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Abstract

Congestion on highways is becoming a bigger problem every day. With the increasing need for
more highway capacity, which cannot always be met by building new highways, opportunities
must be found in state-of-the-art technologies for more efficient traffic management. In this
thesis traffic control is studied where the traffic consists solely out of intelligent vehicles
arranged in platoons, i.e. vehicles that are clustered longitudinally on the highway. With the
platooning concept more vehicles can be accommodated on the highway, thus increasing the
traffic flow. As of today, no highway simulator is capable of simulating intelligent vehicles.
In this thesis, first two existing open-source software packages, MITSIM and FreeSim are
assessed regarding their potential for use as a traffic simulator for intelligent vehicles and
platoons. As a result of this assessment, FreeSim is selected for further development. FreeSim
is transformed such that it is possible to simulate intelligent vehicles. For this, platoon models
are implemented. The platoon leaders are equipped with an intelligent speed adaptation (ISA)
controller, such that they can follow a reference speed. The followers inside the platoon all
have adaptive cruise control (ACC) installed, which makes it possible for them to follow a
predecessor vehicle with a safe distance. Since the reference speed for the platoon leaders
is not natively provided by FreeSim, FreeSim is adjusted so that a reference speed can be
provided in two ways. If the traffic is controlled, the speeds are provided by a controller. For
uncontrolled traffic, a METANET model is implemented to compute a reference speed for the
platoon leaders. In this thesis we use a so-called “Big Car model” implemented in Matlab as
a prediction model. In the Big Car model, a platoon is modeled as one big car with a variable
length and has a platoon following behavior. Because FreeSim and the Big Car model use
different models, the parameters of the Big Car following model are calibrated. This is done
using a nonlinear least squares optimization algorithm. The optimization resulted in a set of
parameters that gave a weighted root mean squared error as small as 1.16.

Keywords: intelligent vehicles, traffic simulator, platooning, modeling, calibration.
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Chapter 1

Introduction

Congested highways due to the ever increasing traffic demand are becoming a bigger problem
every day. This has negative impacts on society, such as loss of time and increasing fuel
consumption. The increasing need for more highway capacity cannot always be met by
building more highways. As the technologies that are implemented in vehicles are getting
more and more sophisticated, opportunities to increase the highway performance can be
found in more advanced control of vehicles.

1-1 Problem Statement

Currently various control measures are used to control the traffic flow on highways. For
instance ramp metering is used to gradually let vehicles access the highways such that the
traffic density will not become too high. Or dynamic speed limits are used to control the
average speed on a part of the highway. This can for instance be used to slow down the
traffic upstream of a traffic jam. All control measures are first thoroughly tested before
they are implemented on a large scale. A useful tool to test control measures is highway
traffic simulation software. With traffic simulators certain control actions can be analyzed in
regards to the way in which they can affect the traffic, without disturbing “real” traffic. All
the current traffic simulators are designed to simulate vehicles with human drivers and their
interactions with each other and the roadside. However, new vehicles that are introduced to
the market are getting more and more sophisticated. For instance, it is now quite common
that a vehicle is equipped with an anti-lock braking system and cruise control. But the more
luxurious vehicles already have adaptive cruise control and lane-keeping assistance. All these
systems that are built into the vehicles are designed to assist the driver in operating the
vehicle. These systems will become even more intelligent in the future and will gradually take
over the control of the vehicle. In the far future the task of the driver will only consist out of
determining the destination of the vehicle.

The traffic simulator software packages that are currently freely available, all have the
shortcoming that they are not able to simulate intelligent vehicles that can drive fully au-
tonomously. This means that the current traffic simulators cannot be of use to test control
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2 Introduction

strategies on traffic that consists solely out of Intelligent Vehicles. The objective of this thesis
project is therefore to find and modify an existing traffic simulator so that it can simulate
intelligent vehicles.

1-2 Overview

The structure of this thesis is as follows. In Chapter 2 insight is given in technologies that
enable intelligent vehicles. In this chapter also the used traffic flow characteristics are dis-
cussed as well as common traffic control strategies. This chapter concludes with discussing
some models for intelligent vehicles. Chapter 3 presents the assessment made for identifying a
traffic simulator that has the most potential to be used for simulating Intelligent Vehicles. In
Chapter 4 it is explained how FreeSim is transformed such that it is capable of simulating in-
telligent vehicles. Chapter 5 consists of a case study that is performed to calibrate a prediction
model with data gathered from the modified traffic simulator. In this chapter the experiments
are discussed and also the results are discussed. Chapter 6 is the final chapter that contain
the conclusions that can be drawn from this thesis as well as some recommendations for future
work.
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Chapter 2

Traffic Control with Intelligent

Vehicles

This chapter gives insight into traffic control where the traffic consists solely of Intelligent
Vehicles (IV), to be precise, IV that can drive fully autonomous. For that, a clear under-
standing of technologies that can be used in IV is needed. Therefore, Section 2-1 discusses the
current and future technologies that enable fully automated IV. Some traffic characteristics
and control strategies are treated in Section 2-2. Section 2-3 explains how IV can be modeled.
These models can for instance be used for simulations or they can act as prediction models.

2-1 IV Technologies

IV systems can be found in many different types of road vehicles like cars, trucks, and military
vehicles. These systems are used in IV for obtaining a more efficient driver-vehicle operation,
and as such IV can be seen as the “next wave” of Intelligent Transportation Systems [7].
It is important to distinguish IV systems from current active safety systems, e.g. anti-lock
braking systems and electronic stability control. IV systems assists the driver in operating the
vehicle more efficiently, more safely, and/or with less stress, by assessing risk or sensing the
environment [8]. The IV application areas can roughly be divided into three groups depending
on the level of support to the driver:

• Advisory systems. These systems provide an advisory/warning to the driver. This is
also referred to as collision warning systems. Examples are animal warning, side object
warning (blind spot), and driver impairment monitoring.

• Semi-autonomous systems. These are systems that take partial control of the vehicle,
either for driver assistance or for an emergency intervention to prevent a collision (col-
lision avoidance). These systems use haptic measures, i.e. based on the sense of touch,
to assist the driver. Semi-autonomous systems include functions such as lane-keeping,
Adaptive Cruise Control (ACC), precise maneuvering, and precision docking.
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4 Traffic Control with Intelligent Vehicles

• Fully autonomous systems. This kind of systems take full control of the vehicle (vehicle
automation). Examples are low speed automation (for congested traffic), autonomous
driving, and platooning.

The next subsections explain a few technologies that are needed for fully autonomous IV.

2-1-1 Lane-Keeping Assistance

Many minute steering adjustments made by drivers are a significant source of fatigue. Lane-
Keeping Assistance assists the driver in these steering adjustments by adding a torque on the
steering wheel. This torque increases as the vehicle nears a lane edge to create a “driving in
a bathtub” sensation [8]. Lane-keeping assistance can use machine vision technology and line
recognition to detect a lane. The disadvantage is that machine vision requires a good vision
of the road, which is not the case with bad weather, e.g. snow or fog, and with bad or no line
markings. Another possibility is the use of magnetic lane markers [12]. Then the accuracy
is not subjected to weather conditions, but it requires investments in infrastructure, which
brings additional costs.

Lane-keeping assistance systems are nowadays implemented in vehicles as convenience prod-
ucts. The lane-keeping assistance cannot be used by the driver as a “hands-off” system,
because it requires steering inputs of the driver or else it will disengage. Also at sharp curves
the system disengages. Full automatic “hands-off” steering will be commercially available in
the future, when more advanced versions of lane-keeping assistance have been developed. In
this thesis, it is assumed that IV do have the advanced version of lane-keeping assistance that
do allow full automatic steering.

2-1-2 Intelligent Speed Adaptation

Vehicles equipped with Intelligent Speed Adaptation (ISA) systems receive the current speed
limit on the road. This speed limit can differ from road to road and can depend on legislations,
weather conditions, etc. The ISA system can receive the speed limit from roadside controllers
or by using digital maps (with GPS technologies).

The speed limit can be fixed, variable, or dynamic [9]:

• If the speed limit is fixed, than there is one limit that will activate the ISA system.

• With a variable speed limit, the system adjusts the speed limit to the current road.

• With dynamic speed limits, the road environment is taken into account, e.g. bad
weather, accidents.

The ISA system receives the maximum driving speed specified by the roadside infrastructure
and can give feedback to the driver. There are three ways in which the feedback can be given
to the driver:

• Advisory. When the driver exceeds the speed limit, he is warned by an audible and/or
visual signal. This is thus only a warning signal and not a control signal.

B.J.A de Graaf M.Sc. thesis



2-1 IV Technologies 5

• Voluntary. This system is like an intelligent gas pedal. The driver needs to use more
force on the accelerator when the speed limit is exceeded, but it is still possible to exceed
the limit.

• Mandatory. The driver is not able to exceed the speed limit, even if he wants to exceed
it.

2-1-3 Cooperative Adaptive Cruise Control

Many vehicles today are equipped with a conventional cruise control. This system enables
the vehicle to maintain a constant desired speed set by the driver. The driver regularly has
to make sure that the speed is appropriate. ACC differs from the conventional cruise control,
because if a vehicle immediately ahead of the equipped vehicle is driving at a slower speed,
the ACC system controls the throttle and the brakes such that the equipped vehicle slows
down and matches the speed of the vehicle ahead. When the ACC matches the speed of
the vehicle ahead it also maintains a predefined driver-selectable time headway or gap. It
is possible not to use a user defined time headway, but algorithms to maintain a safe inter-
vehicle distance to avoid collisions [13, 14]. When the roadway ahead is unobstructed again,
the desired speed is reattained. Possible technologies for monitoring the forward scene are
radar or lidar (laser radar). In the future ACC equipped vehicles may also use machine vision
instead of radar-based vision.

There are multiple variants of ACC. The most popular are high-speed ACC and low-speed
ACC . The first ACC system on the market was a high-speed ACC, designed to operate around
40 km/h and above. This is because at high speeds, the discrimination between the vehicles
ahead and stationary objects on the roadside is easier to make. Other vehicles traveling in
the same direction will be moving at relatively low velocities, but non-targets have relatively
high velocities and can thus be filtered out. Low-speed ACC operates at lower speeds and
can also be a Stop-and-Go ACC, so that the system can manage a full stop and reinitiate
forward motion afterward.

Although ACC systems can handle many traffic situations reliably, there are situations that
ACC systems find difficult to handle, e.g. sudden and strong deceleration of the vehicle ahead.
Cooperative ACC is a more advanced system than ACC because Cooperative ACC uses
wireless technologies to exchange vehicle states (e.g. speed and acceleration) with the tracked
vehicle. This means that in opposite to ACC where the vehicle states have to be measured
with a laser, the wireless communication is also used such that the vehicle states are almost
instantly known. In this way it is possible to have real-time information available that can
be used in controlling the appropriate headway more tightly. Due to the tighter control that
can be realized with Cooperative ACC, the safe time headway can be reduced to as small as
0.5 s [8].

2-1-4 Platooning

A very interesting concept to improve traffic flow with IV is platooning. A “platoon” is
a cluster of IV arranged longitudinally on the highway [8]. Within a platoon, the vehicles
communicate with each other to exchange essential information, e.g. speed and braking. The
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6 Traffic Control with Intelligent Vehicles

first vehicle in a platoon is called the leader and the rest of the vehicles are called followers.
Platooning is a far more advanced form of Cooperative ACC. The main difference from
Cooperative ACC is that in Cooperative ACC, the vehicle exchanges information only with
the one directly ahead. In a platoon every vehicle is aware of the states of all other vehicles in
the platoon. This allows dynamic maneuvers like smooth merging of two platoons, splitting of
a platoon into two platoons, or a lane change. Platooning is thus a fully automated process.

The spacing between cars in a platoon (intra-platoon) is around 1 m and the spacing between
platoons (inter-platoon) is roughly 60 m [11]. With the platooning concept it is possible to
maintain short distances between vehicles at high speeds [37, 24]. Because the intra-platoon
distance is kept small, more vehicles can be accommodated on the highway, thus increasing
the traffic flow on the network.

2-2 IV-Based Traffic Control

2-2-1 Traffic Characteristics

In this section a few basic characteristics of traffic will be explained to provide a basis for the
understanding of the possibilities of controlling fully autonomous vehicles in traffic networks
for an optimal traffic flow. First an important term called time headway and three traffic
states (q, v, and ρ) will be defined.

Let us consider vehicles crossing a certain point on a freeway. The time that a vehicle n
reaches that point is denoted by t0n, and the time that the vehicle has completely passed the
measurement point, is denoted by t1n as can be seen in Figure 2-1. The time headway of
vehicle n is calculated by Theadway = t0n − t1n−1. The time headway can also be expressed as:

Theadway,n =
s

vn
, (2-1)

where s is the distance between vehicle n and its predecessor, and vn is de speed of vehicle n.

s

t
1

n t
0

n-1t
1

n-1t
0

n

Figure 2-1: Time Headway Theadway= t0n − t1n−1 =
s

vn

If the number of vehicles are counted that cross that point on the freeway during a time
interval ∆T , then the traffic flow can be calculated as follows:

q =
N

∆T
, (2-2)

where N is the number of crossing vehicles, and q is the traffic flow expressed in vehicles per
hour. The (arithmetic) average speed (v) is computed as follows:

v =
1

N

N
∑

n=1

vn. (2-3)
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2-2 IV-Based Traffic Control 7

The traffic density can be calculated by using the theoretical flow formula [19]:

q = ρv (2-4)

Thus ρ = q/v, where ρ is the vehicle density expressed in vehicles per kilometer.

