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Abstract
Introduction: A combined bone growth and remodeling model should be created, to investigate the

effect of different femur shapes on the risk of developing cam type deformities. The different femur
shapes needed for this study can be created using a statistical shape and appearance model (SSAM).
The workflow of the combined bone growth and remodeling model has been (semi)automated for
increased efficiency and other future uses.

Methods: An algorithmwas created that leads the user through a (semi)automated workflow, where
the necessary features are added to the simulation. The model uses remodeling and growth simula
tions in sequence to estimate both the change in density distribution and in shape. The used loading
conditions correspond to the 10% gait cycle phase. The remodeling is driven by strain energy density,
and the growth by the osteogenic index.

Results: The resulting density distributions are similar to those found in other studies, while the
growth model predicts larger changes in the neck axis angle than other studies. The growth was also
predicted for two MRI pilot scans and the predicted growth was similar to the growth found in follow up
scans of the same children. To investigate the influence of the bone shape on the development on cam
deformities, three different shape modes were varied and their influence on the osteogenic index in the
growth plate was analyzed. The results from this study indicate that an increased femoral neckaxis
angle increase the growth stimulation in the cam region of the growth plate.

Discussion: The created bone adaptation model performs mostly as expected, only the included
growth model occasionally performs unreliably. To improve its reliability, recommendations have been
given to improve its behaviour. Because of the increased growth stimulation in the cam region of the
growth plate, the results indicate that femurs with a large neckaxis angle have an increased risk of de
veloping cam type deformities. The effect of other shape characteristics is unclear, and more research
is recommended to investigate the effect of other characteristics, such as the femoral anteversion.
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1
Introduction

Bone is an adaptive tissue that is influenced by and exerts influence on the surrounding environment.
These adaptive properties can bemodeled in a forwardmodel, in which the environment determines the
bone properties. These models differ based on their scale, this is because the important mechanics are
dependent on the scale, environment and what behaviour is of interest. The process where bone tissue
is replaced by new bone tissue is called remodeling, and the process where bone grows in the growth
plate is called (longitudinal) growth. This research aims to provide information on how different femur
shapes influence the development of cam type deformities by examining the local growth stimulation in
the growth plate and by performing forward bone adaptation simulations. To do this the algorithm must
generate new bonemorphologies (i.e. shape and appearance), and create and perform the subsequent
growth and remodeling simulations (semi)automatically.

This chapter will introduce the background of this research as well as the research itself. First the
background will be presented in section 1.1, after which the research problem is explained in sec
tion 1.2. The research questions are discussed in section 1.3. Following this the significance, sec
tion 1.4, is discussed. The chapter concludes with a structural outline of the entire thesis in section 1.5.

1.1. Background
Bones performmultiple key functions in the human body, such as providing support, assisting move

ment, protecting vital organs, being amineral and triglyceride reserve and blood cell production [2]. Due
to the adaptive properties of bone, important information on the state of the human body can be ob
tained from examining bones [3–5]. One of these adaptive properties is known asWolff’s Law [5], which
says that the structure of bone is optimized for the loading conditions it faces. The current study relates
to its function of providing support, assisting movement and indirectly its function as a mineral reserve.

1.1.1. Remodeling models
As stated previously, bone remodeling is the local replacement of old bone tissue by new bone

tissue. This process can change the local mechanical properties of the bone by replacing old bone
tissue for new bone tissue. Biologically, bone remodeling occurs during multiple phases, this process
can be seen in Figure 1.1. The first phase of remodeling is the activation phase, where the osteocytes
activate the osteoclasts. In the resorption phase, the osteoclasts perform resorption of bone tissue.
During the reversal phase preosteoblasts attach to the bone surface. During the formation phase,
osteoblasts perform apposition of new bone tissue. And in the final phase, quiescence, osteoblasts
attached to the bone surface become bone lining cells. In short: the osteocyte senses that bone
should be replaced in a certain location, the osteoclast then removes bone tissue in that location and
the osteoblast then deposits new bone tissue. This process can be approximated by a change in the
bone apparent density. For more information on the biological process of remodeling, the reader is
referred to Allen et al [4] and Bellido et al [3].

This bone apparent density is an approximation of the bone density at continuum scale: complex
microstructures are replaced by a simplified 1D measure. This bone apparent density is a measure

1



2 1. Introduction

Figure 1.1: A simplified overview of the different phases during the remodeling process. The first two phases are the activation
of osteoclasts, and the resorption of bone tissue by the osteoclasts. The third phase is the attachment of preosteoblasts to the
newly exposed bone tissue. The fourth phase is the formation of new bone tissue by the osteoblasts. This figure was obtained
from [6].

of how much bone tissue is in a location, where a higher bone apparent density results in stiffer bone,
and a lower bone apparent density results in more flexible bone.

1.1.2. Growth models
The longitudinal growth in the bones of children takes place in the growth plate, also known as the

epiphyseal plate. In this thin bone region, bone cells perform mitosis (cell multiplication) and tissue
generation in the direction of growth. According to [7–10], certain stresses in the growth plate inhibit
growth, while others stimulate growth. This influence of the mechanical environment on growth is local
and therefore influences both the magnitude of growth, as well as its direction. The most commonly
used mathematical theory is that of osteogenic index, a weighted sum of the local octahedral shear
stress (stimulating) and the hydrostatic stress (inhibiting).

Biological factors also have a large influence on longitudinal growth. Growth can be affected by
genetic factors, hormones, diet and age. These factors are often simplified and approximated as a
constant biological growth component, which is added to the osteogenic index to obtain the local growth
magnitude.

The growth direction is influenced by the stresses as well, and can be approximated in two ways:
the direction of deflection [1] and the direction of the maximum principal stresses [11]. The direction of
deflection does not model local differences in growth direction. The principal stress direction method
has recently been used successfully [11] and is able to model local differences in growth direction.

Growth is often modeled using a multilayered disc [1, 11], where the layers are grown onebyone
over multiple simulations. Manual remeshing is required to create both the disc and its multiple layers,
which significantly increases the amount of time needed to create growth simulations.

1.1.3. Statistical Shape and Appearance Models
Amethod of artificially creating new bone shapes and density distributions is using a statistical shape

and appearance model (SSAM) [12]. SSAMs use the mean and variance from a set of real bones,
obtained using an imaging technique, such as CTscans, to generate new shapes and appearances.
In a SSAM, the shape parameters determine the external shape of the bone, while the appearance
parameters relate to the density distribution of the generated bone.

1.2. Research Problem
A previous study, Roels et al [13], investigated the influence of different loading conditions and

growth plate orientations on the development of cam deformities. A cam deformity is a deformation
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in the femur head, resulting in a nonspherical femur head. This is believed to increase the risk of
developing hip osteoarthritis [14]. Cam deformities are believed to be caused by excessive growth
in the cam region of the growth plate [13–18]. The influence of different femur shapes is currently
unknown and could provide useful insights and could improve cam deformity risk assessment.

1.3. Research Aims, Objectives and Questions
This study aims to increase the knowledge on the effect different femur shapes have on the risk of

developing cam type deformities.

1.3.1. Aims and Objectives
The objectives for the study are to create different morphologies associated with the shape modes

of interest. Next, for these different shapes, the local growth stimulation in the growth plate will be
examined and analyzed. Subsequently, the shapes that have an increased risk of developing cam
type deformities will be further discussed. A combined bone growth and remodeling algorithm should
be used to assess both the development of the bone shape and to obtain a realistic bone density
distribution, that adapts to changing loading conditions. For this study, a combined bone growth and
remodeling algorithm will be used that was originally developed for the creation of an inverse bone
adaptation model, however it can be used for other studies like these as well. The majority of this
thesis concerns the development of this forward bone adaptation model.

1.3.2. Research Questions
For the study, the primary research question is: What femur shapes increase the risk of developing

cam type deformations?
This research question can then be subdivided into: Of the different shape modes of the SSAM,

which have a significant impact on the femur head and neck geometry? For these shape modes, what
is their influence on the distribution of the osteogenic index in the growth plate? What shape modes
result in an increased growth stimulation in the cam region of the growth plate?

1.4. Significance
Camtype deformities increase the risk of hip osteoarthritis [13–18], however it is unclear how dif

ferent shape variations influence the formation of camtype deformities. Knowing what shapes have a
higher likelihood of developing camtype deformities can help with early detection and treatment.

1.5. Structural outline
This thesis introduces the research in this chapter, the introduction, where the background is first

introduced and subsequently the research itself is explained. In chapter 2 Methods, the methodology
of the study is presented. First it is explained how the mesh is created from the SSAM parameters,
next what loading conditions were used and what material models are used for the different types of
bone. Lastly, the remodeling and growth models are presented. The results are then divided into three
chapters related to the remodeling (chapter 3), the growth (chapter 3) and the influence of shape modes
on cam deformity risk (chapter 5). The chapter on remodeling results contains a mesh convergence
study, sensitivity analysis and qualitative comparison to other studies. The chapter on growth results
contains a mesh convergence study and sensitivity analysis as well, additionally it contains a MRIscan
validation where real growth in two children is compared to the predicted growth by the model. The
chapter on SSAM shape modes influence on the cam deformity risk, contains the osteogenic index
distributions for different shape modes, and the influence is then discussed. Chapter 6 Discussion
contains the limitations and evaluation of the research as well as future recommendations and the
conclusion.





2
Methods

A forward bone growth and remodeling model consists of multiple different components, performing
different functions. In this chapter these different components are presented, including information on
how they are implemented. This chapter starts with an overview of these different components and
their function. Subsequently, all components are individually presented.

2.1. Overview
The different components are the statistical shape and appearance model, growth plate generation

algorithm, the used loading conditions, the used material models, bone remodeling algorithm and bone
growth algorithm. The statistical shape and appearance model is used to generate new bone mor
phologies from shape and appearance parameters. The growth plate generation algorithm creates the
growth plate region from the bone morphology. The section on loading conditions presents the loading
scenarios used in this study and the section on material models explains the material behaviour of cor
tical and trabecular bone, as well as the growth plate. The section on bone remodeling algorithm and
the section on bone growth have information on the used algorithms and how they were implemented.

2.2. Software
For finite element analysis SIMULIA Abaqus 2017 was used, linked with the Intel Compiler 17.0

Update 6 and Microsoft Visual Studio Community 2013. For the final part of the project, SIMULIA
Abaqus 2019 was used, linked with Intel OneAPI Toolkits, for the compiling of the Fortran scripts. The
remodeling algorithm uses usersubroutines written in Fortran 95, which are written in Microsoft Visual
Studio and compiled by the Intel Compiler. The original statistical shape and appearance model [19, 20]
was rewritten from Python 2.7 to Python 3.7 and now utilizes SimpleITK 2.0.2. The SSAM uses Elastix
[21, 22]. The growth plate generation algorithm was written in Python 3.7 and uses SciPy 1.5.2 for
numerical optimization, as well as NumPy 1.19.2. The rest of the model is written in Python 3.7, and
uses the following external packages: NumPy 1.19.2, Matplotlib 3.3.2 for visualizing results.

2.3. Statistical Shape and Appearance Model
The statistical shape and appearance model (SSAM) [12] used in this study has previously been

established and used [19, 20]. The SSAM can generate new bone morphologies using shape and
appearance parameters. The bone shape depends on the chosen shape parameters, while the bone
density distribution depends on the used appearance parameters.

2.3.1. Image Generation
The SSAM used in this study describes the external femur shape using a point cloud, and describes

the appearance using images in the raw format. The shape and appearance parameters therefore
describe the relationships between the modes of variation and the point coordinates and pixel values.

New shapes are generated as follows [12]:

5
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⃗⃗⃗x = x̂+𝚽𝐬 ⃗⃗⃗bs (2.1)

where ⃗⃗⃗x is the generated shape, x̂ is the mean shape, 𝚽𝐬 is the matrix containing the main modes of
variation of the shape from the average values and ⃗⃗⃗bs is the vector containing the shape parameters
that relate to the different modes of variation of the shape.

The new appearance is generated in a similar fashion:

G = Ĝ+𝚽𝐆bG (2.2)

where G is the new appearance, Ĝ is the mean appearance, 𝚽𝐆 is main modes of variation of the
density distribution from the average values and bG is the matrix containing the appearance parameter
values for the different modes of variation.

To combine the generated shape with the generated appearance, Elastix [21, 22] is used to cal
culate the transform from the mean shape to the generated shape. This transform is then applied to
the generated appearance image, resulting in a generated bone morphology with a new shape and
appearance.

(a) (b) (c) (d)

Figure 2.1: Different shapes of the proximal femur after conversion to an Abaqus model. These shapes have been created using
the SSAM [19, 20].

2.3.2. Mesh Generation
The next step is to convert the generated image file into a volumetric voxel mesh. This is done by

first cropping the image file to the smallest cubic space that fits the femur. For this study, the growth
and remodeling in the proximal femur was of interest, and therefore only the top 2/7th of the femur
was included. At this point a reduction factor is introduced to decrease the number of elements that
are created, which is done to increase the computational efficiency of the model. A reduction factor
of 2 generally results in 50,000 to 65,000 elements. This was done using the Scipy package, and the
function ndimage.zoom, which rescales a matrix and recalculates the index values. Next, all possible
node coordinates are generated, based on the image size and spacing. Subsequently, the background
is filtered out, and for all pixel values larger than the background an element is created. Some shapes
created with the SSAM and turned into Abaqus models can be found in Figure 2.1.

(a) (b) (c)

Figure 2.2: Three different meshes created from one shape, with the reduction factor being: a) 1.0, which means every pixel in
the image has been turned into an element; b) 8.0; and c) 64.0. For all reduction factors, the shape of the femur remains intact,
however details disappear for higher reduction factors.

When the entire mesh has been generated, it is then written into an Abaqus input file, which can be
imported into Abaqus. This requires the nodal coordinates and the element to node connectivity.
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2.3.3. Growth Plate Generation
Next, the growth plate region needs to be defined. The growth plate is approximated to have a

spherical shape, as done by Roels et al [13]. The user needs to manually create two sets of nodes in
Abaqus, one of which contains the nodes in the larger region surrounding the growth plate, and one
that contains an approximation of the growth plate shape. The nodes to select are shown in Figure 2.3

(a) (b)

Figure 2.3: The selection of two node sets is shown to indicate the locations of these sets. a) the first node set is the HEADNEC
KNODES, which contains nodes in the femoral head and where it transitions into the neck. This region will contain the growth
plate, and the algorithm will restrict itself from only creating the growth plate in this region. b) The nodes selected to general
position of the growth plate. The algorithm will optimize the location and orientation of the growth plate center, so that the outer
surface intersects with the selected nodes.

