
Applicability of Effect Handler Oriented Programming (EHOP) for Text-Based 
Game Development

Ivan Todorov
Supervisor(s): Casper Bach Poulsen, Cas van der Rest, Jaro Reinders EEMCS, 

Delft University of Technology, The Netherlands
24-6-2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

1



Abstract
Effect handler oriented programming (EHOP) is a
recently proposed programming paradigm, which
aims to provide a separation of concerns by iso-
lating the handling of side-effects from the main
application logic. Nowadays, as the core concepts
behind EHOP are being added to more and more
programming languages, it is evident that EHOP is
slowly but steadily growing in popularity. There-
fore, it is important to explore the applicability of
EHOP for different areas of software development.
However, so far, very little research has been con-
ducted on this topic and, thus, barely any possible
application domains of EHOP have been investi-
gated. This study focuses on a potential field of ap-
plication of EHOP, which has not been covered by
previous research, namely - text-based game devel-
opment, and aims to determine the extent to which
the usage of EHOP for text-based game develop-
ment affects the modularity, readability and main-
tainability of the source code. This goal will be
achieved by performing both a qualitative as well
as a quantitative analysis of the source code of a
text-based game, written in Koka - a state-of-the-
art programming language, which supports EHOP.
The results show that there are substantial benefits
to using EHOP for text-based game development.
It significantly improves the modularity, readability
and maintainability of the source code at the cost of
very little to no performance.

1 Introduction
Recent developments in the field of Programming Languages
have led to the idea of creating high-level programming lan-
guages, which provide a separation of concerns. This means
that it should be possible to understand and reason about a
program’s source code independently of orthogonal concerns.
As a result, the concept of effect handlers and the possible
ways to incorporate it into modern programming languages
have become a subject of extensive research. Algebraic effect
handlers [1] were originally introduced as a theoretical foun-
dation for studying programming languages with side effects.
More recently, however, they have become the core concept
behind the programming paradigm, called Effect handler ori-
ented programming (EHOP).1 The main goal of EHOP is to
allow programmers to represent side effect by declaring op-
erations, which are implemented using effect handlers, while
said effect handlers are implemented separately from the ap-
plication code, which uses the operations. This is achieved
by introducing the concept of effect operations and defining
the following three main components of a program’s source
code [2]:

• Effect signatures - declarations of effect operations;

• Effectful functions - functions, which use effect opera-
tions;

1Hereafter: EHOP - Effect handler oriented programming

• Effect handlers - functions, which provide implementa-
tions of effect operations.

// Emitting messages; how to emit is TBD.
// Just one abstract operation: emit.
effect fun emit(msg : string) : ()

// Emits a standard greeting.
fun hello() : emit ()
emit("hello world!")

// Emits a standard greeting to the console.
pub fun hello-console1() : console ()
with handler
fun emit(msg) println(msg)

hello()

An example2 of how a program’s source code can be split
into the aforementioned three parts is presented above. It de-
picts the declaration, usage and handling of a simple emit
effect in the Koka programming language [4]. The emit ef-
fect is declared by the following effect signature:

effect fun emit(msg : string) : ()

According to this effect signature, the emit effect consists of
only a single function with the same name, which takes one
argument of type string and has the unit type (denoted as
() in Koka) as its return type. Additionally, in the example,
shown above, the hello function is an effectful function, be-
cause it uses the emit effect. Finally, the hello-console1
function, shows how the emit effect can be handled using the
following effect handler:

with handler
fun emit(msg) println(msg)

This effect handler provides a concrete implementation for
the emit effect by specifying that, when the emit func-
tion is called with some string as its argument, it will sim-
ply print said string to the console. As a result, calling
the hello-console1 function would simply print the string
”hello world!” to the console.

As can be seen from the given example, splitting a pro-
gram’s source code into effect signatures, effectful functions
and effect handlers, allows developers to isolate the handling
of side effects from the main application logic, resulting in
a higher level of separation of concerns, compared to ”tradi-
tional” implementations.3

As of the time of conducting this research, there are only
a few state-of-the-art programming languages, which sup-
port EHOP, such as Koka and Frank [5]. Nevertheless,
the core concepts behind EHOP are also available in the
widely-used functional programming language Haskell [6],
through the usage of libraries for algebraic effects, such as
effect-handlers [7], fused-effects [8] and polysemy
[9]. This shows that EHOP is gradually gaining popularity
as a practical tool for software development. Therefore, it is

2This example is taken from Koka’s website [3].
3Hereafter: traditional implementation - an implementation,

which follows either the Object-oriented programming (OOP)
paradigm or the Functional programming (FP) paradigm

2



important to explore the extent to which EHOP is applicable
for different areas of software development. However, so far,
barely any research has been done on this subject and, thus,
very few possible applications of EHOP have been analysed -
such as implementing the core of the UNIX operating system
[10].