If one wants to maximize the number of vehicles that pass a section of a highway during a
certain time interval, thus increase the traffic flow q, there are intuitively two possibilities.
One possibility is to increase the average speed v of the vehicles. The other possibility is to
increase the density. This is justified by the theoretical flow formula (cf. (2-4)).

Theoretically, increasing both the average vehicle speed and traffic density will result in an
increased flow, but in practice this is not always an option due to driver behavior. For example,
if vehicles are traveling at high speeds, the distances between the vehicles are increased by
the drivers for safety reasons. And if the distance between vehicles is reduced due to an
increased traffic density ρ, drivers will decelerate to create a safe time headway between their
own vehicle and the vehicle directly ahead. Hence, there is an optimum between average
speed and vehicle density.

Speed-Density Relations

The theoretical flow formula (2-4) does not display the peculiar feature of traffic flow that the
aggregate traffic speed decreases with increasing traffic density. Other functional relations
between the traffic flow q, the average speed v, and the vehicle density ρ have been measured.
A common used flow-density relation is the fundamental diagram [18], see Figure 2-2(b).
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Figure 2-2: An example of the fundamental diagram with the corresponding speed-density rela-
tion. The critical speed is the speed that corresponds to critical density and maximum
flow.

Assuming that in the fundamental diagram the number of lanes is equal to one, then the
vehicle speed can be calculated by dividing the flow with the density, thus v = q/ρ. Following
this relation, one can see that the vehicle speed is maximum at low densities and almost zero at
high densities (cf. Figure 2-2(a)). This is because drivers can drive their desired speed, when
traffic is unobstructed. This is called free-flow . In free-flow, drivers can maintain their desired
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8 Traffic Control with Intelligent Vehicles

speed, because their time headway is very large. When the traffic density increases, drivers
will drive in a so called car-following mode, i.e. drivers adjust their speed such that they
can follow the vehicle directly in front, while maintaining a safe time headway. In congested
traffic, the density has passed a certain critical density such that the traffic flow and vehicle
speed decrease significantly. If the vehicle speed drops to almost zero, the density has become
too large and a traffic jam will occur. The slope of the fundamental diagram starts almost
linearly and corresponds to the free-flow speed. In this region the density can increase while
the average speed stays the same, thus increasing the traffic flow. With increasing density, the
traffic flow increases up to a maximum, i.e. the capacity flow , which is referred to as a critical
point. The corresponding density and vehicle speed are the critical density and the critical
speed . At higher densities than the critical density, the average vehicle speed is significantly
lower than in free-flow traffic. This region corresponds to congested traffic. The expression
for the fundamental diagram is as follows:

V (ρ) = vfree exp

[

−
1

a

(

ρ (k)

ρcrit

)a]

, (2-5)

where vfree is the free-flow speed, ρcrit is the critical density, and a is a model parameter.

The fundamental diagram displays a smooth curve, but also non-smooth relations are pro-
posed [22], because empirical flow-density data show discontinuities around some critical
density. The flow-density plot proposed by [22] looks like a mirror image of the Greek letter
lambda (λ). The two branches of this reverse lambda are used to define free low-density
traffic and congested high-density traffic. Other relations of traffic flow are proposed but are
beyond the scope of this thesis. The interested reader is referred to [19].

2-2-2 Control Strategies

A typical characterization of free-flow is the large average velocity. Congested traffic is the
opposite of free-flow, because of the small average traffic speed. A traffic jam is a region
where the average speed and flow is negligible compared to the very high density of the
traffic. Traffic jams typically move upstream, thus against the direction of the traffic. If
there are more vehicles that can leave the traffic jam at the downstream front, than there
are vehicles that will enter the traffic jam at the upstream front, the traffic jam will reduce
in length. The outflow of a traffic jam is more or less a fixed quantity [26]. If the fixed
quantity is denoted by q∗, the traffic jam will thus reduce in width if qinflow < q∗, where qinflow

is the traffic flow that enters the traffic jam at the upstream front. Control strategies have
been developed with the objective to control this inflow of traffic jams. If the inflow of a
traffic jam is controlled by speed limits upstream of the jam, a low-density wave is created
that moves downstream. The high-density wave (the traffic jam) merges with the low-density
wave created by the speed limits. The high-density and low-density wave can then compensate
each other, thus eliminating the traffic jam.

Another control strategy is of course to prevent traffic breakdown when possible. When
keeping the fundamental diagram in mind, the traffic can have a breakdown when the density
is larger than the critical density. The traffic flow will reduce significantly when this happens.
A possible control action is preventing that the traffic density exceeds the critical density.
The inflow of the highway must thus be controlled before the capacity reaches its maximum.

B.J.A de Graaf M.Sc. thesis



2-2 IV-Based Traffic Control 9

This can be accomplished by controlling the highway access (on-ramps). Ramp metering
is a general term used for describing techniques for restricting the access through on-ramps
[3]. Ramp metering is of course only useful when traffic is not too light, because then there
is enough capacity for the inflow of vehicles. Another possible control action is limiting
the maximum vehicle speed. When the average vehicle speed is reduced, the traffic flow is
decreased also. If the speed limits are lowered upstream of an area where the traffic capacity
is at its maximum, the inflow of that area is thus delayed. Speed limits can in this way
decrease the inflow of an almost congested area. Speed limits can be combined with ramp
metering. Especially when ramp metering is not sufficient, speed limit control can help with
regulating the traffic flow.

It is possible, however, that because of the improved traffic flow, vehicles run faster into
another congestion downstream. If speed limits are applied at a traffic flow that is near the
critical speed, a new high density wave can be created. This is because the average velocity
is reduced and the traffic density will become higher than the critical density. This will
create a congestion upstream of the speed limit control point. Local control measures can
thus have effect on the traffic flow further upstream or downstream. Flows that arrive at
a local controller can thus depend on control actions of other local controllers. It can be
advantageous to have a control strategy based on the whole traffic network [18].

Traffic control can use Model Predictive Control (MPC) strategies. MPC is a model -based
control method that computes control signals in order to optimize future process behavior
[15]. MPC has already been extended to non-IV traffic management [18, 6]. It is however
also possible to use MPC for traffic management and control with IV.

In Figure 2-3 a schematic representation of the MPC structure can be found. Here one can
see that the MPC controller uses an explicit prediction model, in contrast to PID-like design
methods. By using models in MPC, future output behavior of the system can be predicted on
the basis of current system states and inputs applied to the process. In this way the next input
signal that minimizes the objective function J (k) can be computed. The objective function
reflects the reference tracking error and the control action. A typical control objective is
the Total Time Spent (TTS) by vehicles on the highway. The TTS of vehicles in a part of
highway or a network is calculated by multiplying the number of vehicles by the time they
traveled on that part of the highway or network. Of course the travel time depends partly
on the distance drivers have to travel, but at a highway with or without a traffic jam, the
total travel distance for drivers stays the same. The TTS at same travel distances is thus a
measure for the length and duration of traffic jams and travel delays.

Minimizing the objective function is done with optimization. Solving the MPC optimization
problem is the most demanding and time consuming operation in the MPC approach. At each
time step k, the prediction model is simulated repeatedly within the optimization algorithm.
It is thus important to choose an appropriate prediction model. Too complex models are
usually not suited for MPC. A good trade-off must thus be made between the accuracy of the
prediction model and the computational complexity of the prediction model. In Section 2-3
different models are discussed that can be used for simulation and as prediction models.
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model

optimization

prediction

actions
control

objective,
constraints

system
inputs

control

MPC controller

measurements

Figure 2-3: Schematic representation of the MPC structure.

2-2-3 Control Architectures

To control IV in an automated highway system, it is too complex for one controller to control
all the vehicles in a highway network. Therefore, multiple control architectures have been
developed to link roadside infrastructure and IV [16, 32, 34, 37, 4]. All the frameworks consist
of multiple layers, which divide the control tasks. In this section two hierarchical control
architectures are briefly discussed to give inside in possible hierarchical control strategies.

PATH Architecture

The California PATH program uses a hierarchical architecture composed of five self-organized
functional layers [37]. Figure 2-4 gives a block diagram of this PATH architecture. The
PATH framework assumes that the traffic is organized in platoons. In the PATH framework,
a highway network consists of multiple interconnected highways. A highways in itself can be
divided into links of about 5 km long. One link consists of multiple sections that are about 1 km
long, and a section consists of lanes. A section contains at most one exit or one entrance ramp.
The network and link layer controllers are located in the roadside, whereas the coordination
and regulation layer controllers are part of the vehicles. In short, the different layers in
Figure 2-4 can be explained as follows. The network layer computes the optimal routes of
each vehicle in the network, the link layer assigns the path, the target platoon size and the
target platoon speed, the coordination layer selects the maneuvers in coordination with its
neighbors to follow the assigned path, and the regulation layer implements the maneuvers
calculated by the coordination layer.

New Integrated Hierarchical IV-based Framework

The control architecture proposed in [4] distributes the intelligence between roadside infras-
tructure and vehicles, and uses IV-based control measures, like ISA and Cooperative ACC,
to optimize the traffic flow. In Figure 2-5 the hierarchical control structure of the IV-based
framework is shown. This framework is based on the platoon concept rather than on the
section concept as in the PATH framework. This is because the roadside controllers in the
PATH framework can have difficulties with assigning activities when a platoon is located in
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2-2 IV-Based Traffic Control 11

Figure 2-4: PATH architecture [21].

two sections (given that platoons are allowed to be long enough). The framework of [4] en-
ables the integration of in-vehicle IV-based control measures (e.g. ISA) and roadside control
measures (e.g. ramp metering), and it is also possible to integrate it with an MPC strategy.

Based on an extensive survey of IV-based traffic man-

agement framework the main components and results of

which are reported above, we now propose a new IV-based

framework that combines several of the strong points of

ds

them in several directions. The objective of the framework

e and

IV systems with automation. We propose a framework that

ture

and vehicles, that assigns the traffic control actions based

Platoon controller

Supraregional controller

Regional controllerRegional controller

Area controller Area controller

Roadside controller Roadside controller

Platoon controller

Vehicle controllerVehicle controller

Fig. 4. New IV-based framework
Figure 2-5: Hierarchical IV-based framework as proposed in [4].
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12 Traffic Control with Intelligent Vehicles

2-3 IV Models

2-3-1 Traffic Model Classifications

In this section, various IV-based traffic models that can be used for simulations or that can
act as prediction models in MPC are discussed. Traffic models can be classified according
to various criteria [20], e.g. type of the independent variables (continuous, discrete), level
of detail, representation of the process (deterministic, stochastic). Throughout this thesis,
traffic models will be classified according to the level of detail, i.e. microscopic, mesoscopic,
or macroscopic.

• Microscopic models describe the characteristics of individual vehicles as well as their
interactions. From the individual vehicle characteristics and driver behavior, the accel-
eration, speed and position can be calculated for each vehicle.

• Macroscopic models operate on a more aggregate level and describe traffic without
distinguishing individual vehicles. Macroscopic models deal with traffic flow in terms of
average densities, average speeds, and average flows.

• Mesoscopic models describe traffic flow in medium detail level, and can be situated
between microscopic and macroscopic models. In mesoscopic models, individual vehi-
cles are not distinguished as in microscopic models, but the behavior is specified in
individual terms. Some types of mesoscopic models are based on gas-kinetic theories.
The advantage of gas-kinetic models is that the behavior of individual vehicles can be
described, without the need to describe their individual time-space behavior.

Macroscopic models are very suited to describe the macroscopic characteristics of traffic flow
like average densities and average flows. However, when it is important to describe microscopic
characteristics of the traffic, macroscopic models are generally too coarse and thus not very
suited. For simulating and controlling IV, microscopic models are the most suited models
to use, because microscopic models describe each IV. Also especially for off-line simulation
microscopic models are most suitable. Because of the importance of using microscopic models
in controlling and simulating IV, the main focus in this section is on microscopic models.

For the sake of simplicity, only PID-type controlled IV models as used in [5] are taken into
account, which will result in computationally less demanding simulations. In the models, it is
assumed that the IV are controlled with IV-based control measures, like ISA and Cooperative
ACC. The models are discretized models, where k denotes the simulation step counter. The
leader model and the follower model are based on platoons, where the vehicles in a platoon
are numbered such that the platoon leader is np= 1, the vehicle behind the leader is (np +1),
etc., and the last vehicle is n = Np. Here Np denotes the number of vehicles inside the
platoon.

2-3-2 Leader Model

The leader of the platoon must minimize the difference between the reference speed and the
actual speed. The reference speed is the (ISA) speed provided by roadside controllers, and
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2-3 IV Models 13

is denoted by vISA. The acceleration of the leader is based on the difference between the
reference speed and the actual speed, and is calculated by a proportional controller:

anp (k) = K1

[

vISA (k) − vnp (k)
]

(2-6)

here is K1 the proportional gain constant, and vnp the speed of the platoon leader.