This second set can be defined using as few as two nodes, at the lateral and medial sides of
the growth plate. A sphere is then fitted to the selected nodes, so that the radius and sphere center
coordinates, 𝐶, are calculated. Finally, the growth plate region will include all elements in the first set
that are within a distance Δ𝑅𝑚𝑎𝑥, of the outer surface of the sphere, such that:

Δ𝑅𝑖 = |𝑅 − 𝑟𝑖| ≤ Δ𝑅𝑚𝑎𝑥 (2.3)

where 𝑅 is the radius of the sphere, 𝑟𝑖 is the distance between the centroid of element 𝑖 and the sphere
center, and Δ𝑅𝑖 is the absolute difference between the two. The resulting growth plate sets, both for
nodes and elements, are shown in Figure 2.4.

(a) (b)

Figure 2.4: The created a) node set and b) element set for the growth plate. This set is created using the sets created in
Figure 2.3, using Equation 2.3

2.4. Loading Conditions
The loading conditions used were adapted from Bitsakos et al. [23], as used in Campoli et al.

[24]. The loads used are in accordance with the 10% cycle of gait step from [23], and can be found in
Table 2.1. The loads are adapted to percentage body weight, so that they can be used for children. The
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Table 2.1: The load magnitudes and directions of the used joint contact and muscle forces, obtained from [23] and scaled to a
body weight of 735 N, in accordance with [24].

Load Magnitude 𝑒𝑥 𝑒𝑦 𝑒𝑧
[%BW]

Hip contact force 267.5 0.206 0.436 0.876
Gluteus maximus 55.88 0.0915 0.572 0.815
Gluteus medius 44.06 0.176 0.570 0.802
Gluteus minimus 10.32 0.176 0.579 0.796
Piriformis 11.92 0.297 0.865 0.405
Adductor magnus 25.93 0.132 0.409 0.903
Adductor minimus 9.644 0.168 0.838 0.519

forces included in the 10 % gait cycle are the hip contact force and the following muscle forces: gluteus
maximus, gluteus medius, gluteus minimus, piriformis and adductor magnus and adductor minimus.
In Figure 2.5 the surfaces that need to be created are visualized. After creating these surfaces in the
model, their surface areas should be added to a text file which is automatically opened. This should be
done in the order described above and that of Figure 2.5.

(a) (b) (c)

(d) (e) (f) (g)

Figure 2.5: The highlighted surfaces indicate the region where the surfaces should be created for the following loads: a) the hip
contact force (HCF); b) the gluteus maximus; c) the gluteus medius; d) the gluteus minimus; e) the piriformis; f) the adductor
magnus; and g) the adductor minimus. The associated magnitudes and directions of the loads can be found in Table 2.1.

2.5. Material Model
The chosen material model is an isotropic linear elastic model, which uses the power law [25] for

the relationship between bone density and the stiffness of the bone. This power law is described as
[25]:

𝐸 = 𝐶 ∗ 𝜌𝛾 (2.4)

where 𝐸 is the Young’s modulus in MPa, 𝐶 is a constant, 𝜌 is the apparent bone density in g/cm−3and 𝛾
is the power constant. For the used material model, the values of 𝐶, and 𝛾 are dependent on the bone
apparent density. For 0.01 ≤ 𝜌 ≤ 1.2 the bone is assumed to be trabecular bone, and for 1.2 ≤ 𝜌 ≤ 2.0
the bone is regarded to be cortical bone. The values used for the trabecular bone are 𝐶𝑡, 𝛾𝑡, with a
poissons ratio, 𝜈𝑡, of which the values can be found in Table 2.2. For cortical bone 𝐶𝑐, 𝛾𝑐 and 𝜈𝑐, are
used, and their values can also be found in Table 2.2. The parameter values used in this study are
from previous studies [26–29].
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Table 2.2: An overview of the parameter values used for the material model.

Parameter Value Unit Parameter Value Unit

𝜌𝑚𝑖𝑛 0.01 g∗cm−3 𝛾𝑡 2.5 
𝜌𝑚𝑎𝑥 2.0 g∗cm−3 𝛾𝑐 3.2 
𝜌𝑡𝑐 1.2 g∗cm−3 𝜈𝑡 0.2 
𝐶𝑡 2014  𝜈𝑐 0.32 
𝐶𝑐 1763 

2.6. Bone Remodeling
The used internal remodeling model used here is based on the strain energy density, as proposed

by [30, 31] and used for inverse bone remodeling models by [32–37]. This strain energy density is
divided by the bone apparent density, as proposed by Huiskes et al [31]:

𝑆𝑖(𝑥, 𝑡) =
𝑈𝑖(𝑥, 𝑡)
𝜌𝑖(𝑥, 𝑡)

(2.5)

where 𝑆𝑖(𝑥, 𝑡) is the mechanical stimulus, 𝜌𝑖(𝑥, 𝑡) is the bone apparent density, 𝑈𝑖(𝑥, 𝑡) is the strain
energy density as defined by:

𝑈𝑖(𝑥, 𝑡) =
1
2 ⃗⃗⃗⃗𝝐𝐢(𝑥, 𝑡)⃗⃗ ⃗⃗𝝈𝐢(𝑥, 𝑡) (2.6)

where ⃗⃗⃗⃗𝝐𝐢(𝑥, 𝑡) is the vector containing the strain components and ⃗⃗ ⃗⃗𝝈𝐢(𝑥, 𝑡) is the vector containing all the
stress components.

The remodeling algorithm has a spatial influence that simulates the sensing function of the osteo
cytes, which senses the mechanical stimulus in nearby surrounding bone tissue. This method was
proposed by Mullender et al [38, 39], in the original theory the remodeling signal then became:

Φ𝑖(𝑥, 𝑡) =
∑𝑁𝑖=1 𝑓𝑖(𝑥)(𝑆𝑖(𝑥, 𝑡) − 𝑘)

∑𝑁𝑖=1 𝑓𝑖(𝑥)
(2.7)

where Φ𝑖(𝑥, 𝑡) is the remodeling signal, 𝑁 is the number of elements in the model, 𝑘 is a reference
signal constant, 𝑓𝑖(𝑥) is an exponential function:

𝑓𝑖(𝑥) = 𝑒−𝑑(𝑥)/𝐷 (2.8)

where 𝑑(𝑥) is the distance between two elements and 𝐷 is a parameter influencing the decay of the
sensing strength. Lower values for 𝐷 result in closer elements being relatively more influential than for
higher values of 𝐷.

The original theory [30–32, 38, 39] did not include a lazyzone in which bone remodeling does not
occur when the mechanical signal is close to the reference signal.

If onewere to include all elements in themodel for the osteocyte distance function, for every element,
the calculation would become computationally inefficient, because distant elements have nearly no
effect, because their 𝑓𝑖 value would become very low. Therefore the closest 𝑁𝑒𝑙,𝑖𝑛𝑐𝑙 elements are
selected for every element. In that case, Equation 2.7, becomes:

Φ𝑖(𝑥, 𝑡) =
∑𝑁𝑒𝑙,𝑖𝑛𝑐𝑙𝑖=1 𝑓𝑖(𝑥)𝑆𝑖(𝑥, 𝑡)

∑𝑁𝑒𝑙,𝑖𝑛𝑐𝑙𝑖=1 𝑓𝑖(𝑥)
(2.9)

And then the remodeling rate becomes:

𝑑𝜌(𝑥, 𝑡)
𝑑𝑡 = {

𝐵(Φ𝑖(𝑥, 𝑡) − (1 − 𝑙)𝑘) if Φ𝑖(𝑥, 𝑡) < (1 − 𝑙)𝑘
0 if (1 − 𝑙)𝑘 ≤ Φ𝑖(𝑥, 𝑡) ≥ (1 + 𝑙)𝑘
𝐵(Φ𝑖(𝑥, 𝑡) − (1 + 𝑙)𝑘) if Φ𝑖(𝑥, 𝑡) > (1 + 𝑙)𝑘

(2.10)

with 𝐵 being the time constant, 𝑙 is the lazy zone size and 𝑘 is the reference value in J/g. Equation 2.10
is visually represented in Figure 2.6.
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Figure 2.6: This figure contains the graphical representation of Equation 2.10, which contains the relationship between the
mechanical signal, strain energy density divided by the apparent density, and the infinitesimal change in the apparent bone
density.

The discretized change in the apparent bone density is then:

Δ𝜌(𝑥, 𝑡) = 𝑑𝜌(𝑥, 𝑡)
𝑑𝑡 Δ𝑡 (2.11)

And the new apparent bone density becomes:

𝜌(𝑥, 𝑡 + 1) = 𝜌(𝑥, 𝑡) + Δ𝜌(𝑥, 𝑡) (2.12)

The values used for all parameters are given in Table 2.3 below. The values were determined using a
sensitivity analysis, which can be found in section 3.2.

Table 2.3: An overview of the parameter values used for the remodeling algorithm.

Parameter Value Unit

𝐵 50.0 
𝑆𝑟𝑒𝑓 3.0 × 10−03 [J/g]
𝑙 0.3 
𝐷 1.0 [mm]
𝑁𝑒𝑙,𝑖𝑛𝑐𝑙 50 

2.6.1. Remodeling Algorithm
The remodeling algorithm consists of five main components, the Python script which manages the

simulation and starts the analyses from the command window, the Abaqus finite element solver, the
usersubroutine written in Fortran 95, a text file containing the initial apparent densities for all elements
and a text file containing the values for 𝑓𝑖(𝑥), see Equation 2.8. To save information between elements
the usersubroutine utilizes amodule, which is a package which can be used to store data and functions.
This module contains the remodeling parameters, paths to the text files, stimulus data for all elements,
values of 𝑓𝑖(𝑥) for every element and the associated element numbers.

2.7. Bone Growth
Growth can be subdivided into biological growth and mechanical growth. Here the mechanical

growth is dependent on the mechanical environment, while the biological growth is dependent on the
biological environment. For this study, the biological growth is a constant, equal to 0.36 mm/step, as
also found in [1], and used the method proposed by [10] and as used by Carriero et al [1] and Yadav
et al [11]. The subdivided growth then becomes:

̇𝜖 = ̇𝜖𝑏 + ̇𝜖𝑚 (2.13)
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2.7.1. Mechanical Growth
While the biological growth is often considered to be either constant or agedependent, the me

chanical growth can be calculated with [10]:

̇𝜖𝑚 = 𝑎 ∗ 𝜎𝑆𝑖 + 𝑏 ∗ 𝜎𝐻𝑖 (2.14)

where 𝑎 and 𝑏 are constants, where the ratio 𝑏/𝑎 should be between 0.3 and 1 [1, 10, 11], and is often
chosen to be 0.5 [1, 10, 11]. Additionally, 𝑎 is chosen to be 0.02 month−1MPa−1, and b to be 0.01
month−1MPa−1 [1, 10, 11]. 𝜎𝑆𝑖 is the octahedral shear stress, defined as:

𝜎𝑆𝑖 =
(𝜎𝑝,1 − 𝜎𝑝,3)2 + (𝜎𝑝,1 − 𝜎𝑝,2)2 + (𝜎𝑝,2 − 𝜎𝑝,3)2+

3 (2.15)

and 𝜎𝐻𝑖 is the hydrostatic stress, defined as:

𝜎𝐻𝑖 =
𝜎𝑝,1 + 𝜎𝑝,2 + 𝜎𝑝,3

3 (2.16)

2.7.2. Growth Direction
Next the growth direction should be calculated, which was done using the direction of the maximum

principal stress, first performed in Yadav et al [11]. This is done in the following way:

ug,i(𝑥, 𝑡) =
𝐮𝝈𝐩𝟏,𝐢(𝑥, 𝑡)
|𝐮𝝈𝐩𝟏,𝐢(𝑥, 𝑡)|

(2.17)

where ug,i(𝑥, 𝑡) is the growth direction and 𝐮𝝈𝐩𝟏,𝐢(𝑥, 𝑡) is the direction of the maximum principal stress.
This should then be multiplied with the growth magnitude to obtain the expansion coefficients.

In a previous study [1] a different growth plate thickness was used, and this should be compensated
for. This is done using an added growth factor, 𝑐𝑔. The growth then becomes:

e = [
e𝑥
e𝑦
e𝑧
] = 𝑐𝑔 ̇𝜖 ug (2.18)

with the growth factor, 𝑐𝑔 defined as:

𝑐𝑔 = 𝑓
𝑙1
𝑙2

(2.19)

where 𝑓 is the amplification factor, 𝑙1 is the growth layer thickness in Carriero et al [1], and 𝑙2 is the
current approximate growth plate thickness. The the amplification factor 𝑓, was added to artificially
increase the growth, as originally the growth simulated was negligible. With 𝑓 = 4.0 the growth was
comparable to other studies, see chapter 4.

𝑙2 = 2Δ𝑙𝑚𝑎𝑥 (2.20)

The parameter values used for the growth model can be found in Table 2.4 below.

Table 2.4: An overview of the parameter values used for the growth algorithm.

Parameter Value Unit

𝑎 0.02
𝑏 0.01
𝑓 4.0
𝑙1 0.109375 mm
Δ𝑙𝑚𝑎𝑥 2.0 mm
𝑐𝑔 0.0530
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2.7.3. Spatial Smoothing
During the project, it was discovered that the used methodology was sensitive to mesh distortion,

due to elements collapsing or invading other elements. In many cases nearby elements had large
differences in osteogenic index, causing a large difference in growth magnitude and direction. Because
of this, a spatial influence, equivalent to that used in the remodeling algorithm [38, 39], was introduced.
This works as a type of spatial smoothing and was applied to both the magnitude and the direction of
the growth.

𝜖 = 𝑐𝑔 (𝜖𝑏 +
∑𝑁𝐺𝑃𝑖=1 𝑓𝑖(𝑥)𝜎𝑆𝑖(𝑥, 𝑡) + ∑

𝑁𝐺𝑃
𝑖=1 𝑓𝑖(𝑥)𝜎𝐻𝑖(𝑥, 𝑡)

∑𝑁𝐺𝑃𝑖=1 𝑓𝑖(𝑥)
) ∗

𝑁𝐺𝑃
∑
𝑖=1

𝑓𝑖(𝑥)ug,i(𝑥, 𝑡) (2.21)

After applying the smoothing function, the growth algorithm encountered mesh distortion errors
only very rarely, and it was able to complete all growth simulations for the prescribed number of growth
increments.

2.7.4. Growth Algorithm
The growth algorithm consists of multiple different Python functions, that collectively read the re

modeling results to obtain the required stresses in the growth plate, calculate the resulting expansion
coefficients, write an Abaqus input file for the growth simulation, and one to start the growth simulation.

The function used for loading the remodeling results is used for all processes where Abaqus simu
lation results are needed. It searches the .datfile created by the simulation for the desired information,
in this case the stress components. In the .datfile these can be found by by a string containing ”S11”,
”S12”, et cetera. The program reads all values for these stress components, and passes those to the
next function.

