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Abstract
Dose calculations in proton therapy need to be computed as fast as possible for successful cancer
treatment planning and execution. The dose calculation algorithms that provide enough accuracy for
treatment planning, takes too much time to utilise; therefore there is a need for faster alternatives.
One of the alternatives is using a deterministic semi-analytic numerical algorithm for EM interactions.
This alternative in its current state is not accurate enough, and therefore it is sought to include the
effects of secondary protons on the total dose distribution of the deterministic semi-analytic numerical
algorithm, using convolutional methods. In this thesis an attempt is made to find a kernel that, when
convoluted with a primary proton flux, produces the desired secondary proton dose. The parameters
of two different types of kernels, the Gaussian kernel and Fractional Filter kernel, are optimised and
their resulting shapes are presented. Furthermore, the secondary proton dose through the convolution
of the primary proton flux and the different kernels are presented. The doses obtained from the optimal
kernels are compared with the target dose on the shape and a measure of quality: the gamma index
passing rate. Found was that the Fractional Filter kernel can produce both asymmetric doses and
symmetric doses, while the Gaussian kernel can only produce symmetric doses. The passing rate
was found to be 29.41% for the Fractional Filter kernel and 17.65% for the Gaussian kernel. Thus,
the Fractional Filter is better for estimating secondary proton dose distribution through convolutional
methods than using a Gaussian kernel. but insufficient due to the low passing rate. A suggestion for
improvement is applying skew-Gaussians in the Fractional Filter kernel or by applying other asymmetric
kernels.
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1
Introduction

1.1. Cancer
In 2018, 18.1 million people around the world had cancer and 9.6 million people died from the disease.
It is expected that these numbers will double by 2040; therefore there is a high demand for improving
and developing methods to effectively treat cancer [1]. Cancer is a disease in which groups of abnormal
cells grow and invade the surrounding tissue. Because there are trillions of cells in the human body,
cancer can originate almost anywhere. Normal cells in a human body divide and reproduce them-
selves to form new cells as the body needs them. Old and damaged cells die and new cells take their
place. This process sometimes malfunctions: abnormal or damaged cells grow and multiply when they
should not, causing the forming of tumors. Tumors can be cancerous or not cancerous. Cancerous
tumors are able to spread into nearby tissues and can travel to distant places in the body to form new
tumors. [2]. Some conventional ways to fight tumors before they can do serious damage to the body
are: surgery, radiation therapy, and chemotherapy. Some more unconventional ways are the use of
drugs, biological molecules, and immune-mediated therapies [3]. This study is focused on a specific
branch of radiotherapy, namely proton therapy.

1.2. Radiotherapy
1.2.1. Radiotherapy in general
The radiation used in radiotherapy is called ionizing radiation because it causes the forming of ions
and deposits energy in cells of the tissue that it passes through. Cancer cells can be killed by the
energy that is deposited, either directly or by causing genetic changes that result in the death of a
cancer cell. A problem with high-energy radiation is that it damages genetic material (DNA) of both
cancer cells and normal healthy cells [4]. Therefore, the goal of radiation therapy is to maximize the
radiation dose to the cancer cells while minimizing radiation exposure to normal cells, that are next to
cancer cells or in the radiation path. There are two different ways of delivering radiation to a cancer cell:
external and internal radiation. External radiation uses high-energy rays (photons, protons or particles)
for radiating the cancer cells, by aiming the rays to the location of the tumor. Internal radiation makes
use of radioactive sources inside the body to radiate the tumors. These radioactive sources are sealed
into catheters or seeds, which are implanted into the tumor site [5].

1.2.2. Proton therapy
Proton therapy is a promising method of utilising radiotherapy, when compared with the conventional
method of photon therapy. This is because highly localized dose distributions are achieved by proton
beams that would result in higher probabilities for local control and disease-free survival, and lower
probabilities for normal tissue damage [6]. This can be seen in figure 1.1, where the dose distribution
of a 15 MV photon beam and a proton beam are compared to an ideal dose distribution.
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2 1. Introduction

Figure 1.1: Comparison of depth dose curves for 15 MV photons and a spread Bragg peak. Shown in red is an ideal dose
distribution, which provides a uniform, maximum dose to the target volume and zero dose outside the target volume. The proton
dose distribution approaches the ideal case to a much greater extent compared to the photon dose distribution. Furthermore,
an important factor is the steep falloff after the dose maximum for the proton distribution. Source: [6].