2-3-3 Follower Model

The followers in a platoon must travel at (almost) the same speed as the platoon leader, while
maintaining short intra-platoon distances. A following vehicle uses an ACC system to keep
a safe distance between its predecessor, and to minimize the speed difference between the
preceding vehicle and itself. The ACC controller has thus two tasks:

1. Keeping the headway distance as close as possible to the reference headway distance sref .

2. Minimizing the speed difference between the vehicle driving directly ahead and itself.

The reference distance headway (sref) consists of a stationary part, the distance that is to
maintained at zero speed, and a variable part, the distance that is speed dependent. The
reference speed of vehicle n is calculated as:

sref,n (k) = s0 + vn (k)Thead,n + Ln−1 (2-7)

where s0 and Ln−1 are the stationary part, and are respectively the minimum bumber-to-
bumber distance, and the vehicle length of vehicle n−1 (see Figure 2-6). The speed dependent
part is calculated by (vn (k) Thead,n), where Thead,n is the time headway of vehicle n.

xn , vn xn−1, vn−1

Ln−1vnThead,n s0

Figure 2-6: sref,n (k) = s0 + vn (k) Thead,n + Ln−1

The acceleration of the follower is then calculated with:

an (k) = Kx [sref,n (k) − (xn−1 (k) − xn (k))] + Kv [vn−1 (k) − vn (k)] (2-8)

where Kx and Kv are controller constants, and xn denotes the position of vehicle n.

2-3-4 Big Car Model

It is also possible to model platoons on a more aggregate level. This is possible by considering
a platoon as a so called “Big Car”, i.e. one single entity. The acceleration of a big car can be
calculated with the leader model. The length of the platoon is variable and is dependent of
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14 Traffic Control with Intelligent Vehicles

the number of vehicles inside the platoon, and the intraplatoon distances controlled by the
ACC systems. The platoon length is thus speed depended and can be calculated with:

LBigCar (k) = (Np − 1)
(

s0 + s1vnp (k)
)

+

Np
∑

n=1

Ln (2-9)

where LBigCar (k) is the length of the platoon, s1 is a model constant, vnp is the speed of the
platoon (leader), and

(

s0 + s1vnp (k)
)

is the speed-dependent intervehicle spacing.

2-3-5 METANET Model

The models mentioned in the previous sections are microscopic models. In this section a
macroscopic model, called METANET [28, 17, 23] is discussed. In Chapter 4 and 5 this model
is used to compute a reference speed for the platoon leader if the traffic is uncontrolled. The
reasoning behind the use of this model in the context of platooning is explained in Chapter
4.

In the METANET model a freeway network is divided into links. Each link is a structure
of a freeway that has no major changes in characteristics or geometry, e.g. no on-ramps or
off-ramps. If a major change occurs in the characteristics of the freeway, a node is placed.
So a link connects two nodes. Every link is in turn divided into Nm segments of length Lm.
The links and segments are indicated by the index m and i respectively (cf. Figure 2-7). The
time step used for the simulation of the traffic flow is denoted by T , such that the expression
for the time instant is t = kT . For every simulation time step T and segment length Lm, the
stability criterion:

Lm > vfree,mT,

where vfree,m is the average free-flow speed, should be satisfied. Typical values for Lm are in
the range of 500–1000 m.

freeway link m

traffic flow

. . .. . .segment 1 segment i segment Nm

Figure 2-7: The METANET model divides a freeway network into links (m), and each link is
divided into segments (i).

There are three quantities that characterize each segment:

• traffic flow : qm,i(k) [veh/h],

• traffic density : ρm,i(k) [veh/km/lane],

• mean speed : vm,i(k) [km/h].
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2-3 IV Models 15

These three quantities are related to each other by (2-10), where λm is the number of lanes
on that segment.

qm,i (k) = ρm,i (k) vm,i (k)λm (2-10)

In the METANET model the average speed at the next simulation step (k + 1) is computed
by taking the average speed at time instant k plus a relaxation term, a convection term, and
an anticipation term. The relaxation term is based on the speed-density relationship, i.e. the
fundamental diagram (see Section 2-2), and states that the drivers try to achieve a desired
speed V (ρ). The relaxation term is expressed as:

T

τ

(

V (ρm,i (k)) − vm,i (k)
)

,

where V (ρm,i (k)) is in fact given by (2-5), but now with link and segment indexes (m and i)
incorporated:

V (ρm,i) = vfree,m exp

[

−
1

am

(

ρm,i (k)

ρcrit,m

)am
]

. (2-11)

The convection term is expressed as:

T

Lm
vm,i (k)

(

vm,i−1 (k) − vm,i (k)
)

,

and represents the speed difference caused by the inflow of vehicles, hence the difference
between the average speed of the upstream segment vm,i−1 (k) and the current segment vm,i (k)
is calculated. The anticipation term expresses the speed difference caused by the density
increase (or decrease) that drivers experience of the segment downstream:

−
ηT

τLm

ρm,i+1 (k) − ρm,i (k)

ρm,i (k) + κ
.

So the total expression for the mean speed at the simulation step k +1, where all three terms
are combined, can now be written as:

vm,i (k + 1) = vm,i (k) + T
τ

(

V (ρm,i (k)) − vm,i (k)
)

+

T

Lm
vm,i (k)

(

vm,i−1 (k) − vm,i (k)
)

−

ηT

τLm

ρm,i+1 (k) − ρm,i (k)

ρm,i (k) + κ
, (2-12)

where τ , η, and κ are model parameters. It is important to see that in the METANET model
the average speed of segment i on link m at simulation step (k + 1) is not only dependent
on the current average speed (vm,i (k)) and density (ρm,i (k)), but also on the average speed
upstream (vm,i−1 (k)) and the density downstream (ρm,i+1 (k)).

As was stated in before, a node is placed between links if there is a major change in the
road characteristics or geometry. This means that it could happen that the first segment in
a link can have more than one average upstream speed if there are more incoming links. It is
as well possible that the road splits, such that the last segment in a link has more than one
downstream density. The METANET model deals with this by aggregating multiple segments
into one virtual segment.
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Upstream Speed

If a node n has multiple incoming links and one leaving link m (as shown in Figure 2-8), the
last segments of the entering links are treated as one virtual segment with a virtual upstream
speed:

vm,0 (k) =

∑

µ∈In

vµ,Nµ
(k) qµ,Nµ

(k)

∑

µ∈In

qµ,Nµ
(k)

, (2-13)

where In is the set of links leaving node n.

link m

link m

segment 1

segment 1

segment 2

segment 2

. . .

. . .

segment Nm

segment Nmvirtual segment 0

Figure 2-8: The last segments of the links that enter a node are aggregated into one virtual
segment with a virtual upstream speed vm,0 (k).

Downstream Density

When node n has one entering link, but multiple leaving links (as shown in Figure 2-9), the
leaving links are aggregated into one virtual leaving link with a virtual downstream density:

ρm,Nm+1
(k) =

∑

µ∈On

ρ2
µ,1 (k)

∑

µ∈On

ρµ,1 (k)
, (2-14)

where On is the set of leaving links of node n.

2-4 Summary

In this chapter a few important technologies are explained that enable the traffic control of
fully autonomous IV. An overview is given on the characteristics of traffic flow, including
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linkm

linkm

segment 1

segment 1

segment 2

segment 2

. . .

. . .

segment Nm

segment Nm

virtual segment Nm + 1

Figure 3.5: A node with one entering link and several leaving links. The densities in
Figure 2-9: The first segments of the links that leave a node are aggregated into one virtual link

with a virtual downstream density ρm,Nm+1
(k).

relations between average speeds and densities. As can be seen in this chapter, speed limiting
control can be an effective control measure to decrease the TTS. Traffic consisting of ISA
equipped platoons, can thus increase traffic flow, if controlled well, for instance in a hierar-
chical control framework with MPC incorporated. The use of appropriate models, i.e. with
a good trade-off between the accuracy and the computational complexity of the model, in
MPC is necessary, and therefore some IV-based models that can be used in an MPC strategy
have been explained. METANET is a macroscopic model that divides a freeway network into
links and segments. METANET can be used to compute the average speed of a segment at
the next simulation time step.
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Chapter 3

Simulation Software

Traffic simulation software is very often used as a tool for traffic control. This is, among
other reasons, because a traffic simulator can generate different traffic scenarios, predict traffic
states, and it is possible to test (experimental) control measures without disrupting “real”
traffic. Such a traffic simulator can also act as a system model or as a prediction model in a
Model Predictive Control (MPC) design. In this chapter different traffic simulation software
packages will be investigated for their potential use as a traffic simulator for Intelligent Vehicles
(IV), and especially in an MPC strategy. There exists a wide variety of traffic simulators, and
it is not feasible in this thesis to discuss all of them. So in the first section of this chapter,
an overview of the state of the art traffic simulators is given. In Sections 3-2 and 3-3 the two
most promising software packages for use in this thesis are analyzed. In Section 3-4 these
two simulators are compared with each other. Based on this assessment, the most promising
traffic simulator is chosen for further development.

3-1 State of the Art

Each traffic simulation software package often focuses on one type of traffic model. In Sec-
tion 2-3-1 it was already seen that traffic models could be classified according to the level of
detail, and that microscopic models are the most suited for controlling and simulating IV.
Therefore, only microscopic traffic simulators are considered in this chapter. Research has
been done in comparing microscopic traffic simulators that support Intelligent Transportation
Systems [10, 25, 39]. Based on these studies, the choice between all available simulators can
be narrowed to:

• TSIS-CORSIM [33, 29]

• FreeSim [25]

• INTEGRATION [36]

• MITSIM [38, 2]
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• Paramics [31]

All of the above mentioned traffic simulators are suitable for simulating traffic on freeways.
The problem with all of these simulators is that none of them can model IV-based traffic,
i.e. no models for Intelligent Speed Adaptation (ISA), Adaptive Cruise Control (ACC) and
platooning are currently included. It is therefore necessary to have the possibility to change
the traffic models of the simulators. In this way the human traffic models can be replaced
with models of IV. The most convenient way of changing models is by editing the source
code of the program. However, this is only possible when the source code is freely available,
and currently only MITSIM and FreeSim are open source. Another way of customizing the
features of a simulator can be done with a so called Application Programming Interface (API)
or a plug-in. An API is a set of protocols that is made available by the developer, in which
third party programs can interact with the main application. This is a common way to modify
or to extend a program, without changing the original (closed) source code. A disadvantage
of working with plug-ins, is that the possibilities are restricted by the developer. A second
disadvantage is that an API only provides an user interface, but it is not always clear what
really happens inside the program. So when creating a plug-in a lot of testing has to be done,
to make sure that the modifications work as desired.

Another important aspect to look at, are the costs of a traffic simulator. The price of traffic
simulation software can be quite significant, e.g. $ 1,000 for TSIS-CORSIM. Both MITSIM
and FreeSim are available free of charge, and the Delft University of Technology does have
a license for Paramics, so no additional costs are necessary if one of these three software
packages is chosen for further development.

Based on the two criteria, i.e. the freedom of changing the program features and additional
costs, both MITSIM and FreeSim have the most potential to be used as a traffic simulator
for IV and platoons, because they are free and open source. In the next sections, MITSIM
and FreeSim are further investigated to see which is the best option to choose.

3-2 MITSIM

3-2-1 Description

MITSIM stands for MIcroscopic Traffic SIMulator, and was developed at MIT and released
in 1993. Its purpose was to provide an environment for testing designs of dynamic traffic
management systems [38]. MITSIM simulates individual vehicles using car-following models,
lane-changing models, and probabilistic route choice models. MITSIM is coded in C++
using object oriented design. It also contains a graphical user interface for vehicle movement
animations.

The simulation is time-driven, as can be seen in the flowchart in Figure 3-1 [38]. The sim-
ulation starts with loading all the parameters, the road network, scenario definition, and
initializing all the communication channels. Then an iterative procedure starts. Each itera-
tion includes tasks that are performed consecutively. These tasks are for instance, updating
of traffic signals and updating of vehicle states.

B.J.A de Graaf M.Sc. thesis



3-3 FreeSim 21

3-2-2 Disadvantages

MITSIM runs on the Linux operation system, and the user’s guide states that the Redhat
Linux 7.3 distribution is needed in order to compile the source code. Compiled executables
should work on newer Linux distributions, including Fedora Core. Because the source code
must be edited in order to the change models, it is necessary to be able to compile the
source code. Redhat Linux 7.3 is a quite old distribution, but can still be downloaded from
some repositories. It is, however, not compatible with most of the modern day computers.
Installing it on an available computer, did not result in a working operation system. It is
therefore chosen to try to install MITSIM on Fedora 9, which is a descendant from Redhat
Linux.

The installation instructions for installing MITSIM, are rather straightforward. In short,
first PVM, which facilitates between the packages in MITSIM has to be installed prior to
the installation of MITSIM. Next the GUI Libraries must be installed by running an install
script. After the install process some paths to the program has to be set. However, during
the installation process, some errors made it impossible to continue. A few errors could be
solved by removing non-vital installation steps, but the real problem was due to the fact that
the MITSIM is written in C++ code that is dependent on old C++ compilers. The newer
C++ compilers which are installed with Fedora 9 do have restrictions for compiling old code.
We have tried to install older C++ compilers and to use these to compile the source code,
but this did not solve the installation problem, as these gave rise to other new errors. All in
all, it proved impossible to install MITSIM in Fedora 9.

MIT does not provide support for the open source MITSIM, but there exists however an
user group website [1], where questions can be posted, and other users can try to help. In
this user group more users are facing the same problem with installing MITSIM on different
Linux distributions than Redhat Linux 7.3, e.g. Ubuntu. The fact that MITSIM is not
actively developed anymore, makes it thus unsuitable for modern day computers and operating
systems.

3-3 FreeSim

3-3-1 Description

FreeSim is a quite new freeway traffic simulator, as it was made public in 2007 [25]. FreeSim
models free-flowing traffic, and was created with the idea of an Intelligent Transportation
System that gathers individual vehicle states, by having all vehicles remain in communication
with a central server. FreeSim is written in Java and is platform independent, so it can run on
any operating system. The graphical user interface is created in Adobe Flash and runs from
within a web browser. A MySQL database is used to store all data needed. All third-party
applications needed to compile or run FreeSim are freely available and free of charge.