The goal of this study is to reduce the gap in the exist-
ing literature by focusing on a potential field of application
of EHOP, which has not been covered by previous research,
namely - text-based game development, and answering the
following question:

When EHOP is used for text-based game devel-
opment, to what extent does the support for sep-
aration of concerns of EHOP affect the modular-
ity, readability and maintainability of the source
code, compared to traditional implementations?

The importance of this kind of research stems from the
fact that text-based games (and all games, in general) are pro-
grams, which have multiple side effects, that need to be man-
aged alongside the main application logic in traditional im-
plementations (e.g. the inputs of the players, the state of the
game world, the state of the characters, etc.). This means that,
in theory, the separation of concerns, which EHOP provides,
should significantly increase the modularity, readability and
maintainability of the source code by separating the manage-
ment of all side effects from the main application logic, mak-
ing EHOP not only applicable but also preferred for such ap-
plications. However, this hypothesis needs to be confirmed in
practice.

The contributions of this paper are:

• an explanation of the methodology, used during this re-
search (Section 2);

• a description of the process of developing a text-based
game using EHOP and an assessment of the effects of
using EHOP for text-based game development on the
modularity, readability and maintainability of the source
code (Section 3);

• an analysis of the effects of using EHOP for text-based
game development on the quantitative aspects of the
source code (Section 4);

• a discussion about the ethical aspects of this study and
its reproducibility (Section 5);

• a conclusion about the effects of using EHOP for text-
based game development on the qualitative and quanti-
tative aspects of the source code and an exploration of
possibilities for future work (Section 6).

2 Methodology
In order to answer the main research question of this study,
it is essential to evaluate the qualitative aspects of EHOP by
performing a qualitative analysis of the readability and ex-
perience of developing and/or maintaining text-based games,
implemented using EHOP. However, it is possible that any
potential benefits of using EHOP for text-based game devel-
opment come at the cost of performance. Thus, during this
study it is crucial to also explore the quantitative aspects of

EHOP by performing a quantitative analysis of the run time
and memory characteristics of text-based games, developed
using state-of-the-art programming languages, that support
EHOP (such as Koka [4], Frank [5] or Haskell [6]). Follow-
ing the reasoning, described above, the main research ques-
tion can be split into the following sub-questions:

• When EHOP is used for text-based game development,
to what extent does the support for separation of con-
cerns of EHOP affect the modularity of the source code,
compared to traditional implementations?

• When EHOP is used for text-based game development,
to what extent does the support for separation of con-
cerns of EHOP affect the readability of the source code,
compared to traditional implementations?

• When EHOP is used for text-based game development,
to what extent does the support for separation of con-
cerns of EHOP affect the maintainability of the source
code, compared to traditional implementations?

• When EHOP is used for text-based game development,
to what extent does the support for separation of con-
cerns of EHOP affect the performance (run time, mem-
ory characteristics, etc.) of the source code, compared
to traditional implementations?

For the purposes of this research the Koka programming
language was chosen, as an example of a modern program-
ming language, which supports EHOP, for the following rea-
sons:

• Koka inherently supports EHOP;
• As of the time of conducting this research, the Koka pro-

gramming language is getting regular updates;4

• Source code, written in Koka, can be compiled and ex-
ecuted on any operating system, making the study inde-
pendent of a concrete operating system and, therefore,
more easily reproducible.

As a result, this study has been implicitly divided into the
following five tasks, which should be performed exactly in
the specified order:

1. Choose a text-based game, which will be feasible to im-
plement, considering the time constraints, imposed by
the duration and deadlines of this research, and imple-
ment it in Koka;

2. Perform a qualitative analysis of the readability and
experience of developing and/or maintaining the text-
based game, in order to evaluate the modularity, read-
ability and maintainability of the source code;

3. Perform a quantitative analysis of the run time and mem-
ory characteristics of the text-based game, in order to
evaluate the performance of the source code.

Additionally, part of this study was dedicated to exploring
different existing metrics for evaluating the qualitative and
quantitative aspects of a program’s source code and investi-
gating the applicability of said metrics to source code, written
in Koka.

4For more information, go to https://github.com/koka-lang/koka

3

https://github.com/koka-lang/koka


When it comes to evaluating the qualitative aspects of a
program’s source code, the following metrics were explored:

• Buse’s model [11] - a readability metric;
• Cyclomatic complexity [12] - a complexity and readbil-

ity metric;
• Halstead’s model [13] - a complexity metric;
• Module cohesion - a readability and maintainability met-

ric;
• Module coupling - a modularity metric;
• Posnett’s model [14] - a readability metric.

However, all of the metrics listed above are either very dif-
ficult or even impossible to assess by hand. All of them are
usually evaluated using special software quality tools, which
are designed and developed with the goal of computing said
metrics. Unfortunately, as of the time of conducting this
study, no such software quality tools have been found, which
have support for the Koka programming language. Therefore,
since developing such a tool is beyond the scope of this re-
search and assessing the aforementioned metrics by hand was
deemed unfeasible, given the time constraints of this study, it
was concluded that said metrics are not applicable to this re-
search. As a result, it was decided that, for the purposes of
this study, the most fitting way of exploring the qualitative as-
pects of EHOP would be through practical examples. Thus, in
Section 3, which describes the process of developing a text-
based game in Koka, special attention is put on the effects,
that are used, and how their addition affects the modularity,
readability and maintainability of the source code.