1.2.3. Treatment planning
Treatment planning for radiotherapy is a procedure that produces machine instructions for the used
machines (e.g. beam energy) and the expected dose distribution in the patient [7]. To make such a
treatment planning a model of the radiation beam and of the patient’s anatomy (CT-scan) needs to be
considered. Treatment planning procedures for different radiation types do have some common char-
acteristics, however using protons as a radiation type comes with some implications. The properties
that make protons interesting for radiotherapy are also the cause for these implications; namely the
precision of the energy deposition (Bragg Peak) needs to be even greater compared to the usage of
other radiation types [7].

At the moment the most accurate method is the Monte Carlo method, which is often referred to as
the ’golden standard’. This algorithm determines the dose distribution very accurately. A downside of
this method is the long time of computation that deems it clinically unfeasible. Therefore, research is
being done to find a more practical yet accurate substitute for the Monte Carlo algorithm for treatment
planning in proton therapy. [8].

1.3. Outline Thesis
In this thesis, research is done on improving the accuracy of an already existing semi-analytic dose
calculation algorithm, which proves to be very time-efficient, such that it is practical (time-wise) for
treatment planning. To obtain this improvement on the accuracy, the focus will be on finding an optimal
kernel that provides accurate secondary proton doses, via convolutional methods.

In chapter 2, an introduction about proton interactions in a medium will be given, followed by an ex-
planation of the convolution algorithm and the method for including the contribution due to secondary
protons. Subsequently, in chapter 3, the results from implementing the method for including the sec-
ondary protons will be presented and discussed. Lastly, in chapter 4 a conclusion will be drawn from
the results and discussion, which is followed by recommendations for future research.

This report is part of a bachelor thesis research of Technology University of Delft at the department of
Medical Physics Technology at the Reactor Institute Delft.



2
Material and methods

2.1. Proton interactions in matter
When protons are propagating through the body there are different kinds of interactions that can occur,
with the surrounding matter. Mainly, there are three different kind of interactions that need to be con-
sidered: inelastic Coulomb interaction, elastic Coulomb scattering and non-elastic nuclear interaction
[9]. Another interaction that is theoretically possible is proton Bremsstrahlung, but at therapeutic proton
beam energies this effect is negligible [10].

2.1.1. Inelastic Coulomb interaction
When protons propagate through matter, their interactions with atomic electrons can be described
by inelastic Coulomb scattering. Through this interaction, the proton loses some of its energy due
to the fact that the electron and the proton attract each other. The attraction occurs due to the fact
that electrons are negatively charged and the protons are positively charged. However, because of
the relative small mass of the electron compared to the proton, the proton’s trajectory only changes
very little. So the proton loses kinetic energy continuously, but diverges only slightly from its original
trajectory because of the inelastic Coulomb interaction. Thus, in this interaction kinetic energy is not
conserved, but the particle type remains unchanged. [10].

2.1.2. Elastic Coulomb scattering
A proton passing close to an atomic nucleus experiences a repulsive force due to the Coulomb force.
This force is caused by the positive charge of both the proton and atomic nuclei. In contrast with the
inelastic Coulomb interaction, this interaction changes the former straight-line trajectory of the proton,
but does only have a small influence on its energy. In this interaction, the kinetic energy and particle
type both remain unchanged [10].

2.1.3. Non-elastic nuclear interaction
The non-elastic nuclear interaction has a more profound effect on the proton compared to the Coulomb
interactions. The proton enters a nucleus and is absorbed. This absorption causes the forming of
what is called secondary particles. During such a reaction different kinds of secondary particles can
be created: protons, deuterons, tritons, neutrons, or heavier ions (Helium). These secondary particles
can have a significant contribution to the particle dose [11]. So due this interaction both kinetic energy
and particle type changes. For this research the focus will be on including secondary protons into the
dose calculation.
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4 2. Material and methods

2.2. Proton transport
In order to describe proton transport, the Linear Boltzmann Equation (LBE) is used as derived by
Duderstadt and Hamilton [12]. The LBE is mathematically described as in Equation 2.1:

