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ARTICLE INFO ABSTRACT

Specifying the choice set for travel behaviour analysis is a non-trivial task. Its size and composition are known to
influence the results of model estimation and prediction. Most studies specify the choice set using choice set
generation algorithms. These methods can introduce two types of errors to the specified choice set: false negative
(not generating observed routes) and false positive (including irrelevant routes). Due to increased availability of
revealed preference data, like GPS, it is now possible to identify the choice set using a data-driven approach. The
data-driven path identification approach (DDPI) combines all unique routes that are observed for one origin-
destination pair into a choice set. This paper evaluates this DDPI approach by comparing it to two commonly
used choice set generation methods (breadth-first search on link elimination and labelling). The evaluation
considers the three main purposes of choice sets: analysis of alternatives in the choice set, model estimation and
prediction. The conclusion is that the DDPI approach is a useful addition to the current choice set identification
methods. The findings indicate that in analysing alternatives in the choice set, the DDPI approach is most sui-
table, as it reflects the observed behaviour. For model estimation the DDPI approach provides a useful addition
to the current choice set generation methods, as it provides insights into the preferences of individuals without
requiring network-data for additional information or generating routes. In terms of prediction, the DDPI ap-
proach is not suitable, as it is not able to perform well with out-of-sample data.
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1. Introduction

In the context of travel behaviour, many choices must be made by
an individual before a trip is made, e.g. destination, mode and route
choice. These choices are all discrete in nature, meaning that only one
option can be chosen at a time. The choice set from which an individual
chooses one, forms an important aspect in the analysis of travel beha-
viour. Three different purposes of choice sets can be identified. First, it
is essential in analysing different travel options in the network (e.g.
number of alternatives, characteristics or composition of the alter-
natives), second it is used for demand model estimation (estimating
behavioural parameters), and third it is instrumental in predicting
choice probabilities and thereof flow distribution over alternatives/the
network (Bovy, 2009). The size and composition of the choice set in-
fluence the results of the model estimation and prediction, and conse-
quently the interpretation of the estimated behavioural parameters
(Bovy, 2009). This issue is for example relevant in route choice analysis,
as many possible alternatives can be identified by the researcher, but
only few will be known to the individual, leading to possible mis-
matches in the choice set identification.

* Corresponding author.

Route choice sets are often specified using choice set generation al-
gorithms (e.g. k-shortest paths or labelling), which compute a set of
routes based on characteristics of the network(-links) (e.g. distance or
travel time). The use of these algorithms can introduce two types of
errors in the choice set: false negative and false positive errors. False
negative errors arise when the algorithm is not able to reproduce the
chosen alternatives. The generated alternatives might not match the
behaviour and preferences of the individual, and as a result the chosen
route is not reproduced. The impact of this error decreases when the
ability of the choice set generation algorithm to capture the individuals’
behaviour and preferences increases. False positive errors occur when a
choice set generation algorithm also generates routes that are not
considered by the individual, resulting in a too large choice set. In
conclusion, the use of choice set generation algorithms potentially
comes with several flaws.

In recent years, large improvements have been made in revealed
preference data collection methods. New data sources, such as GPS data
that contain detailed spatial and temporal information on the move-
ment pattern of individuals, help creating insights into the individuals’
choice behaviour. By combining the GPS records belonging to one
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individual into separate trips, the observed trips can be used for route
choice research (e.g. Menghini et al., 2010; Hood et al., 2011). Next to
generating the choice set based on a set of assumptions on network
properties, it is then also possible to use the observed trips from GPS
data to identify the choice set directly. Every trip between an origin and
destination follows a certain route, the unique routes that are observed
can then be combined into one choice set. Consequently, the potential
false negative error associated with choice set generation algorithms
cannot occur and the potential false positive error is negligible because
all the routes included in the choice set have been chosen by the in-
dividual.

Governments worldwide have shown increasing interest in pro-
moting and understanding cycling usage, due to the potential health,
congestion and emissions benefits. Consequently, goals have been set to
increase the cycling modal share (Pan-European Programme, 2014).
Several studies investigated bicycle route choice using GPS data, pri-
marily in areas where cycling is relatively scarce, with the goal of
identifying determinants that influence route choice, so that sub-
stantiated infrastructure investments can be made (Menghini et al.,
2010; Hood et al., 2011; Broach et al., 2012; Casello and Usyukov,
2014; Montini et al., 2017; Zimmerman et al., 2017; Chen et al., 2017;
Li et al., 2017; Ghanayim and Bekhor, 2018). Other studies have taken
in place in urban environments with a larger share of cyclists, like
Copenhagen (Halldérsdéttir et al., 2014; Prato et al.,, 2018; Skov-
Petersen et al., 2018). These studies have applied different types of
choice set generation algorithms, such as labelling, stochastic methods,
link elimination, and link penalty. However, none of the studies has
applied a data-driven method for choice-set identification as proposed
and examined in this study. This approach is applied to a bicycle route
choice study for the city of Amsterdam, the Netherlands (Ton et al.,
2017). Amsterdam is known for its well developed bicycle infra-
structure and high share of bicycling trips (37%) (OViN, 2011). To
evaluate the potential of this data-driven method for choice set iden-
tification, we compare the method using the dataset from the city of
Amsterdam, to other choice set generation algorithms previously ap-
plied in the cycling route choice literature.

This paper evaluates the use of a data-driven approach for choice set
identification in travel behaviour analysis. The goal is to investigate
whether a data-driven approach can be a valuable addition to the
current choice set identification methods. Bicycle GPS data from
Amsterdam, the Netherlands, is used to identify the choice set and this
choice set is used in the estimation and validation of a route choice
model. The evaluation of the data-driven approach is done by means of
a comparison study, where it is compared to two commonly used choice
set generation methods, to assess and compare their performance and
results. Based on computation time, sensitivity to false negative errors
and, number of applications, two approaches have been selected: the
breadth-first search on link elimination (BFS-LE) introduced by Rieser-
Schussler et al. (2013) and the labelling approach introduced by Ben-
Akiva et al. (1984). The evaluation is performed on the three above-
mentioned purposes of choice sets; 1) analysing the composition of the
choice set, 2) understanding behaviour (model estimation) and 3) ap-
plication of the model on out-of-sample data (model validation).

The rest of the paper is outlined as follows. Section 2 reviews con-
temporary choice set generation procedures. In Section 3, the data-
driven approach is elaborated upon in terms of requirements of data,
opportunities, limitations of the method, and sensitivity with respect to
data collection duration. Section 4 describes the methodology for
evaluating the specified choice sets as well as the route choice model
estimation and validation. Section 5 provides background on the data
that was collected and prepared for this study. Section 6, then details
the evaluation of the generated choice sets in comparison to the ob-
served routes and Section 7 covers the evaluation of the route choice
model estimation and validation. Finally, Section 8 concludes the paper
and provides directions for future research.
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2. Choice set generation methods

This section discusses different choice set generation methods that
have been proposed in the past and selects two methods as reference for
the evaluation of the data-driven approach.