In FreeSim the freeway system is represented by a graph data structure. The data of the
graph consist of edges (segments) which are connected with each other by nodes. Prior to
beginning a simulation, the freeway system has to be defined and stored in a database. The
population of the database is done with another program which is bundled with FreeSim, so
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the user only has to create two text files with a list of nodes and a list of edges, respectively.
When the graphical user interface is started up, this freeway system is available and can be
rendered. The graphical user interface creates a socket connection with a server program to
access all the simulator functionalities, see Figure 3-2. During a simulation, multiple events
can occur that can be predetermined by the user. This is done in a text file that is processed
at the start of the simulation. FreeSim determines the shortest or fastest paths for vehicles,
based on the current distances and speeds of the segments. FreeSim contains multiple fastest
paths algorithms, but this can easily be extended by other algorithms. In Appendix A a more
extensive description how FreeSim works can be found.

3-3-2 Disadvantages

The installation of FreeSim, unlike MITSIM, gives no problem at all. The only problem that
can occur, is if the user uses the Adobe Flash 9 plug-in, which needs explicit permission to
create a socket connection to a server. As was mentioned earlier, the Flash interface does
need this ability to connect to the FreeSim server. This problem can be solved by running a
small socket policy file server, which gives permission to the Flash interface to create a socket
connection. This solution is described in [35].

The main disadvantage of FreeSim, is that it is currently a rather basic traffic simulator.
Firstly, FreeSim only simulates vehicles in free-flow. There is no car-following model imple-
mented and the vehicle speeds are not dependent on the traffic density, thus congestion is
not modeled. This is not a major problem, because the intention is to change these models
anyway. However, now models have to be created and implemented, instead of adjusted.
Secondly, vehicles travel with a constant speed along a segment. If the speed of a segment is
adjusted during a simulation, it only affects new vehicles that enter the segment. The vehicle
speed is thus only adjusted when the vehicle crosses a node. Whether this is a flaw in the
program or intentionally programmed this way is not clear.

To use FreeSim as a system model in an MPC strategy, it must be possible to apply external
control measures. This can be done for instance, by creating a socket connection between
MATLAB and FreeSim, where the MPC commands from MATLAB are given to FreeSim. It
is also possible for MATLAB to request traffic data through this socket connection, but this
can also be done by direct accessing the MySQL database from MATLAB. Because FreeSim is
object oriented and because Java does support socket connections, and as MATLAB supports
Java, this could be done. But to use FreeSim as a prediction model in MPC, the simulation has
to be really fast. Currently, a simulation step, where a few hundred vehicles are updated, takes
about 3 to 10 seconds to execute. This will probably only take longer if FreeSim is extended
with additional models where more computations has to be done during a simulation step.
So FreeSim is not suitable to act as a prediction model.

3-4 Comparison

In order to use an existing microscopic traffic simulator to use for simulating IV-based traffic,
the options are rather limited. As could be seen in the previous section, the best option is
to use a free and open-source program. Only MITSIM and FreeSim qualify for these criteria.
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MITSIM exists for quite some time and is capable of describing more “complex” simulations
unlike FreeSim, which is very new and rather limited in its capabilities. The major downside
of MITSIM is however, that it cannot be used on a modern computer.

This leaves FreeSim as the only microscopic traffic simulator with the potential for using it
as an IV-based traffic simulator. But, some major adjustments have to be made, in order
to give desired simulations. Firstly, the segment speed and the vehicle speed have to be
decoupled, such that vehicles on the same segment can have different speeds and the vehicle
speeds can be updated while traveling along an edge and not only when vehicles cross a node.
Secondly, the speed of vehicles should be dependent on the capacity of the segment they are
traveling along, because now when the traffic becomes very dense, the speed of the vehicles
is not affected. And at last, the models for simulating platoons have to be implemented.
Fortunately, FreeSim provides the possibility to adjust its source code, such that all of these
adjustment can be made.

3-5 Summary

In this chapter some traffic simulation software packages are discussed. It could be seen that
none of the existing microscopic traffic simulators are capable of simulating IV and platoons.
It is possible to change the features of current traffic simulators, either by using plug-ins or
by changing the source code. The most convenient way is by using a free and open-source
traffic simulator. Only MITSIM and FreeSim are free and open-source. MITSIM is however
not suitable to use, because it needs an old version of Linux, which is not compatible with
current computer hardware. FreeSim is thus chosen for further development, but it needs
a lot of modifications, because its current set of features are rather limited. FreeSim is not
suitable to act as a prediction model in an MPC strategy, however, this does not have to be
a problem as will be seen in the next chapters.
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Figure 3-1: Flowchart of the MITSIM simulation model [38]
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Figure 3-2: FreeSim diagram
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Chapter 4

FreeSim

As could be seen in Chapter 3, FreeSim is selected for further development. In this chapter
the enhancements that are made to FreeSim are explained as well as the trade-offs and
compromises made are discussed. In Appendix A a detailed description of the layout and
workings of FreeSim is explained. In this chapter we give enough explanation about the
current workings of FreeSim, without going into too much detail about the exact code. If,
however, one wants a more detailed overview of the code, Appendix A is a good reference.

In FreeSim the traffic network consists of nodes and edges, where an edge connects two nodes.
Note that an edge in FreeSim is the equivalent of a segment in METANET.

In FreeSim all distances are measured in miles and the speeds are expressed in miles per
hour. Before any other changes are made to FreeSim, these units are converted into the
metric system, thus from now on distances and speeds are expressed in kilometers and in
kilometers per hour respectively.

4-1 Vehicle Speed

4-1-1 Current Situation

Currently, each edge is defined with some parameters, i.e. an ID, source node, destination
node, distance, speed, and a weight. When an edge is created, which happens prior to a
simulation, all parameters are initialized. Only the speed and weight can be adjusted during
a simulation. The weight of an edge denotes the time, expressed in seconds, it takes for a
vehicle to travel that edge. When, during a simulation, the edge speed is updated the weight
is adjusted accordingly:

Wi = 3600
Di

Vi
,

where Wi is the weight of edge i, Di is the distance/length of edge i, and Vi is the speed of
edge i.
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When a vehicle n is instantiated, it requests from the server the path it must travel, and then
it asks for the time it takes to traverse the first edge. The response of the server consists
of, among other data, the travel-time the vehicle gets to travel that edge and the distance
it has to travel, i.e. the edge weight Wi and distance Di. These two parameters are stored
as local variables by the vehicle as ωn and δn respectively. Also the time the vehicle starts
traveling on the edge t0,n is stored as a local vehicle variable. At each simulation step, the
vehicle checks whether it is time to move to the next edge. This is based on the condition:

t0,n + ωn ≤ tc, (4-1)

where tc is the current time. So, the vehicle basically is told (once) that it is supposed to
travel for Wi seconds, and the vehicle just waits until that time is passed. When criterion
(4-1) is met, the vehicle again requests the server for the travel time for the new edge (i + 1).
The vehicle also sets t0,n = tc. This is a blunt error, because by setting the time the vehicle
starts traveling on the new edge equal to the current time, it is assumed that it crosses the
node exactly at the current time, which is not necessarily true. This has thus to be corrected
(see Section 4-1-2).

After each simulation step, the current states are written to the MySQL database. The
position is measured as the distance traveled from the last passed node:

xn =
δn

ωn
(tc − t0,n) .

The current speed of the vehicle is calculated as follows:

vn = 3600
δn

ωn
.

The (relative) position and vehicle speed is thus not a local variable, which is updated every
simulation step, but are merely computed every simulation step and written to the database.
As stated before, the database only provides data for the users after the simulation is finished.

4-1-2 Modifications

Transition Between Edges

When vehicle n crosses a node, so (4-1) holds true, the time at which this happens is erro-
neously set to the current time (t0,n = tc). It is possible that a vehicle crosses this point in
between two simulations steps, so (t0,n + ωn < tc). In this way the vehicle is modeled as if
it is standing still on the node, and continues its path when the next simulation step starts.
This error is removed by setting the new value of t0,n as follows:

t0new,n = t0old,n + ωn. (4-2)

Now the behavior of the transition between edges is proper modeled and the vehicles cross
nodes in a continuous manner.
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Decoupling Speeds

In the current method when the speed of an edge is adjusted, the vehicles already traveling
on that edge do not notice that the speed is changed. This is due to the fact that the vehicles
only interact with the server when the vehicle is instantiated or when it crosses a node. It
is important that vehicles have their own speed, such that vehicles on the same edge can
have different speeds. Also the position of each vehicle should be known during a simulation,
because the speeds of the vehicles inside a platoon should be dependent of the speeds and
positions of each other, as will be seen in Section 4-2. So FreeSim is adjusted, such that each
vehicle has their position (xn) and speed (vn) as a local variable, which must be updated each
simulation step. Note that xn is still measured as the distance traveled from the last passed
node. Because each vehicle now has its own speed variable, the speed of an edge can now be
used as a speed limit for all vehicles traveling on that edge.

Each vehicle checks whether it is time to move to the next edge by checking whether (4-1) is
true. This condition can still hold, but for that it is necessary that ωn is changed properly
when vehicle n adjusts its speed. The initial value of ωn is set as follows:

ωn = 3600
δn

vn
.

If the speed of vehicle n is adjusted, ωn has to be adjusted accordingly:

ωn =

(

3600
δn − xn

vn

)

+ (tc − t0,n) . (4-3)

The first part of (4-3) is the time it takes for vehicle n to travel from its current position to
the end of the edge, assuming vn is kept constant, and the second part is the time it already
took for the vehicle to get from the source node to its current position. In this way ωn still
is meaningful as it represents the total travel time needed to travel from the source node to
the destination node of the current edge.

Initial Speed

A vehicle (n) is currently instantiated with an initial speed (vn) equal to the edge speed (Vi),
which is now used as a speed limit. This could be a problem, if for instance another vehicle
(n − 1) is traveling ahead on the same edge, but for some reason with a much lower speed
than the speed-limit. So vn � vn−1. In this case it can happen that these two vehicles collide
with each other if the distance between the vehicles is too small for vehicle n to reduce its
speed in time such that vn ≤ vn−1. This problem can be solved by making sure that the
initial speed of vehicle n is dependent of vehicle (n − 1). To adjust this in FreeSim, first of
all the vehicle that last entered the edge should be known. If this vehicle is known, a security
check can be performed that consists of measuring the distance between the last vehicle that
entered the edge and the vehicle that is instantiated. If this distance is lower that a certain
threshold ε, the initial speed should be the minimum of vehicle (n − 1) and the speed-limit.
So the initial speed of vehicle n is:

vn (t0,n) =

{

min
(

Vi, vn−1 (t0,n)
)

if xn−1 ≤ ε

Vi if xn−1 > ε
(4-4)
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It is chosen to set ε equal to 200 m. This provides a big enough safe clearance, such that a
collision is avoided by initializing a vehicle with an appropriate speed.

The most convenient way of keeping track which vehicle last entered a certain edge, is by
adding a local variable to each edge object, which contains the last vehicle that entered the
edge. When a vehicle n starts traveling on a new edge, it communicates with the server to
receive data about that edge. So when that response is processed by the vehicle, it ‘logs on’
to the new edge by setting the variable of the edge, containing the last entered vehicle, such
that it matches vehicle n. In this way a new vehicle that is instantiated can request the last
entered vehicle on the edge, and when this vehicle is known the new vehicle can request from
the last entered vehicle its position and speed.

4-2 Platooning

In Section 4-1 it is explained how the vehicle speed is decoupled from the edge speed. The
original edge speed is now used as a speed limit and each vehicle does now have a variable
speed and keeps track of its position. In this section the implementation of platoon models
in FreeSim is explained.

In FreeSim a platoon object is created that provides all the necessary data needed for all the
vehicles inside a platoon. A platoon contains for instance a table with all the vehicles and
their relative positions inside the platoon. In this way a vehicle can look in its platoon to see
which vehicle it has to follow, or to see if it is the platoon leader. From now on every vehicle
in FreeSim does belong to a platoon. However, a platoon can still consist out of only one
vehicle.

In every simulation step, each vehicle will try to maintain an appropriate speed. In FreeSim
two functions are implemented (one for the platoon leader and one for followers) that vehicles
use to compute a new speed. In each simulation step, each vehicle checks whether it is a
platoon leader or a follower. Based on this check, each vehicle uses the correct function to
adjust its speed.

4-2-1 Controller Platoon Leader

In this section the function to compute the new speed for the platoon leader is discussed.
A platoon leader tries to minimize the difference between the reference speed (vref) and its
actual speed (vnp), as explained in Section 2-3. The reference speed is provided by the edge it
is traveling on. For the moment let us assume that the reference speed is equal to the speed
limit: vref = Vi. The acceleration of a platoon leader is modeled by a proportional controller
(cf. (2-6)):

anp (k) = Kv

[

vref (k) − vnp (k)
]

(4-5)

In FreeSim the computed acceleration is limited, such that the acceleration stays between a
lower and upper bound:

an =







a+ if an > a+

a− if an < a−

an if a− ≤ an ≤ a+

(4-6)
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Here a+ and a− are the upper and lower acceleration bounds respectively. The values of the
acceleration bounds are set in Section 5-2-1.