When it comes to analysing the quantitative aspects of
EHOP, it was determined that, for the purposes of this re-
search, it would be sufficient to evaluate the following met-
rics:

• The compilation time of the finished game;
• The start time of the finished game;
• The time, which the game needs, in order to execute a

player’s turn;
• The peak memory usage during a game.

The reason behind the selection of the metrics listed above
is that together they would present a clear picture of both
the performance as well as the memory characteristics of a
text-based game, written in Koka. However, in order to mea-
sure those metrics, it should be possible to simulate a game.
This means that instead of the game occasionally waiting for
a player’s input, all inputs should be specified in the exact or-
der, before the launch of the game, and then the game will
just play itself, following the provided inputs. As a result,
this was determined to be a required feature of the text-based
game, which would be implemented in Koka.

3 Developing a Text-Based Game in Koka
For the purposes of this research a fully-featured shared-
screen multiplayer text-based chess game was developed en-
tirely in the Koka programming language [4]. The devel-
opment process can be implicitly divided into the following
stages:

1. Implementing the game’s main menu;
2. Implementing the basic components of the game - the

two player and the chess pieces;
3. Implementing the chess board;
4. Implementing the players’ turns;
5. Implementing the win and draw conditions;
6. Extracting functionality, which should be easy to aug-

ment, into side effects;
7. Implementing the feature, which allows a game to be

simulated by providing the players’ inputs in the exact
order, before the launch of the game.

3.1 Implementing the game’s main menu
The first task of implementing the text-based chess game was
to implement a simple main menu. It was decided, that a
main menu, which allowed users to either start a new game
or close the application, would be sufficient. If at a later
stage more options were needed, the main menu could be ex-
tended to provide them. Implementing the basic main menu
did not pose any difficult challenges. However, during its de-
velopment, it was concluded that, since the functionality of
the main menu might have to be extended, the handling of
the user input should be made easily extendable or replace-
able. Therefore, the function, which parses a user’s input and,
based on it, decides on what action should be taken, was ex-
tracted into the following side effect:

effect fun read-input-main-menu() : maybe<action>

The main goal behind this refactoring was to allow the func-
tionality of the main menu to be expanded by simply creating
a new handler for the read-input-main-menu effect, or by
extending the already-existing handler, but without changing
the core logic of the main menu. As a result, this approach
would significantly improve the modularity and, by exten-
sion, the maintainability of the source code, since it would
allow the functionality to be extended or changed by only
editing the effect handler.

3.2 Implementing the basic components of the
game

When the main menu was completed, the goal was set on
implementing the basic components of the game - namely,
the two players and the chess pieces. Creating the players
was a straight-forward task, which involved defining a data
type with two alternative constructors - one for each player.

type player
White
Black

The pieces were, initially, implemented using the same ap-
proach - by defining a data type with six alternative construc-
tors - one for each type of piece, all of which required two
parameters - the player, who owns the piece, and the loca-
tion of the piece. It was decided that the locations would be
implemented as a tuple of integers, representing the X and Y
coordinates of a given location on the chess board, such that
the square A1 would be the location (0, 0) and the square H8

4



would be the location (7, 7). As a result, the initial implemen-
tation of the piece data type was the following:

type piece
Pawn(owner : player, square : location)
Knight(owner : player, square : location)
Bishop(owner : player, square : location)
Rook(owner : player, square : location)
Queen(owner : player, square : location)
King(owner : player, square : location)

However, as can be seen from the code snippet above, this
initial approach involved code duplication, since all construc-
tors have the exact same set of arguments. This, of course,
reduces the maintainability of the source code. An additional
drawback was that adding more properties to a certain piece
type (as discussed in Section 3.4) would increase the num-
ber of arguments, required by its constructor, to three or even
more, which reduces the readability of the source code, and
should, therefore, be avoided [15]. Thus, it was decided that
the piece types should be represented by a separate data type
with six alternative constructors - one for each type of piece:

type piece-type
Pawn
Knight
Bishop
Rook
Queen
King

This way, it would be possible to add specific properties to
some types of pieces, which was, indeed, necessary during
later stages of the development process (as discussed in Sec-
tion 3.4), without making the argument lists of their con-
structors too long. Moreover, this refactoring removed the
code duplication, which was part of the initial implementa-
tion, because pieces would now be implemented as a struct
- Koka’s name for a data type, that only has a single construc-
tor with the same name as the data type, and would require
three arguments - the type of the piece, the player, who owns
the piece, and the location of the piece:

struct piece
piece-type : piece-type
owner : player
square : location

3.3 Implementing the chess board
When the two players and the chess pieces were completed, it
was time to implement the chess board. After different ways
of representing the chess board were considered, it was de-
cided that a piece-list [16] would be the most suitable solu-
tion in the current case. There were two main reasons for this
choice:

• In the existing implementation the pieces already con-
tain information about their location on the board.
Therefore, a piece centric [17] board representation
would be most fitting;

• Koka does not have built-in support for sets, but supports
lists.

