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We consider smooth nonparametric estimation of the
incubation time distribution of COVID-19, in connec-
tion with the investigation of researchers from the
National Institute for Public Health and the Envi-
ronment (Dutch: RIVM) of 88 travelers from Wuhan:
Backer et al. (2020). The advantages of the smooth
nonparametric approach with respect to the parametric
approach, using three parametric distributions (Weibull,
log-normal and gamma) in Backer et al. (2020) is dis-
cussed. It is shown that the typical rate of convergence
of the smooth estimate of the density is n2/7 in a con-
tinuous version of the model, where n is the sample
size. The (nonsmoothed) nonparametric maximum like-
lihood estimator itself is computed by the iterative con-
vex minorant algorithm (Groeneboom and Jongbloed
(2014)). All computations are available as R scripts in
Groeneboom (2020a).
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1 INTRODUCTION

Researchers from the Centre for Infectious Disease Control and Prevention of the National Insti-
tute for Public Health and the Environment (Dutch: RIVM) analyze in Backer, Klinkenberg, and
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2 GROENEBOOM

Wallinga (2020) a data set of 88 travelers who are assumed to have picked up the COVID-19 virus
in Wuhan. The distribution of their incubation times is estimated using certain simple distri-
butions, like Weibull, log-normal and gamma. If the only thing we know about the start of the
incubation time is that it belongs to an interval [0, Ei], the log likelihood for one observation is:

log∫t∈[0,Ei]
g(Si − t) dFi(t).

Here Ei would be the upper bound for the exposure interval, for which we take (looking back) 0
as the left point for the ith individual (see Britton & Scalia Tomba, 2019), Si is the time where the
person becomes symptomatic (note that both Si ≤Ei and Si >Ei can occur), and Fi would be the
distribution function of the time of a possible contact with an infector. The exit times and times
of becoming symptomatic of the 88 Wuhan travelers are shown in Table 1.

It is clear that, without further assumptions, g and Fi are not identifiable. To remedy this,
we assume, as in Backer et al. (2020) (see also Reich, Lessler, Cummings, & Brookmeyer, 2009),
that Fi is the uniform distribution on [0, Ei]. If we want to use maximum likelihood, we have to
maximize

n∑
i=1

log
{
∫

Ei

t=0
g(Si − t) dt∕Ei

}
,

and since the Ei do not matter in the maximization problem, we end up with the problem of
maximizing

n∑
i=1

log
{
∫

Ei

t=0
g(Si − t) dt

}
, (1)

where g is the density of the incubation time.
So we deal with the following model. We have an exit time Ei for the exposure interval, an

infection time V i and an incubation time W i. The time of becoming symptomatic is denoted by
Si, and Si is, conditionally on the exit time, assumed to be the independent sum of V i and W i. Our
observations are

(Ei, Si,Δi), i = 1, … ,n, (2)

where n is the sample size and where the indicator Δi is defined by

Δi = 1{Si≤Ei}, i = 1, … ,n. (3)

Using the present notation, the log likelihood for the incubation time distribution function G
becomes

𝓁(G) =
n∑

i=1
[Δi log G(Si) + (1 − Δi) log{G(Si) − G(Si − Ei)}]. (4)

Note that the time of becoming symptomatic is still in Wuhan if Δi = 1.
The algorithms we used for analyzing the data set can be found on Groeneboom (2020a).

We describe the data files given there. The original data file is data_Wuhan_tsv, which gives
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T A B L E 1 Exit times and times of becoming
symptomatic of the 88 Wuhan travelers after shifting
the entrance times to 0