Ω̂ ⋅ ∇Φ(𝑟, 𝐸, Ω̂) + 𝜎𝑡Φ(𝑟, 𝐸, Ω̂) = ∫
4𝜋
∫
∞

0
𝑑𝐸′𝜎𝑠(𝑟, 𝐸′ → 𝐸, Ω̂′ → Ω̂)Φ(𝑟, 𝐸′, Ω̂′)𝑑Ω̂′, (2.1)

where 2.1 𝑟 is the position of the particle, Φ is the proton flux, Ω̂ is the direction of the particle, 𝐸 is
the energy of the particle, 𝜎𝑡 is the total cross section and 𝜎𝑠 is the total scatter cross section. The
first term on the left-hand side of Equation 2.1 is representing the flow of non-interacting particles. The
second term on the left-hand side describes the particles that interact so that their initial direction Ω̂ and
energy 𝐸 are modified. The right-hand side of Equation 2.1 describes particles that start with direction
Ω̂′ and energy 𝐸′ that end up with direction Ω̂ and energy 𝐸, due to an interaction [13]. With the use of
several approximations, the LBE is transformed into the Fokker-Planck equation and the Fermi-Eyges
equation[14], which are two partial differential equations. From these equations the proton flux Φ is
obtained, which is a quantity that contains information on how the protons move through a certain
medium. The proton flux is used to determine the proton dose distribution.

2.3. Dose calculation
A good dose calculation is very important for proper proton treatment of the patients. There are many
variables involved in a proton treatment plan, such as the amount of protons, the target location of
the protons and the gantry angle of the protons. To obtain the best choice for the different variables,
the patient must be scanned. The scan contains information about the location of the tumor and all
surrounding organs. An objective function that aims to maintain a high dose in the tumor and a low
dose in the surrounding tissue is therefore minimised. Many dose calculations must be performed to
optimise the treatment plan.

2.3.1. Monte Carlo
The Monte Carlo method tracks the trajectory of every single proton in a simulated proton beam. The
method tracks the trajectories of protons in small steps. For each of these steps, the algorithm randomly
samples from probability distributions. These distributions contain information about the chance for
different kinds of interactions to happen based on the energy and trajectory of the proton at that specific
moment [15]. The number of protons in a typical therapeutic proton beam is in the order of 109 [16].
Because of the high number of protons and the individual tracking of these protons, the computation of
a simulation with this method takes a lot of time. A useful Monte Carlo algorithm for medical purposes
is the TOPAS algorithm [17]. TOPAS is an extension of the Geant4 Simulation Toolkit, which makes
advanced Monte Carlo simulation easier accessible for medical physicists. In this research, the dose
obtained through convolutional methods will be compared to the TOPAS dose.

2.3.2. Pencil beam dose calculation through convolution
A way of cheaply computing a dose distribution is by using a convolutional method. This calculation is
mathematically formulated in Equation 2.2:

𝐷𝑐(𝑥, 𝑦, 𝑧) = Φ ∗ 𝐾 =∑
𝑘
∑
𝑙
∑
𝑚
Φ(𝑥, 𝑦, 𝑧)𝐾(𝑥 − 𝑘, 𝑦 − 𝑙, 𝑧 − 𝑚), (2.2)

where 𝐷𝑐 is the dose through convolution, Φ is the proton flux and 𝐾 is the convolution kernel [18].
Filters for this method can be applied from the field of imaging filter processing due to the similarity of
the mathematical operations involved [19]. The difference is that for proton therapy, the kernel, flux
and dose are 3-dimensional matrices instead of 2-dimensional.

Convolution
A convolution is a mathematical operation that is described in Equation 2.3 for (3D) discrete functions
[20]. Since the application of convolution is only needed for matrices the definition for continuous
functions is not discussed, however both discrete and continuous convolution work in the same way.
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(𝑓 ∗ 𝑔)[𝑖, 𝑗, 𝑘] =
∞

∑
𝑛=−∞

∞

∑
𝑚=−∞

∞

∑
𝑙=−∞

𝑓[𝑖, 𝑗, 𝑘]𝑔[𝑖 − 𝑛, 𝑗 − 𝑚, 𝑘 − 𝑙] (2.3)

Convolution intuitively measures the overlap between two functions. To understand convolution of
matrices intuitively, a 2-D example is used, as shown in Figure 2.1. The kernel in Figure 2.1 is a two-
dimensional 3x3 matrix of weights, which is dragged across the image. The filter is applied to an area
of the image, and a dot product is calculated between the input pixels of the image and the filter. This
dot product is contained into an output array. The filter moves across the whole image repeating the
process until the filter has moved across the whole image. The output matrix is typically the same size
as the input matrix. The same procedure can be applied for 3-D matrices.