The next function uses information on the mesh, from the global memory; the stresses; and the
growth parameters to first calculate the growth factors, 𝑐𝑔 and 𝑙2. Next, it calculates the exponential
distances between all elements in the growth plate. Then all the principal stresses and resulting 𝜎𝑆𝑖 and
𝜎𝐻𝑖 are calculated, as well as the initial growth direction for every element. The function then calculates
the expansion coefficients using Equation 2.21.

These expansion coefficients are then passed to the function that writes the Abaqus input file for the
growth simulation. This simulation needs to have a Coupled Temperaturedisplacement analysis, with
C3D8T elements. All nongrowing bone is assigned a low Young’s modulus of 50.0 MPa, a poisson’s
ratio of 0.3, heat conductivity of 0.0 W∙m−1∙K−1, heat capacity of 1.0E3 J/K, density of 1.0 g cm−3, and
expansion coefficients of 0.0 in all directions. For every element in the growth plate a material definition
and section assignment is made. All elements in the growth plate have their orthotropic expansion
coefficients defined by the previous function. Additionally, the following material properties are used:
Young’s modulus of 5000.0 MPa, a poisson’s ratio of 0.49, heat conductivity of 0.0 W∙m−1∙K−1, heat
capacity of 1.0E3 J/K, density of 1.0 g cm−3. The expansion is performed using a boundary condition
on degree of freedom number 11, which is the temperature, on all elements in the growth plate, using
a temperature of 1.0. Additionally the model is fixed at the distal end, to prevent any other translation
or rotation. More lines are added to instruct Abaqus to write a .datfile with all nodal displacements.
Finally, the simulation is submitted by Python to the Abaqus solver.

When the simulation has been completed, the nodal displacements are read and added to the
original nodal coordinates of all nodes in the model. The model geometry is then updated, so that the
model used for remodeling has the new mesh.



3
Results: Remodeling

The first chapter of the results is on the remodeling results. This chapter contains a mesh con
vergence study, sensitivity analysis and comparative analysis where the density distributions resulting
from the the current algorithm are compared to density distributions from previous studies.

3.1. Convergence
First, the remodeling algorithm and 3D finite element model are studied to determine their behaviour

for different element sizes. Both the remodeling algorithm and the growth algorithm use stress as a (part
of the) mechanical stimulus used to determine the adaptation. Additionally, the remodeling algorithm
also uses strain, to calculate the strain energy density.

3.1.1. Stresses
The first measure used to determine at what mesh fineness the stress has converged is three stress

values in the model, at 𝑡 = 0 seconds. This is before the remodeling algorithm start to influence the
stress distribution through the bone. As can be seen in Figure 3.1, the stresses at the transition from
the outer neck to the greater trochanter converge at approximately 5.0×104 elements. When excluding
the distal region where the boundary conditions are applied, the maximum stresses are found in the
inner neck region. This maximum stress also converges at the same number of elements. Lastly, the
minimum stresses anywhere in the model, decreased with an increasing number of elements.

(a) (b) (c)

Figure 3.1: Different stresses for different number of elements in the model are given: a) von Mises stress at the transition
between the greater trochanter and the superior neck region; b) maximum von Mises stress in the inferior neck region; and c)
the minimum von Mises stress in the model, in all cases found near the greater trochanter.

3.1.2. Density distribution
Next, it is examined how the bone density distribution is affected by the mesh size. This is done

visually, as well as checking both the mean and the standard deviation of the bone density distribution.
The mean and standard deviation, as well as their derivatives, can be found in Figure 3.2. It is observed
that at 𝑡 = 100 the mean density is highest in the finest mesh, while the lowest mean density is observed
in the least fine mesh. The standard deviation is very similar for all meshes, furthermore there is no

13
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clear pattern of a decrease or increase in standard deviation for an increasing number of elements in
the model. The closer the derivatives of the mean and standard deviation are to 0, the closer the model
is to reaching remodeling convergence. Both the derivatives behave almost equally for all meshes, and
are moving towards reaching convergence at a similar rate.

Figure 3.2: Different characteristics of the bone density for different mesh sizes. a) The mean density of the bone; b) the standard
deviation of the bone density; c) change in mean density over time; and d) the change in standard deviation of the density over
time.

When visually examining the outer surface of the femur, see Figure 3.4, it can be observed that high
densities occur in the same regions in all models. Slight variations are expected, since the surfaces
on which the loads are applied are individually applied by a human. Therefore, the exact locations and
surface areas have some variance. Despite these human induced variance the density distributions
present little differences betweenmodels. Themost notable changes betweenmodels are the thickness
and location on the hip load contact force, the gluteus maximus and the gluteus medius.

When visually examining a crosssection of the femur, see Figure 3.5, it is again observed that the
density distributions are similar. In the case of the crosssection the most notable changes are the
increase of details for smaller element sizes, the blocked structure in the rougher meshes and the less
well defined dense bone regions in the distal lateral region. Again slight variations in the locations of
certain dense bone structures can be expected, due to the human induced uncertainty on the load
locations.

3.1.3. Computational time required
Lastly, it is important to analyze the required time to complete the remodeling analyses for the

different meshes. If done correctly, a finer mesh should always improve the quality of the results,
however it will also increase the time needed to complete the simulations. As can be seen in Figure 3.3,
the time increases slightly exponentially with an increasing number of elements. As a result of this,
running simulations with over 50,000 elements quickly becomes inefficient.
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Figure 3.3: The computational time required to complete a full analysis, including the computation of the osteocyte distance
function. The current algorithm (black) is compared to both a linear blue and an exponential red increase in computational time.

Figure 3.4: The resulting density distribution on the outer surface of the bone, for four different meshes with number of elements:
a) 400381; b) 49895; c) 14623; and d) 6187

Figure 3.5: The resulting density distribution in the coronal plane of the bone, for four different meshes with number of elements:
a) 400381; b) 49895; c) 14623; and d) 6187
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3.2. Sensitivity analysis
In this sensitivity analysis on the remodeling parameters the effect of changes in these parameters

is explored. The parameters of interest are: 𝑘, the reference constant; 𝐵, the timeconstant; 𝐷, the
osteocyte distance coefficient; 𝑙, the lazyzone size; 𝑁𝑖𝑛𝑐𝑙, the number of included nearby elements in
the osteocyte weighting function; and 𝑓, a force factor multiplier.

3.2.1. 𝑘, the Reference Signal Constant
The reference signal constant, 𝑘, influences the equilibrium point of remodeling. A higher value of

𝑘 will result in less dense bone, while a lower value for 𝑘 results in higher densities.
As can be seen in Figure 3.6, the mean density increases with lower values for 𝑘. The standard

deviation initially increases as 𝑘 increases, however near a maximum of 𝑘 = 2.0 × 10−4 J/g the STD
decreases again. For low values of 𝑘 much of the bone has the maximum density, with few areas of
low density bone, therefore the standard deviation is low. As 𝑘 increases, more low density regions
start to form, increasing the STD. As 𝑘 increases further, much of the high density bone starts to be
converted into low density bone, decreasing the standard deviation.

Visually, it is observed in Figure 3.7 that the variance is highest around 𝑘 = 2.0 × 10−4 J/g, with
more dense bone for low values of 𝑘 and more low density bone for higher values of 𝑘.

Figure 3.6: Different general measures on the apparent bone density distribution: a) the mean apparent density; b) the standard
deviation of the apparent density; c) the derivative of a) the mean density; and d) the derivative of b) the standard deviation of
the density. These are used to compare the sensitivity of the remodeling model to the influence of the reference 𝑆𝐸𝐷

𝜌 , known as
𝑘.
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Figure 3.7: Density distributions for different values of 𝑘 by increasing order.
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3.2.2. 𝐵, the Time Constant
The time constant, 𝐵, influences the speed of remodeling. A higher value of 𝐵 will result in faster

remodeling, but when the value of 𝐵 is too large instabilities are to be expected. When the value for 𝐵
is too low, the simulation will take an excessive amount of time to reach the equilibrium.

As can be observed in Figure 3.8, for low values of 𝐵 the model is not yet close to equilibrium after
600+ simulation steps, while for higher values of 𝐵 the algorithm clearly reaches the equilibrium faster.
This can be seen by checking the convergence of both the mean and standard deviation of the bone
densities over time. In general, the mean bone density first overshoots the equilibrium value, after
which it decreases to the equilibrium. The 𝐵 seems to have a small influence on the equilibrium mean
bone density, this can be due to the propagation of small differences between the models. It can be
seen that using the value of 𝐵 = 1000.0 results in a model where the mean density at the first time point
is close to the maximum bone density, however afterwards it decreases and reaches an equilibrium
close to that of the other 𝐵 values. Using 𝐵 = 10000.0 resulted in an unstable model that oscillated
between a very high and low mean bone density. The standard deviation continuously increases for
all values of 𝐵, until the equilibrium is reached. Again, using higher values of 𝐵 results in reaching the
equilibrium value for the STD faster.

Figure 3.8: Different general measures on the apparent bone density distribution: a) the mean apparent density; b) the standard
deviation of the apparent density; c) the derivative of a) the mean density; and d) the derivative of b) the standard deviation of
the density. These are used to compare the sensitivity of the remodeling model to the influence of the time constant, 𝐵.

From Figure 3.9 it is clear that there are clear differences between the resulting density distributions
for all values of 𝐵. One important factor in this is that these distributions were obtained at 𝑡 = 800 for
𝐵 = 1.0, 𝑡 = 400 for 𝐵 = 10.0, and 𝑡 = 400 for the other values of 𝐵.

An interesting observation was made when using the distributions at the time where the mean bone
density is at the maximum value. These distributions can be found in Figure 3.10. At this point, most
density distributions are visually similar. Only when using values of 𝐵 > 100.0 it is observed that the
bone becomes excessively dense.

All models start with the density distribution obtained from the statistical shape and appearance
model, and therefore the initial distributions should be close to that obtained from the remodeling algo
rithm. From 𝑡 = 0 till 𝑡 = 𝑡𝜌𝑚𝑎𝑥 , the cortical bone regions increase their density, while the inner parts
of the bone are close to the equilibrium, and therefore do not undergo much remodeling. When the
cortical bone has developed, this slowly changes and the inner density is removed along a moving line.
The remodeling process can therefore be subdivided into two phases: the cortical bone development
phase, and the trabecular bone removal phase.
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Figure 3.9: Density distributions for different values of the time constant, 𝐵, by increasing order.

Figure 3.10: Density distributions taken at the time point where the mean of the density is at the maximum for different values of
the time constant, 𝐵, in increasing order.
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3.2.3. 𝐷, the Osteocyte Distance Coefficient
For the influence of nearby elements on the remodeling algorithm, 𝐷 determines the rate of spatial

decay. A higher value of 𝐷 results in a larger area of influence. When the vale of 𝐷 is too low, a
checkerboard pattern is expected.

When analyzing the mean and standard deviation of the density distribution, see Figure 3.11, it
is clear that the mean density increases as the distance factor is increased. However, the standard
deviation remains very similar for all values of 𝐷. The derivatives of both the mean and the standard
deviation show significant differences when 𝐷 changes.

Figure 3.11: Different general measures on the apparent bone density distribution: a) the mean apparent density; b) the standard
deviation of the apparent density; c) the derivative of a) the mean density; and d) the derivative of b) the standard deviation of
the density. These are used to compare the sensitivity of the remodeling model to the influence of the osteocyte distance, 𝐷.

Figure 3.12 can be used to observe the differences in the density distribution in a cross section of
the femur. For low values of 𝐷 the distribution is not smooth and there are some regions of denser bone
surrounded by regions of low density bone. For higher values the distribution is smoother, however in
the femur head large regions of cortical bone develop. When compared to other studies, see 3.3, it can
be seen that this not usually observed.
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Figure 3.12: Density distributions for different values of the osteocyte distance, 𝐷, in increasing order.
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3.2.4. 𝑙, the LazyZone Size
The lazy zone size determines how large difference between the mechanical signal, Φ𝑖(𝑥, 𝑡) and

reference signal 𝑘, must be before a change in density is applied. It is expected that a larger value of
𝑙 results in a simulation that converges sooner. However, elements will stop remodeling sooner, not
completely reaching their equilibrium.

In Figure 3.13 it can be seen that as the lazy zone size increases the mean bone density increases,
while the standard deviation is decreased. In the derivatives of both the mean and standard deviation
of the bone density it is seen that for larger values of 𝑙 the derivatives are closest to 0 at almost all
times. This means less changes are happening throughout the model, therefore reaching convergence
sooner.

Figure 3.13: Different general measures on the apparent bone density distribution: a) the mean apparent density; b) the standard
deviation of the apparent density; c) the derivative of a) the mean density; and d) the derivative of b) the standard deviation of
the density. These are used to compare the sensitivity of the remodeling model to the influence of the lazy zone, 𝑙.

In Figure 3.14, it can be seen that for 0.00 ≤ 𝑙 ≤ 0.10 too much remodeling occurs. In the femur
head the low density and high density regions are too close to each other, and the structures are
relatively small. For 𝑙 = 0.50, in the center of the crosssection there is still bone, which is unexpected
and should be remodeled more. However, as can be seen in Figure 3.13, it can be seen that for this
value of 𝑙 the model has almost reached convergence. Therefore, it is not expected that this structure
will be removed when prolonging the simulation time.
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Figure 3.14: Density distributions for different values of the lazy zone size, 𝑙, in increasing order.
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3.2.5. 𝑁𝑖𝑛𝑐𝑙, the Number of Included Nearby Elements
The number of included elements in the osteocyte function should be sufficient to describe the

nearby loading environment, however since the further away elements have little influence, these
should have a small influence. Increasing 𝑁𝑖𝑛𝑐𝑙 yields diminishing returns, while the required com
putational power required increases. From Figure 3.15 it is clear that there is negligible change in the
convergence rates and the standard deviation of the density distribution. There is a small change in
the mean densities, where higher values of 𝑁 result in slightly increased mean densities.

Figure 3.15: Different general measures on the apparent bone density distribution: a) the mean apparent density; b) the standard
deviation of the apparent density; c) the derivative of a) the mean density; and d) the derivative of b) the standard deviation of the
density. These are used to compare the sensitivity of the remodeling model to the influence of the number of nearby elements
included in the osteocyte distance function, 𝑁𝑖𝑛𝑐𝑙.

In Figure 3.16, it can be observed that visually there are no noticeable differences when comparing
the density distributions. It can therefore be concluded that 𝑁 = 50 is a sufficiently large amount of
nearby elements, because the mean of the density shows a small difference, the standard deviation
and convergence rates show no significant change and visually no differences are visible. In that case
the smallest value for 𝑁 is chosen for optimal numerical efficiency.
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Figure 3.16: Density distributions for different values of the number of nearby elements included in the osteocyte distance
function, 𝑁𝑖𝑛𝑐𝑙, in increasing order.
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3.2.6. 𝑓, force multiplication factor
This is a factor by which all forces are multiplied. It is not directly a component of the remodeling

algorithm, however the remodeling algorithm should respond correctly to different load magnitudes.
Since the increased loads should increase both the stress magnitudes as well as the strain magnitudes,
the average density is expected to increase as well. In Figure 3.17, it can be seen that changing the
force multiplication factor, 𝑓, results in no unexpected behaviour. The mean of the density develops in
a similar fashion for all values of 𝑓. The standard deviation also develops in a predictive and expected
manner.