i Ei Si i Ei Si

1 5 5 45 39 40
2 30 33 46 35 42
3 21 22 47 2 6
4 1 4 48 36 37
5 1 6 49 38 39
6 8 8 50 1 8
7 4 4 51 38 41
8 3 3 52 38 41
9 33 34 53 38 39
10 33 34 54 11 11
11 8 8 55 36 39
12 1 4 56 11 11
13 20 21 57 40 41
14 20 28 58 36 37
15 30 32 59 36 41
16 35 38 60 36 39
17 3 7 61 27 31
18 35 37 62 38 40
19 36 38 63 36 42
20 31 38 64 40 43
21 34 35 65 41 43
22 29 31 66 37 43
23 36 37 67 1 7
24 3 8 68 40 42
25 7 9 69 40 42
26 38 39 70 31 39
27 30 36 71 40 41
28 28 36 72 40 41
29 35 36 73 41 42
30 33 34 74 41 43
31 3 8 75 4 5
32 2 4 76 4 5
33 2 5 77 40 41
34 5 5 78 36 40
35 36 37 79 36 40
36 31 35 80 40 42
37 41 42 81 36 42
38 41 42 82 38 43
39 3 4 83 2 9
40 38 39 84 38 43
41 39 41 85 37 43
42 39 41 86 41 42
43 39 41 87 40 43
44 33 39 88 40 43
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details on the persons in the sample and which can be found in Backer et al. (2020). This was
transformed into a data file transformed_data_Wuhan.txt, consisting of three columns,
giving, respectively, the arrivals in (if available) and departures from Wuhan and the time the per-
son became symptomatic. If the arrival time was not available (possibly because the person was a
Wuhan resident), this time was set to−18, which means 18 days before December 31, 2019, which
is the zero on the time scale. For traveler number 67, who apparently had a connecting flight, the
duration of stay in Wuhan was changed from 0 to 1 day. This, in turn, was transformed into the
input file inputdata_Wuhan.txt, where the time, spent in Wuhan, was shifted making the
left point equal to zero, and consists of two columns: the first columns contains the data Si −Ei
(time of becoming symptomatic minus exit time from Wuhan) and Si, time of becoming symp-
tomatic, where all times are shifted to have entrance time zero. If the person became symptomatic
in Wuhan we put Ei equal to Si, so Si −Ei = 0.

Assuming that the distribution of the possible time of infection is uniform on the exposure
interval, and estimating the distribution function G by the Weibull distribution, parametrized
as

G(x) = Ga,b(x) = 1 − exp{−bxa}, x > 0, (5)

we get as our maximum likelihood estimators (MLE) of the parameters a and b:

â = 3.03514, b̂ = 0.002619. (6)

Using the Weibull maximum likelihood method, the estimate was computed by two meth-
ods. One is a very simple method using Weibull.cpp, which is used in analysis_EM.R and
analysis_ICM.R, where also the nonparametric estimate to be discussed in the next sections
is computed. For this “pattern search” algorithm for looking for the parameters of the Weibull
distribution one does not have to compute the derivatives of the log likelihood. It is based on the
Hooke–Jeeves algorithm. The other one can be found in R_Weibull_Estimation.R, where
we use the R package lbfgs, and where the gradient (derivatives of the log likelihood) has to be
provided.

The results obtained for the Weibull distribution approach of the two algorithms are remark-
ably similar. The values in (6) were produced by the R script in Groeneboom (2020a), using the
Hooke–Jeeves algorithm. For a convergence proof of the Hooke–Jeeves algorithm and interest-
ing further discussion of the pattern search algorithms, see Kolda, Lewis, and Torczon (2003) and
Torczon (1997).

The aim of the present paper, however, is to draw attention to the nonparametric MLE of the
incubation time distribution, which is often also denoted by NPMLE (Nonparametric MLE). This
is the distribution function Ĝn, maximizing (4) over all distribution functions G. The problem of
maximizing (4) over all distribution functions G instead of just Weibull, log-normal or gamma
distribution functions is nontrivial and discussed in Section 2. We also discuss the smooth esti-
mators based on the MLE, the so-called SMLE (Smoothed MLE) and the nonparametric density
estimator, based on the MLE.

When we want to get an idea of properties of the incubation time distribution, there are (at
least) three approaches.

1. We “fit” the data with a parametric distribution from a well-known family of distributions like
the Weibull, log-normal or gamma distributions. The big disadvantage of this approach is that
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F I G U R E 1 The nonparametric maximum
likelihood estimate (MLE) Ĝn of the incubation
time distribution function (blue), and the MLE
using the Weibull distribution (red, dashed), for the
dataset analyzed in Backer et al. (2020)

0 2 4 6 8 10 12 14

0.0

0.2

0.4

0.6

0.8

1.0

T A B L E 2 Probability masses of the nonparametric maximum
likelihood estimator

Number of days pi

3 .0463850922

4 .2466837048

5 .0024858945

6 .1126655228

7 .1347501680

8 .2058210187

9 .2512085991

one usually does not have a good argument for choosing one of these distributions and that
important aspects of the data might be completely hidden by the choice of such a distribution.

