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Abstract: Test on a small scaled model is an effective approach to predict the dynamic response of 11 

full scale structure under blast loadings. However, the geometric dimensions of specimens cannot 12 

simply comply with complete geometrical similarity due to manufacture or test restrictions. It would 13 

result in the difference structural performance between the full and small scaled models. This paper 14 

proposed a corrected similarity relationship of the dynamic behaviour between prototype and replica 15 

of stiffened plates subjected to blast load, in which both the thickness of the plate and the 16 

configuration (cross-sectional shape) of stiffeners are distortedly scaled-down (double distorted 17 

geometric scaling factors). Firstly, based on the mesh convergence study and comparing with results 18 

from experimental tests, a numerical method in predicting the confined blast load and dynamic 19 

response of structure was verified, which provides a reliable means to determine the dynamic 20 

behaviour of stiffened plate designed by the corrected similarity criterion of this paper. Then, the 21 

influence of altering the stiffener configuration on the dynamic response of stiffened plates was 22 

analysed and on the basis of it, a criterion for scaling the stiffener is proposed to help design a 23 

stiffener-distorted model from prototype structure. In addition, a method for scaling the double-24 

parameter distortedly small scaled model is proposed to predict the dynamic response of the 25 

prototype. Finally, two sets of examples of both the small size and prototype stiffened structures 26 
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subjected to blast load were analysed by using the presented method. It is shown that the replica 27 

developed by applying the present method is able to accurately predict the behaviour of the full-size 28 

stiffened plates, even when the thickness of the plate and the configuration of the stiffeners are 29 

distortedly scaling down with different factors.  30 

Keywords: corrected similarity relationship, dynamic response, stiffened plate, double geometric 31 

parameters distortion, numerical simulation, confined blast load 32 

1. Introduction 33 

Blast loading produced by an accidental or intentional explosion, such as gas 34 

explosion in inner buildings, missile attack in a combat environment or terrorist attack 35 

on airplanes and public facilities, may provoke not only permanent damage to structures 36 

but also degradation of the environment and human losses [1, 2]. Stiffened plates have 37 

been widely used as basic unit in thin-wall structures, such as ship hull and 38 

airplane constructions. A better understanding of the dynamic response of a stiffened 39 

plate subjected to blast loading would help design the structures with enhanced blast 40 

resistance and increase the level of safety for personnel and structures in increasingly 41 

threatening environments. Identifying the best way to investigate the shock response of 42 

these structures under blast loading has always been a challenge task. Researchers and 43 

designers have been of particularly concerning the dynamic responses and damage of 44 

structures under extremely server loading conditions [3-11]. It is believed that the full-45 

scale experiment is the most reliable method of evaluating the anti-blast performance 46 

of structures, but with the huge expenditure and environmental conditions imposed 47 

restrictions on any successive tests. Testing of small scaled models is nowadays still a 48 

valuable design tool, helping researchers to accurately predict the behaviour of 49 

oversized prototypes through scaling laws applied to the experimental results [5, 12-17] 50 



obtained.    51 

However, several limitations and difficulties still persist when applying the 52 

similitude theory through the current methodologies to blast loaded structures. Firstly, 53 

the dynamic response of scaling structures hardly follows the general similarity laws if 54 

they were built with materials that sensitive to strain-rate. Secondly, due to 55 

manufacturing technical restrictions, the configuration of small scaled models cannot 56 

comply with the prototype completely in an overall scaling factor. In that case, some 57 

geometrical parameters of a small scaled model have to be altered to meet the demand 58 

of experiments due to the limitations. The two factors mentioned above would result in 59 

incomplete similarity between the small scaled model and the prototype in practice. 60 

Much work [18-24] have been undertaken on the similarity relationship of the dynamic 61 

responses between the incomplete small scaled model structure and the prototype under 62 

impact or blast loads.  63 

For the process of structural impact events involves plastic flow and possible local 64 

material fracture[25], the influences of strain-rate strengthening effect on the dynamic 65 

yield stress are remarkable. Therefore, it is still a difficult task in solid mechanics to 66 

establish the strain-stress relationships [26, 27]. How to deal with the influence of the 67 

material nonlinearity on the complete similarity remains a major challenge. The 68 

distorted configuration of small scaled models has been posed as the main limitation 69 

for traditional or non-corrected scaling laws in blast or impact scenarios, along with 70 

other limitations such as strain-rate and inertia effects [16]. Oshiro and Alves firstly 71 

proposed a Non-Direct Similitude technique [18, 28, 29], which was used to skilfully 72 

address the strain-rate effect on the dynamic yield stress by changing the impact 73 

velocity. This technique provided a reliable and effective method to predict dynamic 74 

responses of a structure subjected to impact or blast loading by using test results of a 75 



small size replica. Furthermore, they successfully predicted the dynamic response of 76 

prototypes by using small scaled models that made of different materials or with 77 

distorted configurations [19, 30]. Luo et al. [31, 32] conducted a numerical study on the 78 

scaling of a rotating thin-wall short cylindrical shell. Sensitivity analysis and governing 79 

equations were employed to establish the scaling law between the distorted model and 80 

the prototype, which was aimed to provide an effective scaling law, applicable structure 81 

size intervals and boundary functions that could guide the design of distortion models. 82 

Cho et al. [33] presented the research on the similarity method based on two kinds of 83 

scaled models, one with distorted configurations and the other made of another material. 84 

This study was to overcome the dimensional and material limitations in model tests and 85 

predict the dynamic response of the prototype by combining the two distorted factors 86 

mentioned above. Yao et al. [34] performed an investigation of scaling the deformation 87 

of steel box structures subjected to internal blast loading experimentally and 88 

numerically. In addition, correction of the scaling law for steel box structure was 89 

conducted which considered both the scale-down factor and the scale strain-rate effect. 90 

In our previous work [35], a corrected similarity relationship between the incomplete 91 

small scaled model and the prototype of blast loaded structure was proposed, in which 92 

only one geometric parameter of the model was distortedly scaled.  93 

However, another problem arises when more distorted factors needed to be taken into 94 

account in the design of the small scaled model, such as multi-stiffened plates. 95 

Stiffeners on the plate play an important role in energy absorption and blast resistance 96 

of the whole structure. Owing to manufacturing technical restrictions, the distorted 97 

small scaled factors of both the thickness of the plate and the size of stiffeners do not 98 

comply with the overall geometric scaling factors. Also, the configuration of stiffeners 99 

needs to be further altered to meet the requirement of fabrication of experimental 100 



sample structures. Here, the configuration change of stiffeners in a small scaled model 101 

is referred to as the stiffener-distorted model.  102 

A corrected similarity relationship for predicting the dynamic response of stiffened 103 

plates subjected to blast loads is proposed by using a small scaled model. Here, 104 

geometric distorted small scaled models are used, in which both the thickness of plates 105 

and stiffener configurations are distorted. The study includes the development of the 106 

distortion criterion of stiffener types that is valid when replace the T-type stiffener with 107 

the flat bar, followed up with a similarity relationship for predicting the dynamic 108 

response of the prototype. Two analytical examples are introduced to verify the 109 

reliability of this similarity method by employing a verified numerical method. 110 

