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Relevance Vector Machines

by Rui YU

The development of intelligent vehicle and autonomous driving asked a higher re-
quirement of ADAS on its functionality. Currently, ADAS systems are able to detect
and segment urban and highway driving scenes. They cannot, in general, extract
’meaning’ from this segmentation yet. Learning the intention of other road users
will help ADAS understand surroundings and make a response. In a highway sce-
nario, understanding what the preceding vehicle is about to do, is the minimum
level of understanding the environment in order to take a decision about your own
actions. Among the driving behaviors the preceding vehicle could do, lane change
is a complex and dangerous one. Thus, we aimed to develop a real-time lane change
intention recognition model. This report presents three models inspired by the Hid-
den Markov Models (HMMs) and Relevance Vector Machines (RVMs). Besides these
two methods, we proposed a new model which combines them and overcome both
of their main shortcomings. According to the testing result, the proposed model can
correctly recognize more than 95% of the driving behaviors within 1 second the be-
havior starts, while the F1 score is also as high as 0.98. Besides the high accuracy,
the model also has a good performance on the flexibility, testing complexity and the
generalization ability.
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Chapter 1

Introduction

1.1 Background and Motivation

Advanced Driver Assistance Systems (ADASs) are a kind of vehicular system that
collect environmental information and processes it by means of embedded algo-
rithms to support drivers during the driving process. ADASs were first proposed
around 1986 when a series of projects which were aimed at practical solutions to
urban traffic jams was carried out by the European Union [1]. From the time of
this initial idea to the point of current automated commercial cars, both the concept
and functionality of ADAS have evolved and been significantly enriched. Currently,
the ADAS is considered to be a collection of systems which can instruct, alarm or
even override drivers in order to enhance road safety, driving comfort and traf-
fic efficiency. At present, some types of ADAS such as Advanced Cruise Control
(ACC) and Lane Keeping Assistance (LKA) are already mature enough to be used
in commercial cars. However, there is still a long way to go before ADAS meets the
requirements for high cognition to achieve further capabilities.

Under complex real-world traffic with various road users and infrastructures, an in-
telligent vehicle needs a sophisticated ADAS that can respond to the environment.
We take a simple ADAS as an example. With the help of radar, ACC can detect
obstacles in front. It automatically computes the distance between the vehicle and
the obstacle, and then adjusts the velocity to maintain an appropriate distance head-
way. This is a complete procedure of the ADAS see (detect), interpret (compute) and
respond (adjust the velocity) on the road. With the help of advanced sensors and
algorithms, an advanced commercial car (such as Model S from Tesla) already can
segment and classify different types of obstacles rather than just detecting them. In
the future, the ADAS is going to reason about the near future and plan ahead for
the driver. Thus, it is important for ADAS to recognize what the road users is going
to do in the following seconds. If the ADAS knows the others’ intention, it can fur-
ther predict trajectories, understand surroundings and make a response. Therefore,
based on the progress made in detecting objects using sensors or Vehicle Detection
(VD) systems, we would like to move forward to recognize driving intentions.
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1.2 Related Work

An intention recognition model can recognize other road users’ driving behavior
on the basis of their actions in an early stage. One typical application is to distin-
guish certain driving events from lane keeping, especially lane change behaviors.
Some researchers have developed several models using multiple machine learning
techniques, mainly Hidden Markov Models (HMMs) and Support Vector Machines
(SVMs) to build intention recognition systems.

Pentland first proposed that human behaviors are best described as a sequence of
control steps rather than as a sequence of sensor data. He used an HMM to model
driving behaviors by splitting the behavior into control steps [2]. In [3], an HMM
was used to predict whether a driver will stop before a stop bar when he is approach-
ing an intersection. To solve the same issue, an Auto-Regressive HMM [4] whose
observations are correlated was applied because it can better describe a real-world
driving event than a standard HMM. Later, HMMs were also used to distinguish
lane change events from lane keeping [5][6]. Nuria Oliver et al.extended Pentland’s
model [2] to Coupled HMMs [7] to achieve a higher recognition rate. He used driver
gaze as an extra parallel set of recognition clues rather than merely sensor informa-
tion. In [8], Kuge et al.further distinguished emergency lane changes from regular
lane changes using HMMs.

Aoude and How introduced a method that combines SVMs and a Bayesian filtering
(SVM-BF method) to recognize dangerous drivers in the DARPA Grand Challenge
race [9]. Mandalia and Salvucci also chose the SVM-BF method in [10], but they used
the variance of the data as the model input instead of the data themselves. Their re-
sult proved that it is a clever way to represent sequential data. Puneet Kumar et
al.extended two-class SVM-BF classifiers to a multiclass one for the purpose of rec-
ognizing lane change [11]. A real-time classifier using Relevance Vector Machines
(RVMs) which is an extension of standard SVM was developed by Brendan Morris
et al.[12]. In [3], both an HMM and an SVM-BF classifier were built and tested for
the purpose of characterizing compliant and violating driving behaviors. The re-
sult shows that the HMM has a higher classification rate than the SVM-BF classifier.
However, SVM-BF can achieve a high classification rate while keeping false positive
rates to certain minimal levels.

Recently, Husen and Lee introduced a new approach called syntactic pattern ap-
proach to recognize driver intentions. They defined pattern, sentence and grammar
for driving behaviors. By representing and parsing the driving parameters, one can
infer the driving behavior [13]. Julia Nilsson et al.developed a recognition system on
the basis of the driving rules. It is a simple system without complex inputs and al-
gorithm and easy to understand [14]. Besides, Gaussian Process (GP)[15], Recurrent
Neural Networks (RNNs) [16], [17] and Dynamics Bayesian Networks (DBN) [18],
[19] were also applied on this topic.

Based on the existing literature, one can observe that there are two shortcomings.
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One is that none can recognize other vehicles’ lane change intentions from the per-
spective of the host vehicle. In other words, they only let an intelligent vehicle know
what its driver is going to do at the moment. However, recognize the intention of
the host vehicle itself is not enough for understanding real-world traffic. We want
the intelligent vehicle to know what surrounding drivers intend to do. The second
is that their data lacked of variety. They collected data from simulator or database.
None of them trained and tested their model on multiple vehicles at multiple places.
This may limit the application range of their model. In other words, their model was
specific to one certain situation rather than a general situation. We would like to en-
hance the model ability from these two aspects, this will help the recognition model
better understand other road users and it will have a wider application in ADASs.

1.3 Problem Statement

The purpose of this thesis is to develop a maneuver intention recognition system
for highway scenarios that allows a vehicle equipped with such system (called the
host) to predict whether its preceding vehicle (called the target) will perform a lane
keeping or lane changing maneuver up to 1 second after the maneuver starts.

We aim to recognize lane change intention because it is one of the riskiest maneuvers
that a driver has to perform on highway. It involves changes in both longitudinal
and lateral movements as well as interactions with the surroundings [20]. As an
improvement to the current research, we would like to recognize the lane change
intentions of the target vehicle (the leading one) from the perspective of the host
vehicle (the following one) in a new scenario where these two vehicles are driving
behind each other on a highway. Our goal is to successfully recognize lane change
intention as soon as possible after the maneuver starts.

On the basis of the result of literature survey, we adopted two methods to build our
recognition model. The first one is the Hidden Markov Models. Since it achieved
the best accuracy among the literature, we also took it as a benchmark to measure
the performance of the other methods. The reasons for this were:

• An HMM is a simple and direct method which can easily describe a driving
behavior by segmenting it into several operations.

• Compared to other methods, the HMMs reached the highest recognition rate
from study to study. According to the comparison between an HMM and
an SVM-BF classifier, the HMM achieved a higher classification rate than the
SVM-BF classifier [3].

• Based on the derivation in [21], an HMM also performed quickly because of its
few parameters and low complexity.

The second method is the Relevance Vector Machines. The motivations of this were:
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• The formulation of an RVM classifier is a probabilistic generalized regression
model. This implies that it can be extended to the multiple-class case without
the need to train and combine one-vs-all classifiers as an SVM classifier [22].

• Although an RVM has additional computational cost when compared to an
SVM, it models a smoother hyperplane and fewer relevant (support) vectors,
which result in fast computation during testing. Thus, an RVM is suitable for
a real-time classification task.

• The RVMs learn from training data on the basis of Bayesian theory. The learn-
ing phase can be adjusted. Therefore, an RVM has high flexibility and high
tolerance with uncertainties.

Besides these two methods, we took advantage of both and proposed a new method
which combines them together. The proposed one had the same structure of the
HMMs but adopted a multi-class RVM classifier to replace a part of the HMMs.
Later in this thesis, we simply call it the HMM-RVM method. We compared the per-
formance of three methods with the model performance from the literature. Their
recognition results as well as their properties are compared and discussed in Chap-
ter 4. The required data are extracted from the NGSIM database, which is a public
database providing the driving parameters of the vehicles on Highway 101 and In-
terstate 80 in the US [23]. Through filtering and cleansing these data, we obtain
feature vectors which are as the role of input during the model’s training and testing
phase. At the end of this report, we will answer these questions:

• What are the advantage and disadvantage of each method?

• Make a comparison between the models based on accuracy, complexity, flexi-
bility and generalization ability. In general, which model performs best?

• How do our models perform compare with respect to others in the literature?

1.4 Overview

This report is organized as follows: Chapter 2 reviews Hidden Markov Models and
Relevance Vector Machines by explaining their principles and decoding the algo-
rithms. Chapter 3 introduces the structure of our model and also elaborates on how
the model works step by step. Chapter 4 evaluates the recognition performance of
our models and then makes an analysis of them. Chapter 5 presents the conclusion
and recommendations for future work.
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Chapter 2

Background

In this chapter, we provide the knowledge of the fundamentals of a driver inten-
tion recognition system. The first section presents the principle and development of
driver intention recognition models. The second section summarizes the algorithms
that we choose for this report. We also explain how the algorithms are applied in an
intention recognition model.

2.1 Driver Intention Recognition

Michon described driving behaviors using three hierarchical levels: strategical (plan-
ning), tactical (maneuvering) and operational (control) [24]. As Figure2.1 shows, the
control level is the lowest one, with the shortest time constant. It incorporates the
most basic operations like acceleration and deceleration. The maneuvering level
contains behaviors like overtaking and lane changing, which usually last a few sec-
onds. The strategic level has a long time constant because it contains general plans,
such as route choice. These three levels are top-down influenced. For example, the
operations at control level are the results of maneuvers from the previous level.

FIGURE 2.1: The hierarchical structure of a driving task [24].

During on-road driving the operations taken by the driver all belong to the control
level. The driving parameter detected by sensors or VD systems can reflect the oper-
ations. It was proved that a series of control level operations can describe a driving
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maneuver process [2]. Thus, one can predict the driving maneuver and even the
trajectory of the target vehicle by modeling the dynamics of the driving parameters.
According to this theory, a driver intention recognition system can be built in order
to help intelligent vehicles to infer the maneuver of others. The core of this model is
basically an advanced algorithm that manages the sensor data and gives the recog-
nition result.

At the early stage of recognition model research, the mainstream algorithm was the
Kalman Filter, which can predict the short-term trajectory of the target vehicle based
on current driving data. However, the Kalman Filter loses accuracy significantly
as the prediction time increases [25]. Recently, with the help of artificial intelli-
gence, driver intention recognition has been developed by various advanced ma-
chine learning techniques. The Hidden Markov Model is the most popular method
providing high accuracy and a quick response [18]. The Support Vector Machine
is another dominant method with good accuracy and, especially, the lowest false
negative rate [9]. Gaussian Process [15], [26], Decision Tree [25], Recurrent Neural
Networks [17], [27] are introduced in a driver intention recognition model as well.
After recognizing intentions by artificial intelligent methods, a Kalman Filter can be
added to predict the long-term trajectory of the target [25]. Usually the long-term
trajectory generated from recognized intention is more useful than the only inten-
tion.

FIGURE 2.2: A Driver Intention Recognition Model in ADAS.

