
BASIS EXPANSION ADAPTIVE FILTERS FOR TIME-VARYING SYSTEM IDENTIFICATION

Luca Rugini and Geert Leus

Delft University of Technology
Faculty of Electrical Engineering, Mathematics, and Computer Science

Mekelweg 4, 2628 CD Delft, The Netherlands
{I.rugini,g.leus} @tudelft.nl

ABSTRACT block adaptive (OBA) and the OBA shifting (OBAS) algorithms [9].
However, the tracking performance of all these block algorithms

In this paper, we extend the concept of block adaptive filters to what Hih suers the 'opeatinse they igorethe
we call basis expansion adaptive filters. While in block adaptive ehighly suffers from the averagng operation, since they ignore the

filters the system is assumed to be constant within a block, our ba- tovercom the tracking problem o conventioablo dap-
sis expansion adaptive filters model the time variation of the system Ti flers, metry toaxlit asible od fortentime arato
within a block by a set of basis functions. This allows us to improve wthiailock. Oet exaple sithbae model (BEM)
the tracking performance of block adaptive filters considerably. We

wihnabok .nexml. ste ai xasonmdl(E)
theustracking pefoh grmadinc o

e
blok adaptive filters,clthonside .Wex where the time variability is expressed as a linear combination of

focus on stochastic gradient type of adaptive filters, although basis functions, which could be complex exponentials, polynomials,
and so on [10, 11, 12, 13]. Specifically, the authors of [12] propose

Index Terms- Basis expansion model, block adaptive filters, an RLS algorithm that combines recursive block processing with a
linear time-varying systems polynomial model for the time variability.

In this paper, we propose block adaptive stochastic gradient al-
1. INTRODUCTION gorithms that incorporate a BEM for the time variation of the system

impulse response. The proposed algorithm, called basis expansion
Adaptive filtering is a widespread and largely investigated option to LMS (BE-LMS), is a generalization of many already-known adap-
tackle the problem of system identification [1]. In the last decades, tive algorithms like normalized LMS (NLMS), OBA, and OBAS [9].
many adaptive algorithms have been proposed ranging from the sim- We show by simulations that our proposed BE-LMS is able to track
ple stochastic gradient type of algorithms, lead by the least mean the system time variation better than the NLMS, while maintaining
squares (LMS) family, to more elaborated algorithms like those be- good convergence properties in case of overlapping blocks. To even
longing to the recursive least squares (RLS) class [1, 2, 3]. further improve the tracking capabilities, we also propose another

A common feature of most of these algorithms is that they have BEM-based adaptive algorithm that has a nice connection with the
been initially derived assuming a time-invariant system model. In matrix generalization of the momentum LMS (MLMS) algorithm
case of a time-varying model, adaptive algorithms like LMS try to [14].
track the time variation of the system impulse response, as analyzed
in [4, 5, 6]. However, this tracking is done on a sample-by-sample 2. SYSTEM MODEL
basis, by using limited information about the past. This past informa-
tion can be better taken into account by using a block of data rather The system under consideration is a linear time-varying system with
than one single sample. As a consequence, to track time-varying additive noise, whose input-output relation is expressed by
systems, a block-by-block algorithm could potentially be more ben- L-1
eficial than a sample-by-sample approach, especially if the blocks L- 1
are overlapping. 31n = h0,1xn l + en, (1)

Traditionally, block adaptive filtering techniques have been de- 1-0
veloped to reduce complexity in the time-invariant case, by exploit- where yn is the output, hn,1 is the linear time-varying system im-
ing fast convolution methods. For example, the block LMS (BLMS) pulse response, assumed finite with L taps, Xn is the input, and en
algorithm [3, 7] uses an average gradient over a block of samples is the additive noise. Given Xn and yn, our goal is to find a linear
to estimate the impulse response. In case of non-overlapping blocks, time-varying filter hn,1 such that
BLMS has approximately the same steady-state performance ofLMS
[7, 8], with computational savings due to the shared operations. How- L- 1
ever, if the blocks are overlapping, as in the sliding-window LMS Yn =E hn,lXn-1
(SW-LMS), the convergence and the steady-state performance of l=0
block adaptive algorithms improve, at the expense of an increased
complexity caused by the repeated processing of the same data [3]. is as close as possible to yn. The filter h,l can then be considered
The convergence of both BLMS and SW-LMS can further be im- as an estimate of the system impulse response hn,1.