    
Nomenclature  v velocity 

   W mass of explosive 

Roman symbols    Wj section modulus  

      w deflection of the plate 

C constant for 1=( ) In

hC      

h thickness of the plate     Greek symbols 

I impulse per unit area of shockwave      

Ij moment of inertia  β scaling factor 

L length  βx factor of distorted geometric 

parameter x l1, l2 distance from the centroid of 

compression and tension area to the 

neutral axis of the cross-sectional 

area of stiffener, separately 

  

  λx factor of distorted geometric 

parameter x    

M0 plastic limit bending moment     π dimensionless number 

N0 plastic limit neutral plane force  ρ material density   

n0 number of stiffeners  σ0 static yield stress 

nI exponent  σd dynamic yield stress 

R stand-off distance    

S1, S2 static moment from the compression 

and tension area to the neutral axis of 

the cross-sectional area of stiffener, 

separately 

 Superscripts 

    

  ( )m small scaled model (reference model) 

Sj cross sectional area  ( )p prototype 

t time  ( )c correction model 

     

2. Numerical simulation method of the blast load and response of structure  111 

  In order to provide a reliable means to determine the dynamic behaviour of stiffened 112 



plate designed by the corrected similarity criterion of this paper, in this section, the 113 

verification of numerical simulation method in predicting the blast load and dynamic 114 

response of stiffened plate was performed. Firstly, mesh convergence studies in 115 

calculating the confined blast load in 2D and 3D space were performed. Then, the 116 

numerical method in predicting the confined blast load and the deflection of stiffened 117 

plates were compared with the measured data from experiments. The schematic 118 

diagram of the experimental device is shown in Fig. 1. It is a hollow cuboid with a 119 

venting hole on one side. The explosive was placed in the middle of this cuboid box 120 

and two specimens of stiffened plates are fixed to the each end of this test device [36].  121 
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Fig. 1. Sketch of the experimental setup (all dimensions in mm)  123 

A numerical simulation method was employed to predict the confined blast load and 124 

subsequent dynamic response of a stiffened plate by employing ANSYS AUTODYN. In 125 

experimental tests, cylindrical explosive charges with different masses and dimensions 126 

were used to produce the blast loads. The dimensions of the cylindrical explosive charge 127 

are quite smaller than that of the blast test chamber and stiffened plates, so the 128 

remapping capability in AUTODYN was employed to reduce the computational cost 129 



associated with the initial stages of the calculation which involves the detonation and 130 

expansion of the cylindrical explosive charge. In order to provide the more accurate 131 

confined blast loading with relative low computational costs, the pressure field within 132 

the chamber was produced by mapping in the pressure field resulting from a 2D 133 

simulation. The region inside the blast chamber, which includes air and explosive 134 

charge, was firstly modelled using the multi-material Euler formulation in AUTODYN-135 

2D, as shown in Fig. 2. The cylindrical TNT enables the 2D axial symmetry condition 136 

to be used. Due to the mesh size has an influence on the blast load, the mesh sensitive 137 

studies were firstly performed by discretizing the 2D computational domain with 138 

different sizes of mesh. Three gauges were placed 100 mm away from the 139 

corresponding boundary edges to compare the pressure change in conditions of 140 

different mesh sizes. In this paper, 8 numerical calculations with different mesh sizes 141 

were performed, in which square grids were used with thickness of 1.33, 1.00, 0.80, 142 

0.67, 0.57, 0.50, 0.44 and 0.40 mm, respectively.  143 

 144 

Fig. 2. 2D FE model for blast wave calculation 145 

  In the numerical simulations, the Jones-Wilkins-Lee (JWL) Equation of State (EOS) 146 

was implemented to describe the explosive materials, which is defined as, 147 
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  (1) 148 

In addition, the air is modelled with an ideal gas equation of state as follows, 149 

  1p e     (2) 150 

where =1.4  is the heat specific ratio, 1.225  3kg/m  is density, 151 

52.068 10 J/kge   is internal energy, 5

1=3.7377 10 MPaC  , 2 =4.15C , 152 

3

1=3.75 10 MPar  , 2 9=0.r  are constants, 5=0.3  is the specific heat,   is 153 

specific volume.  154 

The 2D simulation is terminated before the shockwave reached the nearest edge of 155 

the computational domain. The peak pressures from the three gauges are collected and 156 

compared to investigate the influence of mesh size on the calculated shock wave, as 157 

shown Fig. 3, in which the pressure change represents the comparison of peak pressure 158 

between the fine mesh and the coarse mesh. It is found that the finer mesh is more 159 

capable in capturing the peak value of more intensified shock wave, but more time 160 

consuming. Due to the factor that the size of 2D computation domain is only 400 mm 161 

× 800 mm, the mesh size of 0.4 mm × 0.4 mm is adopted in the numerical simulations.  162 
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Fig. 3. Relationship between the mesh density and the peak pressure  164 



After the pressure distribution in 2D domain is obtained, it was remapped into 3D 165 

space of the blast chamber, of which the dimensions of length, width and height are 166 

1800 mm, 800 mm and 800 mm, respectively. It is almost impossible to implement the 167 

numerical calculations by employing the same mesh size with that of in 2D 168 

computational domain. In order to find out a suitable model with acceptable accuracy 169 

in predicting the confined blast load, the grid sensitive is also studied for the 3D 170 

computational domain. The symmetry of the problem under consideration allows 171 

modelling only half of the whole inner space of blast chamber, as shown in Fig. 4. The 172 

dimensions of the computational domain are 900 mm, 800 mm and 800 mm, and four 173 

different sizes are used in the conditions of 55 g TNT and 110 g TNT, respectively. In 174 

the numerical calculations, 8 pressure gauges were arranged at different location of the 175 

boundary wall, and the detailed data of gauges 2, 4 and 5 were plotted in Fig. 5(a) and 176 

(b), in which the relationship between the mesh density and peak pressure of the 177 

calculated shock wave in conditions of 55g TNT and 110 g TNT were reflected, 178 

respectively. The comparison shows that when the mesh density was refined from 179 

90×80×80 to 112×100×100, the peak pressure was increased by the maximum value of 180 

3.26% and 2.57% among three gauges in conditions of 55 g TNT and 110 g TNT, 181 

respectively. However, the computational cost was increased by 66%. By considering 182 

the balance between efficiency and accuracy, the mesh density of 90×80×80 is selected 183 

in the numerical model, resulting in a total number of 576,000 grids. Furthermore, as 184 

the remapping method is employed, the size of the explosive in the 2D domain would 185 

have a slight influence on the calculated blast load in the 3D space. Besides, according 186 

to the Hopkinson scaling law, mass, distance and time can be scaled for explosives over 187 

a wide range of charge sizes [37], so that testing can be conducted at a laboratory scale 188 

and results can be extrapolated to a large scale, reducing the need for full-scale tests. 189 