Figure 2.2 illustrates a flow chart of the ADAS contains an intention recognition
model. The data are collected from the in-vehicle sensors. After being processed, it
becomes a feature vector and is fed to the recognition model. The intention recog-
nition model can recognize the target’s intention (whether he is going to change the
lane or not) and report it to the driver or the intelligent vehicle.

To evaluate the performance of the lane change intention recognition model, we
measure the model from these aspects:

• Accuracy, as well as precision and recall. We expect the model to correctly
recognize all the driving behaviors.



2.2. Methodology 7

• Recognition time. The model should recognize the intention as soon as possi-
ble, or the recognition result is not valuable.

• The amount of free hyperparameters. A simple model with few hyperparam-
eters is recommended.

• Generalization ability. The model should have flexibility and self-learning abil-
ity, or it is hardly applied in real life.

• Time complexity. The recognition model is a real-time model, so it requires
low testing complexity.

2.2 Methodology

We developed three models using Hidden Markov Models (HMM) and Relevance
Support Machines (RVM), and then compared their results. In the following we will
present the basic principles of them and show how we implement them in a driver
intention recognition system.

2.2.1 Hidden Markov Models

An HMM is a model of a finite-states stochastic process whose states cannot be ob-
serve directly, but have to be inferred from a set of observed (indirect) variables.

Figure 2.3 shows the structure of a Hidden Markov Model, where node S represents
the state, A represents the transition probability matrix and B represents emission
probability matrix. Between the states and the observations, there are some under-
lying relationships which we can learn about from observations, which is termed the
training phase. With the knowledge of the underlying relationship, the states of a
new process can be interpreted being fed with new observations. This is also called
the evaluation phase.

Parameters

An HMM is characterized by the following:
(a) N, the number of states in the model. We denote the state at time t as qt 2 S ,
{S1, S2, . . . , SN}.
(b) The state transition probability distribution A =

⇥
aij
⇤

, 1 6 i, j 6 N where

aij = P(qt+1 = Sj|qt = Si). (2.1)

(c) The emission probability matrix in state j, B =
⇥
bj(·)

⇤
.

When the observation symbol is distinct, we use M to denote the number of distinct
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FIGURE 2.3: The structure of a Hidden Markov Model [28].
It shows a process transits among three different states. S represents the states of

the process, A =
⇥
aij
⇤

represents the transition probabilities between states,
B =

⇥
bj(k)

⇤
represents the emission probabilities in states.

observation symbols per state. The observation at time t is ot 2 V , {V1, V2, . . . , VM},
where V denotes the observation symbols. Hence, the emission probability in state
j is represented by

bj(ot) = P(ot = Vk|qt = Sj), 1 6 j 6 N, 1 6 k 6 M. (2.2)

When the observation symbol is continuous, the observation sequence is represented
by O , {o1, o2, . . . , oT}, where T is the length of the sequential observation. We de-
fine all the observation symbols correspond to state j as Oj, where Oj =

�
ot 2 O|qt = Sj

 
.

The distribution of Oj is considered to be a mixture of M multivariate Gaussian dis-
tribution where

Oj ⇠
M

Â
l=1

cjlN (µjl , Sjl). (2.3)

Here, cjl denotes the coefficient of the lth mixture Gaussian in state j, µjl and Sjl
are the mean and covariance of the lth mixture Gaussian in state j. The emission
probability bj(ot) is represented by the probability density of the mixture Gaussian
distribution, where

bj(ot) = f (ot|Oj). (2.4)

(d) The initial state distribution p = {pi} where

pi = P(q1 = Si), 1 6 i 6 N. (2.5)

For convenience, we use the specification of the three probability measures

l = (A, B, p) (2.6)

to indicate the complete parameter set of the model [21], [29].
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Algorithm

In a driver intention recognition system, an HMM meets three challenges, which are:

• Training Problem: How do we adjust the model parameters l = (A, B, p) to
maximize P(O|l)?

• Model Selection: Given the observation sequence O = O1O2 . . . OT, and a
model l = (A, B, p), how do we compute P(O|l), the probability of the ob-
servation sequence, given the model?

• State Estimation: Given a model l = (A, B, p) and an observation sequence
O = O1O2 . . . OT, how do we choose a corresponding state sequence Q =
q1q2 . . . qT?

The first challenge is to find an HMM model to best describe how the observations
are related to the states. In other words, we find a model to tell us what kind of
influence a driving action has on vehicle parameters. It is also known as a training
problem. It is the procedure of calculating the model parameters (namely, state tran-
sition and observation symbol probability distribution and initial state distribution)
to maximize the probability of the observation sequence given the model P(O|l) [5].
The Baum-Welch method, an iterative procedure, is used for solving this problem.

The last two challenges are evaluation problems. The second challenge computes the
probability that the model produced the observed sequence. It can also be consid-
ered to measure how well a given model explains the given observations. The third
challenge is to solve a hidden part of the HMM model. When considering an HMM
of a driver intention recognition system, this problem can be defined as finding the
corresponding states (driving actions) based on an HMM model (relationships be-
tween actions and vehicle data) and the observations (vehicle data). Unfortunately,
the solution cannot be exact, so we usually use the Viterbi algorithm, which aims
to find the single best state sequence Q, to get a solution which is the best possible
one [28]. All the formulations of evaluation solution, the Viterbi algorithm, and the
Baum-Welch method can be found in [28].

Application

For a driving car, each driving action is a state. For example, the state set S could be
S , {acceleration, deceleration, steer right, . . . }. The observations O are the driving
parameters. During the training phase, the HMM finds a set of optimized param-
eters to describe the relationship between driving parameters and the states. After
that, given a new sequence of driving parameters, a well-trained HMM can output
the corresponding actions, as well as how well the model explain the parameters
and the states.
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In the case of a lane change maneuver, about three states make up the whole proce-
dure. We define the state set S , {lane keeping, steer, steer back}. In the recognition
model, we trained an HMM for each driving behavior, so there are three parallel
HMMs represent three driving behaviors. The input data are collected by vehicle
sensors, pre-processed and labeled by states. After the training phase, given all three
HMMs a new sequential data, each model estimates the probability of the data given
the corresponding model. The highest probability means the driving parameter is
most likely matches this behavior.

2.2.2 Relevance Vector Machines

The Relevance Vector Machine (RVM) can generate a linear model to describe a data
set, which is similar to the Support Vector Machines (SVM). Both of them are state-
of-art techniques for regression and classification, having wide application range
with a kernel representation [22]. The RVM models have an identical functional
form to the Support Vector Machines, but output probabilistic results on the basis of
Bayesian learning. It can be viewed as an probabilistic upgrade of SVM. Thus, we
firstly elaborate on the SVM and then the RVM.

(A) (B)

FIGURE 2.4: SVM techniques used in classification and regression
tasks.

(a): The SVM classifier trains a hyperplane to separate two classes of samples in a
classification task. (b): The SVM regression model trains a hyperplane to fit the

samples in a regression task.

The Support Vector algorithm is a method to categorize samples from different classes.
Figure 2.4a and 2.4b demonstrate how SVMs are applied on a classification or a re-
gression task. The solid points and the hollow points represent samples with differ-
ent labels. In a classification task, an SVM classifier finds a hyperplane which can
best separate one class of samples from another [30]. In a regression task, an SVM re-
gression model finds a hyperplane which can best fit all the ’True-labeled’ samples.
In Support Vector Machines, a sample is a vector whose each element represents a
feature of it. The number of features, which is also known as the dimensionality of
the data, can be very high in an SVM model. This is because the training algorithm
of SVMs can automatically select the most distinct features and abandon the others.



2.2. Methodology 11

However, SVM cannot make probabilistic predictions. In a regression task the SVM
outputs a point estimate, and in a classification task, a ’hard’ binary decision which
only contains ’-1’ and ’+1’. Ideally, we desire to make an estimation considering
uncertainties in our prediction. To overcome this shortcoming, the RVM method
was introduced. It is a probabilistic sparse kernel model identical in functional form
to the SVM [22].

Parameters

Figure 2.5a illustrates the simplest SVM, a linear two-class classification. The solid
points and the hollow points are from two classes, which are labeled by ’+1’ and ’-1’
respectively. The decision function f takes the form of

f (x) = w · x + b, w 2 RD, b 2 R, (2.7)

where x 1 can be any sample (driving data obtained from vehicles) with D features,
w = (w1, w2, . . . , wD) is the weights, and b is the bias. The hyperplane that separates
the two-class samples is represented by

w · x + b = 0, w 2 RD, b 2 R. (2.8)

(A) (B)

FIGURE 2.5: How SVMs work on different tasks.
(a): An SVM classifier finds a hyperplane which has the largest margin to the

closest samples (technically called ’support vectors’) on both sides. (b): An SVM
regression model finds a hyperplane which has the narrowest margin to the

furthest samples (support vectors).

Similarly, it can be applied to a regression problem. As Figure 2.5b shows, a hyper-
plane is trained to fits all the solid points (generally the samples which are labeled by
’1’). The linear function f and the hyperplane take identical forms to a classification
problem, which are shown in Equation 2.7 and 2.8.

So far we introduced the simplest case. However, usually training data are not lin-
early separable in their input space. Figure 2.6 shows the samples cannot be linearly

1Throughout Section2.2.2, m denotes scalar, m vector and M a matrix. Given the Matrix M, mi
denotes the row vector from the ith row of M unless stated otherwise.
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separated in the input space. In order to solve this, a nonlinear map f is introduced,
then the samples are mapped into a higher dimensional space H (called feature
space):

f : RD 7!H . (2.9)

FIGURE 2.6: A demonstration of kernel function [31]

We define a "kernel function" K represents the dot products of the mapped inputs

K(xi, xj) = f(xi) · f(xj). (2.10)

By choosing a suitable kernel function, the data which are non-separable in the input
space can become separable in the feature space, because it is easier to find a linear
hyperplane to separate the data in a higher dimensional space. When the dimension
exceeds the number of samples, it definitely can find a linear solution. Detailed in-
formation of the training algorithm and kernel functions are presented in Appendix
A.

Lastly, an SVM model takes the form:

yi = y(xi) = w · xi + b, w 2 RD, b 2 R. (2.11)

In order to obtain a probability estimation of samples based on SVM, Michael E.
Tippling proposed the RVM framework[22]. In an RVM regression model, given a
data set X = (xT

1 , . . . , xT
N)

T we write the true labels as a vector t = (t1, . . . , tN), and
express it as the sum of an approximation vector y = (y(x1), . . . , y(xN)) and an error
vector e = (e1, . . . , eN):

t = y + e, (2.12)

where
ti = y(xi) + ei = w · xi + b + ei. (2.13)

The errors e are conventional assumed as independent zero-mean Gaussian distri-
butions, with variance s2: so p(e) = ’N

i=1 N (ei|0, s2). The parameter s2 can be set
in advance if known but more usually would be estimated from the data.

To extend this model into a non-linear case, a kernel function K is applied to the
input samples X. Appendix A.2 proves that only dot products of samples are used
in the training phase. In an RVM model, kernel functions are used to replace the
original samples, and also the weights w are changed to a another weight vector w̃.
One sample is represented by ki, whose elements equal to f(xi) · f(xj), j = 1, . . . , N.
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The big kernel matrix K = (kT
1 , . . . , kT

N)
T is composed by all new sample vectors.

Thus, an RVM takes the form:

ti = y(xi) + ei = w̃ · ki + ei[32]. (2.14)

Although an RVM model has identical form to an SVM model, they use completely
different ways to learn. Bayesian interference helps an RVM model to formulate
the likelihood and select hyper-parameters. In order to conveniently formulate all
the probabilities during the training phase, an auxiliary parameter A 2 RN⇥N is
introduced to the RVM algorithm. A is a diagonal matrix whose element ai restrict
the corresponding weights w̃i from w̃. It is set that weight w̃i follows a Gaussian
distribution with zero mean and variance ai. Taking advantage of this definition,
probability P(w̃|a) as well as probability P(t|a, s2) can be expressed as multivariate
Gaussian distributions. Figure 2.7 shows the hyper-parameters of the model and
their relationships.