Convincing examples of this situation are given in chapter 1 of Silverman (1986). If one
fits the multimodal distribution of the eruptions of the Old Faithful Geyser in Yellowstone
Park, Wyoming, by a unimodal distribution, one will only see one mode instead of the multiple
modes that really are there. In that chapter also other interesting examples of how special
aspects of the data are revealed by nonparametric density estimation are given.

In fact, estimates of the simple parametric type such as the Weibull, etc. will usually be
inconsistent: no matter how many observations one has, there will not be convergence to the
right distribution. The ubiquitous appearance of the normal distribution has a completely dif-
ferent origin: the central limit theorem. But this reasoning will generally not apply in the same
way for fitting with the Weibull, etc. distribution.

Another disadvantage which clearly shows up if people use this method (as in Backer
et al., 2020) is that one usually has to introduce several families of distributions (gamma,
log-normal, Weibul … ), because there is no compelling reason to pick one of these.

2. We compute the nonparametric MLE. The result for the Wuhan data is shown in Figure 1 and
the bar chart of the point masses of the MLE is shown in Figure 2 (the values of the point
masses are shown in Table 2).

This is what one gets if one makes no assumptions at all about the distribution function
and this is the “antipode” of the fitting with the Weibull etc. distribution. Figure 2 clearly
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0.25 F I G U R E 2 Bar chart of the probability
masses of the nonparametric MLE

shows a bimodal discrete density, but one wonders: is this bimodality due to chance fluctua-
tions or is it real? Note that this discrete density is rather different from the density estimation
of Silverman (1986), mentioned in point 1. In the latter case one assumes the existence of a
(continuous) density with respect to Lebesgue measure instead of a discrete density.

How do we view the distribution of the incubation time? My own inclination is to assume
the existence of a continuous density with respect to Lebesgue measure for the incubation time
distribution and to use methods as in Silverman (1986), which entails smoothing. Which takes
us to:

3. We estimate the density of the incubation time with respect to Lebesgue measure in a non-
parametric way. In this case we also need an extra parameter, the smoothing parameter or
bandwidth. Now one could argue (as has been done): “Ah, you objected in point 1 to the use
of parametric distributions such as for example the Weibull distribution, but now you intro-
duce a parameter again, the bandwidth!". Fair enough, but: “The bandwidth is a parameter of
a totally different nature than the parameters of the Weibull distribution!”. With the bandwidth
one tries to mediate between the noise and the bias, something we cannot do with the non-
parametric estimate, introduced in point 2. Moreover, we can do this in a data-adaptive way, to
create independence of a priori assumptions, a type of independence we cannot achieve with
the estimates in point 1 above.

We must add, however, that the density estimation problem here is considerably more dif-
ficult than the density estimation problems considered in Silverman (1986). This is caused by
the fact that our observations are indirect; we assume that the infection took place during the
stay in Wuhan, but we do not know when. We only have an interval for this infection time. For
this situation we have to use the so-called interval censoring model, which is for example dis-
cussed in Groeneboom and Jongbloed (2014). In fact, we have to deal with a combination of
interval censoring (the infection time is contained in an interval, we cannot observe it directly)
and deconvolution, since we have to extract the information from the sum of the infection time
and the incubation time. For this reason we get slower rates of convergence of the density esti-
mate: n2/7 instead of the usual rate of convergence in density estimation, which is n2/5 (see
Silverman, 1986 for the latter rate). An additional complication is that the observations are
usually discretized, but we analyze in the sequel both the continuous model just described in
Section 4 and the discretized model for which we cannot hope to achieve rate n2/7 at each point.
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Similar considerations hold for the SMLE, estimating the distribution function. In this
case we also need a bandwidth (smaller than the bandwidth for the density estimate) and
the rate will be n2/5, which is the rate in ordinary density estimation. So in this sense
the SMLE is comparable to an ordinary density estimate and the density estimate for the
incubation time distribution is comparable to the ordinary estimate of the derivative of a
density.