The small scaled and prototype of explosions have the same peak value of overpressure, 190 

and the duration time of shock wave is scaled down with the same factor as the 191 

geometrical scaling factor. Besides, the responses of stiffened plate under confined blast 192 

load are usually impulse dependent [38], which is less sensitive to the peak value of 193 

overpressure of shockwave in confined blast. Thus, in the numerical calculations of 194 

dynamic responses of stiffened plates subjected to confined blast load, the mesh sizes 195 

of both the prototype and the small scaled models of 3D computational domain could 196 

remain unchanged. 197 

 198 

Fig. 4. Three dimensional model and locations of pressure gauges  199 
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(a) 55 g TNT                       (b) 110 g TNT 201 

Fig. 5. Relationship between the mesh density and peak pressure of calculated shock wave 202 

The above verified numerical model is used to calculate the blast load in a partly 203 



confined chamber and the results are compared with the measured data from 204 

experiments in Fig. 6. It is shown that the numerical simulation method is capable of 205 

predicting the initial shock wave and rebounded shock wave from walls of chamber, 206 

which would provide a relative accurate input load in the prediction of dynamic 207 

responses of blast loaded stiffened plates. 208 
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(a) 55 g TNT                       (b) 110 g TNT 210 

Fig. 6. Comparison of pressure-time histories of experiments and numerical simulations 211 

Based on the calculation of blast load in confined chamber, the 3D numerical 212 

simulations of the dynamic response of steel plate subjected to confined explosion, in 213 

which the Fluid-Structure Interaction (FSI) process was taken into account to 214 

implement the coupling between the confined blast load and the steel plate, were further 215 

conducted. Generally, structures can be defined in a Lagrangian reference frame where 216 

the mesh follows the material movement, and the Eulerian reference is a more 217 

preferable method to describe the gas flow from detonating explosives. In the present 218 

study, the air is modelled with Euler elements which is an extension of Eulerian 219 

approach, while the steel plates were modelled with Belytschko-Tsay shell elements 220 

based upon Mindlin theory [39]. The air domain in the numerical model should be large 221 

enough to cover the deformed plates. Besides, an additional space was provided for the 222 

high pressure air blow out from the venting hole in the wall of experimental setup, as 223 

shown in Fig. 1. Thus, the whole Eulerian domain of air has a dimension of 224 



2000×1600×800 mm. The wall including the venting hole is modelled as a rigid 225 

material and meshed with 8 node solid elements. The out-flow boundary conditions are 226 

set on all finite sides of the Euler grid, except on the three specified surfaces, which 227 

represent the rigid walls of the blast chamber, as these are reflective boundaries (no-228 

flow out condition). 229 

A fully coupling algorithm was used to connect the Lagrange solver and Eulerian 230 

solver. As the Lagrange body moves, it acts as a moving boundary in the Euler domain 231 

by progressively covering volumes and faces in the Euler cells. This induces flow of 232 

material in the Euler Domain. At the same time, a stress field will develop in the Euler 233 

domain which results in external forces being applied on the moving Lagrangian body. 234 

These forces will feedback into the motion and deformation (and stress) of the 235 

Lagrangian body. Large deformations may also result in erosion of the elements from 236 

the Lagrangian body. The coupling interfaces are automatically updated in such cases. 237 

In more detail, the Lagrangian body covers regions of the Euler domain. The 238 

intersection between the Lagrangian and Eulerian bodies results in an updated control 239 

volume on which the conservation equation of mass, momentum and energy are solved, 240 

as shown in Fig. 7. In the numerical simulations, the parameter of “cover fraction limit” 241 

in Autodyn is used to determine when a partially covered Euler cell is blended to a 242 

neighbour cell, and the value of cover fraction limit was set to 0.5, which means that 243 

when more than half of the volume is covered, the adjacent Euler domain will be mixed. 244 

For obtaining accurate results in the simulation of coupling Lagrangian and Eulerian 245 

bodies in explicit dynamics, it is necessary to ensure that the size of the cells of the 246 

Euler domain are smaller than the minimum distance across the thickness of the 247 

Lagrangian bodies. If this is not the case, the leakage of material in the Euler domain 248 

through the Lagrange structure would occur, resulting in failure of interaction effect. In 249 



the case of coupling to thin bodies, of which the thicknesses are small and typically 250 

modelled with shells, an equivalent solid body is generated to enable intersection 251 

calculations to be performed between a Lagrangian volume and the Euler domain. The 252 

thickness of the equivalent solid body is calculated based on the Euler domain cell size 253 

to ensure that at least one Euler element is fully covered over the thickness and no 254 

leakage occurs across the coupling surface. It is noted that the 'artificial' thickness is 255 

only used for volume intersection calculations for the purposes of coupling and is 256 

independent of the physical thickness of the shell/surface body, as shown in Fig. 8. For 257 

the shell solver in Autodyn, the parts do not have any geometric through thickness 258 

dimension, and as such cannot cover any volume in the Euler mesh. Therefore, each 259 

shell part should be artificially thickened. For the coupling methodology to function 260 

correctly, the artificial thickness of a shell must be at least twice the dimension of the 261 

largest cell size in the surrounding Euler grid [39]. In the present numerical simulations, 262 

the effective coupling thickness was set to be 25 mm (centred), as the size of the Euler 263 

cell is 10 mm. 264 

 265 

Fig. 7. Schematic diagram of coupling surface and control volume 266 
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 268 

Fig. 8. Schematic diagram of coupling thickness 269 

The shell element was used to model steel plate, the material selected from the library 270 

of AUTODYN is ‘Piecewise-JC’, which allows the definition of a true stress-strain 271 

curve as an offset table. Also, Johnson-Cook strain rate dependency can be defined.  272 

  *d

0

1 lnC





    (3) 273 

where d  is the dynamic flow stress corresponding to the dimensionless plastic strain 274 

rate 
*

0/   ;   is the effective plastic strain rate; 0  is the reference strain rate 275 

and chosen to be 
11 s ; 0  is the associated static plastic flow stress; C  is the 276 

empirically determined material constant. This constitutive model is widely used in 277 

theoretical and numerical studies on dynamic response of metals under impact and blast 278 

loading. For the steel in the present study, 0.22C  , and static plastic flow stresses of 279 

specimens with different thickness are 360 MPa for 1.6 mm, 317 MPa for 2.3 mm and 280 

343 MPa for 3.7 mm specimens respectively. 281 

Before the simulations were run on the Euler Lagrangian coupling model, the mesh 282 

convergence of steel plate was assessed. The aim is to find the influence of different 283 

mesh sizes on the accuracy of residual deflection of blast loaded plate and the 284 

computational costs. Five conditions of different mesh density of steel plate, including 285 

15×15, 20×20, 40×40, 80×80 and 160×160 were calculated, and both the 286 

True Shell 

Thickness 

Effective Coupling 

Thickness  



dimensionless deflections (divided by the results from 160×160 mesh density 287 

condition) and dimensionless computation time (divided by the results from 15×15 288 

mesh density condition) were compared, as shown in Fig. 9. In the numerical 289 

calculations of this paper, the mesh density of 80×80 was used guaranteeing a more 290 

precise reproduction of the dynamic response of steel plate, while keeping the 291 

computational cost low.  292 
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 293 