FIGURE 2.7: Plates diagram of an RVM model [33].

Algorithm

According to Equation 2.14, the size of the training data is changed to N through
a kernel function. Therefore, the numbers of the entries of weight w̃ and auxiliary
parameter A should also equal to the number of samples N. However, most of the
vectors of kernel K make limit contribution to classification results. In order to re-
duce computational cost and avoid the ’curse of dimensionality’, feature selection is
applied during the training phase. After the training phase, most of the features are
pruned and only few of them are kept. The number of the features kept in the model
is denoted as M, which is much smaller than the number of samples N. Training an
RVM model is basically a process of evaluating each sample’s contribution, select-
ing contributed samples and estimating the corresponding weight w̃. The following
roughly interpret the training algorithm of an RVM model.

In an RVM regression model, the prediction t follows a multivariate Gaussian dis-
tribution N (y, Se). Se is a diagonal covariance matrix whose elements all equal to
s2 because it is assumed the error follows independent Gaussian distributions. The
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conditional probability of the prediction t is written as:

p(t|w̃, s2) = (2ps2)�N/2 exp

(
�kt� yk2

2s2

)
. (2.15)

The weights w̃ from w̃ follow a standard normal distribution with zero mean and
variance a�1

i :

p(w̃|a) = (2p)�M/2
M

’
m=1

a1/2
m exp

✓
�amw2

m
2

◆
, (2.16)

where M denotes how many rows of K are kept in the model. In a RVM model,
most of the row vectors of K are removed to achieve sparsity, while only M vectors
remained. These vectors are also known as ’the basis vectors’. The weight w̃ is a
1 ⇥ M vector. The value of M depends on the model, and is much less than the
number of samples N.

The probability we are interested during the training phase is p(t|a, s2), which is
the marginal likelihood of the prediction given hyper-parameters. Based on Equa-
tion 2.14, prior knowledge of the hyper-parameters and the property of multivariate
Gaussian distribution, we can infer that the prediction t also follows a multivariate
Gaussian distribution with zero mean and (KA�1KT + s2I) covariance. We define C
to represent KA�1KT + s2I for convenient. The marginal likelihood of the prediction
can be written as:

p(t|a, s2) = (2p)�N/2(|C|)�1/2 exp
✓
�1

2
tTC�1t

◆
. (2.17)

The sparse Bayesian learning is formulated as the (local) maximization with respect
to a of the marginal likelihood, or equivalently, its logarithm L(a):

L(a) = log p(t|a, s2) = �1
2

h
N log 2p + log |C|+ tTC�1t

i
. (2.18)

If we decompose the vector a into a single prior ai and the vector of priors without
ai, which is also called a�i, we can write Equation 2.18 as:

L(a) = L(a�i) +
1
2


log ai � log(ai + si) +

q2
i

ai + si

�
, (2.19)

where we have the ’sparsity factor’ si and the ’quality factor’ qi. They measure the
quantities of sparsity and quality the ith vector of K contributes. They are defined
as:

si , kiC�1
�i kT

i , and qi , kiC�1
�i t, (2.20)

where C�i represents the quantity C without the contribution of the ith vector of K.
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To maximize the marginal likelihood L(a), we calculate the derivative of L(a) with
respect to ai and find the ai which can maximize the L(a):

ai =
s2

i
q2

i�si
, i f q2

i > si,
ai = •, i f q2

i 6 si.
(2.21)

The posterior parameter distribution conditioned on the data is given by combining
the likelihood Equation 2.15, 2.16 and prior within Bayes’ rule:

p(w̃|t, a, s2) = p(t|w̃, s2)p(w̃|a)/p(t|a, s2), (2.22)

which can be expressed as a Gaussian N (µ, S) with

S = (A + s�2KKT)�1, µ = s�2SKt. (2.23)

An optimized weight w̃ is obtained by maximizing the posterior

w̃ = arg max
w̃

p(w|t, a, s2). (2.24)

Therefore, it can be updated by

w̃ = s�2(A + s�2KKT)�1Kt (2.25)

Lastly, the noise level s2 is updated by

s2 = kt� yk2 /(N �M + Â
m

amSmm)2. (2.26)

At the beginning of a training phase, the variance s2 is estimated from data and all
the priors a are set to infinity. Then a single basis vector ki is selected, the related
prior ai, sparsity factor si and quality factor qi are calculated. Based on the calcula-
tion, the weights w̃ and noise s2 are updated. After that, the model will iteratively
find other basis vectors and update the hyper-parameters until it meets its conver-
gence criterion.

Application

In a driving recognition case, the input data is derived from in-vehicle sensors. All
the sensor data need to be selected and pre-processed to become a time sequence
of data. The processed training data should be labeled according to if it contains a
specific driving behavior or not. By giving these training data, a three-class RVM
(combine three one-vs-all RVMs) is trained to fit a regression model for each class,
i.e. each driving maneuver. Hence, we let the driving behavior recognition problem

2The detailed steps of the maximization of L(a) and the update of s2 will be elaborated on in
Appendix B.
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become a data classification problem. When we do the recognition, the RVM model
will output a probability of the specific driving behavior happens at the moment.
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Chapter 3

Model Structure

In this chapter, we elaborate on how our models work step by step. It starts from
the data acquisition, which includes data cleansing, pre-processing, labeling and re-
scaling, then goes through the three types of models. We introduce how to adapt the
HMMs and the RVMs to a driver intention recognition model as well as a combined
model which can overcome the limitations of the first two models.

3.1 Data Acquisition

Figure 3.1 illustrates all the data pre-processing steps in a flow chart. In the following
we will explain the approach and the motivation of each step.

3.1.1 NGSIM Database

Next Generation Simulation (NGSIM) Vehicle Trajectories and Supporting Data [23]
is the database we used for our model. It is provided by the US department of
transportation. Data was collected through a network of synchronized digital video
cameras and transcribed to vehicle trajectories. This vehicle trajectory data provide
the precise location of each vehicle within the study area every one-tenth of a sec-
ond, resulting in detailed lane positions and locations relative to other vehicles. Re-
searchers for the Next Generation Simulation (NGSIM) program collected detailed
vehicle trajectory data on various highways. By researching the database, we used
the data which are collected on southbound US 101 and eastbound I-80 to extract the
training and testing data.

Figure 3.2a and 3.2b illustrate the locations of the trajectory data we used for the
recognition model. Figure 3.2a depicts the southbound direction of Highway 101
(Hollywood Freeway) in Los Angeles, California. The study area is approximately
640 meters in length, with five mainline lanes, one on-ramp and one off-ramp through-
out the section. The trajectory data were collected from 7:50 AM to 8:05 AM in 2005
[34]. Figure 3.2b depicts the northbound direction of Interstate 80 in Emeryville,
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FIGURE 3.1: Flow Chart of the Data Acquisition.

California. The area is approximately 500 meters in length, with 6 lanes and one on-
ramp. The off-ramp is located at the downstream of the study area. The data were
collected during 4:00 PM and 5:30 PM in 2005 [35]. Given the NGSIM database, we
went through a data pre-processing phase to extract specific parameters we need for
our model. Because the NGSIM database was collected by camera and processed
into trajectory data, it contains high level noise. Thus, a series of pre-processing and
cleansing is essential.

3.1.2 Data Pre-processing and Cleansing

Since the NGSIM database gives the specific trajectory information about vehicle
locations, we can easily find lane change behaviors and collect the driving informa-
tion of the corresponding vehicles. All the truck data were removed and also the lane
change behaviors happened on on-ramp or off-ramp were not considered, because
we were only interested in the lane change behaviors happened between passen-
ger cars on main-lane. Based on the trajectory data NGSIM provided, by applying
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(A) (B)

FIGURE 3.2: (A): Study area schematic on Highway 101 [34]. (B):
Study area schematic on Interstate 80 [35].

derivations and low-pass filters 1, we extracted the driving data including 6 features:
absolute lateral and longitudinal velocities of preceding vehicles (also named target
vehicles), absolute lateral and longitudinal accelerations of preceding vehicles, rela-
tive heading angles and relative yaw rates. These six features can fully describe the
status of a vehicle during the driving. The importance of each feature will be tested
and discussed in the following chapter. Figure 3.3 depicts how we extracted the lane
change information from the NGSIM database.

FIGURE 3.3: Diagram of Data Pre-processing.

So far, only part of the pre-processed data are valuable data. Figure 3.4 illustrates

1A first-order Butterworth filter is used to remove noise from the NGSIM database, and moving
average filters are used to smooth the driving parameters. The code is shown in Appendix C.
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a set of pre-processed parameters which represent a 15-second driving sequence in-
cluding a lane change behavior. We searched all the changes in the parameters of
’Lane ID’, which is considered to be the moment when the target vehicle crosses the
lane marking. To completely cover the whole lane change process, we took 10 sec-
onds before and 5 seconds after this moment as a preliminary lane change process.
From the bottom-left figure, we can tall that the heading angle has a gradual increase
from the time of 50 ms until the lane change moment. However, due to the low qual-
ity of the data, not all the parameter sets we extracted are as good as this one. For
example, Figure 3.5a shows a set which has unexpected heading angles. We inferred
this is caused by incorrect following vehicle information. Figure 3.5b shows a set
which has two peaks of heading angles. This is because the driver failed to change
the lane on his first try. Due to technical restrictions on labeling, this will cause extra
troubles during the segmentation and labeling phase, so we also abandon this kind
of data. These unexpected data will disturb the model’s training phase, so we have
to remove them from our dataset. This is called a cleansing phase.

FIGURE 3.4: Valuable parameters extracted from the NGSIM.
In the first-row figures, the red lines represent the longitudinal components of the
velocity and the acceleration, and the blue lines represent the lateral components.

The lane change moment happened at the time of 100 ms.

We removed defective sequences based on the value of heading angle, because head-
ing angle is the most obvious parameter indicate a lane change behavior. There are
two conditions for an eligible set: (1) Before the lane change behavior, the target ve-
hicle must keep driving in its lane for a while. So we required the heading angle
should be around zero for at least 1 second before it arises. (2) The heading angle
should decrease in a reasonable rate after it reaches the peak, which means it should
take about 4 seconds to go back to zero value. It can guarantee us the parameters
describe only one lane change behavior and there is no failed tries and other consec-
utive behaviors. Any sequences can not satisfy these two conditions were removed
from our dataset. For the eligible ones, we trimmed them to an appropriate length
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(A) (B)

FIGURE 3.5: Defective parameters extracted from the NGSIM.
(A): This set of parameters has unexpected heading angles which is caused by

incorrect vehicle information. (B): This set of parameters has more than one peak of
heading angles, which will lead unexpected troubles in the following phases.

in order to obtain a complete but non redundant lane change sequence. Figure 3.6
shows a sample of the selected and trimmed parameter sets. The length of the lane
change sequence was slightly shorten from 150 ms to around 110 ms.

FIGURE 3.6: Illustration of a lane change sequence after cleansing
and trimming.

For the lane keeping samples, we extracted parameters from the NGSIM database
according to two conditions: (a) The heading angle should be within a small range
during the whole chosen sequence. Here we defined the sequence lasts 150 ms, and
the range of the heading angle is within (0.25,+0.25) degree. (b) No lane change
behaviors occurs 20 seconds before or after this chosen sequence, or the parameters
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might be influenced by the lane change behavior. Figure 3.7 illustrates the driving
parameters of a lane keeping behavior.

FIGURE 3.7: Illustration of a lane keeping sequence.

3.1.3 Labeling

As Figure 3.6 shows, a lane change behavior was roughly trimmed to a 110 ms long
process. The sampling frequency of our data is 10 Hz. Thus, about 110 samples
describe a lane change sequence. For each sample, we have numerical values of 6
features (shown in Figure 3.3). We labeled each sample according to these feature
values. For the lane keeping behaviors, we only have one label for all samples.
They are all labeled by ’lane keeping’ label. For the lane change behaviors, besides
the ’lane keeping’ label we have another two labels ’steering’ and ’steering back’.
Each sample is labeled by one of these three labels mainly according to the values
of heading angle and yaw rate. Thus, a lane change behavior is segmented into
three parts: lane keeping (normal driving), steering and steering back. Figure 3.8
illustrates the relation between the heading angle and the label during a lane change
sequence. A sample is labeled by ’lane keeping’ (blue area) when the heading angle
is around zero. All the samples belong to the period since the heading angle starts
to increase until it reaches the peak are labeled by ’steering’ (yellow area). After
that, the samples with a decreasing heading angle are labeled by ’steering back’ (red
area).