As a result the chess board was implemented as a struct,
the constructor of which only requires a single argument - the
list of figures, that are initially on the board:

struct board
figures : list<figures>

3.4 Implementing the players’ turns
The next step of implementing the text-based chess game was
to implement the players’ turns. This was undoubtedly the
most time-consuming part of the entire development process
as well as the most logically complex one. However, the dif-
ficulty came mostly from the large number of possible moves
in chess and the interactions between them. While the basic
moves were fairly straight-forward to implement, things like
castling, pawn-promotion, en-passant and the fact that, if a
pawn has not moved yet, it can move two squares forward,
rather than just one, required some adjustments to be made to
the piece-type data type. As a result, the piece-type data
type was changed to the following:

type piece-type
Pawn(has-moved : bool, en-passant : bool)
Knight
Bishop
Rook(has-moved : bool)
Queen
King(has-moved : bool)

The has-moved argument, which was added to pawns, rooks
and kings, denotes whether the figure has been moved, while
the en-passant argument, which was added only to pawns,
indicates if a pawn can be captured by an en-passant move.

The only other noteworthy aspect about this task is that,
similarly to the main menu, it was decided that all func-
tions, which parse and process user input, should be extracted
into separate side effects. The reason behind this decision,
once again, was that, if, at a later stage, additional input op-
tions need to be added or an existing input option has to be
changed, this could be done by simply editing the effect han-
dler for the given side effect. This refactoring, which signifi-
cantly improved the modularity and, by extension, the main-
tainability of the source code, resulted in the creation of the
following three side effects:

• read-input-turn: This side effect reads and pro-
cesses a player’s input, when it is their turn. The possible
actions are the following:

– Move a piece: The format, in which piece moves
are entered, is very straight-forward - the start
square followed by the end square. For example,
the input ”B2B4” indicates that a figure should be
moved from square B2 to square B4. The game
then checks, if the current player has a figure at
square B2 and whether moving said figure from B2
to B4 is a valid move. If so, then the move is per-
formed. Otherwise, the input is deemed invalid and
the current player is asked for a new input.

– Perform a castling: A kingside castling is denoted
by ”0-0” or ”O-O”, while a queenside castling is
denoted by ”0-0-0” or ”O-O-O”.

5



– Offer a draw: A player can offer a draw by us-
ing one of the following inputs: ”Draw”, ”Tie”,
”Remis”.

– Surrender: A player can surrender by using one of
the following inputs: ”Surrender”, ”Good game”,
”GG”, ”Forfait”, ”FF”.

• read-input-pawn-promotion: This side effect reads
and parses a player’s input, when a pawn promotion oc-
curs. In such situations the player, whose pawn is being
promoted, can decide, if they want the pawn to be re-
placed by a knight, a bishop, a rook or a queen.

• read-input-draw-offer: This side effect reads and
parses a player’s input, when their opponent offers a
draw. The current player can either accept or reject the
draw offer. If a draw offer is rejected, it is still the oppo-
nent’s turn. However, they cannot offer a draw again on
the same turn - only one draw offer is possible per turn.

3.5 Implementing the win and draw conditions
When the players’ turns were implemented, it was time for
the final part of the actual game to be added - the win and
draw conditions. The following two win conditions were im-
plemented:

• Checkmate: If the player, whose turn it currently is, is
in check and has no valid moves, then they are in check-
mate and their opponent wins the game.

• Surrender: If a player surrenders, their opponent wins
the game.

While the win conditions, listed above, were fairly simple
to implement, the draw conditions were substantially more
complex. Four draw conditions were implemented:

• Stalemate: If the player, whose turn it currently is, has
no value moves and they are not is check, the game is
declared a draw.

• Accepting a draw offer: If a player accepts a draw offer,
made by their opponent, the game is game declared a
draw.

• A variation of the threefold repetition rule [18]: If the
same position occurs three times during a game, the
game is automatically declared a draw. In this context
two positions are said to be the same, if ”the same types
of pieces occupy the same squares, the same player has
the move, the remaining castling rights are the same and
the possibility to capture en passant is the same” [18].

• A variation of the fifty-move rule [19]: If during the last
fifty moves no pieces have been captured and no pawns
have advanced, the game is automatically declared a
draw. In this context one move consists of both players
performing a turn.

While the former two of the aforementioned draw conditions
were straight-forward to implement, the latter two required
the tracking of the game’s history of positions. At the begin-
ning of a game the history is, as expected, empty. Then, at
the end of each player’s turn the current position is added to

the history. However, whenever a pawn advances or a piece
is captured, the history is cleared.

This was implemented using Koka’s built-in st<h> effect,
which is an alias for the combination of the heap<h> effect,
the read<h> effect and the write<h> effect. The usage of
the st<h> effect makes it possible to store variables in the
heap and use them by reference. Therefore, when said vari-
ables are passed as arguments to other functions, they are
passed by reference, instead of by value, which is how stan-
dard variables are passed in Koka. As a result, multiple func-
tions can manipulate the exact same variable by changing the
value, stored at the corresponding location in the heap.

