N
⎛ ⎞
⎜= θ
⎜ ⎟
⎝ ⎠

∑ ∫ dV ⎟

 
e

II e m ea
ij i 0 j

de V

dCM N N
dC

⎛ ⎞
⎜= ρ
⎜ ⎟
⎝ ⎠

∑ ∫ dV ⎟  (4.112) 

the dispersion matrix [ ]D , the matrix [ ]K , associated with the first order terms, and 

the load vector { }B  are equal to Eq. (4.103) through Eq. (4.105), respectively. 

The vector { }Q  is associated with all zero-order derivative terms and is given by 

 
e

e m a
i i 0 a d

dV

dChQ N C C d
t dC

∗ ⎛ ⎞∂
= α ρ −⎜∂ ⎝ ⎠
∫ V⎟  (4.113) 

Similar to the flow equation, a Gaussian quadrature is used for the numerical 
integration of the above matrices. 

4.3.5 In time approximation 
The time approximation of the mastic transport equation is, similar to the flow 
equation, performed via the -method of time integration [Bathe 1996], [Hughes 
1987], [Press 1989]. However, since for the approximation of the mastic-transport 
equation a hybrid Lagrangian-Eulerian formulation is used, the time integration of the 
mastic transport equation is somewhat different than for the flow equation, and is 
discussed in the following. 

α

For the case of a linear relation between the absorbed and desorbed mastic particles, 
the mastic transport equation was found as 

 [ ] { } [ ] [ ]( ){ } { }d
DM C D K C F
Dt

+ + =d  (4.114) 

where the vectors on the r.h.s. of Eq. (4.101) are here replaced by a single load vector 
{ }F . 

Following the α -method of time integration, as described in section 4.2.3, Eq. (4.114) 
should be evaluated as 

 [ ] { } [ ] [ ]( ){ } { }d dn
DM C D K C
Dt +α +α

+ + =n F  (4.115) 

with 
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 { } ( ){ } { }d dn nC 1 C C
+α +

= −α +α d n 1  (4.116) 

and 

 { } { } { }(d dn n 1
D 1C C
Dt t+α +

= −
Δ

)d nC  (4.117) 

where [ ]M , [ ]D , [ ]K  and { }F  are evaluated at n +α  (i.e. t t+αΔ ). 

However, as discussed in section 4.3.3, the material time derivative of  is 
approximated by 

dC

 { } { } { }( )d d n 1 n

D 1C C C
Dt

∗
+

= −
Δτ d  (4.118) 

where { }dC∗  is the Lagrangian concentration vector at time  at location  and 

where . 

t i
∗x

tΔτ ≤ Δ

Therefore, Eq. (4.115) is becomes 

 [ ] { } { }( ) [ ] [ ]( ){ } { }d d dn 1 nn

M
C C D K C∗

+
− + + =

Δτ
F

+α
 (4.119) 

with 

 { } ( ){ } { }d dn n
C 1 C C∗

+α +
= −α +α d n 1  (4.120) 

Substituting Eq. (4.120) into Eq. (4.119) gives 

 [ ] { } { }( ) ( ) [ ] [ ]( ){ } [ ] [ ]( ){ } { }d d d dn 1 n 1n n

M
C C 1 D K C D K C∗ ∗

+ +
− + −α + +α + =

Δτ
F  (4.121) 

By rearranging Eq. (4.121), it is found that 

 [ ] [ ] [ ]( ) { } [ ] ( ) [ ] [ ]( ) { } { }d dn 1 n

M M
D K C 1 D K C F∗

+

⎛ ⎞ ⎛ ⎞
+ α + = + α − + +⎜ ⎟ ⎜ ⎟Δτ Δτ⎝ ⎠ ⎝ ⎠

 (4.122) 

from which { }d n 1C
+

 can be found since the r.h.s. is known. 

For the nonlinear relation between the desorbed and the adsorbed mastic, Eq. (4.110), 
can be approximated with the α -method of time integration as 

 { } { } [ ] [ ]( ){ } { }I II
d d dn

D dM C M C D K C
Dt dt +α +α

⎛ ⎞⎡ ⎤ ⎡ ⎤+ + +⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠ n F=  (4.123) 

with Eq. (4.120) and 

 { } { } { }(d dn n 1
d 1C C
dt t+α +

= −
Δ

)d nC  (4.124) 

Similar to the mastic transport equation for the linear case, the total material time 
derivative is computed from 
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 { } { } { }( )*
d d n 1 n

D 1C C C
Dt +

= −
Δτ d  (4.125) 

where { }d n
C∗  is the Lagrangian concentration vector at time  at location  and 

where . 

t i
∗x

tΔτ ≤ Δ

Substituting Eq. (4.120) , Eq. (4.124) and Eq. (4.125) into Eq. (4.123) gives 

 { } { }( ) { } { }( ) ( ) [ ] [ ]( ){ }
[ ] [ ]( ){ } { }

I II
*

d d d d dn 1 n 1 nn n

d n 1

M M
C C C C 1 D K C

t
                                                                                D K C F

∗
+ +

+

⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦− + − + −α +
Δτ Δ

+α + =

 (4.126) 

By rearranging Eq. (4.126), it is found that 

 
[ ] [ ]( ) { }

{ } { } ( ) [ ] [ ]( ){ } { }

I II

d n 1

I II
*
d d dnn n

M M
D K C

t

M M
                         C C 1 D K C F

t

+

∗

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦⎜ ⎟+ + α +

⎜ ⎟Δτ Δ
⎝ ⎠

⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦= + + α − +
Δτ Δ

+

 (4.127) 

from which { }d n 1C
+

 can be found since the r.h.s. is known. 

Eq. (4.122) and Eq. (4.127) can be written as a matrix equation 

 [ ]{ } { }dP C W=  (4.128) 

where [ ]P  is the matrix, { }dC  is the unknown vector to be found and represents the 

values of discretized concentration field at a new time, and { }W  is the load vector.  

For the case of the linear isotherm: 

for  0.0α =

 
[ ] [ ]

{ } [ ]{ } [ ] [ ]( ){ } { }*
d d

M
P

M
W C D K C∗

=
Δτ

= − + +
Δτ

F
 (4.129) 

for  0.5α =

 
[ ] [ ] [ ] [ ]( )

{ } [ ]{ } [ ] [ ]( ){ } { }*
d d

M
P 0.5 D K

M
W C 0.5 D K C∗

= + +
Δτ

= − + +
Δτ

F
 (4.130) 

for  1.0α =
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[ ] [ ] [ ] [ ]

{ } [ ]{ } { }*
d

M
P D

M
W C

= + +
Δτ

= +
Δτ

K

F
 (4.131) 

For the case of the non-linear isotherm 

for  0.0α =

 
[ ]

{ } { } { } [ ] [ ]( ){ } { }

I II

I II
*
d d dn

M M
P

t
M M

W C C D K C
t

∗

⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦= +
Δτ Δ
⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦= + − +
Δτ Δ

F+

 (4.132) 

for  0.5α =

 
[ ] [ ] [ ]( )

{ } { } { } [ ] [ ]( ){ } { }

I II

I II
*
d d dn

M M
P 0.5 D K

t
M M

W C C 0.5 D K C F
t

∗

⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦= + + +
Δτ Δ
⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦= + − +
Δτ Δ

+

 (4.133) 

for  1.0α =

 
[ ] [ ] [ ]

{ } { } { } { }

I II

I II
*
d d n

M M
P D

t
M M

W C C
t

⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦= + + +
Δτ Δ
⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦= +
Δτ Δ

K

F+

 (4.134) 

The numerical approximations, as discussed in this chapter, lead to systems of 
equations for the discretized domain in the form of 

 [ ]{ } { }A x b=  (4.135) 

where [ ]A  is a matrix containing coefficients related to grid discretization and 

material properties, { }x  is a vector containing the dependent variables which we are 

solving for and { }b  is a vector containing all the initial and boundary conditions.  

To solve this matrix equation, in RoAM a pointwise iterative solver is utilized, which 
employs the basic successive iterative method, including a Gauss-Seidel and a 
successive under- and over-relaxation method. 

 50



Appendix 4.1 

Weak Formulation 
 

Before applying the finite element method to solve a governing equation it is 
necessary to transform the equation into a more suitable form. To do so, the so called 
weak formulation can be derived, [Hughes 1987]. Originally the weak formulation has 
been introduced by mathematicians to investigate the behavior of the solution of 
partial differential equations, and to prove existence and uniqueness of the solution. 
Later on numerical schemes have been based on this formulation which leads to an 
approximate solution in a constructive way. In the following, a brief procedure is 
given to transform a differential equation into its weak formulation. 

Suppose that the following differential equation needs to be solved over the interval 
[0,1]: 

 2u f 0∇ + =  (A 4.1.1) 

Given the boundary conditions: 

 ( )u 1 q=  (A 4.1.2) 

 ( )u 0 h∇ = −  (A 4.1.3) 

Using the weighting function  which fulfils w

 ( )w 1 0=  (A 4.1.4) 

Eq. (A 4.1.1) may be written in the weak form 

 
1

2

0

w( u f ) dx 0− ∇ + =∫  (A 4.1.5) 

Splitting the integral into two parts gives 

  (A 4.1.6) 
1 1

2

0 0

w u dx w f dx 0− ∇ − =∫ ∫

Where the Laplacian  can be replaced by taking a divergence from a gradient 2∇

  (A 4.1.7) 
1 1

0 0

w div ( u) dx w f dx 0− ∇ −∫ ∫ =

Since it can be shown that 

 w div( u) div(w u) w u∇ = ∇ −∇ ∇  (A 4.1.8) 

Eq. (A 4.1.7) can be rewritten as 
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  (A 4.1.9) 
1 1 1

0 0 0

div (w u) dx w u dx w f dx 0− ∇ + ∇ ∇ −∫ ∫ ∫ =

According to the divergence theorem an integral over a volume can be transformed 
into an integral over a surface area as follows 

  (A 4.1.10) 
V S

div ( ) dV dS= ⋅∫ ∫v n v

Using this, Eq. (A 4.1.9) becomes 

 
1 1

1
0

0 0

w u w u dx w f dx 0− ∇ + ∇ ∇ − =∫ ∫  (A 4.1.11) 

By satisfying the boundary conditions Eq. (A 4.1.3) and Eq. (A 4.1.4), and 
rearranging, Eq. (A 4.1.11) can be shown as 

  (A 4.1.12) ( )
1 1

0 0

w u dx w f dx w 0 h∇ ∇ = +∫ ∫

which is known in literature as the weak form of Eq. (A 4.1.1). 

52 



Appendix 4.2 

Time Approximation Methods 

Equation Chapter 4 Section 2 

7.1 introduction 
Following [Bathe 1996], [Hughes 1987] and [Press 1989], from Eq. (4.15) the flow 
equation was reformulated into a matrix formulation 

 [ ] [ ]{ } { }dhM S h
dt

⎧ ⎫+ =⎨ ⎬
⎩ ⎭

F  (A 4.2.1) 

The initial value problem consists of finding a function ( )t=h h  satisfying Eq. 

(A 4.2.1) and the initial condition ( ) 00 =h h , where  is given. 0h

The time of the simulation  can be subdivided into time steps  with 
 to , where  is the number of time steps and  is the end of the 

simulation. 

E0 t t≤ ≤ ntΔ
n 1= TSn TSn Et

There are different methods to find approximations of dh
dt

⎧ ⎫
⎨ ⎬
⎩ ⎭

 and { }h . In the 

following the two most commonly used methods are discussed in detail. 

The  method of time integration α

For this first method Eq. (A 4.2.1) can be written as 

 [ ] [ ]{ } { }n
n

dhM S h
dt +α

+α

⎧ ⎫ + =⎨ ⎬
⎩ ⎭

F  (A 4.2.2) 

where 
n

dh
dt +α

⎧ ⎫
⎨ ⎬
⎩ ⎭

 and { }nh +α  are the approximations of ( )nt +αh  and . ( )nt +αh

The values of { }nh +α  are determined on the basis of { }nh  and { }n 1h + , where the 
contribution of each vector depends on a weighting parameter α , taken to be in the 
interval [ ]0,1 : 

 { } ( ){ } { }n nh 1 h h n 1+α = −α +α +  (A 4.2.3) 

Assuming a constant time step 

 E
n

TS

tt t
n

Δ = Δ =  (A 4.2.4) 
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the time differential 
n

dh
dt +α

⎧ ⎫
⎨ ⎬
⎩ ⎭

 can be determined via 

 { } { }( n 1 n
n

dh 1 h h
dt t +

+α

⎧ ⎫ = −⎨ ⎬ Δ⎩ ⎭
)  (A 4.2.5) 

When substituting Eq. (A 4.2.3) and Eq. (A 4.2.5) into Eq. (A 4.2.2), the flow equation 
becomes 

 [ ] { } { }( ) [ ]( ){ } [ ]{ } { }n 1 n n n 1
M

h h S 1 h S h
t + − + −α +α =

Δ
F+  (A 4.2.6) 

By rearranging Eq. (A 4.2.6), the values of { }n 1h +  can be found from 

 [ ] [ ] { } { } [ ] [ ]( ) { }n 1 n
M M

S h F S 1 h
t t+

⎛ ⎞ ⎛ ⎞
+α = + − −α⎜ ⎟ ⎜ ⎟Δ Δ⎝ ⎠ ⎝ ⎠

 (A 4.2.7) 

where [ ]M , [ ]S  and [ ]F  are evaluated at t t+ αΔ . 

For the case of , the above method is also known as the explicit forward Euler 
method. For the cases of  and 

0α =
0,5α = α=1.0, the method is referred to as the implicit 

Crank-Nicolson (or trapezoidal) and the implicit backward Euler method, 
respectively. 

The Crank-Nicolson algorithm has a truncation error of ( )2O tΔ , but its propagation-

of-error characteristics frequently lead to oscillatory nonlinear instability. Both the 
backward-difference and forward-difference have a truncation error of . The 
backward-difference is quite resistant to oscillatory nonlinear instability. On the other 
hand, the forward difference is only conditionally stable even for linear problems, not 
to mention nonlinear problems. 

( )O tΔ

Central difference method 

Another way of approximating Eq. (A 4.2.1) is via the central difference method, 
which is an explicit method.  

In this method the values of the unknown variables are assumed to vary linearly 
during the time step . The values can therefore be evaluated halfway the time step ntΔ

 [ ] [ ]{ } { }1n 21n 2

dhM S h
dt +

+

⎧ ⎫ +⎨ ⎬
⎩ ⎭

F=  (A 4.2.8) 

where [ ]M , [ ]S  and { }F  are evaluated at tt 2
Δ+ . 

When considering an algorithm with a variable time step, the time increment can be 
defined as 
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 ( )

1 n 1 nn 2

1 n 1n 2

n 1 1n n2 2

t t t

1t t
2

t t t

++

++

+ −

nt

Δ = −

= +

Δ = −

 (A 4.2.9) 

In Fig. A 7.1.1an illustration of these time steps is given for the case of . n 1=

h

0,5h

1,5h

 
Fig. A 7.1.1:: Example of central difference method for 1 time step, with 

t  constantΔ ≠  

The central difference formula for the vector dh
dt

⎧ ⎫
⎨ ⎬
⎩ ⎭

 is given by 

 
{ } { }1 1n n2

nn

h hdh
dt t

+ −−⎧ ⎫ =⎨ ⎬ Δ⎩ ⎭
2  (A 4.2.10) 

or 

 
{ } { }n 1 n

1 1n n2 2

h hdh
dt t

+

+ +

−⎧ ⎫ =⎨ ⎬ Δ⎩ ⎭
 (A 4.2.11) 

Substituting Eq. (A 4.2.11) into Eq. (A 4.2.8) gives 

 [ ] { } { } [ ]{ } { }n 1 n
1n 21n 2

h h
M S h

t
+

+
+

⎛ ⎞−⎜ ⎟ +
⎜ ⎟Δ
⎝ ⎠

F=  (A 4.2.12) 

When choosing a constant time step, see Fig. A 7.1.2, i.e. 

 E
n

TS

tt t
n

Δ = Δ =  (A 4.2.13) 

Eq. (A 4.2.11) changes into 

t

0t 1t 2t

0,5t 1,5t

0,5tΔ 1,5tΔ

1tΔ

1n =
1,0h
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{ } { } { } { }n 1 n

1n 21n 2

h hdh 2 h h
dt t t

+
+

+

−⎧ ⎫ ⎛= = −⎜⎨ ⎬ ⎝ ⎠Δ Δ⎩ ⎭ n
⎞⎟  (A 4.2.14) 

h

0,5h

1,5h

 
Fig. A 7.1.2: Example of central difference method for 1 time step, with  t constantΔ =

Substituting Eq. (A 4.2.14) into Eq. (A 4.2.8) gives 

 [ ] { } { } [ ]{ } { }1n n n2 2

2 M h h S h F
t +

⎛ ⎞− + =⎜ ⎟
⎝ ⎠Δ 1+  (A 4.2.15) 

which can be rewritten as 

 [ ] [ ] { } { } [ ]{ }1n 2

2 2M S h F M h
t +

⎛ ⎞+ = +⎜ ⎟Δ⎝ ⎠ ntΔ
 (A 4.2.16) 

from which the unknown { } 1n 2
h +  can be solved. 

The central difference method is among the most popular of the explicit methods in 
computational mechanics because it is easily implemented and very robust. The 
disadvantage of this method is that when the time step exceeds a critical value , 
the solution will grow unboundedly. 

crittΔ

t

0t 1t 2t

0,5t 1,5t

tΔ

tΔ

1n =
1,0h

tΔ
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Appendix 4.3 

Arbitrary Lagrangian Eulerian descriptions 

4.3 Lagrangian and Eulerian descriptions  
Equation Chapter 4 Section 3 

Lagrangian and Eulerian description 

In a classical continuum, the location of a point before deformation is determined by 
the position vector X  defined in a Cartesian basis system { }; I 1, 2,3= , EI Fig. 0.1. 
After deformation, the coordinates of point P are located by position vector  defined 
w.r.t. an alternative Cartesian basis system 

x
{ }i ; i 1, 2,3=e . The motion of a particle 

from the reference to the current position can be viewed as a vector mapping 

 ( )= φx X  (A 4.3.1) 

reference
configuration

X

P

t=0
1X
1E

2X2E

3E

3X

current
configuration

x

1t=t

p

1x
1e

2x

2e
3e

3x

φ

 
Fig. 0.1: Reference and current configurations of a deformable body 

Eq. (A 4.3.1) can be generalized to read 

 ( ), t= φx X  (A 4.3.2) 

and 

 ( )1 , t−= φX x  (A 4.3.3) 
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The so called material (or referential) description is a characterization of the motion 
(or any other quantity) w.r.t. the material coordinates  and time , given by 
Eq. 

1 2X , X ,X3 t
(A 4.3.2). In the material description, attention is paid to what happens to a 

particle as it moves. The material description is also known as the Lagrangian 
description.  

The so called Eulerian (or spatial) description, is a characterization of the motion (or 
any other quantity) w.r.t. the spatial coordinates  and time , given by Eq. 1 2 3x , x , x t
(A 4.3.3). In the Eulerian description attention is paid to what happens to a point in 
space as time changes. 

In fluid mechanics the Eulerian description is most often used, in which all relevant 
quantities are referred to the position in space at time t . It is not useful to refer the 
quantities to the material coordinates at t 0= , which are in general not known in fluid 
mechanics. In solid mechanics both types of descriptions are used, even though the 
Lagrangian description is often preferred. 

Hybrids between Lagrangian and Eulerian formulations 

In some cases, Lagrangian methods are not suitable. For example, in fluid mechanics 
problems with high velocity flows, interest is usually focused on a particular spatial 
subdomain. Similarly, the modeling of processes, such as a seepage or extrusion 
process, involves fixed spatial domains through which the material flows. These types 
of problems are more suited to Eulerian elements. In Eulerian finite elements, the 
elements are fixed in space and material convects through the elements. Eulerian 
finite elements thus undergo no distortion due to material motion. However, the 
treatment of constitutive equations and updates is complicated due to the convection 
of material through the elements. 

Unfortunately, the treatment of moving boundaries and interfaces is difficult with 
Eulerian elements. Therefore, hybrid techniques which combine the advantages of 
Eulerian and Lagrangian methods have been developed and are often referred to as 
arbitrary Lagrangian Eulerian (ALE) methods. Eulerian methods can also be viewed 
as a subset of the ALE methods. 

In an ALE method, both the motion of the mesh and the material must be described. 
The material motion is described by Eq. (A 4.3.2). In the ALE formulation, another 
reference domain Ω̂  is considered, Fig. 0.2. 
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Material domain Spatial domain 

ALE Reference domain 

x
X

χ

Ω0Ω

Ω̂

( ), tφ X

( )ˆ , tφ χ( ), tψ X

 

Fig. 0.2: Mapping between Lagrangian, Eulerian and ALE domain 

The values of the position of particles in the ALE domain are noted by χ  

 ( ), t= φ Xχ  (A 4.3.4) 

The coordinates χ  are called the ALE coordinates. In most cases ( ),0φ =X X

X

, which 

means . The referential domain ( ),0 =Xχ Ω̂  is used to describe the motion of the 
mesh, independent of the motion of the material. In the implementation, this domain 
is used to construct the initial mesh. It remains coincident with the mesh throughout 
the computation, so it can also be considered the computational domain. 

The motion of the mesh is described by 

 ( )ˆ , t= φx χ  (A 4.3.5) 

The mapping function  plays a crucial role in the ALE finite element formulation. φ̂

As becomes apparent from Fig. 0.2, the ALE coordinates can be related to the material 
coordinates by a composition of functions 

 ( ) ( )( ) ( )1 1ˆ ˆ, t , t , t , t− −= φ = φ φ = ψx Xχ X  (A 4.3.6) 

As can be concluded from Eq. (A 4.3.6), the relation between the material coordinates 
and the ALE coordinates is a function of time. 

The material motion can furthermore be expressed as a composition of the mesh 
motion and the ALE mapping 

 ( ) ( ) ( )( )ˆ ˆ, t , t , t , t= φ = φ = φ ψx X Xχ  (A 4.3.7) 

In an ALE algorithm the mesh motion is prescribed or computed. The material motion 
can then be reconstructed through the above compositions, provided the mapping 
function  is invertible. ψ
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Material time derivative and convective velocity 

In ALE descriptions, fields are usually expressed as functions of the ALE coordinates 
 and time . The material time derivative (or total time derivative) must then be 

obtained by the chain rule. Consider a function 

χ t

( )f , tχ . The total time derivative of 

this function can be found as 

 

( ) ( ) ( )

( ) ( ) ( )i

i

Df , t f , t f , t

Dt t t

f , t f , t , t
              

t t

∂ ∂ ∂
= +

∂ ∂ ∂

∂ ∂ ∂ψ
= +

∂ ∂χ ∂
X

χ χ χ χ

χ

χ χ
 (A 4.3.8) 

The last term on the r.h.s. of Eq. (A 4.3.8) is defined as the referential particle velocity 
ip  

 ( )
[ ]

i i
i

, t
p

t t
∂ψ ∂χ

= =
∂ ∂ X

X
 (A 4.3.9) 

Substituting Eq. (A 4.3.9) into Eq. (A 4.3.8) gives the following expression for the 
total time derivative 

 i
i

Df f f p
Dt t

∂ ∂
= +
∂ ∂χ

 (A 4.3.10) 

The ALE field variables are often treated as functions of the material coordinates and 
time. Hence, it is convenient to develop expressions for the material time derivative in 
terms of the spatial gradient. For this reason the relation between the material velocity, 
mesh velocity and referential velocity needs to be defined. 

Keeping Eq. (A 4.3.7) and Eq. (A 4.3.9) in mind, the material velocity can be found as 

 

( ) ( )

( ) ( )

[ ]

jj j
j

jj i

i

j i
j

i

j
j i

i

ˆ , tx , t
v

t t t
ˆˆ , t , t

t
x

v̂
t

x
v̂ p

∂φ∂ ∂φ
= = =

∂ ∂ ∂

∂φ∂φ ∂ψ
= +

∂ ∂χ ∂
∂ ∂χ

= +
∂χ ∂

∂
= +

∂χ

X

X

X
t

χ

χ

 (A 4.3.11) 

where  is the mesh velocity. jv̂

The convective velocity c  is now defined as the difference between the material and 
the mesh velocities 

j j j ˆc v v= −  (A 4.3.12) 
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Substituting Eq. (A 4.3.11) into Eq. (A 4.3.12) yields 

 j
j

i

x
c ip

∂
=
∂χ

 (A 4.3.13) 

Relationship between ALE description and Eulerian and Lagrangian description 

The ALE description can be easily again related to the Eulerian and Lagrangian 
description: 

By letting the ALE coordinates coincide with the material coordinates 

 = Xχ  (A 4.3.14) 

the mesh motion becomes identical to the material motion, which is the definition of a 
Lagrangian motion. Or, in other words 

 ( ) ( ), t I= ψ =X X X  (A 4.3.15) 

By letting the ALE coordinates coincide with the spatial coordinates 

 = xχ  (A 4.3.16) 

the mesh motion becomes 

 ( ) ( )ˆ , t I= φ =x x x  (A 4.3.17) 

Or in other words: the mesh is fixed in space, which is the definition of an Eulerian 
description. 

In summary: 

( )

( )
[ ]

( )

( )
[ ]

( )

i
i

i i

i
i

i i

f , t
                                                           

t
f , t f , txDf f f    v

Dt t x t t x

f , t f , tf f p
t t t

∂
∂

∂ ∂∂∂ ∂
= + = +

∂ ∂ ∂ ∂ ∂

∂ ∂∂χ∂ ∂
+ = +

∂ ∂χ ∂ ∂ ∂χ

X

X

X

x x

χ χ

Lagrangian description

Eulerian description

ALE de

⎧
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪⎩

scription

 (A 4.3.18) 
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Chapter 5 

Comparison to Closed Form Solutions 

5 Introduction 

5.1 Introduction 
In the previous chapters the governing equations of the physical moisture induced 
damage processes and their finite element formulation are given. Before applying 
these equations to simulate actual moisture damage phenomena in asphaltic mixes 
with RoAM, a few benchmarks are performed to verify the correctness of the 
implemented equations. In the following, diffusion and advective transport 
simulations with RoAM are compared to closed form solutions. 

5.2 Diffusion equation 
General solutions of the diffusion equation can be obtained for a variety of initial and 
boundary conditions provided the diffusion coefficient is constant. Such a solution 
usually has one of two standard forms. Either it comprised of a series of error 
functions or related integrals or it is in the form of a trigonometric series. In the 
following, comparisons are made between the results of RoAM and the analytical 
solution for diffusion into a semi-infinite medium and a hollow sphere. 

Validation 1 

An example of a linear diffusion problem that may be solved using an error function 
is that of a one-dimensional diffusion into a semi-infinite medium with an initial 
overall concentration  and a constant left boundary condition , Fig. 5.2.10C = 0 tC , 
[Crank, 1975].] 

0t  

 

Fig. 5.2.1: One dimensional diffusion into a semi-infinite medium 

The diffusion equation for a linear flow reduces to 

∞  

1t  

2t  

nt  

0C 0=tC  
x
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2

2
C D
t x

C∂ ∂
=

∂ ∂
  (5.1) 

pte−Multiplying both sides of Eq. (5.1) by the Laplace kernel  and integrating over 
time gives 

2
pt pt

2
0 0

C 1 Ce dt e dt
D tx

∞ ∞
− −∂ ∂ 0− =

∂∂∫ ∫  (5.2) 

where  is a transform parameter. p 0>

The first integral can be rewritten as 
2 2

pt pt
2 2

0 0

e C dt Ce dt
x x

∞ ∞
−⎡ ⎤∂ ∂

=⎢ ⎥
∂ ∂⎣ ⎦

∫ −∫  (5.3)  

When defining 

  (5.4) ( ) ( ) pt

0

C x,p C x, t e dt
∞

−= ∫

Substituting Eq.(5.4) into Eq. (5.3) 
2 2

pt
2

0

Ce C dt
x x

∞
−⎡ ⎤

2
∂ ∂

=⎢ ⎥
∂ ∂⎣ ⎦

∫  (5.5) 

b b
b
a

a a

u dv uv v du= −∫ ∫ ( )ptd e pe dt− −= − pt and , the second integral of Eq. (5.2)Since  

can we written as 

pt pt pt
0

0 0

1 C C pe dt e C e
D t D D

∞ ∞∞− −∂
= +

∂∫ dt−∫

0

 (5.6)  

Using the initial condition of 0C = , reduces Eq. (5.6) into 

pt pt

0 0

1 C pe dt C e
D t D

∞ ∞
− ∂

=
∂∫ ∫ dt−  (5.7)  

Furthermore, utilizing Eq. (5.4) 

pt

0

1 Ce dt
D t

∞
− ∂

=
∂∫

p C
D

  (5.8) 

(5.8) and Eq. (5.5) into Eq. (5.2) gives Substituting Eq. 
2

2
C p C 0

Dx
∂

− =
∂

  (5.9) 
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Using the boundary condition of ( ) tC 0, t C= , the boundary condition of  can be 
found as 

C

( ) pt pt t
t t

00

C1C 0,p C e dt C e
p p

∞∞
− −−

= =∫ =  (5.10) 

The solution of Eq. (5.9), subject to the boundary condition of Eq. (5.10) can be found 
as 

( ) ( )x / D ptCC x,p e
p

−
=  (5.11)  

pf e
p

−βα
=  is known to be the function Since the object function of 

f erfc
2 t
β⎛= α ⎜

⎝ ⎠

⎞
⎟ , the concentration field can be found from Eq. (5.11) as 

( ) t
xC x, t C erfc

2 Dt
⎛= ⎜
⎝ ⎠

⎞
⎟  (5.12) 

( )erfc y ( )erf y can be found from the error function , defined as The function 

( ) ( )
2

y

0

2erfc y 1 erf z 1 e d−η= − = −
π ∫ η  (5.13) 

With Eq. (5.12) a solution is found for the computation of the concentration field in 
the semi-infinite systems, as posted in Fig. 5.2.1.  

The above solution is used to verify the finite element results of the diffusion 
algorithm of RoAM. For the simulation, a diffusivity =1.0 , a total length 
of the mesh 

2mm / hrxD

xl 100mm=  and 200 elements were used (i.e. ). A 
comparison of the normalized concentration values 

x 0.5mmΔ =

( ) tC 10, t / C  is shown in Fig. 
5.2.2. A good comparison is found. A sensitivity study with respect to the mesh 
discretization showed that a mesh discretization of 100 and 10 elements give 
comparable results. 

 65



0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 20 40 60 80 100 120 140 160
Time [x100 hours]

C
 [-

]

Analytical
Simulation ∞  

tC  

 

Fig. 5.2.2: Comparison of analytical solution with RoAM simulation. 

Validation 2 

For the second validation of the diffusion algorithm, the problem of diffusion into a 
hollow sphere is chosen. In the outset, this example could be related to an aggregate 
coated in a bituminous mastic film which is exposed to a wet environment. The 
hollow sphere under consideration has a thickness of 2t r r1= − , with the outside 
surface  and the inner surface , 2r 1r Fig. 5.2.3. 

 

Fig. 5.2.3: One dimensional diffusion into a hollow sphere 

If the inside and the outside surfaces are maintained at a constant concentration of 
and , respectively, and the region 

1C  

2C 1r r r2≤ ≤  is initially at , the concentration 
approaches the steady-state distribution according to the expression [Carslaw and 
Jaeger, 1959] 

0C

 

( )( )
( )

( ) ( ) ( )
( )

2 2 1 1 11 1

2 1

2 2
2 2 0 1 1 0 1

2
2 1n 1 2 1

r C r C r rr CC
r r r r

r C C cos n r C C n r r2 Dsin exp
r n r r r r

∞

=

− −
= + +

−

n t⎡ ⎤− π− − π − − π
⎢ ⎥⋅

π − ⎢ ⎥−⎣ ⎦
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 (5.14) 
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For the comparison of this solution with the RoAM simulation, an analysis is made 
with diffusivity , a radius of the outside service of  
and a film thickness . The finite element mesh is divided in 7 layers of 
equal thickness, i.e. . The inside concentration is kept at  and an 
initial concentration of C  is utilized.  