The new speed of a vehicle is computed as follows:

vn (k + 1) = vn (k) + anp (k) T, (4-7)

where T is the simulation time step. Also the new speed is bounded, such that it is not higher
than the reference speed vref (only when accelerating), and not lower than the lower speed
limit v−, which is typically zero:

vn =







vref if vn > vref and an > 0
v− if vn < v−

vn everywhere else
(4-8)

4-2-2 Controller Followers

The followers inside a platoon, i.e. all vehicles inside a platoon except the platoon leader,
should follow their predecessor with a safe distance and with a minimal speed difference.
The safe distance can be given as a certain time headway Thead or space headway shead. The
distance between two vehicles consists of the safe distance and a stationary distance s0, i.e. the
distance that is maintained at zero speed. Because the positions of all vehicles are measured
at the front of the vehicles, the length of the predecessor should be taken into account when
calculating the distance between vehicles (see Figure 4-1).

If a follower is controlling a reference time headway (and not a reference space headway), it is
important that the controller does not control the difference between the real time headway
and the reference time headway, because the controller would then be very sensitive to low
speeds. Instead, the real time headway and reference time headway must first be converted
to a space headway. The next example illustrates this.

Vehicle n is following vehicle n − 1 with a reference time headway of Thead,n. The real time
headway T ∗

head,n can be computed as follows:

T ∗

head,n =
xn−1 − xn − Ln−1 − s0

vn
.

It is clearly seen that in this way T ∗

head,n goes to infinity when vn reaches zero. A better
strategy is thus to convert the reference time headway to a reference space headway:

shead,n = vnThead,n, (4-9)

and to compare the actual space headway with the reference space headway. So there are
two options implemented in FreeSim to define the headway a vehicle must try to achieve. A
vehicle can follow its predecessor with a given (fixed) space headway or with a given time
headway, but in the latter case the time headway is converted to a space headway, which is
thus dependent on the current speed.

There are also two strategies for choosing the reference speed vref for follower vehicle n.
One option could be to choose the reference speed equal to the speed of the predecessor, so

M.Sc. thesis B.J.A de Graaf



32 FreeSim

xn , vn xn−1, vn−1

Ln−1shead,n s0

Figure 4-1: xn−1 (k) − xn (k) = shead,n + s0 + Ln−1

vref = vn−1. The other option is to have the reference speed equal to the speed of the platoon
leader, so vref = vnp . Choosing to minimize the difference in speed between a following vehicle
and its predecessor, can lead to ‘errors’ that propagate through a platoon, which can lead to
instability. This is because the last vehicle in a platoon only reacts to the next-to-last vehicle.
It is chosen to minimize the speed of the followers with the speed of the platoon leader,
because this should give a more ‘rigid’ platoon. The algorithm to compute the acceleration
of a following vehicle in a platoon is this:

an (k) = Kx

[

sref,n (k) − (xn−1 (k) − xn (k) − Ln−1 − s0)
]

+ Kv

[

vnp (k) − vn (k)
]

, (4-10)

where:

sref,n (k) =

{

vn (k)Thead,n if the safe distance is given as Thead

shead,n if the safe distance is given as shead
(4-11)

The acceleration and speed of a follower vehicle n is also limited by (4-6) and (4-8) respectively.

Reaching Destination

If a vehicle reaches its destination it is removed from the memory of FreeSim. If this happens
with a vehicle that is not the last vehicle inside a platoon, i.e. it still has followers, its follower
cannot compute a new speed anymore. This is because the correct data for this computation
is not available anymore, i.e. sref and vref is dependent on the vehicle just removed. It is
therefore necessary to include a check in FreeSim to make sure that when a platoon leader
reaches its destination it gives its leadership to the vehicle right behind it (np + 1). It is still
possible that in one simulation step the first two vehicles of a platoon reach their destination,
but then vehicle np +1 first waits to receive the leadership, after which it gives the leadership
to the next vehicle in turn.

4-2-3 Instantiating Platoons

As already mentioned in Section 3-3, it is possible to predefine events that have to occur
during a simulation, e.g. instantiating a new vehicle. All these predefined events have to be
written in a command text file that is processed by FreeSim before a simulation starts. The
command that is put in the text file has to have a special format. For instance, an event to
instantiate a new vehicle must be written like this:

70|<Vehicle ID>|<Time to Instantiate Vehicle>|<Source Node Name>|<Source

Freeway Name>|<Destination Node Name>|<Destination Freeway Name>

B.J.A de Graaf M.Sc. thesis



4-3 Reference Speed 33

Here ‘70’ stands for the vehicle instantiation command. All the subsequent data are param-
eters that are separated with a delimiter ‘|’. FreeSim was already adjusted such that each
vehicle belongs to a platoon, even if the platoon only consists of that one vehicle. So if a
single vehicle is instantiated with the previously mentioned command, that vehicle is created
as if it were the platoon leader. But in order to instantiate a whole new platoon consisting
of multiple vehicles, a new command has to be created.

It is possible to create a new platoon by placing the first vehicle at its source node with
xnp = 0. The vehicle behind the platoon leader should begin with an offset, so xnp+1 =
− (Ln−1 + s0 + sref). The next vehicle will have an offset twice as big, and so on. If sref is given
as a space headway, this will give no problem. But if the safe distance is expressed as a time
headway, the initial speed has to be know in oder to give the vehicles an appropriate offset.
When a new vehicle is instantiated, first it is placed at its starting node and subsequently
the optimal path is computed. If the path is known, the vehicle starts with an initial speed
which is dependent on the first edge it will be traveling along (cf. (4-4)). This first edge is
not always known in advance, because it is possible that the source node connects more than
one edge. This means that when a new platoon is instantiated, the initial speed is not always
known in advance, i.e. first the vehicles are placed at a node, and after the path is known the
speed is set. The command to create a new platoon should thus contain a parameter for the
initial speed in case the platoon starts at a node with more than one edge connected to it.
Besides this, three more parameters are needed to successfully instantiate a new platoon, i.e.
the number of vehicles in a platoon, whether the vehicles must keep a safe time headway or
a safe space headway, and how large the headway must be. It is chosen that the command
for instantiating a platoon must look like this:

76|<ID Platoon leader>|<Time to Instantiate Platoon>|<Source Node

Name>|<Source Freeway Name>|<Destination Node Name>|<Destination Freeway

Name>|<Number of Vehicles>|<Time Headway or Space Headway>|<Headway>|<Speed>

FreeSim recognizes ‘76’ now as the command to create an event for instantiating a new pla-
toon. Only the ID for the platoon leader is needed, because the ID’s of following vehicles
are automatically set as np +1, np +2, ..., np +Np. The <Time Headway or Space Headway>

parameter can either be set to true or false, which stands for time headway and space head-
way respectively. The <Headway> parameter is expressed in either milliseconds or centimeters.
This is because the command file can only contain integers and expressing the headway in
seconds or meters can be too coarse. The <Speed> is the initial speed, and is thus only used
if the platoon is instantiated at a source node that connects multiple edges.

4-3 Reference Speed

FreeSim is modified such that it now can simulate platoons, where the followers are following
their predecessor with a safe distance and the platoon leader is trying to travel with a speed
equal to the reference speed. Until now, the reference speed for the platoon leader was equal
to Vi, where i denotes the edge it is traveling on. This Vi was a speed originally used in
FreeSim to compute the travel time all the vehicles needed to travel from the source node to
the destination node of the edge. However, this speed is not regulated by FreeSim natively.
This means that when the density of an edge is increasing, for instance due to weaving of two
edges into one edge, the speed is not affected at all.
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The speed limit of an edge can be regulated using control strategies for example a Model
Predictive Control (MPC) strategy. Then this (reference) speed is the ISA speed for the
platoon leaders, controlled with an MPC controller. However, when the traffic is uncontrolled,
so there is no controller to compute an ISA speed, the reference speed should be adjusted
properly inside FreeSim, because FreeSim currently does not take care of it. This adjustment
must take into account the capacity of an edge, such that the average vehicle speed will
decrease when the traffic is becoming congested. Just as the reference speed must be equal
to the free-flow speed when the density is low enough that the platoons can travel in free-
flow mode. An existing model that incorporates these traffic characteristics is for instance the
METANET model. The METANET model uses macroscopic traffic characteristics to compute
average speeds (see Section 2-3-5). The computation of the speeds by METANET can be done
quite fast as METANET only uses macroscopic quantities. By combining FreeSim and the
METANET model, the reference speeds for the platoon leaders are in the uncontrolled case
provided by a macroscopic model, however, the vehicles are still simulated individually. The
traffic simulation software package called INTEGRATION [36] also bases the vehicle speeds
on macroscopic models, while the traffic is simulated microscopically. It is therefore chosen
to use the METANET model to adjust the reference speed when the traffic is uncontrolled.
Also the edges in FreeSim can be used as segments in the METANET model, so no extra
conversion is necessary. The METANET model, as discussed in Section 2-3-5 is repeated here
for convenience:

vm,i (k + 1) = vm,i (k) + T
τ

(

V (ρm,i (k)) − vm,i (k)
)

+

T

Lm
vm,i (k)

(

vm,i−1 (k) − vm,i (k)
)

−

ηT

τLm

ρm,i+1 (k) − ρm,i (k)

ρm,i (k) + κ
, (4-12)

where:

V (ρm,i) = vfree,m exp

[

−
1

am

(

ρm,i (k)

ρcrit,m

)am
]

. (4-13)

To let the METANET model work, the density of each segment (edge) is needed, which is
not yet provided by FreeSim. It is possible to search in the MySQL database for vehicles
traveling on a certain edge and from this data the density can then be computed. But
this is computationally very demanding, since this has to be done (for each edge) every
time the reference speed is updated. Because no algorithm in FreeSim exists to read the
MySQL database (only to write), and because more important it can be computationally
very demanding to compute the density of an edge by reading the database, this method is
not preferred. An easier method is however possible to accomplish this. In the edge object
a local variable ξ is added that contains the number of vehicles on the edge. So each time a
vehicle enters an edge, it tells the edge to increment ξ with one. Also when a vehicle leaves
an edge it decrements ξ by one. This way the number of vehicles on an edge does not have to
be computed whenever it is needed. So each time the METANET model needs the density
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on an edge i it can request it from the edge. The density is computed by the edge as follows:

ρi =
ξi

Di
. (4-14)

It must be noted that the METANET model uses Lm as the length of segment i in link m, and
the length of an edge i is denoted by Di. By using the edges as segments in the METANET
model these two variables are in fact the same, so Lm = Di.

The new reference speed vm,i (k + 1) computed by the METANET model, is stored as Vi in
edge i. To allow the controlling of the edge speed by an external controller, a new variable
vISA in the edge object is created. So each edge can thus have two reference speeds associated
with it: Vi and vISA,i. If a platoon leader is requesting from an edge its reference speed vref,
the edge returns the minimum of the two speeds. Thus:

vref = min (Vi, vISA,i) . (4-15)

4-4 Summary

In this chapter the modifications are discussed needed in order to use FreeSim as a simulator
that can model platoons. The original FreeSim simulates vehicles by computing the travel
time each vehicle needs to travel the length of an edge, and when that time is passed then
the vehicle crosses a node and a new time is computed. In this way the vehicle speed was
fixed along the whole edge. FreeSim is adjusted in such a way that each vehicle has its own
(variable) speed and position, which are updated every simulation step. Also a platoon object
is created in FreeSim, so now each vehicle is part of a platoon. The platoon leader follows a
reference speed that is provided by the edge. All the followers in a platoon try to maintain a
safe space headway while trying to travel with the same speed as the platoon leader. When
a platoon leader reaches its destination the leadership is transferred to the vehicle behind
it. This is done until all vehicles in the platoon have arrived at their destination. A new
command is also created such that it is possible to instantiate a new platoon at a preset time.

Because FreeSim natively does not provide a realistic reference speed for the platoon leaders,
the METANET model is implemented in FreeSim to compute a reference speed for each edge
if the traffic is uncontrolled. This speed is dependent on the density of the edge, which is
known by the edge because each edge keeps track of the number of vehicles that have entered
the edge. If the traffic is controlled, the minimum of the controlled (ISA) speed and the
METANET speed is used as the reference speed for the platoon leaders.
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Chapter 5

Case Study

As discussed in Chapter 4, FreeSim is transformed such that it is able to simulate traffic that
consists of platoons. However, using FreeSim in Model Predictive Control (MPC) is only
feasible if a prediction model is used that is fast while still being accurate enough. FreeSim
is not suitable to use as a prediction model as it is not fast enough. The Big Car model (see
Section 2-3-4) is a faster model because it models a platoon as one object. In this chapter
a case study is discussed in which an MPC scheme is presented where FreeSim acts as the
system model and the Big Car model is used as a prediction model.

5-1 Description

In order to use the Big Car model as a prediction model in an MPC strategy, it should have
a similar behavior as the system. In this case the system is presented by FreeSim. As already
described in the previous chapter, in FreeSim the reference speed for the platoon leaders in
uncontrolled traffic is computed by the METANET model. In this way the speed of the
platoon leaders is dependent on the traffic density.

In the Big Car model the following behavior is described by an adapted version of a follower
model. FreeSim and the Big Car model have a different set of parameters because of the
modeling differences. The parameters of the Big Car model should be chosen well, such that
it models the system accurately. For this calibration experiments need to be done in order to
find the optimal set of parameters such that the Big Car model can be used as a prediction
model (see Figure 5-1).

5-2 Calibration Experiments

In order to be able to calibrate the Big Car parameters, data must be gathered with FreeSim
that can be used as a reference in the calibration process. To gather data, a simulation setup
is designed, such that a wide variety of platoons states are measured. It is chosen to create
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FreeSim

“Big Car”

Figure 5-1: Schematic representation of a MPC structure that has FreeSim as the system model
and the Big Car model as a prediction model.

one stretch of freeway in FreeSim that consists out of six connected edges, each containing
one lane of 1 km. At the origin of the first edge platoons are instantiated at different time
intervals. The traffic is uncontrolled, such that the METANET model has to compute the
reference speeds for the platoon leaders. The platoons are instantiated in such a way that
the traffic will become congested, but such that also free-flowing traffic is included. A Matlab
function is created that can read the MySQL database and that stores all the data in an array
that can be used for the calibration process that is done in Matlab.