This usage of side effects clearly demonstrates how the fea-
tures of EHOP can be used to easily extend the existing func-
tionality of the application in a very modular way - some-
thing, which would not have been as simple to achieve in tra-
ditional implementations.

3.6 Extracting additional functionality into side
effects

After the entire chess game was fully-functional it was de-
cided that functionality, which is likely to be changed in the
future, should be separated from the main application logic
and turned into side effects. The goal behind this decision
was to increase the modularity and the maintainability of the
source code, because if, at a later stage, someone wants to
change said functionality, they could do so by simply edit-
ing the corresponding effect handler, without delving into the
main application code.

The only functionality, which was determined to be likely
to change, was the printing of the chess board. The current
implementation prints the chess board in a very plain and ba-
sic way. Therefore, it was concluded that, in the future, a
fancier way of printing the chess board could be implemented
and this should be possible without changing the remainder
of the source code. As a result, the function, responsible for
printing the chess board, was extracted into a separate side ef-
fect and its implementation was turned into a handler for said
side effect:

effect fun show-board(x : board) : string

3.7 Allowing games to be simulated
The last part of the development process of the text-based
chess game was to implement the functionality, which would
allow games to be simulated. This means that, instead of the
game waiting for the players’ inputs, those inputs should be
provided in the exact order, before the game is launched. As
discussed in Section 2, this feature was required, in order to
conduct the performance analysis of the source code. There-
fore, it was decided that it should also be possible to run a
simulated game, which does not print things to the console.
This would make it possible to assess the performance of the
code, which handles the application logic, without the addi-
tional time, required for printing.

In order for this goal to be achieved, a new side effect was
created, which consisted of three functions - one which han-
dles the players’ inputs, one which prints some text to the
console and one which prints a line of text to the console.

6



effect execution-method
fun user-input() : string
fun custom-print(x : string) : ()
fun custom-println(x : string) : ()

Additionally, the following three handlers for this side effect
were created:

• normal-game: This handler is the one, which would be
used in a normal game between two players. The im-
plementation allows the players to provide their inputs
during the game and everything is printed to the console
as usual.

• simulation-with-printing: This handler would be
used to simulate a game, but without disabling the print-
ing of text to the console. The implementation requires
the players’ inputs to be provided in the correct order,
before the game is launched. However, everything is still
printed to the console as usual.

• simulation-without-printing: This handler would
be used to simulate a game with the printing of text to
the console disabled. The implementation requires the
players’ inputs to be provided in the correct order, before
the game is launched and no text is printed to the console
during the simulation of the game.

4 Experimental Setup and Results
After the text-based chess game was developed and the effects
of using EHOP on the qualitative aspects of its source code
were assessed, the quantitative aspects of said source code
had to be analysed. For this purpose, as discussed in Section
2, the following metrics were used:

• The compilation time of the finished game;

• The start time of the finished game;

• The time, which the game needs, in order to execute a
player’s turn;

• The peak memory usage during a game.

All of the metrics, listed above, were evaluated on a MSI
GS73 Stealth 8RF laptop, which had an Intel® Core™ i7-
8750H CPU, 32GB RAM and a Nvidia GeForce GTX 1070
Max-Q GPU and was running the Ubuntu 22.04 operating
system. The evaluation was done using the time command,
which is available by default on Ubuntu 22.04 as part of the
time package and can be executed using /usr/bin/time. It
is important to note that the time command measures three
different notions of time, all of which were analysed during
this study:

1. Real time - ”Elapsed real (wall clock) time used by the
process, in [hours:]minutes:seconds” [20];

2. User time - ”Total number of CPU-seconds that the pro-
cess used directly (in user mode), in seconds” [20];

3. System time - ”Total number of CPU-seconds used by
the system on behalf of the process (in kernel mode), in
seconds” [20].

Additionally, it is noteworthy that, when using the time com-
mand, the peak memory usage of the program is displayed as
the ”maximum resident set size of the process during its life-
time, in Kilobytes” [20].

Finally, in order to properly evaluate the effects of using
EHOP for text-based game development on the quantitative
aspects of the source code, it was necessary to compare the
aforementioned quantitative metrics between an implemen-
tation which uses side effects and one which does not. For
this purpose, the existing source code of the text-based chess
game was refactored, with the goal of removing all custom
side effects from it. As a result, the new implementation
only uses the effects, which are built into Koka [4]. Then,
the quantitative metrics, discussed above, were measured for
both the original implementation as well as the new one and
the results were compared to each other.

It has to be noted that this is not an ideal comparison, since
the new implementation still uses some side effects, namely
- those which are built into Koka. However, the only way to
compare the initial implementation to one which does not use
any side effects would be to implement the text-based chess
game in a different programming language. This approach
was deemed unfeasible, given the time constraints, imposed
by this research, and, therefore, the aforementioned proce-
dure was chosen.