3.1. Data Acquisition 23

FIGURE 3.8: Illustration of A Lane Change Sequence After labeling.
A sample is labeled by ’lane keeping’ (blue area) when the heading angle is around
zero. All the samples belong to the period since the heading angle starts to increase

until it reaches the peak are labeled by ’steering’ (yellow area). After that, the
samples with a decreasing heading angle are labeled by ’steering back’ (red area).

3.1.4 Feature Rescaling

Before the data can be fed to a model for training or testing, feature rescaling is
the last but very crucial step. The contribution of a feature depends heavily on its
variability relative to others, which results that the feature in greater numeric ranges
dominates those in smaller numeric ranges. For example, if one feature has a range
of 0 to 1, while another one has a range of 0 to 1,000,000, then the contribution of the
first feature will be swamped by the second one. Therefore, it is essential to rescale
the features so that their variability reflects their importance, or at least is not in
inverse relation to their importance. When the relative importance of the features
is unknown, it is common to rescale each feature to the same range or the same
standard deviation. Otherwise, rescaling the features to let the more important ones
have larger variances or ranges may help. Besides, feature rescaling also can avoid
numerical difficulties during the calculation. Because kernel values usually depend
on the inner products of feature vectors, large feature values might cause numerical
problems [36].

We have known that ’heading angle’ and ’yaw rate’ are the most important features
among the others, and the longitudinal (Y-axis) velocity and acceleration are the least
important ones. Fortunately, the important feature values have already centered
around zero, so we need not to do the standardizing. By trying different rescaling
coefficients, we found a best combination for our features, which will be discussed
in Chapter 4.
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3.2 HMMs Method for Intention Recognition

Hidden Markov Models have been popular on the topic of speech recognition due
to its simple structure and clear performance [37]. As was introduced in Chapter 2,
the concepts of ’state’ and observation’ in a Hidden Markov Model perfectly fits to
driving actions such as a lane change behavior. Hence HMMs have been introduced
to recognize driving behaviors as well. We value the HMMs’ properties of process-
ing sequential data, statistic foundation and efficient algorithm. However, we do
not want the states are defined by a black box algorithm rather than us, because this
leads to a big amount of undetermined parameters. We built our recognition model
by means of taking advantage of the good properties and also reducing the negative
ones.

3.2.1 HMM Training

Generally HMMs is a unsupervised learning method, which means it does not need
any labels of the training data. With the help of Baum-Welch methods, the model can
iteratively re-estimate the its parameters until it finds a local maximum. However,
the amount of our training samples is extremely limited (only 363 samples in total),
a supervised learning method rather than unsupervised one may help the model
reach better accuracy. Thus, we would like to estimate the model parameters by
labels. From the Chapter 2.2 we have known that an HMM can be indicated by
three measures: state transition probability matrix A, emission probability matrix B
and the initial state distribution p. Since every sample of the training set has been
labeled by state, we define gt(i) as the number of transitions from state Si at time
t, and define xt(i, j) as the number of transitions from state si to state sj from time t
until time t + 1, then A = {aij} and p = {pi} can be directly computed by

pi =
g0(i)

Âi g0(i)
,

aij =
Ât=T�1

t=1 xt(i,j)
Ât=T�1

t=1 gt(i)
.

(3.1)

Here in a lane change intention recognition, the ’observations’ the model collected
are driving parameters such as velocities and accelerations. Their values are contin-
uous, so the emission probability matrix B = {bj(·)} in each state is assumed to be
a multivariate Gaussian distribution. For each state j, we have the mean µj and the
covariance matrix Sj. The emission probability of the observation ot in state j at time
t is expressed by:

bj(ot) = f (ot|µj, Sj). (3.2)

Hence, learning the emission probability becomes a problem of learning the mean
µj and the covariance matrix Sj of a multivariate Gaussian distribution. Based on
the observations, which are the features of the training data, we can easily obtain the
mean and the variance of each feature as well as the covariance matrix of the whole
training data.
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This is a simple and direct way to estimate model parameters from the observations
and the labels. Compared to the methods which estimate model parameters in a
unsupervised way 2, our model have prior knowledge about the real label (state) of
the each training sample, the only thing it should learn is the relationship between
the observations (inputs) and labels. Supervised learning is a reliable and easy way
to find the hyper-parameters in order to achieve a maximized P(O|l). For a small
training set, it is crucial to reduce the complexity of the model. Because of this, we
made some small changes to the HMM training phase in order to simplify it: (1)
sacrificed the model’s abilities of learning and generalization to make it become a
supervised learning model (2) chose one multivariate Gaussian distribution instead
of a mixture of multiple one as the observation symbol probability distribution, so
the amount of hyper-parameters is significantly reduced.

We have introduced the principle of HMM training in Chapter 2.2. Next we will ex-
plain how we train the HMMs to become a lane change intention recognition model.
Due to the unique structure of the states and their inner relations, an HMM is spe-
cific to one certain driving behavior. This means if we want to build a classification
model we have to train multiple HMMs. In our recognition model, there are three
HMMs describe three different behaviors. Before the training phase, we separated
driving sequences which belong to different behaviors and fed them to the corre-
sponding HMM. These three trained HMMs are parallel and equally contribute to
the recognition.

3.2.2 Forward Procedure for HMM Testing

In the testing phase, given a sequence of driving parameters O , {o1, o2, · · · , oT}, a
HMM is expected to output the probability of the observation sequence given this
model l, i.e. P(O|l). This probability shows how well this driving sequence fits the
model. For example, if the trained HMM describes a left lane change behavior, the
probability P(O|l) means how likely a left lane change behavior occurs during the
sequence O.

The best algorithm for a HMM to make this prediction is called ’Forward Procedure’.
A forward variable at(i) is introduced in this algorithm. It is defined as the proba-
bility of the partial observation sequence {o1, o2 · · · ot} and state Si at time t, given
the model l, i.e.

at(i) = P({o1, o2 · · · ot}, qt = Si|l). (3.3)

At the first time step of a sequence, the forward variable a1(i) is initialized by

a1(i) = pibi(o1). (3.4)

2Iterative procedures such as the EM(expectation-maximization) method or gradient techniques can
solve this problem. They find a locally maximized probability P(O|l) and the corresponding model l
[21].



26 Chapter 3. Model Structure

Then given a new observation ot+1 and the state transition probability A, the forward
variable can be iteratively calculated in each time step as follow:

at+1(j) =

"

Â
i

at(i)aij

#
bj(ot+1). (3.5)

Until it goes to the end of the sequence, the forward variable aT(i) represents the
probability of the sequence O ends at state i at time T, given the model l. Hence, the
probability P(O|l) we seek equals to:

P(O|l) = Â
i

aT(i). (3.6)

Figure 3.9 depicts the procedure of the a testing phase. The recognition model is
composed of three trained HMMs which represent three driving behaviors and a
compare module. The same observation sequence is given to all three HMMs and
receives three probabilities. In the compare module, the behavior which has the
highest probability among the threes will be given as the final result of the recogni-
tion model.

FIGURE 3.9: Illustration of the testing phase of the Hidden Markov
Models.

3.3 RVMs Method for Intention Recognition

3.3.1 RVM Training

The RVM is fundamentally a two-class model. However, practically we have to
tackle problems involving multiple classes. To build a multi-class model, for exam-
ple a k�class classification model, methods which combine several binary classifiers
were proposed in [38]. One is to train k one-vs-all models. For the kth model, the kth-
class samples belong to ’+1’ class and all the other samples belong to ’-1’ class. A test
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sample needs to be tested by k models, a majority vote across the classifiers will de-
cide the final result. Another one is to train k(k� 1)/2 one-vs-one models for every
two classes of samples. A test sample will be tested by k(k� 1)/2 times and a vote
scheme will give the result [39]. Compared to the binary results given by an SVM
model, RVM has an advantage in probability estimation. The probability estimation
given by the RVM provides an efficient way to make the majority vote, therefore we
chose to build the multi-class classification model by combining 3 one-vs-all RVMs.

The training phase of an RVM model basically is a process weighting the contribu-
tion of the features. We define the contribution to the marginal likelihood as a new
quantity q. Based on the Equation 2.19 and 2.21 we can derive that the contribution
is evaluated by:

qi = qi
2 � si. (3.7)

A positive qi indicates the feature i contributes to the model, and a negative qi indi-
cates the feature i does not contribute. For each one-vs-all RVM, the training data are
same, only the labels differ. We assume that the features have identical contribution
across all the classes, which means they share one q as well as one a across the three
RVMs. We can consider the three RVMs to be an integrated model which only need
to be trained once rather than three times. The label vector t becomes an N-by-C la-
bel matrix T, where N denotes the number of samples and C denotes the number of
classes. The ’quality factor’ qi becomes a vector qi which contains C elements. Then
the contribution factor q becomes:

qi = kqik2 � Csi (3.8)

The training algorithm takes the identical form to binary classification cases. The
pseudo-code is shown in Algorithm 1. The iteration terminates when the update
of a is small enough, e.g. the changes in log a is smaller than 10�4, and there is
no contributed but non-activated sample. The model find a local maximum of the
marginal likelihood (i.e. Equation 2.18) when this convergence criterion is satisfied.

Although RVMs preform well on classification problems, one inevitable drawback
of the RVM is the restriction of the input data. Firstly, the RVMs cannot deal with
sequential data, which means we need to use some methods to represent sequen-
tial data. Secondly, this model is sensitive to the quantity magnitude of the feature.
Before the training, the range and the variance of each feature should be regular-
ized or re-scaled. Thirdly, the integrated RVMs are trained together using Bayesian
interference. The trained model is sensitive to imbalanced data as well. Thus, the
number of samples from different classes should be equalled in order to avoid bias.
These restrictions require a series of data preparation steps. We must abandon part
of the ’left lane change’ data in order to balance the number of samples. Then we
re-scaled the features according to the importance of the feature. Lastly, we used
a ’sub-window approach’ to represent the sequential data. As Figure 3.10 shows, a
sub-window contains the observations during 20 time steps and a observation at one
time step contains 6 features. The mean and the variance of each feature are calcu-
lated to replace all the original values because relationship measurements between
values are more critical. The variance is an efficient measurement to reflect change
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Algorithm 1 The Training Algorithm of the Multi-class RVMs

1: initialize the noise level s2

2: select a sample and initialize it ai  Ckkik2

kkitk2/kkik�C
, all others are set to •

3: while convergence criterion is not satisfied do
4: calculate sparsity factor S KC�1KT

5: calculate quality factor Q KC�1T
6: for all activated sample i (ai 6= •) do
7: modify si  aiSi

ai�Si

8: modify qi =
aiqi

ai�Si

9: calculate contribution factor q : qi  kqik2 � Csi
10: if qj > 0andaj = • then
11: find j = arg max

j
qj for all j

12: else if qj < 0andaj 6= • then
13: find j = arg min

j
qj for all j

14: else
15: j = randomly select one from activated samples
16: add/re-estimate or delete aj  Csi

2

qi
or •

17: update the noise level s2

patterns and also reduce noise and input size. As a result, only 12 features remain
when the training phase starts.

FIGURE 3.10: A representation of sequential data.

3.3.2 RVM Testing

When the training converges, we obtain M basis vectors Xbasis = (xT
1 , xT

2 , . . . , xT
M)T

and also the weight W̃ based on the parameter A and the Equation 2.25. Here, the
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weight W̃ is a C⇥M matrix contains three weight vectors w̃ which reflect relation-
ships between the input data and the three classes. Given the testing set Xtest, the
estimations are made as following:

Y = W̃K(Xbasis, Xtest). (3.9)

Y has three estimations for each test sample. They estimate the probability of the test
sample given the ’right lane change’, ’left lane change’ or ’lane keeping’ model. The
final result is the class which has the highest estimation.