Figure 3.17: Different general measures on the apparent bone density distribution: a) the mean apparent density; b) the standard
deviation of the apparent density; c) the derivative of a) the mean density; and d) the derivative of b) the standard deviation of the
density. These are used to compare the sensitivity of the remodeling model to the influence of the load magnitude multiplication
factor, 𝑓.

As can be seen in Figure 3.18, no unexpected behaviour appears when 𝑓 is varied. The distribution
generally becomes denser when 𝑓 is increased. In the center of the neck and centre of bone more
dense bone starts to appear as well.

Figure 3.18: Density distributions for different values of the load magnitude multiplication factor, 𝑓, in increasing order.
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3.3. Comparative analysis
The results of the remodeling model used in this study is compared to those of many previously

proposed remodeling algorithms. This comparison is done mostly visually, because the absence of
density information for individual elements in previous studies. Different studies also often use different
loading conditions, which can result in slightly different density distributions. Three different studies
were chosen for validation of the remodeling model: Campoli et al. [24], Garijo et al. [40] and Fischer
et al. [41].

3.3.1. Campoli et al.
The developed remodeling algorithm is first compared to that of Campoli et al. [24]. It uses the

maximum principal strain as the remodeling stimulus and uses the same loading conditions. Figure 3.19
contains the density distributions of both the study performed by Campoli et al. [24] and the density
distribution resulting from this study. Compared to the resulting bone density distribution of Campoli et
al. [24], the new remodeling algorithm hasmore cortical bone in themedial distal shell, while having less
in the lateral distal shell. The density in the femur head has a higher maximum and a lower minimum.
With the used density distribution many patterns of the distribution are not visible. However the main
distinctions between cortical and trabecular bone are similarly positioned, with only Campoli et al. [24]
predicting more cortical bone near the greater trochanter. Additionally, Garijo et al [40] provided the
bone density distribution obtained from a CTscan. When comparing the density distribution calculated
by the new algorithm to the scan, there are multiple significant differences: the inner regions of the
bone are more dense in the scan, the highest density region of the scan is thinner and the bone density
in the head is lower in the scan. However, the the remodeling algorithm is able to predict the correct
locations of the cortical bone.

(a) (b)

(c) (d)

Figure 3.19: a) The density distribution obtained from a CTscan; b) the result from the remodeling algorithm. Both modified,
from Campoli et al. [24]; c) The remodeling result from the used remodeling algorithm at the increment where the mean bone
density is at a maximum; and d) the resulting bone density distribution after 400 increments.

The loading conditions used in Campoli et al. [24] are similar to the ones used in the current study,
as discussed in section 2.4. It is important to note the difference in shape of the proximal femur: the
one used by Campoli et al. [24] has a larger greater trochanter, the neck axis angle is smaller and
includes a larger region of the distal femur. It also does not include the growth plate, which has a lower
stiffness than the surrounding bone.

There are two points in the development of the density distribution at which the density distribution
can be compared to that of Campoli et al [24]: when the remodeling has sufficiently converged and
when the mean density is at a maximum. As described in subsection 3.2.2, when the mean density
is at a maximum, the cortical bone regions have been remodeled, but the trabecular regions have not
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undergone much change yet. If we compare the distribution at the maximum mean density, it can be
seen that the density in the head is similar to that found in Campoli et al. [24], while the rest of the
density distribution remains outside the used limits for the density.

3.3.2. Garijo et al.
The remodeling algorithm used by Garijo et al. [40] uses the same minimum and maximum bone

density as the developed remodeling algorithm. The remodeling method of Garijo et al. [40] uses the
technique proposed by Beaupré et al. [42, 43]. Figure 3.20 contains the density distribution generated
by Garijo et al [40] and those by the developed remodeling algorithm. The developed remodeling al
gorithm predicts similar densities in the cortical bone regions, but a lower density in the inner regions.
Distal from the greater trochanter both models predict the existence of a thin region of higher density
bone. In the lateral greater trochanter, Garijo et al [40] predict more dense bone than the new remod
eling model. The density distribution take at time of the maximum mean bone density has a higher
inner bone density, however this can be attributed to the use of the SSAM, and not to the remodeling
algorithm. It however, does predict a more similar density distribution in the femur head.

The shape of the femur from Garijo et al [40] is a highly simplified 2D femur, with a smaller neck
axis angle and thicker femur head. Because of the 2D model, all relevant loads are added to this slice,
while the 3D model from this study has loads in different locations. A fully equivalent cross section of
the 3D model is therefore not available. For example, the higher density bone at the greater trochanter
is found in a different cross section of the 3D model.

(a)

(b) (c)

Figure 3.20: a) Result from Garijo et al. [40]; b) the density distribution at the maximum mean density; and c) the density
distribution after 400 increments.

3.3.3. Fischer et al.
Fischer et al. [41] uses the same remodeling model as Garijo et al [40], which is the model by

Beaupré et al [42, 43]. In Figure 3.21, when comparing the scans and simulated density distribution
obtained by Fischer et al [41] to that of the current study, it is clear that the distribution predicted by the
developed model is closer to the scans than the original remodeling algorithm from Fischer et al [41].
The densities in all regions except for the greater trochanter and inferior femur head are very similar.
The predicted distribution by Fischer et al [41] generally predicts a density which is too low.

When using the predicted density distribution at the time where the mean density is at the maximum,
the inner bone density is higher than that of the scans, however the density in the head is more similar
to that of the scans, than when using the converged density distribution.

The shape of the femurs from Fischer et al [41] are obtained from QCTscans, with a smaller neck
axis angle and thicker femur head. Again a 2D model is used, due to this all relevant loads are added
to this slice, while the 3D model from this study has loads in different locations. A fully equivalent cross
section of the 3D model is therefore not available. For example, the higher density bone at the greater
trochanter is found in a different cross section of the 3D model.
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(a) (b)

(c) (d)

Figure 3.21: a) The density distribution obtained from a CTscan; b) the result from the remodeling algorithm. Both modified,
from Fischer et al. [41]; c) the density distribution at the maximum mean density;and d) The remodeling result from the used
remodeling algorithm.

3.3.4. Conclusion
When considering all differences and similarities between the developed remodeling algorithm and

those from previous studies, the following differences occur for all comparisons: the predicted bone
density in the femur head is generally too high; the predicted bone density in the bone center is generally
too low, the predicted bone density in the superior greater trochanter is generally too low, however this
more dense bone region is found in another cross section; and the bone density around the growth
plate is too high, which is partly due to the lower stiffness of the growth plate. This increases the strain,
which is part of the remodeling stimulus.

Similarities found with all the three studies [24, 40, 41] are: the densities and thicknesses of cortical
bone regions in the distal femur, and inner neck region; the existence of cortical bone in the outer neck
region.

In general the remodeling algorithm from this study does not show extreme differences when com
pared to other remodeling models used for inverse remodeling models, as these show large differences
when compared to each other as well.





4
Results: Growth

Different growth simulations were performed, which can be subdivided into three categories. The
chapter starts with a mesh convergence study, where the effect of the mesh size on the growth is
analyzed. Next is a comparative analysis, in which the results from the model created in this study is
compared to results from previous studies. The third section is on a hip contact force (HCF) sensitivity
analysis, which compares the resulting growth for different magnitudes of HCF. The last section is on
an application of the growth model to a bone model obtained from MRIscans from two children. The
predicted growth is then compared to the growth observed in the followup MRIscan. The primary
measure of growth used for this study is the change in neck axis angle and when available the change
in femoral anteversion.

4.1. Mesh convergence
Unfortunately, the mesh seems to have only a minor influence on the current behaviour of the growth

mechanics. Realistic growth results can be achieved with both a rough and a fine mesh. However,
unrealistic changes in neck axis angle can also be found. There are many factors that influence the
growth behaviour, and since the growth plate is generated separately for every model, its’ orientation
and position vary significantly between models. Furthermore, some models distort faster than others,
and mesh seems to not play a significant role in this behaviour.

The angle changes found in Table 4.1, were performed with the remodeled bone at full stiffness. It
is clear that the 𝑁𝐴𝐴 growth direction is correct, while the magnitude is a lower than expected. For the
𝐹𝐴 the direction is incorrect, but the magnitude in the right order of magnitude.

Table 4.1: Different changes in neck axis angle, 𝑁𝐴𝐴, and femoral anteversion, 𝐹𝐴, for different mesh size. For these results, a
non remodeling bone was used, with a constant high stiffness, corresponding to bone at 2.0 g/cm−3.

Number of elements Δ𝑁𝐴𝐴 [deg] Δ𝐹𝐴 [deg] Steps before distortion

6187 0.10 0.026 9
14623 0.13 0.058 10
49895 0.074 0.0020 3

However, the goal was to create a model that would combine the internal remodeling and the lon
gitudinal growth in the bone. Therefore, the surrounding bone should be remodeled, and have a het
erogeneous stiffness. It is clear that the bone growth algorithm can achieve changes in the angle of a
similar size to other studies [1, 11]. The other studies were performed using homogeneous bone stiff
ness surrounding the growth plate, while next the bone growth will be examined surrounding remodeled
bone.

In Table 4.2, the same model is used with remodeled bone. Here it is found that the change in 𝑁𝐴𝐴
is positive, which was negative before, as well as in other studies [1, 11]. The change in 𝐹𝐴 is much
larger than expected. It is clear that the growth, when combined with remodeling does not correctly
predict growth patterns, regardless of the mesh used.

31
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Table 4.2: Different changes in neck axis angle, 𝑁𝐴𝐴, and femoral anteversion, FA, for different mesh size. For these results, a
remodeling bone was used.

Number of elements Δ𝑁𝐴𝐴 [deg] Δ𝐹𝐴 [deg] Steps before distortion

14623 0.26 0.37 7
24644 0.31 0.54 9
49895 0.15 0.08 5

4.2. Comparative analysis
Next, for three shapes the change in 𝑁𝐴𝐴 and 𝐹𝐴 are compared to values found in other studies [1,

11]. The models chosen all had around 50 thousand elements, and we therefore sufficiently converged
for remodeling. The stresses in those models had also sufficiently converged.

Shape a (Res1RF2) had Δ𝑁𝐴𝐴 of 0.085 degrees and Δ𝐹𝐴 of 0.0054 degrees and it completed 9
growth steps. The density distributions of this shape can be found in Figure 4.1a. The first density
distribution is that after 30 remodeling steps, and the second distribution after 8 growth steps. After the
final growth step, the model has been distorted, and for this reason it cannot be used again for remod
eling. No significant remodeling is seen after the growth has been applied. Shape b (Res2RF1.95) had
Δ𝑁𝐴𝐴 of 0.031 degrees and Δ𝐹𝐴 of 0.022 degrees and it completed in 10 growth steps. The density
distributions of this shape can be found in Figure 4.1b. The first density distribution is that after 30
remodeling steps, and the second distribution after 9 growth steps. For this model too, no noteworthy
change in density distribution is observed.

Concluding, for all shapes, the change in 𝑁𝐴𝐴 was in a direction that is not in accordance with other
studies [1, 11]. The magnitude of Δ𝑁𝐴𝐴 in shapes a and b were minor, and for c large. The changes
in femoral anteversion were minor in all cases and in the correct direction. The growth did not seem to
have a significant impact on the remodeling after a few remodeling steps.

(a) (b)

Figure 4.1: The combined growth and remodeling models for different shapes, orientations and locations of the growth plate.
For every shape, first the shape and appearance is shown before growth, and secondly after growth.

4.3. Hip contact force sensitivity
Different HCF magnitudes should influence both the Δ𝑁𝐴𝐴 and Δ𝐹𝐴, because the stress distribution

in the growth plate changes with different HCF magnitudes. For this HCF sensitivity analysis, five
different values for the HCF were used: f = [0.50, 0.75, 1.00, 1.25, 1.50], with

FHCF,i = 𝑓𝑖 ∗ FHCF (4.1)

Here FHCF is the normal hip contact force, and FHCF,i is the applied HCF.
All other parameters are kept constant, therefore the HCF sensitivity analysis provides valuable

information on the behaviour of the growth algorithm.
The results of the HCF sensitivity analysis can be found in Table 4.3. From the results, it can

be concluded that little change is seen in the Δ𝑁𝐴𝐴 between 𝑓 = 0.50 (Δ𝑁𝐴𝐴 = 0.014∘) and 0.75
(Δ𝑁𝐴𝐴 = 0.013∘). Between 𝑓 = 0.75 and 𝑓 = 1.25 the Δ𝑁𝐴𝐴 increases significantly with Δ𝑁𝐴𝐴 = 0.031∘
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at 𝑓 = 1.00 and Δ𝑁𝐴𝐴 = 0.053∘ at 𝑓 = 1.25. Between 𝑓 = 1.25 and 𝑓 = 1.50 the Δ𝑁𝐴𝐴 decreases to
0.037∘.

For the change in femoral anteversion the Δ𝐹𝐴 first increases slightly from Δ𝐹𝐴 = 0.026∘ at 𝑓 = 0.50
to Δ𝐹𝐴 = 0.031∘ at 𝑓 = 0.75. Subsequently, it decreases to Δ𝐹𝐴 = 0.022∘ at 𝑓 = 1.00. It decreases
further to Δ𝐹𝐴 = 0.019∘ at 𝑓 = 1.25 and Δ𝐹𝐴 = 0.012∘ at 𝑓 = 1.50.

In conclusion, the growth algorithm is not sufficiently sensitive to the changes in the HCF. Currently,
the model seems to be more sensitive to random variabilities than to the HCF. This can be because the
biological growth is a much larger component of the growth than the mechanical component, however
the mechanical component is already amplified using growth factor 𝑐𝑔.

Table 4.3: The influence of the force magnitude multiplication factor on the change in neck axis angle, Δ𝑁𝐴𝐴, and the femoral
anteversion, Δ𝐹𝐴. Additionally, the number of completed growth steps is given. All values for the change in the angles was
taken after 5 steps of growth.