In this paper we focus on the method, described under point 3 above and give algorithms for
computing the estimators. R scripts for all these methods are given in Groeneboom (2020a).

It should be noted that the asymptotic distribution of the MLE itself is unknown. In the con-
tinuous (not discretized) model it is expected to have the Chernoff limit distribution (location of
the maximum of two-sided Brownian motion minus a parabola), but at present this is unknown,
as it also is for the related limit distribution of the MLE in the so-called interval censoring, case 2,
model (see Groeneboom & Jongbloed, 2014).

But we do not need the limit distribution of the MLE itself for deriving the (normal) limit
distributions of the SMLE and density estimate, based on the MLE. As an example, we give the
derivation for the limit distribution of the density estimate in the simulation model discussed
in Section 4 in Appendix (Section A1). The fit of the variances, predicted by the asymptotic the-
ory and the variances coming from the simulation study is remarkably good, see Table A1 and
Figure A2.

2 ALGORITHMS FOR COMPUTING THE
NONPARAMETRIC MLE

The EM iterations for the MLE maximizing (1), without making this parametric restriction, are
in this case given by:

p′
j = pjn−1

n∑
i=1

1{j∈(Si−Ei,Si]}

/ ∑
k∈(Si−Ei,Si]

pk , (7)

where the ratios are zero if the denominators are zero. The implementation of this algorithm for
the present situation can be found in analysis_EM.R in Groeneboom (2020a).

The EM iterations were started with the discrete uniform distribution on the 43 points
1, … , 43, which corresponds to the range of values (days) in Table 1, but withdrew its mass
after 10,000 iterations to the 7 points 3, … , 9, which leads to the discrete distribution function,
shown in Figure 1. A bar chart of the corresponding probability masses is shown in Figure 2. It
is seen that this is a bimodal discrete probability distribution with modes at resp. 4 and 9 days,
with the highest value at the second mode. This discrete probability distribution is also given in
Table 2.

The iteration steps (7) follow from the so-called self-consistency equations, which are derived
by differentiating the criterion function

n−1
n∑

i=1
log

{ ∑
j∈(Si−Ei,Si]

pj

}
− 𝜆

{ m∑
j=1

pj − 1

}
, (8)
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with respect to (w.r.t.) pi, where in this case m= 43, and 𝜆 is a nonnegative Lagrange multiplier,
chosen in such a way that

m∑
j=1

pj = 1. (9)

This yields

n−1
n∑

i=1
1{j∈(Si−Ei,Si]}

/ ∑
k∈(Si−Ei,Si]

pk = 𝜆, j = 1, … m, (10)

and multiplying these relations with pj and summing over j yields 𝜆= 1, using the side
condition (9). But the relations (10) only hold for the active (in this case 7) parameters pi > 0 of
the solution; in the iterations (7) the inactive parameters pi will tend to zero. For more details,
see, for example, Groeneboom and Jongbloed (2014), section 7.2.

Because of the monotonicity of the distribution function G, maximizing the log likelihood
over all distribution functions G is an isotonic regression problem, which can be solved by spe-
cific isotonic methods. In the present case we can apply the iterative convex minorant algorithm,
discussed in Groeneboom and Jongbloed (2014), section 7.3.

As discussed in Section 1, the log likelihood is of type:

f (y) =
m∑

i=1
ki log(G(Ui) − G(Ti)), (11)

where ki is the number of observations (Ti, Ui), and where

(Ti,Ui) = (0,Vi + Wi)1{Vi+Wi≤Ei} + (Vi + Wi − Ei,Vi + Wi)1{Vi+Wi>Ei} i = 1, … ,n, (12)

where n= 88, and where V i is the infection time, W i the incubation time and, as before, Ei the exit
time of the travelers from Wuhan, where all observations are centred by subtracting the entrance
time.

We first make the so-called preliminary reduction to reduce the problem to a maximization
problem in the interior of a convex cone of type

{y = (y1, … , ym)T ∶ 0 < y1 ≤ … ≤ ym}.