Fig. 9. Relationship between the mesh density and deflection of blast loaded plate and 294 

computation time 295 

 296 

Fig. 10. The numerical model of fully Euler-Lagrange coupling calculation (half model) 297 



 298 
(a) 0.19 ms                             (b) 1.0 ms 299 

 300 
(c) 4.0 ms                             (d) 15 ms 301 

 302 
(e) 20 ms                            (f) 30 ms 303 

Fig. 11. The movement of coupling surfaces with the deformed steel plates (top view)  304 

Then, the stiffened plates were introduced to the numerical model and the fully Euler-305 

Lagrange coupling is implemented between the steel plates, the wall of blast chamber 306 

with venting hole, which was modelled as rigid wall by 8 nodes solid element, and the 307 

air inside the confined chamber (just a slice of Euler cell at the horizontal middle cross-308 

section of the whole Euler domain is displayed), as shown in Fig. 10. The blast load 309 

was mapped from 2D calculation by using fine mesh. The coupling process of the 310 

confined blast pressure and the steel plates with time increasing is shown in Fig. 11. 311 



For the sake of clearly showing the interaction effect between Euler cell and Shell/ 312 

Lagrangian elements, Fig. 11 is displayed in top view of the whole model in Fig. 10. At 313 

the beginning of the calculation, the 'artificial' thickness attached to the coupling 314 

surfaces was firstly introduced, as shown in Fig. 11 (a). When the steel plates deformed 315 

under the confined blast load, the coupling surface moved accordingly to ensure the 316 

load applied persistently on the deformed plates. Besides, the deformed plates become 317 

updated coupling interfaces and constrained boundary of Euler cells. In the numerical 318 

simulation, no leakage of material in the Euler domain through the steel plate could be 319 

found. However, if erosion of the elements of the Lagrangian structure occurs, the 320 

coupling interfaces would be automatically updated, and the material in Euler cells 321 

would flow through the broken coupling surface.    322 

The dynamic response of 4 samples of stiffened plates are predicted by employing 323 

above validated numerical method, and the results of which are compared with 324 

experimental data and summarized in Table 1. The numerical results of residual 325 

deflections of the central point of stiffened plates agree well with the data from 326 

experiments. It is worth noting that the residual deflections in different load conditions 327 

from the numerical simulations are the average value of the oscillation stage after the 328 

first peak deflections, and those values of experiments were measured by employing a 329 

3D laser scanner after explosion when the plates are in steady condition. Besides, the 330 

comparison of the deflection-time histories of a 2.94 mm blast loaded plates (without 331 

stiffeners) between numerical simulations and experiments in the conditions of 90 g 332 

and 120 g TNT are presented in Fig. 12, which revealed that the numerical method 333 

employed in this paper is capable of predicting the dynamic response process of blast 334 

loaded plates with acceptable accuracy. The interaction effect between the blast load 335 

and the structural response in numerical simulations can also be validated. In the 336 



numerical simulations of prototype and small scaled models of blast loaded structures, 337 

the above validated mesh density is recommended. Besides, the numerical model can 338 

be scaled according to the corresponding geometric scaling factors, but keep the mesh 339 

density unchanged.  340 
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(a) 90 g TNT                       (b) 120 g TNT 342 

Fig. 12. The comparison of deflection-time histories between numerical simulation and 343 

experimental results 344 

Table 1. Results from experimental test and numerical simulations 345 

No. 

TNT 

mass 

W (g) 

Thickness 

of plates 

 h (mm) 

Stiffener 

H×W×L 

(mm) 

Number of 

stiffeners 

n 

Residual 

deflection of 

stiffened plates 

W (mm) 

Numerical 

results 

(mm) 

1 55 1.6 1.6×20×800 2 35.4 35.2 

2 55 2.3 2.3×30×800 2 26.3 26.4 

3 110 2.3 2.3×30×800 3 43.8 43.7 

4 110 3.7 2.7×30×800 3 24.1 24.0 

3. Criteria for altering the stiffener configuration 346 

Rolled and built-up T-type stiffened plates are two of the commonly used 347 

strengthening members in large-scale hull structures. Usually, flat bars are often used 348 

to replace the T-type stiffeners in small scaled model tests due to manufacturing 349 

technical restrictions, in which the configurations of stiffeners are different between 350 

prototype and replica. It is essential to guarantee the flat-bar stiffened model to have 351 



the similar dynamic characteristics to its T-type stiffened counterpart. Dimensional 352 

analysis method is employed to find out the principles that should be followed in 353 

altering the stiffener type in the small scaled model of a stiffened plate. 354 

The dynamic response of the blast loaded steel stiffened plate is related to the 355 

following parameters, i.e. impulse per unit area of a shockwave I, length of the plate L, 356 

thickness of the plate h, material density ρ, number of stiffeners 0n  , plastic limit 357 

bending moment M0 and neutral plane force N0 of stiffeners, dynamic yield stress of 358 

material d  , cross sectional area of stiffeners
jS  , elastic section modulus 

jW   and 359 

moment of inertia 
jI . 360 

If take the midpoint deflection w of the stiffened plate as the targeted response, then 361 

there is 362 

  0 0 0  , , , , , , , , , ,d j j jw f L h M N n I S W I    (4) 363 

A set of fundamental dimensions comprised of dynamic yield stress d  , material 364 

density ρ and length of the plate L are selected to give the following dimensionless π 365 

terms. 366 
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  (5) 367 

The similarity relationship of the dynamic response between the small scaled model 368 

and the prototype can be obtained if each term of the models is kept equal to their 369 

counterparts in the prototype. The geometrical small scaled factor of a stiffened plate is 370 

expressed as follows  371 

 mp m p/L L L     (6) 372 

where Lm and Lp are the length of the small scaled model and prototype, respectively； 373 



β is a scaling factor. 374 

The scaled model with complete similarity gives, 375 
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Among these π terms, π1, π4, π6, π7 and π8 are independent variables, while the rest π 377 

terms are dependent on the material dynamic properties. The incomplete similarity 378 

caused by the strain rate effect was properly corrected by Oshiro and Alves[18]. It should 379 

be noted that the values of π6~π8 of scaled model might differ from that of the prototype 380 

if the configuration (cross-sectional shape) of stiffeners on a stiffened plate is changed 381 

due to the restriction of manufacture. Subsequently, other π terms, π2, π3 and π7 in 382 

prototype are also unequal to that of the small scaled model. As a result, a dissimilarity 383 

occurs in the dynamic response of the prototype and small scaled model. In order to 384 

satisfy the requirements of predicting the dynamic behaviour of prototype by using the 385 

stiffener-distorted scaled-down models, the terms π6, π7 and π8 need to be identical, 386 

which seems impossible. In such the case, therefore, a compromised approach is to keep 387 

one or two π terms same, while the others are as close to their counterparts in the ideal 388 