2
rD 0.01mm / h= 2r 200mm=r

0.0=

t 14mm=

1C 0.0=r 2mmΔ =

0

( )node 2The normalized concentration values C C  for three nodes in different 
layers in the mesh are compared to the analytical solution, 

r , t / C=
Fig. 5.2.4. A good 

comparison is found. 
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Fig. 5.2.4: Comparison analytical solution and RoAM simulation  

5.3 Advective transport 
The accurate computational modeling of an advection-diffusion transport equation, 
especially in the presence of an advection-dominated term, with either a discontinuity 
or steep gradient of the dependent variable, has been addressed to varying degrees of 
success in the field of computational fluid dynamics [LeVeque 1992], [Morton 1996]; 
[Quarteroni and Valli 1997], [Ganzha and Vorozhtsov 1998], [Wang and Hutter 2001]; 
[Atluri 2004]; [Selvadurai and Dong 2006 (a),(b)]. Higher-order methods require the 
size of the domain discretization element to be small enough, such that the elemental 
Péclet number, should not be greater than unity.  

When the elemental Péclet number is greater than unity the methods give rise to 
unrealistic numerical phenomena such as oscillations, negative concentrations and 
artificial diffusion at regions close to a leading edge with a discontinuous front. For 
this reason, in conventional higher-order methods for advection dominated problems, 
a finer mesh is invariably used throughout the region, since the velocity field is 
usually not known a priori. This places a great demand on computational resources, 

Analytical

Simulation

t 

2C  

1C 0=  
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particularly in simulations involving three-dimensional problems. The first order 
methods such as the Lax-Friedrich scheme, on the other hand, eliminate the 
oscillatory behavior at discontinuous fronts, where there is no physical diffusion (i.e. 
Pe =∞  ), but gives rise to numerical dispersion in the solution. This feature is 
generally accepted for purpose of the engineering usage of the procedures, but from a 
computational point of view gives rise to strong reservations concerning the validity 
of the procedures developed for the advection-diffusion transport equation for the 
solution of the purely advective transport problem.  

Furthermore, if physical diffusive phenomena are present in the transport problem, it 
becomes unclear as to whether the diffusive patterns observed in the solution are due 
to the physical process or an artifact of the numerical scheme.  

Evaluating the accuracy of the purely advective transport problem is therefore a 
necessary pre-requisite to gaining confidence in the application of the computational 
scheme to the study of the advection-diffusion problem. The real test for a 
computational scheme developed for modeling the advection dominated transport 
problem is to establish how accurately the computational scheme can converge to the 
purely advective transport problem at zero physical diffusion 

The validation of the presented numerical approach in RoAM is made by comparing 
the computational results with two one-dimensional exact closed form solutions 
involving the advective transport problem. 

Validation 1 

For the first validation, a finite element mesh of length = 10 mm with negligible  
and  dimensions is exposed to a water flow field of constant velocities  and 

, 

yxL
z xv v= 0

y zv v 0.0 mm/s= = Fig. 5.3.1. The region is assumed fully saturated and the 
diffusion tensor  is zero. At time mD t 0.0 s=  the region is subjected to a 
discontinuous desorbed mastic concentration front at the boundary in the form of a 
Heaviside step function . (t)H

These conditions reduce the mastic transport equation, as posted in Chapter 3, to a one 
dimensional purely advective transport equation of the form 

d
0 d

C v C 0
t

∂
+ ∇ =

∂
  (5.15) 

With the boundary conditions 

( ) ( )
( )

d 0

d

C 0, t C t

C x,0 0.0

=

=

H
 (5.16)  

The exact analytical development of the desorbed mastic concentration field can in 
this case be found as [Selvadurai, 2006 ] 

( )d 0
0

xC x, t C t
v

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
H  (5.17) 
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Fig. 5.3.1: Finite element discretization for 10 elements, xh 1.0mm=  

In Fig. 5.3.2 the numerical solutions for 0v 1.0 mm/s=  and 0C 1.0=  at  
are compared to the exact analytical solution for various mesh refinements, whereby 
using a constant Courant number, Cr , equal to 1.0 

x 10.0 mm=

 x

x

v dt
Cr

h
=  (5.18) 

where dt  is the time step and  is the element size. xh
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Fig. 5.3.2: Simulation of the advection front, Cr 1.0=  at x=10 mm 

It can be seen from Fig. 5.3.2 that with increased mesh refinement, the numerical 
diffusion is reduced and the concentration front is simulated quite accurately without 
oscillatory effects. It may be observed that none of the discretizations exhibit any 
numerical oscillation. 

Varying Cr , i.e. the time-step, shows that for a constant discretization of 50 elements, 
i.e. , higher values of Cr  actually lead to a better approximation, xh 0.2=  mm Fig. 
5.3.3. This means that the solution seems to improve for an increasing time-step. The 
reason for this can be found in the fact that for a larger time-step, less time-steps are 
needed, which reduces the accumulating numerical error. For  values smaller than 
1, i.e. s time step of  the solution converges to a constant solution. The 
particle tracking algorithm automatically reduces the time-step if the particle is not 
within the boundaries of the element. A finite element mesh with a chosen  that is 
too big to capture the particles will therefore automatically be reduced. In this, the 
algorithm adjusts the Courant number itself if necessary. 

Cr
dt 0.2 s≤

dt

X

Y 

Z 10 mm 

Cd(0,t)
Cd(x,0)= 0.0
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Fig. 5.3.3: Courant number analysis for the mesh with 50 elements 

This observation is confirmed by plotting the movement of the concentration front at 
time  for  values equal to 1.0 and 10, Fig. 5.3.3t 2 s= Cr . The two curves show a 
distinct difference in numerical dispersion, where the computation with Cr  i.e. 

, approximates the advective front quite accurately. 
10=

dt 2.0 s=
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Fig. 5.3.3: Movement of the concentration front  
at for  and Cr  T 2sec= Cr 1.0= 10=

Validation 2 

For the second validation, the same finite element mesh is exposed to a changing flow 
field of  

( )x 0v v exp t= −λ  (5.19)  
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and . The region is assumed fully saturated with negligible water 

capacity  and a zero diffusion tensor, . At time 
y zv v 0.0 mm/s= =

θ mD t 0.0 s=  the same boundary 
conditions as in the first validation are assumed, Eq. (5.16). 

These conditions simplify the mastic transport equation to the form 

( )d
0

C v exp t C 0
t

∂ d+ −λ ∇ =
∂

 (5.20) 

and the developing desorbed mastic concentration field under these conditions can be 
found analytically as [Selvadurai, 2006 ] 

( ) ( )
d 0

0

1 exp t xC x, t C H
v

⎡ ⎤− −λ⎡ ⎤⎣ ⎦= −⎢ ⎥
λ⎢ ⎥⎣ ⎦

 (5.21) 

Because the velocity field is time dependent, the Courant number is not constant 
either and can be found from 

  (5.22) 0.02tCr e−= β

In Fig. 5.3.4 the numerical solutions at  with 0v 1.0 mm/s=x 10.0 mm= , , 

and  are compared to the analytical solution Eq. 
0C 1.= 0

1=0.02s−λ1.0β = (5.21) for various 
mesh refinements. It can be seen that for the case under consideration an increased 
refinement of 500 elements, with dt 0.02s=xh  0.02 mm=  and , approximates the 
analytical solution with negligible numerical dispersion. Again, none of the 
discretizations showed any signs of numerical oscillations in the approximation. 
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( )Cr exp 0.02t= −  Fig. 5.3.4: Simulation of the advection front, with 

By comparing the solution of the constant finite element discretization of 50 elements 
with a Cr  values with  and 0.5β = 1.0β = , it can be shown that a higher Cr  value 
again leads to a more accurate solution, Fig. 5.3.5. 
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Fig. 5.3.5: Courant number analysis for the mesh with 50 elements 

From the above can be seen, that both the diffusion and the advective transport 
simulations with RoAM can accurately capture the intended phenomena. It was also 
shown that, the advective transport algorithm is stable under all tested finite element 
conditions, even though quite a fine finite element discretization is needed to reduce 
the numerical diffusion to zero. 

 

 72



Chapter 6 

Material Parameters Determination 

Tekst 

6.1 Introduction 
In the previous chapters, moisture diffusion and mastic erosion were identified as 
physical moisture damage inducing processes. More specifically, in chapter 3 and 4 
the governing equations and finite element formulations that are needed to simulate 
these processes are derived and in chapter 5 these formulations are compared with 
analytical closed form solutions. Table 6.1.1 gives a brief summary of the controlling 
parameters of these processes. 

Table 6.1.1: Summary of controlling parameters 

Process Controlling parameters 

Moisture diffusion - Moisture diffusion coefficient  [ ] mD 2L / T

- Maximum moisture capacity [ ] max
mC 3M / L

Mastic erosion - Mastic desorption coefficient  [ ] dK 3L / M

- Mastic diffusion coefficient mα  [ ] 2L / T

- Mastic dispersion coefficients l,tα  [L] 

The actual effect that these moisture induced damage processes have on the 
mechanical performance of the asphalt components and their bond, is discussed in 
detail in chapter 8-9.  

In this chapter, in section 6.3 and 6.4, experimental procedures are developed for 
determination of most of the above described controlling parameters.  

However, in addition to the moisture induced damage processes which are identified 
and modeled in this dissertation, a considerable effort has been spent in the USA to 
develop another approach, commonly referred to as the ‘surface energy approach’, for 
fundamental characterization of moisture damage in asphalt mixes. And even though 
this methodology is unrelated to the approach developed in this dissertation, given the 
relevance to the topic and its timeliness, in section 6.2 this method is briefly 
discussed. 
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6.2 Theoretical work of adhesion measurements 
In the following, a short background is given of the theory of surface free energies 
and work of adhesion. 

If an attempt is made to push a probe through the surface of a liquid, the probe 
encounters a resistance to the deformation of the surface; known as surface tension. 
Surface tension [dyne/cm or erg/cm2] and surface energy [erg/cm2 or ] are 
numerically identical for liquids. Techniques for the measurement of the surface 
tension of liquids have their basis in two types of measurements: probes and surface 
area increase. The probe methods generally involve the passage of a probe through the 
surface and the measurement of the force necessary to accomplish that passage. Such 
methods include the Wilhelmy plate and the du Nuoy ring. Surface area can be used to 
measure the surface tension of liquids since the minimizing of surface energy is a 
driving force in nature. It could for instance be measured by placing a clean capillary 
tube into a pool of liquid and observe the height to which the liquid travels up the tube 
under the influence of capillary pressure. 

2mJ / m

According to surface tension theory, the work required for separating reversibly two 
bulk phases α  and β  from their equilibrium position is the work of adhesion  aW

 aW α β αβ= γ + γ − γ  (6.1) 

where  is the surface tension of phase  and iγ i αβγ  is the interfacial tension between 
phases α  and β . This equation is known as the Dupré equation [Dupré 1869].  

The work of adhesion is also described in literature as the decrease of Gibbs free 
energy per unit area when an interface is formed from two individual surfaces. Thus, 
the greater the interfacial attraction, the greater the work of adhesion will be. 
Rearrangement of (6.1) gives 

  (6.2) aWαβ α βγ = γ + γ −

indicating that the greater the interfacial attraction, the smaller the interfacial tension 
is.  

The deepest potential well that is available for the interaction between two atoms or 
molecules is that formed when they share a pair of electrons. That is, the deepest 
potential energy well is obtained when a covalent bond is formed. Having the 
covalent bond in mind, the expression for surface energy can be formulated as: 

  (6.3) dγ = γ + γp

where  is the dispersion force component and dγ pγ  is the polar (or acid-based) 
contribution to the surface energy. Using the hypothesis of Owens and Wendt [1969] 
it is found: 

 d d p p
a 1 2 1 2W 2 2= γ γ + γ γ  (6.4) 
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This expression deals only with a situation where the two materials are in contact and 
no other material is present. In the case of the presence of a third material, such as 
moisture, which has its own polar and dispersive character it can be shown that 

 d d p p d d p p d d p p
a,L L 1 L 2 L 1 2L L1 2W 2 ⎡ ⎤= γ − γ γ − γ γ − γ γ − γ γ + γ γ + γ γ⎢ ⎥⎣ ⎦1 2  (6.5) 

where  is the surface energy of the liquid (water) and  are the components of 
liquid surface energy, i  is either  (dispersive) or  (polar).  

Lγ
i
Lγ

d p

If the values of the  are known, then the predicted thermodynamic work of adhesion 
at an interface in the presence of a liquid can be calculated whereby a negative value 
of the work of adhesion indicates that the system under consideration is unstable in 
the presence of moisture.  

i
jγ

This, in short, is the theory behind work of adhesion measurements, based on surface 
energy theory. This theory has been brought forward, mainly by the Texas A&M team, 
to be utilized for moisture susceptibility characterization of asphaltic mixes [Bhasin 
2006], [Masad et al. 2006b], [Zollinger 2005], [Lytton et al. 2005]. In this, the bulk 
phases  and  are represented by the aggregate and the bitumen and the calculated 
work of adhesion gives the ‘bond strength’ of the aggregate-mastic interface, with and 
without moisture. 

α β

It has been shown that the actual work needed to break an aggregate-mastic bond is 
several orders in magnitude higher than the theoretical work of adhesion [Fini 2006]. 
This clearly indicates that, in addition to Lifshitz van der Waals and acid and base 
forces, additional bonds are made between the aggregates and the mastic. A more 
detailed discussion of aggregate-mastic bond properties is given in section 2.2. 
Additionally, an important factor for moisture susceptibility characterization is the 
time frame over which moisture damage develops. The surface free energy theory 
does not account for the time it would take for moisture to reach the aggregate-mastic 
interface, nor does it include the amount of moisture which would be needed to 
replace the mastic from the aggregate. 

However, if indeed, based on surface energy measurements one would be able to rank 
mastic-aggregate combinations for the quality of their bond in the presence of 
moisture, this would constitute a powerful tool for a-priori material selection. In 
Appendix 6.1 a detailed description is given of the experimental determination of 
surface tension of the asphalt components.  

In the following, a method is given for determination of moisture diffusion 
coefficients, needed for moisture diffusion simulations. 
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6.3 Moisture diffusion coefficients measurements 

6.3.1 Moisture sorption principle 
The moisture sorption experiment is a technique for determination of the moisture 
diffusion coefficient of the asphalt mix components. It is based on the rate of 
specimen weight increase due to moisture absorption when the specimen is placed in 
a conditioning chamber with controlled relative humidity, Fig. 6.3.1. 

Moisture vapour 

Sample 

(a) (b)
 

Fig. 6.3.1: Schematic of mastic/aggregate sample in a moisture chamber 

In order to determine the diffusion coefficients of the materials, the samples must 
have a known geometry. For the following equations, the geometry of the materials 
should always consist of a sheet of material (i.e. length and width >> thickness) of 
known thickness  h

In the detailed description of the experimental procedure, the assumption is made that 
the diffusion process is of ‘Fickean’ nature. 

Assuming a constant diffusion coefficient and no volume change of the samples upon 
moisture infiltration, the experimental procedure is to place the sample of thickness h  
in the conditioned chamber with a controlled vapour relative humidity RH , 
maintained at a constant temperature and pressure, and to observe the rate of uptake 
of vapour by monitoring the increase in weight of the sample. The mastic must be 
initially free of vapour (dry sample).  

(1)

The appropriate solution of the diffusion equation for a sheet of material may be 
written as [Crank 1975] 

 
( )

( )( )2 2 2D 2m 1 t / ht
2 2

m 0

M 8 11 e
M 2m 1

∞ − + π

∞ =
= −

π +
∑  (6.6) 

if the uptake is considered to be a diffusion process controlled by a constant diffusion 
coefficient . Here,  is the total amount of vapour absorbed by the sample at time 

, and  is the equilibrium sorption attained when the sorption curves reaches a 
constant value.  

D tM
t M∞
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The application of Eq. (6.6) is based on the assumption that the sheet of mastic is 
immediately placed in the vapour and that each surface attains a concentration value 
corresponding to the equilibrium moisture capacity M∞  for the vapour pressure 
existing, and remains constant afterwards. 

The experiment should be continued until the moisture sorption curve reaches its 
maximum moisture uptake . Then, the time  should be determined at which the 
sample had reached half of this amount 

M∞ t

tM / M 0.5∞ = . This time is called the “half-
time” of the sorption process and will be indicated in the following as , 0.5t Fig. 6.3.2. 

The value of  for which 2t / h tM / M 0.5∞ =  is given by 

 
92 2

0.5
2 2

t 1 1ln
16 9 16h D

⎛ ⎞⎛ ⎞π π⎜− − ⎜ ⎟⎜ ⎟⎜ ⎟π ⎝ ⎠⎝ ⎠

⎟  (6.7) 

From this the diffusion coefficient can be found as 

 
( )2

0.5

1D 0.049
t / h

=  (6.8) 

M

 

Fig. 6.3.2: Principle of half-time diffusion 

This experimental procedure must be repeated for the same relative humidity , 
for samples with various thicknesses. 

( )RH 1
Table 6.3.1 gives an example of the 

experimental results of two (fictitious) materials with three different sample 
thicknesses. It can be clearly seen that different geometries of the same material 
should give similar diffusion coefficients. 

M∞  

0.5tM  

 

t
0.5t  
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Table 6.3.1: Schematic of diffusivity measurements for two materials 
with different thicknesses 

Material Mastic film Half time t/(l^2) D
Type  thickness [mm] [hr] [hr/mm2]  [mm2/hr]

A 1 2 2 0.0245
A 2 8 2 0.0245
A 5 50 2 0.0245
B 1 10 10 0.0049
B 2 40 10 0.0049
B 5 250 10 0.0049  

 

The experiment should now be repeated for the same materials, with a constant 
sample thickness but with a different relative humidity RH . (2)

The different moisture vapour concentrations should give the same diffusivity 
coefficient for the same material samples. For the sorption curves this would mean 
that the value of  should be the same for different samples of the same 
material, 

2
0.5t / h

Fig. 6.3.3. 

 M

2/t h2
0.5 /t h

. , ( )Mat A RH α

. , ( )Mat A RH β

. , ( )Mat A RH γ

. , ( )Mat A RH δ

 

Fig. 6.3.3: Schematic of sorption curves for the same material with a constant 
diffusion coefficient 

If, from the experiments, follows that the  value is significantly different for 
samples of the same material, exposed to various moisture vapour concentrations, the 
assumption that the diffusion coefficient is concentration independent is not valid. 

2
0.5t / h

Fig. 6.3.4 gives a schematic of sorption curves for a material with a concentration 
dependent diffusion coefficient. The curves show that for a higher maximum moisture 
uptake, lower values of  are found and, therefore, the measured diffusion 
coefficient increases as the concentration of moisture increases. 

2
0.5t / h
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M  

2/t h  
2

0.5 /t h  

Sampleα

Sample β

Sample γ

Sample δ

 
Fig. 6.3.4: Sorption curves for a material with a concentration dependent diffusion 

coefficient 

So far, focus has been placed on determining the rate of moisture diffusion into the 
asphalt components. Since finding the fundamental material parameters that control 
the moisture susceptibility of an asphalt mix is the main purpose of this experimental 
effort, it is also of great importance to know how fast the moisture would leave the 
wet asphalt mix after being exposed to a dry environment.  

Therefore, not only moisture sorption but also moisture desorption experiments must 
be performed. The experimental procedure is similar to the sorption procedure, 
described before. The main difference is that the desorption experiment starts on a 
fully ‘saturated’ sample (i.e. after the end of the moisture sorption experiment is 
reached) and the relative humidity in the chamber should be set to ‘zero’ . 0RH

With this procedure, the molecular moisture diffusivity coefficient of the materials, 
upon ‘drying’ of the materials will be measured. Furthermore, the remaining weight of 
the sample 0M , after reaching a constant minimum weight in the sorption curve, must 
be compared to its original dry weight. This is to check if the material is immobilizing 
water molecules. 

6.3.2 Adsorption of moisture on the outside of the film 
In the above procedure it is assumed that when the material examples are exposed to a 
moisture concentration that is higher than the samples’ intial (zero) moisture 
concentration, immediately a diffusion process starts. It may be true, however, that 
some of the diffusing molecules are immobilized at the surface of the sample by 
adsorbing to it. Obviously, if moisture is indeed adhering to the surface of the sample, 
this moisture mass  should be subtracted from the total moisture sorption 
curve before determining the diffusion coefficient . There are various ways of 
treating this issue, in the following a possible approach is discussed. 

surfaceM
D

Two specimens of the same surface area with different thicknesses should be 
prepared. The sides of the specimens should be coated with a water repelling (non- 
moisture adhering) coating to reduce the moisture adsorption as much as possible, 
Fig. 6.3.5. 
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Fig. 6.3.5: Two samples to filter out adsorbed surface moisture 

Both specimens should undergo the same moisture sorption experiment, as described 
above, with the same relative humidity .  RH

Since the volume of Specimen I in Fig. 6.3.6 is twice the volume of Specimen II, the 
moisture absorbed via a diffusion process  is also twice as much in Specimen I. 
The moisture adsorbed to the surface, however, is the same for both samples, since the 
surface area  is the same for both sample. 

diffM

A

 
Fig. 6.3.6: Sorption curves for (a) specimen I (b) specimen II 

Based on Fig. 6.3.7, the moisture sorption curves for both specimens can be expressed 
as 

 I diff surfaceM 2M M= +  (6.9) 

and 

 II diff surfaceM M M= +  (6.10) 

Therefore 

diff2M

surfaceM

t

M  

I 
diffM  

surfaceM  

t

M

II 

(a) (b) 

measured curve

measured curve 

2t

A

I 
Non-moisture adhering coating

t

A

Non-moisture adhering coating
II 
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 I II diffM M M M∞− = =  (6.11) 

Which gives the sorption curve for both specimens: 

 

diff2M

surfaceM

t

M  

I 
diffM

surfaceM

t 

M

II 

(a) (b) 
 

Fig. 6.3.7: Filtering out of the diffusion sorption curve 

Therefore, based on the above procedure, the moisture which is possibly adhering to 
the outside of the sample can be filtered out from the total mass increase. 

6.3.3 Experimental procedure 
The sorption device that was utilized to determine the surface tension of the 
aggregates, is also utilized for the moisture sorption experiments. Sorption analyses 
according to the procedure described earlier will be performed at a consistent 
temperature of 25°C  

Based on the above detailed description, the moisture sorption experiments can be 
performed. In Fig. 6.3.8: the experimental test procedure is described in steps. 

 

STEP Experimental procedure, Sample α  Determined parameter 

1 Initial geometry characterization 

Measurement of initial weight  and 

geometry of dry sample 

0M [ ] 3
0M [g], h mm , V[mm ]  

2 Moisture sorption experiment 

Measurement of sorption diffusion 

coefficient  and maximum moisture 

uptake 

sD

M∞  with a relative humidity ( )RH 1  

2
sD [mm / hr], M∞  

3 Swelling check h[mm]  
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Measurement of sample volume V  

4 Moisture desorption experiment 

Measurement of desorption diffusion 

coefficient  and immobilized moisture dD

( 0 0M M− )  with a relative humidity of  0RH

d 0D [mm / hr], M  

5 Concentration dependency check 

Repeat step 1-4 for a different relative 

humidity at step 2  RH(2)

( ) (s dD RH , D RH)  

6 Experiment consistency check 

Repeat step 1-5 for the same material with a 

different geometry ( l ) 

[-] 

Fig. 6.3.8:: Experimental procedure for determination of the diffusion coefficients 
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6.3.4 Determination mastic diffusion coefficients 
To enable realistic simulations of moisture diffusion into mastic films, it is important 
to know the diffusion coefficient of the mastic, which consists of pure bitumen and a 
granular filler. 

From diffusion experiments performed at the National Institute of Standards and 
Technology and at the Turner Fairbanks Research Centre, moisture diffusion 
coefficients ranging from 1.2 10-4 mm2/hr – 5.0 10-5 mm2/hr have been determined 
[Nguyen 1992, 1996], [Wei 2007]. 

Unfortunately, no data is available to date with regard to moisture diffusion 
coefficients of asphaltic mastics. For this reason, in the following, numerical analyses 
are performed to determine the diffusion coefficient of mastics, as a function of 
granular filler content. In these analyses the ‘half-time’ diffusion methodology as 
described in section 6.3.1 is utilized. 

A sheet of bitumen of size 500  x  500mμ mμ  x  50 mμ  is modelled, with elements of 
size 20  x  20  x  10 , mμ mμ mμ Fig. 6.3.9. 

500 mμ  
500 mμ  

50 mμ  

Bitumen 

 

Fig. 6.3.9: Finite element discretization of a sheet of bitumen 

Based on the available parameters, in the analysis a moisture diffusion coefficient of 
1.0 10-4 mm2/hr is utilized for the bitumen. 

The half-time diffusion principle into a plane sheet of material was expressed by Eq. 
(6.8), and is here repeated for sake of convenience 

 ( ) 12
0.5D 0.049 t / h

−
=  (6.12) 

where  is the time (“half-time”) when the material has absorbed half of its 
maximum capacity and  is the thickness of the sheet. Eq. 

0.5t
h (6.12) assumes moisture is 

only infiltrating the material from its plane faces.  

Since the maximum moisture uptake concentration is not known for all the 
mastics, nor influences the value of  which is to be determined in the analyses, the 
diffusion analyses are performed for a normalized moisture concentration 

, referred to as the moisture content. The moisture content values, as 

max
mC

0.5t

max
m mC / Cθ =
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calculated per gauss point, are transformed into equivalent mass values, by 
multiplying the moisture content values by the appropriate volumes. Finally, the total 
equivalent moisture mass uptake is computed by summing the moisture uptake over 
all the elements.  

For the ‘zero filler’ diffusivity computation, as well as to show the applicability of Eq. 
(6.12) for the finite element mesh shown in Fig. 6.3.9, a first moisture diffusion 
analysis is performed with RoAM on the pure bitumen mesh, whereby exposing the 
plane sheet bitumen to moisture from its (top and bottom) plane faces, Fig. 6.3.10. 
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Fig. 6.3.10: Simulation of moisture uptake due to diffusion into a plane sheet of 
bitumen with zero filler content 

From the computation of the moisture uptake, the half-time can be determined, as 
explained in section 6.3.1, Fig. 6.3.11. 
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Fig. 6.3.11: Computation of half-time diffusion value for pure bitumen 
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For the case of the pure bitumen, a half-time value of 0.5t 1.2 hr=  is determined. 
Substituting this value, together with the sheet thickness h 50 m= μ  into Eq. (6.12), 
indeed gives a diffusivity  of 1.0 10D -4 mm2/hr. 

Having confirmed the suitability of the chosen geometry of the finite element mesh, 
random computed mastics are generated. In these mastics, square filler particles of the 
size 20  x  20  x  10  are added to the bitumen. mμ mμ mμ

In the following, mastics are generated with a filler content of 2%, 5%, 10%, 25%, 
50%, 75% and 100% by volume, respectively. The 100% filler case is obviously equal 
to a plane sheet of the aggregate material, and is used to show the influence of the 
filler content over a range of 0 – 100 %. In practise, a wide range of aggregates is 
used as filler material for bitumen. Therefore, in addition to the filler content, the 
effect of the diffusivity of the aggregates themselves is also investigated by utilizing 
three different fillers with diffusivity values of 1.0 10-3 mm2/hr, 1.0 10-2 mm2/hr and 
1.0 10-1 mm2/hr in the analyses. 

In Fig. 6.3.12 and Fig. 6.3.13 the generated finite element mastics are shown for, 2% - 
10% and 25 % - 75% filler content, respectively. 

Utilizing the half-time diffusion methodology, as described in the above, the mastic 
diffusion coefficients are computed for the various filler contents, using the three filler 
types, Table 6.3.2. 

 

Table 6.3.2: Mastic diffusion coefficients D [mm2/hr] as a function of filler content  
for three different filler types, with D-bitumen 1.0 10-04 mm2/hr 

Percentage filler in mastic [% by volume] D-filler 
[mm2/hr] 0 2 5 10 25 50 75 100 

1.0 e-03 1.0E-04 1.38E-04 1.58E-04 1.98E-04 3.76E-04 6.73E-04 9.0E-04 1.0E-03

1.0 e-02 1.0E-04 1.47E-04 2.02E-04 4.37E-04 2.78E-03 5.48E-03 7.90E-03 1.0E-02

1.0 e-01 1.0E-04 1.50E-04 2.59E-04 1.69E-03 1.48E-02 5.43E-02 7.89E-02 1.0E-01
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Fig. 6.3.12: Randomly generated mastic, using 2- 10% (by volume) filler particles 

(a) bottom plane view (b) top plane view (c) filler particles distribution 
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Fig. 6.3.13: Randomly generated mastic, using 25- 75% (by volume) filler particles 

(a) bottom plane view (b) top plane view (c) filler particles distribution 
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In Fig. 6.3.14 and Fig. 6.3.15 the computed mastic diffusion coefficients are plotted as 
a function of filler content. 
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Fig. 6.3.14: Mastic diffusion coefficients distribution for 0 -100 % of filler content  
for three different filler types, with D-bitumen 1.0 10-04 mm2/hr 
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Fig. 6.3.15: Mastic diffusion coefficients distribution for 0 -10 % of filler content  
for three different filler types, with D-bitumen 1.0 10-04 mm2/hr 

Fig. 6.3.16 shows the moisture diffusion into the mastic and its components for the 
mastic with 25% filler content. 
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Fig. 6.3.16: Moisture diffusion into the mastic and its components 
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By dividing the computed moisture diffusion coefficients of the mastic with the 
moisture diffusion coefficients of the fillers, normalized diffusion values for the 
mastics are computed. The normalized values can be more easily compared and all 
three mastics seem to tend to an S-type shape, Fig. 6.3.17, ranging from 

bitumen
0%

filler

DD
D

=  for 0% filler content to  for 100% filler content. 100%D 1= .0
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Fig. 6.3.17: Normalized diffusivity versus filler content 

The inflexion points of the curves in Fig. 6.3.17, seem to be in the areas of 2-5%, 10-
20% and 20-40% for the three mastics with = 1.0 10fillerD -3 mm2/hr, 1.0 10-2 mm2/hr 
and 1.0 10-1 mm2/hr, respectively. 

It could therefore be postulated that the inflexion point of these curves is related to the 
value of filler bitumen100 D / D , since this roughly amounts to 3%, 10% and 32% for 
the three mastics. 

Given the moisture diffusion coefficients of the neat bitumen and the filler material, it 
would therefore be possible to develop a schematic of the mastic diffusion 
coefficients as a function of filler content, Fig. 6.3.18. 
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Fig. 6.3.18: Mastic diffusion coefficient as a function of filler content schematic 

In the above, the percentage of filler is expressed in percentage by volume. In general, 
specifications are made for bitumen filler contents, based on percentage by weight. 
For this reason, the filler content percentages (by weight) equivalences are calculated 
in the following. 

Utilizing a mean value for the bitumen density at 20  of 1.0 10C 3 kg/m3, the filler 
content equivalences, for percentages by weight, are calculated for various aggregate 
filler types, Table 6.3.3. 

Table 6.3.3: Filler content percentages by weight equivalences  

Percentage filler in mastic [% by weight] 
Filler type (x 10^3) 

[DWW 2006] 0% 
by vol. 

2% 
by vol. 

5% 
by vol. 

10% 
by vol. 

25% 
by vol. 

50% 
by vol. 

75% 
by vol. 

100%
by vol.

Limestone based 
(3.0 kg/m3) 0.0% 5.8% 13.6% 25.0% 50.0% 75.0% 90.0% 100 %

Granite based 
(2.7 kg/m3) 0.0% 5.2% 12.4% 23.1% 47.4% 73.0% 89.0% 100 %

Production dust 
(2.7 kg/m3) 0.0% 5.2% 12.4% 23.1% 47.4% 73.0% 89.0% 100 %

Morene sand based 
(2.6 kg/m3) 0.0% 5.0% 12.0% 22.4% 46.4% 72.2% 88.6% 100 %

Wigro 60K filler 
(2.6 kg/m3) 0.0% 5.0% 12.0% 22.4% 46.4% 72.2% 88.6% 100 %

Rhecal 60 filler 
(2.6 kg/m3) 0.0% 5.0% 12.0% 22.4% 46.4% 72.2% 88.6% 100 %

Sandstone based 
(2.3 kg/m3) 0.0% 4.5% 10.8% 20.4% 43.4% 69.7% 87.3% 100 %

Low density gravel 
(1.5 kg/m3) 0.0% 3.0% 7.3% 14.3% 33.3% 60.0% 81.8% 100 %
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In Fig. 6.3.19 and Fig. 6.3.20 the mastic diffusivity is plotted as a function of 
percentage filler content, by weight, for a limestone and a low density filler, 
respectively.  