𝑓 Δ𝑁𝐴𝐴 [deg] Δ𝐹𝐴 [deg] Steps before distortion

0.5 0.014 0.026 10
0.75 0.013 0.031 10
1.00 0.031 0.022 10
1.25 0.053 0.019 8
1.50 0.037 0.012 7

4.4. MRIscan validation
MRIscans were obtained from two children at two different times, two years apart, resulting in four

MRIscans. This provided two possibilities for comparing the growth in a real growing bone over two
years, with the growth model over five months. In order to compare the pilot scans to the follow up
scans, Mimics 21.0 Research was used to obtain the 𝑁𝐴𝐴 from 15 different slices for each scan. This
was done by fitting a circle to the femur head in the coronal plane. Next, a line was drawn from the
midpoint of the created circle to a point on the outer surface distal to the greater trochanter. Where
the distance from the midpoint of the circle to this surface was smallest the point was placed. Next a
line was drawn in the medial direction, the neck axis angle was then computed as 90 degrees plus the
angle between the medial axis and the axis from the point to the center of the circle. The mean neck
axis angle of all fifteen measurements was taken as the neck axis angle for that scan. This process
can be observed in Figure 4.2. To determine the femoral anteversion one measures the angle between
the knee axis and the femoral neck axis in the transverse plane. The angles were then compensated
for the adduction in the femur, which was larger in the pilot scans. Unfortunately, the MRIscans did
not include the knee region. It was therefore decided that the MRI validation would only be performed
on the change in neck axis angle.

(a) (b) (c) (d)

Figure 4.2: The method used to obtain the neck axis angle, 𝑁𝐴𝐴, and the femoral anteversion, 𝐹𝐴, from the MRIscans. a) The
pilot scan of patient 1; b) the follow up scan of patient 1; c) the pilot scan of patient 2; and d) the follow up scan of patient 2.

The used growth model has been developed to simulate growth for up to 5 months, however the
time between the pilot MRIscans and followup scans is approximately 2 years. Because of this large
difference in time, they cannot be directly compared. However, the direction of growth can be compared
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with that of the MRI scans. Additionally, the factor Δ𝑁𝐴𝐴𝑀𝑅𝐼
Δ𝑁𝐴𝐴𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑

should be similar for both patients. The
comparison is based on the direction of the changes in the neck and whether the magnitude of these
changes is in accordance with previous studies [1, 11]. The previous loading conditions were used
again, however this time the body weight is reduced to 294.3 N, in accordance with a mass of 30 kg
for 𝑔 = 9.81 m/s2.

For patient 1 an Abaqus model was created, which only included the HCF, as the model did not
include enough details to include the muscle forces, because the scan resolution was low in the trans
verse plane. In the coronal plane the shape of the femur was well defined and produced a usable
model. The simulated growth can be seen in Figure 4.3a. A small change in the neck axis angle is
visible, however there is also a change in the shape at the greater trochanter. This is possibly due to
the relatively low stiffness of the nongrowing bone, a decision that was made to reduce the number
of distortion errors. The change in the neck axis angle in the simulation was 0.520 degrees, while the
measured change was 4.434 degrees over a two year period. For patient 2 an Abaqus model was

(a) (b)

Figure 4.3: The simulated growth in the models created from the pilot scans of a) patient 1 and b) patient 2. The original model
is shown in black, while the grown model is shown in red.

created as well, which also only included the HCF. In the coronal plane the shape of the femur was
well defined, except for the narrow neck, and produced a usable model. The quality of this model was
lower than that of patient 1. The simulated growth can be seen in Figure 4.3b. Compared to patient 1
a larger change in the neck axis angle is visible. In this model, the shape of the greater trochanter and
the neck remain relatively constant. The change in the neck axis angle in the simulation was 1.397
degrees, while the measured change was 5.261 degrees over a two year period.

Overall, it is clear that the magnitude of the change in the 𝑁𝐴𝐴 is not close to that measured in the
scans. However, the growth model was able to predict a larger change in 𝑁𝐴𝐴 for patient 2 than for
patient 1. It was also able to correctly predict a decrease in 𝑁𝐴𝐴 for both patients. From Table 4.4,
it can be deducted that the real growth was approximately 8.5 times larger for patient 1 and 3.8 times
larger for patient 2. Unfortunately, this relative growth difference between the simulations and the scans
was not similar for both patients.

Table 4.4: Changes in the neck axis angle, Δ𝑁𝐴𝐴, for the simulated growth and the angles obtained from the MRIscans.

Δ𝑁𝐴𝐴 [deg]
Simulated Measured (total) Measured (raw) Compensation

Patient 1 0.520 4.434 3.434 1.0
Patient 2 1.397 5.261 2.261 3.0
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Results: Influence of Bone Shape on

Cam Deformity Risk
As shown by previous studies [13–18], excessive bone growth in the anterolateral region of the

growth plate can lead to the development of a camdeformity. These camdeformities can lead to hip
osteoarthritis [14], and it is therefore important to understand what factors influence the stimulation of
growth in the anterolateral region of the growth plate. As shown by Roels et al. [13], the growth plate
shape and loading conditions play a significant role in the development of camdeformities. In this
study, the influence of the bone shape is investigated.

The shapes used for this study are again created using the SSAM, where only the shape mode of
interest was varied during to create new shapes. For this study the second, third and fourth mode of
variation were used. From here on, these variations will be indicated using M2, M3 and M4, for Mode
2, 3 and 4. For the simulations, the previously used combined bone growth and remodeling model was
used, with the same loading conditions.

5.1. Shape Variations
This section will contain a short explanation on what shape variations are used for this study. As

indicated in the introduction to this chapter, these are M2, M3 and M4. Figure 5.1 contains the included
variations in the shape, for every shape mode the 𝜇 − 3𝑆𝑇𝐷, 𝜇 and 𝜇 + 3𝑆𝑇𝐷 cases were used.

For M2, larger shape parameter values correspond with a decrease in neckaxis angle and an
increase in the femoral anteversion angle. Furthermore, the femur head thickness is decreased. For
M3, an increase in the shape parameter value results in a decrease in the femoral anteversion angle.
The neckaxis angle and femur head thickness do not change significantly. For M4, the most significant
variation is that for a lower shape parameter value the femur head is more spherical. The femur head
thickness, neckaxis angle, and femoral anteversion angle remain mostly constant. Other variations in
the shapes are considered not to be of significance to the growth plate mechanics.

5.2. Osteogenic Index Distribution
As mentioned in the introduction of this chapter, excessive bone growth in the anterolateral region,

also known as the cam region, of the growth plate can lead to the development of a camdeformity.
As shown by Roels et al. [13], the distribution of the osteogenic index can be used to predict the
development of these camdeformities. The values found for the osteogenic index in this chapter should
be multiplied with the growth factor, 𝑐𝑔, with 𝑐𝑔 = 0.0530.

5.2.1. Shape Variation, Mode 2
Figure 5.2 and Figure 5.3, contain the osteogenic index for the 7 different bone shapes. In Fig

ure 5.3, the cam region can be found at the top of every growth plate. For mode 2, it can be seen in
Figure 5.3, that for the 𝜇 − 3𝑆𝑇𝐷 case the osteogenic index is highest in the cam region, which is also
supported by the values found in Table 5.1. For the cases of the 𝜇 and 𝜇+3𝑆𝑇𝐷 shape, the osteogenic
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Figure 5.1: The change in shape for the second to fourth shape mode, where Mx indicates the number of the shape mode. The
SSAM of Baka et al. [19, 20] was used for the creation of these models. The cam region is indicated with a red circle for the side
view and oval for the top view.

index is clearly lower in the cam region, while being similar in the center. The center of the lowest
osteogenic index varies a little, however this can be due to human induced differences as well.

Figure 5.2: The distribution of the osteogenic index in the coronal plane for the shapes of interest. The cam region has been
indicated with a red circle.

5.2.2. Shape Variation, Mode 3
For the M3 shapes, visually the osteogenic index is highest at the 𝜇−3𝑆𝑇𝐷 shape, decreasing to the

mean shape. It decreases further at the 𝜇+3𝑆𝑇𝐷 shape. The quantitive analysis in Table 5.1 supports
this analysis. The other changes can be explained by the decrease in the femoral anteversion in the
bone shape, and the human factor of force surface placement.

5.2.3. Shape Variation, Mode 4
Finally for the M4 shapes, visually the differences between the osteogenic index distributions are

insignificant, and can be the result of variations in human input. However, when looking at the maximum
OI values found in Table 5.1, it is clear that the 𝜇 shape has the highest OI, with the 𝜇 − 3𝑆𝑇𝐷 with
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Figure 5.3: The distribution of the osteogenic index in the transverse plane, in distal direction, for the shapes of interest. The
cam region has been indicated with a red oval.

the next highest OI, though much smaller. The lowest OI is that of the 𝜇 + 3𝑆𝑇𝐷 shape. The changes
in on the anterior and posterior sides of the growth plate can be caused by the human input of the
placement of the loads. The minimum of the osteogenic index does not seem to move significantly
between simulations.

Table 5.1: The maximum osteogenic index in the cam region for all shapes resulting from the variation in the shape modes.

𝑂𝐼 [MPa] 𝑂𝐼 [MPa] 𝑂𝐼 [MPa]
Shape Mode 𝜇 − 3𝑆𝑇𝐷 𝜇 𝜇 + 3𝑆𝑇𝐷

M2 0.2649 0.2031 0.1507
M3 0.4643 0.2031 −0.1109
M4 −0.01701 0.2031 0.09445
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5.2.4. Simulated Growth
In addition to examining the distribution of the osteogenic index, the simulated growth can also be

examined. For all shapes, 5 growth steps were simulated. The resulting changes in both the neck axis
angle, Δ𝑁𝐴𝐴, and the femoral anteversion, Δ𝐹𝐴, are shown in Table 5.2. For the changes in M2, the
Δ𝑁𝐴𝐴 decreases as the parameter value increases, while the change in femoral anteversion shows
no significant changes. For M3, the Δ𝑁𝐴𝐴 increases from 𝜇 − 3𝑆𝑇𝐷 to 𝜇, and decreases again from 𝜇
to 𝜇 + 3𝑆𝑇𝐷. The minimum is 0.485 degrees for 𝜇 + 3𝑆𝑇𝐷, while the maximum of 0.142 degrees if
found for the mean shape. The changes in femoral anteversion are insignificant from 𝜇 − 3𝑆𝑇𝐷 to 𝜇,
but increase significantly from 𝜇 to 𝜇 +3𝑆𝑇𝐷, from 0.00566 degrees to 0.489 degrees for the 𝜇 +3𝑆𝑇𝐷
shape. For M4, the Δ𝑁𝐴𝐴 decreases from 𝜇 − 3𝑆𝑇𝐷 to 𝜇 + 3𝑆𝑇𝐷. The minimum is 0.482 degrees for
𝜇+3𝑆𝑇𝐷, while themaximum of 0.131 degrees if found for the 𝜇−3𝑆𝑇𝐷 shape. The femoral anteversion
decreases between 𝜇 − 3𝑆𝑇𝐷 to 𝜇, with little change for increasing shape parameter values.

Table 5.2: The simulated Δ𝑁𝐴𝐴 and Δ𝐹𝐴 for the different shapes after 5 growth steps.

Type Δ𝑁𝐴𝐴 Δ𝐹𝐴
[degrees] [degrees]

Mean 0.142 0.00566

M2 3STD 0.320 0.0103
Mean 0.142 0.00566
M2 +STD 0.000952 0.00119

M3 3STD 0.485 0.0158
Mean 0.142 0.00566
M3 +3STD 0.322 0.489

M4 3STD 0.131 0.217
Mean 0.142 0.00566
M4 +3STD 0.482 0.0337
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Discussion

The goal of this research was to investigate what femur shapes increase the risk of developing
cam type deformities, which was done using a combined bone growth and remodeling algorithm in
combination with SSAM generated femur shapes. In the Methods, chapter 2, the used methodology
was presented. In chapter 3, the remodeling results of the combined bone growth and remodeling
model were presented, while in chapter 4, the growth results were discussed. These previous chapters
focused on the development of the combined bone growth and remodeling model. The results of the
study on femur shape influence on cam type deformities were presented in chapter 5.

This chapter is subdivided into multiple sections: the combined bone growth and remodeling model
is evaluated in section 6.1, while its limitations limitations are discussed in section 6.2, after which
recommendations are given in section 6.3. The research on what femur shapes increase the risk of
developing cam type deformities is discussed in section 6.4. The chapter ends with the conclusion in
section 6.5.

6.1. Evaluation
In this section the developed combined bone growth and remodeling algorithm is evaluated. The

evaluation is subdivided into four subsections: the automation, remodeling algorithm, growth algorithm
and the model creation.

6.1.1. Automation
All required functions of the automation algorithm work as intended, although some functionalities

could be expanded to improve the efficiency of the workflow. For example, currently the user is still re
quired to provide certain inputs. An older SSAM algorithm has successfully been adapted to Python 3,
and is able to generate 3D bone shape and appearance images. These images are then successfully
converted into a 3D proximal femur model in Abaqus. Occasionally, the generated Abaqus model has
a few empty elements on the interior, however this should not have a significant impact on the perfor
mance of the models. The remodeling and growth running algorithm has multiple options for choosing
the type of simulation one would like to do, which work well. When one has already performed the
manual inputs previously and a prepared model exists, one does not need to provide any manual input
again. Also, one can choose to only perform remodeling. No such option exists for growth however, be
cause for the current algorithm, growth is dependent on remodeling. If a simulation has previously been
performed, the algorithm also provides an option to simply load the results from previous simulations.

The program is able to handle multiple different types of input and has been written in a robust way.
Unfortunately, in some cases input files written by Abaqus are misread by the program. This is related
to converting strings that contain numbers to a list of these numbers. The two most common problems
are: when a set is created in Abaqus CAE, containing solely and all integers between to other integers
(e.g. a set containing all numbers between 1 and 100) and when the Abaqus input file contains a ”,”
as the last character in a list of numbers in a set. For the first problem, Abaqus writes the first number
in the set, the last number and then the interval. So all numbers between 1 and 100 would be written
as ”1,100,1”, but the current program reads this as if the set contains numbers 1 (2x) and 100. The
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solution for this is to write a program that can recognize this pattern and read it correctly. Additionally,
this function could rewrite this into a list of all integers between those numbers. A solution for the
second problem is to filter out all non numerical characters (except spaces) from the list of numbers.

The program is able to correctly generate a growth plate from the locations the user provides as
input. The sets created by this algorithm then have to be manually added to the old input file, an ac
tion that could be automated in future development. The algorithm properly reads the user inputs and
converts them into a new input file with all required information for the simulation. The program also
appends the simulation specific information to two other files, so that the simulation has all required
information. The reading of results has been written in a robust manner, however it is based on repeat
edly searching a large string (the data file) for certain information. This searching algorithm takes an
increasing amount of time for larger models.

As will be further explained in subsection 6.1.3, the current growth algorithm does not reliably suc
ceed at simulating realistic growth patterns. The currently build algorithm behaves correctly, however
it must be adapted when implementing the recommendations made in subsection 6.3.3.