3.4 HMM-RVM Method for Intention Recognition

Although use of Hidden Markov Models has contributed greatly to driver intention
recognition and also our recognition model, there are limitations of the HMMs. For
example, the HMMs assume the distribution of observations can be well described
by Gaussian Mixture models. Replacing the emission probability matrix B by other
models can solve this limitation. As was discussed above, the RVMs are good at
classification problems in a static situation rather than a dynamic one. We proposed
a combined model which use a multi-class RVM model to estimate the emission
probability. Hence, the major limitations of both models have been solved.

The combined model has an approximately same structure to the model in Figure
3.9, where three HMMs work in parallel. The difference lies inside the HMMs, a
multi-class RVM classifier provides emission probability estimation for each HMM.
Figure 3.11 illustrates the internal structure of one combined model. To conclude,
the HMM-RVM combined method is an extension of the HMM method. The RVM
model is considered to be a component of the HMM.

3.4.1 Combined Model Training

The whole model contains three HMMs and each HMM contains a 3-class RVM
classifier. We trained these models separately. All the training samples have to be
divided into three parts according to their true label. One class of training samples
are only fed into the corresponding model.

The input data of the RVM model is a static observation with 6 features measured
at one time step. One can distinguish the driving state of the observation according
to the label we added to each observation. Based on these, the RVMs learns three
weight vectors w̃ which can map the observations O into the driving states S =
{S1, S2, S3}. The training algorithm decoded in Algorithm 1.

In the HMM-RVM combined model, the RVMs provide the emission probability B
and replace the original multi-variate Gaussian models. This means the training
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FIGURE 3.11: The internal structure of an HMM-RVM combined
model.

The input is the observations O = {o1, o2, . . . , oT}, i.e. driving parameters
throughout the time t = 1, 2, ..., T. The output is the probability estimation of the

observations given the model, i.e. P(O|l).

phase of the RVMs also replace the learning of hyperparameters µ and S. The train-
ing phase of the HMMs merely computes the initial state distribution p and state
transition probability A on the basis of Equation 3.1.

3.4.2 Combined Model Testing

As Figure 3.11 shows, the observations O = {o1, o2, . . . , oT} are fed into the RVM
classifier as test data. Then the RVM makes estimations of the input based on its
model. These estimations serve as the emission probability B in the HMM part of
the combined model. The final estimations are computed by the forward procedure,
which decoded in 3.2.2. The RVM testing still follows Equation 3.9, where testing
samples Xtest are the observations at a single time step and the estimations Y are
probability estimations of the observations given the states, i.e. yt = {P(ot|qt =
S1), P(ot|qt = S2), P(ot|qt = S3)}.

With the help of trained RVM classifiers, we tested the performance of our new
recognition model. The testing procedure follows the forward procedure as was
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shown in Equation 3.4, 3.5 and 3.6. Similarly, the result of the recognition model is
also given by choosing the behavior which has the highest probability.
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Chapter 4

Results

The dataset and the pre-processing phase have been presented in Chapter 3, so we
start from the evaluation method. Besides, we designed experiments to learn and
prove the properties of different methods. The experiments, their result and discus-
sion are all presented in the following. Lastly, we also compare our final result with
those from the literature.

4.1 Evaluation Method

4.1.1 Cross Validation

Cross validation is a model evaluation method which can evaluate the generaliza-
tion capability of a model. The generalization capability indicates how well the
model will do when it makes new predictions for the unseen data. In other words,
lack of generalization capability is considered to be a overfitting problem, which
means the model corresponds too closely to a particular sample set rather than gen-
eral samples. The overfitting problem occurs when the amount of training samples
is small relative to the amount of hyper-parameters. Therefore, cross validation is
important when the size of the dataset is limited. Besides, cross validation is not
only a way to predict a model’s future accuracy, but also a method to select the best
model from a given set [40].

The main idea of cross validation is to split the dataset and to use different parts to
train and test the model. Before the training begins, a portion of the data is removed
and only the remain data is used for training. Then when the training is done, the
removed data plays the role of the testing set to test the performance of the learned
model. There are several approaches to split the dataset, such as holdout method,
K-fold method and leave-one-out method. The holdout method is the simplest one.
The dataset is divided into two parts: training set and testing set, and the model
is trained and tested once. The K-fold method splits the dataset into K equal size
subsets. The model is test by one of the k subsets and trained by the others, which
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means it will be trained and tested for K times in order to test all the samples. Com-
pared to the holdout method, K�fold method is not affected by the way data get
divided. This is because each sample in the dataset gets to be in a test set only once
and to be in a training set K � 1 times. Leave-one-out is a particular case of K-fold
method with K equals to the sample amount of the whole dataset N. Because the
variance of the model evaluation results reduces as K increases, the leave-one-out
cross validation has a good estimation of model accuracy. However, it is extremely
expensive during the training and testing phase because of the N times training. As
a result, we chose K-fold cross validation for our model because it can balance the
reliability of the validation and computational cost.

In k-fold cross validation, the whole dataset X is randomly split into k subsets (the
folds) X1, X2, . . . , Xk of approximately equal size. The classifier is trained and tested
k times; each time t 2 1, 2, . . . , k, it is trained on X � Xt and is tested on Xt. It is not
conclusive how many fold can achieve an unbiased estimation of the real accuracy.
However, the experiments done by Kohavi showed that the k�fold estimation is
nearly the true accuracy when the k is equal to or larger than 10 [40]. Hence, we
chose a 10-fold cross validation for our experiments.

4.1.2 Evaluation Metric

In a classification problem, confusion matrix is a commonly used method to visu-
alize the model performance. It is a table whose rows represent the instances in a
predicted class while columns represent the instances in an actual class. It can be
converted to a table with two rows and two columns, which represent true predic-
tions and false predictions. There are four components in the table: true positives,
false positives, false negatives, and true negatives. Generally, Accuracy 1 is the eas-
iest way to measure how well a classification model is. However, lane keeping be-
havior continuously happens on the road, while lane change behavior sometimes
happens in highway driving. Plenty lane keeping samples but limited lane change
samples lead to the imbalance of the test data in a real world recognition. If a model
tends to classify all the samples to the ’lane keeping’ class, the accuracy is still high
but the model is totally useless. Hence we evaluated our model by ’precision’ and
’recall’. They are calculated by the equations:

precision = #TruePositives
#TruePositives + #FalsePositives

recall = #TruePositives
#TruePositives + #FalseNegatives

(4.1)

Precision measures how many of the lane changes we recognized are actually lane
change behaviors. Recall measures how many of all the lane change behaviors we
correctly recognized. To deal with imbalanced data, they are both essential to the
model evaluation. We want to find the best combination of precision and recall, so

1 Accuracy = #TruePositives+#TrueNegatives
#AllSamples
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F1 score is introduced. The F1 score is calculated as follow:

F1 = 2 · precision · recall
precision + recall

(4.2)

It is a decent way to combine the precision and the recall in order to properly evalu-
ate the performance of a classification model.

4.2 Results and Discussion

To research the properties of each model, we trained and tested them by different
dataset. The dataset we used collected lane change and lane keeping driving data
on two US highways. It contains 281 lane change sequences (68 right lane change
and 213 left lane change) and 112 lane keeping sequences. Except for the single state
recognition, we always used a 10-fold cross validation to ensure the reliability of the
result.

4.2.1 Experiments on the HMMs Method

The HMMs adopt a multi-variate Gaussian distribution to describe the features and
states. The Gaussian distribution can represent a class of data by its mean and co-
variance in spite of its scale, which means data pre-processing is not required for
the HMMs. However, it is strict with the features. A large number of the features
will affect the efficiency of the model. The uncertainty of the feature and unnec-
essary features will affect the performance of the model. We tested and compared
the performance of the HMMs using different feature combinations. The original
dataset is composed by six features, which are longitudinal and lateral velocities,
longitudinal and lateral accelerations, heading angle and yaw rate. Obviously, lat-
eral parameters are more critical than longitudinal ones in lane change recognition.
Furthermore, the acceleration can better reflect the changes of the vehicle than the
velocity. Thus, we obtained three different feature combinations according to the
features’ importance: (1) The most essential part: lateral acceleration, heading angle
and yaw rate. (2) The most essential one and lateral velocity. (3) All the six features.
Table 4.1 presents the difference between the results caused by three feature com-
binations. The 3-feature dataset achieved the best accuracy at 92.07%. The HMMs
require feature selection before the training phase. This is also a drawback of the
HMMs, especially the supervised learning HMMs. The HMMs lack the abilities of
discovering and understanding data.

During the testing phase of the model, we found a defect of the multi-variate Gaus-
sian model. The accuracy of the Gaussian model decreases significantly when the
size of the training set gets larger and larger. Figure 4.1 depicts the relationship of
the error and the training set size. There are more than 25,000 samples inside the
’left lane change’ class, one fifth of them were selected as the testing set. The remain
contained about 20,000 samples and we evenly divided them into thirty portions.
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FIGURE 4.1: Error of the Gaussian Model using different size of the
training set.

It was trained and tested on the ’left lane change’ class.

We trained the Gaussian model by times, and each time we added a portion to the
training set. The training set merely had about 700 sample at the beginning, and
then it got larger and larger until it reached 20,000 samples at the last training. From
Figure 4.1, we can see the the testing error decreases at beginning, after reach its
lowest value when the training set contains 5000 samples, it rises again. This means
the Gaussian model reach its optimum when the training set has 5000 samples (test-
ing set has 2500 samples). With a smaller training set, the model shows overfitting,
where training error is low but testing error is high. This is caused by insufficient
training samples. With a larger training set, the model shows underfitting, where
both training error and testing error are high. This indicates the model lack of com-
plexity to explain the training data. The values show that the error significantly
rises from 10.2% to 14.2%. It is proved that the Gaussian model has low ability to
deal with large dataset, especially when the data contains high uncertainty.

TABLE 4.1: The performance of the HMMs method using different
combination of features

3-feature 4-feature 6-feature

Accuracy 92.07% 91.37% 90.58%

4.2.2 Experiments the RVMs Method

Due to the Bayesian learning method (maximum a posterior) adopted in the training
algorithm, the RVMs are sensitive to the proportion of training samples. Taking
an example of an imbalanced data set with 90% ’class 1’ samples and 10% ’class
2’ samples, the model will tend to classify all the sample into ’class 1’ to achieve
90% accuracy. Unfortunately, the extremely small size of our dataset makes this
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problem even severe in our model. Table 4.2a presents the performance of the RVMs
model using different proportion of inputs. First, we used 68 samples of each class
as a baseline (sample proportion is 1:1:1). The accuracy is merely 87.25$, and the
precision is 94.68%. Then, we increased the amount of the ’lane keeping’ samples to
let the sample proportion become 1:1:1.5. From Table 4.2a, we can clearly observe
that the precision significantly enhance to 99.09% and the recall slightly decrease
0.6%. As a result, the accuracy have a great improvement. The RVMs tend to classify
more samples into ’Lane Keeping’ class with the ratio of ’Lane Keeping’ samples
increasing.

In an RVM model, the quantities and the variances of features determine their im-
portance. In order to take full advantage of the data and also the model, the features
were re-scaled by coefficients {1, 0.01, 5, 0.1, 10, 10} 2. We explain why we chose these
coefficients in the following section. Table 4.2b shows difference results caused by
re-scaling. We tested the same model in the same environment but using raw data
and re-scaled data. The accuracy enhance from 91.53% to 92.37% after re-scaling the
input features.