Using the methodology, described above, the compilation
time of the finished game was measured as the average of
ten compilations. Each compilation was performed using the
command:

koka -o2 -o main main.kk

The results of this experiment are depicted in Figure 1.

Figure 1: The average compilation time of the finished text-based
chess game with and without the usage of custom effects.

Figure 1 shows that the implementation of the text-based
chess game, which uses custom side effects, took slightly
longer to compile than the implementation, that does not use
custom side effects. Moreover, it can bee seen that, while the
System time, used to compile the two implementations, was
very close, the addition of custom side effects brought a more
noticeable increase of about 12% to both the User time and,
most importantly, the Real time. The most likely reason for

7



this increase in compilation time is that the custom side ef-
fects were implemented as different modules in separate files
from the remainder of the source code. Therefore, during the
compilation process of the entire game, there were more files
and modules, which had to be compiled, in the implemen-
tation, that uses custom effects. As a result, its compilation
took longer than that of the implementation, which does not
use any custom effects.

When it comes to the start time of the finished game, that
was measured using an ”empty” simulation - a simulation in
which, as soon as the main menu is loaded, the application
is immediately closed by providing the corresponding input.
This way, the time spent, while the application is running, will
be negligible and, therefore, the start time of the application
will have the greatest impact on the final measurement. The
start time of the finished game was measured as the average of
one hundred ”empty” simulations and the results are shown
in Figure 2.

Figure 2: The average start time of the finished text-based chess
game with and without the usage of custom effects.

From Figure 2 it can be seen that there is no substantial
difference in starting time between the two implementations.
While the implementation which uses custom side effects re-
quires slightly less User time, it takes marginally more Sys-
tem time and Real time. However, the differences between
the two implementations are so small that the most likely rea-
son for them is just run-to-run variance.

In order to measure the time needed to execute a player’s
turn, two professional games of chess were simulated, namely
- the shortest decisive, non-forfeited game and the longest de-
cisive game, played during a World Chess Championship. It
is important to note that a game is decisive, when it does not
end in a draw and, therefore, has a determined winner.

”The shortest decisive, non-forfeited world championship
game occurred between Viswanathan Anand and Boris
Gelfand in game eight of the World Chess Championship
2012” [21]. In this game both players played seventeen turns.
Therefore, in order to approximate the time needed to execute
a player’s turn in a simulation of this game, the total run time
of the simulation has to be divided by thirty-four, since there
were thirty-four individual turns during this game.

The longest game played in a world championship, which
also happens to be decisive, took place in game six of the

World Chess Championship 2021 between Magnus Carlsen
and Ian Nepomniachtchi [21]. This game consisted of both
players playing one hundred and thirty-six turns each. There-
fore, in order to approximate the time needed to execute a
player’s turn in a simulation of this game, the total run time of
the simulation has to be divided by two hundred and seventy-
two, since there were two hundred and seventy-two individual
turns during this game.

The average time for executing a player’s turn in both
games, described above, was computed as the average of one
hundred simulations of those games. Moreover, said aver-
age time was measured for both the implementation which
uses custom effects as well as the one, that does not. The
outcomes of this experiment for the shortest decisive, non-
forfeited game and the longest decisive game, played in a
World Chess Championship, are shown in Figure 3 and Fig-
ure 4, respectively.

Figure 3: The average time needed to execute a player’s turn in a
simulation of the shortest decisive, non-forfeited game, played dur-
ing a World Chess Championship, with and without the usage of
custom effects.

Figure 4: The average time needed to execute a player’s turn in
a simulation of the longest decisive game, played during a World
Chess Championship, with and without the usage of custom effects.

8



From Figure 3 and Figure 4 it can be seen that there is no
significant difference in any of the measured times between
the implementation of the text-based chess game which uses
custom effects and the one, that does not. In fact, the dif-
ferences in the timings between the two implementations are
so marginal that they are most certainly caused by run-to-run
variance. This shows that the addition of custom effects does
not influence in any way - either positive or negative, the av-
erage time needed to execute a player’s turn.

The peak memory usage was evaluated for both of the
aforementioned professional chess games by measuring the
maximum resident set size during one hundred simulations
of said games. The outcomes of this experiment are depicted
in Figure 5.

Figure 5: The peak memory usage measured during one hundred
simulations of the shortest decisive, non-forfeited game and the
longest decisive game, played during a World Chess Championship,
with and without the usage of custom effects.

The results in Figure 5 clearly show that there is no sig-
nificant difference in peak memory usage between the imple-
mentation which uses custom effects and the one, that does
not. This means that the addition of custom effects does not
bring any drawbacks in terms of peak memory usage.

Overall, the quantitative analysis, performed during this
study, reveals that the usage of EHOP for text-based game de-
velopment has almost no downsides with regard to the quan-
titative aspects of the source code. The only metric, which
was noticeably and consistently negatively influenced by the
addition of custom effects, was the compilation time of the
game’s source code. The results of all other quantitative met-
rics, which were evaluated, showed that said metrics were not
influenced by the addition of custom effects in any significant
way whatsoever.