small scaled model as possible. Thus, three criteria in scaling the stiffener were 389 

considered and compared, i.e. 390 

Criterion 1, keep the cross sectional area of stiffeners 
jS  the same while make the 391 

section modulus 
jW  and moment of inertia 

jI  to be as close to their counterparts in 392 

the ideal small scaled model as possible. 393 

Criterion 2, keep the section modulus 
jW  the same while make the cross sectional 394 



area of stiffeners 
jS  and moment of inertia 

jI  to be as close to their counterparts in 395 

the ideal small scaled model as possible. 396 

Criterion 3, keep the moment of inertia 
jI  the same while make the cross sectional 397 

area of stiffeners 
jS  and the section modulus 

jW  to be as close to their counterparts 398 

in the ideal small scaled model as possible. 399 

Figure 13 shows the cross sectional dimensions and configurations of T-type and I-400 

type stiffener, respectively.  401 

                                                 402 

（a）T cross-section stiffener         (b) I cross-section stiffener 403 

Fig. 13. Sketch of cross-sections of stiffeners 404 

A square stiffened plate is introduced here to compare the three criteria described 405 

above, as shown in the Fig. 14. The full-scale stiffened plate is 10 meters in length and 406 

10 mm in thickness, with five T cross-section stiffeners （T-type）orthogonally arranged 407 

on the plate. The T-type stiffener has dimensions as
1000 8

600 4





, which means the length 408 

and the thickness of flange are 1000 mm and 8 mm, while the corresponding web sizes 409 

are 600 mm and 4 mm, respectively. A blast load was applied on the front side (against 410 

the stiffeners) of the plate from an explosion of 1000 kg TNT in 10 m away from the 411 

centre of the plate. The numerical simulation is conducted by using ANSYS Autodyn, 412 

in which the detailed parameters of numerical model are the same with that presented 413 

by Zhang et al. [40]. The blast load was directly applied on the front face of stiffened 414 
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t2 

X 

Y 

a 
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X 

Y 



plate by defining the boundary as pressure stress of Analytical Blast in Autodyn[39], in 415 

which the propagation of blast wave and its fluid-structure interaction was not taken 416 

into consideration in free air explosion. The calculated residual deflection at its centre 417 

point of this prototype is 188 mm. 418 

 419 
Fig. 14. Schematic diagram of the numerical model of the stiffened panel 420 

Assuming stiffeners’ thickness of small scaled models not to be less than 2 mm, then 421 

three kinds of different cross sectional dimensions of the I-shaped stiffeners for the 422 

distorted models can be designed according to the above three criteria, which are listed 423 

in Table 2. For comparison, a reference model, with both the thickness and 424 

configuration of stiffeners being ideally scaled down by a factor of 1:20 from its 425 

prototype, is also built to analyse its dynamic behaviour. In this paper, the 1:20 scaling 426 

problem was solved by employing equations and numerical simulation to illustrate the 427 

application process of the present method. Actually, any other scaling factor can be used. 428 

However, an appropriate scaling factor between prototype and small scaled model 429 

should be determined due to some restrictions in practice. It should be noted that the 430 

numerical model of the small scaled structure has the same amount of grids with the 431 



prototype model. 432 

Table 2. Cross sectional parameters of the small scaled stiffeners  433 

Criterion No. 

Reference model  

(stiffeners are ideally 

scaled down ) 

1 2 3 

Cross sectional dimension (mm) 
50 0.4

30 0.5





 18×2 41×2 43×2 

Cross sectional area 
jS (mm2) 35 36 82 86 

Section modulus 
jW  (mm3) 1080 216 1121 1233 

moment of inertia 
jI (mm4) 54542 3888 45947 53005 

TNT mass W (kg) 0.125 0.125 0.125 0.125 

Stand-off distance R (mm) 500 500 500 500 
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Fig. 15. Comparison of the deflection-time curves among the three criteria 435 
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Fig. 16. Comparison of the velocity-time curves among the three criteria 437 



Selecting the dynamic response of the plates at the centre point of the stiffened plate 438 

as an object, the comparison results of deflection and velocity-time curves for each 439 

small scaled model in complying with the related three criteria are shown in Fig. 15 and 440 

Fig. 16. The comparative results show that the plate designed conforming to Criterion 441 

2 has the most similar behaviour with the ideal reference model no matter in 442 

displacement or velocity under blast loads. This indicates that the stiffeners may have 443 

reasonably approximate dynamic behaviour when keep the section modulus the same 444 

while make the other two terms to be as close to their counterparts as possible. Based 445 

on the analysis above, Criterion 2 for stiffeners will be employed in the following 446 

analysis. The small scaled model designed by employing the Criterion 1, which had the 447 

same cross section area with the reference model, experienced much larger deflection. 448 

It means that it is the absorption of the bending energy but not the inertial effect of the 449 

stiffeners mainly affected the dynamic behaviour of the blast loaded stiffened plates. 450 

Although Criterion 2 ensures the stiffened plate with distorted stiffener having the 451 

most similar dynamic behaviour to its prototype, it should be noted that the dynamic 452 

response of the stiffener distorted model still has deviations from that of the reference 453 

model. It needs further corrections before it can be used to predict the dynamic response 454 

of its prototype, in which the schematic diagram for altering the configuration of 455 

stiffener is shown in Fig.17. A distorted geometric parameter of the stiffener could be 456 

taken into account to help building a more accurate similarity relation between the 457 

stiffener distorted small scaled mode and the prototype. 458 

Considering the overall deflection of the stiffened plate to be closely related to its 459 

energy absorption, the energy absorption of stiffeners (as a part of the stiffened plate) 460 

will be affected by their plastic limit bending moment M0 and neutral plane force N0. 461 

The cross sectional area 
jS   of the stiffeners may be selected as the geometrical 462 



correction parameter. 463 

 464 

 Fig. 17. The schematic diagram for altering the configuration of stiffener 465 

The plastic limit bending moment M0 of stiffeners can be obtained from the following 466 

formula, 467 

    0 1 2 1 20.5d d jM S S S l l       (8) 468 

The neutral plane force N0 of stiffeners corresponding to plastic limit is, 469 

 
0 d jN S   (9) 470 

where 1S  and 2S  are the static moments from the compression and tension areas to 471 

the neutral axis of the cross-sectional area of the stiffener, respectively; 1l   and 2l  472 

represent the distance from the centroid of the compression and tension area to the 473 

neutral axis of the cross-sectional area of the stiffener, respectively. 474 

A geometrical distortion factor about the cross sectional area 
jS  of the stiffener is 475 

defined as follows， 476 

 ( ) / ( )d p

S j j jS S    (10) 477 

where ( )d

jS and ( ) p

jS  represent the cross sectional areas of distorted small scaled 478 

stiffener and prototype stiffener, respectively. 479 

Besides, a corresponding distortion coefficient of the cross sectional area is defined 480 

Distorted small scale model  

Has the same section 

modulus with the ideal 

small scale model 

The influence of distorted scaled sectional area on the dynamic response was corrected 

to obtain the similarity relationship between prototype and small scale model.  