provd byallwingatme-vryig stp sze, eadng t th optmum To describe the proposed adaptive algorithms, we will first re-provd b alowiga imevaringstepsiz, ladig totheoptmum shape the system input-output relation, and then we will make use

This research was supported in part by NWO-STW under the VIDI pro- of the limited time-varying behavior of the system. Let us start by
gram (DTC.6577) and the VICI program (DTC.5893). rewriting (1) as yn =xnThn, +en, where Xn [xn, *.*X*ri-L+ll
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and hn,: = [h, o,.. h,hn,L -]T. Stacking yn over a block of N By performing this minimization over the BEM coefficients c(k) of
samples every K samples, we obtain the filter h(k), we obtain the Wiener solution

y(k) XT (k)h(k) + e(k), (2) iOpt(k) = E(BHX* (k)XT (k)B)-lE(BHX* (k)y(k)).
where y(k) = [YkK, * *Y:kK+N- ]T, X(k) = diag(XkK, ,wherey(k) [yanLN x yk-diTn d(kK=hT Clearly, in the absence of a basis expansion modeling error, theXk,K+N 1) iS an LN\ X N\ h(k ocU equaln atl, c= k

T T block-diagonal matrix, T " Wiener solution COpt (k) is equal to the actual BEM coefficients c(k)
, hkK+N-1,:] , and e(k) = [ekK, ekK+N-]T . Hence, we of the system impulse response h(k). To find this solution adap-

actually formulate a sliding-window data model, where K deter- tively, we follow a standard stochastic gradient descent approach,
mines how many samples we shift the N-length window in every leading to what we will label the basis expansion least mean squares
step. (BE-LMS) algorithm. The BE-LMS algorithm is described by

By exploiting now the limited time-varying behavior of the sys-
tem, each tap of the system impulse response hn,1 can be modeled, c(k + 1) =(k) + ,J(k)BHX*(k) (k), (6)
over a time range n C {kK ... I kK + N - 1}, as a superposition
of Q < N functions {bn-kK,q}lQ-l weighted by the coefficients where 8(k) is a possibly time-varying step size. In our BE-LMS, we
{cq,i(k)}qQjjq,as expressed by implicitly assume that the optimal 8i(k) is used. More specifically,q=O we can derive the step size that maximizes the convergence speed in

Q-1 a similar manner as in [9]. This maximization leads to
hn,1 =E bn-kcK,qCq,1 (k). HX .

q=O k- llBHX*(k)J(k)E 2

This model is usually referred to as the basis expansion model (BEM) () XT(k)BBIHX*(k)e(k)j 2
[10, 11]. In matrix-vector notation, the BEM becomes In practice, a small positive constant £ is added to the denominator

h.:,i(k) = Bci(k) (3) of 8(k) to prevent a possible zero of the denominator [2].
We now show the connections of our BE-LMS algorithm with

where h:,i(k) = [hkK,l, hkK+N-1,lIT, [B]m,q = bm,q where the vast literature on adaptive algorithms. First of all, it is easy to
the indices start from zero, and cl(k) = [co,i(k), ... , CQl,l]. see that when the block size N = 1, the BEM can not really be
Note that the basis matrix B is independent of the time shift kK. exploited and only Q = 1 is possible. In this case, the BE-LMS
For simplicity reasons, we assume that B is an isometry, i.e., BHB boils down to the standard NLMS algorithm, and to the standard
= IQ. Good choices for the BEM functions could be polynomi- LMS algorithm if in addition the step size is kept constant. Another
als or complex exponentials, leading to a polynomial (POL) BEM interesting connection occurs when we model the system impulse
[12] or a complex exponential (CE) BEM [10, 11], respectively. In response as being constant within a window of N samples. In this
these cases, B is derived as an orthonormalization of a matrix B, case, we have a single BEM function, i.e., Q = 1, and we model it as
where [B]m,q = (m - N/2) for the POL-BEM and [B]m,q a constant function, i.e., B [1/ ,...N 1/I NT. It is then easy
j27,mq/(KN) for the CE-BEM, with s a positive integer that con- to show that the BE-LMS coincides with the OBAS algorithm [9],

trols the frequency separation of the basis functions [13]. and with the SW-LMS algorithm if in addition the step size is kept
We can express h(k) as h(k) = [h7 , hT K+Nl,:IT constant [3]. In the special case where K = N, i.e., we recompute