Figure 2.1: Illustration of the convolutional process of two 2D matrices. Source: [21]
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2.4. Inclusion of secondary protons contribution through kernel
optimisation

2.4.1. Optimisation problem
To find an optimal kernel an optimisation process is carried out. To this end, the objective function is
defined as in Equation 2.4 :

𝑆𝑆𝐸 = ∑
𝑖,𝑗,𝑘
(𝐷𝑀𝐶(𝑖, 𝑗, 𝑘) − 𝐷𝐶(𝑖, 𝑗, 𝑘)))2 = ∑

𝑖,𝑗,𝑘
(𝐷𝑀𝐶(𝑖, 𝑗, 𝑘) − (Φ ∗ 𝐾(�⃗�))(𝑖, 𝑗, 𝑘))2, (2.4)

where 𝐷𝑀𝐶 is the secondary proton dose from the Monte Carlo algorithm, Φ is the primary proton flux
and 𝐾 is the kernel with parameters �⃗� = [𝜃1, 𝜃2, .. , 𝜃𝑛] that needs to be optimised [22]. The kernel can
be obtained by minimising the SSE, which turns finding the optimal kernel into an optimisation problem.

Optimising in Python
The optimisation was performed using the Python scipy.optimize libray. From this library the algorithm
𝑠𝑐𝑖𝑝𝑦.𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒.𝑓𝑚𝑖𝑛 was used, which uses the simplex downhill algorithm [23]. Also, the algorithm
𝑠𝑐𝑖𝑝𝑦.𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒.𝑓𝑚𝑖𝑛_𝑐𝑔 was used, which uses the conjugate gradient method [24]. Depending on the
type and shape of the kernel, a choice can be made on what optimisation algorithm to use.

2.4.2. Kernel shapes
This section describes the general shapes of the kernels that were optimised.

Gaussian kernel
The Gaussian kernel is one of the most commonly used kernels in imaging and is often used in medical
physics as a kernel [25]. The Gaussian kernel is used for smoothing an image and can be described
in 3D as in Equation 2.5:

𝑔(𝑥, 𝑦, 𝑧) = exp(−(𝑥 − 𝑥𝑐)
2 + (𝑦 − 𝑦𝑐)2
2𝜎2𝑥𝑦

− (𝑧 − 𝑧𝑐)
2

2𝜎2𝑧
) , (2.5)

where 𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 determine the position of the center of the Gaussian kernel and 𝜎𝑥𝑦 and 𝜎𝑧 determine
the spread of the Gaussian kernel in x-y and z direction respectively [26]. The 3D Gaussian kernel can
have different kinds of matrix sizes, commonly used matrix sizes are 3x3x3, 5x5x5 or 7x7x7. For an
illustration of the Gaussian kernel shape, a 2D 3x3 sized Gaussian kernel is shown in Figure 2.2.

Figure 2.2: An example of a 3x3 Gaussian kernel where the parameters 𝑥𝑐 and 𝑦𝑐 are zero.
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Sobel kernel
The Sobel kernel is used for edge detection in image processing [27]. The doses are expected to have
regions with large gradient differences, the Sobel kernel is meant for mapping these types of regions.
For every direction there is a different Sobel operator, for example for a 2D image there are 2 Sobel
operators one for gradient detection in the x-direction and one for the y- direction. 3x3 Sobel operators
in x and y-direction are given by:

𝑆𝑥 = [
−1 0 1
−2 0 2
−1 0 1

] , 𝑆𝑦 = [
−1 −2 −1
0 0 0
1 2 1

] . (2.6)

A 3D extension of the Sobel operator can be done in x,y and z directions. For example, the 3x3x3
Sobel operator in z-direction is given as:

𝑆𝑧(∶, ∶, −1) = [
−1 −2 −1
−2 −4 −2
−1 −2 −1

] , 𝑆𝑧(∶, ∶, 0) = [
0 0 0
0 0 0
0 0 0

] , 𝑆𝑧(∶, ∶, 1) = [
1 2 1
2 4 2
1 2 1

] , (2.7)

where the presented 2D matrices are slices of the 3D matrix [28].