6.1.2. Remodeling
The current remodeling algorithm manages to predict realistic patterns of cortical and trabecular

bone, and it manages to converge after experiencing growth steps. The chosen remodeling algorithm
has a tendency to drive all values to either the maximum or minimum bone density, however these
maximum and minimum values do create a well defined distinction between cortical and trabecular
bone. When the remodeling algorithm is terminated before reaching convergence, the created density
distribution is more realistic. The densities in the femoral head and the center of the bone are then
closer to that found in other studies [24, 40, 41]. The inclusion of the osteocyte distance function signif
icantly decreases the computational efficiency of the chosen remodeling model. However, as shown
by Mullender et al [38, 39], not including the osteocyte distance function would result in a checker
board pattern of nearby elements having either the maximum or minimum density. The inclusion of the
osteocyte function in this algorithm has successfully prevented this behaviour. All other remodeling pa
rameters have a predictable and expected effect on the behaviour of the remodeling algorithm. Multiple
shapes and appearances were used for the remodeling algorithm and in all cases realistic distributions
were created.

6.1.3. Growth
The growth algorithm is able to predict similar growth patterns to other studies [1, 11] in two out of

three scenarios. For the unremodeled bone (section 4.1) and the MRIscan validation (section 4.4), the
growth algorithm was able to predict a correct growth direction for the 𝑁𝐴𝐴, although the magnitude
was too small in both cases. The goal was to create a forward combined growth and remodeling
algorithm based on statistical shape and appearance models. Unfortunately, for this third scenario, the
algorithm failed to predict a correct direction of growth and realistic magnitudes of the change in 𝑁𝐴𝐴.
Additionally, the combined growth and remodeling algorithm is frequently terminated before reaching
the prescribed number of steps. This termination is due to distortion of the elements in the growth plate
and in the surrounding elements.

Many factors are believed to influence the predicted growth: growth plate size, shape, location and
orientation [11], loading conditions [10], and the mesh. In subsection 6.3.3, recommendations are given
to improve the reliability and predictability of the growth algorithm.

6.1.4. Bone Model creation
The models created with the SSAM are based on 27 CTscans of adult femurs, which was done

in a previous study [19, 20]. The SSAM was created from this set of CTscans [19, 20]. This SSAM
of adult femurs, was used to generate new shapes and appearances to be used in a context where
one would preferably use femurs of children. Children femurs are smaller, with a different shape,
because the 𝑁𝐴𝐴 decreases over time in healthy children [1]. For the models where these adult bone
shapes were used, the growth model failed to generate realistic growth patterns, when combined with
a remodeling algorithm. For the Abaqus models obtained from MRIscans of two children, the growth
algorithm performed better, and could predict the correct growth direction. For these simulations the
magnitudes were also more in line with other studies [1, 11]. The changes in 𝑁𝐴𝐴 were however much
smaller than seen in the follow up scans. No significant problems were found in the creation of the
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bone morphologies and corresponding meshes, and any issues in the consistency of the growth model
are not believed to be caused by the bone model creation.

6.2. Limitations
The limitations of the combined bone growth and remodeling model are mostly associated with

simplifications, such as linearizations or approximations. There are limitations found in the remodeling
and growth algorithms, material properties, model creation.

6.2.1. Material properties
The remodeling bone in this study was modeled as a heterogeneous isotropic linearly elastic ma

terial, as done in most inverse remodeling model studies [24, 32–37, 40]. As most studies on inverse
remodeling and on forward growth also used isotropic linearly elastic material properties for bone, it is
believed this is not the cause of the unpredictable growth. This remodeling model focused on other
mechanisms of bone adaptation and used a remodeling algorithm that is incompatible with more com
plex bone material models.

6.2.2. Remodeling
The first limitation in the remodeling algorithm is its dependence on only one loading scenario.

Using a single loading scenario has been done in many other studies, for example in the previously
mentioned inverse bone remodeling models [24, 32–37, 40, 41, 44–49], but bone actually experiences
many different types of loads during everyday life. The density distributions obtained using a single
loading scenario is still sufficient for the current purpose, because the distribution is realistic and mostly
in accordance with other remodeling studies [24, 40, 41], as shown in section 3.3.

The second limitation in the remodeling algorithm is the use of a remodeling algorithm in which the
density value of all elements eventually converges towards either the maximum or minimum density. At
a macroscopic scale, bone tissue can have an apparent density at any value in between the minimum
and maximum, as also shown in [24, 40]. If the current remodeling algorithm is left to fully converge
it will generate an almost Boolean density distribution, which is both unrealistic and undesired. When
the remodeling algorithm is terminated at an earlier stage, most of the elements will have a density at
a value in between the minimum and maximum, and therefore it is advised to not let the remodeling
algorithm fully converge. The density distributions obtained in this manner are more in accordance with
other studies. An even better solution would be to use a different remodeling algorithm that is able to
fully converge to all density values.

A third limitation of the remodeling algorithm is the lack of external remodeling. In real bone, not
only the internal microstructure changes, the external shape also adapts to loads. Bone is apposed or
absorbed on the outer surface, moving this surface over time. External remodeling can be a significant
adaptation during growth in childhood, however its mechanisms are complex and computationally ex
pensive. As the growth time simulated in this study was limited, it was assumed external remodeling
would be minor over a small amount of time.

6.2.3. Growth
Most of the limitations associated with the growth algorithm are also mentioned in subsection 6.3.3:

the simplified mesh surrounding and in the growth plate, the use of a single loading scenario, the
lack of a transition zone surrounding the growth plate and the simplification of the growth plate shape.
Additionally, the growth mechanics are based on a constant biological growth component and a variable
mechanical growth component. This biological growth component is constant at all locations, at all
times, independent of hormonal activity, age, gender, diet or other physiological factors. In reality,
growth is heavily dependent on these factors [4, 50]. Despite this, previous studies have also regarded
biological growth as a constant and achieved realistic growth patterns [1, 11]. The lack of physiological
factors is therefore not the primary reason of the occasionally unrealistic growth patterns. Furthermore,
only the growth plate in the femur head is included in the current model. Additional growth plates exist
at the greater trochanter and the lesser trochanter. These may not influence the development of the
𝑁𝐴𝐴 and 𝐹𝐴, but inclusion of these growth plates would provide a more realistic simulation.
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6.2.4. Bone model creation
All models were created using a statistical shape and appearance model, which was created using

27 CTscans of adult femurs. These adult femurs were then used to simulate bone growth in children.
However, since the neck axis angle, 𝑁𝐴𝐴, decreases over time, the adult bones already have a low
𝑁𝐴𝐴. This existing low𝑁𝐴𝐴may influence the growth patterns seen when simulating the growth, as the
algorithm produced more realistic results when models obtained from the femurs from children were
used.

6.3. Recommendations
6.3.1. Automation

For the automated program running both the model creation, remodeling and growth a number
of recommendations are made. The first is to include apparent density convergence criteria in the
remodeling algorithm. An analysis is then ran until a convergence criterium is reached. An example of
such a criterium is: the mean relative absolute change in density is lower than a certain percentage.
Adding this to the remodeling algorithm could greatly reduce the time needed for simulations. It would
also guarantee convergence regardless of the prescribed simulation time, eliminating the possibility of
ending a simulation early or continuing an already converged simulation. Additionally, the surfaces used
for muscle forces could be assigned automatically. One could determine the correct locations in the
mean shape model of the SSAM. The location can then be transformed using the shape parameters,
to find the new coordinates. Subsequently, one could find the closest outer surface in the Abaqus
model to those coordinates. Furthermore, these automatically generated surfaces can also be used
to automatically calculate the used surface area. This would eliminate another user input from the
process. Lastly, more functions can be added to improve the visualization of growth results, one of
these could be to write a separate Abaqus analysis to visualize the osteogenic index. Additionally,
one could combine all deformations into a single model, where boundary conditions are applied that
prescribe the deformation for all nodes. This would result in a single animation that is able to clearly
visualize the growth over time. Another useful addition to the algorithm would be automatic selection
of nodes that are used to calculate the 𝑁𝐴𝐴 and 𝐹𝐴. Currently, these nodes need to be provided as
manual inputs.

6.3.2. Remodeling
The remodeling algorithm could be sped up by using a strainbased stimulus without the osteocyte

distance function. In that case the model does not need to write and read both the stimulus and expo
nential distance values from memory for every element at every increment. As shown by Campoli et
al. [24], such a model can successfully be used for the purpose of inverse remodeling algorithms.

Currently, the remodeling algorithm is only driven by one phase of gait. Even though this mostly
results in the correct locations of cortical and trabecular bone, the model could benefit from including
more loading scenarios, for example from [23]. For this study, only the 10% gait cycle loads are used.
In this phase of the gait cycle, the hip contact force is relatively high, but the absolute maximum hip
contact force occurs during another gait phase [23]. Additionally, some muscles are inactive at this gait
phase, while becoming active later [23]. Taking more loading scenarios into account could improve the
density distribution prediction. A downside is that this would decrease the numerical efficiency of the
algorithm, as more steps and more increments will be needed.

As discussed in subsection 3.2.2, the remodeling algorithm has two states at which one can obtain
the density distribution. The first state is the fully converged density distribution, which consists mostly
of elements with a density of either the maximum or minimum value. This is because the remodeling
algorithm drives all density values to either a maximum or minimum value. The second state is the
distribution when the mean density is at a maximum. This distribution has less high density bone in
the femur head, and a higher density in the center of the bone. What happens between the the density
distribution at the maximum mean density and the fully converged density distribution is that in the
head all elements are driven to either the maximum or the minimum value, creating a thin structure of
cortical bone. These structures connect the surface where the HCF is applied to the other regions of
cortical bone. Furthermore, in the center of the bone, the elements are slowly driven to the minimum
density. This process is slow and computationally expensive, while providing little extra information and
it decreases the validity of the density distribution. As shown by Garijo et al [40], the inner regions of
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Figure 6.1

the bone vary little when the loads are changed. In Figure 6.1 it can be seen that the highest variability
between simulations with different loads is found adjacent to the cortical bone regions, in the femur
head and in the outer neck. All these regions have already experienced remodeling when the mean
maximum density is reached, while the less important inner bone regions have not yet experienced
much remodeling.

The elements surrounding the growth plate experience exaggerated remodeling. This is possibly
due to the relatively low stiffness of the growth plate, which causes higher strains in the growth plate and
surrounding elements. A higher strain will increase the bone density. The stiffness of the growth plate
could be increased to decrease the likelihood of encountering high density bone around the growth
plate. Additionally, using the density distribution when the mean density is at a maximum will further
decrease the chance to encounter this behaviour.

6.3.3. Growth
Currently, the voxels are not aligned perpendicular to the growth plate. Also, instead of using layered

growth, a single thicker region is expanded for every growth step. This method was chosen for easier
automation, however this may have led to the current difference between the results obtained using
the developed combined bone growth and remodeling model and those found in other studies, and the
MRIscans. These choices may have also led to a large amount of distortion errors when performing
the growth simulations.

Another explanation for the differences between the current results and those found in other studies,
is the number of loading scenarios used to determine the osteogenic index. In other studies, multiple
loading scenarios from the gait cycle were used to determine the osteogenic index, while in this study
only the loads at the 10% gait cycle are used. Furthermore, as suggested by Yadav et al. [11], a growth
model could benefit from including additional loading patterns from different activities.

Lastly, the differences can be explained by the simplified growth plate geometry. Real growth plates
come in different shapes, sizes and orientations. In this study a spherical shape was used for the growth
plate, so only variance in orientation and size could be accounted for. As shown by Yadav et al. [11],
both the growth plate shape and location have an effect on the osteogenic index. The resistance to
growth in the model is lowest perpendicular to the growth plate, therefore most growth is performed in
that direction. If the growth plate is perpendicular to the neck axis, the orientation of the growth plate is
neutral. The biological growth does not promote either an increase or decrease in the 𝑁𝐴𝐴. However,
if the growth plate is angled, such that the superior end of the growth plate is more lateral than in the
neutral position, the biological growth will promote an increase in the 𝑁𝐴𝐴.

Another explanation for the current differences in growth is the removal of the transition zone that is
seen in other studies, which was replaced by remodeling all bone surrounding the growth plate. In the
femur head most stresses are transported through the center of the head towards the neck, increasing
the bone density in these regions, while the more outer regions of the head are generally of low bone
density. This then causes most of the stresses in the growth plate to be transported through the center.
When the growth plate is placed in the neck region, the stresses are transported through the inner and
outer neck, and the stresses are transported through the growth plate in a more natural position. It is
therefore recommended that the growth plate is either placed in the neck region, or a transition zone is



44 6. Discussion

added surrounding the growth plate, if it is placed in the femur head.
Furthermore, one could increase the stiffness of the distal remodeled bone during the growth step.

In that case the distal part of the femur stays rigid, and is barely deformed, and all growth is directed
towards the femoral head. The stiffness in the proximal femoral head can remain constant.

Additionally, currently the growth plate thickness is defined by the maximum distance from an el
ement in the growth plate, to the shell of the sphere that defines the growth plate. After growth this
thickness increases, but the thickness of the growth plate is not changed in the algorithm. As the ex
pansion coefficients are dependent on the initial thickness, the simulated growth is too large. This effect
is larger at the outer boundaries in radial direction, because those regions grow more rapidly than the
center of the growth plate.

All these factors are believed to influence the growth in significant ways and the current results
do not indicate what the core problems are. It is therefore advised to start implementing these extra
mechanisms in order of increasing complexity. Firstly, one can add an algorithm that estimates the
current growth plate thickness at every location. Secondly, increasing the stiffness of the distal femur
during growth can be implemented. This can be done relatively easily: the algorithm needs to identify
all elements distal to the growth plate and create a separate element set for this region. Next, this set
needs to be assigned to a section with stiffer material properties. Thirdly, a transition zone can be added
around the growth plate. This could be implemented using the same algorithm of the growth plate, with
a slightly larger and smaller radius to create two extra spherical shells. These shells are proximal and
distal to the growth plate, and can be assigned material properties so that the stress is distributed
through the growth plate more evenly. If this does not significantly improve the reliability of the growth
algorithm one can include a third simulation, in which different loading steps, associated with different
time points during gait, are applied to the bone. During this third simulation bone remodeling can be
turned off to increase the computational efficiency of this simulation. These forces should also improve
the estimation of the osteogenic index in the growth plate. If adding more loading scenarios does not
improve the simulated growth pattern either, the next suggestion is to improve the growth plate shape.
One should always take care to choose the correct location, orientation and size of the growth plate,
however the shape is a constant: a sphere with radius 𝑅 and thickness 𝑡. The new growth plate shape
could possibly be obtained from MRI or CTscans where the growth plate is clearly visible and thus
has different gray values than the surrounding bone tissue. If changing the growth plate shape does
not have the desired effect either, the last suggestion is to change the mesh in and surrounding the
growth plate. This change severely affects themethod of automation used for this combined growth and
remodeling model and is complex to implement and even more complex to automate, and is therefore
suggested last. The growth plate should be created with layers in which the elements are placed
perpendicular to the growth plate. Then the layers are expanded one by one, one layer for every
growth step.