Many different methods have been proposed for identifying route
choice sets (for detailed reviews see Fiorenzo-Catalano (2007) and
Ramming (2002)). Bovy (2009) and Prato (2009) identify four cate-
gories of choice set generation methods: deterministic methods, sto-
chastic methods, probabilistic methods and constrained enumeration
methods. Most choice set generation methods belong to the deterministic
category and consist of repeated shortest path searches in the network.
These shortest path methods have different input variables such as
search criteria, route constraints and link impedance (Prato, 2009).
They are computationally attractive due to the efficiency of shortest
path algorithms. Stochastic methods are also based on repeated shortest
path searches, but additionally the computation of optimal paths is
randomised based on link impedances or individual preferences drawn
from probability distributions, mostly done using simulation. These
methods have been applied in the bicycle route choice context by Hood
et al. (2011), Halldérsdéttir et al. (2014), Ghanayim and Bekhor
(2018), and Prato et al. (2018). Constrained enumeration methods are not
only based on shortest routes, but also make additional behavioural
assumptions (Prato, 2009). These assumptions reflect different beha-
vioural thresholds that can be specified, e.g. excluding loops and only
including links that bring the individual closer to the destination. These
methods have been applied in the bicycle route choice context by
Halldé6rsdottir et al. (2014), but did not prove to outperform the de-
terministic or stochastic methods. Probabilistic methods assign a prob-
ability for each alternative to be included in the choice set. A fully
probabilistic approach, as proposed by Mansky (1977), which includes
the choice set generation and selection in the utility function, is often
deemed infeasible due to its computational complexity. As a con-
sequence, these methods have not yet been applied in the bicycle route
choice context.

Recently, two alternative approaches have been proposed that ad-
dress the choice set identification implicitly (i.e. no need for explicit
enumeration of alternatives). The first is the sampling approach
(Frejinger et al., 2009; Flotterod and Bierlaire, 2013), that assumes a
universal choice set and by means of importance sampling selects a
subset of these routes. The second approach is the link-based approach
(Fosgerau et al., 2013), which assumes that individuals make successive
choices at each node. The link-based approach was applied in the bi-
cycle route choice context by Zimmerman et al. (2017).

Due to its prevalence in the general and bicycle route choice lit-
erature, computational efficiency and deterministic nature (which re-
lates more to the cognitive aspects of the decision-maker rather than
conceived a computational instrument), deterministic methods are se-
lected as reference methods for comparison in this study. Four cate-
gories of deterministic methods are identified: shortest paths, link
elimination, labelling and link penalty. Previous findings suggest that
the shortest path methods have the lowest performance in terms of re-
producing the observed routes (Bovy, 2009). Furthermore, the link
penalty methods are known for their large computation times (Bekhor
et al. 2006). Therefore, the focus lies with the link elimination and
labelling methods.

The link elimination method iteratively removes links that are on the
shortest path and finds new shortest paths (Bellman and Kalaba, 1968).
Prato and Bekhor (2007), Bekhor et al. (2006), and Ghanayim and
Bekhor (2018) evaluated this approach and found that in about 40% of
the cases false negatives are produced. Azevedo et al. (1993) proposed
an alternative approach, where the entire shortest path is eliminated,
after which a new shortest path is calculated. This approach is more
drastic, as it eliminates overlap but can result in an unrealistic choice
set (e.g. large detours). Rieser-Schussler et al. (2013) adapted the link
elimination method by applying a breadth-first search technique on link
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elimination (BFS-LE), meaning that one starts eliminating links closest
to the origin, repeats the shortest path search and moves stepwise to-
wards the destination, before going one level deeper and eliminating
two links at once (the one removed in the first level and again the first
link of the new shortest route). They found lower error percentages
compared to previous implementations of the link elimination method.
Furthermore, this method appears to be computationally efficient and is
suitable for high density networks (Rieser-Schussler et al., 2013). It has
been applied in different contexts, e.g. cars (Rieser-Schussler et al.,
2013; Prato et al., 2012; Dhakar and Srinivasan, 2014; Montini et al.,
2017), bicycles (Menghini et al., 2010; Halldérsdoéttir et al., 2014;
Montini et al., 2017), heavy goods vehicles (Hess et al., 2015), and
public transport (Montini et al., 2017).

Ben-Akiva et al. (1984) introduced the labelling approach which
searches for the most optimal alternative given a certain label (e.g.
distance, time, number of turns etc.). Prato and Bekhor (2007) applied
this method to an urban network for cars in which they minimise for
distance, free-flow time, travel time and travel delay. They report a
false negative rate of 60%. Bekhor et al. (2006) specified and examined
16 different labels in their study. They found that each individual label
generates only between 8% and 34% of the observed alternatives, while
combined they can reproduce 72% of the observed routes. This method
has been applied in the bicycle route choice context by Chen et al.
(2017), Li et al. (2017), and Skov-Petersen et al. (2018). Unfortunately,
none of them evaluate the performance of this method. Dial (2000)
proposed a generalised approach of the labelling method for generating
efficient paths. This method minimises a linear combination of labels.
Broach et al. (2010) extended the labelling approach by generating
multiple optima for one label by varying the label cost function para-
meter. They applied the method to bicycle traffic and identified eleven
different labels, among others the distance of upslope travel and the
number of turns. Their method generated more observed alternatives
than the labelling method, however, the computation time also in-
creased manifold. They also applied this method in a later study
(Broach et al., 2012).

Table 1 provides an overview of the performance of the discussed
methods in terms of producing false negatives in comparison to the
number of alternatives generated. Note that the studies mentioned
before are only included in the table if these numbers were provided. In
general, when generating more alternatives, the false negative error
percentage should decrease (where the false positive error potentially
increases). Next to that, computation time of the methods is compared.

Because the studies use different datasets, it is hard to objectively
compare the results. Most studies have resulted with a relatively high
number of alternatives in the choice set, indicating that both relevant
and irrelevant alternatives are included in the choice set. The different
studies have also addressed different modes; the false negative error
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percentage is higher for the non-motorised modes compared to the
motorised modes for each algorithm. This is most likely due to the
higher complexity of the network for bicycles compared to cars and
trucks.

From the link elimination methods, the BFS-LE approach introduced
by Rieser-Schussler et al. (2013) is most promising and therefore se-
lected as a reference method in this paper. Several other studies have
applied this method and found decent computation times and a lower
share of false negatives compared to the original link elimination ap-
proach. Furthermore, the original labelling approach introduced by
Ben-Akiva et al. (1984) is included as a reference method, because it
outperforms the later proposed method of Broach et al. (2010) in terms
of computation time and performs only slightly worse in terms of
producing false negative errors.

3. Introducing the data-driven path identification approach
(DDPI)

Due to the increased availability of (passively) collected revealed
preference data and the issues associated with current choice set gen-
eration algorithms, the opportunity arises to identify choice sets using a
data-driven approach. In this section, the data-driven approach coined
Data-driven Path Identification (DDPI) which is introduced in Ton et al.
(2017), is elaborated upon.

The DDPI approach is based on revealed preference data, like Wi-Fi,
Bluetooth or GPS data of a large sample of individuals collected over a
longer period. The idea behind this approach is to combine all observed
routes from one origin to one destination into a single choice set at the
origin-destination level (OD Pair). Using this method, the false negative
error (not reproducing the observed route) is resolved. Furthermore, all
routes that are included have been chosen by an individual, this means
that these routes are optimised to a certain extent. Consequently, it is
likely that these routes have been considered by an individual and from
this set one route has been chosen. Therefore, the proposed method is
expected to be less prone to false positive errors (including routes that
are not considered) than choice set generation algorithms. However,
because the choice set contains only chosen routes, it is possible that
other routes that were considered but not chosen, are excluded, con-
sequently potentially resulting in a choice set that is too small. A
counterargument is that if data is collected over a long enough period of
time, all relevant and considered routes are part of the data-driven
choice set, therefore reducing this issue.

