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1R&D Satellite Observations, Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands, 2Department of
Geoscience and Remote Sensing, Delft University of Technology, Delft, Netherlands, 3Atmospheric Composition Research,
Finnish Meteorological Institute, Helsinki, Finland

Abstract By applying an inversion algorithm to NOx satellite observations from Ozone Monitoring
Instrument, monthly NOx emissions for a 10 year period (2007 to 2016) over Chinese seas are presented
for the first time. No effective regulations on NOx emissions have been implemented for ships in China, which
is reflected in the trend analysis of maritime emissions. The maritime emissions display a continuous increase
rate of about 20% per year until 2012 and slow down to 3% after that. The seasonal cycle of shipping
emissions has regional variations, but all regions show lower emissions during winter. Simulations by an
atmospheric chemistry transport model show a notable influence of maritime emissions on air pollution over
coastal areas, especially in summer. The satellite-derived spatial distribution and the magnitude of maritime
emissions over Chinese seas are in good agreement with bottom-up studies based on the Automatic
Identification System of ships.

Plain Language Summary This paper presents NOx emissions derived from satellite observations
over the Chinese seas for the last 10 years. The maritime emissions have a continuous increase rate of about
20% per year until 2012 and slow down to about 3% afterward. This reflects that almost no effective
regulations onNOxemissions havebeen implemented for ships inChina. The impact ofmaritimeemissions on
air quality over coastal areas in China is significant as shown by simulations using a chemical transport model.

1. Introduction

NOx (NOx = NO2 + NO) emissions from oceangoing ships contribute more than 10% of the total anthropo-
genic NOx emissions worldwide (Corbett et al., 1999). They have a large impact on the atmospheric chemistry
and air quality in the marine boundary layer and consequently have an impact on climate change (Eyring
et al., 2010; Lawrence & Crutzen, 1999) and human health (H. Liu et al., 2016). Furthermore, the aerosol par-
ticles from ships may affect the maritime deep convection. This could lead to enhanced lightning and there-
fore additional NOx formation over shipping lanes (Thornton et al., 2017). Maritime transport emissions have
large uncertainties due to the difficulty in determining shipping activities and emission factors. Fortunately,
satellite observations of NO2 provide the possibility to detect ship tracks and estimate emissions. Beirle et al.
(2004) showed the first detection of NOx ship emissions derived by satellite observations of GOME over the
Indian ocean by fitting the observations with a Gaussian function. Richter et al. (2004) found a clear NO2 sig-
nal over the Red Sea and the Indian Ocean using the observations from the SCanning Imaging Absorption
spectroMeter for Atmospheric CHartographY instrument. Furthermore, the combination of satellite observa-
tions with modeled columns of a chemical transport model (CTM) can be used to evaluate NOx emissions in
ship tracks. This was, for instance, used by Franke et al. (2009) to estimate the total NOx emissions along the
ship track from Sri Lanka to Indonesia. By using a mass balance approach applied to the high spatial resolu-
tion measurements from the Ozone Monitoring Instrument (OMI) (Levelt et al., 2006), Vinken et al. (2014)
derived shipping emission estimates over parts of the European seas. Note that all mentioned methods
are only applicable for specific ship tracks far away from sources over land. The NOx emissions from shipping
activities are difficult to detect from space near Chinese coastal areas since the ship tracks are hidden in the
outflow of NO2 plumes from the mainland (see Figure 1a). Traditional ship inventories are often lacking
information on these ship activities or have large uncertainties on their ship emissions (C. Wang et al.,
2008; Y. Zhang et al., 2017). Ding et al. (2017) showed clear satellite-derived NOx emissions near Chinese
coastal areas by using the inversion algorithm DECSO (Daily Emission estimates Constrained from Satellite
Observations) combining CTM simulations and OMI satellite observations.
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In the last decade, seaborne trade increased rapidly in East Asia. The number of studies of shipping emissions
on a regional scale in East Asia is limited, and most of them are at port or city level (Y. Zhang et al., 2017). The
application of the data from the Automatic Identification System (AIS) significantly reduced uncertainties in
bottom-up shipping emission inventories (Jalkanen et al., 2009). Fan et al. (2016) build an AIS-based model to
calculate high-resolution shipping emissions of 2010 in the sea around the Chinese Yangtze River Delta and
parts of the East China Sea. Using a similar method, H. Liu, Fu, et al. (2016) estimated that shipping emissions
in East Asia accounted for 16% of the global shipping emissions in 2013. They also found that shipping emis-
sions of NOx in this region almost doubled compared to emissions in 2001.