By comparing the green curves for both filler types, it can be seen that for the same 
percentage of filler content (e.g. 50% by weight), the mastic diffusivity can be almost 
3x higher for the filler with a lower density, given the same filler diffusivity. 
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Fig. 6.3.19: Mastic diffusivity for a limestone based filler  
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Fig. 6.3.20: Mastic diffusivity for a low density filler 

Nevertheless, it is a plausible assumption that the diffusivity of a material and the 
density are related. Therefore, in reality, the comparison of Fig. 6.3.19 with Fig. 
6.3.20 is not as straightforward as it seems.  
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Postulating that a denser material has less micro-pores and therefore will give a lower 
overall moisture diffusivity value, comparing the red curve of the lime based filler 
with the green curve of the low density filler, would actually indicate an even bigger 
influence of the filler type on the mastic diffusivity. 

Filler material is in general added to bitumen to increase its stiffness and is chosen, 
mainly based on its availability and its past performance. In relation to reducing the 
moisture susceptibility of an asphaltic mix, mastic should be designed to have a low 
moisture diffusion coefficient. Therefore, in addition to the mechanical properties of 
the mastic, fillers should be selected to minimize the moisture susceptibility. 

Based on the above analyses, fillers could therefore be categorized in preferred order 
by its effect on the mastic diffusivity. Utilizing the same filler diffusion coefficient, 
the fillers can be categorized based on the mastic diffusion coefficient, Fig. 6.3.21. 
From this graph it could be concluded that the fillers with higher densities (e.g. 
limestone, dust and Wigro 60K) would be preferred over the fillers with lower 
densities (e.g. gravel). 

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

3.0E-03

3.5E-03

4.0E-03

4.5E-03

5.0E-03

0% 10% 20% 30% 40% 50%
filler content (% by weight)

M
as

tic
 d

iff
us

iv
ity

 [m
m

2/
hr

]

Limestone
Dust
Wigro 60K filler
Sandstone
Gravel

 

Fig. 6.3.21: Mastic diffusivity as a function of filler content for various fillers,  
with D-bitumen 1.0 10-04 mm2/hr and D-filler 1.0 10-02 mm2/hr 

By incorporating the relationship between high density and low diffusivity and visa-
versa, the fillers could be re-plotted, Fig. 6.3.22, whereby utilizing the parametric 
diffusivity values of 1.0 10-03 mm2/hr, 1.0 10-02 mm2/hr and 1.0 10-01 mm2/hr for the 
limestone, sandstone and low density filler fillers, respectively. 

From this graph, the same categorization would be made, i.e. limestone should still be 
preferred over gravel. The main difference between Fig. 6.3.21 and Fig. 6.3.22 is, that 
the effect of the mastic moisture susceptibility would be much higher, based on the 
second graph. 
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Fig. 6.3.22: Mastic diffusivity as a function of filler content for various fillers,  
with D-bitumen 1.0 10-04 mm2/hr, utilizing different filler diffusivities 

Even though in the above analyses a wide range of parameters is used and the filler 
densities given in Table 6.3.3 can be varying, depending on the source of the fillers 
and their manufacturer, it can be concluded that characterization of the moisture 
susceptibility of the mastic components and choosing a suitable filler percentage, can 
have a huge impact on the moisture diffusion values of the mastic. 

In section 9.6.2. of chapter 9, analyses are performed to determine the time of 
aggregate-mastic bond deterioration, as a function of mastic film thickness for a wide 
range of mastic diffusion coefficients. From these analyses the importance of the 
moisture diffusion coefficient of the mastic becomes clear. 
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6.4 Mastic desorption determination 
As discussed previously, when an asphalt mix is exposed to a moisture flow field, 
moisture will infiltrate into the mastic film and may have an adverse effect on both 
the mastic film and the aggregate-mastic bond. In addition to these two phenomena, 
there is an additional physical process which entails the desorption of the mastic from 
the aggregate in the presence of moisture. This effect may be a combination of 
advective transport, which accounts for transport of mastic by virtue of a water flow 
field, and additional loss of concentration of the mastic, named dispersion, which 
accounts for the loss of mastic by virtue of moisture content within the material and 
diffusion of the mastic into the water in the macro-pores. The combined effect, the 
loss of mastic, is referred to as the erosion of the mastic. 

To measure the erosion properties of a mastic, a mastic desorption test can be deviced. 
The intention for such a mastic desorption test is to measure how much mastic is lost 
from the mix due to a water flow field. A possible methodology may be based on a 
standard permeability test, with added features to measure the loss of mastic. 

In order to measure the loss of mastic due to a flow field, a core of mastic can be 
prepared through which a constant flow field is created, Fig. 6.4.1. 

Cored mastic

 

Fig. 6.4.1: Cilinder of mastic with a hole in the middle which is exposed to a constant 
water flow field 

At regular intervals, the mastic weight should be recorded. From this procedure the 
desorption of mastic due to the advective transport is measured. Because the moisture 
content within the mastic may influence the damage of the material due to a flow 
field, the sample should be moisture conditioned before tested. The velocity of the 
flow field should be monitored and kept as high as possible, to simulate the 
representative water flow field in the pavement due to the pumping action of the 
traffic load. 

In addition to measuring the weight change, the water which passed through the core 
should be chemically analyzed and should match with the recorded weight changes. 
Any discrepancy in the comparison of these two records can be explained by moisture 
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infiltration into the mastic, which was counteracting the monitored weight loss of the 
mastic. 
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Appendix 6.1 

Experimental Determination of Work of Adhesion 

7 text 
 

The surface tension γ  of an asphaltic binder can be split into a dispersive or apolar 
component, also known as Lifshitz-van der Waals component, and a polar or acid-
base component, as shown in the following  

  (A 6.1.1) LW ABγ = γ + γ

where is the Lifshitz-van der Waals component and  is the acid-base 
component. 

LWγ ABγ

The acid-base term can be decomposed to a Lewis acidic surface parameter  and a 
Lewis basic surface parameter 

+γ
−γ  as follows:  

 AB 2 + −γ = γ γ  (A 6.1.2) 

To determine these components, dynamic contact angle measurements of the asphaltic 
binder with different liquids can be used.  

In this research, the Dynamic Wilhelmy Plate method is chosen to measure such 
contact angles. This method is based on kinetic force equilibrium when a thin plate is 
immersed and then withdrawn from a liquid solvent at a very slow and constant speed. 
The dynamic contact angle between an asphalt binder and a liquid solvent obtained 
during the immersing process is called “advancing contact angle”, Fig. A.6.1.1(a), 
while the dynamic contact angle during the withdrawal process, Fig. A.6.1.1(b) is 
called the “receding contact angle”. In this research, only advancing contact angle was 
considered for analyses, since it is difficult to measure the receding contact angle 
accurately.  

A microbalance measures the change in force FΔ  during the immersion and 
withdrawal process. These forces, in combination with a buoyant force correction, are 
used to determine the dynamic contact angle applying the kinetic equilibrium 
equation, as follows 

 ( )( ) ( )im L air t Lcos F V g / Pϕ = Δ + ρ −ρ γ  (A 6.1.3) 

where  is the contact angle ( ),  is the immersed volume ( ),  is the 

density of liquid solvent ( ), 

ϕ C imV 3cm Lρ
3g/cm airρ  is the density of air ( ),  is the 

perimeter of the sample ( ), 

3g/cm tP
cm FΔ  is the change in force ( ), and  is the 

surface tension of the liquid ( ). 
dyne Lγ

dyne/cm
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aϕ rϕ

(a) (b)  

Fig. A.6.1.1: Dynamic Wilhelmy Plate Method for  
(a) advancing contact angle aϕ  and (b) receding contact angle  rϕ

Assuming that equilibrium film pressure is negligible for an asphalt binder, Young’s 
equation and Dupré’s equation can be combined with Good’s postulate to obtain the 
so called Young-Dupré equation. The resulting Young-Dupré equation can be 
expressed as follows: 

 ( )1 cos LW LW2 2 2L S L S L+ ϕ S L
− + += + +γ γ γ γ γ −γ γ

 

S

S

 (A 6.1.4) 

Where  and  are the surface tension components of the liquid solvent and 

 and  are the surface tension components of the asphaltic binder. 

,LW
L L

+γ γ L
−γ

,LW
S

−γ γ
S
+γ

In the above equation, the surface tension components of an asphalt binder are given 

by the three unknowns (  and ,LW
S

−γ γ
S
+γ ). To obtain these unknowns, dynamic contact 

angles must be measured in at least three different liquid solvents. The surface tension 
characteristics of these liquid solvents must be known a priori.  

Depending on the chemical composition of the bitumen, water, glycerin and 
formamide may be used as liquid solvents because of their relatively large surface 
tension, immiscibility with most asphalt binders, and differing surface tension 
components.  

A Dynamic Contact Angle (DCA) analyzer, can be used for measuring advancing 
contact angles. Cover glasses can be partially coated with an asphalt binder. The 
following experimental setup and procedure was developed and utilized by the 
Oklahoma Transportation Centre and can be used for sample preparation and contact 
angle measurements. 

For cleaning, cover glass plate should be placed into an oxygen flame, called flaming, 
horizontally along its length in a moving condition for at least three times. The 
flaming of a single cover glass plate does not take more than a few seconds. 

For sample preparation, approximately 100 g of asphalt binder can be poured in a tin 
can, and the tin can must be heated in a gravity oven for 2 hours at 163ºC. Each cover 
glass plate can then be dipped with a vertical orientation into the hot asphalt binder, to 
a depth of about 2 cm for approximately 5 seconds. After dipping, the sample should 
be held above the asphalt binder for an additional 5 seconds to allow excess asphalt 
binder to drop into the tin can. Samples can then be kept in a sample holder with 
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coated end up for 2 minutes. Sample preparation should be done inside a gravity oven 
with the help of forceps and a sample holder. The aforementioned method provides a 
uniform coating of at least 1 cm in length at the top end of the cover glass plate. 
Prepared samples may be kept overnight inside a desiccator before thickness 
measurement, Error! Reference source not found.. The thickness of the samples can 
be measured using an Image Analyzer. 

 

Fig. A.6.1.2: Samples in a sample holder. 

For contact angle measurement, triplicate samples should be used for each of the three 
different solvents, namely, water, glycerin and formamide. No solvent should be 
reused for any two samples. Both motor and balance of the DCA analyzer should 
calibrated at the beginning of each day the device was used. The sample can be placed 
in the microbalance with the help of a sample holder such that it remained freely 
hanging in a vertical orientation for the duration of measurements. Liquid solvent to 
be used for measuring contact angles should be poured in a clean beaker and placed 
under the mounted sample. The distance between the surface of the liquid solvent and 
the bottom of the sample should be maintained below 4 mm before the start of the test 
by moving the stage up and down, as desired.  

 

Fig. A.6.1.1: Surface tension measurements 

The beaker is then allowed to move vertically upward, Fig. A.6.1.1. No change in 
weight data should occur before the sample touches the liquid solvent. A plus symbol 
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inside a circle shows the ZDOI (Zero Depth of Immersion). The samples can be 
dipped into the liquid solvent up to 6 mm from the Zero Depth of Immersion at the 
same advancing rate. The sample should then be held steady for 2 min (dwelling time) 
before withdrawing from the liquid solvent at the same speed. The lower portion 
shows the weight (force) data for advancing contact angle, while the upper portion 
shows the same data for receding contact angle. 

In summary, using the above described procedure, the surface tension values of the 
mastics can be determined. To determine the work of adhesion with and without 
moisture in the interface for the mastics and aggregates via Eq. 6.4 and Eq. 6.5, the 
surface tension of the aggregates also need to be determined. 

For the measurement of the surface tension of the aggregates, the above procedure can 
not be utilized. Instead, a universal gas adsorption method may be used, which utilizes 
the characteristics of adsorption of a particular gas solvent onto the surface of an 
aggregate to indirectly determine the surface energy of the aggregate. This method 
can accommodate the peculiarities of the irregular shape, mineralogy and rough 
surface texture of the aggregate and details of the procedure can be found in [Cheng 
2003].  
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Chapter 7 

Elasto-Visco Plastic Constitutive Model for Mastic 

Introductusction 

7.1 Introduction 
In the previous chapters of this dissertation the theory and formulations were given of the 
physical damage processes in asphaltic mixes, when exposed to moisture. It was shown that 
RoAM enables the simulation of water flow, moisture diffusion and loss of a mastic 
concentration via a combined advective/dispersive process. However, the reason for 
simulating these physical processes is, to evaluate the changing physical material 
characteristics of the asphalt components, due to damage caused by moisture infiltration, while 
being subjected to mechanical (traffic) loading which, by itself, is also causing damage. 
Therefore, to accurately capture the material response under loading, a constitutive model for 
the asphalt components is needed. 

As discussed earlier, asphaltic mixes are in this research considered on a component level, i.e. 
aggregates, mastic, aggregate-mastic interface and the macro-pores. Obviously, the macro-
pores do not contribute to the mechanical properties of the mix, and as such, do not need a 
mechanical material model. The other components, i.e. the aggregates, the mastic and their 
interface, are of great importance in the mechanical properties of the mix and do need a robust 
constitutive formulation. Since the aggregate material response is assumed to behave in a 
fairly straight forward elastic-like manner, the main focus in this chapter shall lie on the more 
complex formulations of the mastic material model. The mastic material model, however, can 
also be used for simulation of the aggregate and interface response behavior.  

So far, mastic has been treated in this dissertation as a homogeneous material. However, 
mastic normally consists of bitumen, granular particles with a diameter in the order of 

 (sand particles) and granular particles with a diameter in the order of  (filler 
particles). In other words, going one scale down from the asphalt components, mastic could 
also be considered as a composite material, 

75 m< μ0.5mm∼

Fig. 7.1.1.. 

 

Fig. 7.1.1: Mastic as an asphaltic mix, but one scale down 
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Therefore, the response behavior of an asphaltic mix and that of its mastic exhibit similar 
characteristics which can be captured by the same material model.  

In this chapter, a new generic material model for the mastic is presented. This model is 
developed at the Section of Structural Mechanics in the context of the ongoing asphalt 
modeling efforts, [Scarpas, 1997-2006], and can also be applied to the asphalt mix itself. The 
formulations which are given in this chapter are for the dry material response. In Chapter 8, 
the effect of moisture on the material model is discussed. Chapter 9 gives the combined 
physical-mechanical model, where the physical moisture induced damage processes, as 
discussed in Chapter 3-5, and the mechanical damage processes, as discussed in Chapter 7-8, 
are brought together. 

7.2 Mastic constitutive model  

7.2.1 Elasto-visco-plastic material response  
In general, the deformation that an asphaltic material builds up during loading consists of 
elastic, visco-elastic and plastic deformation, which becomes visible after the load is removed 
from the material, Fig. 7.2.1. What makes asphaltic materials such challenging materials to 
model, however, is not just the combined elasto-visco-plastic response of the material, but its 
dependency on the temperature  and the rate of deformation T ε . As Fig. 7.2.1 indicates, for 
higher strain rates the material behaves quite stiffer, as it also does at lower temperatures.  

plastic deformation 

ε  

t  

ε  
T

viscous deformation 

elastic deformation 

 

Fig. 7.2.1: General response of an asphaltic material  

Constitutive models for asphaltic materials can be developed by combining the features of 
purely elasto-plastic and purely visco-elastic materials to create a more general category of 
constitutive models termed elasto-visco-plastic.  

Fig. 7.2.2 shows a one-dimensional schematic of such a material model consisting of a single 
elasto-plastic component in parallel with an arbitrary number of viscoelastic ones. It would be 
beneficial for the modeling to be able to distinguish the individual visco-elastic and elasto-
plastic material response, evaluate each of them with their own parameters and sum them up to 
give the overall response. Unfortunately, all of the response characteristics interact with each 
other in a three dimensional fashion, and make it therefore impossible to simply add up the 
effects in one direction. Therefore, a generic three dimensional energy based model is 
proposed, which operates on finite (i.e. large) strains, which has as an additional benefit that 
there are no restrictions regarding the range of strain in which the material can be modeled.  
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Fig. 7.2.2: Schematic of a one dimensional elasto-visco-plastic model 

In the following, the deformation tensor, which determines the total deformation response of 
the material due to loading is formulated and the individual visco-elastic and elasto-plastic 
contributions and their coupling are derived. 

7.2.2 Multiplicative decomposition 
A vector  in the deformed current configuration is related by means of the deformation 
gradient tensor  to its undeformed (reference) configuration via the relation 

dx
F

 d d=x F X  (7.1) 

If it is now assumed that the forces acting on the material element are removed, the initial 
reference configuration will only be obtained if the material is elastic. In all other cases, 
another configuration will be obtained in which the original vector d  is mapped onto vector 

 with the subscript r indicating the residual nature of deformation, 
X

rdx Fig. 7.2.3. 
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Fig. 7.2.3  Multiplicative decomposition of the deformation gradient 
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Let  denote the deformation gradient relating the residual deformation configuration to the 
current configuration. Then, according to Eq. 

eF
(7.1) 

 ed d r=x F x  (7.2) 

Similarly, if  denotes the deformation gradient relating the residual deformation 
configuration to the reference configuration, then it also holds 

rF

r rd d=x F X  (7.3) 

e rd d=x F F X  (7.4) so that 

e r=F F F  (7.5) and therefore 

The process represented by Eq. (7.5) is known as the “multiplicative decomposition” of the 
deformation gradient to a residual deformation component and a component signifying the 
elastic unloading that the material must undergo from the configuration at time  to the 
residual configuration. 

t

The concept of multiplicative decomposition of the deformation gradient provides an elegant 
tool for description of the three dimensional response of elasto-visco-plastic material models 
consisting of elasto-plastic and visco-elastic components. 
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Fig. 7.2.4   Multiplicative decomposition of the deformation gradient of an 

elasto-visco-plastic material 

As shown schematically in Fig. 7.2.4, the deformation gradient of a material in which the 
elasto-plastic and the viscoelastic components act in parallel can be decomposed as 

e v=F F Fp∞=F F F          ;          (7.6) 

in which  the elastic component of the deformation gradient of the elasto-plastic element ∞ =F
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     the plastic component of the deformation gradient of the elasto-plastic element p =F

     the elastic component of the deformation gradient of the visco-elastic element e =F

     the viscous component of the deformation gradient of the visco-elastic element v =F

Furthermore the following definition hold: 
T

T
pp p

∞ ∞=

=

C F F

C F F
∞ e       ;        (7.7) 

T
ee
T
vv v

=

=

C F F

C F F

where  is the right Cauchy-Green strain tensor, and shall be referred to from here on as the 
strain tensor. 

C

Therefore, using Eq. (7.6) and Eq. (7.7), it can be shown 
T T

v e v
T
p p∞

= =

=

C F F F C F

F C F
  (7.8) 

With this, a definition has been derived to compute the total strain tensor of the material , 
based on either of the elastic strain tensors and the plastic or the viscous deformation gradient, 
respectively.  

C

However, what distinguishes one material from another is its stress-strain response. In this 
thesis, it is assumed that the constitutive behavior of the mastic can be simulated via hyper-
elasticity theory. This means, that the existence of a so-called Helmholtz free-energy function 

 is postulated. In the following, the stress tensor in the intermediate configuration, based the 
Helmholtz free-energy function, is derived. 
Ψ

7.2.3 Local Dissipation Model 
The Helmholtz free energy function for a three dimensional model equivalent to the 
generalized model proposed in the above can be expressed as 

( ) ( )v e p p,∞Ψ = Ψ + Ψ ξC C  (7.9) 

where  is a measure of the plastic deformation and will be explained in more detail later on. pξ

The second law of thermodynamics states that a material can either be non-dissipative or 
dissipative, but it cannot produce energy as such. In writing, this is often referred to as the 
Clausius-Planck local dissipation inequality and can be formulated as 

p pv1
e2

e p
: : : ∞

∞

⎡ ⎤∂Ψ ∂Ψ⎡ ⎤∂Ψ
− − + ξ⎢⎢ ⎥∂ ∂ ∂ξ⎢ ⎥⎣ ⎦ ⎣ ⎦

S C C C
C C

 p 0≥⎥  (7.10) 

where S  is the second Piola-Kirchhoff stress tensor. 

It has been shown [Scarpas, 2006] that the above inequality can be reformulated as 
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  (7.11) 

By standard arguments, [Coleman & Gurtin 1967], on the basis of Eq. (7.11), the stress tensor 
 can be additively decomposed into a viscoelastic and a plastic component vS pSS   

p1 T 1v
v v p

e

e

2 2
∞

∞

T
p

− − − −∂Ψ∂Ψ
= +

∂ ∂

= +

S F F F F
C
S S

C  (7.12) 

Also the following inequalities are obtained 

T Tv
e e e e v

e
2 :− 0∂Ψ

≥
∂

F F F F
C

l  (7.13)  

p T T
p p

p
2 :∞ ∞ ∞ ∞

∞

−∂Ψ ∂Ψp 0− ξ ≥
∂ ∂ξ

F F F F
C

l  (7.14) 

Until here, the general frame-work of the large-strain, energy based, formulation has been set-
up. To evaluate the response evolution, the stress and strain tensors need to be defined in the 
intermediate configuration. Since the visco-elastic and elasto-plastic components have their 
own intermediate configuration, Fig. 7.2.4, they are treated separately. In the following the 
formulations for the elasto-plastic component are derived. 

7.2.4 Elasto-Plastic Component 
To set-up the equations on the intermediate configuration, first, the Lagrange-Green strain 
tensor is defined in the reference configuration as 

( )T1
2= −E F F I  (7.15) 

or in terms of the decomposition of Eq. (7.6)  as 1

( )T T1
p p2 ∞ ∞= −E F F F F I  (7.16)  

By performing a push forward or a pull back operation, tensors can be mapped from the 
reference or the current configuration, respectively, onto the intermediate configuration. In 
general, tensors defined in the reference configuration are expressed in capital symbols and 
tensors defined in the current are noted by small symbols. In the following, tensors defined on 
the intermediate configuration, Fig. 7.2.4, are noted by a cap ( )•̂ . 
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On the intermediate configuration, the Lagrange-Green strain tensor is defined by performing 
a push-forward operation, from the reference to the intermediate configuration 

T 1
p p

ˆ − −=E F EF  (7.17) 

which upon substitution of E  from Eq. (7.16) becomes 

( )
( )
( ) ( )

T 1 T T T1
p p p p p p2

T T 11
p p2

11 1
p2 2

p

ˆ

ˆ ˆ

∞ ∞

∞ ∞

∞

∞

− − − −

− −

−

= = −

= −

= − + −

= +

E F EF F F F F F I F

F F F F

C I I b

E E

1

 (7.18)  

defining thus, on the intermediate configuration, the elastic Lagrange-Green strain tensor as 

(1
2

ˆ
∞ ∞= −E C )I ( )11

p p2
ˆ −= −E I b and the plastic Euler-Almansi strain tensor as . 

By means of the same push-forward operation as in Eq. (7.17), the rate of deformation tensor 
on the intermediate configuration can be expressed in terms of the Lagrange-Green strain rate 
tensor E   

  (7.19) T
p p

ˆ − −=d F EF 1

or, after substitution from Eq. (7.16), and utilizing ∞ ∞ ∞F F= l  , T T T
∞ ∞ ∞F F= l p p pF = l , F

T

 and 
T T
p p pF F= l  and  ( ) ˆ2∞ ∞ ∞ ∞ ∞= − +T TF F F F I I = E I+

( )

( )

T T
p p p p

T T
p p p p

T T T T
p p

T T T

F F F F F F F F

F F F F F F F F

F F F F F F F F F F F

F F F F F F F F

E

T T 1 T T 1
p p p p

T T 1 T T 1
p p p p

T T 1 1
p p

T T T
p p

T
p

ˆ

1ˆ
2

1

ˆ

2
1
2
1 ˆ2ˆ
2

− − − −
∞ ∞ ∞ ∞

− − − −
∞ ∞ ∞ ∞

− −
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

⎛ ⎞+ ⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟+ +⎜ ⎟⎜⎝ ⎠

= + + +

= + + +

=

F F F F
d

F F F F

F Fd

d

d

l l l l

l ( ) ( ) ( )( )

p p
−F

( ) ( )

I E I F F

E E F F

E E F d F d

E E E d

d d

T T
p

T T T T
p p p p

T T
p p p

T
p p p

p

ˆ

ˆ

ˆ2

1 1ˆ ˆ
2 2

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ

ˆ

ˆ ˆ

∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞

∞ ∞ ∞

∞

+ + + + +

= + + + + +

= + + +

= + + +

= +

d

d

d

d

l l l

l l l l l l

l l

l l

  (7.20) 

Where it can be shown that  
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( )
( )

T T
p p

T T
p p p p p p p p

1ˆ ˆ ˆ ˆ
2

1ˆ ˆ ˆ ˆ
2

∞ ∞ ∞ ∞ ∞ ∞= + + = +

= + + = +

d E E E

d E E E

l l

l l

l l

l l
  (7.21) 

defining thus, on the intermediate configuration, two Oldroyd type rates of the strain . An 
elastic one  and a plastic one  . 

Ê
ˆ
∞d pd̂

The second Piola-Kirchhoff stress can be also pushed forward to the intermediate 
configuration.  

T
p p∞ =S F S F  (7.22) 

The inner product of a stress tensor and its associated rate of deformation tensor describe the 
rate of internal mechanical work (or stress power). From this, it is said that the stress tensor is 
work conjugate to its strain tensor. Therefore, S , ∞S and ,  are work conjugate, 
respectively. Meaning that  

d̂E

  (7.23) ˆ: ∞=S E S d:

Substituting in the above the components of  it holds d̂

( ) ( )

( )

( )

e p

T T
e p e e p p p p p p

T T
e p p p p p p e e p

T T1
e p p p e e p2

e p e p

e e p

ˆ: :
ˆ ˆ: :

ˆ ˆ ˆ ˆ ˆ ˆ:

ˆ ˆˆ ˆ ˆ: :

ˆ ˆ ˆ: :

ˆ ˆ: : 2

ˆ ˆ: : I 2

∞

∞ ∞

∞

∞ ∞

∞ ∞

∞ ∞

∞ ∞

∞

=

= +

⎡ ⎤= + + + + +⎢ ⎥⎣ ⎦

⎡ ⎤= + + + + +⎣ ⎦

⎡ ⎤= + + + +⎣ ⎦

⎡ ⎤= + +⎣ ⎦

= + +

=

S E S d

S d S d

S E E E e e e

S E S e e e E E

S E S E E

S E S E

S E S E

S

l l l l

l l l l

l l l l

l l

l

{ }e p

e p

ˆ: :

ˆ: :

∞

∞ ∞

∞

∞

+ ≡

= +

TE S C A : BC B A : C

S E C S

l

l

ˆ

  (7.24) 

In the intermediate configuration, for the elasto-plastic component of the model, the 
Helmholtz free energy can be set up as 

( ),∞Ψ = Ψ ξC  (7.25) 

 : ∞
∞

:∂Ψ ∂Ψ
Ψ = + ξ

∂ ∂ξ
C

C
 (7.26) 

Eq. (7.26) can be further elaborated as 
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( )

T

1 1
p p

1 1
p p

2 : : 2 : :

2 : :

2 : 2 :

∞ ∞ ∞ ∞
∞ ∞

− −
∞

∞

− −
∞ ∞

∞ ∞
:

∂Ψ ∂Ψ ∂Ψ ∂Ψ
Ψ = + ξ = + ξ

∂ ∂ξ ∂ ∂ ξ
∂Ψ ∂Ψ

= + + ξ
∂ ∂ξ
∂Ψ ∂Ψ

= + +
∂Ψ

ξ
∂ ∂ ∂

F F F F
C C

F FF FF
C

F FF F FF
C C

  (7.27) 

ξ

Utilizing the tensor identity  it results TA:BC AC :B=

1
p2 : 2−

∞ ∞
∞ ∞

∂Ψ ∂Ψ
=

∂ ∂
F FF F F

C C
T

p :− F

1

 (7.28)  

1 1
p p p p
− −= −F F F F 1

p
−

∞ =F FF−By means of the identity  and the identity  it holds 

( )1 1 1 1
p p p p p p2 : 2 : 2 :− − −

∞ ∞ ∞
∞ ∞ ∞

∂Ψ ∂Ψ ∂Ψ
= − = −

∂ ∂ ∂
F FF F F F F F F F F

C C C
−

∞ F  (7.29)  

Utilizing the tensor identity  it results TA:BC B A:C=

1 T 1 1
p p p p2 : 2 : 2 :− −

∞ ∞ ∞ ∞ ∞
∞ ∞

⎛ ⎞ ⎛ ⎞∂Ψ ∂Ψ ∂Ψ
− = − = −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

F F F F F F F F C F
C C p p

−

∞∂
F

C
 (7.30)  

which can be further simplified by means of the identity  TA:BC AC :B=

1 T
p p2 : 2−

∞ ∞
∞ ∞

∂Ψ ∂Ψ
− = −

∂ ∂
C F F C F

C C p p:− F  (7.31)  

(7.28) and Eq. (7.31) into Eq. (7.27) Substituting Eq. 

T T
p p p2 : 2 :− −

∞ ∞
∞ ∞

∂Ψ ∂Ψ ∂Ψ :Ψ = −
∂ ∂

F F F C F F
C C

 + ξ
∂ξ

 (7.32) 

so that the Clausius-Planck local dissipation inequality reads  

T T
p p p

T
p p

:

: 2 : 2 :

2 : 2 : q

− −
∞ ∞

∞ ∞

−
∞ ∞

∞ ∞

= − Ψ

0

∂Ψ ∂Ψ ∂Ψ
= − +

∂ ∂

⎡ ⎤∂Ψ ∂Ψ

− ξ
∂ξ

= − + + ξ⎢ ⎥∂ ∂⎣ ⎦

P F

P F F F F C F F
C C

P F F F C
C C

D

l

 (7.33)  

≥

from which by standard argumentation the first Piola-Kirchhoff stress tensor is obtained as 

T
p2 −

∞
∞

∂Ψ
=

∂
P F F

C
  (7.34) 

and the dissipation inequality 
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 p2 : q∞
∞

0∂Ψ
+ ξ ≥

∂
C

C
l  (7.35) 

or, after defining the Mandel stress tensor as 

2 ∞ ∞ ∞
∞

∂Ψ
= =

∂
C C

C
Σ S

0

  (7.36) 

with  the second Piola-Kirchhoff stress tensor defined in the intermediate configuration, 
inequality 

∞S
(7.35) can be expressed as 

p: q+ ξ ≥Σ l  (7.37)  

∞SFor completeness the push-forward operation of  is reiterated 

TJ ∞ ∞ ∞= =τ σ F S F  (7.38) 

On the basis of inequality (7.37) the following constrained minimization statement can be set 
up 

( )
( )
pminimize : q

sub ject to f , q 0

− +

≤

Σ ξ

Σ

l
  (7.39) 

which is equivalent to the following set of plastic evolution equations 

( ) ( )

1
p p p

f
q

0 ; f , q 0 ; f , q 0

−= = λ

⎛ ⎞∂
= λ ⎜ ⎟∂⎝ ⎠

λ≥ ≤ λ =

F F N

ξ

Σ Σ

l

  (7.40) 

in which  is the plastic consistency parameter, λ f= ∂ ∂N Σ  and  is the Drucker 
Prager yield surface and is discussed in Appendix 7.2.  