For the Wuhan dataset it can be checked that, without loss of generality, G(i)= 0, i≤ 2, and
G(i)= 1, i≥ 9, since in this case values strictly between 0 and 1 can only make the like-
lihood smaller. If we make this preliminary reduction, the log likelihood for the ordered
parameters yi, representing the values of the distribution function G at the observation points,
becomes:

f (y) =
∑

0≤i<j≤7
Nij log(yj − yi), (13)

where yi =G(i+ 2), i= 0, … , 7, y0 = 0, y7 = 1, and where the triangular array (Nij), 0≤ i< j≤ 7, is
given by:
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1 3 4 0 0 2 0
2 1 0 0 0 9

0 1 1 0 4
1 0 2 3

1 0 6
1 3

3

We have to maximize (11) under the restriction 0< y1 ≤ · · ·≤ y6; by the preliminary reduction, we
lost the additional condition y6 < 1. Let y = (y1, … , y6)T . The (Fenchel) sufficient and necessary
conditions for the solution are:

6∑
j=i

𝜕

𝜕yj
f (y) ≤ 0, i = 1, … , 6, (14)

and

6∑
i=1

yi
𝜕

𝜕yi
f (y) = 0, (15)

where f is defined by (11). Since the values yi are strictly between 0 and 1, (15) can only hold if also

6∑
i=1

𝜕

𝜕yi
f (y) = 0,

and we can therefore turn (14) into

i∑
j=1

𝜕

𝜕yj
f (y) ≥ 0, i = 1, … , 6. (16)

The resulting (nonparametric) MLE F̂n is shown in Figure 1, together with the MLE assum-
ing that G is a Weibull distribution. The EM algorithm and the iterative convex minorant (ICM)
algorithm give exactly the same solutions, but the ICM algorithm needs less iterations (106 in this
case; the EM algorithm needs between 1000 and 10,000 iterations).

To compute the MLE via the iterative convex minorant algorithm, we have to construct
so-called cusum (cumulative sum) diagrams. The cusum diagram consists of the point (0, 0) and
the points

i∑
j=1

(
wj,

𝜕

𝜕yj
f (y) + wjyj

)
, i = 1, … , 6, (17)

where

wj = − 𝜕2

𝜕y2
j

f (y). j = 1, … , 6. (18)
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At each iteration step the left derivative vector y′ of the greatest convex minorant of the cusum
diagram is computed on the basis of the current value y, and the stationary point of this iteration
is the solution of the optimization problem. We perform line search in case the full step to y′

would not lead to improvement or would go out of bounds. For more theory, see Groeneboom
and Jongbloed (2014).

As in Groeneboom and Jongbloed (2014), section 1.2, we can compute the SMLE and also an
estimate of the density. The SMLE is defined by

G̃nh(t) = ∫ K((t − y)∕h) dĜn(y), (19)

where h> 0 and K is an integrated kernel

K(x) = ∫
x

−∞
K(u) du. (20)

Here K is a symmetric kernel with support [−1, 1], for example the triweight kernel

K(u) = 35
32

(1 − u2)31[−1,1](u). (21)

We estimate the density by

g̃nh(t) = h−1 ∫ K((t − y)∕h) dĜn(y). (22)

For the present analysis we took h= 3.6 in (19) and h= 4.6 in (22); these bandwidths were
chosen by a bootstrap method, explained in Section 3. The resulting estimates are shown in
Figure 3.

3 DATA-ADAPTIVE BANDWIDTH CHOICE FOR THE
DENSITY ESTIMATE AND THE SMLE

Let the random variables Ei with values on the integers (“days”) on the interval [1, 43] repre-
sent the exit times. Furthermore, let V i denote the (unknown) infection time, which we take,
conditionally on Ei, to be uniform on [0, Ei], and let W i denote the (again unknown) incubation
time. Our observations are the triples (Ei, Si,Δi), given by (2).

To determine the bandwidth h of our density estimator

ĝnh(t) = ∫ Kh(t − y) dĜn(y), (23)

where F̂n is the MLE of the distribution function F of the incubation time, we follow a method
somewhat similar to the method used in Sen and Xu (2015).