Based on the long-term record of NO2 satellite observations from OMI, this study presents maritime NOx

emissions from 2007 to 2016 over the Chinese seas using DECSO. The long and consistent data series allows
us to analyze the seasonal cycle and the trend of maritime NOx emissions over Chinese seas. Since few air
quality regulations on NOx have been taken for maritime transport in China, a persistent increase in shipping
emissions is expected following the trend in cargo trade volumes. The effect of maritime emissions on NO2

concentrations in coastal cities is investigated by using a regional CTM. To validate the results, the emissions
are compared with the latest bottom-up ship emission inventory based on AIS data derived with the Ship
Traffic Emission Assessment Model (STEAM) (Jalkanen et al., 2016).

2. Emission Estimates

Daily Emission estimates Constrained from Satellite Observations is a fast inverse modeling algorithm devel-
oped by Mijling and van der A (2012) to update daily emissions of NOx based on an extended Kalman filter.
The algorithm combines simulated NO2 column concentrations of a regional CTM with satellite observations.
The sensitivity of NO2 column concentrations on local and nonlocal NOx emissions is calculated by including
a simplified isobaric surface 2-D trajectory analysis. The improvements in the latest version of DECSO
(referred to as DECSO v5) by Ding et al. (2017) enabled the detection of ship tracks near the Chinese coasts
by significantly reducing the background noise of estimated NOx emissions over remote areas.

We derived NOx emissions over Chinese seas in the domain of East Asia (102–120°E, 18–50°N) with a horizon-
tal resolution of 0.25° × 0.25° from 2007 to 2016 by using DECSO v5. The Eulerian regional off-line CTM
CHIMERE v2013 (Menut et al., 2013) is used to simulate NO2 concentrations. Its implementation in DECSO
is described in Ding et al. (2015). The a priori emission field over the ocean is set to zero. We set the injection
height of newly found emissions over oceans at 40 m, representing an average funnel height for ships. We
apply DECSO to observations from OMI due to its high spatial resolution, which is 24 × 13 km2 at nadir
and increases to 150 × 28 km2 at the end of the swath. The tropospheric NO2 column data of the DOMINO
version 2 algorithm (Boersma et al., 2011) are used for the assimilation. To ensure retrievals in good

Figure 1. The average of (a) tropospheric NO2 column concentrations over ocean observed by Ozone Monitoring
Instrument (OMI) from 2007 to 2016 and (b) NOx emissions over ocean derived by Daily Emission estimates Constrained
from Satellite Observations applied to these OMI observations. (c) The three selected regions to study the shipping
emissions near the Chinese coast are shown as colored areas. The numbers in the circle indicate the name of the regions.
The numbers on the coasts indicate the locations of the main harbors.
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quality, we use the filter criteria described by Ding et al. (2015, 2017) on
the retrievals. In addition, to detect clear ship tracks, we exclude the
observations with a large pixel size by filtering out 8 pixels at each side
of the swath. The observations with a cloud radiance fraction larger
than 50% are excluded.

We use monthly NOx emissions for our analysis. To calculate the uncer-
tainty of monthly emissions in each region, we use the daily error esti-
mate on each grid cell from the Kalman filter, which propagates errors
from observations and the model. We assume that the error of each
grid cell has high temporal (day to day) correlation (up to 90%) but
low spatial correlation with an upper limit of 20% with the eight neigh-
boring grid cells.

3. Results

Figure 1b shows the average annual NOx emissions from 2007 to 2016
derived with DECSO v5 over the Chinese seas. We see a clear ship track
along the coast between Shanghai and Guangzhou. Over the Yellow
Sea, high shipping emissions are revealed near Jiangsu province. A
track from Shanghai to Yantai disperses in the Bohai Sea. We see high
maritime emissions over the Bohai Sea and around the ports of
Shanghai and Guangzhou. Half of the Chinese offshore platforms are
located in the Bohai Sea. Over remote ocean areas, NOx emissions are
much lower and no notable shipping tracks are visible due to the low
density of shipping activities, as confirmed by real-time shipping
locations from AIS. Most shipping activities occur close to the coastal
areas. Ding et al. (2017) depicted the shipping emissions derived with
DECSO near the coastline and concluded that their spatial distribution

is consistent with the density of shipping activities. In this paper, we analyze the seasonal cycle and trends of
maritime emissions resulting from ships and offshore platforms in this area. We classify three regions shown
in Figure 1c, to study the evolution of shipping emissions near the Chinese coast.