5-2-1 FreeSim Parameters

In this section all the parameters used in FreeSim are chosen. First the controller gains Kl,
Kv, and Kx are tuned, such that the platoon leaders follow the reference speed while the
followers can follow their predecessors accurately. Secondly, the METANET parameters are
chosen in order to be able to compute a reference speed that is based on the density of traffic
that consists out of platoons.

Acceleration Boundaries

As explained in the earlier chapters the acceleration of the platoon leader is limited by a+

and a−, which are the maximum and minimum acceleration respectively. The maximum
acceleration a+ is set to 3 m/s2. This means that a vehicle can accelerate from 0 to 100 km/h
in approximately 9 s. The maximum deceleration a− of the vehicles is set to −7m/s2, which
is about the breaking deceleration of an average vehicle on dry asphalt [27]. This means that
a vehicle that drives with a speed of 100 km/h can brake to a full stop in about 55 m. This
takes about 4 s.

Time Headway and Minimal Safe Distance

The vehicles in a platoon can follow their predecessor with a very small space headway. As
already explained in Section 4-2-2, the minimum safe distance between two vehicles is s0. This
minimal safe distance is to ensure that there is always a distance between two vehicles even
when the speed is zero. This safe distance is set to 1 meter, so s0 = 1 m. The headway can
either be a fixed space headway or a time headway, i.e. a speed dependent space headway. In
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FreeSim either reference headway can be chosen, but in this case study it chosen to use only
a reference time headway. This time headway can be set as small as 0.5 s with the current
technologies [8]. So from now on the time headway is set to Thead = 0.5 s.

Controller Gains

Since now a+, a−, s0, and Thead have been set, the controller gains Kl, Kx, and Kv can
be chosen. It is very important that the controllers are tuned in such a way that there is
little to no overshoot. This is because when a follower has to accelerate to decrease the
distance between itself and its predecessor, it also has to decelerate in time to end up with
the appropriate distance and speed. If the vehicle does not decelerates in time, the distance
between the vehicles will become smaller than the reference space headway. This does not
necessarily have to be a bad thing, but it can also happen that the distance is smaller than
s0. And this has to be avoided at all times, because s0 is the safe distance that has to be
maintained in all situations.

A good set of parameters is Kl = 0.04, Kv = 0.3, and Kx = 0.01. This is shown in Figure 5-5.
Here a trajectory for a reference speed vISA is chosen such that it starts at 120 km/h, then
it drops to 5 km/h and subsequently it is set to 80 km/h. A vehicle (n = 1), which acts as
a platoon leader, is following this reference speed, using Kl = 0.04. Another vehicle (n = 2)
is following vehicle 1 using the controller gains Kv = 0.3 and Kx = 0.01. In Figure 5-5(a)
the speeds of vehicles 1 and 2 are plotted as well as the reference speed vISA. In this figure
it is seen that both vehicles follow the reference speed quite well. Figures 5-5(b) and 5-5(d)
display the error of the speed of vehicle 1 and 2 respectively. It can be seen that the platoon
leader adjust its speed smoothly to the reference speed.

Vehicle 2 has a little overshoot in its speed error, but this is due to the fact that vehicle 2 is
also controlling its headway. Controlling the headway should have a higher priority, because
an overshoot at the headway can result in a collision. In Figure 5-5(c) the positions of both
vehicles are plotted. In this figure it can be difficult to see that vehicle 2 follows vehicle 1
with an appropriate headway. Figure 5-5(e) displays this better, because in this figure the
reference space headway sref,2 and the actual space headway shead,2 are plotted. This figure
can be used to check whether vehicle 2 does at some point has a smaller space headway than
s0. If the actual space headway is zero, then the distance between the front bumper of vehicle
2 and the rear bumper of vehicle 1 is exactly s0. This means that when the actual space
headway is negative (shead < 0), the distance is smaller than the minimum space headway.
More important is to ensure that shead> −s0, because otherwise the two vehicles collide with
each other. The difference between sref,2 and shead,2 is plotted in Figure 5-5(f). This figure
shows a smooth curve and no overshoot. So with the chosen controller gains the vehicles are
well controlled and at all times the space headway is at least the minimal safe space headway.

It is possible to increase Kl, such that the platoon leader follows the reference speed even
more accurately, but then the following vehicle has trouble to control the headway. This can
be seen in Figure 5-6. Here Kl is increased to 0.2. Vehicle 2 has the same controller gains
as in the previous example. Clearly it can be seen that vehicle 2 cannot follow vehicle 1
nicely, even more, a collision occurs at 18 s, as shead,2 is smaller than s0 (see Figure 5-6(e)).
It is tried to tune the controller gains such that vehicle 2 follows vehicle 1 better when Kl

is chosen high, but vehicle 2 will almost always react too “nervously” and a collision seems
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almost inevitable. Setting the controller gains as Kl = 0.04, Kv = 0.3, and Kx = 0.01 seems
to be the best trade-off, as the platoon leader will follow the reference speed quite well and the
following vehicle follows its predecessor smoothly without crossing the minimum safe space
headway.

METANET Parameters

The METANET model is used to compute the reference speed for the platoon leaders in
uncontrolled traffic. METANET was developed to model human traffic in a macroscopic
way. METANET uses the fundamental diagram (4-13) and takes into account the inflow
of vehicles and the perceived downstream density. The parameters used by the METANET
model are normally calibrated by using existing traffic data of a certain freeway. In this way
the parameterized METANET model can be used to model that specific freeway. In this
case study a fictive freeway is used, so the METANET parameters cannot be calibrated, but
they merely have to be chosen. First the parameters vfree,m, am, and ρcrit,m used for the
fundamental diagram are chosen. Then the other parameters τ , κ, and η are set.

In Figure 2-2 on page 7 a typical fundamental diagram is plotted. The values of the parameters
used in this diagram are vfree,m = 102 km/h, am = 1.867, and ρcrit,m = 33.5 veh/km/lane,
which are typical values [17]. However, as discussed earlier, when using the platooning concept
it is possible to accommodate more vehicles on the freeway. The average speed at high
densities can thus be higher when the traffic consists out of platoons than when the traffic
has human drivers. As no data is available of an edge where platoons have been traveling
along, no fundamental diagram exist to calibrate such data. To make an educated guess as
what the parameters should be when an edge is accommodated with platoons, the average
speed of an edge is estimated.

To estimate the average speed vm on an edge that is used in the case study, it is assumed
that platoons are equally distributed along the edge (see Figure 5-2). It is also assumed that
platoons travel with a constant speed. The length Lm of the edge in the case study is 1 km
and this edge has one lane. All vehicles in the case study have the same length Lv= 4 m.
Because Lm = 1 km the average density ρm is equal to the number of vehicles on the edge.
The intra platoon distance is shead and the distance between platoons is γhead. The vehicles
on the edge should travel with a speed such that shead and γhead is appropriate to the traffic
density ρm. So the sum of the appropriate space between vehicles and platoons is equal to
the length of the edge minus the occupied space by the vehicles:

Lm −
∑

Lv =
∑

shead +
∑

γhead (5-1)

shead °     
          head

°     
          head

Figure 5-2: Edge with platoons traveling

Since in the case study all platoons consists out of 5 vehicles the number of platoons (%) can
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be computed as follows:

% =
⌈ρm

5

⌉

The ceiling of ρm

5
is taken, because if there are for instance 6 vehicles on the edge, the number

of platoons must be taken as 2, because the sixth vehicle belongs to the second platoon. Now
(5-1) can be written as follows:

Lm − Lvρm = shead (ρm − %) + γhead%, (5-2)

where:

shead = s0 + Thead,vvm (5-3)

γhead = s1 + Thead,pvm (5-4)

Here s0 = 1 m and Thead,v = 0.5 s. The minimum safe distance between platoons is s1 and
the time headway for the platoon leader is Thead,p. The values for these platoon parameters
are chosen as s1 = 20 m and Thead,p = 1.2 s, which are common values used for platooning. If
shead and γhead are substituted in (5-2), the equation is as follows:

Lm − Lvρm = (s0 + Thead,vvm) (ρm − %) + (s1 + Thead,pvm) % (5-5)

If ρm is given, then the only unknown in (5-5) is the speed of the vehicles vm. This vm can
thus be written as a function of ρm, just as the fundamental diagram. So:

vm =
Lm − Lvρm − s0 (ρm − %) − s1%

Thead,v (ρm − %) + Thead,p%
(5-6a)

vm = max (0, min (120, vm)) (5-6b)

Of course vm cannot have any value, so vm is constrained such that 0 ≤ vm ≤ 120 km/h
(cf. (5-6b)). If (5-6) is plotted, it can be seen that the curve will have a triangular shape (see
Figure 5-3). This is because the Intelligent Vehicles (IV) arranged in platoons can maintain a
free-flow speed at higher densities than human drivers will. In this way the capacity flow will
become higher as expected. When the density becomes higher than a certain critical density,
the speed will decrease gradually. The little “bumps” in the right half side of the curve are
due to the fact that (5-6) accounts for platoons as well as individual vehicles, which have
different time headways.

Because the METANET model uses (2-11) and not (5-6), the values for vfree,m, am, and ρcrit,m

have to be estimated, such that the estimated fundamental diagram fits the predicted speed-
flow relation as good as possible. It is important to note that (5-6) is a function where it is
assumed that the vehicles are equally distributed and have a constant speed, so the function
can give a too optimistic result. The estimated fundamental diagram should thus fit “inside”
the predicted curve. The optimal values for the parameters which give the best estimation
are vfree,m = 120 km/h, am = 2.63, and ρcrit,m = 40 veh/km. These values are optimized in
Matlab, by minimizing the difference between the two curves, where a penalty is given when
points of the estimated curve are “outside” the predicted curve. The estimated fundamental
diagram is plotted in Figure 5-4. In this figure it can be seen that by using the estimated
values, the capacity flow and the critical density are increased, while the estimated curve is
still “inside” the predicted curve.
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(a) Predicted flow-density relation based on pla-
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(b) Predicted speed-density relation based on pla-
toons (5-6).

Figure 5-3: The predicated flow-density relationship (5-6) shows a more triangular curve with a
higher capacity flow than the typical fundamental diagram.

Now the parameters for the fundamental diagram that are used in the METANET model are
estimated, the rest of the parameters, i.e. τ , κ, and η, have to be set. Note that these values
also cannot be calibrated as fictive edges are used in the case study. The values are chosen
such that they have the same order of magnitude as found in the literature [30]: τ = 0.0018 h,
κ = 40 veh/km/lane, and η = 20 km2/lane. All the parameters that will be used by FreeSim
in the case study are listed in Table 5-1.

(a) Vehicle Parameters

Parameter Lv Thead s0 Kl Kv Kx a+ a−

Value 4 0.5 1 0.04 0.3 0.01 3 -7

m s m m/s2 m/s2

(b) METANET Parameters

Parameter vfree,m am ρcrit,m τ κ η

Value 120 2.63 40 0.0018 40 20
km/h veh/km/lane h veh/km/lane km2/lane

Table 5-1: All the parameters used in FreeSim

5-2-2 Big Car Setup

It is chosen to implement the Big Car model in Matlab, such that it can be used as a prediction
model in an MPC. The Matlab simulation should behave similar as FreeSim, although it uses
a different model. The Big Car function in Matlab uses the same Freeway layout (graph) as
FreeSim, so all edges and nodes are named the same, and have the same lengths. This graph
is saved in Matlab as a structure array containing all the edges with fields that describe each
edge as well as all current traffic that travels on the edge. Also all the platoons (in fact Big
Cars) that are simulated in the Big Car function are saved in a structure array. Each field in
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(a) Estimated fundamental diagram.
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(b) Estimated speed-density relation.

Figure 5-4: The estimated flow-density relationship (vfree,m = 120 km/h, am = 2.63, and
ρcrit,m = 40 veh/km) fits between the predicted speed-flow relationship and the
typical fundamental diagram.

this vehicle structure array represents a platoon, and contains all the data of that platoon,
i.e. the length, position, and speed at any given time.

The Big Car function in Matlab is written such that it is able to interpret, at the beginning
of the simulation, the same command text file as used by the FreeSim simulation. After the
command text file has been processed, an array of events is created. This array is used at
each time step to look whether a new platoon has to be instantiated. In FreeSim an internal
timer is used to give a command at a given interval to process the next iteration step. The
Big Car function in Matlab however, uses a continuous loop to process each time step. In each
loop, first all the states of the vehicles are updated, then the event array is checked whether
new platoons have to be instantiated, and at last a check is performed to see whether the
simulation can be stopped. The stopping criteria depend on whether all events are processed
and whether there is any traffic still present.