TABLE 4.2: The Performance of the RVMs using Imbalanced and
Raw Data

(A) Comparison between Different Data Proportions

Sample Proportion 1:1:1 Sample Proportion 1:1:1.5

Accuracy 87.25% 92.37%
Precision 94.68% 99.09%
Recall 98.34% 97.76%

(B) Comparison between Re-scaled and Raw Data

Raw Data Re-scaled Data

Accuracy 91.53% 92.37%
Precision 99.08% 99.09%
Recall 97.30% 97.76%

4.2.3 Experiments on the HMM-RVM Combined Model

The new model we proposed replaced the original Gaussian distribution by a multi-
class RVM classifier to represent the observation symbol probability. We investi-
gated the advantages and disadvantages of both models.

Table 4.3 presents the accuracy of the models fed by different features. From the pre-
vious section as well as this table, we found that the HMMs achieved the best accu-
racy when using three most essential features. However, with the help of re-scaling,

2The six features are: (1) lateral velocity (2) longitudinal velocity (3)lateral acceleration (4) longitu-
dinal acceleration (5) relative heading angle (6) relative yaw rate.
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3-feature data and 6-feature data barely make difference on the RVM’s results. The
comparison between the first row and the third row shows an appropriate re-scaling
on the features enhances the accuracy from 83.96% to 85.79%, while the Gaussian
model is not sensitive to the scaling.

TABLE 4.3: Comparison between the RVM classifier and the
Gaussian model: The Influence of Input Features.

The models were trained and tested on the basis of the ’left lane change’ samples.
The RVM model was trained by imbalanced data (proportion 1:1.33:1).

RVM Classifier Gaussian Model

6 Features, Without Re-scaling 83.96% 82.09%
3 Features, Re-scaling 85.80% 82.67%
6 Features, Re-scaling 85.79% 82.09%

We also investigated the influence of the imbalanced sample. We used the precision
and the recall instead of the accuracy to evaluate the performance. There are three
labels in the training samples, which represent state 0, state 1 and state 2 respectively.
We considered the ’state 1’ is our target class because it means the driver is steering.
Hence, the ’state 1’ is the positive class and both the other two belongs to the nega-
tive class. Then we can compute the precision and the recall based on the confusion
matrix. The values are illustrated in Table 4.4. While the precision and recall of the
Gaussian Model nearly stay constant as the proportion of samples changes, the RVM
classifier shows different results. As adding more ’state 1’ samples into the training
set, the RVM classifier tends to classify more samples into the ’state 1’ class. This
results a decrease in the ’precision’ but an increase in the ’recall’. We can conclude
that the RVMs method is more flexible than the HMMs Method.

TABLE 4.4: Comparison between the RVM classifier and the
Gaussian model: The Influence of Imbalanced Data.

The total amount of the training samples is 2500. For the Equally set, the proportion
of the three classes (states) is 1:1:1; for the imbalanced set, the proportion is

1:1.333:1.
RVM Classifier Gaussian Model

Precision Recall Precision Recall

Equally Training Samples 95.02% 94.79% 97.53% 93.05%
Imbalanced Training Samples 93.70% 96.55% 97.54% 93.01%

4.2.4 Comparison and Discussion

The models were trained and tested on the mixed datasets of ’101’ and ’i80’, us-
ing 10-fold cross validation. For the RVM models, the re-scaling coefficient was
{1, 0.01, 5, 0.1, 10, 10}. Each model was tested by different length of data for multiple
times. The data always started being collected since 1 second before the behavior
starts, i.e. 10 time steps before the start point for each sequence. The first test used a
20-step sub-window, which means the sequential data included 20 steps data and it
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covered the period from 1 second before the start point until 1 second after the start
point. Then the sub-window was extended one step for each time until it reached 50-
step long. Finally, it covered a 5-second period, which is approximately the whole
process from the start point to the lane change point. For each test, we evaluated
the performance by precision, recall and F1 score. The curves of them are drawn in
Figure 4.2, 4.3 and 4.4.

(A) (B)

FIGURE 4.2: Performance evaluation of the HMMs method.
(A): The curve of the precision and the recall versus the length of the sequential

data. (B): The curve of the F1 score versus the length of the sequential data.

The HMMs achieved outstanding performance with stable precision and recall. From
Figure 4.2 we can see that the F1 score keeps at a very high value of 0.99 and both
the precision and the recall are around 0.99. Thus, we can concluded that the recog-
nition model using the HMMs method is a stable and unbiased model, which also
has remarkable performance.

(A) (B)

FIGURE 4.3: Performance Evaluation of the RVMs Method.
(A): The curve of the precision and the recall versus the length of the sequential

data. (B): The curve of the F1 score versus the length of the sequential data.

Figure 4.3 shows that the performance of the RVMs model as well as the precision
and the recall slide when the sequential data becomes longer and longer. This is
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caused by the deficiency lies in the feature representation method. It is hard to rep-
resent the changes inside the data merely using a set of mean and covariance if the
data contains too many time steps. That is why the model has a relative low F1 score
of 0.92 at the end of the sequence.

(A) (B)

FIGURE 4.4: Performance Evaluation of the HMM-RVM combined
Method.

(A): The curve of the precision and the recall versus the length of the sequential
data. (B): The curve of the F1 score versus the length of the sequential data.

The HMM-RVM combined method shows a comparable performance with the HMMs
method. The F1 score of the combined method is around 0.985, which is sightly
lower than that of the HMMs. By comparing Figure 4.4 with 4.2, we found that the
precision and the recall show completely different trends. In the HMMs and the
RVMs, they always change in the same direction. However, the precision increases
but the recall decreases in the combined model when the input data become longer.
It is caused by the sensitivity of the RVM model. The model is extremely sensitive
to the amount of each class samples. At the beginning, the precision and recall are
equal because both the training set and the testing set are balanced data (the amount
of ’state 0’ sample and ’state 1’ sample are equal). Later, the testing set contains more
and more ’state 1’ samples and it is not balanced any more. The RVM model tends
to wrongly classified some ’state 1’ samples to the ’state 0’ class. Therefore, some
’lane change’ sequences are wrongly matched to the ’lane keeping’ behavior. This
defect restricts the combined method can only be applied in a short time recognition
model.

TABLE 4.5: Final result of the models.

The models were trained and tested on the mixed dataset and evaluated at one
second after the maneuver starts.

HMMs Method RVMs Method HMM-RVM Method

Accuracy 92.44% 93.84% 95.18%
Precision 98.64% 98.22% 98.94%
Recall 98.91% 97.36% 98.41%
F1 Score 98.77% 97.79% 98.67%
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Table 4.5 illustrates the final result of our models. It shows the performance of each
model at one second after the maneuver starts. The highest accuracy is achieved
by the HMM-RVM combined method using mixed dataset. It can correctly classify
more than 95% of the lane change or lane keeping behaviors within one second. By
the first second after the maneuver starts, 98.94% of the lane change behaviors are
correctly recognized (i.e. precision), while the recall is also as high as 98.41%.

Pentland and Liu used Hidden Markov Models to describe driving behaviors for
the first time. According to their results, approximately 1.5 seconds after the be-
ginning of action (or roughly 20% of the way through the action), mean recognition
accuracy was 95.24% ± 3.1%. However, one thing need to be mentioned is their
model can recognize multiple behaviors rather than only lane change. They had 72
stop, 262 turn, 47 lane change, 24 passing and 208 normal driving in their data set.
The high accuracy was mainly attributed by the other behaviors instead of the lane
change [2]. Kuge et al.introduced a driver model framework based on the princi-
ple of HMMs. At the time of 1.5 seconds after the behavior begins, his framework
could recognize 98.5% of them. The false negative rate and false positive rate are
merely 0% and 0.29% respectively [8]. Mandalia and Salvucci used Support Vector
Machines for lane-change detection. Their model recognized the lane change behav-
ior from lane keeping behaviors with 97.9% true positive rate 3. About 87% of the
true positives were correctly detected within the first 0.3 second from the start of
the maneuver [10]. Nilsson et al.proposed a rule-based lane change intention recog-
nition algorithm. They also used NGSIM interstate 80 dataset for the training and
testing. The marked the moment the vehicle crosses the lane marking as the lane
change moment. For a left lane change recognition, the accuracy was 89% 1 second
prior to its lane change moment and 39% 2 seconds prior to the moment, while the
false positive rate was around 3%. For a right lane change, the accuracy was 81%
and 38% with only 0.7% false positive rate [14].

Among the literature, Nilsson used same dataset NGSIM ’i80’ as we used. According
to the data, it usually takes 3 or 4 seconds since the moment of behavior starts until
the moment of lane change. Our model can achieve 95% accuracy with only 1.6%
false positive rate at least 2 seconds before the lane change moment. We can conclude
our model exceeds Nilsson’s. Our models are also comparable with the models from
Kuge, Mandalia and Salvucci.

TABLE 4.6: Testing the models on single or mixed dataset.

The models were trained and tested with a 20-step sub-window. The values are the
accuracy at 1 second after the behavior starts.

HMMs Method RVMs Method HMM-RVM Method

i80 Dataset 94.20% 92.50% 94.15%
i80 and 101 Dataset 92.44% 93.84% 95.18%

Besides, Table 4.6 compares the models’ performance on different dataset. Although
the HMMs method shows better result than the other two methods on the single ’i80’
dataset, it loses about 2% accuracy and becomes the worst one on the mixed dataset.

3 #TruePositives
#TruePositives+#FalseNegatives , is also called as recall or sensitivity



42 Chapter 4. Results

On the contrast, the RVMs and the combined model perform even better when the
dataset become more complex. The low generalization ability of the HMMs is also
proved from this table.
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Chapter 5

Conclusion

In this chapter, we conclude the properties of the models based on the experimen-
tal results.We also analyze the advantage and disadvantage of the proposed model.
Besides, we recommend some ideas on how to improve each model. We hope the
model will be further developed with the help of future works.

5.1 Conclusion

From the comparison and discussion section in Chapter 4, we have answered the
proposed questions in Chapter 1.3. Here, we give a short conclusion to present the
result and the property of our models.

5.1.1 The Property of the HMMs Method

We developed a recognition model which contains three paralleled supervised HMMs.
Each HMM can represent a driving behavior by defining three driving states (opera-
tions, such as steering) and finding their distribution. We can infer the current driv-
ing state based on the observations (the driving parameters, such as velocity and
heading angle), because we assume the observations follow a multi-variate Gaus-
sian distribution. Given observations, we can deduce the corresponding driving
state and then the driving behavior.

The main advantage of the HMMs method is simple. An HMM can depict a se-
quence of behavior in a statistics way by defining non-observable ’states’ and finding
relationships between the ’states’ and some observable features. Before the training
starts we replaced the model to do the ’state’ definition, so the HMM only need to
learn the relationships during the training. This significantly reduces the time con-
sumption of the training phase, although it results in the low ability to learn new
features. The time complexity of the supervised training is O(T), and the time com-
plexity of the testing phase is O(N2T) 1 [21].

1T denotes the length of the sequential data, and N denotes the number of states.
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The main drawback of the HMMs lie in its assumptions. There are three assump-
tions: (a) The observations of the model are independent. The probability of the
observation sequence is the product of the probability of the observation at each
time step, i.e. P(O) = ’T

t=1 P(Ot). (b) The model is a first-order Markov Chain. The
state at time t only depends on the state at time t � 1. (c) A Gaussian distribution
can well describe the observation symbol probability.

In a driving case the observations, alternatively the driving parameters, are not in-
dependent with each other. The velocity at time t is determined by the velocity
and the acceleration at time t� 1. The assumption of independent observations as
well as the first-order Markov Chain are compromised between low complexity and
high accuracy. For a on-road intention recognition model, collecting training data
from multiple places is essential to enhance the application range of it. The Gaus-
sian model showed a decline on its accuracy as the training set getting larger, which
means the Gaussian model has low generalization ability.

According to the experiment results, its precision, recall and F1 score all achieve
99% high. The results prove that the HMMs method is a stable and reliable way to
recognize driving behaviors. However, it is also a rigid and inflexible method due
to its assumptions. Its performance on a real-world recognition task is still doubtful.