5 Responsible Research
The only ethical issue, which arises from this study, is that
of subjectivity, namely - the subjectivity of the assessment of
the qualitative aspects of the source code. As discussed in
Section 2, as of the time of conducting this research, there are
no software quality tools which support the Koka program-
ming language [4]. As a result, there was no way to objec-
tively evaluate the modularity, readability and maintainability

of the source code of the text-based chess game. Therefore,
the assessment of the effects of using EHOP for text-based
game development on the qualitative aspects of the source
code was performed in a mostly, if not entirely, subjective
way. This means that any conclusions, which are drawn from
this assessment, should be taken with a grain of salt, as it is
entirely possible that the subjective evaluation was influenced
either positively or negatively by the researcher’s personal ex-
perience with EHOP. Additionally, this subjectivity makes the
qualitative analysis, performed during this study, absolutely
not reproducible, since it depends on the researcher, who per-
formed the evaluation, and their own biases.

On the other hand, the quantitative analysis, which was
conducted as part of this research, is entirely reproducible,
if the correct hardware is available. The reason for this is that
both the source code of the text-based chess game as well as
all scripts, which were used during the quantitative analysis,
are open-source and publicly available on GitHub.5 More-
over, the entire methodology, used to evaluate the quantita-
tive metrics of the source code, was explained in Section 4 of
this paper. Finally, the Ubuntu 22.04 operating system is also
free and open-source and can be downloaded from the web-
site of Canonical - the company behind Ubuntu.6 As a result,
if one has the exact same hardware, which was used during
this study, they can, first, download and install the Ubuntu
22.04 operating system from Canonical’s website, then down-
load and install Koka by following the instructions on Koka’s
website [3] and, finally, using the source code of the text-
based chess game as well as the scripts from GitHub, they can
follow the methodology, described in Section 4, in order to
perfectly reproduce the quantitative analysis, performed dur-
ing this research.

6 Conclusions and Future Work
The aim of this study was to explore the extent to which
the usage of EHOP for text-based game development affects
the modularity, readability and maintainability of the source
code. In order to achieve this goal, a qualitative analysis of
the source code of a text-based chess game, written entirely
in Koka [4] - a state-of-the-art programming language, which
supports EHOP, was performed. Additionally, a quantitative
analysis of said source code was conducted, in order to in-
spect, whether the usage of EHOP has any substantial draw-
backs in terms of performance.

The results of the qualitative assessment showed that, while
the features of EHOP only mildly enhance the readability
of the source code, they significantly improve its modularity
and, by extension, maintainability. Moreover, the outcome of
the quantitative analysis revealed that EHOP brings all those
benefits without any negative consequences to the start time,
run time and peak memory usage of the application. The only
downside of EHOP is that it slightly increases the compilation
time of the program.

In conclusion, this research demonstrates that there are
substantial benefits to using EHOP for text-based game devel-

5For more information, go to:
https://github.com/ivanstodorov/chess-game-koka

6For more information, go to https://ubuntu.com/

9

https://github.com/ivanstodorov/chess-game-koka
https://ubuntu.com/


opment. It almost allows game developers to have their cake
and eat it too. As the results illustrate, EHOP brings remark-
able improvements to the qualitative aspects of the source
code, namely - modularity, readability and maintainability,
at the cost of very little to no performance.

However, this research has many limitations, which can be
addressed by future studies. Firstly, the lack of available soft-
ware quality tools, which support the Koka programming lan-
guage, forced the qualitative analysis of the source code to be
largely, if not entirely, subjective. Therefore, a future study
can focus on developing a software quality tool, which sup-
ports Koka. Then, it would be possible to perform an objec-
tive qualitative analysis of the source code of the text-based
chess game, developed as part of this research.

Another possibility for future work would be to develop the
exact same text-based chess game in either an object-oriented
or functional programming language and compare that new
implementation to the one in Koka in both qualitative and
quantitative aspects. This would result in a much better com-
parison than the one performed during this study.

It is also possible that a future study focuses on the exact
same topic, namely - the applicability of EHOP for text-based
game development, but assesses another programming lan-
guage, which supports EHOP, such as Frank [5] or Haskell
[6]. The reason, why such research would be very important,
is that it could compare the advantages and disadvantages of
the different existing implementations of effect handlers, such
as Koka’s effect handlers, Frank’s effect handlers, scoped ef-
fect handlers [22], etc. As a result, such an approach could
lead to significantly different results than the ones obtained
during this research.

Finally, future studies can and should focus on exploring
the applicability of EHOP for other areas of software devel-
opment, other than text-based game development. The reason
for this is that text-based game development is a very small
part of the entire software development field. Therefore, even
if EHOP is amazing for text-based game development, which,
according to the results of this research, it absolutely is, that
does not necessarily make it applicable for any other software
development tasks.

References
[1] G. Plotkin and M. Pretnar, “Handlers of algebraic

effects,” in European Symposium on Programming,
pp. 80–94, Springer, 2009.