If the traffic is uncontrolled, the behavior of the platoons in the Big Car function is modeled
by an adapted version of the follower model (2-8):

αn (k) = Kx,BG

[

vn (k) TBG −
(

xn (k) − xn−1 (k − σ) − Ln−1 (k − σ) − sBG

)]

+

+ Kv,BG

[

vn−1 (k − σ) − vn (k)
]

. (5-7)

Here n refers to the index of the platoon under consideration, and n − 1 is then the index of
the preceding platoon. The position of platoon n− 1 is taken at time step (k−σ), where σ is
a time delay. The length of the platoon n at time step k is computed by Ln (k) = αvn (k)+β
(cf. 2-9). Also in the Big Car model a fixed minimum space headway is used sBG, as well
as a time headway TBG. The controller gains are Kx,BG and Kv,BG. Also the acceleration of
the platoon is bounded by (4-6). To ensure that platoons can travel in free flow when their
headway allows it, the platoon speed is also bounded. In this way the platoons will travel with
the free-flow speed when they have an unobstructed headway, i.e. the controller computes a
positive acceleration, but the platoons cannot drive faster than the free-flow speed due to
the bounded speed. A platoon will however decelerate when its headway is too small or
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when another platoon ahead is traveling too slow. This is because (5-7) computes a negative
acceleration in these cases.

Big Car Parameters

α

β

Kv,BG

Kx,BG

TBG

sBG

σ

Table 5-2: The parameters of the Big Car model that can be calibrated.

5-2-3 Optimization Setup

To ensure that the Big Car following model has a similar behavior as FreeSim, the parameters
that can be varied in the Big Car model (see Table 5-2) have to be calibrated. In order to
do so, data is needed from FreeSim. Therefore a case study is created to gather data from
FreeSim that can be used for calibrating the Big Car model in Matlab.

It is possible to calibrate all the parameters at once, but this can be time consuming. Therefore
the calibration is done in multiple steps. The first step is to find the optimal α and β. In this
way the length of the platoons will be similar to the length of the platoons in FreeSim. This
length influences the computation of the time headway in the Big Car model, since the space
headway is directly related to the length and position of a preceding platoon. The second
step is to calibrate the parameters of the controller, i.e. Kx,BG, Kv,BG, TBG, and sBG. The
integer σ is varied manually at the end of the second step to reduce the number of parameters
at the calibration process.

Optimizing Step 1

In order to find the optimal α and β, simulations have been done with FreeSim to provide data
of vehicles traveling in free flow as well as in congestion. The data also contains the states of
accelerating and decelerating vehicles. In this way a broad set of data points is created that
can be used to calibrate α and β. To calibrate these parameters, an optimization has been
done in Matlab that solves this objective function:

min
α,β

m
∑

i=1

[Li − (αvi + β)]2 , (5-8)

where m is the length of the dataset. To solve this objective function, the function lsqlin can
be used in Matlab. This function solves linear least squares data fitting problems. However,
because this optimization is unconstrained it is also possible to use the slash command in
Matlab. In fact, if lsqlin is used without constraints then Matlab uses the slash command.
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So this optimization can thus be done in Matlab by using:

[

α
β

]

=
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...
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\
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









(5-9)

The input for lsqlin are vectors containing the data of the speed of the platoon leaders and
the corresponding lengths of the platoons. The results of this optimization are discussed in
Section 5-3.

Optimizing Step 2

To calibrate the other parameters of the Big Car model, a dataset is taken from FreeSim
where the traffic was uncontrolled such that the METANET model was used to compute
reference speeds. From this dataset all the positions and speeds of the platoon leaders are
taken and used for calibration. The calibration consists of optimizing the following objective
function:

min
Kx,BG,Kv,BG,TBG,sBG

m
∑

i=1

[xi − x̂i]
2 + λ

m
∑

i=1

[vi − v̂i]
2 , (5-10)

where m is the length of the dataset and λ is a scaling term used to ensure that the position
errors are in the same order of magnitude as the speed errors. The positions and speeds of
the platoon leaders in the dataset are x and v respectively. The positions and speeds of the
Big Cars are x̂ and v̂.

Because (5-10) is a nonlinear objective function the method lsqnonlin is used in Matlab.
This function can solve a nonlinear least-squares data fitting problem, such as (5-10). The
optimization is set to medium-scale since the number of variables is much less than the number
of provided data points. The algorithm used for optimizing the parameters is Levenberg-
Marquardt. Levenberg-Marquardt is preferred over Gauss-Newton as this will often be faster
when the residual of the objective function is not small.

Because the two models (i.e. FreeSim and the Big Car model) do not necessarily have to
coincide, the position and speed vectors of the two models do not always have the same
lengths. This is because a vehicle n can for instance have a higher average speed in the
FreeSim simulation than it had in the Big Car simulation, thus reaching its destination earlier
in FreeSim. Because (5-10) can only be used when all vectors have the same lengths, it is
chosen to use the constant length of the FreeSim data. This means that the vectors of a
Big Car simulation, which can thus vary, have to be adjusted. When a vector of the Big Car
simulation is shorter than in FreeSim, it has to be extended. A position vector x̂ has the same
initial value as x, since a vehicle starts in both simulations at the same point. The extension
has thus to be added at the end of vector x̂. It makes sense to add the destination position
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to the extended area. To give an illustrative example where two extra entries are added:

x̂ =
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The same has to be done with the speed vector v̂, thus adding the speed when the vehicle
reached its destination to the extra entries. When a vector is shorter in the Big Car simulation
than in the FreeSim simulation, the vector has to be shortened. Adding entries to the FreeSim
vectors will result in a larger output in the objective function, since more data is used, so
this must be omitted. It is chosen to delete the last entries in x̂ and v̂, since again the first
values do coincide with the FreeSim data and have to be left intact. In this way the output
of the objective function will not be dependent on different lengths of vectors of the Big
Car simulations. The results of the calibration of the controller parameters are discussed in
Section 5-3.

5-3 Results

5-3-1 Results of Optimization Step 1

The optimization for finding α and β is quite straightforward. There are only two parameters
that have to be optimized, and these two parameters describe a linear behavior between the
speed and length of a platoon. Optimizing α and β is done by Matlab in a few seconds. The
optimal values that have been found are α = 0.5536 and β = 24.0186 (see Table 5-3). The
function L = αv + β is plotted in Figure 5-7 as well as all the data points gathered from
FreeSim. In this figure it can be seen that the average error between the length of a big car
and of a platoon in FreeSim is slightly more than 1 %. However, the highest measured error
is 20 %, which is due to the deceleration of a platoon. The highest measured error due to
acceleration is 7 %.

If the platoons would not have accelerated or decelerated throughout the simulation in
FreeSim, the platoon lengths would have been constant. The “steady state” length can
also be calculated by using (2-9). If the values of the parameters (see Table 5-1) are used in
(2-9), the equation would be:
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LBigCar (k) = (Np − 1)
(

s0 + s1v (k)
)

+

Np
∑

n=1

Ln

= (5 − 1)
(

1 + 0.5
v (k)

3.6

)

+ 5 · 4

=
0.5

3.6
v (k) + 24

≈ 0.5556v (k) + 24

(5-11)

As can be seen, the optimized values are almost the same as the steady state values. However,
the calibrated values for α and β are used in the optimization of step 2.

Calibrated Values Set 1

α 0.5536

β 24.0186

Table 5-3: Optimal values found after optimizing (5-8)

5-3-2 Results of Optimization Step 2

In step 2 the controller gains (Kx,BG and Kv,BG), the minimum safe space headway (sBG), as
well as the reference time headway (TBG) are optimized. The values for α and β that are used
in this optimization step are the values as found in Section 5-3-1 (see Table 5-3). The time
delay σ is kept constant throughout optimization step 2 to reduce the number of parameters.
The integer value of σ is varied at the end of the optimization step and the σ that gives the
best result is then taken. For now σ is set to 0.

In (5-10) the scaling term λ is used to set the speed errors in the same order of magnitude
as the position errors. The error in speeds are roughly 50 times higher than the error in the
positions, because the position error is measured in km and the speed error in km/h. So λ is

set to
(

1
50

)2
= 0.0004.

The optimal parameters found during an optimization run are dependent on the starting
points. It is therefore necessary to use multi-start optimization in this step. This means that
various starting points are chosen from which Matlab starts searching for parameters such
that (5-10) is minimized. This multi-start optimization approach is very time consuming,
since each optimization run can take several hours to a day. After each optimization run the
weighted Root Mean Squared Error (RMSE) is computed:

Ω =

√

√

√

√

1

m

m
∑

i=1

[xi − x̂i]
2 +

√

√

√

√

λ

m

m
∑

i=1

[vi − v̂i]
2 (5-12)

The weighted RMSE is used to indicate the performance of the optimization run. The
weighted RMSE is used instead of the output of the objective function (5-10), because the
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outcome of the objective function is a very large number due to the large dataset, and Ω
shows a smaller performance index that is easier to interpret. So after each optimization run
Ωnew is computed and compared against the smallest Ω̂ to check whether the new parameters
are better. If Ωnew > Ω̂ then the new parameter set is discarded. If however Ωnew < Ω̂ then
the new parameter set is saved as the new optimal data set, so Ω̂ = Ωnew. The new Ω̂ with
the corresponding parameter set is used for the next comparison. It is too cumbersome to
show all the chosen starting points with the parameters found during the optimization runs
including their weighted RMSE. Therefore only the interesting results will be discussed.

What was seen was that the optimal values found for Kv,BG were roughly between 0.01 and
0.09, even if the starting values were chosen much higher or lower than this range. This
could be expected since the best value for Kl found in Section 5-2-1 is also in the same order
of magnitude. The controller gains Kl, and Kv,BG are both parameters that are used for
minimizing the difference between speeds, so it is not strange that the values are comparable.

The optimal values for Kx,BG, however, were mostly around the starting values but could
also be very small (almost zero) or as large as 1. The optimized values for sBG and TBG were
always more or less the same as the starting points. To investigate what the reason could be
that the optimal values for these parameters are around the starting points, weighted RMSE
are computed by varying only one parameter and keeping the rest of the parameters constant.
With this ‘slicing’ technique more insight is given how the objective function looks like around
a certain point. During this slicing now also σ is changed to see what the influence is of σ.
The point at which the parameters are sliced, is the point that has the lowest Ω found. The
parameters that correspond to this point are listed in Table 5-4.

Parameter Kv,BG Kx,BG sBG TBG σ

Value 0.0209 0.3033 10.1872 1.6003 0
m s

Table 5-4: Optimized parameters that correspond to Ω = 1.1639

In Figure 5-8 the weighted RMSE is plotted when Kv,BG, Kx,BG, sBG, and TBG are varied
independently. In Figure 5-8(a) Kv,BG is varied between 0.01 and 0.06. Clearly it can be
seen that the error increases when Kv,BG is very small or when Kv,BG is becoming too large.
More interesting to see is Figure 5-8(b). In this figure it can be seen that when Kx,BG is
getting larger than 1.5, the error is not affected at all. This is due to the fact that at very
high gains the headway is controlled (too) rigidly, and the error will thus be only depend on
the chosen headway. In Figure 5-8(c) it can be seen that sBG does not affect the error very
much for values lower than 10. This is due that sBG is a constant term that is not dependent
on the speed or position of the big cars. The minimal safe distance sBG will thus affect the
error less than the controller gains, which control how the distance is kept, and less than the
time headway, which states how large the speed dependent distance must be. As can be seen
in Figure 5-8(d), TBG must not be chosen too small or large, because then the error will be
too large. The effect of the time delay σ can clearly be seen in Figure 5-8(e). In this plot
the error will increases sharply when increasing values for σ are chosen. This indicates that
the time delay should be chosen zero. It must be noted however, that when σ is taken into
account in the optimization, the other parameters are dependent on this, so a different result
could follow.
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It was seen that during all the optimizations, the optimized values for Kx,BG, sBG and TBG

were more or less the same as the starting values. For Kx,BG and sBG this could be explained
with slicing, because Figure 5-8(b)–(c) show quite flat curves. However, Figure 5-8(d) does
only show a flat curve between 1.4 s and 1.6 s. The reason is probably due to the modeling
differences between FreeSim and the Big Car model. The speed of the platoons in FreeSim
are dependent on the average density of an edge, whereas the speed of a big car is dependent
on the preceding big car. Of course the speed of the preceding big car is in turn dependent
on his predecessor. So all big cars influence each other, but in another way than the platoons
in FreeSim, i.e. the speed of a big car is only dependent on the big cars ahead and in FreeSim
the speed of the platoons are dependent on all platoons on the edge plus to a lesser extend
on the platoons on the surrounding edges. Because the speed of a platoon in FreeSim reacts
to macroscopic quantities, the reaction will be somewhat slower than the reaction of big cars
that react more quickly to density changes. This indicates that speed adjustments based on
macroscopic quantities can be valid, but comparing the platoons in FreeSim with big cars on
a microscopic level results in errors due to modeling differences. It could be that the average
densities, average speeds and traffic flow in the Big Car model is modeled the same as in
FreeSim, but on a microscopic level the exact positions and speeds at each time step of the
modeled platoons does not necessarily have to coincide. Because the big cars in the Big Car
model react more quickly to density changes than the platoons in FreeSim do, it is possible
that too optimistic travel times are measured in the Big Car model compared to FreeSim
simulations.

5-4 Summary

In this chapter a case study is performed where data is gathered from FreeSim that is used
to calibrate the Big Car model. In this case study a stretch of road of 6 km long is simulated.
First all the parameters used in FreeSim are chosen. The controller gains, i.e. Kl, Kx, and Kv,
are tuned in such a way that the platoon leaders can follow a reference speed accurately while
their followers are able to follow their predecessors smoothly. Also the METANET parameters
have been chosen. These METANET parameters cannot be calibrated since no actual data of
traffic that consists of IV is available. The METANET model uses a fundamental diagram in
the relaxation term. The parameters of this fundamental diagram are estimated by assuming
a constant number of vehicles in a platoon as well as assuming equal distributions of vehicles
and platoons on the edges. In this way the fundamental diagram displays a curve with an
increased capacity flow.