Several requirements need to be met for the DDPI approach to be
applicable. First, the data should be collected over a sufficiently long
period of time to allow multiple observations per OD pair. Second, it is
necessary to have at least two routes per OD pair to facilitate the esti-
mation of a route choice model. However, because of issues with

Table 1
Performance of applied deterministic choice set generation algorithms.
Deterministic category Method Study Data Mode  False negative Max no. Comp. time
error alternatives
Link elimination method Link elimination Bekhor et al. (2006) Boston, USA Car 40% Unknown Medium
Prato and Bekhor (2007) Turin, Italy Car 42% 10 -
Ghanayim and Bekhor Tel-Aviv, Israel Bicycle 40% 10 -
(2018)
Breath-first search on link Rieser-Schussler et al. Zurich, Switzerland Car 37% 20 -
elimination (2013) 27% 100
Hess et al. (2015) United Kingdom Trucks  26% 15 -
Halldérsdottir et al. (2014)  Copenhagen, Bicycle 34% 20 Medium
Denmark
Labelling approach Labelling Bekhor et al. (2006) Boston, USA Car 28% 16 Low
61% 3
Prato and Bekhor (2007) Turin, Italy Car 60% 4 -
Broach et al. (2010) Portland, USA Bicycle 80% 9 Low
Calibrated labelling Broach et al. (2010) Portland, USA Bicycle 78% 20 Medium
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endogeneity, it is preferable to have more than two routes per OD pair.
Because the observed routes are optimised to a certain extent by the
individual, the variability of the routes is low. By including more
routes, the variability of the routes increases and the issue with en-
dogeneity will be less severe. If this is not accounted for, the estimated
models will be biased. If there is an OD pair which does not meet these
requirements, it needs to either be deleted or aggregated by applying a
spatial clustering technique. Clustering of OD pairs can be useful in case
of, for example, two neighbours heading for the same destination. It can
prevent loss of data, but should be carefully addressed, because the OD
pairs still need to be comparable. The impact of these requirements can
be small, if they are taken into account in the design phase of the data
collection.

The requirements of the method also point to the limitations of the
DDPI approach. It imposes additional requirements to the data collec-
tion, because if the data is already collected and requirements are not
adequately met, a (severe) loss of data and an endogeneity issue can be
the result. The endogeneity is the result of including all chosen alter-
natives in the choice set. The issue is larger if the alternatives are more
similar and there are only few. In that case, the method should not be
used, as it imposes a bias in the choice model. Similar to other methods,
another limitation is found in the generalisability of the results: data is
collected for a certain group of people and for a certain region.
Consequently, it is per definition uncertain whether the results (mod-
eling or choice set) can be transferred to other groups of people or other
regions, similarly to the generalisability issues associated with other
methods.

The data collection duration (for example a week versus several
months) suitable for the application of the DDPI method depends on the
local network and demand properties. It is important to ensure a long
enough period so that the routes observed exhibit a sufficient degree of
variation.

4. Methodology for evaluating choice set specification methods

The methodology for assessing the usefulness of the DDPI approach
and comparing the different choice set generation methods is presented
in this section. Section 4.1 details the methodology for comparing the
generated choice sets to the observed data. Furthermore, Section 4.2
discusses the evaluation methodology for estimation and validation of
the route choice model. Section 4.3 then provides a synthesis of the
evaluation methodology.

4.1. Evaluating the specified choice sets

The specifications of the algorithms to which the DDPI approach is
compared are discussed (Section 4.1.1), and the methodology for
comparing the generated choice sets to the observed routes is provided
(Section 4.1.2).

4.1.1. Selected choice set generation algorithms

The BFS-LE and labelling approach have been selected for com-
parison. Both algorithms use calculations of the shortest path. The al-
gorithm used to calculate the shortest path is Dijkstra (1959). The input
for Dijkstra’s algorithm is a (distance)matrix, which can grow very
large, especially when considering bicycles. To decrease the computa-
tion time and increase the spatial diversity among routes, a topologi-
cally equivalent network reduction is adopted in this study. This means
that nodes that connect only two other nodes (i.e. a node degree of two)
are removed from the network and the two links are merged into one.
Consequently, the network (or matrix) consists of fewer nodes and the
resulting shortest path consist of fewer links, thus significantly reducing
the computation time.

These choice set generation algorithms can utilise several input
variables. Mostly, the algorithms are applied based on travel distance.
In the bicycle route choice context, several studies have considered
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alternative variables. Broach et al. (2012) used an approach that opti-
mised criteria like percentage of designated cycle paths, subject to
distance constraints. Hald6érsdoéttir et al. (2014) search for the shortest
route in terms of road type, bicycle paths, and land use. Finally, Chen
et al. (2017) used a combination of speed limits, distance, and bicycle
facilities to generate routes. Due to limited data availability for the
inner-city of Amsterdam (see Section 5.4), we rely largely on travel
distance in the choice set generation algorithms. The two algorithms
are specified below.

4.1.1.1. Breadth-first search on link elimination (BFS-LE). The BFS-LE
algorithm, introduced by Rieser-Schussler et al. (2013), was developed
specifically for high-density networks, e.g. urban networks. The idea
behind the approach is to calculate the shortest path (in this paper we
adopt calculation based on distance, like in the original study) between
an origin and destination, add this path to the choice set and then
remove the links of this shortest path step-by-step, starting from the
origin node. In each step a new shortest path is calculated and added to
the choice set, given that it is unique. A tree structure is adopted to keep
track of the removed links and the resulting adapted networks, this
means that in the second tree level two links are eliminated (the link
that was deleted from the shortest path and the link from the new
shortest path).

Maximum computation time, tree-depth, and choice set size can be
used as termination measures for the BFS-LE algorithm. In this study,
we applied a mix of these measures. Because an individual is not able to
remember or consider many routes, we have set the maximum to 20
routes. This seems adequate given the findings from Hoogendoorn-
Lanser (2005) indicating that different individuals only know seven
alternatives. Since we only search for 20 unique routes, we have applied
a tree-depth of one, with a random draw of 20 routes in case more
routes are generated. The second level sometimes generated over 1000
routes, and induced an exponential growth in computation time. The
unique routes found in tree-depth one, are added to the choice set re-
sulting from tree-depth zero.

4.1.1.2. Labelling approach. The labelling approach proposed by Ben-
Akiva et al. (1984) searches for the most optimal route based on
different network-related search criteria, e.g. distance, travel time or
number of left turns. This method facilitates the composition of a very
diverse choice set, given the available data. The number of labels
encoded, sets the maximum value of the number of alternatives
included in the choice set. The input-matrix required for the
Dijkstra’s algorithm is adapted for each of the labels considered. In
this study, we have identified three labels, resulting in a maximum
choice set size of three.