6.3.4. Bone model creation
As shown by Yadav et al. [11], the growth plate shape and location have a significant effect on

the osteogenic index. Therefore it would be beneficial to use a SSAM created specifically for children,
which includes the variance in growth plate shape and location. In that case the growth plate region
could automatically be extracted from the bone density values.

Another reason to create a SSAM based on the femurs of children, is that the 𝑁𝐴𝐴 found in adult
femurs is generally lower than those found in children, as the 𝑁𝐴𝐴 decreases over time.

6.4. Effect of Bone Shape on Cam Deformity Development
For this study, the developed combined bone growth and remodelingmodel is used to investigate the

effect of changing the bone shape on the development of cam type deformities in the femur. Research
questions for this study were introduced in subsection 1.3.2. For this study, the created forward model
was used, including material properties, loading scenarios and remodeling mechanics. The distribution
of the osteogenic index in the growth plate was used to determine in which regions bone growth was
stimulated, and in which regions it was inhibited. Growth stimulation in the camregion has been linked
to the development of camtype deformities [13]. Roels et al. [13] established that the growth plate
geometry and loading conditions influence the risk of cam deformity development.

The main research question is: What femur shapes increase the risk of developing cam type defor
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mations? With the secondary research questions being: Of the different shape modes of the SSAM,
which have a significant impact on the femur head and neck geometry? For these shape modes, what
is their influence on the distribution of the osteogenic index in the growth plate? What shape modes re
sult in an increased growth stimulation in the cam region of the growth plate? The secondary research
questions will be answered first, which will then be used to answer the main research question.

The answer to the first secondary research question will be provided first, this research question
was: Of the different shape modes of the SSAM, which have a significant impact on the femur head and
neck geometry? Three different shape modes were varied in this study and all three clearly affected
the geometry of both the femur head and neck. The second shape mode (M2) greatly influences the
𝑁𝐴𝐴 and femur head size, while also affecting the 𝐹𝐴. The third shape mode (M3) greatly influences
the 𝐹𝐴. The fourth shape mode (M4) influences the geometry of the femur head, however it does not
significantly influence the 𝑁𝐴𝐴 and 𝐹𝐴.

To answer the second secondary research question, the following question should be answered:
For these shape modes, what is their influence on the distribution of the osteogenic index in the growth
plate? In this study, it has been established that the bone shape also has an effect on cam deformity
development. For the shape mode M2, the osteogenic index in the cam region is highest for the
𝜇 − 3𝑆𝑇𝐷 shape. It is lower for both the 𝜇 shape and the 𝜇 + 3𝑆𝑇𝐷 shape. For the shape mode M3,
the osteogenic index in the cam region is again at a maximum for the 𝜇−3𝑆𝑇𝐷 shape. The osteogenic
index in the cam region is lower for the 𝜇 shape and even lower for the 𝜇+3𝑆𝑇𝐷 shape. For the shape
mode M4, the osteogenic index in the cam region is highest for the 𝜇 shape. It is low for both the
𝜇 − 3𝑆𝑇𝐷 shape and the 𝜇 + 3𝑆𝑇𝐷 shape, but at a minimum for the 𝜇 + 3𝑆𝑇𝐷 shape.

The answers to the first and second secondary research questions can be used to answer the last
secondary research question: What shape modes result in an increased growth stimulation in the cam
region of the growth plate? From the answer to the previous research question it can be concluded that
the variations in the M2 and M3 shape modes can have a significant influence on the growth stimulation
in the cam region of the growth plate. For both these shape modes, the 𝜇 −3𝑆𝑇𝐷 shape resulted in an
increase of the osteogenic index in the cam region.

The previous answers can be used to answer the main research question: What femur shapes
increase the risk of developing cam type deformations? For the M2 and M3 shape modes, the 𝜇−3𝑆𝑇𝐷
shape resulted in an increase of the osteogenic index in the cam region. Both these shapes have an
increased 𝑁𝐴𝐴, but differ in their 𝐹𝐴. In comparison to the 𝜇 shape: for the M2 shape mode, the 𝐹𝐴 is
increased, while for the M3 shape, the 𝐹𝐴 is decreased. In conclusion, the results indicate that femurs
with an increased neckaxis angle (𝑁𝐴𝐴) have an increased risk of developing cam type deformations,
because the osteogenic index in their cam region is increased.

6.4.1. Comparison with Carriero et al
The study of Carriero et al [1] is the first study the current results will be compared against. The

primary interest is if there are differences in the methodology and differences in the resulting osteogenic
index in the growth plate. Carriero et al [1] isometrically scaled down an adult proximal femur model to
the size of a child. The current study did not scale down an adult proximal, instead the proximal femurs
generated by the SSAM were used. The growth plate geometry of the study by Carriero et al [1] was
a disc, while the current study uses a spherical growth plate shape. Carriero et al [1] subdivided the
proximal femur into five different material regions, with each their own material properties. The different
materials and their properties can be found in Table 6.1. The current study uses two different materials:
actively remodeling bone and the growth plate. The growth plate has a slightly higher Young’s modulus
(6 MPa) than in Carriero et al [1]. Four load cases were used, corresponding to 10%, 30%, 45% and
60% of the gait cycle. These loads were obtained from inverse dynamics of the gait of children. The
current study uses only a single load case, corresponding to 10% of the gait cycle, while the magnitude
corresponds to that of an adult, because the use of an adult femur size. Carriero et al [1] calculates the
osteogenic index as follows: 𝑂𝐼 = 𝑎 ×max(𝜎𝑆𝑖) + 𝑏 ×min(𝜎𝐻𝑖), which is equal to the method used in
this study when using only one load case. The values for 𝑎 and 𝑏 are equal in both studies: 𝑎 = 0.02
and 𝑏 = 0.01.

The differences in methodology, primarily femur size and loading conditions, result in a difference in
the observed osteogenic index. This difference is mainly the range of values of the osteogenic index,
which is −1 ≤ 𝑂𝐼 ≤ +1 for Carriero et al [1], but −1.59 ≤ 𝑂𝐼 ≤ +0.265 for the current study. The
total range of both is about 2.0 for both, however the current study has much higher growth inhibition
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Table 6.1: The different materials and their properties used in [1].

Region 𝐸 [MPa] 𝜈

Growth plate 5.0 0.49
Cortical bone 20 × 103 0.3
Trabecular bone 600 0.3
Marrow cavity 1 0.3
Transition zone 5 − 600 0.3

than found in Carriero et al [1]. This may be due to the differences in loading conditions: the higher
hydrostatic stresses may be due to the relative increase in hip contact force in adults at 10% gait cycle.
At this time point in gait, the hip contact force used for the healthy patient in Carriero et al [1] has
a magnitude of 170.7% bodyweight, but the current study has a hip contact force of 267.5% body
weight. Additionally, Carriero et al [1] use more load cases, which provide a more precise estimation
of the osteogenic index in the growth plate.

6.4.2. Comparison with Roels et al
The study of Roels et al [13] uses the proximal femur of a 12 year old male child, obtained using

a CTscan, instead of the fully sized adult proximal femur generated by the SSAM used in this study.
Both studies use a spherical growth plate, however the growth plate orientation is varied in Roels et
al [13]. Both studies use the same constant material properties for the growth plate: 𝐸 = 6 MPa
and 𝜈 = 0.49. The material properties of the surrounding bone are dependent on the density in both
studies, however in the current study this density changes over time due to the remodeling algorithm.
The Young’s modulus of Roels et al [13] is determined using 𝐸 = 12900𝜌2, while the current study
distinguishes cortical and trabecular bone and generally has a lower stiffness. The poisson ratio is 0.3
for both studies. Roels et al [13] uses four load cases, but treats all as separate analyses, while the
current study has a single load case. The loads of Roels et al [13] correspond: 1) the maximum hip
contact force during normal gait (250% body weight), 2) internal rotation, 3) external rotation and 4) hip
flexion. The load case of this study corresponds to 10% gait cycle of an adult. The osteogenic index is
calculated in the same manner for both studies, however the values of 𝑎 and 𝑏 are different. Roels et
al [13] use 𝑏 = 0.5 and mention that 0.3 ≤ 𝑏

𝑎 ≤ 1.0, however a value for 𝑎 is not given. In most studies,
𝑏
𝑎 = 0.5, which would indicate that 𝑎 = 1, which would explain why this value was not given. For the
current study, 𝑎 = 0.02 and 𝑏 = 0.01, also having 𝑏

𝑎 = 0.5.
The resulting range of values for the osteogenic index in Roels et al [13] is −0.8 ≤ 𝑂𝐼 ≤ +0.8, while

for the current study it is −1.59 ≤ 𝑂𝐼 ≤ +0.265. The total range is 1.6 for Roels et al [13] and 1.86 for
the current study. In Roels et al [13], most cases have growth inhibition in the center of the growth plate,
with growth stimulation near the edges. Again, the osteogenic index of the current study is generally
lower than that found in Roels et al [13]. The primary differences between the studies are the different
loading conditions and femur size.

6.4.3. Comparison with Yadav et al
In the study of Yadav et al [11], three MRIscans of children (aged 6, 7 and 11) were used to create

full femur models, compared to the proximal femurs generated by the SSAM used in the current study.
The growth plates in Yadav et al [11] are subject specific, while the current study approximates the
growth plate to be spherical. The material properties of the femur in Yadav et al [11] are subdivided
into four materials: cortical bone, trabecular bone, transitional bone and the growth plate. Instead, the
current study has two materials: the growth plate (with the same properties as in Yadav et al [11]) and
the surrounding bone, which is density dependent and undergoing remodeling. Yadav et al [11] uses
nine load cases corresponding to different point in time of the gait cycle, while the current study only
uses a single load case, corresponding to 10% gait cycle. Yadav et al [11] calculates the osteogenic
index in the same way as Carriero et al [1], however the values of 𝑎 and 𝑏 vary per patient. For patient
1, 𝑎 = 0.06 and 𝑏 = 0.03. For patient 2, 𝑎 = 0.0186 and 𝑏 = 0.0093. And for patient 3, 𝑎 = 0.035 and
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𝑏 = 0.0175. All patient have 𝑏
𝑎 = 0.5, equal to the other studies and the current study. However, the

current study uses 𝑎 = 0.02 and 𝑏 = 0.01.
The range of osteogenic index values found in Yadav et al [11] is −0.072 ≤ 𝑂𝐼 ≤ +0.072, while for

the current study it is −1.59 ≤ 𝑂𝐼 ≤ +0.265. The total range of Yadav et al [11] is therefore 0.144, while
for the current study it is 1.86. This range of Yadav et al [11] is much smaller than both the current study
and that of Carriero et al [1] and Roels et al [13]. This may be due to the inclusion of even more load
cases than found in Carriero et al [1], but also due to the complex growth plate geometry.

6.4.4. Limitations
The developed combined bone growth and remodeling model was used for this study, and therefore

the study inherits all of the limitations of the forward model. Additionally, the current study would have
benefited from the inclusion of more loading scenarios and growth plate geometries. Another limitation
is the use of femurs of adult size and the corresponding adult loading conditions. Additionally, the effect
of more shape modes should be included to improve the understanding of the effect of the 𝐹𝐴.

6.5. Conclusion
This research aimed to investigate the influence of the bone shape on the risk of development of

cam deformities. The developed combined bone growth and internal remodeling has been automated to
a large degree, and is able to predict realistic density distributions, and in certain cases growth patterns.
The combined model can automatically create new bone morphologies, and the corresponding finite
element models. The largest limitation of the developed combined bone growth and remodeling model
is the exclusion of external remodeling, which means only the shape change in the growth plate is
included. The developed bone growth and remodeling model would benefit from more automated
functions, which would increase efficiency further. Additionally, some of the recommendations should
be included in the growth model to improve it, so it provides more consistent and reliable results.

This developed combined bone growth and remodeling model was then used for the study to in
vestigate the effect of a changing femur shape on the development of camtype deformities. It was
found that an increased 𝑁𝐴𝐴 increases the bone growth stimulation in the camregion, and therefore
increases the risk of cam deformities developing. The study is limited by its use of adult sized femurs
and the corresponding load conditions of adults.

In conclusion, the developed combined bone growth and remodeling model is able to provide re
alistic and predictable results for remodeling, and mostly for growth, and was successfully used to
perform the study. This study indicates that an increased femoral neckaxis angle increases the risk of
developing a cam deformation.
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A
User Manual

This appendix provides a user manual of how to use all scripts to guide the user from shape and
appearance parameters to a working combined bone growth and remodeling simulation. The first
section describes the process of creating an .mhdfile using the SSAM script. The second section then
describes the process of converting this .mhdfile into a .inpfile which can be used in Abaqus. The
third and final section describes the process of using the generated .inpfile for the forward growth and
remodeling simulation.
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A.1. Statistical Shape and Appearance Parameter Model
This manual assumes that the required packages are installed and the needed files and executa

bles are in the correct folders. The script requires these to be in the correct locations and the locations
can be found in the script as well. The used packages are os, shutil and numpy. The complete script
will not be discussed here, only the parts of interest: choices that can be made and where to make the
needed changes for these choices.
The SSAM requires the shape and appearance parameters as inputs, and these can be chosen sep
arately. The following options are provided: with the parameter values normally distributed between
−3𝑆𝑇𝐷 and +3𝑆𝑇𝐷; the mean shape so that the parameter values are all 0; and the final option where
a single parameter index is set to a specific value. This can be expanded to provide more options, such
as one where the user provides the shape or appearance matrix. Currently, the choices are presented
in the command console, so the user needs minimal knowledge of the script to use it.
Once the script has run, multiple files have been created, of which only the result.raw and result.mhd
files are used for the creation of the mesh and initial density distribution.

A.2. Mesh generation
For the mesh generation the Appearance_proximal_script.py will be used. This script requires the

following packages to run: SimpleITK, NumPy, Matplotlib and SciPy.
This script requires the user to edit the variable BaseDir to the folder that contains the result.raw and

result.mhd files. These files can be moved after the creation of these files, so this folder can be any
where. This is also the folder that will contain the outputs generated byAppearance_proximal_script.py.
The outputs will be Part_prox_red_factor_x.inp, where x is the reduction factor for the mesh. This re
duction factor is one of the parameters that can be tuned by the user. The script can create multiple
mesh roughnesses at the same time, therefore the reduction factor(s) are set using the parameter re
ductions, which is set by a NumPy array containing the desired reduction factors. Another parameter
that can be tuned is the prox_p parameter, which sets the relative size of the proximal femur. Higher
values of prox_p result in a relatively smaller proximal femur region, while prox_p=1.0 results in a fully
sized femur.