Fractional Filter kernel
The Fractional Filter (FF) is a combination of the Gaussian kernel, Sobel Kernel, Laplacian Kernel [29]
and Mexican-Hat filters [29]. The Sobel filter approximates the first derivative of the Gaussian filter
[30]. The Laplacian filter is defined as the second derivative of the Gaussian Filter and the Mexican
hat filter is the sign-inverted second order derivative of the Gaussian filter [31]. So these different types
of kernels are related through the derivatives of the Gaussian filter. It is possible to summarise all of
these filters into one filter by using the theory of fractional calculus [32]. This filter is shown in Equation
2.8 :

𝐹(𝑥, 𝑦, 𝑧) = 𝐴𝐷𝑎𝑒−
(𝑥−𝑥𝑐)2
2𝜎2𝑥 𝐷𝑏𝑒

− (𝑦−𝑦𝑐)
2

2𝜎2𝑦 𝐷𝑐𝑒−
(𝑧−𝑧𝑐)2
2𝜎2𝑧 , (2.8)

where 𝐴 ∈ (−∞,∞) is some amplitude term, 𝑎, 𝑏, 𝑐 ∈ (0, 2) is the order of the fractional derivative in
x, y and z direction respectively and 𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 , ∈ (−∞,∞) and 𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧 ∈ (0,∞) are the parameters of
a Gaussian kernel [33]. The fractional derivative of a Gaussian function can be approximated using a
Taylor series (up to 15th order for computational efficiency) as described in Equation 2.9:

𝐷𝑎𝐺(𝑥) = 𝐴𝑥
ℎ𝑎

15

∑
𝑛=0

Γ(𝑎 + 1)𝐺(𝑥)
(−1)𝑛Γ(𝑛 + 1)Γ(1 − 𝑛 + 𝑎)

, (2.9)

where Γ(𝑛) = (𝑛 − 1)! [33]. Notice that constant 𝐴𝑥 in Equation 2.9 is a different constant than 𝐴 in
Equation 2.8. The constant 𝐴 is the product of the constants of the fractional derivative in the x, y and
z direction.
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2.5. Comparing two doses
2.5.1. Integrated depth dose
Next to presenting slices of the 3D doses, a one-dimensional representation will be used to present
the doses, such that differences between the doses are easier to visualize. This one-dimensional
representation is the integral depth dose (IDD) and is shown in Equation 2.10:

𝐼𝐷𝐷(𝑧) =
𝑚

∑
𝑥=0

𝑛

∑
𝑦=0

𝐷(𝑥, 𝑦, 𝑧)Δ𝑥Δ𝑦 , (2.10)

where Δ𝑥 and Δ𝑦 are the bin size in x and y direction respectively [34].

2.5.2. Gamma index
A commonly used verification of the difference between the two doses is the gamma index. The gamma
index combines dose difference and distance difference to calculate a dimensionless metric for each
point between the reference dose and the dose that needs to be evaluated [35]. The gamma value is
determined via Equation 2.11:

𝛾 =min(√(𝑟𝑒 − 𝑟𝑐)
2

Δ𝑟2 + (𝐷𝑒(𝑟𝑒) − 𝐷𝑐(𝑟𝑐))
2

Δ𝐷2 ) , (2.11)

where 𝑟𝑒 is a point in the exact dose distribution, 𝑟𝑐 a point in the comparing dose distribution, Δ𝐷 is
the dose difference criterion, Δ𝑟 is the distance-to-agreement criterion and 𝐷𝑒 and 𝐷𝑐 are the exact and
comparison dose respectively [36]. If the value of the gamma at a specific point voxel is smaller than 1,
then this point is accepted. So a passing rate can be introduced, which is the amount of gamma voxels
that have a value smaller than 1 divided by the total amount of voxels [37]. As a measure to see how
much the pencil beam dose improves from adding secondary protons,the dose from the deterministic
semi-analytic algorithm with and without the convolved secondary proton dose can be compared to the
Monte Carlo dose through gamma index.



3
Results and discussion

3.1. TOPAS dose and flux
The geometry used is a simple water box of 5 cm x 5 cm x 10 cm in the x, y and z (depth) direction
respectively. The water box is divided into voxels of 0.098 cm x 0.098 cm x 0.1 cm (or 51 x 51 x 100
bins).

Primary proton flux
The primary proton flux can be seen as a beam of protons that is moving through the water box. In
Figure 3.1 the proton flux is shown in the x-y plane sliced at 𝑧 = 5 cm. In figure 3.2 the proton flux is
shown in the y-z plane sliced at 𝑥𝑏𝑖𝑛 = 25, which is in the middle. The x-z plane is similar to the y-z
plane and is therefore not plotted.

Figure 3.1: The primary proton flux shown from the x-y plane. The slicing was done in the middle at 𝑧𝑏𝑖𝑛 = 50 or 𝑧 = 5 cm. The
proton flux is symmetric in the x-y plane.