The parameters of the Big Car model are optimized in multiple steps. In the first step are
α and β are calibrated. This can be done quite fast as these parameters describe a linear
behavior of the length of a big car. The calibrated values are almost the same as the steady
state values, i.e. when the platoons do not accelerate or decelerate. In the second optimization
step the controller parameters, i.e. Kv,BG and Kx,BG, as well as the headway parameters, i.e.
sBG and TBG, are calibrated using a multi-start nonlinear least squares optimization. The
optimal values found are Kv,BG = 0.02, Kx,BG = 0.3, sBG = 10.2 m, and TBG = 1.6 s. After
this optimization step, σ was varied to investigate the influence of σ on the performance. It
was seen that σ deteriorates the error when σ is increased. It is however possible that when σ
is taken into account in the optimization that different optimal parameters will follow, which
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can have an even smaller Ω.
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Figure 5-5: Vehicle 1 follows a reference headway vISA with a controller gain Kl = 0.04 and
vehicle 2 follows vehicle 1 with controller gains Kv = 0.3 and Kx = 0.01
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Figure 5-6: Vehicle 1 follows a reference headway vISA with a controller gain Kl = 0.2 and
vehicle 2 follows vehicle 1 with controller gains Kv = 0.3 and Kx = 0.01. The
controller gain Kl is too big, since vehicle 2 cannot follow vehicle 1 smoothly
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is plotted using the calibrated values α = 0.5536 and β = 24.0186.
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Figure 5-8: Slices of the Big Car model around the point where Ω = 1.1639, i.e. Kv,BG = 0.0209,
Kx,BG = 0.3033, sBG = 10.1872, TBG = 1.6003, and σ = 0
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Chapter 6

Conclusions and Recommendations

6-1 Conclusions

The recent developments in the control of Intelligent Vehicles (IV) indicate that by using
platoons, the average traffic flow on freeways can be improved. This means that the Total
Time Spent (TTS), which is an often used performance indicator, can be reduced. An ef-
fective control measure to improve the performance in traffic flow is speed limit control. An
hierarchical control strategy in combination with Model Predictive Control (MPC) can be
used for controlling all of the IV in a freeway network. However, no freely available traffic
simulator exists that can model a freeway network consisting of IV and platoons in a fast and
efficient manner. This means that no current traffic simulator can be used as a system model
or as a prediction model in an MPC strategy. Therefore an assessment has been done to find
a suitable microscopic traffic simulator that can be modified.

Based on the assessment described in this thesis, both MITSIM and FreeSim seemed to have
high potential for modifications, such that it can be used as a microscopic traffic simulator
for simulating IV-based traffic. Although MITSIM has more features than FreeSim, due
to the lack of development in the last years and because there is no support, MITSIM is
incompatible with most of the modern day computers. This makes MITSIM not suitable for
further development.

FreeSim is public available since 2007, and was developed with Intelligent Transportations
Systems in mind. It proved possible to implement IV models and platoons in FreeSim.
Also variable speeds for vehicles have successfully been added in FreeSim. However, no car-
following model is present in FreeSim as well as no reference speed for the platoon leaders
is provided by FreeSim natively. This makes the traffic unresponsive for density changes.
Therefore modifications have to be implemented such that reference speeds can be provided
for the platoon leaders when the traffic is uncontrolled.

The METANET model is used in uncontrolled traffic to compute reference speeds for the
platoon leaders based on the traffic states. The parameters of the fundamental diagram,
which is part of the relaxation term in METANET, can be estimated by assuming a constant
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number of vehicles in a platoon as well as assuming equal distributions of vehicles and platoons
on the edges. Such an estimation provides a curve with an increased capacity flow, which
would be expected at traffic consisting out of platoons.

Due to the increased complexity of FreeSim as a result of the implemented models and speed
limiting control possibilities, the simulation speed is decreased. Therefore, FreeSim is too slow
to be used as a prediction model in MPC. The Big Car following model that is implemented
in Matlab has a much faster simulation speed.

The Big Car model can use a following model that is currently not implemented in FreeSim.
Because of the modeling differences between the Big Car following model and FreeSim, the
parameters of the Big Car model have to be calibrated in order that the simulated output of
both models are comparable. The calibration of the Big Car models can be done in Matlab
using multi-start nonlinear least squares optimization techniques.

Optimizing the parameters of the Big Car model can be divided in multiple steps. The first
step is optimization the parameters that are needed to compute the length of a big car, i.e. α
and β. The other step is optimizing the parameters of the Adaptive Cruise Control (ACC),
i.e. Kv,BG and Kx,BG, and the values for safe headway, i.e. sBG and TBG.

Optimization α and β can be done very fast. The optimal values prove to be almost the
same as the values that can be calculated as if platoons have a constant speed, i.e. thus not
acceleration or decelerating. The average error between the length of a big car and of a
platoon in FreeSim is slightly more than 1 %. However, the highest measured error is 20 %,
which is due to the deceleration of a platoon. The highest measured error due to acceleration
is 7 %. The length of a big car can thus be modeled quite well with the linear speed dependent
function L = αv + β. However, at large accelerations and especially at large decelerations,
the errors can be quite significant.

The calibration of the second step is very time consuming as one optimization run can take
up to ten hours. It is necessary to use multi-start optimization, because the optimal values
found during the optimizations are dependent on the starting point. Most of the time the
optimal value found for Kv,BG was around the same order of magnitude. The optimal value
for Kx,BG could differ per optimization run. By using slicing, it was seen that the mean
squared error is not affected at all for high values of Kx,BG. This is logical, as a high value
for Kx,BG means that the headway is controlled very rigidly. But if the chosen values for the
headway are wrong, then better controlling a wrong headway does not result in a smaller
error.

The optimization found almost always optimal values for sBG and TBG close to the starting
values. This is due to the modeling differences between FreeSim and the Big Car model. The
speed of the platoons in FreeSim is mostly affected by the average density of the edge, whereas
the speed of a big car is mainly influenced by the big car directly ahead. This indicates that
speed adjustments based on macroscopic quantities can be valid, but comparing the platoons
in FreeSim with big cars on a microscopic level results in errors due to the modeling differences.

The Big Car following model can be used as a prediction model in MPC since the Big Car
model proves to be a lot faster than FreeSim. However, the big cars in the Big Car model
react more quickly on increased densities than the platoons in FreeSim will. This can lead in
too optimistic travel times in the Big Car model compared to FreeSim simulations.
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6-2 Recommendations

Now that a microscopic traffic simulator has been developed as well as a fast model that
can be used as a prediction model, simulations can be performed with speed limit controlled
traffic. Using the combination FreeSim and the Big Car model, it can be investigated what the
result in increased performance of a freeway network can be if traffic consists out of platoons
that have MPC controlled dynamic speed limits. Different scenarios can be created to test
the influence of speed limit control in different circumstances.

The chosen parameters of the METANET model in FreeSim are based on estimations and
on calibrations done on data of freeways with human drivers. These parameters cannot be
calibrated for platoon-based traffic, since this data is simply not available. The validation of
the use of a METANET model that is developed for modeling human based traffic can thus
not be guaranteed. It should be better to investigate whether it is possible to implement
a following model for platoons in FreeSim. This also solves the problem that collisions in
FreeSim can happen unnoticed, because the platoons are not aware of each other.

One of the reasons that FreeSim is not very fast is due to the fact that originally FreeSim was
modeled such that all vehicles are simulated as separate threads. At each simulation time
step all vehicles update their states synchronously. But now the vehicles inside a platoon
are dependent on each other, so the platoons are models such that first the platoon leader
updates its states, then the vehicle behind it and so on. So all platoons update their states
in parallel, but the vehicles per platoon do this consecutively. This contributes in a slower
process of updating all vehicle states in a platoon. This can maybe be solved by using a
(hash-)table per vehicle where the states of that vehicle are inserted at each simulation time
step. In this way all vehicles can adjust their accelerations synchronously, since the states of
the predecessor can be looked up in the table of that vehicle. It can be investigated whether
this really results in a speed increase or that FreeSim only uses more memory or maybe even
the speed decreases due to fact that now also all tables need to be updated each time step.

FreeSim is now a fairly basic traffic simulator. It is now only possible to use speed limits as a
control measure. FreeSim can be extended with for example ramp metering and more intelli-
gent route algorithms. The current routes are based on either shortest or fastest paths. For
instance an MPC can be used for controlling the optimal routes of the vehicles by predicting
future traffic states.

Another useful modification to FreeSim are queue models. Currently the command file must
be created wisely to avoid unrealistic instantiations of platoons. With a queue model, platoons
that are instantiated can be put inside a queue and added to the freeway network when the
traffic allows this. It is also interesting to investigate whether the queue model can take care
of the initial number of vehicles in each platoon instead of predefining this in the command
file.

Since the number of studies in the field of IV control will probably only increase in the
future, the importance of good microscopic traffic simulators that can cope with platoon
based traffic will also increase. FreeSim can be extended with more models and control
measure capabilities, but FreeSim already is not very fast. Maybe it is feasible to develop a
totally new microscopic traffic simulator. The best option is to develop this simulator with a
modular approach, such that it can be easily extended with different types of models. This
simulator must be created with the platooning concept in mind and also that a traffic network
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will be controlled in a hierarchical framework. In this way the simulator will be optimized for
IV-based traffic and it will not be a modified simulator that was intentionally not designed
for these purposes. The best results can be made by using the same approach as FreeSim and
MITSIM, that is by making it freely available for other users, e.g. universities. In this way
the development can be done in a collaboration and for instance models can be validated by
different people. This will speed up the process of the development and this traffic simulator
can be acknowledged by other researchers.
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Appendix A

FreeSim Description

In this appendix a more extensive description on how FreeSim works is given, by explaining
what all objects in Figure 3-2 are. It is not the intention to give a full manual of FreeSim, but
merely to present a brief pointwise description, such that it is more clear which actions are
performed when FreeSim is started. All names that are used in this appendix are the same
as the one used in the code of FreeSim.

A-1 TrafficSimulator

• When the TrafficSimulator program is started, it opens a TrafficDatabase-

Proxy, such that it can read the freeway networks from the database. It stores each
freeway system in a so called graph. These graphs are used from within FreeSim.

• The TrafficSimulator starts a TrafficSimulatorListenerInstantiator, see
Section A-2.

• The TrafficSimulator creates a serversocket listening on port: iport.

• When a connection is received on iport, a VehicleThread (see Section A-4) is created,
which acts as a server for that connection. The serversocket stays listening for new
connections on iport.

A-2 TrafficSimulatorListenerInstantiator

• When a TrafficSimulatorListenerInstantiator is created, it creates a Traffic-

SimulatorNotifier, see Section A-3.

• The TrafficSimulatorListenerInstantiator creates a serversocket listening on
port: trafficSimulatorInstantiatorPort.
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• When a connection is received on the trafficSimulatorInstantiatorPort, a TrafficSim-

ulatorListener is created. This TrafficSimulatorListener is added at the vect-
TrafficSimulatorListeners in TrafficSimulatorNotifier. The serversocket stays lis-
tening for new connections on trafficSimulatorInstantiatorPort.

– The TrafficSimulatorListener acts as a server, and sends a message when
the TrafficSimulatorNotifier gives the command.

A-3 TrafficSimulatorNotifier

• The TrafficSimulatorNotifier contains a vector vectTrafficSimulatorListeners,
where all TrafficSimulatorListeners, created by the TrafficSimulatorLis-

tenerInstantiator are stored.

• Every imilliseconds milliseconds, the TrafficSimulatorNotifier notifies all Traf-

ficSimulatorListeners, with the time.

A-4 VehicleThread

A VehicleThread acts as an important server that handles a connection between the GUI
(user interface) and the main program, but it also handles the connection between a vehicle
and the main program.

• A VehicleThread is created when a connection is established on iport. This is done
for instance when the GUI is started. The GUI thus has a connection with a Vehi-

cleThread.

• A VehicleThread is also created when a vehicle is instantiated, because each vehicle
needs to establish a connection on iport, see Section A-7.

• When a simulation is started by executing a command file, the VehicleThread that
has a connection with the GUI creates a VehicleLoader, see Section A-5.

• A VehicleThread handles all requests from the GUI or vehicles, such as requesting
of fastest routes or termination of the simulation.

A-5 VehicleLoader

• When the VehicleLoader is created, it first creates a VehiclesNotifier and sub-
sequently adds itself in vectVehicleListeners in the VehiclesNotifier.

• The VehicleLoader processes the command text file by putting timed events in a
hashtable htTimedEvents. When the VehicleLoader receives a signal from the Ve-

hiclesNotifier it looks for timed events in htTimedEvents that corresponds to the
current time, to check whether an event has to be executed. Such an event can for
instance be to create a new vehicle.
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A-6 VehicleNotifier

• When a VehicleNotifier is created it establishes a connection on trafficSimulatorIn-
stantiatorPort, such that it receives periodically a signal with the time.

• The VehicleNotifier contains a vector vectVehicleListeners, where all vehicles and
the VehicleLoader are stored. All vehicles and the VehicleLoader receive a signal
to process the next simulation step when the VehiclesNotifier receives a signal with
the time.

A-7 Vehicle

• When a vehicle is created, it establishes a connection on iport, such that a communi-
cation link is created with a VehicleThread.

• After the connection is established, the vehicle adds itself in the vectVehicleListeners
in the VehiclesNotifier. Now it can periodically receive a signal from VehiclesNo-

tifier to process the next simulation step.

• Because a vehicles has a connection with a VehicleThread it can for instance
request whether there is a faster path available.
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