The three labels are the shortest path based on distance, the highest
percentage of separate cycle paths and the least amount of intersections
on the route. The matrix that serves as input for the Dijkstra algorithm
is node-based. Consequently, each link is presented as a connection
between two nodes. The algorithm then searches in this matrix to
identify the shortest path. Regarding separate cycle paths, each link
that has a separate cycle path or a protected lane, has a weight of zero,
all other links have a weight of one. The ideal route found by the al-
gorithm consists of 100% separate cycle path, thus maximising the
amount of cycle path. Furthermore, regarding intersections, each link is
assigned with the same weight, therefore the algorithm searches for the
shortest path in terms of the number of links traversed. In the absence
of more detailed information, all intersections (with a node degree of at
least three) are treated equally.

4.1.2. Evaluation methodology for specified choice sets

The DDPI approach directly uses the observed routes to identify the
choice set, consequently there is no difference between the DDPI ap-
proach (after data preparation) and the observed routes, and it is not
evaluated separately. The performance of the algorithms is evaluated
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by comparing the generated choice sets to the observed routes. First, a
qualitative analysis is performed, in which two OD pairs are selected
and visually compared. This gives an indication on the spatial dis-
tribution of the generated routes and potential differences and simila-
rities between the choice sets. Second, a quantitative analysis provides
descriptive statistics of three network related variables, based on pre-
vious work on bicycle route choice': percentage of separate cycle paths,
distance and number of intersections per kilometre. This analysis shows
the general characteristics of the different choice sets compared to the
observed routes.

Furthermore, the heterogeneity of the generated choice sets is in-
vestigated, quantitatively showing how spatially different the generated
routes are. This is done by calculating the path size (PS) factor for each
route in the choice set, which is an indicator for overlap between routes
(Ben-Akiva and Bierlaire, 1999).

I 1
PS;, = Le——
Z (L") Ljec, O (@]

acl;

where PS;,is the path size factor, [; is the set of links in route i, I, is the
length (distance) of link a, L; is the length of route i and J,the link-
route incidence variable which equals one if linka is on route j and zero
otherwise. This means that the PS factor depends largely on the size and
composition of the choice set (i.e. including many irrelevant routes
affects this factor). The path size factor ranges between zero and one,
where one indicates an independent route and zero indicates complete
overlap with other routes in the choice set.

The main objective of choice set generation algorithms is to re-
produce all observed routes, i.e. resulting with zero false negative er-
rors. To test to what extent the algorithm can reproduce the observed
routes, the following formula for the reproduction rate is adapted from
Prato and Bekhor (2007):

N
RR, = Y 1(Oy > 0)

n=1

@

where RR, is the reproduction rate for algorithmr. I(s) is the re-
production function, which is equal to one if the argument is true and
zero otherwise; O,, is the overlap rate for algorithm r for observation n,
and ¢ is the overlap threshold, which can be set from no overlap (0%) to
full overlap (100%). O,, is calculated in the following way:

L
Opr = =

L, 3

where L,, is the common distance between the generated route and the
observed route for algorithmr and observation n. L, is the total distance
of the observed route for observation n. The reproduction rate (Eq. (2))
yields how many observed routes are generated when allowing for a
certain overlap threshold.

In addition to the reproduction rate, the behavioural consistency of
both methods is assessed. The consistency index compares the algo-
rithms to the ideal algorithm that would reproduce all the observed
routes, and calculates how well the algorithms perform. The formula
used to calculate this index is the following (Prato and Bekhor, 2007):

_ EnN:l Onr,max

CI, N

@
where CI, is the consistency index for algorithm r; Oy ey is the max-
imum overlap percentage obtained for observation n using algorithm r,
i.e. the best matching generated route to the observed route n; N is the
total number of observations in the sample.

4.2. Evaluating the model estimation and validation
The specifications of the route choice model that is estimated; the

Path-Size Logit (PSL) model is discussed (Section 4.2.1), and the
methodology to evaluate the model estimation and validation is
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provided (Section 4.2.2).

4.2.1. Specification of the route choice model

A wide variety of discrete choice models, varying in computational
complexity, have been developed that are suitable for route choice.
Examples are Cross-Nested Logit (CNL), Paired Combinatorial Logit, C-
Logit and PSL. Bliemer and Bovy (2008), Prato and Bekhor (2007) and
Bekhor et al. (2006) have compared these models for route choice. They
concluded that the CNL and PSL model perform best. Since the CNL
model is more complex, requires specialised code and has a higher
computation time, we apply the PSL model in this evaluation (Bekhor
et al., 2006).

To account for potential correlation among path alternatives (e.g.
route overlapping), the PSL model introduces a similarity measure in
the utility function. In this study, the path size (PS) factor proposed by
Ben-Akiva and Bierlaire (1999) is adopted (Eq. (1)). The probability of
choosing alternative i given choice set C, is specified as follows (Ben-
Akiva and Bierlaire, 1999):

e(ﬁd #distin+;* %m +ﬁcp +%sep.cyclepath;, +Bpg *InPSin )

P(ilC,) = ~

(ﬁd*distjn+/3i*u, +ﬁcp*%Sep.cyclepathjn+ﬁps*ln.PSjn)

Ljec, o (5)

where based on previous work, three explanatory variables are included

per alternativei and observation n: percentage of separate cycle paths

(%sep. cyclepath,,), distance (dist;,) and number of intersections per

kilometre ("}Z—Z"‘ ). PSis again the path size factor calculated in Eq. (1), it

mn

ranges between zero and one, where one means no overlap and zero

implies complete overlap between routes. The models are estimated
using the Python Biogeme package (Bierlaire, 2016).

4.2.2. Evaluation methodology for model estimation and validation

Three route choice models are estimated and validated, using the
two generated choice sets and the choice set that is identified using the
DDPI approach. Because for each OD pair routes are generated using
the two generation algorithms and multiple routes are observed per OD
pair, a union of the observed and generated routes is created for the
Labelling and BFS-LE choice sets. Fig. 1 shows this merging of observed
(1.a) and generated (1.b and 1.c) routes for the BFS-LE and labelling
method. All observed and generated routes for one method per OD pair
are merged into one choice set (1.d and 1.e), corrected for the re-
produced observed routes.

The model estimation and validation are done by splitting the data
sample into two parts (80/20). The models are estimated using 80% of
the observed OD pairs and validated using the remaining 20%. This
way, the predictive power of the models can be tested and potential
errors can be detected. The model estimation and validation is done for
five random draws to test stability of the models. Note that the sam-
pling is done on the OD pairs that result from the DDPI approach, so
that the variability in the OD pair remains for the model estimation and
the issue with endogeneity is less severe.

Since the models are estimated using different choice sets, a stan-
dard comparison based on log-likelihood ratio or model fit (adj. rho-
square) cannot be done. The initial log-likelihood is different due the
different sizes of the choice sets. Therefore, the comparison is based on
the point elasticities of the model’s explanatory variables, calculated
using the following formula:

OR(1) xi
ox; Bi(i) (6)

where F, (i) is the probability that observationn chooses alternativei and
x; is an attribute (defined in Eq. (5) for alternativei. The mean elasticity
is then obtained by probability weighting the elasticities for every in-
dividual n, where the probability weights relate to the probability of
choosing an alternative in the choice set. In the validation phase, the
probability for each alternative to be chosen is calculated for the

E)}:i'n(i) =
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e) BFS-LE choice set

Fig. 1. Formation of choice sets for Labelling and BFS-LE algorithms.

remaining 20% OD pairs. To make a fair comparison between all
models, a union of all generated and observed alternatives is generated
for each OD pair (in essence a union between Fig. 1.d and e, corrected
for unique routes). The union choice sets for each OD pair are used to
assess the predictive power of all models, using three measures. First,
the number of times the model assigns the highest utility to the chosen
alternative for all observations. This gives an indication about the ex-
tent to which the model is able to predict the correct choice. Second,
the RMSE value is calculated, which gives an indication of the error that
arises between observed probabilities (based on observed routes) and
modeled probabilities per OD pair. This value is calculated using the
following formula:

f<Nam  —~
RMSE — \/ o (B—PY?