(f , qΣ )

The flow rule expressed by Eq. (7.40)1 can be written as 

p
pt

∂
= λ

∂

F
N F  (7.41)  

7.2.5 Elasto-Plastic stress Reduction Procedure 

7.2.5.1 Elasto-Plastic Trial Elastic State 
To solve the above equations, using a finite element method, they need to be discretized in 
time (and space). Therefore, from Eq. ∞F(7.6)  the elastic deformation gradient 1  can be 
expressed as 

t t t t t t 1
p∞

+Δ +Δ +Δ=F F −F  (7.42)  

If it is temporarily assumed that during the motion in the time interval [ ]t , t t+Δ  no further 
plastic deformation takes place, i.e. if it is temporarily set 
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t t t t t t
p p ;+Δ +Δ= ξ = ξF F  (7.43) 

then, an approximate elastic deformation gradient can be computed as 
t t t t t 1

pt rial ∞
+Δ +Δ=F F F−  (7.44)  

7.2.5.2 Elasto-Plastic Flow Rule Discretization 

The evolution problem defined by Eq. (7.41) can be solved in the time interval [ ]t , t t+Δ  to 

give a first order accurate estimate for t t
p

+Δ F  

[ ]t tt t t
p pexp +Δ+Δ = ΔλF N F

ΔλN

]

 (7.45)  

in which . tΔλ = λΔ

Substituting the above in Eq. (7.42) 

  (7.46) 
[ ]

[ ]

t tt t t t t 1
p

t tt t
t rial

exp

exp

∞

∞

+Δ+Δ +Δ −

+Δ+Δ

= −

= −Δλ

F F F

F N

The corresponding elastic right Cauchy-Green tensor is therefore 

[

[ ] [ ]

t t t t t tT

t t Τ T
trial t ria l

t t
t ria l

exp exp

exp exp

∞ ∞ ∞

∞ ∞

∞

+Δ +Δ +Δ

+Δ

+Δ

=

⎡ ⎤= −Δλ −Δλ⎣ ⎦

= −Δλ −Δλ

C F F

N F F

N C N

N  (7.47)  

The exponential of a tensor  can be expressed in terms of a Taylor series as A

[ ] n 2

n 1

1 1exp
n! 2! 3!

∞

=

= = + + +∑A A I A A 31 A  (7.48) 

[ ]
2

2exp I ...
2

Δλ
−Δλ = − Δλ +N N N  (7.49) hence 

Utilizing a first order expansion of the above into Eq. (7.47) 

[ ] [ ]

( ) ( )

( )

t tt t
t ria l

t t
t ria l

t t 2
t ria l t ria l t rial t ria l

exp exp

I I

∞ ∞

∞

∞ ∞ ∞

+Δ+Δ

+Δ

+Δ

= −Δλ −Δλ

= − Δλ − Δλ

= − Δλ + + Δλ

C N C N

N C N

C N C C N N C

 (7.50)  

∞ N

Ignoring the second order term 

( )t tt t
t ria l t ria l t ria l∞ ∞ ∞

+Δ+Δ = − Δλ +C C N C C∞ N  (7.51) 
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constitutes an elastic predictor – plastic corrector solution for the elastic right Cauchy-Green 
tensor. 

Also on the basis of Eq. (7.40)2 , a backward Euler integration scheme results to the following 
algorithmic scheme for the hardening rule 

t t
t t t f

q

+Δ
+Δ ⎛ ⎞∂

ξ = ξ + Δλ ⎜ ⎟∂⎝ ⎠
 (7.52) 

7.2.5.3 Elasto-Plastic Return Mapping Procedure 
On the basis of the above an incremental problem can be defined. Eq. (7.51) can be expressed 
as 

t tt t
t rial∞ ∞

+Δ+Δ = − ΔλC C W  (7.53)  

in which 

( ) ( )

t t t t T t t
t ria l t rial t ria l

Tt t t 1 t t t 1
p p

=

=

∞ ∞ ∞
+Δ +Δ +Δ

+Δ − +Δ −

C F F

F F F F
  (7.54) 

( ) ( )t tt t
t ria l t ria l∞

+Δ+Δ = +W N C C∞ N

W

 (7.55) and 

As a starting point for the set up of a Newton Raphson procedure, a tensor of residuals for the 
elastic right Cauchy-Green tensor is defined as 

  (7.56) t t t t
t rial∞ ∞∞

+Δ +Δ= − + ΔλCR C C

or in index notation, where for the sake of notation simplification, the superscript t t+ Δ  is 
omitted, 

( ) ( ) ( )C tria lijij ij
R C C∞ ∞∞

= − + Δλ ijW  (7.57) 

The derivative of this w.r.t. (  gives )mnC∞

( )
( )

( )
( ) ( )

( )

C ij ij ij

mn mn mn

ij
im jn

mn

R C W
C C C

W
                

C

∞∞

∞ ∞ ∞

∞

∂ ∂ ∂
= + Δλ

∂ ∂ ∂

∂
= δ δ + Δλ

∂

 (7.58)  

( ) ( ) ( ) ( ) ( )
2 2

ij
trial trialkj il

ik ljmn mn mn

W f C C
C C ∞ ∞
∞ ∞

∂ ∂
= +

∂ ∂Σ ∂ ∂Σ ∂
f

C∞

∂  (7.59) In which 

Using a Von Mises yield surface, the derivatives of Eq. (7.59) can be found as 

( ) ( )
2 2

1
pm nq 3 pqmn

ik ik pqmn

f f 1 I C
C 2

−−α
∞

∞

∂ ∂ ⎛= μδ δ + λ⎜∂Σ ∂ ∂Σ ∂Σ ⎝ ⎠
⎞δ ⎟  (7.60) 
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( ) mn pq
pm qn mn pq

pq mn ij ijij

s sf ,q 3 1 1
2 3s s s

⎡ ⎤∂ ⎛ ⎞= δ δ − δ δ −⎢ ⎥⎜ ⎟∂Σ ∂Σ ⎝ ⎠⎢ ⎥⎣ ⎦

Σ
And  (7.61) 

In Appendix 7.1 all necessary derivatives related to the Von Mises and the Drucker Prager 
yield surfaces are derived, respectively. 

The derivative of Eq. (7.57) w.r.t.  gives Δλ

( )C ij ij
ij

R W
W

∞
∂ ∂

= + Δλ
∂Δλ ∂Δλ

  (7.62) 

With 

( ) ( )
2 2 2 2

ij
trial trial2 2kj il

ik lj

W f f fC C
q q q q∞ ∞

∂ ⎛ ⎞ ⎛ ⎞f∂ ∂ ψ ∂ ∂ ∂ ψ ∂
= − ⋅ + − ⋅⎜ ⎟ ⎜⎜ ⎟ ⎜∂Δλ ∂Σ ∂ ∂ ∂Σ ∂ ∂∂ξ ∂ξ⎝ ⎠ ⎝ ⎠

 ⎟⎟  (7.63) 

ijW
0

∂
=

∂Δλ
; Eq. (7.62) becomes Since in this case 

( )C ij
ij

R
W

∞
∂

=
∂Δλ

 (7.64)  

The residual for the yield surface is 

( )t t
fR f ,+Δ= Σ q

t

 (7.65)  

In the following, for the sake of notation simplification, the superscript is omitted.  t + Δ

The partial derivative of  w.r.t. ( )mnC∞fR  can be found in the following. 

( ) ( )
pqf

pqmn mn

R f
C C∞ ∞

∂Σ∂ ∂
=

∂ ∂Σ ∂
 (7.66)  

Where, for a Von Mises yield surface 

( ) pq

pq ij

sf ,q 3
2 s

∂
=

∂Σ

Σ
  (7.67) 

And for a Drucker Prager yield surface 

( ) pq
pq

pq ij

sf ,q 1
2 s

∂
= +αδ

∂Σ

Σ
  (7.68) 

Furthermore, 

( ) ( ) 1pq
pm nq 3 pqmn

mn

1 I C
C 2

−−α
∞

∞

∂Σ
= μδ δ + λ δ

∂
  (7.69) 

The partial derivative of  w.r.t. fR  can be found in the following. Δλ
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fR f q
q

∂ ∂ ∂ ∂ξ
=

∂Δλ ∂ ∂ξ ∂Δλ
 (7.70)  

f ;
q q

⎛ ⎞ f∂ ∂ξ ∂
= Δλ =⎜ ⎟∂ ∂Δλ ∂⎝ ⎠

ξSince  (7.71) 

2

2
qq ;∂ψ ∂ ∂

= − = −
∂ξ ∂ξ

ψ
∂ξ

Furthermore  (7.72) 

2 2
f

2
R f

q
⎛ ⎞⎛ ⎞∂ ∂ ∂ ψ

= −⎜⎜ ⎟ ⎜∂Δλ ∂
 ⎟⎟∂ξ⎝ ⎠ ⎝ ⎠

 (7.73) 

Define 

[ ]
t t

t t 1
r

fr 1

dC
J

d R
∞

+Δ
+Δ −∞

+

⎧ ⎫⎧ ⎫ ⎪ ⎪= −⎨ ⎬ ⎨Δλ ⎬
⎪ ⎪⎩ ⎭ ⎩ ⎭

CR
  (7.74) 

with 

[ ]

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

t t
C C C C11 11 11 11

11 12 33

C C C C12 12 12 12

11 12 33
t t

r

C C C C33 33 33 33

11 12 33

f f f

11 12 33r

R R R R

C C C

R R R R

C C C
J

R R R R

C C C

R R R R
C C C

∞ ∞ ∞ ∞

∞ ∞ ∞ ∞

∞ ∞ ∞ ∞

+Δ

∞ ∞ ∞

∞ ∞ ∞
+Δ

∞ ∞ ∞

∞ ∞ ∞

⎡ ⎤∂ ∂ ∂ ∂
⎢ ⎥
⎢ ⎥∂ ∂ ∂ ∂ Δλ
⎢
⎢∂ ∂ ∂ ∂
⎢
∂ ∂ ∂ ∂ Δλ⎢

⎢− = − ⎢
⎢∂ ∂ ∂ ∂⎢
⎢ ∂ ∂ ∂ ∂ Δλ⎢
⎢ ∂ ∂ ∂ ∂
⎢
∂ ∂ ∂ ∂ Δλ⎢⎣ ⎦

…

…

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

  (7.75) 

f

7.2.6 Visco-Elastic Component 
Similar to the elasto-plastic component, the formulations for the visco-elastic component in 
the intermediate configurations need to be set-up. In the intermediate configuration, for the 
visco-elastic component of the model, the Helmholtz free energy can be set up as 

( )eΨ = Ψ C  (7.76)  

Since the Helmholtz free energy function of the visco-elastic component only depends on the 
strain tensor, it can also be referred to as a Strain Energy function. Its time derivative can 
therefore be found as 

e
e

:∂Ψ
Ψ =

∂
C

C
 (7.77)  

On the basis of Eq. 3.8, Eq. (7.25) can be further elaborated as 

114 



( )

T
e e e e

e e

1 1
e v v

e

1 1
e v e

e e

2 : 2 :

2 :

2 : 2 :

− −

v
− −

∂Ψ ∂Ψ
Ψ = =

∂ ∂

∂Ψ
= +

∂

∂Ψ ∂Ψ
= +

∂ ∂

F F F F
C C

F FF FF
C

F FF F FF
C C

  (7.78) 

Utilizing the tensor identity  it results TA:BC AC :B=

1
e v e v

e e
2 : 2− T :−∂Ψ ∂Ψ

=
∂ ∂

F FF F F
C C

F

1
v
−

v

  (7.79) 

By means of the identity  and the identity 1 1
v v v
− −= −F F F F 1

e
−=F FF  it holds 

( )1 1 1
e v e v v v e e v v

e e e
2 : 2 : 2 :− − −∂Ψ ∂Ψ ∂Ψ

= − = −
∂ ∂ ∂

F FF F F F F F F F F F
C C C

1−  (7.80) 

Utilizing the tensor identity  it results TA:BC B A:C=

1 T 1
e e v v e e v v e v v

e e
2 : 2 : 2 :− −⎛ ⎞ ⎛ ⎞∂Ψ ∂Ψ ∂Ψ

− = − = −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
F F F F F F F F C F

C C
1

e

−

∂
F

C
  (7.81) 

which can be further simplified by means of the identity  TA:BC AC :B=

1
e v v e v

e e
2 : 2−∂Ψ ∂Ψ

− = −
∂ ∂

C F F C F
C C

T
v:− F  (7.82) 

Substituting Eq. (7.28) and Eq. (7.31) into Eq. (7.27) 

T
e v e v

e e
2 : 2− T

v:−∂Ψ ∂Ψ
Ψ = −

∂ ∂
F F F C F F

C C
 (7.83)  

so that the Clausius-Planck local dissipation inequality reads  

T T
e v e v v

e e

T
e v e v v

e e

T
e v e v

e e

:

: 2 : 2 :

2 : 2 :

2 : 2 :

− −

−

−

= − Ψ
∂Ψ ∂Ψ

= − +
∂ ∂

⎡ ⎤∂Ψ ∂Ψ
= − +⎢ ⎥∂ ∂⎣ ⎦
⎡ ⎤∂Ψ ∂Ψ

= − + ≥⎢ ⎥∂ ∂⎣ ⎦

P F

P F F F F C F F
C C

P F F F C F F
C C

P F F F C
C C

D

l

1

0

−  (7.84)  

from which by standard argumentation the first Piola-Kirchhoff stress tensor is obtained as 

T
e

e
2 v

−∂Ψ
=

∂
P F F

C
 (7.85)  
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and the dissipation inequality 

e v
e

2 : 0∂Ψ
≥

∂
C

C
l  (7.86)  

or, after defining the Mandel stress tensor 

e
e

2 e e
∂Ψ

= =
∂

C C
C

Σ S

0

 (7.87)  

with  the second Piola-Kirchhoff stress tensor defined in the intermediate configuration, 
inequality 

eS
(7.35) can be expressed as 

  (7.88) v: ≥Σ l

The following evolution law can be found 
1

v v= :− ΣCl  (7.89)  

1
v

D V

1 1 1
2 3 9

− ⎛ ⎞= − ⊗ +⎜ ⎟η η⎝ ⎠
I I I IC Iwith ⊗  (7.90) 

while  and  are the deviatoric and volumetric viscosities which may be deformation 
dependent 

Dη Vη

( ) ( )D D V V0 ; 0η = η > η = η >Σ Σ  (7.91)  

Therefore 
-1 1

v v v v :−= =F F ΣCl  (7.92)  

Which can be written as 

( )1v
v :

t
−

v
∂

=
∂
F FΣC  (7.93)  

7.2.7 Visco-Elastic Stress Reduction Procedure 

7.2.7.1 Visco-Elastic Trial Elastic State 

The elastic deformation gradient  can be expressed as eF

e
t t t t t t 1

v
+Δ +Δ +Δ=F F F−  (7.94) 

If it is temporarily assumed that during the motion in the time interval [ ]t , t t+Δ  no further 
viscous deformation takes place, i.e. if it is temporarily set 

  (7.95) t t t
v

+Δ =F Fv

then, an approximate elastic deformation gradient can be computed as 

e
t t t t t 1

vt rial
+Δ +Δ=F F F−  (7.96)  
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7.2.7.2 Visco-Elastic Flow Rule Discretization 

The evolution problem defined by Eq. (7.93) can be solved in the time interval [ ]t , t t+Δ  to 

give a first order accurate estimate for t t 1
v

+Δ −F  

t tt t 1 t 1 1
v v vexp :

+Δ+Δ − − −⎡ ⎤= − Δ⎣ ⎦F F ΣC  (7.97)  

in which . 1 1
v v t− −Δ = ΔC C

(7.94) Substituting the above in Eq. 

e

e

t tt t t t t 1 1
v

t tt t 1
vt rial

exp :

exp :

+Δ+Δ +Δ − −

+Δ+Δ −

v⎡ ⎤= − Δ⎣ ⎦

⎡ ⎤= −Δ⎣ ⎦

F F F

F

Σ

Σ

C

C
 (7.98)  

The corresponding elastic right Cauchy-Green tensor is therefore 

e e e

e e

e

t t t t t tT

t t 1 Τ T
v trial t ria l v

t t 1 1
v tria l v

exp : exp :

exp : exp :

+Δ +Δ +Δ

+Δ −

+Δ − −

=

⎡ ⎤ ⎡= −Δ −Δ⎣ ⎦ ⎣

⎡ ⎤ ⎡ ⎤= −Δ −Δ⎣ ⎦ ⎣ ⎦

C F F

F F

C

1− ⎤
⎦Σ Σ

Σ Σ

C

C C

C  (7.99)  

( )21
v1 1

v vexp : I : ...
2

−
− −

Δ
⎡ ⎤−Δ = −Δ +⎣ ⎦

2Σ Σ
C

C C ΣHence  (7.100) 

Utilizing a first order expansion of the above into Eq. (7.99) 

( ) ( )

( ) ( )

e e

e

e e e

t tt t 1 1
v tria l v

t t 1 1
v t ria l v

t t 21 1
t rial v t ria l t rial v t rial

exp : exp :

I : I :

:

+Δ+Δ − −

+Δ − −

+Δ
− −

⎡ ⎤ ⎡ ⎤= −Δ −Δ⎣ ⎦ ⎣ ⎦

= −Δ −Δ

= − Δ + + Δ

C C

C

C C C

Σ Σ

Σ Σ

eCΣ Σ Σ

C C

C C

C C

  (7.101) 

Σ

Ignoring the second order term 

( )e e e

t tt t 1
t rial v t ria l t rial:

+Δ+Δ −= − Δ +C C C CeΣ ΣC  (7.102)  

constitutes an elastic predictor – viscous corrector solution for the elastic right Cauchy-Green 
tensor. 

7.2.7.3 Visco-Elastic Return Mapping Procedure 
On the basis of the above an incremental problem can be defined. Eq. (7.102)can be expressed 
as 

e e

t tt t 1
t rial v :

+Δ+Δ −= − ΔC C C W  (7.103)  
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in which 

( ) ( )
e e e

t t t t T t t
t ria l t rial t ria l

Tt t t 1 t t t 1
v v

=

=

+Δ +Δ +Δ

+Δ − +Δ −

C F F

F F F F
 (7.104)  

e

t tt t
t ria l t rial

+Δ+Δ = +W C eCΣ Σ  (7.105) and 

As a starting point for the set up of a Newton Raphson procedure, a tensor of residuals for the 
elastic right Cauchy-Green tensor is defined as 

  (7.106) e ee

t t 1 t t
t ria l v :+Δ − +Δ= − + ΔCR C C C W

tt + Δor in index notation, where for the sake of notation simplification, the superscript  is 
omitted, 

( ) ( ) ( ) ( )e ee

1
C tria l vijij ij ijkl

R C C  −= − + ΔC klW  (7.107) 

The derivative of this w.r.t. (  gives )e mnC

( )
( )

( )
( ) ( ) ( )

( ) ( )

e eC ij ij 1 kl
v ijkle emn mn mn

1 kl
im jn v ijkl e mn

R C W
C C C

W                
C

−

−

∂ ∂ ∂
= + Δ

∂ ∂ ∂

∂
= δ δ + Δ

∂

C

C

 e  (7.108) 

Since 

( ) ( )kl km trial e trial e plml kpW C C= Σ + Σ  (7.109)  

( ) ( ) ( ) ( ) ( )
plkl km

trial e trial eml kp
e emn mn mn

W C C
C C Ce

∂Σ∂ ∂Σ
= +

∂ ∂ ∂
 (7.110) Therefore 

( ) ( ) 1pl
pm nl 3 e plmn

e mn

1 I C
C 2

−−α∂Σ
= μδ δ + λ δ

∂
 A.6.(7.111) And 

Define 

{ } [ ] { }e

t tt t 1
e r r 1

dC J
+Δ+Δ −

+
= − CR  (7.112) 

with 
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[ ]

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

e e e

e e e

e e e

t t
C C C11 11 11

e e e11 12 33

C C C12 12 12t t
r e e e11 12 33

C C C33 33 33

e e e11 12 33r

R R R

C C C

R R R
J C C C

R R R

C C C

+Δ

+Δ

⎡ ⎤∂ ∂ ∂
⎢ ⎥
⎢ ⎥∂ ∂ ∂
⎢ ⎥
⎢ ⎥∂ ∂ ∂
⎢ ⎥

− = − ∂ ∂ ∂⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂⎣ ⎦

…

…

  (7.113) 

 

 

 

 

 

119 



7.3 Parameter Determination 

7.3.1 Procedure 
In the following, a new methodology for determination of the parameters of the above 
presented model is developed. For sake of convenience, in Fig. 7.3.1 the schematic of 
the one-dimensional model is repeated. 

E∞

1E

2E

nE

P

1η

2η TσTσ

nη

εT

 
Fig. 7.3.1: Schematic of one-dimensional model 

In the following the subscripts  and indicate the spring and dashpot element of 
the i-th visco-elastic element, with 

is id
i 1,n= . 

Because of the parallel set-up of the components w.r.t. each other, the total strain in 
the elasto-plastic (EP) and in each visco-elastic (VE) component must be the same: 

 
i iT p s∞ dε = ε + ε = ε + ε  (7.114) 

Therefore 

  (7.115) 
iT p s T d;∞ε = ε − ε ε = ε − ε

i

Within each EP and VE component, the stress must be equal in the elements, therefore 

 
i ip s d;∞σ = σ σ = σ = σi

i

 (7.116) 

The total stress is thus a summation of the stresses in the EP and VE components: 
n

T
i 1

∞
=

σ = σ + σ∑  (7.117)  

Which is the one dimensional equivalence of Eq. (7.12). 

The stress in each spring is  

  (7.118) 
ii iE ; E∞ ∞ ∞σ = ε σ = εs
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and in each dashpot 

 
id i idσ = η ε  (7.119) 

(7.118) into Eq. (7.117) Substituting Eq. 

i

n

T
i 1

E E∞ ∞
=

i sσ = ε + ε∑  (7.120)  

If it is assumed that  then iE E∞ =

iT
i 1,n

E ∞
=

⎛ ⎞
sσ = ε + ε⎜⎜

⎝ ⎠
∑ ⎟⎟

i

 (7.121) 

And 

 
ip s iE ; E∞σ = σ = ε σ = εs  (7.122) 

The stress in the plastic spring can be found as 

( )T pE E∞ ∞σ = ε = ε − ε  (7.123)  

(7.117) With Eq. 

( )

n 1

i T j
j 1

n 1

T T p
j 1

E

−

∞
=

−

=

σ = σ −σ − σ

j= σ − ε − ε − σ

∑

∑
  (7.124) 

Since, from Eq. (7.116), the stress in the viscous spring and the dashpot are equal, and 
using Eq. (7.119) it follows 

( )i

n 1

i d T T p j
j 1

E
−

=
η ε = σ − ε − ε − σ∑  (7.125)  

The strain rate in the dashpot can be written as 

( )id
d
dt idε = ε  (7.126)  

Since this strain rate can be written as 

( )

i i

i
d T s T

n 1

T T T p j
j 1

E

                   / E / E
−

=

σ
ε = ε − ε = ε −

⎛
= ε − σ − ε − ε − σ⎜ ⎟⎜ ⎟

⎝ ⎠
∑

 ⎞  (7.127) 

Therefore 
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( )

( )

( )

i

n 1

d T T T p j
j 1

n 1

T T T p j
j 1

n 1

T p j T
j 1

d / E / E
dt

    / E / E

1    2
E

−

=

−

=

−

=

⎛ ⎞⎛ ⎞
⎜ ⎟ε = ε − σ − ε − ε − σ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞

= ε − σ − ε − ε − σ⎜⎜
⎝ ⎠

⎛ ⎞
= ε − ε + σ −σ⎜ ⎟⎜ ⎟

⎝ ⎠

∑

∑

∑

 ⎟⎟  (7.128) 

Substituting Eq. (7.128) into Eq. (7.125) 

( ) ( )
n 1 n 1

i
i T p j T T p T

j 1 j 1
2 E

E

− −

= =

⎛ ⎞η
η ε − ε + σ −σ + ε − ε = σ − σ⎜ ⎟⎜ ⎟

⎝ ⎠
j∑ ∑  (7.129) 

For , Eq. n 1= (7.129) becomes 

( ) ( )T p T T p T2 / E Eη ε − ε −σ + ε − ε = σ  (7.130) 

If the material is loaded in a creep test, the total load Tσ  that is applied is constant, 
hence the total stress rate  is zero, which simplifies Eq. Tσ (7.130) to 

( ) ( )T p T p2 Eη ε − ε + ε − ε = σ T  (7.131) 

σ

 

Fig. 7.3.2: A constant compression creep test 

In a creep-recovery experiment, by exposing an asphaltic material to a constant 
compression load Tσ , the total strain response Tε  is measured in all three directions. 
Then, at time  the load is removed and the material can recover. From this recovery, 
the permanent plastic deformation 

t
pε  of the material can be measured. By repeating 

this procedure for the same material, with different unloading times, the total and the 
plastic strain response of the material are determined in time, Fig. 7.3.3. From this, the 
total and the plastic strain rate response, which are needed to solve Eq. (7.131), can 
also be computed from the slope of the respective curves. 

Time

ε

Time 

I II III Tσ
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Fig. 7.3.3: Determination of the plastic response from creep-recovery tests 

To determine the values of  and E  in Eq. (7.131), the equation is simplified to η

 TEαη+β = σ  (7.132) 

where  and  T2α = ε − ε T pβ = ε − εp

Eq. (7.132) can be written in matrix notation as 

[ ] { }i i iE
η⎧ ⎫

α β = σ⎨ ⎬
⎩ ⎭

 (7.133)  

Using a Least Square’s procedure 

[ ] { }i i
i i i

i i

i i i i i i

i i i i i i
1

i i i i i i

i i i i i i

E

E

E

−

α αη⎧ ⎫ ⎧ ⎫⎧ ⎫
α β = σ⎨ ⎬ ⎨ ⎬ ⎨ ⎬β β⎩ ⎭⎩ ⎭ ⎩ ⎭

α α α β α ση⎡ ⎤ ⎧⎧ ⎫
=

⎫
⎨ ⎬ ⎨ ⎬⎢ ⎥β α β β β σ⎩ ⎭⎣ ⎦ ⎩

 
⎭

α α α β α ση ⎡ ⎤ ⎧ ⎫⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥β α β β β σ⎩ ⎭ ⎣ ⎦ ⎩ ⎭

 (7.134) 

From, Eq. (7.134) the values of η  and  can be determined. Where, the deviatoric 
and volumetric components of η  are determined via 

E

1

D V

1 1
3 9

−
⎛ ⎞

η = +⎜ η η⎝ ⎠
 ⎟  (7.135) 

Once the value of  is determined, the yield function of the plastic component can be 
determined, since the stress in the elasto-plastic components can be approximated by 

E

( )( ) ( )

( )( )

p e e
y y

p e e
x x y

E 1 2
1 1 2

E
1 1 2

x⎡ ⎤σ = −ν ε + ν ε⎣ ⎦+ ν − ν

⎡ ⎤σ = ε + ν ε⎣ ⎦+ ν − ν

  (7.136) 
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Postulating a Drucker Prager yield surface, see also Appendix 7.2 for more details, 

( ) 2 1f , J I k yσ ξ = + α =  (7.137) 

where α  depends on the friction angle  via φ

( )
2sin

3 3 sin
φ

α =
− φ

 (7.138)  

and where  is the hardening of the yield surface, described by yk

( )0 0y y y y yk k k k k e
∞ ∞

−δξ∂ψ
= + = + −

∂ξ
  (7.139) 

Where  

f dt
q

⎛ ⎞∂
ξ = λ⎜ ⎟∂⎝ ⎠
∫  (7.140) 

Since 

( ) ( ) ( ) ( ) ( ) ( )

( )

2 2 2 2 2p p p p p p p p p
2 x y y z z x xy yz zx

2p p
x y

p p
x y

2

1J
6

1 2
6

1      

J

 =
3

⎡ ⎤= σ − σ + σ − σ + σ − σ + σ + σ + σ⎢ ⎥⎣ ⎦

⎡ ⎤= σ − σ⎢ ⎥⎣ ⎦

σ − σ

2

  (7.141) 

p p p p
1 x y z xI = σ + σ + σ = σ + σp

y2  (7.142) and 

Therefore, the parameters of the yield surface can now be computed. 

In the following a demonstration is given of the above described parameter 
determination procedure, using experimental data from the Nottingham Centre for 
Pavement Engineering [Takerhani, 2006]. 
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7.3.2 Creep recovery example 
In Fig. 7.3.4 the compressive creep-recovery response of an asphaltic material, under 
constant temperature of 20 , is shown, for a constant load of 1 MPa in the axial (y) 
direction. 

 

Fig. 7.3.4: Experimental creep-recovery data, 1MPa compressive loading  
(a) Axial strain response (b) radial strain response 

As can be seen from the graphs, the radial response is practically of the same order as 
the axial (loading direction) response. This is quite typical for asphaltic materials, and 
it illustrates the importance of a three dimensional material model. 

In order to obtain the total, elastic and plastic strain response of this material, the 
procedure, as described in Fig. 7.3.3 is applied to the data. In order to reduce the 
scatter in the data, a regression analysis is applied, to get a best possible 
approximation of the response, see Fig. 7.3.5. 
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Fig. 7.3.5: Reduction of the experimental data via a regression analysis 

From these graphs, the values of the  and E η  can be determined, using the above 
described procedure. From the Least Squares procedure, the parameters are 
determined as E  and 176 MPa= 317 MPa sη = ⋅ .  

Because of the three dimensionality, the viscosity parameter in the model, is separated 
into a volumetric and a deviatoric component via Eq. (7.135). Choosing a value for 
the volumetric viscous behavior of v 1000 MPa sη = ⋅ , the deviatoric viscosity is 
determined as . d 110 MPa sη = ⋅

From the definitions of the Drucker-Prager yield surface, the hardening function 
can now be plotted from the experimental data. Hereby the approximation of the 
equivalent plastic strain ξ  is made via  

yk  

 ( ) ( )2 2p p
x y2ξ = β ε + ε  (7.143) 
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where  is utilized. 1.3β =

Using Eq. (7.137), the plastic hardening function can thus be determined from the 
experimental data, Fig. 7.3.6: Plastic hardening function, determined from the 
experimental data. 
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Fig. 7.3.6: Plastic hardening function, determined from the experimental data 

From this, the values of the hardening function, as given in Eq. (7.139) can be 
determined as , 

0yk 0.15 MP= a ayk 0.43 MP
∞
=  and 90δ = , whereby using a 

. These values correspond to the cohesion values of 

 and , see Appendix 7.2 for more details on the 
formulations. 

(0.25 rad 14φ = ∼ )
a a

0yc 0.12 MP= yc 0.35 MP
∞
=

Fig. 7.3.7In  a comparison is given between the model prediction, using the above 
determined parameters, and the experimental data. 

 127 



-0.018
-0.016
-0.014
-0.012
-0.010
-0.008
-0.006
-0.004
-0.002
0.000

0 20 40 60 80 100

time [s]

S
tra

in
 y

y

 
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0 20 40 60 80 100

time [s]

S
tra

in
 x

x

Fig. 7.3.7: Comparison model prediction in axial and radial direction with 
experimental data 

 128 



Appendix 7.1 

Derivations for the yield response 
 

In the following, the derivatives of the plastic response surfaces, which are used in 
chapter 7, are derived. 