3.1. Seasonal Cycle

In Figure 2, the month with the maximum monthly NOx emissions for each grid cell over the ocean together
with the seasonal cycle over each region are illustrated. The upper limit of the relative error of the 10 year
averagedmonthly emissions per region is estimated to be about 20%. A clear pattern of themaximummonth
distribution is visible over the Chinese seas. This means that the seasonal cycles of the shipping emissions
have regional variation. Shipping emissions reach a maximum in May over southern Chinese seas. More
northward, over the Yellow Sea and the Bohai Sea, the monthly shipping emissions gradually reach their
maximum later. This can be explained by the start of summer monsoon in mid-May over southern Chinese
seas, whichmoves steadily northwards over East China (Burke & Stott, 2017). J. Wang et al. (2014) showed that
the monsoonal climate and tropical cyclones decrease the safety for ships in the South China Sea, which
results in fewer ships after May. Besides the influence of weather, the different summer moratorium of fishing
in these areas is possibly another reason for the difference in the peak month of emissions. Over the Yellow
Sea, shipping emissions increase in summer, which might be explained by the increase of tourism activities,
while the shipping emissions reach their peak in September, because more fishing ships are expected in this
month after the lifting of the summer moratorium in this area (Shen & Heino, 2014). Over the Bohai Sea and
the Yellow Sea especially, the shipping activities decrease in winter due to sea ice and bad weather and start
to increase again in April (L. Wang et al., 2013; F. Zhang et al., 2014).

3.2. Trend Analysis

Figure 3a shows the linear change rate of shipping emissions in each grid cell from 2007 to 2016. We see a
clear increasing trend at the track along the southern coast from Guangzhou to Shanghai and continuing
to Shandong Province in the Yellow Sea with an average increase rate of about 0.1 Gg per grid cell per year.

Figure 2. The month with the maximum monthly NOx emissions for each grid
cell over the ocean. The inset figure is the seasonal cycle of NOx emissions for
the selected three areas shown in Figure 1c. The shaded bands in the inset figure
indicate the uncertainty.
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Figure 4 shows the annual shipping emissions with an estimated uncertainty of about ±20% for each of the
selected three regions. We see that the relative increase rate levels off progressively, from about 30% per year
in 2007 to a very small trend in the last years. We have currently no explanation for the decrease in 2013 and
2016. This is quite different compared to the trend of NOx emissions and columns over Mainland China,
where the NOx emissions started to decrease since 2012 (F. Liu et al., 2016; van der A et al., 2017).

To rationalize the trend shown in Figure 3b, we obtain the annual cargo throughput data of the main harbors
(shown in Figure 1c) along the coast for the period of 2009 to 2015 from the National Bureau of Statistics
China (2017). Cargo throughput volumes are commonly regarded as an indicator for shipping emissions
(Streets et al., 1997) and used to compare with trends (de Ruyter de Wildt et al., 2012). Note that this does
not account for fishing ships, recreational ships, and for the size of cargo ships. Figure 3c shows that the total
volume of cargo throughput increased between 2009 and 2014 after which it remained at the same level. The
trend is similar to that of shipping emissions shown in Figure 3b. Both emissions and cargo throughput show
an increase of about 40% in 2012 compared to 2009. The ports along the Bohai Sea, Yellow Sea, and the
region from Shanghai to Guangzhou are summed up separately to approximate the shipping activity for
these three regions. Note that ships delivering their cargo in ports of one region (especially Bohai) often also
pass the other regions. For the Yellow Sea, this explains the lower cargo throughput compared to the higher
NOx emissions. The correlation coefficient (R) of the time series between shipping emissions and cargo

Figure 3. (a) The linear change rate of NOx emissions per grid cell over the ocean from 2007 to 2016. The time series of
(b) NOx emissions from 2007 to 2016 and (c) cargo throughput volumes from main harbors from 2009 to 2015 over the
selected three regions shown in Figure 1c. The shaded bands in (b) indicate the uncertainty.

Figure 4. The relative impact of maritime emissions on the NO2 columns over land in January and July 2015.
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throughput volumes are all above 0.95, for the Yellow sea, Shanghai-
Guangzhou, and the total of three regions, except for the Bohai Sea,
which has an R value of 0.84. We see that the annual emissions over
the Bohai Sea show a decrease starting in 2014, while the cargo
throughput volume becomes stable. Note that the emissions derived
with DECSO are the total surface emissions. Over the Bohai Sea, the
total NOx emissions include the emissions not only from ships but also
from several oil platforms in this region (Xing et al., 2015). In 2014, oil
companies and the government signed the document “Responsibility
for the total emission reduction targets” (Ren & Jin, 2014), in which
the companies promise to reduce air pollutants from marine oil plat-
forms. This might explain the decrease of emissions over the Bohai
Sea after 2014. For all three regions, we see that the increase rate of
emissions is higher than that of cargo throughput. This implies that reg-
ulations on NOx emissions are either inexistent or ineffective for the
maritime sector over open seas.