below,  481 

 ( ) ( )/ /d m

S j j j S jS S      (11) 482 

Thus a correction equation for the impulse per unit area of the shockwave 
cI  is 483 

given by 484 

 Inc m m

I S jI I I     (12) 485 

where  mI  and 
cI  are the impulse per unit area applied on the reference model and 486 

the distorted model, respectively. In   is an exponent related to the distorted 487 

geometrical parameters and the impulse per unit area. 488 

The corrected TNT mass for the distorted model can be determined based on the 489 

result of Eq. (12), of which the flow chart is shown in Fig. 18. Firstly, a pair of small 490 

scaled models with different distortion scaling factors of the cross section, Model A and 491 

Model B were designed and introduced. The detailed parameters of the three different 492 

models of the stiffener plates are listed in Table 3, in which the reference model is the 493 

ideally scaled model with no distortion parameters.  494 

Prototype

Carry out a series of numerical 

calculations on the Model-B and 

obtained the fitting 

 w-I curve (F2)

Set an initial value for nI , substitute nI and the λSA, λSB into λI=λx
nI to 

determine λIA and λIB; then obtain the wA and wB through the F1 and 

F2 with  λIA and λIB, individually.

After getting the final value of nI, figure out the corrected 

impulse and TNT mass for Model-A and Model-B, 

respectively.

If wA=wB If wA wB

Model-A with scaling factor  

λSA of stiffener cross section

Model-B  with scaling factor  

λSB of stiffener cross section 

Carry out a series of numerical 

calculations on the Model-A and 

obtained the fitting 

 w-I curve (F1)

 



Fig. 18. The flow chart of the method for determining the corrected TNT mass 

Table 3. Relevant parameters of the two stiffener-distorted models  495 

Name 
Stiffener  

(mm) 

Cross 

section  

Sj (mm2) 

Section modulus  

Wj (mm3) 

Moment 

of inertia  

Ij (mm4) 

Distortion coefficient of 

the cross section λSj 

Reference 

model 

50 0.4

30 0.5





 35 1080 54543 1.00 

Model-A 41×2 82 1121 45947 2.34 

Model-B 36×2.5 90 1080 38880 2.57 

By employing the verified numerical method presented in Section 1, a series of 496 

numerical calculations with different loading conditions of TNT mass were performed 497 

to predict the dynamic response of the three small scaled models, as listed in Table 4.  498 

Table 4. The computing results of each distorted model 499 

No. 
Model-

A1 

Model-

A2 

Model-

A3 

Model-

A4 

Model-

A5 

Model-

A6 

 TNT mass (g) 130 135 140 145 150 155 

I (Pa·s/m2) 365.07 373.29 381.38 389.35 397.20 404.93 

w (mm) 7.39 7.86 8.32 8.75 9.20 9.61 

No. Model-B1 Model-B2 Model-B3 Model-B4 Model-B5 Model-B6 

 TNT mass (g) 170 175 180 185 190 195 

I (Pa·s/m2) 427.49 434.81 442.04 449.17 456.22 463.18 

w (mm) 1045 10.82 11.26 12.65 12.01 12.38 

A set of data of the centre point deflection (w) and the impulse per unit area (I) for 500 

each model are collected, and their relationship (I-w curve) can be determined 501 

subsequently by data fitting. Thus two I-w relationships F1 and F2 for Model-A and 502 

Model-B can be established, which are given as 503 

 1 : 0.0555 12.863A AF w I    (13) 504 

 2 : 0.0533 12.308B BF w I    (14) 505 

The fitting relationship for TNT mass and impulse per unit area (W-I curve) from the 506 

numerical simulations is given as 507 



 0.6321 101.02W I    (15) 508 

For example, when the load from the explosion of 125 g TNT was applied to the 509 

reference model, as listed in Table 3, the value of the impulse per unit area 
mI  applied 510 

on the stiffened plate was calculated by Eq. (15), 357= ·mI Pa s  . The correction 511 

exponent  In  can be solved by taking 
mI , F1 and F2 into the computing programs, 512 

with its value determined as 0.112. Thus the corrected impulse per unit area for Model-513 

A is  514 

 0.112357 2.34 392 Pa sInc m

A SAI I        (16) 515 

The corresponding corrected TNT mass for Model-A is 147 g, which can be acquired 516 

by inserting the value of c

AI  in Eq. (15). By applying the corrected TNT mass to the 517 

Model-A (here the Model-A is employed to predict the dynamic response of the 518 

prototype), a value of 8.91 mm in residual centre deflection of the stiffened plate is 519 

obtained, which is very close to that of the reference model (8.92mm). Here, the 520 

residual centre deflection of the model is the average value of crest and trough in the 521 

oscillation stage of the curve. The comparison of deflection- and velocity-time 522 

predictive curves between the reference model and Model-A with the corrected TNT 523 

mass are shown in Fig. 19 and Fig. 20, respectively. 524 
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Fig. 19. Comparison of the displacement-time histories between the stiffeners distorted model and 526 

the reference model 527 
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Fig. 20. Comparison of the velocity-time histories between the stiffeners distorted model and the 529 

reference model 530 

As indicated in Fig. 18, the difference of residual centre deflection between the 531 

corrected model and the reference model is relatively small, though there is a deviation 532 

in their maximum displacement. Although the predicted maximum velocity (Fig. 20) is 533 

not as good as the deflection in comparison to that of the reference model, the overall 534 

velocity-time history curve predicted has better correlation than the results in Fig. 16. 535 

These comparison results indicate that the influence of the change of the cross sectional 536 

area 
jS  of the small scaled model on the similarity of the dynamic behaviour between 537 

replica and prototype can be effectively corrected by using the updated TNT mass.  538 

4. Scaled models considering double geometric parameters  539 

In this section a more complex situation of the distorted small scaled model in both 540 

stiffener types and thickness of the plate will be further studied based on the corrected 541 

method for stiffener distorted model presented in Section 3. 542 

For the models distorted in both stiffener configuration and thickness of plates, the 543 

correction equation Eq. (12) used in the stiffener distorted model can be developed 544 

into the following form 545 



 1 2

j

c m= ( ) ( )I In n

h SI I     (17) 546 

where 1In   and 2In   are two exponents related to the distorted scaling thickness of 547 

plates and the cross sectional area of stiffeners, respectively.  548 

The difficulty in using Eq. (17) to obtain a correct factor of 
cI  is how to determine 549 

the value of the first coefficient 1In  for a scaled model considering double geometric 550 

parameters double geometric parameter distorted model and thus pose a barrier to solve 551 

the second unknown exponent 2In  with the method proposed in our previous research 552 

work [35]. 553 

In order to solve the exponents in Eq. (17), it is necessary to simplify this equation. 554 

Considering the exponent xn  has a fixed value in a specific distorted model, if the 555 

thickness of the plate of this model is distorted with a fixed distortion coefficient h , 556 

then the item 1( ) In

h in Eq. (17) can be replaced with an unknown constant C and thus 557 

 2

j

c m= ( ) In

SI I C    (18) 558 

Here, the simplified Eq. (18) can be solved according to the following steps. 559 