For a Von-Mises yield function 

( )f ,qΣ →  

 ( ) ( ) ( )2f ,q 3J k q= −Σ Σ  (A 7.1.1) 

 2 ij
1J s
2

= ijs  (A 7.1.2) 

With (ij ij ij ii
1s p ; p
3

)= Σ − δ = Σ  (A 7.1.3) 

 ( ) ( )( ) ( )ij ij ij ij
3f ,q p p k q
2

= Σ − δ Σ − δ −Σ  (A 7.1.4) 

Alternatively, using the Cauchy stress tensor 

 ( ) ( )T1
ij knik njJ F S F−

∞σ = ∞  (A 7.1.5) 

 
( )ij

ij

S 2
C∞

∂ψ
=

∂
 (A 7.1.6) 

Since ( )mn knmkC S∞Σ =  (A 7.1.7) 

Therefore ( ) 1
kn mnkmS C −

∞= Σ  (A 7.1.8) 

Substituting this into the Cauchy stress tensor 

 ( ) ( ) ( )1 11
ij mnik km njJ F C F− −−

∞ ∞ ∞σ = Σ T  (A 7.1.9) 

 2 ij
1J s
2

= ijs  (A 7.1.10) 

With ( )ij ij ij ii
1s p ; p
3

= σ − δ = σ  (A 7.1.11) 

 ( ) ( ) ( )1 11
mnik km ni

1p J F C F3
− −−

∞ ∞ ∞= TΣ  (A 7.1.12) 
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 ( ) ( ) ( )1 1 T1
ij mn ijik km njs J F C F p− −−

∞ ∞ ∞= Σ − δ  (A 7.1.13) 

 

( )

( ) ( ) ( )( ) ( ) ( ) ( )( )
( )

1
1 1 T 1 1 T1 1 2

mn ij mn ijik km nj ik km nj

f ,q

3 J F C F p J F C F p
2

                                                                                                                    k q

− − − −− −
∞ ∞ ∞ ∞ ∞ ∞

⎡ ⎤= Σ − δ Σ⎢ ⎥⎣ ⎦

−

Σ

− δ (A 7.1.14) 

pq

f∂
→

∂Σ
 

Using the formulation of Eq. (A 7.1.4) 

 ( ) ( )( ) ( )ij ij ij ij
3f ,q p p k q
2

= Σ − δ Σ − δ −Σ  (A 7.1.15) 

 
( ) ( )( ) ( )(

1
2

ij ij ij ij ij ij ij ij
pq pq

f ,q 1 3 p p p p
2 2

−∂ ∂⎡ ⎤ ⎡ ⎤= Σ − δ Σ − δ Σ − δ Σ − δ⎣ ⎦ ⎣ ⎦∂Σ ∂Σ

Σ )  (A 7.1.16) 

Since 

 

( )( )

( )

( )

( )
( )

ij ij ij ij
pq

ij
ij ij ij

pq pq

ip jq pq ij ij ij

ip jq ij ip jq ij pq ij ij pq ij ij

pq pq pq pq

pq pq

pq

p p

p2 p

12 p
3

1 12 p
3 3

2 p p p

2 p

2s

∂ ⎡ ⎤Σ − δ Σ − δ⎣ ⎦∂Σ

⎛ ⎞∂Σ ∂
= − δ Σ − δ⎜ ⎟⎜ ⎟∂Σ ∂Σ⎝ ⎠

⎛ ⎞= δ δ − δ δ Σ − δ⎜ ⎟
⎝ ⎠
⎛ ⎞p= δ δ Σ −δ δ δ − δ δ Σ + δ δ δ⎜ ⎟
⎝ ⎠

= Σ − δ − δ + δ

= Σ − δ

=

 (A 7.1.17) 

And 

 
( )( )

1
2

ij ij ij ij
ij ij

ij

1p p
s s

1                                         
s

−
⎡ ⎤Σ − δ Σ − δ =⎣ ⎦

=

 (A 7.1.18) 

Substituting Eq. (A 7.1.17) and Eq. (A 7.1.18) into Eq. (A 7.1.16) 
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( ) pq

pq ij

sf ,q 3
2 s

∂
=

∂Σ

Σ
 (A 7.1.19) 

2

pq mn

f∂
→

∂Σ ∂Σ
 

Since 

 
( ) ( )( ) (

1
2

ij ij ij ij pq pq
pq

f ,q 3 p p p
2

−∂
⎡ ⎤= Σ − δ Σ − δ Σ − δ⎣ ⎦∂Σ

Σ )  (A 7.1.20) 

 

( ) ( )( ) ( )

( )( ) ( )

1
2

ij ij ij ij
pq pq

pq mn mn

1
pq pq2

ij ij ij ij
mn

p pf ,q 3 p
2

p3                   p p
2

−

−

⎡ ⎤∂ Σ − δ Σ − δ∂ ⎣ ⎦= Σ
∂Σ ∂Σ ∂Σ

− δ

∂ Σ − δ
⎡ ⎤+ Σ − δ Σ − δ⎣ ⎦ ∂Σ

Σ

 (A 7.1.21) 

With 

 

( )( )

( )( ) ( )( )

( )( ) ( )

1
2

ij ij ij ij

mn
11
2

ij ij ij ij ij ij ij ij
mn

11
2

ij ij ij ij mn mn

p p

1 p p p p
2

p p p

−

−

−

⎡ ⎤∂ Σ − δ Σ − δ⎣ ⎦
∂Σ

∂⎡ ⎤ ⎡= − Σ − δ Σ − δ Σ − δ Σ − δ ⎤
⎣ ⎦ ⎣∂Σ

⎡ ⎤= − Σ − δ Σ − δ Σ − δ⎣ ⎦

⎦  (A 7.1.22) 

And 

 

( )pq pq pq
pq

mn mn mn

pm qn mn pq

p p

1                       
3

∂ Σ − δ ⎛ ∂Σ ⎞∂
= − δ⎜ ⎟⎜ ⎟∂Σ ∂Σ ∂Σ⎝

= δ δ − δ δ

⎠  (A 7.1.23) 

Substituting Eq. (A 7.1.22) and Eq. (A 7.1.23) into Eq. (A 7.1.21) 
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( )

( )( ) ( )( )

( )( )

pq mn

11
2

ij ij ij ij mn mn pq pq

1
2

ij ij ij ij pm qn mn pq

1 11
2 2ij ij mn pq ij ij pm qn mn pq

pm qn
ij

f ,q

3 p p p p
2

3 1                   p p
2 3

3 3 1s s s s s s
2 2 3

3 1 1
2 3s

−

−

− −

∂

∂Σ ∂Σ

⎡ ⎤= − Σ − δ Σ − δ Σ − δ Σ − δ⎣ ⎦

⎛⎡ ⎤+ Σ − δ Σ − δ δ δ − δ δ⎜⎣ ⎦ ⎝ ⎠

⎛ ⎞⎡ ⎤ ⎡ ⎤= − + δ δ − δ δ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎝ ⎠

= δ δ −

Σ

⎞
⎟

mn pq
mn pq

ij ij

s s
s s

⎡ ⎤⎛ ⎞δ δ −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 (A 7.1.24) 

2

pq

f
q

∂
→

∂Σ ∂
 

 
2

pq

f 0
q

∂
=

∂Σ ∂
 (A 7.1.25) 

( )
2

ik mn

f
C∞

∂
→

∂Σ ∂
 

 
( ) ( )
2 2

pq

ik ik pqmn mn

f f
C C∞ ∞

∂Σ∂ ∂
=

∂Σ ∂ ∂Σ ∂Σ ∂
 (A 7.1.26) 

Since ( )pq prC S∞Σ = rq  (A 7.1.27) 

Using the Neo-Hookean formulation 

 ( ) 1
rq rq 3 rqS I C −−α

∞= μδ −μ  (A 7.1.28) 

Substituting Eq. (A 7.1.28) into Eq. (A 7.1.27)  

 ( )pq rqprC I−α∞Σ = μδ −μ δ3 pq  (A 7.1.29) 

Therefore 

 

( ) ( ) ( )( )
( )
( ) ( )

( )

pq
rq 3 pqpr

mn mn

pr 3
rq pq

mn mn

3
pm nq pq

mn

C I
C C

C I               
C C

I               
C

−α
∞

∞ ∞

−α∞

∞ ∞

−α

∞

∂Σ ∂
= μδ −

∂ ∂

∂ ∂
= μδ −μ δ
∂ ∂

∂
= μδ δ −μ δ

∂

μ δ

 (A 7.1.30) 
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Since ( ) ( ) ( ) -1
3

det
I det ; I∞

∞ ∞ ∞
∞

∂
= =

∂
C

C C C
C 3 ∞C  (A 7.1.31) 

 

( ) ( )

( )

( )

13 3
3

mn mn
11

3 3 mn
1

3 mn

I II
C C

               I I C

               I C

−α
−α−

∞ ∞

−−α−
∞

−−α
∞

∂ ∂
= −α

∂ ∂

= −α

= −α

 (A 7.1.32) 

Substituting Eq. (A 7.1.32) into Eq. (A 7.1.30) 

 
( ) ( ) 1pq

pm nq 3 pqmn
mn

I C
C

−−α
∞

∞

∂Σ
= μδ δ +μα

∂
δ  (A 7.1.33) 

Since 
2
λ

α =
μ

 (A 7.1.34) 

 
( ) ( ) 1pq

pm nq 3 pqmn
mn

1 I C
C 2

−−α
∞

∞

∂Σ
= μδ δ + λ δ

∂
 (A 7.1.35) 

Substituting this back into Eq. (A 7.1.26) 

 
( ) ( )
2 2

1
pm nq 3 pqmn

ik ik pqmn

f f 1 I C
C 2

−−α
∞

∞

∂ ∂ ⎛= μδ δ + λ⎜∂Σ ∂ ∂Σ ∂Σ ⎝ ⎠
⎞δ ⎟  (A 7.1.36) 

ij

mn

W∂
→

∂Σ
 

Since ( ) ( )t tt t
t ria l t ria l∞

+Δ+Δ = +W N C C∞ N  (A 7.1.37) 

 ( ) ( )ij
ik trial trial ljkj il

mn mn

W
N C C N∞ ∞

∂ ∂ ⎡ ⎤= +⎣ ⎦∂Σ ∂Σ
 (A 7.1.38) 

Since 
( )trial kj

mn

C
0

∞⎛ ⎞∂
⎜ ⎟ =
⎜ ∂Σ⎝ ⎠

⎟
 (A 7.1.39) 

 ( ) ( )ij ljik
trial trialkj il

mn mn mn

W NN C C∞ ∞
∂ ∂∂

= +
∂Σ ∂Σ ∂Σ

 (A 7.1.40) 

Since ik
ik

fN ∂
=
∂Σ

 (A 7.1.41) 

 
2

ik

mn ik mn

N f∂ ∂
=

∂Σ ∂Σ ∂Σ
 (A 7.1.42) 
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 ( ) ( )
2 2

ij
trial trialkj il

mn mn ik lj mn

W f C C∞ ∞
∂ ∂

= +
f∂

∂Σ ∂Σ ∂Σ ∂Σ ∂Σ
 (A 7.1.43) 

( )
ij

mn

W
C∞

∂
→

∂
 

Since ( ) ( )ij ik trial trial ljkj ilW N C C N∞ ∞= +  (A 7.1.44) 

 
( ) ( ) ( ) ( )ij

ik trial trial ljkj il
mn mn

W
N C C N

C C ∞ ∞
∞ ∞

∂ ∂ ⎡ ⎤= +⎣ ⎦∂ ∂
 (A 7.1.45) 

Since 
( )
( )
trial kj

mn

C
0

C
∞

∞

⎛ ⎞∂
⎜ ⎟ =
⎜ ∂⎝ ⎠

⎟
 (A 7.1.46) 

 
( ) ( ) ( ) ( ) ( )

ij ljik
trial trialkj il

mn mn mn

W NN C C
C C C∞ ∞
∞ ∞ ∞

∂ ∂∂
= +

∂ ∂ ∂
 (A 7.1.47) 

Since ik
ik

fN ∂
=
∂Σ

 (A 7.1.48) 

 
( ) ( )

2
ik

ikmn mn

N f
C C∞ ∞

∂ ∂
=

∂ ∂Σ ∂
 (A 7.1.49) 

 
( ) ( ) ( ) ( ) ( )

2 2
ij

trial trialkj il
ik ljmn mn mn

W f fC C
C C C∞ ∞
∞ ∞

∂ ∂
= +

∂ ∂Σ ∂ ∂Σ ∂ ∞

∂  (A 7.1.50) 

ijW∂
→

∂Δλ
 

Since ( ) ( )ij ik trial trial ljkj ilW N C C N∞ ∞= +  (A 7.1.51) 

 ( ) ( )ij ljik
trial trialkj il

W NN C C∞ ∞
∂ ∂∂

= +
∂Δλ ∂Δλ ∂Δλ

 (A 7.1.52) 

Since ik
ik

fN ∂
=
∂Σ

 (A 7.1.53) 
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ik

ik

ik

ik
2

ik

N f

f        

f q        
q

f q        
q

⎛ ⎞∂ ∂ ∂
= ⎜ ⎟∂Δλ ∂Δλ ∂Σ⎝ ⎠

∂ ∂⎛ ⎞= ⎜ ⎟∂Σ ∂Δλ⎝ ⎠

⎛ ⎞∂ ∂ ∂ ∂ξ
= ⎜ ⎟∂Σ ∂ ∂ξ ∂Δλ⎝ ⎠

⎛ ⎞∂ ∂ ∂ξ
= ⎜ ⎟∂Σ ∂ ∂ξ ∂Δλ⎝ ⎠

 (A 7.1.54) 

Since f ;
q q

⎛ ⎞ f∂ ∂ξ ∂
= Δλ =⎜ ⎟∂ ∂Δλ ∂⎝ ⎠

ξ  (A 7.1.55) 

Furthermore 
2

2
qq ;∂ψ ∂ ∂

= − = −
∂ξ ∂ξ

ψ
∂ξ

 (A 7.1.56) 

Therefore 
2 2

ik
2

ik

N f
q q
⎛ ⎞∂ f∂ ∂ ψ ∂

= − ⋅⎜⎜∂Δλ ∂Σ ∂ ∂∂ξ⎝ ⎠
⎟⎟  (A 7.1.57) 

Substituting Eq. (A 7.1.57) into Eq. (A 7.1.52) gives 

 ( ) ( )
2 2 2 2

ij
trial trial2 2kj il

ik lj

W f f fC C
q q q q∞ ∞

∂ ⎛ ⎞ ⎛ ⎞f∂ ∂ ψ ∂ ∂ ∂ ψ ∂
= − ⋅ + − ⋅⎜ ⎟ ⎜⎜ ⎟ ⎜∂Δλ ∂Σ ∂ ∂ ∂Σ ∂ ∂∂ξ ∂ξ⎝ ⎠ ⎝ ⎠

⎟⎟  (A 7.1.58) 

Since in this case 
2

ik

f 0
q

∂
=

∂Σ ∂
, Eq. (A 7.1.58) becomes zero. 

ijW
q

∂
→

∂
 

 ( ) ( )ij
ik trial trial ljkj il

W
N C C N

q q ∞ ∞
∂ ∂ ⎡ ⎤= +⎣ ⎦∂ ∂

 (A 7.1.59) 

 ( ) ( )ij ljik
trial trialkj il

W NN C C
q q ∞ ∞

∂ ∂∂
= +

∂ ∂ ∂q
 (A 7.1.60) 

Since 
( )

ik
ik

f ,q
N

∂ Σ
=

∂Σ
 (A 7.1.61) 

 
2

ik

ik

N f
q q

∂ ∂
=

∂ ∂Σ ∂
 (A 7.1.62) 

Therefore ( ) ( )
2 2

ij
trial trialkj il

ik lj

W f C C
q q ∞ ∞

∂ ∂
= +

∂ ∂Σ ∂ ∂Σ ∂
f
q

∂  (A 7.1.63) 
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Since in this case 
2

ik

f 0
q

∂
=

∂Σ ∂
, 

 ijW
0

q
∂

=
∂

 (A 7.1.64) 

For a Drucker Prager yield function 

( )f ,qΣ →  

 ( ) ( )2 1f ,q J I ky= +α −Σ Σ  (A 7.1.65) 

 2 ij
1J s
2

= ijs  (A 7.1.66) 

With (ij ij ij ii
1s p ; p
3

)= Σ − δ = Σ  (A 7.1.67) 

 2I ii= Σ  (A 7.1.68) 

 ( ) ( )( ) ( )2 ij ij ij ij ii y
1f ,q J p p k q
2

= = Σ − δ Σ − δ −αΣ −Σ  (A 7.1.69) 

pq

f∂
→

∂Σ
 

 
( ) ( )( ) ( )( )

1
ii2

ij ij ij ij ij ij ij ij
pq pq

f ,q 1 1 p p p p
2 2

−∂ ∂Σ∂⎡ ⎤ ⎡ ⎤= Σ − δ Σ − δ Σ − δ Σ − δ −α⎣ ⎦ ⎣ ⎦∂Σ ∂Σ ∂Σ

Σ

pq
(A 7.1.70) 

Where ii
ip iq pq

pq

∂Σ
α = αδ δ = αδ
∂Σ

 (A 7.1.71) 

Since 
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pq pq pq pq

pq pq
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p2 p
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3
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3 3

2 p p p
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2s
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⎛ ⎞∂Σ ∂
= − δ Σ − δ⎜ ⎟⎜ ⎟∂Σ ∂Σ⎝ ⎠

⎛ ⎞= δ δ − δ δ Σ − δ⎜ ⎟
⎝ ⎠
⎛ ⎞p= δ δ Σ −δ δ δ − δ δ Σ + δ δ δ⎜ ⎟
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= Σ − δ

=

 (A 7.1.72) 

And 

 
( )( )

1
2

ij ij ij ij
ij ij
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1p p
s s

1                                         
s

−
⎡ ⎤Σ − δ Σ − δ =⎣ ⎦

=

 (A 7.1.73) 

 
( ) pq

pq
pq ij

sf ,q 1
2 s

∂
= +αδ

∂Σ

Σ
 (A 7.1.74) 

 

2

pq mn

f∂
→

∂Σ ∂Σ
 

Since 

 
( ) ( )( ) ( )

1
2

ij ij ij ij pq pq pq
pq

f ,q 1 p p p
2

−∂
⎡ ⎤= Σ − δ Σ − δ Σ − δ + αδ⎣ ⎦∂Σ

Σ
 (A 7.1.75) 
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1
2

ij ij ij ij
pq pq

pq mn mn

1
2

ij ij ij ij pq pq
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p pf ,q 1 p
2

1                                        p p p
2

−

−
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∂Σ ∂Σ ∂Σ
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 (A 7.1.76) 

With 
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2

ij ij ij ij ij ij ij ij
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2

ij ij ij ij mn mn
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1 p p p p
2
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−

−

−
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∂Σ
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⎣ ⎦ ⎣∂Σ
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⎦  (A 7.1.77) 

And 

 

( )pq pq pq
pq

mn mn mn

pm qn mn pq

p p

1                       
3

∂ Σ − δ ⎛ ∂Σ ⎞∂
= − δ⎜ ⎟⎜ ⎟∂Σ ∂Σ ∂Σ⎝

= δ δ − δ δ

⎠  (A 7.1.78) 

Therefore 
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2

1 1                   p p
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1 1 1
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−

−
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∂
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Σ

⎞
⎟

mn pq
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ij ij
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 (A 7.1.79) 
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Appendix 7.2 

Yield Surface Characteristics 

name 

7.1 Introductis 

In the following the formulations for a Von-Mises and a Drucker-Prager plastic yield 
function are discussed. 

The Von-Mises Response Surface 

The Von-Mises response surface is defined by 

 ( ) ( )
y,i ,i

3f , q 2∞ ∞= =sτ qτ  (A 7.2.1) 

in which the vector of principal deviatoric Kirchhoff stresses  is given by ,i∞
s

 ( )
3

,i ,i ,i ,i , j
i j

1
dev :

3 3∞ ∞ ∞ ∞

=

⎛ ⎞⎟⎜= = − ⊗ = −⎟⎜ ⎟⎜⎝ ⎠ ∑s I Iτ τ τI 1
∞τ  (A 7.2.2) 

and 

 ( )
1
2

1
2

,i j

2
3 3

,i ,i ,i ,
i 1 j 1

1

3
∞ ∞ ∞ ∞ ∞

= =

⎡ ⎤⎛ ⎞⎢ ⎥⎟⎜ ⎟⎜= ⋅ = τ − τ⎢ ⎥⎟⎜ ⎟⎜⎢ ⎥⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦
∑ ∑s s s  (A 7.2.3) 

so that 
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,

,i
,i ,i ,i,

,
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,i ,i ,i
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1
,2 ,312 2 2

,1 ,2 ,3 1 2 3

s ssf f f
f

s s s

s ss3 1
s s s 2s 2s 2s

2 2

∞ ∞∞

∞
∞ ∞ ∞∞ ∞ ∞

∞ ∞∞

∞ ∞ ∞ ∞ ∞ ∞
∞ ∞

−

∂ ∂∂∂ ∂ ∂
∂ = + +

∂ ∂τ ∂ ∂τ ∂ ∂τ

⎛ ⎞∂ ∂∂ ⎟⎜ ⎟⎜= + + + + ⎟⎜ ⎟⎟∂τ ∂τ ∂τ⎜⎜⎝ ⎠

τ

∞

 (A 7.2.4) 

Considering that ,

,

i
ij

j

s 1
3

∞

∞

∂
= δ −

∂τ
 (A 7.2.5) 

 ,

,

i

2 2 2i
,1 ,2 ,3

s3
f

2 s s s

∞

∞
∞ ∞ ∞

∂ =
+ +

τ  (A 7.2.6) 
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f
f
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s s s3 1
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∞

∞ ∞
∞

∞

∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞

τ

τ τ
τ

∂ ∂
∂ =

∂

⎛ ⎞⎟⎜ ⎟⎜∂ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟∂ ⎜ ⎟⎜ ⎟+ + ⎟⎜ ⎟⎜⎝ ⎠
⎛ ⎞⎟⎜ ⎟−⎜ ∂ ⎟⎜ ⎟= +⎜ ⎟⎜ ⎟∂τ⎜ ⎟⎜ ⎟+ + + + ⎟⎜ ⎟⎜⎝ ⎠

τ
 (A 7.2.7) 

The yield response in the Von Mises surface is controlled by the yield limit , 
Eq. 

( )y qτ

(A 7.2.1), For a perfectly plastic material model, q , the yield limit is equal to 
a constant yield stress  

0=

0yτ

 ( ) y0,if , 0∞ =τ τ

im

 (A 7.2.8) 

For a material model that enables the simulation of the hardening response of the 
material after the yield stress  has been reached,  becomes a variable function 
which, in principle, can reach a limit yield value , 

0yτ yτ

y∞
τ Fig.A. 7.1.1. Where ξ  is 

defined as a variable that controls the hardening/softening of the model. 

ξ

yτ  

hτ

sτ

0yτ  

y∞
τ  

maxyτ  

limτ  

(a)
(b)

limξ
 

Fig.A. 7.1.1: Hardening/Softening response 

When the material reaches a maximum yield stress  at , the material 
will soften. This can be modeled by a reduction of , Fig.(b). 

maxyτ limξ = ξ

yτ

The maximum value of the yield surface can therefore be expressed as 

  (A 7.2.9) 
h l

y
s lim

0⎧τ ≤ξ≤ξ⎪⎪τ =⎨τ⎪ ξ> ξ⎪⎩

For the hardening part,  can be found as hτ
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  (A 7.2.10) ( )0h y y y lie 0
∞ ∞

−δξτ = τ + τ −τ ≤ ξ≤ξ m

m

ph

ps

lim

where  determines the rate of hardening. For  and/or  the function 
reduces to a perfect plasticity model, with . 

δ 0δ = 0ξ =

0h yτ = τ

For the softening response,  can be expressed as sτ

  (A 7.2.11) ( ) ( )1 lim
maxs lim y lim lime−δ ξ−ξτ = τ + τ −τ ξ> ξ

where  determines the rate of softening and  determines the maximum yielding 
response, or the lowest yield value. 

1δ limτ

The  is determined from the value of  at  
maxyτ hτ limξ= ξ

  (A 7.2.12) ( ) lim
max 0y y y y e

∞ ∞

−δξτ = τ + τ −τ

After substitution of Eq. (A 7.2.12) into Eq. (A 7.2.11) and slightly rearranging, the 
softening response is given by 

  (A 7.2.13) ( )( ) ( )( ) ( )1 lim 1 limlim
0s lim y y y lim1 e e e

∞ ∞

−δ ξ−ξ −δ ξ−ξ−δξτ = τ − + τ + τ −τ ξ> ξ

The hardening/softening response of the material is therefore covered by 

  (A 7.2.14) 
( )

( )( ) ( )( ) ( )

0

1 lim 1 limlim
0

y y y lim

y
limlim y y y

e

1 e e e

∞ ∞

∞ ∞

−δξ

−δ ξ−ξ −δ ξ−ξ−δξ

⎧⎪ τ + τ −τ ξ≤ ξ⎪⎪⎪τ =⎨⎪ ξ> ξτ − + τ + τ −τ⎪⎪⎪⎩

Since the hardening response of the material is expressed by a uniform increase of the 
yield surface, and the softening as a uniform decrease of the yield surface, the yield 
limit can also be formulated as 

  (A 7.2.15) 0

max

y h li

y
y s lim

q

q

⎧τ − ξ≤ξ⎪⎪τ =⎨⎪τ − ξ> ξ⎪⎩

Since  (A 7.2.16) hq ξ=−∂ ψ

and  (A 7.2.17) sq ξ= ∂ ψ

Therefore 

  (A 7.2.18) 0

max

y ph

y
limy ps

ξ

ξ

⎧ τ +∂ ψ ξ≤ξ⎪⎪⎪τ =⎨⎪ ξ> ξτ −∂ ψ⎪⎪⎩

where  and  are the plastic strain energy functions for the hardening and the 
softening phase, respectively. Therefore 

psψ phψ

  (A 7.2.19) 0

max

ph h y

ps s y

ξ

ξ

∂ ψ = τ −τ

−∂ ψ = τ −τ
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By substituting Eq. (A 7.2.10) and Eq. (A 7.2.11) into Eq. (A 7.2.19)1,2, respectively 

  (A 7.2.20) ( )(0ph y y 1 e
∞

−δξ
ξ∂ ψ = τ −τ − )

))and  (A 7.2.21) ( ) (( 1 lim
maxps y lim 1 e−δ ξ−ξ

ξ∂ ψ = τ −τ −

From these, the strain energy function differentiated twice to ξ  can be found as 

  (A 7.2.22) ( )0

2
ph y y e

∞

−δξ
ξξ∂ ψ = δ τ −τ

and ( ) ( )1 lim
max

2
ps 1 y lim e

                        

−δ ξ−ξ
ξξ∂ ψ = δ τ −τ  (A 7.2.23) 

By integrating Eq. (A 7.2.20) over ξ , the plastic strain energy function for the 
hardening phase is found as 

 ( )0ph y y
1
e

∞

−δξ⎛ ⎞⎟⎜ψ = τ −τ ξ+ +⎟⎜ ⎟⎜⎝ ⎠δ
C  (A 7.2.24) 

Since for ; , the integration constant C  can be found as 0ξ = ph 0ψ =

 ( 0y y
1

C
∞

= τ −τ
δ

)  (A 7.2.25) 

Substituting the C  into Eq. (A 7.2.24), gives the plastic strain energy function for the 
hardening phase  

 ( ) (0ph y y
1

e 1
∞

−δξ⎛ ⎟⎜ψ = τ −τ ξ+ − ⎟⎜ ⎟⎜⎝ δ
)⎞⎠  (A 7.2.26) 

Similarly, the plastic strain energy function for the softening phase can be found from 
Eq. (A 7.2.21) as 

 ( ) ( )1 lim
maxps y lim

1

1
e−δ ξ−ξ⎛ ⎞⎟⎜ ⎟ψ = τ −τ ξ+ +⎜ ⎟⎜ ⎟⎜ δ⎝ ⎠

C  (A 7.2.27) 

Since for ; , the integration constant C  can be found as limξ = ξ ps phψ = ψ

 ( ) ( ) ( )lim
0 maxy y lim y lim lim

1

1 1
C e 1

∞

−δξ ⎛ ⎞⎛ ⎞ ⎟⎜⎟⎜ ⎟= τ −τ ξ + − − τ −τ ξ +⎜⎟⎜ ⎟⎟⎜ ⎜ ⎟⎝ ⎠ ⎜δ δ⎝ ⎠
 (A 7.2.28) 

Substituting the C  into Eq. (A 7.2.27), gives the plastic strain energy function for the 
softening phase as 

 

( ) ( )( ) ( ) ( )1 lim lim
max 0ps y lim lim y y lim

1

1 1
e 1 e

∞

−δ ξ−ξ −δξ⎛ ⎞ ⎛ ⎞⎟⎜ ⎟⎜⎟ψ = τ −τ ξ−ξ + − + τ −τ ξ + −⎜ ⎟⎜⎟ ⎟⎜⎜ ⎟ ⎝ ⎠⎜ δ δ⎝ ⎠
1

 (A 7.2.29) 

Some other useful derivatives are 
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               (A 7.2.30) qf∂ =1

           
( )q2

qq

f
f

q

∂ ∂
∂ = =

∂
0   (A 7.2.31) 

        
,i

,i

2
q

f
f

q∞
∞

τ
⎛ ⎞∂ ∂ ⎟⎜∂ = =⎟⎜ ⎟⎟⎜⎜∂τ ∂⎝ ⎠

0

p

  (A 7.2.32) 

In the above only the plastic part of the strain energy function is discussed. In reality, 
the strain energy function consists of both an elastic and a plastic part 

  (A 7.2.33) ( ) ( ) ( ),i ,ie,∞ ∞ψ ε ξ = ψ ε +ψ ξ

The elastic part consists of 

 ( ),i ,i ,i

23 3
2

e
i 1 i 12∞ ∞

= =

⎛ ⎞ ⎛ ⎞κ ⎟⎜ ⎜⎟ψ ε = ε + μ ε⎜ ⎜⎟⎜ ⎜⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
∑ ∑ ∞

⎟⎟⎟⎟

∞

δ

 (A 7.2.34) 

where κ  and  are Lame’s constants. λ

So that  (A 7.2.35) ,i ,i,i

3

i 1

2∞∞ε
=

∂ ψ= κ ε + με∑

  (A 7.2.36) 
,i , j

2
ij2

∞ ∞ε ε∂ ψ = κ + μ

 
,i

,i

2 0
∞

∞

ε ξ
ε

⎛ ⎞∂ ∂ψ⎟⎜∂ ψ= =⎟⎜ ⎟⎜ ⎟∂ ∂ξ⎝ ⎠
 (A 7.2.37) 

The Drucker-Prager Response Surface 

The Drucker-Prager response surface is defined by 

 ( ) 2 1f , q J I k∞ yσ = +α =  (A 7.2.38) 

With 

 1I ,ii∞= σ  (A 7.2.39) 

and ( ) ( ) (

2 ,ij ,ij

2 2
,11 ,22 ,22 ,33 33 ,11

2 2 2
,12 ,23 ,31

1J s s
2

1  
6

                   

∞ ∞

∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞

=

⎡ ⎤= σ −σ + σ −σ + σ −σ⎢ ⎥⎣ ⎦

+ σ +σ +σ

)2  (A 7.2.40) 

And in which α  is a material constant which depends on the friction angle  φ

 
( )
2sin

3 3 sin
φ

α =
− φ

 (A 7.2.41) 
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The value of  depends on ,  and yk q
0yk yk

∞
 and will be discussed in the following. 

The material constants  and 
0yk yk

∞
 depend on the friction angle φ  and the cohesion 

values  and 
0yc yc

∞
 respectively 

 
( ) ( )0 0y y y y
cos cosk 6c ; k 6c

3 3 sin 3 3 sin∞ ∞

φ φ
= =

− φ − φ
 (A 7.2.42) 

To introduce  as the hardening and softening of the yield surface, one can either 
change the cohesion or the friction angle, 

yk
Fig.A. 7.1.2(a) and (b) respectively. It was 

chosen to implement the cohesion hardening in CAPA-3D. 
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Fig.A. 7.1.2: Hardening/Softening of the Drucker-Prager yield surface  

(a) -hardening (b) k α -hardening 

In analogy with the Von Mises surface, a variable ξ  is defined that controls the 
hardening/softening of the model and  determines the variable yield behavior. This 
time, the yield initiation is determined by . 

yk

0yk

 
Fig.A. 7.1.3: Hardening/Softening response 

When the material reaches a maximum yield stress , at 
maxyk limξ = ξ , the material will 

soften. This can be expressed by a reduction of , yk Fig.A. 7.1.3. 
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The maximum value of the yield surface can therefore be expressed as 

  (A 7.2.43) h lim
y

s lim

k 0
k

k
≤ ξ ≤ ξ⎧

= ⎨ ξ > ξ⎩

For the hardening part,  can be found as hk

 ( )0h y y y lik k k k e 0
∞ ∞

−δξ= + − ≤ ξ ≤ ξ m  (A 7.2.44) 

where  determines the rate of hardening. For δ 0δ =  and/or 0ξ =  the function 
reduces to a perfect plasticity model, with 

0h yk k= . 

For the softening response,  can be expressed as sk

 ( ) ( )1 lim
maxs lim y lim limk k k k e−δ ξ−ξ= + − ξ > ξ  (A 7.2.45) 

where  determines the rate of softening and 1δ limτ  determines the maximum yielding 
response, or the lowest yield value. 