[IN 0 io ,. IN®X iL-][hTo(k),.***, hT (k)]T, where iT is the a new set of BEM coefficients every window of N samples, the BE-
lth column of IL, with indices starting from zero, and X represents LMS becomes the OBA algorithm [9], and the BLMS algorithm in
the Kronecker product. We now use (3) to obtain h(k) = [IN x case M(k) =
io, . . ., IN X iL-1](IL X B)c(k) = [B ® io,.. ., B ® iLl]c(k) = The OBAS or SW-LMS have basically been introduced to im-
Bc(k), where c(k) = [c T(k), .*, CT_i(k)]T and B = [B x prove the convergence behavior of NLMS and LMS, but, because of
io, . ., B x iLi]. Finally, we can rephrase (2) as the large window size N, they suffer from a worse tracking perfor-

mance. The BE-LMS for Q > 1 solves this problem by modeling
y(k) = XT(k)Bc(k) + e(k). (4) the time variation of the system impulse response within the consid-

ered window with a BEM. On the other hand, the OBA and BLMS
Since the system impulse response hn,1 is assumed to follow a algorithms were mainly introduced to further reduce the complex-

BEM, we put a similar BEM constraint also on the filter hn,1, thereby ity of NLMS and LMS, but they naturally suffer in convergence and
reducing the number of unknowns that we want to estimate. Hence, tracking due to the large shift K. The BE-LMS for Q > 1 expe-
following similar steps as before, we obtain riences a similar convergence and tracking behavior when the shift

A~(k)=XT (k)fi(k) = X (k) 13,& (k),parameter K is large. To further improve the performance of BE-
^T(k) = XT(k)h(k) = XT(k)Bd(k), (5) LMS, we also propose to include some prior knowledge on the time-

where :i(k), h(k), and i(k) represent the estimated versions of varying behavior of c(k), which actually leads to a BE-LMS algo-
y(k), h(k), and c(k), respectively. rithm with an acceleration feature that will be called momentum.

3. BASIS EXPANSION LEAST MEAN SQUARES 4. BASIS EXPANSION MOMENTUM LMS

Obviously the time-varying behavior of c(k) is determined by the
yi(k) in (5) as close as possible to y(k) in (4), given X(k) and y(k) time variation of the system. However, part of the transition from
Basically, we want to minimize E( .(k) l2), where e.(k) is the error c(k- 1) to c(k) also depends on how the BEM functions of two suc-
signal given by: cessive blocks are related. In other words, when the blocks are over-

lapping, h(k) shares some elements with h(k -1), which clearly
e(k) =y(k) -y(k) =y(k) -XT(k)Bd(k). introduces a relationship between the BEM coefficients c(k) and
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c(k - 1). Therefore, by defining J as an N x N shift matrix, 5. SIMULATION RESULTS
with ones along the Kth upper diagonal and zeros elsewhere, we
can model the transition from h(k - 1) to h(k) as In order to test the proposed block adaptive algorithms, we consider

the estimation of a linear time-varying channel driven by a white
h(k) = (J x IL)h(k - 1) + g(k), input sequence of quadrature phase-shift keying (QPSK) symbols,

with g(k) [OTN 1 hT hhT 1]T .Thus,
assumed known at the receiver. In a more practical case, only pilot

wet write(N-K)LX 17vkK+N,: h (k+1)K+N-1, symbols would be known, and the data symbols would be used in
we can write a decision-directed way. We assume a multipath FIR channel with

c(k) = BH(J X I)Bc(k 1) + BHg(k) = Ac(k 1) + d(k) L - 8 independent taps following a Jakes' Doppler spectrum. Theadditive noise en is assumed white and Gaussian. The signal-to-
where A = BH(J 0 IL)B and d(k) = BHg(k). Looking at noise ratio (SNR) is equal to 30 dB. For all the adaptive algorithms,
the right-hand-side of the equation above, the first term can be in- £ = 0.0001 is added to the step-size denominator. To compare
terpreted as a prediction of c(k), whereas the second term can be the performance of the adaptive algorithms, we look at the mean-

viewed as the corresponding prediction error. Hence, by exploiting squared error (MSE) of the channel estimate. In the MSE computa-
this relationship in (4), we obtain tion, we include only the new elements and exclude those elements

already computed in the previous overlapping block. As a conse-

y(k) = XT(k)BAc(k - 1) + XT(k)Bd(k) + e(k). quence, we define the MSE as

Now we can consider XT(k)BAc(k - 1) as a bias on y(k). By MSE = I E(11f(k) -h(k)]L(N-K)+l:LN|1)
subtracting this bias term, we obtain KL

y(k) - XT(k)BAc(k - 1) = XT(k)Bd(k) + e(k), (7) where [X]a: b stands for the subvector of x from the ath to the bth
element.