We take B= 10, 000 bootstrap samples of observations
(

Ei, S∗
i ,Δ

∗
i
)
, corresponding to the obser-

vations (Ei, Si,Δi). The S∗
i are generated as the sums (rounded to the nearest integer) of a

Uniform(0, Ei) random variable V∗
i and a random variable W∗

i , generated from the density f̂nh0
by
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F I G U R E 3 (a): The smoothed nonparametric maximum likelihood estimate (SMLE) of the incubation
time distribution function (blue), and the MLE using the Weibull distribution (red, dashed), for the dataset
analyzed in Backer et al. (2020) and (b): the SMLE of the incubation time density function (blue), and the MLE of
the density using the Weibull distribution (red, dashed), for the data set analyzed in Backer et al. (2020)

rejection sampling for a fixed h0, for which we took h0 = 4 in the present case. The Δ∗
i are given by

Δ∗
i = 1{V∗

i +W∗
i ≤Ei} .

Note that we keep the Ei the same as in the original sample, somewhat analogously to the pro-
cedure followed in Sen and Xu (2015), which relieves us from the duty to estimate the exit time
distribution.

Next we computed

̂MSEg(h) = B−1
B∑

b=1
∫ {ĝ∗nh(x) − ĝnh0(x)}

2 dx. (24)

The resulting loss function ̂MSEf (h) is shown in Figure 4, which gave as the minimizing band-
width ĥ ≈ 4.6. Taking h0 = 3 in our function of reference ĝnh0 gave the same minimizing value.
The (approximate) independence of the starting value h0 was also observed for the analogous
bandwidth selection procedure in Sen and Xu (2015).

Similarly, we computed

̂MSEG(h) = B−1
B∑

b=1
∫

{
Ĝ∗

nh(x) − Ĝnh0(x)
}2

dx, (25)

as a function of h by the same bootstrap procedure, where Ĝ∗
nh was computed for the bootstrap

samples. The integrals were approximated by Riemann sums with step size 0.1 on the interval
[0, 14]. The R scripts for this procedure can again be found in Groeneboom (2020a). The method
used here is called the “smoothed bootstrap”, because we generate the bootstrap samples from
the smooth estimate ĝnh0 of the density of the incubation time (added to a uniform[0, Ei] random
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3 4 5 6 7
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0.019

0.020

0.021
F I G U R E 4 ̂MSEg(h), given by (24), as
function of h

variable) instead of just resampling with replacement from the data (Ei, Si,Δi), as one would do
in the ordinary bootstrap.

A perhaps slightly unorthodox variant of the present method is the smooth bootstrap where
we do not round the sums of V∗

i and W∗
i to the nearest integer, but just use them as continuous

variables (for more information on the continuous model see the next session). The unorthodox
aspect is that, in our bootstrap experiment, we do not recreate exactly the same situation as in
our original setting, where the data are integers. In fact, we create data for the continuous model,
where we can easier compare bias and variance. We tried this out for the density estimates, and it
actually gave exactly the same minimizing bandwidth h= 4.6 for the least squares criterion. More
research on this method is necessary, though.

4 THE CONTINUOUS MODEL

Applying the method of the preceding section to the discrete data, where one only uses days on the
time axis, is somewhat dubious, since, in fact, we do not have information on a finer scale, which
would allow us to let the bandwidth (and therefore the bias) tend to zero. It is conceivable that we
have information on a finer scale, for example, the time of the outgoing flight or the time of day
of becoming symptomatic. Presently both times are interval censored (where one day is the inter-
val). We could therefore introduce another assumption, for example that the time of becoming
symptomatic is uniformly distributed over a day. In any case, there seems to be enough reason
to study the continuous model, where one would have (approximately) continuous observations,
and to analyze what can be expected in this case.