The  is determined from the value of  at 
maxyk hk limξ = ξ  

 ( ) lim
max 0y y y yk k k k e

∞ ∞

−δξ= + −  (A 7.2.46) 

After substitution of Eq. (A 7.2.46) into Eq. (A 7.2.45) and slightly rearranging, the 
softening response is given by 

 ( )( ) ( )( ) ( )1 lim 1 limlim
0s lim y y y limk k 1 e k k k e e

∞ ∞

−δ ξ−ξ −δ ξ−ξ−δξ= − + + − ξ > ξ  (A 7.2.47) 

The hardening/softening response of the material is therefore covered by 

  (A 7.2.48) 
( )

( )( ) ( )( ) ( )
0

1 lim 1 limlim
0

y y y lim
y

limlim y y y

k k k e
k

k 1 e k k k e e

∞ ∞

∞ ∞

−δξ

−δ ξ−ξ −δ ξ−ξ−δξ

⎧ + − ξ ≤ ξ⎪= ⎨ ξ > ξ− + + −⎪⎩

Since the hardening response of the material is expressed by a uniform increase of the 
yield surface, and the softening as a uniform decrease of the yield surface, the yield 
limit can also be formulated as 

 0

max

y h li
y

y s li

k q
k

k q
m

m

− ξ ≤ ξ⎧⎪= ⎨ − ξ > ξ⎪⎩
 (A 7.2.49) 

Since h

s ps

q

q
ξ

ξ

ph= −∂ ψ

= ∂ ψ
 (A 7.2.50) 

Therefore 

 0

max

y ph lim
y

limy ps

k
k

k
ξ

ξ

+ ∂ ψ⎧ ξ ≤ ξ⎪= ⎨ ξ > ξ− ∂ ψ⎪⎩
 (A 7.2.51) 
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where psψ  and phψ  are the plastic strain energy functions for the hardening and the 
softening phase, respectively. Therefore 

 0

max

ph h y

ps s y

k k

k k
ξ

ξ

∂ ψ = −

−∂ ψ = −
 (A 7.2.52) 

By substituting Eq.(A 7.2.10) and Eq.(A 7.2.11) into Eq.(A 7.2.19)1,2, respectively 

 ( )( )0ph y yk k 1 e
∞

−δξ
ξ∂ ψ = − −  (A 7.2.53) 

and ( ) ( )( )1 lim
maxps y limk k 1 e−δ ξ−ξ

ξ∂ ψ = − −  (A 7.2.54) 

From these, the strain energy function differentiated twice to ξ  can be found as 

 ( )0

2
ph y yk k e

∞

−δξ
ξξ∂ ψ = δ −  (A 7.2.55) 

and ( ) ( )1 lim
max

2
ps 1 y limk k e

                        

−δ ξ−ξ
ξξ∂ ψ = δ −  (A 7.2.56) 

By integrating Eq.(A 7.2.20) over ξ , the plastic strain energy function for the 
hardening phase is found as 

 ( )0ph y y
1k k e

∞

−δξ⎛ ⎞ψ = − ξ + +⎜ ⎟δ⎝ ⎠
C  (A 7.2.57) 

Since for ; , the integration constant  can be found as 0ξ = ph 0ψ = C

 ( 0y y
1C k k

∞
= −
δ

)  (A 7.2.58) 

Substituting the C  into Eq. (A 7.2.24), gives the plastic strain energy function for the 
hardening phase  

 ( ) (0ph y y
1k k e 1

∞

−δξ⎛ψ = − ξ + −⎜ δ⎝ ⎠
)⎞⎟  (A 7.2.59) 

Similarly, the plastic strain energy function for the softening phase can be found from 
Eq. (A 7.2.21) as 

 ( ) ( )1 lim
maxps y lim

1

1k k e−δ ξ−ξ⎛ ⎞
ψ = − ξ + +⎜ δ⎝ ⎠

C⎟  (A 7.2.60) 

Since for ; limξ = ξ ps phψ = ψ , the integration constant  can be found as C

 ( ) ( ) ( )lim
0 maxy y lim y lim lim

1

1 1C k k e 1 k k
∞

−δξ ⎛ ⎞⎛ ⎞= − ξ + − − − ξ +⎜⎜ ⎟ ⎟δ δ⎝ ⎠ ⎝ ⎠
 (A 7.2.61) 

Substituting the C  into Eq. (A 7.2.27), gives the plastic strain energy function for the 
softening phase as 
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( ) ( )( )

( ) ( )

1 lim
max

lim
0

ps y lim lim
1

y y lim

1k k e 1

1                                            k k e 1
∞

−δ ξ−ξ

−δξ

⎛ ⎞
ψ = − ξ −ξ + −⎜ ⎟δ⎝ ⎠

⎛ ⎞+ − ξ + −⎜ ⎟δ⎝ ⎠

 (A 7.2.62) 

Some other useful derivatives are 

               (A 7.2.63) qf 1∂ =

           
( )q2

qq

f
f

q

∂ ∂
∂ = =

∂
0   (A 7.2.64) 

        
,i

,i

2
q

ff
q∞

∞

τ
⎛ ⎞∂ ∂

∂ = =⎜ ⎟∂τ ∂⎝ ⎠
0   (A 7.2.65) 

In the above only the plastic part of the strain energy function is discussed. In reality, 
the strain energy function consists of both an elastic and a plastic part 

 ( ) ( ) ( ),i ,ie p,∞ ∞ψ ε ξ = ψ ε +ψ ξ  (A 7.2.66) 

The elastic part consists of 

 ( ),i ,i ,i

23 3
2

e
i 1 i 12∞ ∞

= =

⎛ ⎞ ⎛ ⎞κ
ψ ε = ε + μ ε⎜ ⎟ ⎜

⎝ ⎠ ⎝ ⎠
∑ ∑ ∞ ⎟  (A 7.2.67) 

where  and  are Lame’s constants. κ λ

So that ,i ,i,i

3

i 1
2∞ ∞∞ε

=
∂ ψ = κ ε + με∑  (A 7.2.68) 

 
,i , j

2
ij2

∞ ∞ε ε∂ ψ = κ + μδ  (A 7.2.69) 

 
,i

,i

2 0
∞

∞

ε ξ
ε

⎛ ⎞∂ ∂ψ
∂ ψ = =⎜ ⎟∂ ∂ξ⎝ ⎠

 (A 7.2.70) 

For computational efficiency, the above derivations are slightly rewritten as follows. 

The hardening/softening function can be generalized into 

 
0 0y y yk k q k ∂ψ

= − = +
∂ξ

 (A 7.2.71) 

Furthermore, it can be found that 

 ( )( )0
h

y yk k 1 e
∞

−δξ∂ψ
= − −

∂ξ
 (A 7.2.72) 

and 
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 ( ) ( )1 lim
max 0

s
y lim y limk k e k k−δ ξ−ξ∂ψ

= − − +
∂ξ

 (A 7.2.73) 

With 
max 0

lim

h
y yk k

ξ=ξ

∂ψ
= +

∂ξ
 (A 7.2.74) 

To show that these formulations are equal to the earlier derived formulations Eq. 
(A 7.2.72) and Eq. (A 7.2.73) are substituted into Eq. (A 7.2.71) respectively.  

Which gives 

 
( )( )

( )
lim

max 0 0

lim
0

y y y y

y y y

k k k k 1 e

     k k k e

∞

∞ ∞

−δξ

−δξ

= + − −

= + −
 (A 7.2.75) 

Which is equal to Eq. (A 7.2.46) 

 ( )(
( )

0

0 0

0

h
h y

y y y

y y y

k k

   k k k 1 e

   k k k e

∞

∞ ∞

)−δξ

−δξ

∂ψ
= +

∂ξ

= + − −

= + −

 (A 7.2.76) 

Which is equal to Eq. (A 7.2.44) 

 
( ) ( )

0

1 lim
max

s
s y

y lim l

k k

   k k e k−δ ξ−ξ

∂ψ
= +

∂ξ

= − + im

 (A 7.2.77) 

Which is equal to Eq. (A 7.2.45) 
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Chapter 8 

Effect of moisture on the aggregate-mastic bond  

Introduction chapternumber 

8.1 Introduction 
As was discussed in previous chapters, the aggregate-mastic bond is of crucial 
importance for the asphaltic mix response and its moisture induced damage 
susceptibility. However, in reality, very little is known about what constitutes the bond 
between the mastic and the aggregate and what effect moisture may have on it. For 
this reason, in this research, a new methodology was developed, which allows for the 
determination of the aggregate-mastic bond strength degradation as a function of the 
amount of moisture present in the interface. This is a relationship which can be 
directly implemented within the interface material model. In chapter 9 a detailed 
discussion is given of the coupling between physical and mechanical moisture 
induced damage. 

In the following, the developed methodology for determination of aggregate-mastic 
bond strength as a function of moisture is discussed. 

8.2 Methodology 
To determine the bond strength between a mastic and an aggregate type, a thin film of 
mastic is adhered to a block of aggregate. To prepare the sample, a small amount of 
heated mastic is deposited on the flat surface of a loading fixture, Fig. 8.2.1(a)-(b), 
and is pressed perpendicularly on the surface of the prepared aggregate sample, Fig. 
8.2.1(c), thus creating a thin film of mastic adhered to the aggregate surface.  

(a) (c)(b)
Aggregate 

Mastic film 

 

Fig. 8.2.1: (a) Steel stub (b) Steel stub coated with a mastic film  
(c) aggregate-mastic bond test set-up 

After a relevant time of ‘curing’ of the sample, a mastic-aggregate interface is created, 
which is comparable to an interface within an asphaltic mix. The film thickness is pre-
determined and carefully monitored.  
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After preparing the aggregate-mastic samples, first the bond strength of a few dry 
specimens is measured with a direct tension test. The experiment aims at measuring 
the aggregate-mastic bond strength, and therefore relies on an adhesive failure of the 
specimen, Fig. 8.2.2(a). Specimens which fail within the mastic itself, Fig. 8.2.2(b) 
are therefore disregarded and not used in subsequent analyses. 

(a)

(b)
 

Fig. 8.2.2: (a) Adhesive bond failure (b) Cohesive bond failure 

The remaining samples are conditioned in a moisture bath. For the moisture 
conditioning it is important to keep the water level below the aggregate-mastic 
interface, as to avoid moisture infiltration from the sides of the interface or through 
the mastic film itself. At pre-determined intervals, samples are removed from their 
moisture conditioning and the bond strength is directly measured via a direct tension 
test. By performing a series of such tests, a relationship between the aggregate-mastic 
bond strength and the moisture conditioning time is found, Fig. 8.2.3. 
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Fig. 8.2.3: Reduction of bond strength as a function of  
moisture conditioning duration 
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Obviously, this relationship is highly dependent on the geometry of the test-specimen 
and does not answer the question of the amount of moisture that is present in the 
interface at failure time. Therefore, moisture infiltration simulations are performed 
with RoAM for the test samples, using similar geometries and moisture boundary 
conditions.  

Because the experiments give the degradation of bond strength versus moisture 
conditioning time, Fig. 8.2.4(a), and the simulations with RoAM give the moisture 
content in the interface region over time, Fig. 8.2.4(b), the combination of the two 
curves gives the wanted relation, i.e. the bond strength degradation as a function of 
moisture content in the interface, Fig. 8.2.4(c). 
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Fig. 8.2.4: Methodology overview  
(a) Experimental results (b) RoAM simulations 

      (c) Bond strength as a function of moisture content 

The test were performed at the Turner Fairbanks Research Centre of the US Federal 
Highway Administration. 

In the following a demonstration of the results is given. 
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8.3 Experimental results 

8.3.1 Sample preparation 
Strategic Highway Research Program (SHRP) core asphalt AAD (PG58-28) was used 
to make the mastic. Diabase material, passing the #200 sieve (75 μm), was used as 
mineral filler to combine with the asphalt binder to make the mastic. Filler in the 
amount of 30% by volume was chosen, based on the fact that the fine aggregate 
passing the #200 sieve is approximately 27-28% volume of the binder in most fully 
graded aggregate systems. The mastic is prepared by heating measured quantities of 
binder and filler to 165o C for approximately two hours. The binder was removed 
from the oven and stirred for one minute at 600 rpm with a mechanical stirrer. The 
filler is added and the mixture is stirred at 600 rpm for an additional two minutes. The 
mastic is stored at ambient conditions, approximately 22o C, until the samples are 
made.   

Diabase stone was used as the substrates in the pull-off test. Cobble-sized samples of 
diabase rock were obtained from a quarry in Sterling, VA. The rocks were cut into 
plates using a 33 cm diamond-tip, water-cooled saw. The geometry of the rock plates 
vary due to the varying sizes of rocks obtained from the quarry, the cutting process 
and meeting the requirements of pull-off test specifications for substrate size. 
However, the geometry of each stone plate was approximately square or rectangular 
in shape and its geometry was measured. The rock plates were polished using a 600-
grit resin bonded diamond grinding disc. All reusable stone plates were oxidized to a 
temperature of 482 . The oxidized plates were rinsed with distilled water, allowed 
to dry overnight, and then stored in an oven at 60  until they were used to make the 
samples.  

C
C

A sample of approximately 5.0 g mastic was mixed with one percent (by weight) glass 
beads. The beads ensured a uniform film thickness of 200 mμ  is attained. Youtcheff 
and Aurilio [1997] and Nguyen et al [1996] found that this method for controlling 
film thickness is convenient and reduces the time to prepare the test specimens. The 
mastic, was heated to approximately 100  and applied to the loading fixture. The 
test operator pressed the loading fixture automatically onto the aggregate substrate. 
The specimens were allowed to cure at 20 ± 1  for at least twenty-four hours.  

C

C

After twenty-four hours of equilibration, dry specimens were tested. The other 
specimens were immersed in a water bath of distilled water at 24 ± 1 . The 
specimens were withdrawn from the water bath after fourteen, twenty-four, and thirty-
seven hours and immediately tested.  The water height of the water bath was kept 
below the mastic-aggregate interface to ensure moisture diffusion through the 
aggregate substrate to the mastic-aggregate interface.  Two different water depths (8 
and 16 mm) were chosen based on specimen’s thicknesses.  

C

8.3.2 Direct tension test results 
Using a direct tension device, which is pneumatically controlled, the burst pressure 
necessary to debond the specimen (unconditioned or conditioned) at a temperature of 
21 ± 1  was measured.  C
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Table 1 shows the measured tensile bond strength results of the specimens exposed to 
moisture including their soak times, the height of the water bath measured from the 
bottom, and specimen geometries.  

Table 1: Bond strength measurements & their conditioning 

Moisture Conditioning Specimen Geometry 
Spec 

ID Soak Time 
[hrs] 

Water Height 
[mm] 

Surface  

[mm x mm] 
Thickness 

[mm] 

Strength 
[MPa] 

A14 14 8 48.06 x 46.92 16.84 0.767 

B14 14 8 55.89 x 53.44 13.39 1.01 

C14 14 8 52.29 x 43.07 14.10 1.01 

A24 24 16 45.10 x 38.27 23.19 1.12 

B24 24 16 63.17 x 56.15 18.92 1.15 

C24 24 16 55.33 x 45.63 26.75 1.22 

A37 37 8 47.27 x 46.66 15.68 0.56 

B37 37 8 51.79 x 46.47 16.79 0.59 

C37 37 8 47.54 x 50.17 16.93 0.767 

 

The average tensile bond strength of four specimens, tested at dry conditions, was 1.3 
MPa. Almost all tested specimens experienced a clear adhesive failure; i.e. they left 
very little or no mastic on the stone substrate and the surface of the mastic layer on 
the ceramic stub was observed to be smooth (i.e. no cavitations). Only specimens A24 
and B24 showed a slight mixed failure mode, by leaving behind a small amount of 
mastic (5-10%) on the rock substrate in the center of the test area. 

8.3.3 RoAM moisture simulation results 
For the RoAM moisture infiltration simulations, it was assumed that moisture 
infiltrates into the aggregate via diffusion. For the moisture diffusion analyses a 
molecular diffusivity of 0.6 mm2/hr was used for the diabase aggregate [Bradbury 
1982]. Since all specimens had different geometries and water tables (as shown in 
Table 1), a new finite element mesh was made for each specimen that simulates the 
specific geometry and moisture conditions given for that specimen. Fig. 8.3.1 shows 
the geometry and the moisture diffusion for specimen A37 at 0 and 37 hours. 

Fig. 8.3.2 shows an analysis of the moisture profiles, over time, on the surface of the 
middle cross-section of specimen A37. From the profiles, it can be seen that the 
region of the stone to which the mastic film is adhered, is exposed to a fairly uniform 
moisture front. Simulations of the moisture diffusion into the specimens can be seen 
in Fig. 8.3.3, where the moisture content depicted in the graphs is measured at the 
center of the top surface of the diabase specimen. 
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Fig. 8.3.1:: Moisture diffusion simulation in specimen A37. 
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Fig. 8.3.2: Moisture content profiles for specimen A37 at substrate surface cross-
section. 
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Fig. 8.3.3: Moisture diffusion simulations for the test specimen. 

8.3.4 Mastic-aggregate bond strength degradation 
As explained in Fig. 8.2.4, the procedure for determination of the aggregate-mastic 
bond strength and moisture content is based on a combination of experimental results 
and finite element simulations. This methodology is applied to all specimens and the 
results are plotted in Fig. 8.3.4. As can be seen, the overall result seems to confirm the 
hypothesis that moisture at the interface reduces the bond strength. The results of 
specimen A14 were excluded due to an unexpectedly low tensile strength value that is 
believed to be a result of specimen preparation. 
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Fig. 8.3.4: Measured bond strength versus computed moisture content for all 
specimens 
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As shown in Fig. 8.3.5, on the basis of regression analysis the relationship between 
the aggregate-mastic bond strength and moisture content was determined as 

 ( )0.30 3.76
ifS e

− θ
=  (8.1) 

This can be rewritten to indicate the percentage of bond strength, as a function of 
moisture content in the interface, Fig. 8.3.6, as 

 3.76
if%S 100 e − θ=  (8.2) 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

moisture content

B
on

d 
St

re
ng

th
 [M

Pa
]

 
Fig. 8.3.5: Relationship between interface strength and moisture content 
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Fig. 8.3.6: Relationship between reduction of strength and moisture content 
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On the basis of Eq.(8.1) and Eq.(8.2) the evolution of moisture damage as a function 
of moisture content, Fig. 8.3.7, can be determined as 

 ( ) 3.761m e θξ θ −= −  (8.3) 
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Fig. 8.3.7: Relationship between interface bond damage and moisture content 

8.4 Conclusions 
In the above, a new methodology is presented to determine the mastic-aggregate bond 
strength as a function of moisture content at the interface. Direct tension tests were 
shown and utilized to determine the moisture induced damage in the bond. The 
damage relationship that was determined, and is shown in Eq. (8.3), shall be utilized 
in the next chapter. 
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Chapter 9 

Physical-Mechanical Moisture Induced Damage Model 

Tekst

9.1 Introduction 
The aim of this research is the development of a computational tool for the 
fundamental analysis of moisture induced damage of asphaltic mixes which includes 
both physical and mechanical moisture damage inducing processes. To achieve this 
aim, in the previous chapters of this dissertation the physical and mechanical moisture 
induced damage processes are identified, the controlling parameters are discussed, the 
finite element based simulation tools are developed and an experimental framework to 
quantify most of these parameters is set-up.  

In this chapter, the physical and the mechanical moisture induced damage processes 
are brought together in the final combined physical and mechanical moisture induced 
damage model, Fig. 9.1.1. To do so, the physical moisture induced damage parameters 
are identified which alter the mechanical material properties, the adjustments to the 
constitutive formulations of the asphalt components, as shown in chapter 6, are given 
and the coupling procedure between RoAM and CAPA-3D is discussed. Finally, via 
several computational simulations with the developed tool using a micro-scale finite 
element mesh, it is shown how changing the moisture susceptibility properties of the 
asphalt components will lead to different failure patterns of the mix. 

 

Fig. 9.1.1: Schematic of the new approach towards moisture induced damage 
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9.2 Physical moisture induced damage parameters 
Moisture infiltration weakens the cohesive properties of the mastic and the adhesive 
properties of the aggregate-mastic bond. To model the damage on the material 
properties, caused by the moisture infiltration, damage parameters are defined which 
can go from 0 (no damage) to 1 (complete damage), following the Kachanov 
formulation. 

The first physical moisture induced damage parameter is related to moisture diffusion 
into the asphalt components 

( )d fθ = θ  (9.1) 

where  is the moisture content, defined as the fraction of moisture concentration 
 w.r.t. the maximum moisture concentration  that a material can absorb, 

i.e. 

θ
(C x, tθ ) maxCθ

( ) ( )
max

C x, t
x, t ; 0.0 1.0

C
θ

θ

θ = ≤ θ ≤  (9.2)  

The function  needs to be determined experimentally, and has to satisfy ( )f θ

( )
( )

       f 0 0.0

0.0 f 1 1.0

=

≤ ≤
  (9.3) 

This function should be determined for all the asphalt components, i.e. the mastic, the 
aggregate and the aggregate-mastic interface. 

The second physical moisture induced damage parameter is postulated for only the 
mastic, which is based on the erosion of the mastic due to a water pressures. To keep 
the Kachanov damage parameter range (going from 0 for no damage to 1 for complete 
damage) the second physical moisture induced damage parameter has a slightly 
different form than the previous, namely 

( )ˆ ˆd 1 fρ = − ρ  (9.4)  

Where  is the normalized value of the mastic density ρ̂

( ) ( )
0

x, tˆ x, t ; 0.0 1.0
ρ

ρ = ≤ ρ ≤
ρ

ˆ  (9.5) 

( )x, tρIn this,  is the undamaged, reference, mastic density and 0ρ  is the current, 

updated, mastic density. The mastic erosion function ( )ˆf ρ  can be determined 
experimentally and has to satisfy  

( )
( )

f 1 1.0

f 0 0.0

=

=
  (9.6) 

As an example, a type of mastic which is highly susceptible to moisture damage, 
would have moisture damage parameters which are more like the red curves in Fig. 
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9.2.1 and a less moisture damage susceptible mastic would have moisture damage 
parameters which develop more like the blue curves in Fig. 9.2.1. 

θ

dθ
1.0 

1.0 0.0 ρ̂

ˆdρ
1.0

1.0 0.0 
 

Fig. 9.2.1: Schematic of possible moisture damage parameter relations 

Nevertheless, a mastic which has moisture damage parameters such as the red curves, 
may in practice still behave very well as long as the time scale in which the moisture 
damage parameters become considerable, is relatively long enough. In such a case, it 
is very likely that the asphaltic mix has failed under another type of damage long 
before moisture induced damage ever became an issue.  

It is therefore very important in moisture damage susceptibility studies, either purely 
experimentally orientated ones or computationally based ones, to indeed take into 
account the time issue, otherwise a perfectly well behaving mix may be disregarded 
for the wrong reasons, and visa versa. 

9.3 Mechanical moisture induced damage 
As discussed in chapter 2, a combination of a (partially) saturated asphaltic mix, 
exposed to traffic loading, can cause a ‘pumping action’ effect inside of the asphaltic 
mix, Fig. 9.3.1. The excess pore pressures contribute to extra stresses within the 
asphaltic mix, which may cause added permanent deformation within the asphalt 
components. In addition to this (mechanical) damage, pumping action may contribute 
to the physical moisture induced damage, since the increased water pressure in the 
macro-pores, Fig. 9.3.1(b), may result locally into fast flow fields, Fig. 9.3.1(c), which 
increases the advective transport damage.  

(a) (b) (c)  

Fig. 9.3.1: Pumping action on a pavement causing fast flow field  
(a) traffic loading (b) excess pore pressures (c) fast water flow 
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The formulations of the mechanical damage which is generated in the mix by 
imposing (traffic) loading, is discussed in the constitutive model description in 
chapter 7 in the form of the equivalent plastic deformation parameter . The locally 
high water pressures due to the pumping action, however, follow directly from the 
coupling between CAPA-3D and RoAM. The macro-pores in the asphaltic mix are 
simulated in CAPA-3D by using a porous-media formulation [Liu, 2003]. By applying 
traffic loading on the asphaltic mix, the coated aggregates shall slightly rearrange 
themselves, causing a reduction in the volume of the macro-pores. For the macro-
pores which are saturated with water, this action shall locally generate high water 
pressures. These water pressures are communicated to RoAM, which simulates, based 
on these pressures, the flow field and the subsequent damage to the mastic film. 

ξ

In the following the coupling between RoAM and CAPA-3D is discussed in detail. 
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9.4 Coupling of RoAM with CAPA-3D 
For the coupling between RoAM and CAPA-3D, a staggered algorithm is utilized, 
mainly because of the differences in time scales. For instance, the passing of a wheel 
load over a pavement happens in such a short time, that it is justified to pose that 
during this time, no moisture diffusion shall take place.  

Therefore, RoAM simulates the processes contributing to the physical moisture 
induced damage (i.e. moisture flow, moisture diffusion and loss of mastic 
concentration), and based on the physical changes of the components, RoAM 
communicates the updated material characteristics to CAPA-3D, which then performs 
the damage simulations for that time step. After which, the deformed mesh and the 
traffic induced water pressures (i.e. the pumping action) are communicated back to 
RoAM, who updates the parameters and communicates them back to CAPA-3D, 
which then performs the next time step. This procedure continues until the end of the 
simulation time. This process is schematically shown in Fig. 9.4.1. 

 

Fig. 9.4.1: Combined Physical-Mechanical Moisture Induced Damage  
of Asphaltic Mixes Finite Element System 

Suppose that for a time t  an asphalt mix is not exposed to traffic loading but it is 
exposed to moisture, after which the traffic loading continues. In the proposed 
coupling scheme, it is possible to perform simulation with RoAM for a time , and 
start communicating the updated material characteristics for the time steps in which 
traffic loading is again applied. The staggered algorithm therefore allows for a time-
efficient computation of the combined physical-mechanical moisture induced damage. 

t

In the following section, the constitutive formulation for the asphalt components, 
based on the formulations in chapter 7 and the damage parameters postulated in 9.2, is 
derived. 
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9.5 Combined physical and mechanical moisture induced 
damage constitutive model 

9.5.1 Introduction 
In this section, the constitutive model, as derived in chapter 7 is adjusted to 
incorporate the moisture induced damage parameters d  and ˆdρθ  which were defined 
earlier.  

When the material property  is reduced from its original, undamaged, value  due 

to moisture diffusion, the updated, or damaged, value 

X 0X

dXθ  can be determined as a 
function of its undamaged value and the damage parameters 

( )d 0X f X ,d ,θ
θ= α  (9.7)  

Assuming that for zero damage (i.e. d 0.0θ = ) the original property is maintained and 
for total damage (i.e. ) the original property is reduced to zero, the function 

may be postulated as 
d 1.0θ =

( 0f X ,dθ )

0  (9.8) ( ) ( )0f X ,d , 1 d Xα
θ θα = −

where α  determines the nonlinearity of this relation, Fig. 9.5.1. 

dX  

0X  

0.5α =

1.0α =

2.0α =

d

0 0.2 0.4 0.6 0.8 1
 

Fig. 9.5.1: Influence of damage parameter d on material property  X

In the following formulations, it is assumed for simplicity that . 1.0α =

If the property X  is additionally reduced due to an erosion action, similar to the 
above, the updated property could be found from 

0

( )ˆdX 1 d Xd
θ

ρ= −  (9.9)  

Substituting Eq. (9.7) and Eq. (9.8) into Eq. (9.9) gives the total updated property 

( )( )ˆdX 1 d 1 d Xθ ρ= − − 0  (9.10) 
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In this, the damage induced by moisture infiltration into the system is expressed by 
the term  or, writing this expression explicitly, ( )( ˆ1 d 1 dθ− − )ρ ( )ˆ ˆ1 d d d dθ ρ ρ θ− − + . 

In order to simplify the following equations, whereby maintaining the damage scale 
as defined earlier, the two damage processes can be represented by one damage 
parameter md  

 ˆmd d d d d ˆθ ρ θ ρ= + −  (9.11) 

where the last term on the r.h.s. shows the coupling between the two damage 
processes.  

(9.11), allows for the expression  Utilizing Eq. 

  (9.12) ( ) ˆm1 d (1 d )(1 d ) ; 0 d 1θ ρ− = − − ≤ ≤m

In Table 9.5.1 a few examples are given of the moisture damage parameters. 

Table 9.5.1: Example moisture damage parameters 

dθ  ˆdρ  md  Moisture 
damage % 

0.2 0.5 0.6 60 % 

0.5 0.5 0.75 75 % 

0 0 0 0 % 

1 0 1 100 % 

0 1 1 100 % 

1 1 1 100 % 

In the following, the coupled physical-mechanical constitutive model is shown, in 
which Eq. (9.12) is utilized. 

Similarly to chapter 7, first the formulations of the elasto-plastic component and then 
the visco-elastic components are derived. 

9.5.2 Elasto-plastic component 
In the intermediate configuration, for the elasto-plastic component of the model and 
accounting for the physical moisture induced damage, the Helmholtz free energy can 
be set up as 

( ) ( )d m1 d ,∞Ψ = − Ψ ξC  (9.13)  

Therefore, the time derivative of the free energy function becomes 

( )

( )

d m m

m m

1 d d

1 d : : d∞
∞

Ψ = − Ψ − Ψ

⎡ ∂Ψ ∂Ψ
= − + ξ − Ψ⎢ ⎥∂ ∂ξ⎣ ⎦

C
C

 ⎤  (9.14) 
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For the proposed staggered solution scheme between RoAM and CAPA-3D the 
physical moisture induced damage parameter  does not change during the 

simulation time step, and therefore 
md

md 0= . 

Using the relations  and T2∞ ∞=C F ∞F 11
p p∞
− −= +F F F F F  from Eq. (7.6)-(7.7),  

Eq. (9.14) can be further elaborated as 

( )

( ) ( )

( )

T
d m

1 1
m p p

1 1
m

d

d p p

1 d :2 :

1 d 2 : :

1 d 2 : 2 : :

∞ ∞

∞

∞

− −

∞

− −
∞ ∞

∞ ∞

⎡ ⎤∂Ψ ∂Ψ
Ψ = − + ξ⎢ ⎥∂ ∂ ξ⎣ ⎦

⎡ ⎤∂Ψ ∂Ψ
= − + + ξ⎢ ∂ ∂ξ⎣ ⎦

⎡ ⎤∂Ψ ∂Ψ ∂Ψ

⎥

= − +⎢ ⎥∂ ∂⎣

Ψ

Ψ
⎦

F F
C

F F F F F
C

F FF F FF
C C

  (9.15) 

+ ξ
∂ ξ

which can be rearranged as 

( ) T T
d m p p p1 d 2 : 2 : :− −

∞ ∞
∞ ∞

⎡ ⎤∂Ψ ∂Ψ ∂Ψ
Ψ = − − + ξ⎢ ⎥∂ ∂⎣ ⎦

F F F C F F
C C ∂ξ

  (9.16) 

so that the Clausius-Planck local dissipation inequality reads  

( ) ( ) ( )

d d

T
d m p m p m

:

2 1 d : 2 1 d : 1 d q 0−
∞ ∞

∞ ∞

= − Ψ

⎡ ⎤∂Ψ ∂Ψ
= − − + − + − ξ ≥⎢ ⎥∂ ∂⎣ ⎦

P F

P F F F C
C C

D

l
  (9.17) 

from which by standard argumentation the first Piola-Kirchhoff stress tensor, 
including physical moisture induced damage, is obtained as 

( ) T
d m2 1 d p

−
∞

∞

∂Ψ
= −

∂
P F

C
F  (9.18)  

and the dissipation inequality 

( )m p1 d 2 : q 0∞
∞

⎡ ⎤∂Ψ
− +⎢ ∂⎣ ⎦

C
C
l ξ ≥⎥  (9.19) 

After defining the Mandel stress tensor 

( ) ( )d m m2 1 d 1 d∞ ∞ ∞
∞

∂Ψ
= − = −

∂
C

C
Σ C S

0

 (9.20)  

with  the second Piola-Kirchhoff stress tensor defined in the intermediate 
configuration, inequality 

∞S
(9.19) can be expressed as 

d p d: q+ ξ ≥Σ l  (9.21)  

with  ( )d mq 1 d= − q
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( )m1 d ∞− SFor completeness the push-forward operation of  is reiterated 

( ) T
d d mJ 1 d∞ ∞ ∞= = −τ σ F S F  (9.22) 

On the basis of inequality Eq. (9.21) the following constrained minimization 
statement can be set up 

( )
( )

d p d

d d

minimize : q

sub ject to f , q 0

− +

≤

Σ ξ

Σ

l
  (9.23) 

which is equivalent to the following set of plastic evolution equations 

( ) ( )

1
p p p d

d

d d d d

f
q

0 ; f , q 0 ; f , q 0

−= = λ

⎛ ⎞∂
= λ ⎜ ⎟∂⎝ ⎠

λ≥ ≤ λ =

F F N

ξ

Σ Σ

l

  (9.24) 

d df= ∂ ∂N Σin which again λ  is the plastic consistency parameter,  and  
is a flow surface function. The implemented flow surfaces are discussed in Appendix 
7.2. 