9
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Figure 3.2: The primary proton flux shown from the y-z plane. The slicing was done around the middle at 𝑥𝑏𝑖𝑛 = 25. Note that
the x-z plane looks similar to the y-z plane due to symmetry.

TOPAS dose
The secondary proton dose is scored with phases space scorers through the use of test boxes (1,5 cm
x 1,5 cm x 0.04 cm) that are set up throughout the box from 0.5 cm up to 9.5 cm in steps of 1 cm. From
these test surfaces the creation of secondary protons is simulated. The secondary proton distributions
are then stored into a separate file for each test box [38]. In Figure 3.3 the setup of the test boxes is
shown.

Figure 3.3: The setup that is used to score secondary protons with the use of phase space scorers. The dotted boxes are the
test boxes which are assigned a phase space scorer. Note that the lateral shape of these testboxes is to small to show. Source:
[38]

In Figure 3.4, the secondary proton dose from the first test box at 0.5 cm is shown in the x-y plane,
similar to Figure 3.1. In Figure 3.5 the same dose is shown in the y-z plane, similar to Figure 3.2, but
only zoomed into a specific region.
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Figure 3.4: The secondary proton dose due test surface 1 located at 0.5 cm in z-direction,shown from the x-y plane. The slicing
was done in the middle at 𝑧𝑏𝑖𝑛 = 4 or 𝑧 = 0.4cm. Note that the plot is zoomed into the region from 1.7-3.3 cm in both x and y
directions. This is to have a better view of the shape of the dose.
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Figure 3.5: The secondary proton dose due test surface 1 located at 0.5 cm in z-direction, shown from the x-z plane. The slicing
was done in the middle at 𝑥𝑏𝑖𝑛 = 25. Note that the plot is zoomed into the region from 1.7-3.3 cm in the y direction and into the
region from 0-1.0 cm in the z-direction. This is to have a better view of the shape of the dose. The dose is non-symmetric and
forward scattered in the +z direction.

3.2. Kernel Shape
3.2.1. Kernel parameters
Two different types of kernels were used: the Gaussian kernel and the Fractional Filter (Section 2.4.2).
These kernels were fitted with the primary proton dose and secondary proton flux described in Section
3.1. The doses obtained from both kernels and the dose from Section 3.1 will be compared later on in
Section 3.3

Gaussian Kernel shape and parameters
The dose presented in Figure 3.4 is slightly asymmetrical in the x and y direction, therefore theGaussian
kernel from Section 2.4.2 has been altered by splitting 𝜎𝑥𝑦 into 𝜎𝑥 and 𝜎𝑦. Also an amplitude 𝐴 term
has been added, resulting in the following kernel:

𝑔(𝑥, 𝑦, 𝑧) = 𝐴 exp(−(𝑥 − 𝑥𝑐)
2

2𝜎2𝑥
− (𝑦 − 𝑦𝑐)

2

2𝜎2𝑦
− (𝑧 − 𝑧𝑐)

2

2𝜎2𝑧
) . (3.1)

In this kernel, optimal parameters were found through the optimisation process described in Section
2.4.1. The optimal parameters for the Gaussian kernel are presented in table 3.1 and the shape is
shown in Figure 3.6. The optimisation of the parameters took 17.5 seconds with an SSE value of
1 ⋅ 10−4 Gy2.

𝐴 = 1.52 ⋅ 10−9 Gy ⋅ mm2 𝑥𝑐 = 1.09 cm
𝜎𝑥 = 2.72 cm 𝑦𝑐 = 1.18 cm
𝜎𝑦 = 9.43 ⋅ 10−1 cm 𝑧𝑐 = 1.02 cm
𝜎𝑧 = 1.32 cm

Table 3.1: Optimal parameters found for the Gaussian kernel from Equation 3.1.
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Figure 3.6: 7x7x7 Gaussian kernel; in the y-z plane sliced at 𝑥𝑏𝑖𝑛 = 4, in the x-z plane sliced at 𝑦𝑏𝑖𝑛 = 4 and in the x-y plane
sliced at 𝑧𝑏𝑖𝑛 = 4.

Fractional Filter kernel shape and parameters
The parameters of the FF kernel were found according to Section 2.4.1. The optimal parameters for
the FF Kernel are presented in table 3.2 and the shape is shown in Figure 3.7. The optimisation of the
parameters took 68.9 seconds with an SSE value of 1 ⋅ 10−4 Gy2.