Step 1: establish three distorted models Model-A, Model-B and Model-C with identical 560 

size, which have the same plate thickness to ensure the same thickness distortion 561 

coefficients h   but with different cross sectional area and stiffeners distortion 562 

coefficients, i.e.  S A , S B  and  S C . It should be noted that the distorted small scaled 563 

model in cross sectional area of stiffeners should follow Criterion 2 given in Section 2. 564 

Then a series of TNT mass selected from a narrow range deviated from the TNT mass 565 

Wm of the small scaled reference model (without distortion) are applied to the distorted 566 

models to calculate the dynamic response numerically. 567 

Step 2: take one parameter of dynamic response as the object of study, for instance, the 568 



deflection w of the plates. Then the relation between corrected cI  and deflection of 569 

each small scaled model can be given as follows, 570 
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  (19) 571 

Step 3: employ Newton method to solve the above equation set and the values of w, C 572 

and 2In  can then be determined. Also, 1In  is obtained from 1=( ) In

hC  . 573 

The above steps can be implemented by programming. After determining the value 574 

of 1In  and 2In , the corrected value of impulse per unit area for the distorted small 575 

scaled model with double geometric parameters can be computed. Subsequently the 576 

corrected TNT mass for the distorted model can also be determined. Furthermore, by 577 

applying the corrected TNT mass to the distorted model, the similar dynamic behaviour 578 

can be evaluated between the distortedly small scaled model and the prototype. 579 

5. Scaling the dynamic behaviour of blast loaded structure  580 

5.1 The dynamic behaviour of a stiffened plate under free air blast load 581 

The typical stiffened plate studied in Section 3 was employed to verify the method 582 

of the distorted small scaled models with double geometric parameters proposed in 583 

Section 3. Here, three sets of the distorted models, Model-A, Model-B and Model-C, 584 

are established to calculate values of 1In   and 2In  . The relevant parameters are 585 

summarized in Table 5.  586 

Table 5. Detailed parameters of each distorted model 587 

Name 

Scaling 

factor 

β 

Length 

l (mm) 

Thickness 

h (mm) 

Thickness 

distortion 

coefficient 

λh 

Stiffener 

(mm) 

Cross 

Sectional 

area Sj 

(mm2) 

Cross 

Sectional 

area 

distortion 

coefficient 

λsj 



Prototype 1.0 10000 10 1.0 
1000 8

600 10





 14000 1.0 

Scale-

down  

reference 

model 

0.05 500 0.5 1.0 
50 0.4

30 0.5





 35 1.0 

Model-A 0.05 500 1.0 2.0 41×2.0 82 2.34 

Model-B 0.05 500 1.0 2.0 36×2.5 90 2.57 

Model-C 0.05 500 1.0 2.0 47×1.5 70.5 2.01 

A series of TNT mass W of 190, 195, 200, 205 and 210 g are selected and the values 588 

of their corresponding impulse per unit area of the shockwave I applied on the stiffened 589 

plate are computed. The W-I fitting formula is given as follows, 590 

 0.7314 143.73W I    (20) 591 

By applying the above TNT masses selected to the distorted models, the final 592 

deflection at the centre point of blast loaded stiffened plates can be obtained. Then a set 593 

of w-I formulas can be fitted and given as follows, 594 

 

A

B

C

Model-A,  F : 0.0445 10.998

Model-B,  F : 0.0432 10.811

Model-C,  F : 0.0549 14.804

A A

B B

C C

w I

w I

w I 



 

   (21) 595 

For the 1:20 ideal small scaled reference model, its TNT mass Wm is 127.5 g after 596 

taking the scaling factor and strain-rate effect into account and the value of the 597 

corresponding impulse per unit area I0 of the adjusted TNT mass is 359 Pa s  . 598 

Substituting the I0 determined into Eq.(19), the values of C and 2In  are obtained as 599 

below. 600 

 2   1.02,   0.216IC n    (22) 601 

The corrected impulse   c

AI   of Model-A stiffener plate at the centre point is 602 

440.1 c

AI Pa s   and finally, the corrected TNT mass c

AW  for Model-A is obtained 603 

by Eq. (20) as 178.2 g. 604 



By applying the updated TNT mass to Model-A, the residual deflection 8.60 mm of 605 

the stiffener plate at its centre point can be obtained through numerical calculations. 606 

Based on the result of Model-A, the corresponding value of the residual defection of 607 

the prototype predicted is 172 mm, which is very close to the value of 188 mm 608 

calculated directly from the full-size structure. Fig. 21 and Fig. 22 show the comparison 609 

of the predicted displacement- and velocity-time history curves from the uncorrected 610 

model, the corrected distorted model and the prototype, respectively. It is found that the 611 

present corrected method provides a better prediction of the dynamic behaviour of the 612 

full-size structure, reducing the deviation from 47 % to 8.48 %, as shown in Fig. 21. It 613 

is worth noting that the TNT mass for the uncorrected model was determined according 614 

to the geometrical scaling factor, which is approximately equal to the cube root of the 615 

TNT mass for the prototype. That is to say, the influence of the distortion scaling factors 616 

on the dynamic response was not considered for the uncorrected model, resulting in 617 

much lower predicted deflection than that of the corrected model when subjected to 618 

blast load.  Although the predicted velocity shows some discrepancy, the corrected 619 

model still gives better predicted results of the maximum velocity for the prototype, as 620 

shown in Fig. 22.      621 
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Fig. 21. Comparison of the deflection-time histories between prototype, uncorrected and corrected 623 

models 624 
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Fig. 22. Comparison of the velocity-time histories between prototype, uncorrected and corrected 626 

models 627 

5.2 The dynamic behaviour of a stiffened plate subjected to confined blast load 628 

Take the four stiffened plates listed in Table 1 as prototypes, three distorted small 629 

scaled models with double geometric parameters for each prototype were designed to 630 

determine the value of C and 2In  by employing the method presented in Section 4. 631 

The relevant geometric parameters of each distorted small scaled model are given in 632 

Table 6. 633 

Here taking Case No.1 as an example to predict its dynamic behaviour under 634 

confined blast load by using three 1:10 small scaled models, both the geometric 635 

parameter of plate thickness and the size of stiffener are distorted small scaled with 636 

different factors. It is noted that the design of distorted stiffeners follows Criterion 2 637 

presented in Section 2, which keeps the section modulus 
jW  unchanged, while the 638 

cross sectional area of stiffeners
jS  and moment of inertia

jI  are as close to their 639 

counterparts of the ideal small scaled model as possible. The detailed parameters of the 640 

scaled stiffener in Case No.1 are listed in Table 7. 641 

Table 6. Geometric parameters and scaling factor of each distorted small scaled model 642 



No. 
Scaling factor 

β 

Distortion coefficient 

of the thickness of 

plates  λh 

Cross sectional area of stiffeners (mm) 