We define as before the indicator Δ by

Δ = 1{S≤E}, (26)

where E is again the exit time and S is the time of becoming symptomatic, and consider the fol-
lowing simulation experiment. Ei is uniform[0, M], the time of infection V i is a Uniform random
variable on [0, Ei], conditionally on Ei, and the incubation time W i is a truncated Weibull(a, b)
distribution, where a and b have the same values as the estimates â and b̂ in (6), respectively,
and where the truncation interval [0, M1] is contained in the interval [0, M]. In the present
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F I G U R E 5 (a) The nonparametric maximum likelihood estimate (MLE) Ĝn of the incubation time
distribution function (blue) for a sample of size n= 1000, and the truncated Weibull distribution function (red,
dashed) with parameters a and b, in the simulation model where the variables are not discretized. (b) The MLE
(black) and the SMLE (blue), for the same sample, and the truncated (on [0, M1]) Weibull distribution function
(red, dashed). The bandwidth of the SMLE is h= 3

simulation, we took M1 = 20 and M = 30. In this way the upper bound for the observations Si is
equal to 50, which is somewhat comparable with the upper bound 43 of the observations Si for the
Wuhan travelers. This means that Si =V i +W i, where we assume that Vi and Wi are independent,
and that our observations are the triples (Ei, Si,Δi).

The MLE of the incubation time, where Ei and Si are known, looks rather different
from the MLE based on the discretized observations shown in Figure 1. An example of such
an MLE is shown in Figure 5 for a sample of n= 1, 000. Since in this case the MLE can
have more jumps, it has the possibility to be much closer to the continuous distribution
function. It maximizes again expression (1), but this time the variables Ei and Si are not
discretized.

In this setup, the SMLE will, in the interior of the interval [0, M1], pointwise have the n2/5

rate and the corresponding nonparametric density estimate the n2/7 rate of convergence, and the
pointwise limit distributions will be normal in both cases (see Section A1 of the present paper
and Groeneboom and Jongbloed (2014), section 11.4). For the density estimate in the present
simulation model we get the following result.

Theorem 1. Let g̃n,hn
be the estimate of the density, defined by

g̃n,hn
(t) = h−1 ∫ K((t − y)∕hn) dĜn(y) = ∫ Khn(t − y) dĜn(y),

where hn ∼ cn−1/7, for some c> 0. Let the score function 𝜃t,h,G be defined by

𝜃t,h,G(e, s, 𝛿) = 𝛿
𝜙(s)
G(s)

+ (1 − 𝛿) 𝜙(s) − 𝜙(s − e)
G(s) − G(s − e)}

, (27)
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F I G U R E 6 The nonparametric estimate of the
density of the incubation time (blue, solid), based on
a sample of size n= 1, 000, based on the truncated
Weibull distribution, where we use bandwidth
h= 3.4. The red dashed curve is the truncated
Weibull density with parameters a and b of (6)

where 𝛿 is the indicator 𝛿 = 1{s≤e} and where 𝜙 solves the integral equation

− 𝜙(w)
MG(w)

log(M∕w) + 1
M ∫

w

e=0

1
e

{
𝜙(w + e) − 𝜙(w)
G(w + e) − G(w)

− 𝜙(w) − 𝜙(w − e)
G(w) − G(w − e)

}
de

+ 1
M ∫

M

e=w

1
e
𝜙(w + e) − 𝜙(w)
G(w + e) − G(w)

de

= 𝜕

𝜕w
Kh(w − t), (28)

defining 0/0= 0. Let Pn be the empirical probability measure of a sample
(E1, S1,Δ1), … , (En, Sn,Δn). Then we have, taking h= hn ∼ cn−1/7, for a c> 0, and G=G0 (the
underlying incubation time distribution) in (27) and (28),

n2∕7
{

g̃n,hn
(t) − ∫ Khn(t − y) dG0(y)

}
= n2∕7 ∫ Khn(t − y) d(Ĝn − G0)(y)


→ N(0, 𝜎2), (29)

where N(0, 𝜎2) is a normal distribution with mean zero and variance 𝜎2 given by:

𝜎2 = lim
n→∞

var
(

n2∕7 ∫ 𝜃t,hn,G0(e, s, 𝛿) dPn(e, s, 𝛿)
)
.

A sketch of the proof is given in Appendix and the rather good fit of the simulated variance and
the variances predicted by this asymptotic result is shown in Table A1 and Figure A2. We do not
have an explicit expression for the function 𝜙, but could solve the integral equation numerically.
In the present simulation study, G0 is given by the truncated Weibull distribution function with
parameters given by (6) (Figure 6).