[2] J. I. Brachthäuser, P. Schuster, and K. Ostermann, “Ef-
fect handlers for the masses,” Proceedings of the ACM
on Programming Languages, vol. 2, no. OOPSLA,
pp. 1–27, 2018.

[3] “The Book of Koka: The Koka Programming
Language.” https://koka-lang.github.io/koka/doc/book.
html. Accessed: 2022-05-30.

[4] D. Leijen, “Type directed compilation of row-typed al-
gebraic effects,” in Proceedings of the 44th ACM SIG-
PLAN Symposium on Principles of Programming Lan-
guages, pp. 486–499, 2017.

[5] L. Convent, S. Lindley, C. McBride, and C. McLaugh-
lin, “Doo bee doo bee doo,” Journal of Functional Pro-
gramming, vol. 30, 2020.

[6] “Haskell: An advanced, purely functional programming
language.” https://www.haskell.org/. Accessed: 2022-
06-14.

[7] “effect-handlers: A library for writing extensible alge-
braic effects and handlers.” https://hackage.haskell.org/
package/effect-handlers. Accessed: 2022-06-14.

[8] “fused-effects: A fast, flexible, fused effect system.”
https://hackage.haskell.org/package/fused-effects. Ac-
cessed: 2022-06-14.

[9] “polysemy: Higher-order, low-boilerplate free mon-
ads.” https://hackage.haskell.org/package/polysemy.
Accessed: 2022-06-14.

[10] D. Hillerström, “Composing UNIX with Effect
Handlers: A Case Study in Effect Handler Oriented
Programming,” in ML Workshop, 2021.

[11] R. P. Buse and W. R. Weimer, “A metric for software
readability,” in Proceedings of the 2008 international
symposium on Software testing and analysis, pp. 121–
130, 2008.

[12] T. J. McCabe, “A complexity measure,” IEEE Trans-
actions on software Engineering, no. 4, pp. 308–320,
1976.

[13] M. H. Halstead, Elements of Software Science
(Operating and programming systems series). Elsevier
Science Inc., 1977.

[14] D. Posnett, A. Hindle, and P. Devanbu, “A simpler
model of software readability,” in Proceedings of the
8th working conference on mining software repositories,
pp. 73–82, 2011.

[15] R. C. Martin, Clean code: a handbook of agile software
craftsmanship. Pearson Education, 2009.

[16] “Piece-Lists - Chess Programming Wiki.” https://www.
chessprogramming.org/Piece-Lists. Accessed: 2022-
06-07.

[17] “Board Representation - Chess Programming
Wiki.” https://www.chessprogramming.org/
Board Representation. Accessed: 2022-06-07.

[18] “Threefold repetition - Wikipedia.” https:
//en.wikipedia.org/wiki/Threefold repetition. Ac-
cessed: 2022-06-07.

[19] “Fifty-move rule - Wikipedia.” https://en.wikipedia.org/
wiki/Fifty-move rule. Accessed: 2022-06-07.

[20] “Manual for the time command on Ubuntu 22.04.”
http://manpages.ubuntu.com/manpages/jammy/en/
man1/time.1.html. Accessed: 2022-06-15.

[21] “List of world records in chess.” https://en.wikipedia.
org/wiki/List of world records in chess. Accessed:
2022-06-15.

[22] N. Wu, T. Schrijvers, and R. Hinze, “Effect handlers
in scope,” in Proceedings of the 2014 ACM SIGPLAN
Symposium on Haskell, pp. 1–12, 2014.

10

https://koka-lang.github.io/koka/doc/book.html
https://koka-lang.github.io/koka/doc/book.html
https://www.haskell.org/
https://hackage.haskell.org/package/effect-handlers
https://hackage.haskell.org/package/effect-handlers
https://hackage.haskell.org/package/fused-effects
https://hackage.haskell.org/package/polysemy
https://www.chessprogramming.org/Piece-Lists
https://www.chessprogramming.org/Piece-Lists
https://www.chessprogramming.org/Board_Representation
https://www.chessprogramming.org/Board_Representation
https://en.wikipedia.org/wiki/Threefold_repetition
https://en.wikipedia.org/wiki/Threefold_repetition
https://en.wikipedia.org/wiki/Fifty-move_rule
https://en.wikipedia.org/wiki/Fifty-move_rule
http://manpages.ubuntu.com/manpages/jammy/en/man1/time.1.html
http://manpages.ubuntu.com/manpages/jammy/en/man1/time.1.html
https://en.wikipedia.org/wiki/List_of_world_records_in_chess
https://en.wikipedia.org/wiki/List_of_world_records_in_chess

	Introduction
	Methodology
	Developing a Text-Based Game in Koka
	Implementing the game's main menu
	Implementing the basic components of the game
	Implementing the chess board
	Implementing the players' turns
	Implementing the win and draw conditions
	Extracting additional functionality into side effects
	Allowing games to be simulated

	Experimental Setup and Results
	Responsible Research
	Conclusions and Future Work