Model-A Model-B Model-C 

1 0.1 2 1.8×0.2 1.6×0.25 1.5×0.3 

2 0.1 2 2.9×0.25 2.6×0.3 2.4×0.35 

3 0.1 2 2.9×0.25 2.6×0.3 2.4×0.35 

4 0.1 2 2.8×0.3 2.6×0.35 2.5×0.4 

Table 7. Parameters of the stiffeners in Case No.1 643 

Case 

No.1 

Scaling 

factor 

β 

Stiffener 

(mm) 

Cross 

sectional 

area  

Sj (mm2) 

Section 

modulus  

Wj (mm3) 

Moment 

of inertia  

Ij (mm4) 

Distortion 

coefficient of 

cross section area 

λsj 

Prototype 1 20×1.60 32 213 4267 1.000 

Model-A 0.1 1.8×0.20 0.36 0.216 0.3888 1.125 

Model-B 0.1 1.6×0.25 0.40 0.213 0.3413 1.250 

Model-C 0.1 1.5×0.3 0.45 0.225 0.3375 1.406 

 644 

A series of TNT masses, which are close to the mass ideally scaled down by using 645 

the overall scaling factor are applied to Model-A, Model-B and Model-C and the 646 

corresponding residual deflection at the centre point of the stiffeners plates are collected. 647 

The validated numerical method was employed to conduct the dynamic responses of 648 

different models under the confined blast load from different masses of TNT. With the 649 

data collected three sets of the w-I equation for each model are obtained, which are 650 

given as follows, 651 

 

A

B

C

Model-A, F   0.2364 0.2945

Model-B, F   0.2186 0.5255

Model-C, F   0.2661 0.1944

A A

B B

C C

w I

w I

w I

 

 

 

：

：

：

  (23) 652 

and so as the W-I relation, 653 

 
2 31.044 10 9.524 10W I       (24) 654 

The TNT mass W for the prototype is 55 g, thus the TNT mass 
mW  applied to the 655 

1:10 ideal small scaled model (without geometric distortion) needs to be determined. 656 

The corresponding impulse per unit area mI  at the centre point of the ideal small scaled 657 

stiffener plate is 6.054 Pa s . Solving Eq. (23) with the above parameters, the values of 658 



C and 2In  are obtained.  659 

 22.349   0.073IC n ，   (25) 660 

Then, the corrected value of the impulse per unit area c

AI  for Model-A is 14.343 661 

Pa s  and a corrected TNT mass is determined from Eq. (24). The updated TNT mass 662 

is then applied in the numerical simulations by the distorted small scaled model. The 663 

comparison of the displacement- and velocity-time history curves of the prototype, the 664 

predicted value from uncorrected and corrected models are shown in Fig. 23 and Fig. 665 

24, respectively. It is found that a good agreement is achieved, of which the value of 666 

residual deflection of the prototype stiffened plate predicted by the corrected Model-A 667 

is 36.9 mm, while that from the experimental test and numerical simulation of the full 668 

size stiffened plate given in Table 1 are 35.4 mm and 35.2 mm. The errors on the 669 

predicted residual deflections are 4.02 % and 4.63 %, respectively. It is obvious that the 670 

predicted deflection by using uncorrected model is much lower than that of the 671 

prototype and corrected model, for the uncorrected TNT mass was employed in the 672 

numerical simulations, while the TNT mass applied to the corrected model was properly 673 

altered according to the double distortion scaling factors of the stiffened plate by 674 

employing the method presented in this paper.   675 
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Fig. 23. Predicted deflection-time curves of the uncorrected and corrected models  677 
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Fig. 24. Predicted velocity-time curves of the uncorrected and corrected models 679 

The dynamic responses predicted for rest of the cases with the same correction 680 

method are listed in Table 8. Clearly, the corrected method proposed in this paper is 681 

capable of determining the dynamic behaviour of the full size stiffened plate by using 682 

the double geometric distortedly small scaled model with an acceptable accuracy.  683 

Table 8. Predicted results of the double-parameter distorted model in each case 684 

Case No. 1 2 3 4 

TNT mass W (g) 0.055 0.055 0.011 0.011 

Stand-off distance R (mm) 90 90 90 90 

Scaling factor    0.1 0.1 0.1 0.1 

Distortion coefficient of the thickness of plates h   2.0 2.0 2.0 2.0 

Stiffener of the small scaled distorted model (mm) 1.8×0.2 2.9×0.25 2.9×0.25 2.8×0.3 

Constant C 2.349 2.973 2.257 2.695 

Correction exponent In   0.073 0.037 -0.014 0.010 

Corrected impulse per unit area I ( Pa s ) 14.343 18.03 25.78 30.843 

Corrected TNT mass ( )W g   0.140 0.178 0.262 0.316 

Numerical results of the center deflection 
cw  

(mm) 
3.465 2.800 4.512 2.421 

Prediction result 
pw  (mm) 34.65 28.00 45.12 24.21 



Error (%) 2.14 6.22 3.18 0.75 

 685 

6. Conclusions 686 

A verified numerical method in calculating the confined blast load and dynamic 687 

response of stiffened plate was presented. By employing remapping technique, the 688 

pressure distribution of blast load in a 2D domain could be mapped into a 3D domain 689 

with higher accuracy comparing to that directly obtained from the 3D calculation. The 690 

predicted results from the numerical method presented in this paper agree well with the 691 

experimental data both in confined blast and deflection of stiffened plate. Based on the 692 

Hopkinson scaling law, the numerical method can be further employed to predict the 693 

blast load and dynamic response of small scaled model and prototype of structures, 694 

which provides a reliable means to verify the proposed similarity method.  695 

A corrected scaling method for predicting the dynamic behaviour of the prototype of 696 

stiffened plates under blast loads by using its distortedly small scaled model with 697 

double-geometric parameters has been proposed and verified in this paper. The 698 

situations of both the thickness of the plate and the type of stiffeners are distortedly 699 

small scaled with different factors are considered. Unlike the single-geometric 700 

parameter distorted case, the double-geometric parameters distortedly small scaled 701 

model has to be more carefully designed and the distortion of their stiffeners should 702 

conform to Criterion 2 outlined in Section 3. It is worth noting that the section modulus 703 

of the stiffener should be given priority to distorting the stiffener configuration, the 704 

cross sectional area and the moment of inertia of the stiffener, as close to that of the 705 

ideal small scaled model as possible. This is the key point to keep the stiffener 706 

distortedly small scaled model having the most similar dynamic behaviour to its 707 

prototype. It also guarantees that the present correction method will be smoothly 708 



employed in predicting the dynamic response of the prototype stiffened plates by using 709 

the well-designed distorted model. 710 

The present study would provide a potential approach to deal with the multi-711 

geometric parameters distorted stiffener plate. However, it is better to reduce the 712 

number of the distorted geometric parameters (within the experimental restrictions) as 713 

small as possible to make sure a most similar dynamic response to be obtained between 714 

the distorted model and the prototype. In addition, the different mechanical parameters 715 

of plates with different thicknesses would be considered in practice test, which was not 716 

taken into account in the numerical simulations in present paper. 717 
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