Nop 7)

where P is the vector of probabilities that is predicted by the model for
OD pair i and P, is the vector of observed probabilities of OD pairi.
Finally, the log-likelihood is calculated on the out-of-sample data. As a
union of all generated and observed routes is used to define the choice
sets, the input is the same for all models. Therefore, a comparison based
on log-likelihood is possible. It is calculated using the following for-

mula:
] ®

where y,, is one if n chooses alternative iin choice set C,, and zero
otherwise, and P(ilC,) is the probability of choosing alternative iin
choice set C,.

N
Log—Likelihoodd = )}

n=1

D YuInP(IC,)
ieCy

4.3. Synthesis of the evaluation methodology

A concise overview of all the methods introduced for analysis and
evaluation of the choice sets, model estimation and model validation is
presented in Fig. 2.

5. Data description and preparation

The dataset that is used to assess the usefulness of the DDPI ap-
proach and benchmark the approach against the BFS-LE and labelling
algorithms is a bicycle GPS dataset. This dataset was collected during a
nationwide initiative in the Netherlands called the ‘Bicycle Counting
Week’, which took place on 14-20 September 2015. A total of 38,000
cyclists participated using a smartphone application that tracked their
cycling movements, recording more than 370,000 trips nationwide.
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Additionally, a survey was distributed among the participants that used
the smartphone application. Section 5.1 describes the dataset that is
used in this study. Furthermore, Section 5.2 describes the map
matching procedure for matching the GPS trajectory data to the net-
work. Section 5.3 provides insights on the clustering procedure applied
to the origins and destinations of all the trips made in the dataset. Fi-
nally, Section 5.4 addresses the preparations needed related to the data
and network for the choice set generation methods.

5.1. GPS dataset from the inner-city of Amsterdam

In this evaluation, the focus lies on the inner-city of Amsterdam,
which is a densely-built area with well-developed cycling infra-
structure. The dataset was used in previous work, where the DDPI ap-
proach was applied to estimate a bicycle route choice model for this
specific area (Ton et al., 2017). Fig. 3 shows the network of the inner-
city of Amsterdam. In total, 3045 trips were recorded in the inner-city
of Amsterdam. Not all trips could be used in this case study, as some
trips were too short to be included and some could not be matched to
the topologically equivalent reduced network, resulting in a total of
2819 trips. The respondents sample consists of equal shares of male and
female participants. Most respondents are 31-65 years of age (80%).
Most trips are made for commuting purposes (77%). Furthermore, most
respondents cycle between 25 and 100km a week (72%) (Fiets
Telweek, 2015). The individual characteristics are only available on an
aggregate level, due to privacy regulations, therefore it is impossible to
link the GPS trajectories to individual travellers. This has two major
consequences: (1) individual characteristics cannot be used in the
model estimation, whereas several cycling route choice studies have
identified the relevance of such variables (Hood et al., 2011; Broach
et al., 2012) and (2) it is impossible to identify which trips have been
made by which individuals, thus we need to treat each trip as if it was
made by a unique individual and cannot therefore test for panel effects
in the model estimation.

5.2. Map matching the GPS trajectory data

The map matching procedure was conducted by the organizers of
the Bicycle Counting Week (van de Coevering et al., 2014). The fol-
lowing is an account of the procedure that has been performed. GPS
data points in a trajectory have a maximum accuracy of around 5m
with respect to the infrastructure. However, outliers are observed in
dense urban areas or high building areas, reducing the accuracy by up
to 50 m. In urban areas, this means that the next street can be mis-
takenly identified. To reduce the impact of these outliers on the



D. Ton et al.

Travel Behaviour and Society 13 (2018) 105-117

[ Analysing alternatives ] [ Model estimation ] [ Model validation ]
— N\ N (( A
Identify choice set for: Estimate PSL models: Validate PSL models:
(o]
2 E - DDPIl approach - Distance (km) - 20% out-of-sample
g g - BFS-LE approach - % separate cycle paths - Union of alternatives from
< . ) all choice sets
- Labelling approach - Intersections per km
. J \C AN /L J/
4 N\ N\ N 1\
c * Qualitative analysis * Mean point elasticities * Percentage of trips
-] .
® _g * Quantitative analysis correctly predicted
H] . :
t_g g * Reproduction of RMSE per OD pair
w observed routes * Log-Likelihood
- J \ 7 U J \ J

Fig. 2. Analysis and evaluation methods for analysing the alternatives in the choice set, model estimation and model validation.

observed trajectories, van de Coevering et al. (2014) have calculated
the speed between each two consecutive GPS data points and compared

it to the actual GPS speed, which was determined by means of Doppler

techniques. If a large discrepancy between the actual speed and the

calculated speed has been identified, the outlier and two preceding and
following GPS data points from the dataset were removed.

The corrected GPS trajectories can afterwards be matched to the
network. The entire network is split up in nodes, after which links were
divided into smaller segments to determine local differences in network
speeds, which helps in determining whether a cyclist was able to cycle
on a link. The map matching algorithm they applied generates all
possible combinations of origin and destination points in the network,
which is necessary because of the inaccuracy of the GPS data points.
Routes were then plotted between all the identified combinations of
origins and destinations. The goal is to minimise the distance between

description of the map matching procedure, the reader is referred to
van de Coevering et al. (2014).

5.3. Clustering of the origins and destinations of the GPS trajectories

We applied a clustering method on the observed origins and desti-

the GPS trajectory and the network route, which results in routes that

best resemble the GPS trajectories. If a match could not be found, this

may stem from missing links. In those cases, the route is partitioned and

the same procedure is repeated for the sub-routes. For a more detailed
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nations, to ensure that multiple trips and routes are observed for each
OD pair. A k-means clustering approach was applied which minimises
the intra-cluster distance and maximises the inter-cluster distance.
Different numbers of clusters were tested (150, 200, 250, and 300) to
find a good balance between having enough trips per OD pair (high
number of clusters) and ability to compare routes in an OD pair (low
number of clusters). Finally, a total of 200 clusters provided the best
results. For a more detailed description of the clustering, the reader is
referred to Ton et al. (2017).

5.4. Data and network preparations for the choice set generation methods

As mentioned in Section 5.1, we cannot identify which individual

of Amsterdam.
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made which trip, consequently we have to treat every trip-maker as a
unique individual. Ideally, the DDPI method would have been applied
per individual and OD pair. Given the mentioned restriction in the data,
it is not possible to identify individual choice sets. Therefore, this study
uses all trips that are observed per OD pair and combines them to form
choice sets. Furthermore, data is collected over the course of one week.
Consequently, we are not able to test how sensitive this dataset is with
respect to the duration of data collection versus the diversity of ob-
served routes. Data would need to be collected over a longer period of
time (multiple weeks) in order to test the sensitivity of model perfor-
mance to the data collection duration.