3.3. Contribution of Shipping Emissions to NO2 Air Pollution

Shipping emissions near coastal areas amount to about 10% of the
total emissions over the mainland in our study domain. To study the
influence of shipping emissions on shore regions, we set up two
CHIMERE runs for the year 2015: one run using the MIX inventory (Li
et al., 2017), which includes no maritime emissions, and the other using
a combination of the MIX inventory and the maritime emissions of
DECSO. We exclude the maritime emissions over the grid cells with
more than 5% covering land due to the difficulty in distinguishing them

from other sources over land. This will result in an underestimation of the contribution of maritime emissions.
From themodel results, we see that the shipping lanes near the coast are always covered by the outflow from
the mainland. The difference in NO2 columns between the two runs is regarded as the contribution from
shipping emissions. The contribution is higher in summer than in winter due to the summer monsoon wind
from ocean to land (see Figure 4). In summer, the maximum occurred at the coastal areas of Fujian and
Guangzhou Provinces and the contribution can be as high as 20%. In winter, the contribution from shipping
emissions to coastal cities is smaller. The nonnegligible effect of shipping emissions can lead to large uncer-
tainties in model simulations using emission inventories without the maritime sector.

4. Discussion

To further validate our shipping emissions, we compare them with the emissions derived with the STEAM
model (Jalkanen et al., 2016), which uses the AIS data worldwide. Data for the Asian region are available only
for the year 2015. The resolution of STEAM data is 10 × 10 km. For a meaningful comparison, we regrid the
data set to the same resolution as used by DECSO. Figure 5 shows the regridded shipping emission map of
STEAM. We see that DECSO (Figure 1b) is in fairly good agreement with STEAM for shipping emissions with
strength higher than 0.4 Gg per grid cell per year. However, shipping lanes with limited ship traffic are not
visible in the DECSO data, because the resolution of DECSO emissions is limited to the pixel size of satellite
observations. The coarse resolution of model and satellite observations can lead to an underestimation of
shipping emissions (Valin et al., 2011). The longer lifetime of NO2 and fewer observations in winter (about half
the number of the observations in summer) also lead to larger uncertainties in allocating emissions in DECSO.
STEAM has uncertainties because of errors in the emission factor and incomplete AIS data. We calculate the
annual emissions of STEAM data for the selected three regions. In 2015, over the Bohai Sea, Yellow Sea, and
Shanghai-Guangzhou regions, the annual detected total surface emissions are 23, 84, and 215 Gg with
STEAM, while they are respectively 63, 120, and 287 Gg derived with DECSO. A fair agreement is found over
the Yellow Sea and the Chinese coastal region between Shanghai and Guangzhou. Over the Bohai Sea area,
the emissions of DECSO are much higher than those of STEAM. However, since DECSO is estimating total

Figure 5. Shipping emissions derived from the Ship Traffic Emission Assessment
Model using Automatic Identification System data in 2015.
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emissions over sea, including ships without AIS and emissions from marine oil platforms, which are frequent
in this region, emissions of DECSO are expected to be higher here.

The shipping emissions derived with DECSO are also comparable with other recent studies. Fan et al. (2016)
used the AIS data to estimate shipping emissions in 2010 near the Yangtze River Delta. The results showed
that annual shipping emissions in a zone between 100 and 200 km of the coastline are 150 Gg and in the
zone of 200 and 300 km shipping emissions are 63 Gg. Over the same areas, the emissions of DECSO are
143 and 71 Gg, respectively, which is within a 10% error margin. H. Liu, Fu, et al. (2016) derived shipping emis-
sions from AIS data over Chinese seas in 2013, which were about 1,799 Gg per year for the Chinese coastal
seas. For the same region, our estimated emissions are about 1,422 Gg. Note that the maritime emissions
of DECSO exclude grid cells containing even a small fraction of land. Since these studies for different areas
and different years are consistent with emissions from DECSO, these comparisons give us more confidence
in our derived emissions and trend analysis.

5. Conclusions

In this study, we present the first long-term record of satellite-derived emissions over Chinese seas by using
the DECSO algorithm. DECSO is able to detect total surface emissions under the strong outflow of NO2 from
Mainland China and can be applied to any other region of the world. The emissions are coming from offshore
platforms and all motorized ships. The continually increasing trend of NOx emissions over sea is in agreement
with the fact that no effective regulations have been implemented for ships in China. Our model simulations
show that shipping emissions can contribute up to 5–20% to local NO2 concentrations at the densely popu-
lated coast. Since data about shipping emissions over China are usually not available, the air quality simula-
tions and forecasts suffer large uncertainties especially near coast areas. DECSO provides monthly emissions
for the last 10 years, which provides missing information of emissions over ocean to modelers. In the future,
when better satellite observations become available that have higher temporal and spatial resolutions, for
example, TROPOspheric Monitoring Instrument (Veefkind et al., 2012) on a Sun-synchronous satellite and
geostationary satellites with instruments like Geostationary Environment Monitoring Spectrometer (Kim,
2012) over Asia, Sentinel-4 (Ingmann et al., 2012) over Europe, and TEMPO (Zoogman et al., 2017) over
America, we expect to detect even NOx emissions of low-density ship tracks from space and subsequently
to further improve shipping emission inventories.
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