𝐴 = 36.2 Gy ⋅ mm2 𝑥𝑐 = −0.12 cm 𝑎 = 1.31
𝜎𝑥 = 3.93 cm 𝑦𝑐 = −0.05 cm 𝑏 = 1.33
𝜎𝑦 = 0.29 cm 𝑧𝑐 = 2.75 cm 𝑐 = 2.20
𝜎𝑧 = 1.63 cm ℎ = 4.68

Table 3.2: Optimal parameters found for the Fractional Filter Kernel (Section 2.4.2).
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Figure 3.7: 7x7x7 Fractional Filter kernel; in the y-z plane sliced at 𝑥𝑏𝑖𝑛 = 4, in the x-z plane sliced at 𝑦𝑏𝑖𝑛 = 4 and in the x-y
plane sliced at 𝑧𝑏𝑖𝑛 = 4.
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Comparison of the kernels
The optimisation of the Gaussian kernel is roughly 4x faster than optimising the FF kernel, this is
probably because the Gaussian kernel has only 7 parameters, while the FF kernel has 11 parameters.
The amplitudes of all three planes of the Gaussian Kernel in Figure 2.2 are in the order of 10−11. The
order of the amplitude for the FF kernel in Figure 3.7 is the same as for the Gaussian kernel, except
for the x-y plane where the order is 10−12. The shape of both kernels differs a lot from each other in all
of the three planes.

y-z plane
The center of the Gaussian kernel is shifted and the spread in the y-direction is smaller than in the
z-direction. The FF kernel is a line in the z-direction with increasing amplitude from left to right and has
no spread in the y-direction.

x-z plane
The center of the Gaussian kernel is shifted and the spread in the z-direction is smaller than in the
x-direction. The FF kernel is varying slightly in amplitude in the x-direction, while in the z-direction the
kernel is varying more strongly.

x-y plane
The center of the Gaussian kernel is shifted and the spread in the y-direction is smaller than in the
x-direction. The FF kernel is a line in the x-direction with increasing amplitude towards the top and
bottom and has no spread in the y-direction.

3.3. Dose comparison
In this Section, the doses obtained through the Gaussian kernel (Gaussian dose) and Fractional Filter
(FF dose) will be presented and compared to the secondary proton dose obtained from TOPAS as
presented in Section 3.1.

3.3.1. Doses through convolution
The doses obtained through the FF kernel and the Gaussian Kernel are shown together with the target
dose in Figure 3.8. On the left side in Figure 3.8 doses are presented in the y-z plane sliced at 𝑥𝑏𝑖𝑛 = 25
and on the left side the doses are presented in the x-y plane sliced at 𝑧𝑏𝑖𝑛 = 4. The (absolute) difference
between the target dose and the other two doses is plotted in Figure 3.9. In Figure 3.10 the IDD in the
z-direction is shown for the three doses with Δ𝑥 = Δ𝑦 = 0.098𝑐𝑚.
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Figure 3.8: The secondary proton dose obtained through the Gaussian kernel and the Fractional Filter kernel together with the
target dose. On the left side the dose distributions are presented in the y-z plane sliced at 𝑥𝑏𝑖𝑛 = 25 and on the left side the
dose distributions are presented in the x-y plane sliced at 𝑧𝑏𝑖𝑛 = 4.
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Figure 3.9: Plot of the difference between target dose and Gaussian dose and target dose and FF dose from Figure 3.8
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Figure 3.10: Plot of the integrated depth dose (IDD) for the TOPAS dose, Gaussian dose and FF dose in lateral direction.

In Figure 3.8, it can be seen that in the y-z plane the target dose is forward scattered and asymmetric.
The Gaussian dose in the y-z plane is symmetric, while the FF dose is asymmetric. In the x-y plane
the Gaussian dose and FF dose look similar, however they differ in amplitude.

In Figure 3.9, it can be seen that the biggest difference in amplitude in the y-z plane, is in the center of
the plot. The FF kernel approximates the test dose better than the Gaussian dose, in the region around
the center in y-z plane. The dose difference in the x-y plane for the FF kernel is symmetric, while the
Gaussian dose difference is asymmetric. In the center region of both x-y plots in Figure 3.9, it can be
seen that the dose difference is smaller, compared to when moving outside the center region. Further-
more, the amplitude in the x-y plane for the FF dose difference is overall smaller than the Gaussian
dose difference.