The choice set generation algorithms use the network of Amsterdam
(Fig. 3) to generate the routes, therefore the network is extracted from
OpenStreetMap (OSM). In the road network of OSM the two bicycle/
pedestrian ferries crossing the river 1J are not included, therefore two
bidirectional links are added to the network with origins and destina-
tions at the ferry landings. Furthermore, the inner-city of Amsterdam
contains many one-way streets. Tests with the choice set generation
algorithms show that the generated routes contain many detours and
illogical routes if these links are not considered to be bi-directional.
Therefore, we have converted the entire network into a bi-directional
graph. Furthermore, in the OSM network many links that are mainly
used by non-motorised modes are not incorporated in the network.
Tests with the choice set algorithms show that this affects many OD
pairs, therefore these have been added to the network when possible.
Still, many links that are used by cyclists, are not included in the net-
work. These links could for example be shortcuts or pedestrian areas,
where other modes are not allowed, both of which are not included in
the network. Consequently, network-related issues could arise when
generating routes. A total of 19,375 nodes is identified in the network.
Due to applying topologically equivalent network reduction (as men-
tioned in Section 4.1.1), the number of nodes decreased to 7628 nodes
(-61%) with a total of 25,135 links.

The insertion of local knowledge regarding the network, to make
sure that the majority of the illogical routes will not be generated using
the choice set generation methods, underscores a major advantage of
the DDPI method. This method relies only on the data that is collected
from observed trips and thus does not require any network-information.
Consequently, local knowledge is not required for using this method for
analysing alternatives, model estimation, and model prediction.
Furthermore, the DDPI method can be used as a reference set in ad-
justing the specification of currently adopted labelling approaches. Next
to that, the algorithms use the information from the network or any
other data source that is available, which is especially relevant for the
labelling algorithm. As mentioned before, only three labels can be
identified for this study, due to the limited data availability on the
network.

6. Generated choice set evaluation

The choices sets that are generated using the BFS-LE and labelling
approach are compared to the observed routes according to the meth-
odology described in Section 4.1. The qualitative analysis for two se-
lected OD pairs is covered in Section 6.1. Section 6.2 details the
quantitative analysis on the complete choice sets. Section 6.3 provides
the results of the analysis on reproduction rate and behavioural con-
sistency of the choice set algorithms. Finally, Section 6.4 concludes the
choice set evaluation.

6.1. Qualitative analysis of the choice sets

The observed routes of the two selected OD pairs are plotted on the
map in Fig. 4. Cyclists in the first OD pair (upper OD) travel from the
west of the inner-city of Amsterdam to the north side of the central train
station and cyclists in the second OD pair (lower OD) travel from the
centre (Waterlooplein) to the Vondelpark in the south-west of the inner-
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city.

The routes generated for the first OD pair using the BFS-LE and
labelling approach are visualised in Fig. 5, together with the observed
routes. The observed routes (5.1) show a diverse set of routes. The north
of the station can only be reached by one of the tunnels underneath the
tracks, furthermore the cyclists face the canals that form a ring around
the city centre, resulting here in roughly four main routes. The BFS-LE
approach (5.2) provides a set of shortest routes, showing less diversity
in this case. This approach only shows spatial diversity in the city
centre. It avoids following the canals, which is different from the ob-
served behaviour. This indicates that the cyclists are not necessarily
aiming for the shortest route. The labelling approach (5.3) shows a
more diverse choice set, that mimics the observed behaviour better. It
does not provide exact matches, but provides routes that are more
spatially different and makes use of the direction of the canals. This first
comparison indicates that the labelling approach mimics the observed
behaviour better in terms of spatiality and behaviour.

The generated choice sets for the second OD pair are visualised in
Fig. 6. The observed routes (6.1) again show a spatially diverse image.
For most routes, the number of turns is minimised. The cyclists start
northwards, then follow one of the ring roads and continue north, with
different turning points. The BFS-LE approach (6.2) shows similar be-
haviour for the shortest route, however this route turns later than any of
the observed routes. The northbound route that is generated is very
different from the observed routes. Again, this approach generates a less
spatially diverse choice set, that is unable to find all the observed
routes. The labelling approach (6.3) is again more spatially diverse than
the BFS-LE approach, but shows different routes than to the observed
routes. Two of the three generated routes are comparable to the ob-
served routes, in terms of turning. The third route turns often, which is
very unlike the observed behaviour. The comparison of the second OD
pair shows again that the labelling approach mimics the observed
routes better than the BFS-LE approach, however the differences be-
tween the choice sets are still large. This qualitative analysis indicates
that behaviour of cyclists is not captured based on one objective/label.

6.2. Quantitative analysis of the choice sets

In this section, the choice sets that are generated by the BFS-LE and
labelling approach are compared to the observed routes based on a
quantitative analysis. The descriptive statistics are calculated for dis-
tance, percentage of separate cycle path and the number intersections
per kilometre. Furthermore, the path size factor (Eq.(1)) is calculated,
which is an indicator for heterogeneity of the choice set. Table 2 shows
the results of the quantitative analysis.

The observed routes show that the mean distance travelled is
1.9 km, whereas the entire area included in the research covers about
6 km. This indicates that the average cyclist does not cross the entire
inner-city. Furthermore, the percentage of separate cycle paths en-
countered on the routes and the amount of intersections per kilometre
(all types of intersections) are rather low, the latter was expected from
the qualitative analysis. Finally, the path size factor is on average 0.67,
which indicates a relatively heterogeneous set of routes, matching the
results from the qualitative analysis. The routes chosen by all cyclists
are spatially diverse and have a low degree of overlap.

The BFS-LE approach optimises for distance, which is reflected in
the lower mean distance and standard deviation. However, the differ-
ence with respect to observed routes is negligible, which seems to imply
that the cyclists prefer shorter routes. As mentioned before, several of
the links, found in observed routes, are not included in the network.
Inspections of the OD pairs crossing the city centre, showed that 25% of
the trips cross these areas even though the network does not include
these, indicating that the true shortest path cannot be found by the
algorithms. It shows that the true mean distance might be lower than
shown in Table 2, indicating that the preference for the shorter routes
might be less straightforward than appears now. The BFS-LE approach
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Table 2
Descriptive statistics of the explanatory variables and heterogeneity indicator for each choice set identification approach.
Variable Observed routes BFS-LE approach (N = 12,361) Labelling approach (N = 2034)
(N = 2819)
Mean Median St.Dev Mean Median St.Dey Mean Median St.Dev
Distance (km) 1.93 1.85 1.01 1.92 1.85 0.78 2.82 2.47 1.66
Separate cycle path % 37.9% 34.7% 26.4% 8.3% 6.6% 8.2% 19.4% 9.7% 22.8%
Intersections per km 14.8 14.5 5.0 32.2 321 6.9 19.9 15.9 10.5
Path Size factor 0.671 0.704 0.232 0.135 0.090 0.126 0.833 0.864 0.136

also shows a low percentage of separate cycle paths and a high amount
of intersections per kilometre compared to the observed routes. Most
likely because the algorithm does not optimise for these variables. Due
to the nature of the algorithm, it finds a low variety of routes, leading to
a relatively homogeneous set of routes, reflected in the qualitative
analysis.