( )d df , qΣ

The flow rule expressed by Eq. (9.24)1 can be written as 

p
d pt

∂
= λ

∂

F
N F  (9.25)  

9.5.3 Visco-elastic component 
Similarly to the elasto-plastic component, the Helmholtz free energy function of the 
visco-elastic component can be reformulated 

( ) ( )d m1 dΨ = − Ψ C e  (9.26) 

( )d m e
e

1 d : dm
∂Ψ

Ψ = − −Ψ
∂

C
C

 (9.27)  

Again, for the proposed staggered solution scheme between CAPA-3D and RoAM, 
the physical moisture damage parameter does not change during a time step, and 
therefore  md 0=

Since from Eq. (7.7) it can be found that , therefore  T
ee 2=C F eF

T
e e e e

e e
: 2 : 2 :

∂Ψ ∂Ψ ∂Ψ
= =

∂ ∂ ∂
C F F F

C C C e
e
F

1
v
−

 (9.28)  

Substituting this into Eq. (9.27) and using from Eq. (7.6) the relation 
, the rate of the free energy function can be written as 1

e v
−= +F F F F F
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( )

( ) ( )

( ) ( )

d m e e
e

1 1
m e vd v

e

1 1
m e v m e vd

e e

2 1 d :

2 1 d :

2 1 d : 2 1 d :

− −

− −

Ψ

∂Ψ
Ψ = −

∂

∂Ψ
= − +

∂

∂Ψ ∂Ψ
= − + −Ψ

∂ ∂

F F
C

F FF FF
C

F FF F FF
C C

 (9.29)  

Utilizing the tensor identity  for the first term on the r.h.s. of Eq. TA:BC AC :B=
(9.29), it results 

( ) ( )1
m e v m e v

e e
2 1 d : 2 1 d :− T−∂Ψ

− = −
∂ ∂

F FF F F
C C

∂Ψ F

1
v
−

v

  (9.30) 

By means of the identity  and the identity  the second 
term on the r.h.s. of Eq. 

1 1
v v v
− −= −F F F F 1

e
−=F FF

(9.29) can be written as 

( ) ( ) ( )

( )

1 1
m e v m e v v v

e e

1
m e e v v

e

2 1 d : 2 1 d :

                                     2 1 d :

− −

−

∂Ψ ∂Ψ
− = − −

∂ ∂

∂Ψ
= − −

∂

F FF F F F F F
C C

F F F F
C

1−

 (9.31)  

Utilizing the tensor identity  for Eq. TA:BC B A:C= (9.31) it results 

( ) ( )

( )

1 T
m e e v v m e e v v

e

1
m e v v

e

2 1 d : 2 1 d :

                                                2 1 d :

1

e

− −

−

⎛ ⎞ ⎛ ⎞∂Ψ ∂Ψ
− − = − −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∂Ψ
= − −

∂

F F F F F F F F
C C

C F F
C

  (9.32) 

which can be further simplified by means of the identity  TA:BC AC :B=

( ) ( )1
m e v v m e v v

e e
2 1 d : 2 1 d :−∂Ψ ∂Ψ

− − = − −
∂ ∂

C F F C F
C C

T− F  (9.33) 

(9.33) and Eq. (9.30) into Eq. (9.29)  Substituting Eq. 

( ) ( )T
d m e v m e v

e e
2 1 d : 2 1 d :− T

v
−∂Ψ ∂

Ψ = − − −
∂ ∂

F F F C F
C C

Ψ F  (9.34)  

so that the Clausius-Planck local dissipation inequality reads  
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( ) ( )

( ) ( )

( ) ( )

d d

T T
d m e v m e v

e e

T
d m e v m e v v

e e

T
d m e v m e v

e e

:

: 2 1 d : 2 1 d :

2 1 d : 2 1 d :

2 1 d : 2 1 d : 0

− −

−

−

= − Ψ

∂Ψ ∂Ψ
= − − + −

∂ ∂

⎡ ⎤∂Ψ ∂Ψ
= − − + −⎢ ⎥∂ ∂⎣ ⎦
⎡ ⎤∂Ψ ∂Ψ

= − − + − ≥⎢ ⎥∂ ∂⎣ ⎦

P F

P F F F F C F F
C C

P F F F C F F
C C

P F F F C
C C

D

l

v

1−  (9.35) 

from which by standard argumentation the first Piola-Kirchhoff stress tensor, 
including physical moisture induced damage, is obtained as 

( ) T
d m e

e
2 1 d v

−∂Ψ
= −

∂
P F

C
F  (9.36)  

and the dissipation inequality 

( )m e v
e

2 1 d : 0∂Ψ
− ≥

∂
C

C
l  (9.37)  

Again, after defining the Mandel stress tensor 

( ) ( )d m e m
e

2 1 d 1 d e e
∂Ψ

= − = −
∂

C
C

Σ C S

0

d

 (9.38)  

with  the second Piola-Kirchhoff stress tensor defined in the intermediate 
configuration 

eS

Inequality Eq. (9.37) can then be expressed as 

  (9.39) d v: ≥Σ l

In similarity to Eq. 7.91 the following evolution law can be found 
1

v v :−= ΣCl  (9.40)  

1
v

D V

1 1 1
2 3 9

− ⎛ ⎞= − ⊗ +⎜ ⎟η η⎝ ⎠
I I I IC Iwith ⊗  (9.41) 

while  and  are the deviatoric and volumetric viscosities which may be 
deformation dependent 

Dη Vη

( ) ( )D D d V V d0 ;η = η > η = η >Σ 0Σ

d

  (9.42) 

Therefore 
-1 1

v v v v :−= =F F ΣCl  (9.43) 

Which can be written as 

( )1v
v d:

t
−

v
∂

=
∂
F FΣC  (9.44) 
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9.5.4 Stress Reduction Procedure 
The stress reduction procedures for the elasto-plastic and visco-elastic components of 
the model is similar to the formulation described in section 7.2.5 and 7.2.7, using the 
above described tensors which include the physical moisture induced damage, and is 
not repeated here. 

In the following the above described combined physical-mechanical moisture induced 
system is demonstrated via several numerical simulations, using the experimentally 
determined parameters. 
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9.6 Numerical parametric study of moisture induced damage 

9.6.1 Introduction 
The combined physical-mechanical moisture induced damage model, as presented in 
the previous sections, is demonstrated in this section.  

First, the time aspect regarding aggregate-mastic bond degradation in the presence of 
moisture is highlighted. In the developed methodology for determination of bond 
strength in the presence of moisture, as discussed in chapter 8, moisture is reaching 
the interface through the aggregate mastic film. Therefore, the bond degradation times 
which are determined from the experiment cannot be used for bond degradation times 
in practice. Rather, it is fair to assume that, in practice, moisture would most of the 
time diffuse through the mastic to reach the aggregate-mastic interface. Therefore, the 
diffusion coefficient of the mastic and mastic film thickness become important in 
assessing the bond degradation time.  

Then, a micro-scale asphalt mix is used to demonstrate the damage development 
within the components, when exposed to the combined action of traffic loading, 
moisture diffusion and pumping action. Via several computational simulations it is 
demonstrated that completely different damage patterns may result for different 
moisture susceptibility parameters of the asphalt components. 

In the following, first a parametric study is performed in which the generation of bond 
strength reduction as a function of time is simulated. In the study, the mastic film 
thickness, the mastic moisture diffusion coefficient and the aggregate-mastic bond 
moisture damage susceptibility parameter are varied.  
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9.6.2 Mastic film thickness versus aggregate-mastic bond strength 
reduction 

As was mentioned before, the time scale in which moisture induced damage develops 
within an asphaltic mix is of paramount importance in the assessment of moisture 
susceptibility of an asphaltic mix. Therefore, in order to assess the time-scale in which 
aggregate-mastic bond strength reduction becomes relevant in practice, in the 
following, simulations are given of aggregate-mastic samples that are exposed to 
moisture from the outside of the mastic film, with varying: 

- mastic film thicknesses 

- mastic moisture diffusivity coefficients 

- moisture damage susceptibility parameters of the aggregate-mastic bond 

As discussed in chapter 3, the rate of moisture diffusion is controlled by the diffusion 
coefficient of the material. However, the maximum moisture concentration  
which a material may absorb can be different and should be determined 
experimentally. The implication of the above is that, for instance, a material with a 
high diffusion coefficient may absorb more moisture in the beginning of the diffusion 
process, see the red curve in 

max
mC

Fig. 9.6.1(a), but shall ultimately absorb less moisture 
than a material which has a lower diffusion coefficient but a higher , see the blue 
curve in 

max
mC

Fig. 9.6.1(a). 
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Fig. 9.6.1: Moisture uptake schematic for two materials 

As mentioned earlier, to enable the comparison between materials, in the following 
analyses, the normalized values of the moisture concentrations ( ) max

m mC t / C are used, 

( )tθFig. 9.6.1(b), and shall be referred to as the moisture content . 

In chapter 8 the aggregate-mastic bond strength was determined as a function of 
moisture content for a particular type of aggregate-mastic combination. From this, the 
moisture induced damage parameter ( )d f ,θ = θ α  was determined for the aggregate-
mastic bond as 
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d 1 e−α θ
θ = −  (9.45) 

 where for the tested samples, it was determined that 3.76α =

In the following analyses, the assumption is made that the moisture damage 
development of all aggregate-mastic bonds is of the exponential form depicted in Eq. 
(9.45), which is controlled by the moisture damage susceptibility parameter . α

Three types of aggregate-mastic moisture damage evolution are postulated, type I, II 
and III with a moisture damage susceptibility parameter of Iα =  0.1, 1.0 and 

5.0, respectively.  
IIα =

IIIα =

In Fig. 9.6.2 the development of the moisture damage dθ  as a function of moisture 
content  is plotted for the three moisture damage evolution types. ( )tθ
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Fig. 9.6.2: Postulated mastic-aggregate moisture susceptibility  

From Fig. 9.6.2 it can be seen that the mastic-aggregate bond type III damages 
severely, even for low moisture content values, type II looses approximately 60% of 
its bond when the maximum moisture content is reached and type I suffers very little 
moisture damage, with a maximum of 10% damage at full saturation.  

Moisture diffusion measurements are still not performed very commonly for asphaltic 
materials. There are two main test procedures being utilized to date. The first is an 
overall measurement of the increase of weight as a sample is exposed to a controlled 
moisture conditioning [Cheng 2002]. The second is a slightly more complicated 
procedure using a Fourier transform infrared spectroscopy [Nguyen 1992]. It is quite 
challenging, though, to utilize the available test data, since the values can be 
considerably different.  

For instance, for the type AAD-1 asphalt binder (i.e. pure bitumen), values have been 
published from a wide range of 2.88 10+6 mm2/hr [Little 2003] to 4.79 mm2/hr [Cheng 
2002] to 9.0 10-5 mm2/hr [Nguyen 1992].  

Comparing these values with published diffusion coefficients of, for example, rubber 
1.44 10-4D =  mm2/hr, PVC D = 8.28 10-3 mm2 -2/hr and polyethylene 8.28 10D =  
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mm2/hr [Abson 1979], the lower range diffusion values for asphalt binders seems to 
be more plausible. Since the mastic in an asphaltic mix generally consists of asphalt 
binder as well as sand particles and fine aggregate filler material, a higher diffusion 
value than for the binder alone can be expected, as was demonstrated in chapter 6. 

To cover the wide-spread values of the diffusion coefficients, within reason, and to 
show their implications for the aggregate-mastic bond strength reduction, in the 
following, a parametric analysis with RoAM is given, where mastic diffusion 
coefficients ranging from the extreme value of 1 mm2/hr to 1.0 10-05 mm2/hr are 
utilized. 

In Table 9.6.1 an overview is given of the various aggregate-mastic simulation types. 

Table 9.6.1: Overview of aggregate-mastic simulation types 

Mastic Diffusion Coefficients [mm2/hr] Moisture Damage 
Susceptibility  

I D 1.0= 2
IID 1.010−= 4

IIID 1.010−= 5
IVD 1.010−=

I 0.1α =  A B C D 

II 1.0α =  E F G H 

III 5.0α =  J K L M 

In the RoAM diffusion analyses, moisture diffusion into the mastic film is simulated 
and the moisture content θ  in the aggregate-mastic interface is monitored, Fig. 9.6.3

aggregate 

mastic 

interface 

bc 1.0θ =  

( )if tθ  

θ 
0.0 

0.5 

1.0 

 

Fig. 9.6.3: Simulation of moisture into the mastic towards the interface (if) 

In the analyses it is assumed that: 

- during the entire simulation time, moisture is freely available from the outside 
environment, i.e. a continuous moisture boundary condition of ; bc 1.0θ =

- moisture can only reach the aggregate-mastic interface via a diffusion process 
through the mastic film; 
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- once the mastic has reached its maximum moisture capacity, i.e. , no 
additional damage is generated; 

( )t 1.0θ =

- moisture at the aggregate-mastic interface is not accumulating; 

- moisture is not causing any swelling in the mastic; 

- moisture diffusion stagnates once the concentration gradient in the mastic 
diminishes to zero; 

- no other damage process is occurring. 

For the aggregate-mastic combination types A-M, the time in which 10 %, 25 %, 50 
%, 75 % and 100 % bond strength reduction is generated, is computed for mastic 
films of a thickness of 50 , 100 mμ mμ , 500 mμ , 1.0  and 5.0  and is 
summarized in 

mm mm
Table 9.6.1 through Table 9.6.6. 

From the tables it can be concluded that accurate determination of the moisture 
diffusion coefficient of the mastic film and its maximum moisture capacity are of 
essence in determining the life time of asphaltic mixes. Moreover, it can be 
recommended to choose mastic-aggregate combinations, which minimize the mastic 
moisture diffusion coefficients D and the aggregate-mastic moisture damage 
susceptibility parameter α . 

Table 9.6.2: Time in which 10% bond strength reduction is generated 

 Mastic Film Thickness 

 50  mμ 100  mμ 500 mμ  1.0  mm 5.0 mm  

A < 1.0 min < 1.0 min 36 min 2.4 hrs 9 days 

B 1 hr 2.3 hrs 2.5 hrs 12 days 13 months 

C 2.6 days 9.7 days 8.5 months 33 months 50 yrs 
3D 3 months 11 months 15.3 yrs 102 yrs 2.3 10  yrs 

E < 1.0 min < 1.0 min < 1.0 min 2.6 min 1.2 hrs 

F < 1.0 min 2.5 min 30 min 2.4 hrs 5 days 

G 1.3 hrs 4.4 hrs 4.2 days 17 days 1.4 yrs 

H 13 hrs 2 days 1.8 months 6.9 months 14.6 yrs 

J < 1.0 min < 1.0 min < 1.0 min < 1.0 min 20 min 

K < 1.0 min < 1.0 min 9 min 54 min 1.9 days 

L 28 min 1 hr 2 days 4.2 days 6.5 months 

M 4.6 hrs 18 hrs 19 days 2.5 months 5.3 yrs 
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Table 9.6.3: Time in which 25% bond strength reduction is generated 

 Mastic Film Thickness 

 50  mμ 100  mμ 500 mμ  1.0  mm 5.0  mm

A never never never never never 

B never never never never never 

C never never never never never 

D never never never never never 

E < 1.0 min < 1.0 min 1.8 min 6.6 min 2.8 hrs 

F < 1.0 min 7 min 3 hrs 10 hrs 12 days 

G 3 hrs 11 hr 10 days 46 days 3.3 yrs 

H 28 hrs 4.7 days 3.9 months 1.3 yrs 32.4 yrs 

J < 1.0 min < 1.0 min < 1.0 min 2 min 45 min 

K < 1.0 min 2 min 20 min 1.6 hrs 3.5 days 

L 51 min 3 hrs 2 days 12 days 12 months 

M 8.5 hrs 33 hrs 2.1 months 4.6 months 9.8 yrs 

 

Table 9.6.4: Time in which 50% bond strength reduction is generated 

 Mastic Film Thickness 

 50  mμ 100  mμ 500 mμ  1.0  mm 5.0  mm

A never never never never never 

B never never never never never 

C never never never never never 

D never never never never never 

E < 1.0 min < 1.0 min 6 min 22 min 9 hrs 

F 6 min 22 min 10 hrs 1.7 days 1.3 months 

G 10 hrs 1.5 days 38 days 5 months 10 yrs 

H 3.8 days 15 days 13 months 4.2 yrs 105 yrs 

J < 1.0 min < 1.0 min < 1.0 min 4 min 1.5 hrs 

K < 1.0 min < 1.0 min 1 hr 2.8 hrs 6.4 days 

L 1 hr 6 hrs 6 days 25 days 1.8 yrs 

M 15 hrs 2.5 days 2.1 months 8.5 months 17.7 yrs 
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Table 9.6.5: Time in which 75% bond strength reduction is generated 

 Mastic Film Thickness 

 50  mμ 100  mμ 500 mμ  1.0  mm 5.0  mm

A never never never never never 

B never never never never never 

C never never never never never 

D never never never never never 

E never never never never never 

F never never never never never 

G never never never never never 

H never never never never never 

J < 1.0 min < 1.0 min 1.5 min 6.6 min 2.8 hrs 

K < 1.0 min 7 min 3 hrs 10 hrs 11.3 days 

L 3 hrs 11 hrs 10 days 46 days 3 yrs 

M 27 hrs 29 days 3.8 months 1.3 yrs 31.4 yrs 

 

Table 9.6.6: Time in which 100% bond strength reduction is generated 

 Mastic Film Thickness 

 50  mμ 100  mμ 500 mμ  1.0  mm 5.0  mm

A never never never never never 

B never never never never never 

C never never never never never 

D never never never never never 

E never never never never never 

F never never never never never 

G never never never never never 

H never never never never never 

J < 1.0 min < 1.0 min < 1.0 min 2.4 hrs 19 hrs 

K 1 hr 2.3 hrs 2.5 days 12 days 2.6 months 

L 2.6 days 10 days 8.4 months 33 months 22 yrs 

M 8 days 1 month 2.2 yrs 8.8 yrs 218 yrs 
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9.6.3 Combined physically and mechanically generated damage on a 
micro-scale asphalt mix 

9.6.3.1 Introduction 
Traffic loading causes quite a complex stress pattern on an asphaltic pavement, given 
its dynamic nature, the high velocities and its combined compressive, frictional and 
tension loading due to tire-pavement interactions. Tools are currently being developed 
to accurately simulate the dynamic wheel-asphalt pavement loading [Kasbergen 
2007]. For the asphaltic mix behavior, generally, a continuum approach is used to 
simulate the material response.  

To explicitly include the response of all the asphalt components, it is also possible to 
develop micro-scale finite element meshes whereby each component has its own 
constitutive model and the interaction is simulated via interface elements [Milne 
2004], Fig. 9.6.4. 

Aggregate Interface Region Mastic

 

Fig. 9.6.4: Different scales of simulating asphaltic materials 

The use of such an approach to simulate the actual behavior of a pavement makes for 
interesting analyses, even though the computational effort and times involved are of 
such a large scale that even with the current computing power this remains an 
unattractive option. Other approaches, which benefit from the computational 
efficiency of the continuum mechanics approach, while at the same time, including 
the directionality of the aggregate types and shapes within the material model, are also 
being developed [Scarpas 2006[b]].  

In this dissertation, the asphalt mix is indeed approached on a micro-scale level, 
though the current objective is not to use the developed model to simulate the 
pavement response. Rather, the objective is to show the combined physical-
mechanical phenomena that can now be simulated with the developed tool and to 
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demonstrate the importance of each of these moisture induced damage processes on 
the eventual developed damage pattern.  

It therefore suffices to demonstrate the developed tool on a simplified representation 
of an asphaltic mix. In Fig. 9.6.5 and Fig. 9.6.6 the geometry and set-up of the finite 
element mesh is shown. The mesh consists of two stones, coated with a mastic film 
and a macro-pore which may contain moisture. The aggregate-mastic interface is also 
modeled to simulate the bond response.  

 

mastic film 
300 mμ

macro-pore

10 mm 

 

Fig. 9.6.5: Finite element mesh for the micro-scale analyses 

The (green) cohesive mastic boundary elements, Fig. 9.6.6, are in fact mastic patches 
which connect one coated aggregate to the next one, and are assigned the same 
material properties as the mastic film.  

 

mastic 

adhesive interface 

stone

 (b) 

(c)

(d) (e)

(a) 

(d) 

(a) (b) (c) (e)  

Fig. 9.6.6: Details of the mesh. Topright: adhesive interface.  
Bottom: details of cohesive mastic boundary elements 
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The purpose of these elements is to simulate the constraints from the surrounding 
aggregates on the movement of the two aggregates. Boundary elements (a) and (c) are 
restrained in the horizontal movement and (d) and (e) are restrained in the vertical 
movement. The bottom nodes of the macro-pore element are also restrained from 
moving vertically. The mastic patch between the two aggregates, detail (b), simulates 
the connecting mastic between the two aggregates and is not given any extra restrains. 

Even though the developed model is fully three dimensional, for demonstration 
purposes here only the two dimensional response in the micro-scale finite element 
mesh is discussed.  

9.6.3.2 Mechanical loading conditions 
Since the two aggregates are at the surface of the pavement, they are in direct contact 
with the traffic loading. To simulate the tire-pavement interaction, a loading cycle is 
applied, which consists of 0.02 s pulses per tire, with 0.06 s period between the tires 
and 0.1 s between the next car loading [Al-Qadi 2007]. In the simulation, the loading 
of the stones in time is simulated with a compressive and shear pulse on the front and 
back side of the stones, with a time-lag of 0.01 s. In the simulation, traffic is assumed 
to move from the right to the left. The maximum applied compressive and shear stress 
is 0.7 MPa and 0.3 MPa, respectively. A complete loading cycle takes 0.2 s and is 
considered to be two wheel passes and one rest period, Fig. 9.6.7. 

 

Fig. 9.6.7: Time scheme of applied loading cycle, with applied compressive loading 
 and shear loading yyF 0.7 MP= a axyF 0.3MP=  

In Fig. 9.6.8 the deformation of the mesh, due to the applied mechanical loading is 
shown. From the pictures it can be seen there is a tendency for the aggregate to rotate 
under the applied loading, which applies a severe deformation on both the mastic 
between the stones and the aggregate-mastic interfaces near the boundaries.  

S [MPa] loading cycle

0.06 s 0.10 s

    

0.7 MPa

0.3 MPa

0.02 s 0.02 s
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Fig. 9.6.8: Deformation due to applied loading (magn. 200x) 

The applied loading is not meant as an actual representation of the tire-pavement 
interaction as would occur in practice. In such a case, dynamic phenomena and 3D 
effects should certainly be included. Rather, the chosen loading times, the magnitude 
of the applied compression and shear stresses and the contact area’s are chosen in 
such a way, to show the punishment that the individual components may suffer from 
and the versatility of the stresses and strains that different locations in the asphalt mix 
may be exposed to, given sensible loading assumptions.  

In the following, 13 different cases are simulated in which the diffusion of moisture, 
the erosion of mastic, the mechanical damage and the moisture susceptibility 
parameters are varied in a systematic way. It is the intention that these cases 
demonstrate that the consideration of physical moisture induced damage, together 
with mechanically generated damage, will lead to predictions of damage patterns 
which may differ considerable had they not been included. It furthermore shows the 
importance of determining the various moisture susceptibility parameters. 
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9.6.3.3 Parametric simulation scheme 
In Table 9.6.7 the parameters of the various cases are shown. 

Table 9.6.7: Parametric simulation scheme 

Moisture susceptibility parameters 
Moisture Case name conditioning Aggregate-Mastic mastic bond 

Case 0: Dry  -  -   -  

3 2
mstD 3 10 mm / h−= ⋅ r  

if 0.7θα =Case I: Diff  42 days diffusion 
mst 0.5θα =  

2 2
mstD 1.5 10 mm / h−= ⋅ r  

if 0.7θα =Case II: Diff  42 days diffusion 
mst 0.5θα =  

2 2
mstD 1.5 10 mm / h−= ⋅ r  

if 1.2θα =Case III: Diff  42 days diffusion 
mst 0.0θα =  

2 2
mstD 1.5 10 mm / h−= ⋅ r  

if 0.0θα =Case IV: Diff  42 days diffusion 
mst 1.2θα =  

PA (pumping action) 
3

dK 0.0 mm / g= ˆ 0.0ρ, α =  Case V: Dry PA  -  No diffusion 

No erosion 

PA and erosion 3
dK 1.0 mm / g= ,  ˆ 2.0ρα = - Case VI: Advec 

No diffusion 

PA and erosion 3
dK 1.0 mm / g= ,  ˆ 5.0ρα = - Case VII: Advec 

No diffusion 

PA and erosion 3
dK 5.0 mm / g= ˆ 5.0ρ, α =  - Case VIII: Advec 

No diffusion 

3
dK 5.0 mm /= g

r

, 

,  PA, erosion and mst 0.5θα =ˆ 5.0ρα = if 0.7θα =Case IX: All  
42 days diffusion 

2 2
mstD 1.5 10 mm / h−= ⋅  

3
dK 1.0 mm / g= , 

,  PA, erosion and mst 0.5θα =ˆ 5.0ρα = if 0.7θα =Case X: All  
42 days diffusion 

2 2
mstD 1.5 10 mm / h−= ⋅ r  

3
dK 1.0 mm / g= , 

,  

PA, erosion and if 1.2θα =Case XI: All  mst 0.0θα =ˆ 5.0ρα =42 days diffusion 
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2 2
mstD 1.5 10 mm / h−= ⋅ r  

3
dK 5.0 mm /= g

r

, 

,  PA, erosion and mst 1.2θα =ˆ 5.0ρα = if 0.0θα =Case XI: All  
42 days diffusion 

2 2
mstD 1.5 10 mm / h−= ⋅  

 

9.6.3.4 Material properties 
To monitor the damage development within the asphalt mix more carefully, six 
locations are selected, for which stress, strain and damage values can be compared in 
time for the various cases, Fig. 9.6.9. Gauss points A, B and C are located within the 
mastic and D, E and F are located in the aggregate-mastic interface. 

A
B

F 

D E 

C 

 

Fig. 9.6.9: Monitoring locations  

For the material response of the individual components, the elasto-visco-plastic 
model, as presented in chapter 7 is utilized. Hereby, for the mastic, the parameters as 
determined in chapter 7 are used. The stones are assumed hyper-elastic, with a 

 and . The aggregate-mastic bond is simulated, assuming an 
approximately 20% weaker material than the mastic. A Drucker-Prager yield surface 
is used for the response of the plastic component. In section 7.3.1 a detailed 
description of this yield surface and its parameters is given.  

E 3000 MPa= 0.3ν =

Table 9.6.8In  a summary is given of the material parameters, which are utilized in the 
analyses. 
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Table 9.6.8: Material parameters for visco-elasto-plastic model 

Visco-elastic component Elasto-plastic componentMaterial

d v

E 176MPa, 0.3
110MPa s, 1000MPa s

= ν =
η = ⋅ η = ⋅

0y y

E 176MPa, 0.3
c 0.12 MPa,c 0.35MPa

0.25rad, 90
∞

= ν =
= =

φ = δ =

Mastic 

d v

E 100MPa, 0.3
70MPa s, 1000MPa s

= ν =
η = ⋅ η = ⋅

0y y

E 176MPa, 0.3
c 0.09 MPa,c 0.35MPa

0.15rad, 90
∞

= ν =
= =

φ = δ =

Aggregate-
 mastic bond 
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9.6.4 Moisture induced damage simulations 

Case 0: dry response 

To enable the comparison between the added damage which is induced by the 
moisture, first a zero case simulation is performed for the dry material. The dry 
response of the mesh is evaluated during several loading cycles at the six locations as 
shown in Fig. 9.6.9. 

Fig. 9.6.10In  the damage development at the six locations is plotted against time, for 
137 loading cycles. Ksi is the measure of damage development which is used in all 
the analyses, and is the equivalent plastic strain ξ , defined in Eq. 7.40.  
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Fig. 9.6.10: Damage generation for the dry mix, 250 loading cycles 

As can be seen from the graphs, most damage is generated in node C and E after 250 
loading cycles, which are both located near a boundary with a next aggregate, Fig. 
9.6.9. 

The cyclic response of node C, node A and node D are plotted for 250 loading cycles 
in Fig. 9.6.11 through Fig. 9.6.13, respectively. In these, the top graph shows the 
response of the nodes, plotted in stress space (where  and 1I 2J  are the first and 
second stress invariants, see Eq. 7.141 and Eq. 7.142), and the bottom graph shows 
the vertical stress-strain response. The ‘unhardened Drucker-Prager’ line, shown in 
the top graphs, indicates the original yield response of the material, before hardening. 
The plastic hardening of the material is modeled via a cohesion hardening, and is 
explained in more detail in Appendix 7.2. 

As can be seen from the graphs, each node is exposed to a complex stress field, 
depending on the location in the mesh and its material properties. 
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Fig. 9.6.11: Cyclic response of node C for the dry case  
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Fig. 9.6.12: Cyclic stress-strain response of node A, for the dry case 
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Fig. 9.6.13: Cyclic stress-strain response of node D, for the dry case 
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Case I & II: diffusion, with varying diffusion coefficients 

As described in chapter 8 and section 9.6.2, the development of the moisture damage 
of the aggregate mastic bond interface, was defined as 

ififd 1 e θ−α θ
θ = −  (9.46)  

if
θαwhere  is the moisture content and θ  is the moisture susceptibility parameter of 

the aggregate-mastic interface. 

For simplicity, and because of the lack of experimental evidence, the moisture damage 
development of the mastic, due to the presence of moisture is, similarly to the 
aggregate-mastic interface, defined as 

mstmstd 1 e θ−α θ
θ = −  (9.47) 

where  is the moisture susceptibility parameter of the mastic. mst
θα

For the Case I and II, the moisture susceptibility parameters for the mastic and the 
aggregate-mastic bond are chosen as  and , mst 0.5θα = if 0.7θα = Fig. 9.6.14
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Fig. 9.6.14: Moisture damage development for Case I & II 

For Case I a diffusion coefficient of  is used, based on a 

bitumen with moisture diffusivity  with 25%/by volume filler 

content with .  

3 2
mstD 3 10 mm /−= ⋅ hr

r

r

r

r

4 2
bitD 1 10 mm / h−= ⋅

2 2
fillD 1 10 mm / h−= ⋅

For Case II a diffusion coefficient of  is chosen, which is 
based on the same bitumen and filler percentage as in Case I, but with a filler with 

. In section 6.3.4 more details are given as to how these values 
were determined. 

2 2
mstD 1.5 10 mm / h−= ⋅

1 2
fillD 1 10 mm / h−= ⋅

For both cases, it is assumed that the elements of the macro-pore, Fig. 9.6.5, are 
saturated with moisture. Numerical diffusion simulations are performed with RoAM, 
which shows the moisture infiltration into the mastic film, and eventually, the 
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aggregate-mastic interface. In the analyses, the elements which represent the 
aggregate-mastic interface are simulated with cubic elements and are given the same 
moisture diffusivity as the mastic film. The aggregate is assumed to have a diffusivity 
of .  2

aggD 0.01mm / h= r

.01mm / hr=

Fig. 9.6.15In  the gradual increase in moisture content in the asphalt mix for Case II is 
shown at several times. 

t = 0 hrs

t = 10 hrs

t = 100 hrs

 

Fig. 9.6.15: Moisture diffusion for diffusion case II 
with D 0  and  2

agg
2

masticD 0.015mm / hr=

It can be seen that after 1000 hours (i.e. ~42 days) the mastic film, which was in direct 
contact with the macro-pore, has reached almost its maximum moisture capacity, 
whereas the mastic film further away from the macro-pore has reached 0 -50% of its 
maximum capacity. 