From Figure 3.10 it can be seen that both doses approximate the TOPAS dose well before the Bragg
peak, while after the Bragg peak, both convolutional doses approximate the TOPAS dose poorly. The
IDD of the Gaussian and FF dose both fall off sharply to zero after a certain depth. Both peaks are
higher than the peak from the test dose.
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3.3.2. Gamma index comparison
The gamma index from Section 2.5.2 will be used to quantify the difference between the Gaussian
dose and TOPAS dose and the FF dose and TOPAS dose. This gamma matrix is calculated with
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒_𝑔𝑎𝑚𝑚𝑎_𝑖𝑛𝑑𝑒𝑥 algorithm in Python from the 𝑝ℎ𝑦𝑚𝑒𝑑𝑝ℎ𝑦𝑠 library. For computational effi-
ciency, the IDD representation of the doses will be used. From this gamma matrix a gamma histogram
can be computed and a passing rate can be determined. The gamma histogram with passing rate for
the Gaussian dose vs TOPAS dose and FF dose vs TOPAS dose can be seen in Figure 3.11 and Figure
3.12 respectively.

In Figure 3.11 and 3.12 it can be seen that the passing rate for the Gaussian dose and the FF dose is
17.65% and 29.41% respectively.

Figure 3.11: Gamma histogram plot for TOPAS dose vs. dose obtained via Gaussian kernel. The passing rate for the dose
obtained from the Gaussian kernel is 17.65%.

Figure 3.12: Gamma histogram plot for TOPAS dose vs. dose obtained via FF kernel. The passing rate for the dose obtained
from the FF kernel is 29.41%.
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3.3.3. Comparison of the convolutional dose distributions
It is expected that all of the target doses from the test boxes will have an asymmetric shape in the
y-z plane, like the target doses in Figure 3.8. The FF kernel seems to be able to produce asymmetric
doses, while the Gaussian kernel can only produce symmetric doses. Therefore, the FF kernel has
an advantage over the Gaussian kernel, when looking at the shape in the y-z plane of the desired test
dose. Furthermore, in the x-y plane the FF kernel produces a dose difference with an overall smaller
amplitude than the Gaussian dose difference. Lastly, the passing rate of the FF dose is higher than
the FF dose. The only advantage that the Gaussian kernel has over the FF kernel is that it optimises
4x faster, but this is not an important factor.

This means that the FF kernel is a better kernel for approximating the TOPAS dose through a convo-
lutional algorithm than the Gaussian kernel. However, it is expected that the secondary proton dose
obtained through the FF kernel is not accurate enough to increase the accuracy of the deterministic
semi-analytic algorithm. In fact, the secondary proton dose through the FF kernel might even decrease
the accuracy of the semi-analytic algorithm, due to its inaccuracy. To check the influence of the con-
voluted secondary proton dose on the semi-analytic algorithm, it should be added to the total dose
distribution and then be compared to a test dose.



4
Conclusion and recommendations

4.1. Conclusion
The Fractional Filter is better for estimating asymmetric dose distributions through convolutional meth-
ods than using a Gaussian kernel, due to the fact that a Fractional Filter kernel can produce both
symmetric and asymmetric doses. It is not concluded in this research if the secondary dose obtained
via convolutional methods is accurate enough to improve the accuracy of the dose distribution obtained
through the deterministic semi-analytic algorithm. However, it is expected that the found Fractional Fil-
ter kernel will not suffice to increase the accuracy of the deterministic semi-analytic algorithm, due its
low passing rate of 29.41%.

4.2. Recommendations for further research
For further research on this topic, there are several things that can be done. However, there is one step
that is recommended to be done before moving towards the other improvement points. Namely, add
the convolutional secondary proton dose to the total dose of the deterministic semi-analytic algorithm
and see if its accuracy improves. Probably after this step, a more accurate convolutional secondary
proton dose is desired. This can be done in several ways, firstly make use of the analytic derivative
and/or Hessian matrix in the optimising process. This can have a positive impact on the accuracy of
the produced secondary doses. However, this can prove quite difficult to implement for the Fractional
Filter due to the complexity of the function. Secondly, a way of increasing accuracy is by training the
parameters of the kernels using automatic differentiation [39] or artificial intelligence [40]. Thirdly, to
approximate asymmetric doses the use of skew Gaussian functions (or derivatives of it for FF kernel)
may prove useful for approximating asymmetric doses. [41]. Lastly, look into ways of producing asym-
metric doses, such as the use of Half Gaussian Kernel (HGK) [42] or producing asymmetric kernels
from symmetric kernels using piecewise linear perturbations [43].
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