The labelling approach generates a route that optimises for each
variable in the descriptive statistics, therefore the standard deviations
are large. The mean distance is larger than both other choice sets,
whereas the percentage of separate cycle path and number of inter-
sections per kilometre are in between the observed routes and BFS-LE
algorithm. Furthermore, due to the optimisation on different variables,
the choice set is very heterogeneous and spatially divers (as was also
found in the qualitative analysis).

6.3. Reproduction of observed routes

This section covers the reproduction rate and behavioural con-
sistency of both the BFS-LE and labelling approach. The reproduction
rate is calculated for different levels of overlap between generated and
observed routes, varying from 70% to 100%. Table 3 shows the results
of these analyses.

The false negative error for both methods is about 99%, implying
that the overwhelming majority of observed routes are not included in
the generated choice-sets. The labelling approach is slightly better at
reproducing the observed trips and has a higher behavioural con-
sistency compared to the BFS-LE approach. The qualitative analysis
showed that the labelling approach could partially reproduce the ob-
served routes, however the overlap between the observed and gener-
ated routes is lower than 70%. The BFS-LE approach performs even
worse, as was also visible in the qualitative analysis. As mentioned
before, network-related issues could impact the choice set generation.
This dependency of choice set algorithms on the network shows one
advantage of the DDPI method, as this method does not rely on network
information.

6.4. Conclusions regarding the evaluated choice sets

The choice sets resulting from the BFS-LE and labelling approach
differ largely from one another, and they differ largely from the ob-
served routes. The labelling approach is better than the BFS-LE ap-
proach in terms of mimicking the observed routes, but shows very large
false negative errors (not generating the observed alternative). The
quality of the network representation (topology and available label

information) that serves as input for the choice set generation methods,
which is poor in the bicycle-context, influences the routes that are
generated, especially when generating routes based on individual net-
work characteristics. In this case, the observed behaviour is not cap-
tured by these characteristics. The differences indicate that cyclists
optimise based on more than one network-related objective. Ehrgott
et al. (2012) proposed a method for bi-objective optimisation, as they
found that cyclists do not optimise based on one objective, like car
drivers might do with distance or travel time. Two other methods that
might be able to overcome this issue are the link-based approach in-
troduced by Fosgerau et al. (2013) and importance sampling ap-
proaches like the Metropolis-Hastings approach (Flotterod and
Bierlaire, 2013), as they approach the choice set generation from the
universal choice set.

7. Evaluation of model estimation and validation

This section covers the evaluation of the model estimation (7.1) and
validation (7.2). Three route choice models are estimated using the
choice sets resulting from the labelling approach, BFS-LE approach and
DDPI approach (as shown in Fig. 1). The evaluation takes place ac-
cording to the methodology proposed in Section 4.2.

7.1. Route choice model estimation

The most elegant way of dealing with non-generated observed
routes, would be to eliminate the entire OD pair. However, in this case
it would mean that only very few OD pairs would remain (approxi-
mately 1% of the trips). Therefore, in practice the observed routes that
have not been generated are added to the choice set (e.g. Broach et al.
(2010)). Consequently, a union of routes is created based on network
characteristics and observed behaviour (like depicted in Fig. 1). This
method entails that information/observed behaviour is added to the
choice set, which will increase the performance of these choice sets in
model estimation and consequently introduces an issue with en-
dogeneity (by including chosen alternatives). The comparison in the
model estimation is therefore skewed, due to this poor performance in
terms of reproducing observed alternatives.

Five models are estimated for each choice set, every time using a
different random sample of 80% of the OD pairs, to investigate the
stability of the models. Table 4 shows the estimation results for one of
the model runs.

The signs of distance, separate cycle path percentage and intersec-
tions per kilometre are as expected and are the same for each model.

Table 3
Number and percentage of observed routes generated by each choice set generation approach for different threshold levels.
Algorithm 100% Overlap 90% Overlap 80% Overlap 70% Overlap CI
# trips % trips # trips % trips # trips % trips # trips % trips
BFS-LE approach 26 0.9% 53 1.9% 92 3.3% 175 6.2% 0.2701
Labelling approach 38 1.4% 65 2.3% 110 3.9% 183 6.5% 0.3024

Note: the total number of trips is 2819.

114



D. Ton et al.

Table 4
Estimated PSL models using the identified choice sets from data, BFS-LE and
labelling.

Variables DDPI model BFS-LE model Labelling model
Coef. t-test  Coef. t-test Coef/ t-test

Distance (km) -0.225 1.72 -0.341 2.84 -1.84 21.88

% separate cycle 0.153 1.00 1.34 9.47" 1.53 11.45

path

Intersections/km -0.018 211 -0.159 23.90 -0.118- 21.61

(Ln) Path Size —0.380 3.94 1.03 17.11 0.291 3.77

N 2249 2249 2249

Null log likelihood —3059.718 —6,921.409 —4,419.422

Final log likelihood = —3044.254 —3539.881 —3627.528

Likelihood ratio test ~ 30.928 6763.057 1538.788

Adj. rho square 0.004 0.488 0.178

* Significant on 90% confidence interval.
** Significant on 95% confidence interval.

However, the parameter and t-test values are different. The DDPI model
has lower t-test values compared to the other models, which is due to
the endogeneity issue that plays a role in the DDPI choice set. It has the
tendency to make attributes less significant. Furthermore, the sign of
the path size factor is different for the DDPI model. In this case a route
that has more overlap with other routes receives a higher utility. In the
context of public transport, Lam and Xie (2002) also found a negative
parameter. They argue that overlapping routes can reduce uncertainty
by allowing more en-route rerouting possibilities and hence contribute
to the robustness of the route taken, which could also hold for the bi-
cycle route choice situation. In case of the BFS-LE and labelling model,
adding the observed routes results with a positive PS factor. The gen-
erated alternatives overlap with each other, but often the observed al-
ternatives are very different, resulting in a higher utility for the non-
overlapping routes. Consequently, the interpretation of the negative PS
sign is different from the positive PS sign, showing a difference between
observed and generated choice sets.

To compare these models, the average point elasticities for all ex-
planatory variables are calculated (Table 5). The elasticity provides
information on the impact of marginal changes in each of these vari-
ables on the probability of being chosen.

The interpretation of the elasticities is such that 1% increase in
distance results in a decrease in the probability of being chosen of
0.29% for the DDPI model, whereas the BFS-LE model shows a 0.44%
decrease and the labelling model shows a decrease of 2.58%. The re-
lative difference between the impact of the BFS-LE model and DDPI
model is 52%, but is around 790% with the labelling model. In the
labelling model, the impact of marginal changes to all variables, is
much higher compared to the other models. The routes generated by
the labelling algorithm are very divers and optimised for different cri-
teria, which indicates that increasing the variability in the alternatives
(labelling routes plus observed route), induces a higher elasticity.

7.2. Route choice model validation

The model validation provides insight into the predictive power of
the models. The 20% remaining OD pairs are used to validate the
models. For the validation, the alternatives of all three choice sets are

Table 5
Mean point elasticities for each explanatory variable for all models.

Variable DDPI model BFS-LE model Labelling model
Elasticity Elasticity Elasticity

Distance —0.289 —0.440 —2.577

% separate cycle path 0.042 0.350 0.426

Intersections/km —0.188 -1.702 -1.316
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Table 6
Average validation measures for all 5 estimated models per choice set.