5.1.2 The Property of the RVMs Method

The multi-class RVMs classifier learns three hyper-planes to describe the three driv-
ing behaviors. We used a series of the pre-processing steps to represent a sequential
driving data by a set of features. Given the training data, the RVMs learned the re-
lationships between the features and the driving behaviors. Basically there are also
three paralleled RVMs inside the integral model, but they can learn simultaneously.
Given the testing data, the RVMs output probability estimations of the feature set
based on the models. We deduce the driving behavior according to the highest esti-
mation.

Compared the HMMs method, it utilizes the Bayesian theory in the training phase.
Therefore, the model is flexible and adjustable. There are plenty of the parameters
we can tune to better train the model. It has been proved that the RVMs are fast
on testing but slow on training. The time complexity of the training phase and the
testing phase are O(N3) and O(M) 2 respectively [22]. Besides, the RVMs model also
lost the ability of discovering new features due to the one-vs-all method we adopted
for the multi-class extension.

A severe deficiency of the RVMs method is that the RVMs cannot process sequential
data. So we have to represent the sequential data by their mean and variance. From
Figure 4.3, we can know that the accuracy is higher at the beginning. This is because
the ’sub-window’ trick as well as the mean and the variance cannot well represent
the changes inside the sequential data when the window size is large.

2N denotes the number of training samples, and M denotes the number of relevance vectors.
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5.1.3 The Property of the HMM-RVM Combined Method

To solve the shortcomings of the above methods, we combined them by using a
multi-class RVM classifier to replace the Gaussian model of the HMMs. Hence,
the input of the multi-class RVM classifier becomes discrete. The simple but rigid
Gaussian model was discarded and we adopted a more flexible model to give the
observation symbol probability.

The main difficulty of the combined model is the training complexity. From the last
section, we have known that the training complexity of a 3-class RVM is O(N3).
Since we split the whole sequence of a driving behavior into multiple time steps, the
enormous amount of training samples made the training phase become extremely
expensive. We had to restrict the number of the training sample at an appropriate
value to ensure a short training time and comparable accuracy. The testing complex-
ity is O(N2T + M), which can be simplified to O(N2).

The combined method shows the highest accuracy of 95.18% among all methods.
Even among the literature, it still is an outstanding result. Expect the high accuracy,
it is a flexible model which can adjust the recall and precision. The most important
advantage is it shows good generalization ability and high tolerance on complex
input data. This is greatly helpful to apply it on real-life applications.

5.2 Recommendation

Although the model’s performance have been already good, there is still a long way
to go before applying it on wide-range applications. We would like to propose some
topics for future works to help the intention recognition model become better.

• For the inaccurate assumptions of the HMMs, Kumagai and Akamatsu switched
the probability of observation in a linear dynamic system (LSDS). Hence, the
observation symbol probability was a Gaussian distribution considering the
influence from the last observation, i.e. bi(Ot) = N (µi + wi · Ot�1), Si) [41]. In
the future, the LSDS may be combined with any other model to estimate the
conditional probability of the observations.

• We modified all the three models to let them become supervised learning mod-
els. This simplified the models but also affected their abilities of generalization
and self-learning. To prevent from the loss and preserve the advantage, a semi-
supervised learning method is worth trying.

• Damoulas and Girolami proposed a multi-class kernel machine that can solve
multi-class classification problems while learning at the same time. This algo-
rithm is based on a well-founded hierarchical Bayesian framework and able to
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instructively combine feature spaces [42]. Their results showed that their algo-
rithm achieved high precision on classification problems, and the most impor-
tant is, it did not yield bias when the input data is imbalanced. This algorithm
can be integrated into the multi-class RVM classifier in order to improve the
stability.
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Appendix: Training Algorithm of
the SVM Model

A.1 Lagrangian Formulation in the Training Algorithm

In an SVM model, we have a hyperplane takes the form of:

w · x + b = 0, w 2 RD, b 2 R. (A.1)

To find the best regression of the hyperplane and also avoid overfitting, the loss
function is expressed as the sum of an error term and a penalty term [43]. Thus,
finding the hyperplane of an SVM model becomes a problem of minimizing the loss
function [36], [44], which is

min
w

kwk2

2
, (A.2)

subject to
yi(w · xi + b) > 1, for classification
|yi �w · xi � b| 6 e, for regression. (A.3)

This becomes an optimization problem, subject to constrains A.3. Then we will
switch to a Lagrangian formulation of the problem, because we can replace the con-
strains by introducing positive Lagrange multipliers ai, i = 1, . . . , N. 1 It gives La-
grangian:

LP ⌘
1
2
kwk2 �

N

Â
i=1

aiyi(w · xi + b) +
N

Â
i=1

ai (A.4)

We need to solve this ’dual’ problem: minimize LP, and simultaneously require that
the derivatives of LP with respect to w, b vanish, all subject to the constraints ai > 0.
The derivatives vanishing gives the conditions:

w = Âi aiyixi
Âi aiyi = 0. (A.5)

1In the following, we take an SVM classification model as an example. The algorithm for an SVM
regression model is similar and is introduced in [44].
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Since we got these conditions on w and b, we substitute them into Equation A.4 and
it turns to

LD = Âi ai � 1
2 Âi,j aiajyiyjxi · xj

s.t. Âi aiyi = 0, 8ai > 0
(A.6)

Hence the optimization problem turns to the maximization problem of LD. Lastly,
due to the property of derivatives of ai vanishing, we can calculate the numerical
solutions of ai and also wi [30].

A.2 Kernel Function

Equation A.6 shows that we use the dot product of samples xi and xj rather than one
single sample xi to find the corresponding weight wi. This is convenient for us to
apply SVM techniques into non-linear cases.

From Equation 2.9, we know that the samples need to be mapped into a high dimen-
sional space to achieve linear separable. We take the simplest kernel as an example,
if we choose the kernel function K(xi, xj) = (xi · xj)2, it is easy to find a mapping f
from R2 space to H space:

f(x) =

0

@
x1

2
p

2x1x2
x2

2

1

A . (A.7)

However, if we have a high dimensional input space, the mapping f will be much
more complex than this case. This is why we use dot products to replace single
samples in the training algorithm. We only need to select a kernel function K instead
of knowing what exactly the mapping f is.

There are four commonly used kernel functions:

• linear: K(xi, xj) = xi · xj.

• polynomial: K(xi, xj) = (gxi · xj) + r)d, g > 0.

• radial basis function (RBF): K(xi, xj) = exp(�g
��xi � xj

��2
), g > 0.

• sigmoid: K(xi, xj) = tanh(gxi · xj + r).

g, r, d are the kernel parameters need to be decided before applying the kernel func-
tion. One thing need to be mentioned is that a linear kernel cannot project the data
into a higher dimensional space. It is only applied on a linear separable case. Using a
linear kernel instead of the original data is convenient for training. When choosing a
kernel function, generally the RBF kernel is a reasonable first choice. The reasons are
two-fold. First, compare to a linear kernel, it can handle non-linear cases. Second,
compare to a polynomial and sigmoid kernel, it has less kernel parameters. This
will decrease the complexity of the model. Nevertheless, if the number of features is
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large, linear kernel is good enough because the data has no need to be mapped into
a higher dimensional space [36].
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Appendix: Hyper-parameter
Update of the RVM Model

B.1 Update of A

We re-write the definition of C from KA�1KT + s2I to

C = s2I + Âm amkT
mkm

= s2I + Âm a�1
m kT

mkm + a�1
i kT

i ki
= C�i + a�1

i kT
i ki

(B.1)

Using established matrix determinant and inverse identities, we have:

|C| = |C�i||1 + a�1
i kiC�1

�i kT
i |,

C�1 = C�1
�i �

C�1
�i kT

i kiC�1
�i

ai+kiC�1
�i kT

i
,

(B.2)

which gives

L(a) = � 1
2 [N log 2p + log |C�i|+ tTC�1

�i t

� log ai + log(ai + kiC�1
�i kT

i )�
(kiC�1

�i t)2

ai+kiC�1
�i kT

i
]

= L(a�i) +
1
2


log ai � log(ai + kiC�1

�i kT
i ) +

(kiC�1
�i t)2

ai+kiC�1
�i kT

i

�

= L(a�i) + `(ai).

(B.3)

L(a�i) is the log marginal likelihood with ai, and ki removed from the model and
we have now isolated the terms in ai in the function `(ai). The gradient of the
marginal likelihood was computed as:

∂L(a)
∂ai

=
∂`(ai)

∂ai
=

1
2

"
1
ai
� 1

ai + kiC�1
�i kT

i
�

(kiC�1
�i t)2

(ai + kiC�1
�i kT

i )
2

#
. (B.4)

To simplify this, we defined ’sparsity’ quantity si and ’quality’ quantity qi as:

si , kiC�1
�i kT

i , and qi , kiC�1
�i t. (B.5)
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Hence, the gradient of the marginal likelihood can be re-written as:

∂L(a)
∂ai

=
ai�1s2

i � (q2
i � si)

2(ai + si)2 . (B.6)

By equating Equation B.6 to zero, we get two solutions for ai:

ai =
s2

i
q2

i�si
, q2

i > si,
ai = •, q2

i 6 si.
(B.7)

The criterion from Equation B.7 determines the hyper-parameter a, and thus W̃.
On the basis of this, the iterative maximization of the marginal likelihood function
L(a) with respect to the hyper-parameters a helps the RVMs to selected ’relevance
vectors’ and optimize the weights W̃ [45].

B.2 Update of s2

The marginal likelihood has been given in Equation 2.18:

L(a) = log p(t|a, s2) = �1
2

h
N log 2p + log |C|+ tTC�1t

i
, (B.8)

with the quantity C = KA�1KT + s2I. The first term of the marginal likelihood is
independent of the noise level s2. The determinant identity gives

|A||KA�1KT + s2I| = |s2I||A + KKT/s2|. (B.9)

Thus, the second term of the marginal likelihood can be factorized as following:

log |KA�1KT + s2I| = � log |S|� N log
1
s2 � log |A|, (B.10)

where S is the posterior weight covariance S = (A + s�2KKT)�1. The Woodbury
inversion identity gives

(KA�1KT + s2I)�1 = I/s2 � s�2K(A + s�2KKT)�1KTs�2. (B.11)

Then the third term of the marginal likelihood can be expressed as

tT(KA�1KT + s2I)�1t = s�2tTt� s�2tTKSKTs�2t
= s�2tT(t�Kµ)
= s�2kt�Kµk2 + s�2tTKµ� s�2¯TKTK¯
= s�2kt�Kµk2 + ¯TA¯,

(B.12)

where µ is the posterior weight mean µ = s�2SKt. Hence, the derivative of the
marginal likelihood with respect to log s�2 is

∂L
∂ log s�2 =

1
2
[Ns2 � kt�Kµk2 � Tr(SKTK)]. (B.13)
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Tr(SKTK) can be re-written as �M�Âm amSmm [46]. By equaling the derivative to
zero, we obtain the new noise level

s2 = kt�Kµk2

(N�M+Âm amSmm)

= kt�yk2

(N�M+Âm amSmm)
.

(B.14)

Following Equation B.7 and B.14, the hyper-parameters of the RVMs are updated.
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Data Acquisition Code

Data pre-processing is completed by Matlab. We take the trajectory on Interstate 80
at 5:15pm as an example.