The other parameters are: DensitiesName, which sets the name for the .txt file with the initial den
sity information for all elements; b0, which is the value of the background, currently 2000.0; incl_f,
which determines the boundary between what values are considered to be bone: all values higher
than incl_f *b0 are bone; min_density, which sets the minimum bone density; and max_density, which
sets the maximum bone density. All these parameters are currently tuned, but can easily be changed
to whatever is desired: the minimum and maximum densities should not influence the mesh creation.
When changing incl_f pay attention to existence of holes in the center of the femur, these can occur
when incl_f is too high.

If all parameters are set correctly, one only has to run the script to generate the required mesh(es).
The generated files will be the Part_prox_red_factor_x.inp file(s) for the Abaqus compatible mesh and
the RhoIniRFx.txt file(s) for the initial densities. These files can be moved to whatever location is
desired.

A.3. Forward Growth and Remodeling
Now that the previously created files with the mesh and initial densities are placed in the correct

folder, the FullCombinedRun.py can be used to semiautomatically add the required features to the
Abaqus model and to subsequently perform the remodeling and growth simulations.

A.3.1. Prerequisites
The following packages are required for this script: Matplotlib, NumPy, os, re, SciPy, shutil, sub

process, sys, time and webbrowser.
Furthermore, the script uses the following other scripts: Preprocessor.py,GP_Set_Gen_MRI,DAT_reader,

Growth_input_writer,Remodeling_input_writer,Remodeling_run, Expansion_Calculator, Expansion_run,
FortranWrite, command_prompt_functions and InputFileInfo.



A.3. Forward Growth and Remodeling 57

A.3.2. Parameters

The following parameters should be set to the correct values: RF should be set to whatever reduc
tion factor was previously used; GrowthPlate_Dict should contain the correct information for the Disc
Drive, BaseDir, Results Folder andCurrent Result Folder, resulting in a path of ”Disc Drive:/BaseDir/Results
Folder/Current Result Folder/”.

One can then set the simulation parameters NumberOfMonths to the number of growth steps that
should be performed. With RemodelingTimePerMonth_i being the number of remodeling iterations
performed during the first remodeling step. And RemodelingTimeGeneral should be set to the number
of remodeling iterations for subsequent remodeling steps.

Next, one can set the growth plate shape and size parameters in gp_params. Here the growth plate
radius can be set, as well as the allowed maximum distance of growth plate elements to the shell of
the growth plate sphere.

The force magnitude can be decreased by setting both F_factor. The standard weight used in this
model is 735 N.

The growth parameters can be set in the dictionary GrowthParameter_Dict. Finally, the remodeling
parameters can be set in the dictionary RemodelingParameter_Dict. In these dictionaries the keys are
selfexplanatory.

Lastly, the used subroutine template can be specified in TemplatePaths. The number of SDV’s
(solution dependent variables) in the usersubroutine should be equal to the number of SDV’s specified
in RemodelingParameter_Dict.

A.3.3. Semiautomated model preparations

This user manual will discuss what to do more elaborately, however during the use of the script it
will open multiple text files that contain a summary of what to do. These do not include exactly where to
place surfaces, where to place new node sets, however they will include what these node sets should
be named.

Step 1

After starting the script, the first two things that will happen are: Abaqus CAE gets opened, as well
as the guide step1.txt. In this tutorial, this guide file will be ignored, since one does not need to do any
actions here.

In Abaqus CAE, one needs to close the quick menu, and right click on Models(1) in the Model
Tree. Select ”Import Model”, and import the available .inpfile in the folder. This file should be named
Part_prox_red_factor_x.inp. Once imported, inspect the proximal femur, and use the mesh editor to
remove any excessive elements. Now, first one needs to add the following node sets: HEADNECKN
ODES and GPTOPBOTTOM. HEADNECKNODES should contain all nodes proximal to the estimated
position of the growth plate, while GPTOPBOTTOM contains an indication of the growth plate position.
Contrary to what the name suggests, one can select as many nodes, at all positions as desired. How
ever, the sphere center is calculated using an optimization algorithm, and the more nodes in this set,
the less efficient this optimization becomes, while barely improving the estimated position of the growth
plate. The regions to select can be found in Figure A.1.
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(a) (b)

Figure A.1: The selection of two node sets is shown to indicate the locations of these sets. a) the first node set is the HEADNEC
KNODES, which contains nodes in the femoral head and where it transitions into the neck. This region will contain the growth
plate, and the algorithm will restrict itself from only creating the growth plate in this region. b) The nodes selected to general
position of the growth plate. The algorithm will optimize the location and orientation of the growth plate center, so that the outer
surface intersects with the selected nodes. This is the node set GPTOPBOTTOM.

At this point, the model only contains a part, we therefore need to create an instance from this part
and add it to an assembly. Next, one should create a job, called ”step1”, and perform the ”Write input”
operation on this job (ignore the warning(s)), to create the file step1.inp. One can then close Abaqus
CAE, without saving.

Step 1.5

After the previous step, the script has calculated the center of the growth plate sphere, and used
this to obtain all nodes and elements in the growth plate. It has prepared a string of text that should
be added to step1.inp to create the model with growth plate. The script will open two files, the file
containing the created string and step1.inp. Copy the contents from the first file, and paste in a new
line, right above the ASSEMBLY section of step1.inp. Save step1.inp, optionally with a different name,
for example step1_5.inp, that way one can easily use the original step1.inp file and in the future one
can skip the operations in Abaqus CAE for the same model.

Step 2

After saving and closing step1_5.inp, press Enter in the command line of Python. The script will
again open Abaqus CAE, a compact tutorial file and a file that needs to be filled. During this step, the
required features for the loading conditions will be added. However, the first thing to do is to check the
position and orientation of the generated growth plate. If the growth plate is not oriented or positioned
as desired, one should redo step 1.

Firstly, the node set called BOTTOMNODES will be created at the distal surface of the femur. Make
sure to exclude one node in the center: if not Abaqus will write the input file as ”A, B, C”. With A being
the starting number, B the last number and C the iteration size. The script however, uses ”A, B, C” as
A, B and C are all numbers in the set.

Next, the loading surfaces are added to the model. The following surfaces are added: FEMUR
HEADSURF, GLUTMAX, GLUTMED, GLUTMIN, PIRIFORMIS, ADDMAG, ADDMIN. These surfaces
correspond to the hip contact force, gluteus maximus, gluteus medius, gluteus minimus, piriformis, ad
ductor magnus and adductor minimus respectively. These surfaces can be found in Figure A.2. After
having done this, create a new job called ”step2” and write the input file for this job. Do not yet close
Abaqus CAE.
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(a) (b) (c)

(d) (e) (f) (g)

Figure A.2: The highlighted surfaces indicate the region where the surfaces should be created for the following loads: a) the
hip contact force (HCF), FEMURHEADSURF; b) the gluteus maximus, GLUTMAX ; c) the gluteus medius, GLUTMED; d) the
gluteus minimus, GLUTMIN; e) the piriformis, PIRIFORMIS; f) the adductor magnus, ADDMAG; and g) the adductor minimus,
GLUTMIN.

After creating these surfaces, one should use the Tools > Query > Mass Properties tool to obtain
the surface areas of the created surfaces. One should select mesh entities in the prompt area, and
then use the display manager to only display the surface of interest. Select all elements in a surface,
then use the tool and the mass information is printed into the message area. The surface areas should
be pasted into the SurfArea.txt file, line by line in the previously used order. Save and close this file.
Finally, close Abaqus CAE. The script will now create the complete simulation using the provided input
file. It will start both remodeling and growth simulations automatically.
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Usersubroutine

MODULE Ksafe
INTEGER,PARAMETER :: ElNum =
INTEGER,PARAMETER :: width =
INTEGER,PARAMETER :: icond =
INTEGER,PARAMETER :: Svflag =

REAL,PARAMETER :: B =
REAL,PARAMETER :: s =
REAL,PARAMETER :: rho_i =
REAL,PARAMETER :: lazy =

CHARACTER(120), PARAMETER :: ExpFileName =
1
CHARACTER(120), PARAMETER :: FileName2 =

1

REAL,PARAMETER :: a_oi = 0.02
REAL,PARAMETER :: b_oi = 0.01

REAL,DIMENSION(ElNum) :: Stimulus
REAL, DIMENSION(ElNum) :: initial_statev1
REAL,DIMENSION(ElNum,width) :: El_Exp
INTEGER,DIMENSION(ElNum,width) :: El_Num

ENDMODULE

SUBROUTINE SDVINI(STATEV,COORDS,NSTATV,NCRDS,NOEL,NPT,
1 LAYER,KSPT)

C
USE Ksafe
INCLUDE ’ABA_PARAM.INC’

C
DIMENSION STATEV(NSTATV),COORDS(NCRDS)

IF (NOEL.EQ.1) THEN
OPEN(unit=121,file=ExpFileName)
IF (icond.EQ.1) THEN

OPEN(unit=105,file=FileName2)
DO i=1,ElNum

READ(105,”(F)”) (initial_statev1(i))
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DO j=1,width
READ(121,”(I,F)”) (El_num(i,j), El_exp(i,j))

ENDDO
ENDDO
CLOSE(105)
CLOSE(121)

ELSE
DO i=1,ElNum

DO j=1,width
READ(121,”(I,F)”) (El_num(i,j), El_exp(i,j))

ENDDO
ENDDO
CLOSE(121)
initial_statev1(:) = rho_i

ENDIF
ENDIF

!user coding to define STATEV(NSTATV)
STATEV(1) = initial_statev1(NOEL)
STATEV(2) = 0.0
!STATEV(2) = 0
!STATEV(3) = 0

RETURN
END

SUBROUTINE USDFLD(FIELD,STATEV,PNEWDT,DIRECT,T,CELENT,
1 TIME,DTIME,CMNAME,ORNAME,NFIELD,NSTATV,NOEL,NPT,LAYER,
2 KSPT,KSTEP,KINC,NDI,NSHR,COORD,JMAC,JMATYP,MATLAYO,
3 LACCFLA)

C
USE Ksafe
INCLUDE ’ABA_PARAM.INC’

C

C
! Initialize required variables
REAL S11,S22,S33,S12,S13,S23,DeltaDensity,Density0,

1 EPS11,EPS22,EPS33,EPS12,EPS13,EPS23,DeltaDensity_i
2 Density,Young,Ua,Ub, U, gamma, invGamma, stimDiff,Stim
3 sum_f_i,Stim_f_i,PHI,NewDensity,NewDensity_i,S_v,
4 EPMin, EPInt, EPMax, SP1, SP2, SP3, Ssi, Shi, OI

! Initialize required vectors
REAL, DIMENSION(width) :: f_i,S_i
INTEGER, DIMENSION(width) :: num_i

C
! Initialize required strings
CHARACTER*80 CMNAME,ORNAME
CHARACTER*3 FLGRAY(15)

! Initialize vectors required for the CALL functions
DIMENSION FIELD(NFIELD),STATEV(NSTATV),DIRECT(3,3),

1 T(3,3),TIME(2)
DIMENSION ARRAY1(15),ARRAY2(15),ARRAYSP(15),

1 JARRAY(15),JMAC(*),JMATYP(*), COORD(*)
C
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! Obtain strain components
CALL GETVRM(’E’,ARRAY1,JARRAY,FLGRAY,JRCD,JMAC,JMATYP,

1 MATLAYO,LACCFLA)
EPS11=ARRAY1(1)
EPS22=ARRAY1(2)
EPS33=ARRAY1(3)
EPS12=ARRAY1(4)
EPS13=ARRAY1(5)
EPS23=ARRAY1(6)

! Obtain stress components
CALL GETVRM(’S’,ARRAY2,JARRAY,FLGRAY,JRCD,JMAC,JMATYP,

1 MATLAYO,LACCFLA)
S11=ARRAY2(1)
S22=ARRAY2(2)
S33=ARRAY2(3)
S12=ARRAY2(4)
S13=ARRAY2(5)
S23=ARRAY2(6)

! Load previous density (STATEV(1)) into Density
Density = STATEV(1)

! Currently unused compensation for density dependent remodeling rate
IF (Svflag.EQ.1) THEN

S_v = 0.96285*Density**5+3.01439*Density**4
1 2.68758*Density**32.39079*Density**2+
2 6.98199*Density0.0195888
ELSE

S_v = 1.0
ENDIF

! Calculating the strain energy density, using the stress and strain components
Ua=S11*EPS11+S22*EPS22+S33*EPS33
Ub=2.0*(S12*EPS12+S13*EPS13+S23*EPS23)
U=0.5*(Ua+Ub)

! Calculating the local stimulus (SED/density)
Stim = U/Density

! Storing the local stimulus of element NOEL
Stimulus(NOEL) = Stim

! Obtaining the element numbers of nearby elements
num_i = El_Num(NOEL,:)

! Obtaining the distance function values for the nearby elements
f_i = El_Exp(NOEL,:)

! Obtaining the local stimulus function values for the nearby elements
DO i=1,width

S_i(i) = Stimulus(num_i(i))
ENDDO

! Calculating the weighed stimulus for element NOEL
sum_f_i = SUM(f_i)
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Stim_f_i = DOT_PRODUCT(f_i,S_i)
PHI = Stim_f_i/sum_f_i

! Applying the lazy zone
IF (PHI.LT.(1lazy)*s) THEN

DeltaDensity_i = B*(PHI(1lazy)*s)*DTIME
ELSEIF (PHI.GT.(1+lazy)*s) THEN

DeltaDensity_i = B*(PHI(1+lazy)*s)*DTIME
ELSE

DeltaDensity_i = 0
ENDIF

! Include effect of surface/area ratio on remodeling rate:
!DeltaDensity_i = S_v*B*PHI*DTIME

! New density is equal to the old density plus the change in density
NewDensity_i = STATEV(1)+DeltaDensity_i
NewDensity = NewDensity_i

! If the density is either larger than rho_max or smaller than rho_min, it becomes equal to either rho_max or rho_min
IF (NewDensity_i.LE.0.01) THEN

NewDensity = 0.01
ELSEIF (NewDensity_i.GE.2.0) THEN

NewDensity = 2.0
ENDIF

! The statedependent variable 1 value is equal to the new density (state
dependent variable 1 is equal to the field variable)

STATEV(1) = NewDensity
FIELD(1) = STATEV(1)

! This last section calculated the osteogenic index
! Obtain the principal stress components
CALL GETVRM(’SP’,ARRAYSP,JARRAY,FLGRAY,JRCD,JMAC,JMATYP,

1 MATLAYO,LACCFLA)
SP1=ARRAYSP(1)
SP2=ARRAYSP(2)
SP3=ARRAYSP(3)

! Calculate the octahedral shear stress
Ssi = SQRT((SP1SP2)**2.0+(SP1SP3)**2.0+(SP2SP3)**2.0)/3.0
! Calculate the hydrostatic stress
Shi = (SP1+SP2+SP3)/3.0

! Calculate the osteogenic index
OI = a*Ssi+b*Shi

! Update the value of statedependent variable 2 with the new osteogenic index
STATEV(2) = OI

RETURN
END
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