Correct choice predicted RMSE Log-likelihood
OD pair
DDPI model 1.3% 0.6264 —2057.083
BFS-LE model 21.1% 0.5677 —1206.231
Labelling model 27.8% 0.4728 —1188.331

combined for each OD pair to make the comparison fair (resulting in a
maximum of 41 alternatives for 695 OD pairs, which is the same input
for all models). For five random draws the models are estimated and
validated. Table 6 shows the results of the validation.

The DDPI model has lower parameter values compared to the other
models. This means for the validation that it does not punish the less
attractive alternatives as much as the other models. Consequently, the
maximum utility for one alternative is low and similar for all alter-
natives. This results in a very low percentage of correctly predicted
choices. The BFS-LE and labelling models score higher on this valida-
tion measure, and are on average able to predict at least one choice
correct per OD pair. In terms of prediction per alternative, the two
models that were estimated on a generated choice set that has a higher
variability and includes both good (observed) routes and bad (gener-
ated) routes, perform better.

In terms of the RMSE that is weighted over the OD pairs, the models
perform similar (although the BFS-LE and labelling model outperform
the DDPI model). This measure gives an indication on the average error
that would occur when for example predicting the flows on the net-
work. The DDPI model assigns a rather equal probability to all alter-
natives, resulting in an average error that is similar to the RMSE of the
two other models. These models on the other hand, provide a low
probability to the worse (generated) alternatives and a very high
probability to the good (observed) alternatives.

The null log-likelihood for this set of alternatives (calculated using
LL(0) = — Zn In(J,), with J,being the number of alternatives in choice
set C,) is —1740.149. The closer the final log-likelihood is to zero, the
better the out-of-sample performance is. Both BFS-LE and labelling
models improve significantly compared to the null log-likelihood. The
DDPI models, which are estimated using only observed information,
perform worse on the out-of-sample data in terms of its added value
compared to providing equal probabilities to all alternatives (null log-
likelihood). Consequently, we can conclude that the DDPI method
should not be used for prediction purposes.

7.3. Conclusions regarding model estimation and validation

Due to the small number of matches of generated routes with ob-
served routes, the choice sets are enriched with observed routes.
Consequently, the choice sets have more information compared to
purely generated choice sets, introducing endogeneity. The models that
are estimated using the different choice sets differ in their parameter
values, t-test values and elasticities. This is in line with expectations as
the size and composition of choice set are known to influence the model
estimation (Bovy, 2009).

The DDPI model has lower parameter values and t-test values due to
small variability in the choice set and issues with endogeneity. Due to
the inclusion of the observed alternatives in the BFS-LE and labelling
choice set, where they were not generated, these models perform very
well as an artefact. The large variability between alternatives (espe-
cially in the labelling choice set) and inclusion of both relevant and
irrelevant alternatives (especially in the BFS-LE choice set), increases
the model fit compared to only using observed routes (DDPI method).
The effect of explanatory variables on route choice is higher for the
labelling model compared to the other models. The BFS-LE model is a
less extreme version of the labelling model, with relatively high
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parameter and t-test values but elasticities that are more similar to
those obtained using the DDPI approach. The reason for this might be
the number of alternatives that is included in the BFS-LE approach,
which is generally 17 more than the labelling approach.

In terms of predictive powers, the DDPI model was expected to
perform less as it is data-driven and might therefore react different to
out-of-sample prediction than the labelling and BFS-LE models, which
was confirmed by all validation measures. The DDPI method is not
suitable for out-of-sample prediction.

8. Conclusions and future research directions

This paper presents the findings of an evaluation of a data-driven
approach (DDPI) for choice set identification in travel behaviour ana-
lysis, performed by comparing the DDPI method to two choice set
generation methods: BFS-LE method introduced by Rieser-Schussler
et al. (2013) and the labelling approach introduced by Ben-Akiva et al.
(1984). Bicycle GPS data from the city of Amsterdam was used a case
study. The comparison was based on three aspects. First, an analysis of
the choice sets that are identified, which was evaluated by means of a
qualitative (visual) analysis, a quantitative analysis, and the re-
production of observed routes. Second, estimation of a route choice
models using the three identified choice sets, which were evaluated by
means of calculating elasticities. And third, validation these models on
out-of-sample data, which were evaluated by means of correctly pre-
dicted choices, RMSE per OD pair and the log-likelihood.

In conclusion, the data-driven DDPI method is useful when evalu-
ating or analysing the alternatives in the choice set and can help in
understanding the preferences of individuals (using model estimation).
The DDPI is not suitable for prediction on out-of-sample data.

The ability of choice set generation algorithms to reproduce ob-
served paths largely depends on the correctness of the underlying net-
work. In this study, the network was intended for motorised traffic (i.e.
not validated for bicycle traffic), resulting in choice sets that are not
suitable for analysis of the alternatives for cyclists (e.g. in terms of
composition and characteristics). Generally, cyclists are allowed to
cycle against one-way streets, however this is not included in the net-
work. Furthermore, cyclists do not necessarily comply to the traffic
rules in the Netherlands, as exhibited in using links in the network that
are not identified for cyclists (e.g. short cuts or pedestrian areas). The
first can be incorporated in the network by making all links bi-direc-
tional; however, the latter is harder to incorporate. Consequently, a
discrepancy arose between the observed routes and the generated
routes. The number of generated routes that could be matched to ob-
served routes was very low, partially due to network incompleteness.
However, we tested the significance of this shortcoming by removing
the affected OD pairs, and found that the number of matched routes was
still very low, indicating that generating routes based on single network
characteristics (as is done in these algorithms) does not match with the
observed behaviour. In conclusion, the choice set based on observed
behaviour provides a better source for analysing the alternatives than a
generated choice set based on network characteristics.

Given the differences and similarities between the estimated choice
models, we conclude that the DDPI method provides useful insights into
behaviour. In terms of model fit, it performed worse than the generated
choice sets, mostly due to lower variability between routes and their
respective attributes. However, no additional network information is
required for the DDPI method. Hence, it does not rely on the quality of
the underlying network for information or routes that need to be gen-
erated. Mostly because of that reason this method is a valuable addition
to the existing choice set generation methods, as it does provide insights
into preferences of individuals regarding attributes.

The case study analysed in this paper gives first insights into the
usefulness of the data-driven DDPI approach for travel behaviour ana-
lysis. In this study the data-driven choice set has been applied to bicycle
route choice. Future research can test the usefulness of the proposed
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DDPI method for other types of choice set generation, for example ac-
tivity scheduling and destination choice, and for route choice models of
other modes, for example the car, which potentially exhibits a larger
degree of diversity of routes within a shorter time period, due to con-
gestion and traffic lights. Next to that, the model is now estimated on
data from one week. It would be very useful to test on a dataset that
covers a longer period of time (e.g. a month), because this potentially
increases observed variability and thereof reduces the risk of en-
dogeneity. Furthermore, the performance of choice set generation
methods depends on the quality of the underlying network. Future
studies may match the observed routes and links to the existing network
prior to the choice set generation so that missing links can be added to
the network. This will potentially result in a higher reproduction of
observed routes. Also, this will provide more routes per unique OD pair,
therefore reducing the need for clustering. Finally, the methods in this
study were tested using random utility theory (specifically the PSL
models). A direction for future research could be to apply the method
within the random regret framework and test its performance.
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