%% r e a d . c s v f i l e
f i lename = ’ t r a j e c t o r i e s 0 5 1 5 . csv ’ ; % 0 75 0 /0 40 0 /0 50 0 /0 51 5
g_time = 1113437565600; % / ms % 0515
Fs = 1 0 ; % f r e q u e n c y / Hz
T = 1/Fs ; % p e r i o d / s
% rows f o r t h e f i r s t v e h i c l e
i = 2 ;
j = 115 5 ;

% s t o r e v e h i c l e d a t a in SpeedData , LaneData , Length and Width
for n = 1 :1200

% r e a d v e h i c l e d a t a from c s v f i l e
A = csvread ( f i lename , i �1, 0 , [ i �1 ,0 , j �1 , 1 6 ] ) ;
% c o n v e r t g l o b a l t ime t o l o c a l t i me / s
A( : , 3 ) = (A( : , 3 ) � g_time ) / 1 0 0 0 ;
% c o n v e r t f e e t t o met e r
A( : , [ 4 : 9 , 1 3 ] ) = 0 .3048⇤ A( : , [ 4 : 9 , 1 3 ] ) ;
% r e c o r d t h e v e h i c l e i d
Veh_ID = A( 1 , 1 ) ;
% s i g n a l l e n g t h
L = A( 1 , 1 5 ) ;
t = ( 0 : L�1)⇤T ;

% l o c a l p o s i t i o n f i l t e r
Fc = 0 . 3 ;
[ b , a ] = b u t t e r ( 1 , Fc /( Fs / 2 ) ) ;
A( 1 : end�1 ,4) = f i l t e r ( b , a ,A( 1 : end�1 , 4 ) ) ;
A( 1 : end�1 ,5) = f i l t e r ( b , a ,A( 1 : end�1 , 5 ) ) ;
% s t o r e d a t a
% SpeedData : l o c a l t ime , l o c a l xy , g l o b a l xy , speed , a c c
% LaneData : l ane , p r o c e d i n g v e h i c l e , f o l l o w i n g v e h i c l e , headways
SpeedData { Veh_ID } = A( 1 : end� 1 , 3 : 9 ) ;
LaneData { Veh_ID } = A( 1 : end�1 , 1 0 : 1 4 ) ;
Length { Veh_ID } = A( 1 , 1 6 ) ; % l e n g t h o f t h e v e h i c l e
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Width { Veh_ID } = A( 1 , 1 7 ) ; % width o f t h e v e h i c l e
% rows and columns f o r nex t v e h i c l e
i = j ;
j = i + A( end , 1 5 ) ;

end

%% r e c o g n i z e l a n e c h a n g e s
n_lc = 0 ; % count t h e number o f l a n e change
for n = 1 :1740

% c h e c k i f v e h _ i d e x i s t s in t h e d a t a b a s e
i f isempty ( SpeedData { n } )

continue
e lse

Veh_ID = n ;
end
% m: l o c a t e t h e row o f t h e v e h i c l e d a t a
for m = 1 0 0 : s iz e ( LaneData { Veh_ID} ,1)�50

% r e c o g n i s e l a n e change b e h a v i o r ( no onramp and outramp )
i f range ( LaneData { Veh_ID } (m:m+1 ,1))==1 & LaneData { Veh_ID } (m, 1 ) ~ ismember [ 7 , 8 ]

Veh_F = LaneData { Veh_ID } (m, 3 ) ; % f i n d f o l l o w i n g v e h i c l e
% l a n e change p e r i o d
% Time_1 : 10 s b e f o r e t h e l a n e change p o i n t
% Time_2 : 5 s a f t e r t h e l a n e change p o i n t
Time_1 = SpeedData { Veh_ID } (m�99 ,1) ;
Time_2 = SpeedData { Veh_ID } (m+ 5 0 , 1 ) ;
% c h e c k i f t h e f o l l o w i n g v e h i c l e ’ s d a t a i s in t h e d a t a b a s e
% p , q : t h e p o s i t i o n o f rows in f o l l o w i n g v e h i c l e d a t a
i f Veh_F & ~isempty ( SpeedData { Veh_F } )

p = find ( SpeedData { Veh_F } ( : , 1 ) == Time_1 ) ;
q = find ( SpeedData { Veh_F } ( : , 1 ) == Time_2 ) ;

end
i f p & q & q�p==149

n_lc = n_lc + 1 ; % count t h e l a n e change b e h a v i o r s
% 1 : t ime s t e p 15 s (10 s b e f o r e , 5 s a f t e r )
% 2~5: l e a d i n g p o s i t i o n ( l o c a l / g o b a l )
% 6 : 9 : f o l l o w i n g p o s i t i o n ( l o c a l / g o b a l )
% 1 0 , 1 1 : f o l l o w i n g headway ( s p a c e / t ime )
LaneChange { n_lc } ( : , 1 : 5 ) = SpeedData { Veh_ID } (m�99:m+ 5 0 , 1 : 5 ) ;
LaneChange { n_lc } ( : , 6 : 9 ) = SpeedData { Veh_F } ( p : q , 2 : 5 ) ;
LaneChange { n_lc } ( : , 1 0 : 1 1 ) = LaneData { Veh_F } ( p : q , 4 : 5 )

end
end

end
end

%% s a v e t h e d r i v i n g p a r a m e t e r s o f l a n e c h a n g e s
save f i l t e r e d d a t a 0 5 1 5 . mat LaneChange
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%% e x t r a c t v e l o c i t y , a c c e l e r a t i o n and h e a d i n g a n g l e s
Local_vel = c e l l ( 1 , s iz e ( LaneChange , 2 ) ) ;
Local_acc = c e l l ( 1 , s iz e ( LaneChange , 2 ) ) ;
Ref_heading = c e l l ( 1 , s iz e ( LaneChange , 2 ) ) ;
Yaw_rate = c e l l ( 1 , s iz e ( LaneChange , 2 ) ) ;
for i = 0 : s iz e ( LaneChange , 2 )

% l o c a l _ v e l o c i t y : l e a d i n g xy , f o l l o w i n g xy
Local_vel { i } ( 1 : 1 4 9 , 1 ) = d i f f ( LaneChange { i } ( : , 2 ) ) . / d i f f ( LaneChange { i } ( : , 1 ) ) ;
Loca l_vel { i } ( 1 : 1 4 9 , 2 ) = d i f f ( LaneChange { i } ( : , 3 ) ) . / d i f f ( LaneChange { i } ( : , 1 ) ) ;
Loca l_vel { i } ( 1 : 1 4 9 , 3 ) = d i f f ( LaneChange { i } ( : , 6 ) ) . / d i f f ( LaneChange { i } ( : , 1 ) ) ;
Loca l_vel { i } ( 1 : 1 4 9 , 4 ) = d i f f ( LaneChange { i } ( : , 7 ) ) . / d i f f ( LaneChange { i } ( : , 1 ) ) ;

% smooth l o c a l _ v e l o c i t y
Local_vel { i } ( : , 1 : 4 ) = movmean( Local_ve l { i } ( : , 1 : 4 ) , 2 0 ) ;
Loca l_vel { i } ( end + 1 , : ) = Local_vel { i } ( end , : ) ;

% l o c a l _ a c c e l e r a t i o n : l e a d i n g xy
Local_acc { i } ( 1 : 1 4 9 , 1 ) = d i f f ( Loca l_vel { i } ( : , 1 ) ) . / d i f f ( LaneChange { i } ( : , 1 ) ) ;
Local_acc { i } ( 1 : 1 4 9 , 2 ) = d i f f ( Loca l_vel { i } ( : , 2 ) ) . / d i f f ( LaneChange { i } ( : , 1 ) ) ;

% smooth l o c a l _ a c c e l e r a t i o n
Local_acc { i } ( : , 1 : 2 ) = movmean( Local_acc { i } ( : , 1 : 2 ) , 2 0 ) ;
Local_acc { i } ( end + 1 , : ) = Local_acc { i } ( end , : ) ;

% r e f _ h e a d i n g a n g l e
lead_heading = atand ( Local_vel { i } ( : , 1 ) . / Local_vel { i } ( : , 2 ) ) ;
fol low_heading = atand ( Local_ve l { i } ( : , 3 ) . / Local_ve l { i } ( : , 4 ) ) ;
Ref_heading { i } = lead_heading � follow_heading ;
% smooth r e f _ h e a d i n g a n g l e
Ref_heading { i } = movmean( Ref_heading { i } , 2 0 ) ;
% yaw r a t e ( d e r i v i t i v e o f r e f _ h e a d i n g )
Yaw_rate { i } ( 1 : 1 4 9 ) = d i f f ( Ref_heading { i } ) . / d i f f ( LaneChange { index } ( : , 1 ) ) ;
Yaw_rate { i } ( end+1) = Yaw_rate { i } ( end ) ;

end

%% d a t a c l e a n s i n g / c o n v e r t e r t o c s v
% count l e f t c h a n g e s and r i g h t c h a n g e s
l = 0 ;
r = 0 ;
% L e f t / R ight : s t o r e i n p u t f e a t u r e s
L e f t = [ ] ;
Right = [ ] ;
% c o n v e r t ma t r ix t o s t r i n g m at r ix
L e f t = s t r i n g ( L e f t ) ;
Right = s t r i n g ( Right ) ;
% s t o r e h e a d i n g s o f t h e f e a t u r e s
L e f t ( 1 , : ) = [ " veh_id " , " vel_x " , " vel_y " , " acc_x " , " acc_y " , " heading " , " yaw_rate " ] ;
Right ( 1 , : ) = [ " veh_id " , " vel_x " , " vel_y " , " acc_x " , " acc_y " , " heading " , " yaw_rate " ] ;
% c o n v e r t e r
for i = 1 : s iz e ( Local_vel , 2 )

% d i s t i n g u i s h l e f t / r i g h t l a n e c h a n g e s
i f Ref_heading { i } ( 1 0 0 ) < 0
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% C o n d i t i o n 1 : h e a d i n g a n g l e i s s m a l l b e f o r e l c p o i n t
% a t l e a s t 1 s e c o n d
for t = 60:�1:10

i f max ( abs ( Ref_heading { i } ( t �10: t ) ) ) < 0 . 3
s t a r t = t �10;
break

e lse
s t a r t = [ ] ;

end
end
% C o n d i t i o n 2 : h e a d i n g a n g l e i s b a c k t o 0 a t t h e end
i f ~isempty ( s t a r t )

for t = 120 :150
i f abs (mean ( Ref_heading { i } ( t �5: t ) ) ) < 0 . 3

stop = t ;
l = l +1;
i 1 = s ize ( Left , 1 ) + 1 ;
i 2 = index1+stop�s t a r t ;
L e f t ( i 1 : i2 , 1 ) = s t r i n g ( l ) ;
L e f t ( i 1 : i2 , 2 : 3 ) = s t r i n g ( Local_ve l { i } ( s t a r t : stop , 1 : 2 ) ) ;
L e f t ( i 1 : i2 , 4 : 5 ) = s t r i n g ( Local_acc { i } ( s t a r t : stop , 1 : 2 ) ) ;
L e f t ( i 1 : i2 , 6 ) = s t r i n g ( Ref_heading { i } ( s t a r t : stop ) ) ;
L e f t ( i 1 : i2 , 7 ) = s t r i n g ( Yaw_rate { i } ( s t a r t : stop ) ) ;
break

end
end

end
% r i g h t l a n e change , same as t h e l e f t one s
e l s e i f Ref_heading { i } ( 1 0 0 ) > 0

for t = 60:�1:10
i f max ( abs ( Ref_heading { i } ( t : t + 1 0 ) ) ) < 0 . 3

s t a r t = t ;
break

e lse
s t a r t = [ ] ;

end
end
i f ~isempty ( s t a r t )

for t = 120 :150
i f abs (mean ( Ref_heading { i } ( t �5: t ) ) ) < 0 . 3

stop = t ;
r = r +1;
i 1 = s ize ( Right , 1 ) + 1 ;
i 2 = index1+stop�s t a r t ;
Right ( i 1 : i2 , 1 ) = s t r i n g ( r ) ;
Right ( i 1 : i2 , 2 : 3 ) = s t r i n g ( Local_ve l { i } ( s t a r t : stop , 1 : 2 ) ) ;
Right ( i 1 : i2 , 4 : 5 ) = s t r i n g ( Local_acc { i } ( s t a r t : stop , 1 : 2 ) ) ;
Right ( i 1 : i2 , 6 ) = s t r i n g ( Ref_heading { i } ( s t a r t : stop ) ) ;
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Right ( i 1 : i2 , 7 ) = s t r i n g ( Yaw_rate { i } ( s t a r t : stop ) ) ;
break

end
end

end
end

end

%% s a v e d a t a / w r i t e f i l e s
save inputdata . mat L e f t Right
csvwrite ( ’ l e f t l c ’ , L e f t ) ;
csvwrite ( ’ r i g h t l c ’ , Right ) ;
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