which is similar to the input-output relation expressed by (4). As a Figure 1 shows the MSE as a function of the maximum Doppler
consequence, we can update the prediction error d(k) in a similar spread, normalized to the sampling period, when N = 64 and K =

way as before, leading to 1. To obtain the simulated MSE, the results are averaged over 10
I I HT

long channel realizations, after transient effects. Because of the gra-
d(k + 1) = d(k) + II(k)BHX*(k)E(k), (8) dient averaging, the OBAS algorithm (or equivalently the BE-LMS

algorithm with Q = 1) outperforms the NLMS algorithm in the
where e(k) is defined as before with time-invariant case (no Doppler spread). However, the performance

of OBAS rapidly degrades for increasing Doppler spread, because
c(k) = Ac(k - 1) + d(k). (9) more basis functions are necessary to model the time variability of

A . ~~~~~~~~~~thechannel. Similarly, the performance of the NLMS algorithm sig-
It is worth noting that c(k) in (9) depends on the true model coeffi- nificantly Senslwhenthe ter variation ie a lessithan
cients c(k - 1), and hence is not available. As a consequence, we foOaS.worsens when the tsme varlatgon increases, but less than

replace~ ~c. A) byit'siaeeso ~k-1,laigt for OBAS. This iS due to the smaller lag with respect to OBAS.
replace c -1bietadeOn the contrary, the BE-LMS algorithm with Q > 1 is able to

c(k) = A(k-1) + a(k)k (10) better track the channel variability, and hence its performance im-
proves with respect to the other algorithms. Obviously, for increas-

To get more insight into this updating formula, let us plug (10) into ing Doppler spread, the best performance is obtained by BE-LMS
(8) to obtain with an increasing number of basis functions Q, which allows to

capture the increasing time variability. This explains why Q = 2 is
c(k + 1) -Ac(k) = (k) - Ac(k - 1) + JJ(k)BHX*(k)E(k), optimal only for a relatively small time variability, and worsens for

higher Doppler spreads.
or equivalently Figure 2 illustrates the steady-state performance of the proposed

BE-LMS for time-invariant channels as a function of the block size
c(k + 1) =(k) + ,J(k)BHX*(k)E(k) + A(c(k) - c(k - 1)). N, when K = 1. As expected, an increase of the block size pro-

duces an improvement for all the block-based algorithms. When the
Clearly, this equation is formally similar to (6), but with the addi- block size is sufficiently large, the BE-LMS algorithms with Q > 1
tional term A(c(k)-cd(k-1)). Such a procedure greatly resembles are able to outperform the NLMS algorithm.the~~~~~~~~~~~momntu

abletooupefrmthS)Malgorithm.[4 hc asitouethe momentum LMS (MLMS) algorithm [14], which was introduced In Figure 3, the prediction effect of the BE-MLMS algorithm is
to speed up the convergence and the tracking of LMS. This is why displayed using a simulation example, which compares the real part
we label this algorithm as the basis expansion momentum LMS (BE- of one tap of the true channel with that of the estimated channel. In
MLMS) algorithm. In the simulations section we will show that in this case, N 256, K 64, and the normalized Doppler spread
some cases the BE-MLMS algorithm exhibits a better tracking be- is equal to 0.002. It is evident that the BE-MLMS could be a useful
havior than BE-LMS. alternative to the BE-LMS in order to track a time-varying channel

It should be observed that a straightforward application of the when K > 1.
momentum approach to the BE-LMS would lead to a different al-
gorithm with respect to our BE-MLMS. Indeed, in the standard mo-
mentum approach, the step size is constant and, more importantly, 6. CONCLUSIONS
the fixed matrix A is replaced by a scalar design parameter ae [14].
A good value for ae would be rather difficult to determine; however, In this paper, we have developed some block adaptive algorithms that
in the proposed set-up, we do not have to make this difficult choice, are suitable for the identification of linear time-varying systems. The
and an intuitively pleasing value is selected for the matrix A. proposed BE-LMS algorithm, which extends the OBAS approach
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Fig. 1. MSE as a function of the normalized Doppler spread. Fig. 3. Example of channel estimate by the BE-MLMS algorithm.
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