 

t = 1000 hrs

moisture
content

0.0 

1.0 
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Depending on the moisture susceptibility parameter θα  of the asphalt components, 
different levels of moisture damage shall be reached after similar diffusion times. In 
Fig. 9.6.16 the moisture damage dθ  is shown for Case II after 42 days of moisture 
diffusion, utilizing the moisture damage development functions, as defined in Eq. 
(9.46) and Eq. (9.47). 

   dθ  
0.0 

0.48

 

Fig. 9.6.16: Moisture damage after 42 days of moisture diffusion for Case II,  
i.e. ,  and  2

mstD 0.015mm / hr= if 0.7θα = mst 0.5θα =

Because the moisture damage development within the aggregates themselves is not 
considered in this study, i.e. , no moisture damage shall be generated in the 
aggregates, regardless of their moisture content.  

agg 0.0θα =

In principle, the moisture diffusion processes and the mechanical loading cycles occur 
simultaneously. However, given the fast nature of the mechanical loading cycle, and 
the slow nature of the diffusion process, it does not make much computational sense 
to actually simulate the processes in parallel for only a few loading cycles. Rather, it 
is assumed in the parametric studies that the asphalt has already been exposed to 
moisture (from the macro-pore) for 42 days, after which it is subjected to mechanical 
loading.  

Since Case I and II have different mastic diffusivity properties, after 42 days of 
moisture diffusion, the asphalt mix shall show a different behavior for the two cases, 
when exposed to the mechanical loading cycles. 

In Fig. 9.6.18 and Fig. 9.6.17 a comparison is given between the response of Case 0, I 
and II, after being exposed to 42 days of moisture diffusion and 10 loading cycles. 
The comparisons are made for location A and D, which are located in the cohesive 
mastic area between the two stones and in the (adhesive) aggregate mastic interface 
area, respectively. 
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Fig. 9.6.17: Comparison of the response of node A, for the dry case 0 and case I and II 

with moisture diffusion conditioning 
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Fig. 9.6.18: Comparison of the response of node D, for the dry case and case I and II 

with moisture conditioning 
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From both graphs it can be seen that the moisture diffusion conditioned Case I & II 
develop a significant increase of damage (i.e. equivalent plastic strain) at both 
locations. Furthermore, the effect of the mastic diffusion coefficient on the damage 
development can be noticed by comparing the response of Case I and II.  

In Fig. 9.6.19 the permanent deformation is shown at several locations for Case II. 

(c) 

ξ  
(b) 0.0 

(a)

(e) 0.008(d)

(c) 

(d) 

 

Fig. 9.6.19: Damage in the mastic and aggregate-mastic bond for Case II,  
after 42 days of moisture conditioning and 10 loading cycles (magn. 200x) 

It can be seen from the figure that considerable damage is generated in the aggregate-
mastic interfaces, which would indicate the onset of a ravelling process. Additionally, 
the mastic film between the stones and near the boundaries starts to generate damage.  

(a) (b) (e) 
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Case III& IV: diffusion, with varying moisture susceptibility parameters 

To demonstrate the effect of the moisture susceptibility parameters, in Case III and IV, 
the mastic diffusion coefficient is kept constant at , similar to 
Case II. The moisture susceptibility parameters for the mastic and the aggregate-
mastic interface are chosen as  and  in Case III and as  

and  in Case IV.  

2 2
mstD 1.5 10 mm / h−= ⋅ r

mst 0.0θα = if 1.2θα = mst 1.2θα =
if 0.0θα =

Case III represents an asphalt mix with a mastic type through which moisture does 
diffuse, but does not affect its properties, and an aggregate-mastic bond which 
degrades in the presence of moisture. Case IV represents an asphalt mix which has an 
aggregate-mastic bond which is not affected by moisture, even though the mastic is 
moisture susceptible.  

Again, location A and D are used to show the effect of the moisture susceptibility 
parameters on the material response, Fig. 9.6.20 and Fig. 9.6.21. 

It can be seen that the ‘cohesive interface’ between the stones (location A) damages 
most in Case IV and the adhesive interface (location D) damages most in Case III. 
Since they correspond to locations within the mastic and the aggregate-mastic area, 
respectively, this makes perfect sense given that Case IV is not susceptible to moisture 
damage in the interface and Case III is not susceptible to moisture damage in the 
mastic.  

However, it can also be notices that, because of the interactions between the materials 
and the redistributions of stresses internally, due to locally weakened materials, the 
interface response is still slightly affected in the non-moisture susceptible interface 
case and the same goes for the mastic in the non-moisture susceptible mastic case. 
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Fig. 9.6.20: Comparison response of node A, between case 0 and diffusion case III 

and IV 
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Fig. 9.6.21: Comparison of response of node D, between case 0 and diffusion case III 

and IV 
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In Fig. 9.6.22 and Fig. 9.6.23 the response of node D and node A after 3000 loading 
cycles is compared for the dry case (Case 0) and case II and Case III.  
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Fig. 9.6.22: Stress-strain response of node D for Case0, Case II and Case III 

for 3000 loading cycles 
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Fig. 9.6.23: Stress-strain response of node A for Case 0, Case II and Case III 

 for 3000 loading cycles 

It can be seen that node A is more affected in case II and node D in case III. This 
would be expected, since node A is part of the mastic and node D is part of the 
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interface. In Fig. 9.6.24 a visual comparison is given between the permanent 
deformation at the location between the two simulated stones for Cases 0- IV.  

Dry Case I Case II 

ξ
0.0 

Case III Case IV 0.0154  

Fig. 9.6.24: Comparison of damage development for the various cases after 10 
loading cycles (magn. 300x) 

From the comparison between the accumulated damage and the resulting deformation, 
it can be concluded that the materials with the moisture susceptibility characteristics 
used in Case III would most likely show an adhesive failure in the field (i.e. raveling 
of the mix), whereas Case IV would show a more pronounced cohesive failure within 
the mastic films. From the comparison between Case II and III it can be concluded 
that for materials with a given moisture (damage) susceptibility, the moisture 
diffusion coefficients become the dominant parameter which decided which failure 
pattern would occur in the field. The normal and shear stress distribution within the 
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mesh is shown for Case II, during the second loading cycle, Fig. 9.6.25 and Fig. 
9.6.26 respectively. 
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Fig. 9.6.25: Stress-yy development within the materials for Case II,  

during the second loading cycle 
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Fig. 9.6.26: Stress-xy development within the materials for Case II,  
during the second loading cycle 
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It was mentioned earlier that in the dry simulation (Case 0) location C was generating 
most damage. Since this location is not nearby the area of the macro-pore, less 
moisture induced damage is generated in location C, in comparison with the other 
locations. As can be seen from Fig. 9.6.27, in Case I and II node E is generating most 
damage, followed by node C. In Case III most damage occurs in node E and F and in 
Case IV most damage is generated in locations B and A. 

From the comparison between the changing order of dominant damage development 
locations between the Cases, it can be concluded that for different moisture 
susceptibility parameters of the individual components and their bond, completely 
different damage patterns may be generated within the asphalt mix. In Case 0, 
damage would probably start from an aggregate dislodging effect from the mix, and in 
Case I & II it may be a combined cohesive and adhesive failure which would develop. 
In Case IV, most likely failure would first occur between the two stones, whereas in 
Case III, failure would probably start from a stripping action between the mastic and 
the stone. Improvement of the asphalt mix performance would therefore imply 
improvement of different parameters in the various cases. 
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Fig. 9.6.27: Dominant damage development for Case 0 - IV 
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Case V- VIII: Pumping action 

In Case I through IV, moisture damage was induced via a moisture diffusion process. 
Because of the time differences in which mechanical loading occurs and moisture 
diffusion progresses, in the simulations, the asphalt was preconditioned by exposure 
to moisture, before mechanical loading was applied. As discussed in previous 
sections, in addition to moisture induced damage due to diffusion, another type of 
moisture induced damage that may occur and which influences the damage patterns 
which would ultimately develop, is an erosion of the mastic due to high water 
pressures.  

In addition to the loss of mastic, the water pressure may cause additional stresses on 
the mix, which may cause added plastic deformation (i.e. mechanical damage), Fig. 
9.6.28. The first process is considered in this research as a mechanical and the latter 
as a physical moisture induced damage process. 

Mechanical load cycle 

High water pressures 

Additional stresses Loss of mastic 

Material response 
 

Fig. 9.6.28: Principle of damage due to pumping action 

Unlike the moisture diffusion process, which occurs over a longer timeframe, the 
erosion of mastic due to the pumping action occurs on the same timeframe as the 
mechanical loading process, since one is a direct consequence of the other.  

In Case V the mechanical moisture induced damage process is addressed, without 
physical damage to the mastic due to moisture diffusion or erosion. In Cases VI 
through VIII the combined action of the mechanical and physical moisture induced 
damage due to the pumping action is shown, again without considering moisture 
diffusion. Then, in Case IX through XII the combined action of moisture diffusion, 
erosion and mechanical loading is demonstrated. 
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Case V: Pumping Action: added mechanical damage 

To simulate the (mechanical) damage which is generated by the pumping action of the 
traffic load, the elements of the macro-pore of the mesh, Fig. 9.6.5 , are simulated as 
fully saturates porous-media elements [Liu 2003]. Therefore, imposing the 
mechanical loading cycle on the mesh, water pressure is generated within the macro-
pore elements. Fig. 9.6.29 shows that, under the imposed loading cycle, the water 
pressure builds up to maximum value of 0.20 MPa and drops to zero when the loading 
is reduced.  

 

Fig. 9.6.29: Water pressure in the macro-pore 

In the analyses, the hydraulic conductivity and the porosity of the macro-pore is 
maximized, in order to simulate the characteristics of the pore-space. To verify that 
the water pressure in the macro-pore of the micro-scale mesh is of the correct order of 
magnitude, also a macro-scale finite element porous media analysis was performed. In 
this analysis, the traffic loading was applied on the top of the asphalt wearing surface 
via a moving load simulation. The material properties of the asphalt were kept as 
close as possible to the micro-scale mesh properties. From this analyses it followed, 
that the water pressure was indeed in the same range as found in the micro-mesh. 
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Saturated asphalt layer

Subgrade layers

Pore pressure ~-0.2 MPa 

 

Fig. 9.6.30: Simulation of moving wheel load to confirm pore pressure loading, due to 
the pumping action of the wheel load 

Comparing the damage which is generated after 10 loading cycles in the dry mesh 
(Case 0) with the mesh including the water pressure in the macro-pore (Case V), it is 
found that in some locations more damage is generated (node A and B), in some there 
is no added damage due to the water pressures (node F) and in others there is actually 
a reduction in damage, compared to the dry simulation (node C, D and E), Fig. 9.6.31. 
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Fig. 9.6.31: Comparison plastic deformation generation Case 0 and Case V 

It can therefore be concluded that the added mechanical damage in the case of a 
pumping action on the asphalt, based only on mechanical moisture induced damage 
processes, is mainly harmful for the cohesive connection between the aggregates. In 
the case of the particular geometry of the chosen mesh and boundary conditions, it 
can also be seen that the water may actually absorb some of the stresses near the 
boundaries to other aggregates, with this reducing the generation of damage at these 
locations. It should be noted, however, that with a changing geometry and locations of 
the macro-pores, the mechanical punishment may be differently distributed. 
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Case VI & VII: Pumping action with physical and mechanical damage  

In Case V, the only added damages which would arise from the water in the asphalt’s 
macro-pores, would be additional (mechanical) damage to the material, due to the 
locally high water pressure. As explained earlier, these pressures may also cause an 
erosion of the mastic due to an advective transport process. In Case VI and VII the 
erosion of mastic is included in the analyses, where the mastic desorption coefficient 
is chosen as . 3

dK 1.0 mm /= g

Depending on the moisture damage susceptibility parameter of the mastic as a 
function of the changing density, mastics with similar desorption coefficients may 
show different damage patterns. The loss of mastic concentration was expressed 
earlier in the normalized mastic density value 

( )
0

x, tˆ ρ
ρ =

ρ
  (9.48) 

where  is the original, undamaged, mastic density. In other words, when ρ = , 
no mastic has been lost, and in the extreme case of 

ˆ 1.00ρ
ˆ 0.0ρ = , all mastic is lost. 

The relationship between the actual weakening of the material as a function of mastic 
density, does not have to be linear. In the analyses, the damage in the mastic film, due 
to loss of mass, is expressed as 

ˆ
ˆ ˆd 1 ρα
ρ = −ρ  (9.49)  

where  is the moisture damage susceptibility parameter of the mastic in the 
presence of water pressure gradients. 

ρ̂α

For Case VI and VII, α  has been chosen as 2.0 and 5.0, respectively, Fig. 9.6.32. ρ̂
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Fig. 9.6.32: Mastic damage development ˆdρ  as a function of loss of concentration 

In Fig. 9.6.33 the erosion of mastic over time in Case VI and VII is shown. 
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Fig. 9.6.33: Erosion of mastic for 10 loading cycles,  3
dK 1.0 mm /= g

Fig. 9.6.34 and Fig. 9.6.35In  a comparison of the response of node A and B is shown, 
respectively, for Case V, VI and VII. Node A is located in the mastic patch between 
the two stones and node B is located in the mastic film adjacent to the macro-pore. 

What is most noticeable about the response in Case VI and VII in both locations, is 
the gradual increase of equivalent plastic damage per cycle. This follows from the 
coupling between RoAM and CAPA-3D, which updates the (mechanical) material 
properties for at a prescribed set op times, depending on the loss of mastic due to the 
erosion effect. Since each loading cycle will decrease the mastic density, and therefore 
increase the damage parameter ˆdρ , depending on the desorption parameter  of the 
mastic and the moisture damage susceptibility parameter of the mastic , increased 
plastic deformation and a weakened response will result. 
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Fig. 9.6.34: Comparison response of node A for Case V, Case VI and Case VII 
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Fig. 9.6.35: Comparison response of node B for Case V, Case VI and Case VII 
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Case VII & VIII: Pumping action with physical and mechanical damage  

To show the possible impact of the desorption (erosion) coefficient of the mastic, a 
comparison is made between Case VII and Case VIII, in which both cases have a 
mastic moisture susceptibility parameter ρ̂α  of 5.0, but Case VIII has a higher mastic 

desorption coefficient of . 3
dK 5.0 mm /= g

These two cases, together with Case V which does not include physical damage, are 
compared in Fig. 9.6.36 and Fig. 9.6.37 for node A and B. 

From the graphs it can be seen that for both A and B a significant increase in 
generated equivalent plastic strain can be seen for case VIII, in comparison to case 
VII and V. This shows the impact of more significant erosion parameters of the 
mastic. It should be noted that the other nodes do not show a similar impact, which is 
logical given their distance from the macro-pore. 
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Fig. 9.6.36: Comparison response node A for Case V, VII and VIII 
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Fig. 9.6.37: Comparison response node B for Case V, VII and VIII 
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By comparing the equivalent plastic strain, which is generated in Case V through VII, 
Fig. 9.6.38, it can be seen that for all cases node A and B are most affected by the 
mastic erosion. This is understandable, since the other nodes are further away from 
the macro-pore and shall therefore not be exposed to an erosion effect, and node A 
and B are also exposed to considerable stresses due to the pumping action.  

In Case V through VII, damage is most pronounced in nodes C and E, which indicates 
a combined adhesive and cohesive failure pattern. In Case VIII, for which more 
severe desorption properties of the mastic were defined, the asphalt shall eventually 
show most likely a cohesive failure pattern in the mastic between the stones. 
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Fig. 9.6.38: Comparison generated equivalent plastic strain ξ  for Case V - VIII 

In the following, the combined effect of moisture induced damage due to diffusion, 
erosion and mechanical damage is shown. 
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Case IX through XII: Moisture induced damage due to diffusion, erosion and 
mechanical loading. 

In Case IX through the combined effect of all the identified moisture induced damage 
processes is shown. For this, in Case IX the (pumping action) parameters of Case VIII  
and the (diffusion) parameters of Case II are combined. For Case X through XIII, the 
(pumping action) parameters of Case VII are combined with the (diffusion) 
parameters of Case II through Case IV respectively. A summary of the parameters is 
shown in Table 9.6.7. 

Fig. 9.6.39, Fig. 9.6.40 and Fig. 9.6.41In  a comparison is made for the response of 
node A, C and D, respectively, for Case 0, which is the dry case, Case II, which only 
included diffusion and Case IX which included all processes. What becomes 
noticeable in the three figures is that different locations in the asphalt mix get a 
different impact from the combined damage processes. It seems logical to assume that 
including more moisture induced damage processes into the analyses would lead to an 
overall increase in damage. 

In the Case of Node A a clear increase in damage can be seen, when comparing the 
graphs, whereas in the case of node C only a little effect can be seen. In the case of 
Node D, more equivalent plastic strain was generated in the diffusion only case than 
in the case which also includes pumping action. A clear explanation can be found in 
figure Fig. 9.6.31, which shown that the presence of water in the macro-pore absorbs 
some of the stresses, leading to less deformations in Node D. 

It could therefore be concluded that in Case IX a pronounced damage pattern shall 
start from the mastic between the aggregates, thereby supporting a cohesive failure. 

 214



0.0000

0.0010

0.0020

0.0030

0.0040

0.0050

0.0060

0.0 0.5 1.0 1.5 2.0 2.5
Time [s]

K
si Node A - Case IX all

Node A - Case II diff
Node A - Case 0 dry

 

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2

I1

S
qr

t(J
2)

Unhardened Drucker Prager
Node A - Case 0 dry
Node A - Case II diff
Node A - Case IX all

 

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02
-4.0E-04-3.0E-04-2.0E-04-1.0E-040.0E+00

Total Strain YY [-]

To
ta

l S
tre

ss
 Y

Y
 [M

P
a] Node A - Case 0 dry

Node A - Case II diff
Node A - Case IX all

 

Fig. 9.6.39: Comparison response node A for Case 0 (dry), Case II (diffusion) and 
Case IX (diffusion & pumping action) 
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Fig. 9.6.40: Comparison response Node C for Case 0 (dry), Case II (diffusion) and 

Case IX (diffusion & pumping action) 
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Fig. 9.6.41: Comparison response Node D for Case 0 (dry), Case II (diffusion) and 
Case IX (diffusion & pumping action) 
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In Fig. 9.6.42 the overall damage developments for Case IX through XII is compared. 
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Fig. 9.6.42: Comparison generated equivalent plastic strain ξ  for Case IX - XII 

It can be seen that for the chosen moisture susceptibility parameters, Case IX and 
Case XII generate most damage in the mastic and would therefore lead to a 
pronounced cohesive failure. In Case XI node E and F show an impressive equivalent 
plastic strain, and comparing to the response in the other nodes, this asphalt would 
certainly have a pronounced raveling damage. In Case X, even though most damage 
occurs in Node E, which is in the interface, the other nodes show a similar trend in 
damage development. This would indicate a combined cohesive-adhesive failure 
pattern of this mixture. 

Similar observations could be made from Fig. 9.6.43. 

 

 

 

 

 

Case XI

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.0 0.5 1.0 1.5 2.0 2.5
Time [s]

K
si

Node E
Node F
Node C
Node B
Node A
Node D

Case XII

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.0 0.5 1.0 1.5 2.0 2.5
Time [s]

Ks
i

Node B
Node A
Node C
Node E
Node F
Node D

 218



 

Dry Case IX Case X 

ξ
0.0 

Case XIICase XI 
 0.0168 

Fig. 9.6.43: Comparison of damage development for Case IX- XII after 10 loading 
cycles (magn. 300x) 

 

In the above computational cases it has been shown that, depending on the moisture 
susceptibility and damage parameters, moisture induced damage in an asphaltic mix 
can occur quite differently. It was shown that unfavorable aggregate-mastic moisture 
susceptibility will lead to a raveling of the asphalt mix and, likewise, moisture 
susceptible mastic would lead to damage patterns starting from the mastic. It was also 
shown that direct access to moisture and fully saturated macro-pores in the asphalt 
mix can cause a redistribution of stresses, which also contributes to the damage 
pattern. 
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Chapter 10 

Conclusions and Recommendations 

The aim of this research was the development of a computational tool for the 
fundamental analysis of combined mechanical and moisture induced damage of 
asphaltic mixes which includes both physical and mechanical moisture damage 
inducing processes. Such a tool will contribute greatly to the understanding of the 
dominant material parameters which cause moisture induced failures, such as 
ravelling, and would help in improving material selection procedures. 

In this dissertation, physical and mechanical moisture induced damage processes were 
identified, procedures to determine the controlling parameters were developed, an 
experimental framework to quantify these parameters was set-up and the numerical 
tools were developed and demonstrated. 

On the basis of these, in the following, conclusions are presented and 
recommendations are made. 

Moisture susceptibility tests: 

To assess moisture damage of asphaltic mixes, currently two main categories of 
moisture susceptibility tests are in use: The classical immersion tests, in which the 
asphalt/aggregate mixtures are not subjected to mechanical loading while they are 
exposed to moisture. The second series of test procedures introduce damage in the 
mastic by applying a load to a saturated mixture specimen.  
It has frequently occurred that asphalt mixes pass the first category of tests and fail in 
the second or visa versa [King 2007]. So far, the reasons for this could not be 
explained, and as a result, Departments of Transportation (DOT’s) would only 
approve mixes which perform well under the most severe testing conditions, and 
reject those that do not pass the test or they would only prescribe one set of tests and 
ignore the other. 
Based on the research performed in this dissertation, failure of an asphalt mix when 
exposed to solely moisture without any mechanical forces can be explained by 
moisture diffusion into the mix. Failure due to a combined action of moisture 
infiltration and mechanical loading can also be explained as a combined action of 
diffusion, erosion and mechanical loading.  

Therefore, based on the methodologies developed in this dissertation, it may be 
concluded that seemingly ‘mysterious asphalt failures’ can be explained on the basis 
of a set of material properties: diffusion coefficients, desorption coefficients and 
damage parameters which relate moisture content and erosion to mechanical 
weakening (i.e. ifdθ ,  and  in the context of this dissertation). mstdθ

mst
ˆdρ

It is therefore recommended that, in addition to the standard moisture susceptibility 
experiments which are currently performed, one starts determining these physical and 
physio-mechanical parameters. A great benefit of such an approach would be that, 
instead of rejecting asphalt mixes because they fail an empirical test, one starts 
understanding which material property should be improved upon. The long-term 
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benefit of this shall be that, it becomes possible to ‘engineer’ the asphalt mixes, based 
on fundamental knowledge, rather than empirical speculations. This would change the 
pavement material selection procedures from a ‘backward looking’ approach to a 
‘forward looking’ one, and will lead to better maintenance strategies, longer 
performing and cost efficient pavements. 

Material selection 

Based on the research performed in this dissertation, it is concluded that it is 
important, when selecting the aggregates and bitumen for an asphalt mixture, to keep 
in mind the following: 

- the bitumen should have as low as possible moisture diffusion coefficients; 

- the amount of filler of the mastic should be decided on the basis of the 
mechanical properties of the mastic, the diffusion coefficients of the filler and 
the bitumen, mastic erosion in the presence of water and mastic moisture 
damage parameters (  and mstdθ ˆdρ ); 

- the aggregate-mastic bond strength should be maximized by keeping the 
moisture susceptibility parameter α  (see Eq. 9.45) as low as possible; 

- combinations of mastics with low moisture diffusion coefficients and low 
moisture susceptible aggregate-mastic bonds should be preferred. However, if 
the moisture diffusion coefficient of the mastic is low enough, moisture 
concentrations in the aggregate-mastic interface will never reach critical 
values, eliminating thus the need for a moisture resistant aggregate-mastic 
bond; 

- it should be avoided at all times to introduce moisture into the mix before and 
during the time of mixing.  

- if the stones were exposed to a moist environment, they should be adequately 
dried before added to the mix. If moisture is remaining in the stones when it is 
mixed with the mastic, it can be expected that moisture will diffuse towards 
the aggregate-mastic interface and may cause a premature debonding, which 
will result into ravelling; 

- it is common practise to add extra components to the asphaltic mix to enhance 
the performance, such as polymers, phosphoric acids, hydrated lime or liquid 
anti-stripping agents. Before choosing additives, it should be ensured that by 
adding them to mix, the fundamental moisture susceptibility parameters are 
not degraded (diffusion coefficients, desorption coefficients, moisture damage 
parameters, etc.). 

Time scales 

In addition to moisture, asphalt pavements are exposed to many other influences 
which may lead to damage (i.e. settlements, cracks, ageing etc.). It is therefore 
important in moisture damage susceptibility studies, either purely experimentally 
orientated ones or computationally based ones, to always take into account the time 
frame over which moisture damage may be generated in comparison to other failures.  

If, for a particular mix, it is concluded that other damage failures are more likely to 
occur before moisture induced damage becomes an issue, focus should be placed on 
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improving the dominant material parameters which control these, and less effort 
should be spend to improve the moisture susceptibility characteristics of the mix.  

An estimate of the timeframe over which moisture damage may occur can be found 
by determining 

- the mastic moisture diffusion coefficient, 

- the maximum moisture capacity of the mastic,  

- the moisture susceptibility of the mastic and the aggregate-mastic bond as a 
function of moisture concentration and  

- the mastic film thickness. 

Finally, it can be concluded from the computational analyses that the identified 
moisture susceptibility parameters can be of paramount importance to the resulting 
failure pattern. Determination of the dominant moisture susceptibility material 
parameters which where identified in this research, can lead to better failure 
predictions and improved asphalt mixtures. 

The pavement engineering community, the material suppliers, the road-authorities and 
the society at large would benefit tremendously from better controllable and longer 
lasting asphalt pavements. Identifying specific issues, and dedicating focussed 
research on tackling these, is the only way to come with novel solutions and to 
progress the industry in a way where all parties involved in developing infrastructural 
systems can benefit from each others knowledge and put it to practise. 
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Summary 
 

Moisture induced damage in asphaltic mixes is recognized as a major issue, resulting 
to the need for frequent maintenance operations. This does not only imply high 
maintenance costs, but also temporary closure of traffic and hence increased road 
congestion. Given the high costs for the road authorities and the inconvenience for the 
road users, it is greatly desired to shift the solution from a repair philosophy to a 
prevention one.  

Moisture induced damage in asphalt can not be solved by mechanical considerations 
alone. Clearly, our current asphalt wearing surfaces show that moisture has an effect 
on the material characteristics of the asphalt components and their bond. This implies 
that moisture makes a physical change to the material, which exhibits itself in the 
early development of damage patterns which, without the moisture, may have not 
occurred or may have occurred in a much later stage of its service life. 

The aim of this dissertation is the development of a computational tool for the 
fundamental analysis of combined mechanical and moisture induced damage of 
asphaltic mixes which includes both physical and mechanical moisture damage 
inducing processes. Such a tool can greatly contribute to an improved material 
selection procedure and give insight into the various competing damage inducing 
processes within the asphalt mix.  

To achieve this aim, the physical and mechanical moisture induced damage processes 
were identified, procedures to determine the controlling parameters were developed, 
an international experimental framework to quantify these parameters was set-up and 
numerical tools were developed and demonstrated in this dissertation.  

From the numerical simulations it becomes clear that it is very important to know the 
moisture susceptibility parameters of the components of the mix, and the moisture 
susceptibility of its bond. It was shown that, for different parameters, completely 
different damage patterns may occur in the asphalt. 

Based on the phenomena that were demonstrated in this thesis, it is therefore highly 
recommended that from purchase time on, the asphalt engineering community starts 
determining: 

• the moisture diffusion coefficients of the aggregates and the mastic and the 
moisture capacity the materials can hold; 

• the changing material response, in time, as a function of moisture content; 

• the bond strength of the aggregate-mastic combinations, with and without 
moisture; 

• the loss of concentration of the mastic, in the presence of high water 
pressures. 

A better awareness of the fundamental material properties of the asphalt components 
will not only contribute to improving the currently produced asphalt mixes, but will 
assist the development of better, new mixes which come with their own well-defined 
maintenance schedule.  
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The pavement engineering community, the material suppliers, the road-authorities and 
the society at large would benefit tremendously from better controllable and longer 
lasting asphalt pavements. Identifying specific issues, and dedicating focussed 
research on tackling these, is the only way to come with novel solutions and to 
progress the industry in a way where all parties involved in developing infrastructural 
systems can benefit from each others knowledge and put it to practise. 
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Samenvatting 
 

Waterschade in asfaltmengsels is een belangrijke schadepost die bijdraagt aan de 
frequente onderhoudsacties die uitgevoerd moeten worden aan de asfaltdeklagen. Dit 
resulteert niet alleen in hoge onderhoudskosten maar ook in een toename van de 
filevorming omdat de wegen vaak afgesloten moeten worden. Het is daarom van 
groot belang voor zowel Rijkswaterstaat als de weggebruikers om deze reparatie 
filosofie om te zetten in een schadepreventiefilosofie.  

Waterschade in asfalt kan niet alleen opgelost worden met mechanische 
overwegingen. Het blijkt duidelijk uit de schade aan de weglagen dat water een effect 
heeft op de materiaaleigenschappen van de asfaltcomponenten en hun binding. Dit 
impliceert dat vocht een fysische verandering van het materiaal tot stand brengt, die 
zichzelf uit in vroegtijdige schadevorming die zonder de aanwezigheid van water 
nooit of pas veel later opgetreden was. 

Het doel van deze dissertatie was de ontwikkeling van een eindige elementen 
programma voor de fundamentele analyse van mechanisch-fysische waterschade in 
asfaltmengsels. Een dergelijk programma kan een grote bijdrage betekenen voor het 
ontwikkelen van verbeterde materiaalselectieprocedures voor de industrie en het 
verkrijgen van inzicht in de verschillende concurrerende schadeprocessen die zich 
binnen het asfalt kunnen afspelen. 

Om dit computerprogramma te kunnen ontwikkelen, zijn verscheidene fysische en 
mechanische schadeprocessen geïdentificeerd, zijn procedures ontwikkeld waarin de 
dominante materiaalparameters bepaald kunnen worden, is een internationaal 
experimenteel netwerk opgezet voor het bepalen van deze parameters en zijn de 
eindige-elementenroutines ontwikkeld die in deze dissertatie gedemonstreerd worden.  

Uit de numerieke simulaties wordt het duidelijk dat het van groot belang is om de 
waterschadegevoeligheidsparameters te bepalen van alle individuele 
asfaltcomponenten. Het is gedemonstreerd, dat voor verschillende waterschade 
gevoeligheidsparameters, compleet andere schadebeelden kunnen optreden  

Uit dit onderzoek komt duidelijk naar voren dat het zeer aan te raden is om vanaf het 
begin van de aankoop van de individuele componenten van de asfaltmengsels, de 
volgende parameters te bepalen: 

• de vochtdiffusiecoëfficiënten en de maximale vochtopnamecapaciteit van de 
aggregaten en de mastiek; 

• het veranderende materiaalgedrag in de tijd, als een functie van de 
vochthoeveelheid; 

• de bindingssterkte van de verscheidene aggregaat-mastiek combinaties, met 
en zonder de aanwezigheid van vocht; 

• het verlies van massaconcentratie van de mastiek, in de aanwezigheid van 
hoge waterdrukken.  

Een verbeterd bewustzijn van de fundamentele materiaaleigenschappen van de 
asfaltcomponenten zal niet alleen bijdragen aan de ontwikkeling van verbeterde 
materiaalselectieprocedures, maar zal tevens assisteren in de ontwikkeling van 
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verbeterde, nieuwe asfaltmengsels die hun eigen goedgedefinieerde 
onderhoudsbeschrijving met zich meedragen. 

De wegbouwkunde wereld, de asfaltproducenten, Rijkswaterstaat en de maatschappij 
als geheel zal veel profijt hebben van beter controleerbare and langer houdbare 
asfaltwegen. Het identificeren van kritieke problemen en deze opdragen als 
onderzoeksvraagstukken aan gespecialiseerde wetenschappers, is de enige 
mogelijkheid om in de toekomst met innovatieve oplossingen te komen, om de 
industrie op een hoger niveau te brengen, waar alle partijen kunnen profiteren van 
ieders specifieke kennis en deze oplossingen daadwerkelijk in de praktijk kunnen 
brengen. 
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