This means that we can apply the same techniques as in Groeneboom and Hendrickx (2017b)
and the R-package Groeneboom and Hendrickx (2017a), and for example compute pointwise
bootstrap confidence intervals for the density. The bandwidth was determined by taking bootstrap
samples of size m= 50, using bandwidths of size cm−1/7 and using the optimal constant ĉ over
the east squares criterion in the bandwidth ĉn−1∕7 = 3.51991, where n= 1, 000, for the density in
the original sample, where we compare with the density estimate with bandwidth h= 3 in the
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F I G U R E 7 Density estimate (blue) and
pointwise bootstrap 95% confidence intervals for the
density of the incubation time distribution for a
sample of size n= 1, 000 (same sample as in
Figures 5 and 6). The truncated Weibull density is
given by the red dashed curve
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original sample. This follows the procedure shown in the vignette of the R-package Groeneboom
and Hendrickx (2017a). For the motivation for taking bootstrap samples of a smaller sample size,
see Groeneboom and Hendrickx (2017b). The method goes back to Hall (1990). Since we have
a simulation model here, we can also compute the real minimizing h, in a comparison with the
truncated Weibull density. This yielded h= 3.4 in the present case, which is a value not far from
the bandwidth found by the bootstrap sampling. In the pictures of this section, we took h= 3.4.

The bootstrap 95% confidence intervals for the density are shown for a sample of size n= 1, 000
in Figure 7. These computations can again be checked on Groeneboom (2020a). For these intervals
just 1,000 bootstrap samples were taken, resampling with replacement from the original sample
of triples (Ei, Si,Δi), computing the density estimate again in the bootstrap samples and determin-
ing the 2.5% and 97.5% percentiles of the values of the density estimates in the 1,000 bootstrap
samples. To get really good intervals it is probably necessary to use an asymptotic pivot though,
based on Theorem 1. This matter is subject to further investigation.

5 CONCLUDING REMARKS

We offered an alternative nonparametric approach to the estimation of the incubation time dis-
tribution which was estimated by parametric methods in Backer et al. (2020) for a dataset of
travelers from Wuhan. In this way we do not have to choose a parametric distribution, like the
Weibull, log-normal or gamma, as in Backer et al. (2020), but compute a nonparametric maximum
likelihood estimate instead which does not need the arbitrary choice of parameters at all.

However, to give a smooth estimate of the distribution function and (continuous) density,
we have to choose a bandwidth parameter. For this choice a smoothed bootstrap approach was
suggested. We also considered the model where the observations are not discretized and discussed
rates of convergence, bootstrap confidence intervals and a limit theorem in that case. The present
paper can be considered to be the technical companion of the column Groeneboom (2020b). All
numerical computations are given as R scripts in Groeneboom (2020a).
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APPENDIX

Using the notation of p. 330 of Groeneboom and Jongbloed (2014), we define the score function
𝜃t,h,G by:

𝜃t,h,G(e, s, 𝛿) = E[a(W)|(E, S,Δ) = (e, s, 𝛿)]

= 𝛿
∫w≤sa(w) dG(w)

G(s)
+ (1 − 𝛿)

∫w∈(s−e,s]a(w) dG(w)
G(s) − G(s − e)

, (A1)

where 𝛿 = 1{s≤e}. We assume G(M1)= 1, where G is the distribution function of the incubation
time and M1 is the upper bound of the support of the distribution (taken to be M1 = 20 in the
simulations).

Defining, as in for example the interval censoring model,

𝜙(u) = ∫y≤u
a(y) dG(y),
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https://doi.org/10.1098/rsif.2018.0670
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T A B L E A1 A comparison of
variances, given by a simulation of 1,000
samples of size n= 1000 and the
right-hand side of (A7). The bandwidth
h= 3.4 and G is the distribution function
of the Weibull distribution, truncated on
the interval [0, 20]

t Simulation variances n−3∕7E 𝜽t,h,G(E,S,𝚫)2

2 0.001524376 0.001528899

3 0.002652881 0.002551415

4 0.003535091 0.003457335

5 0.004193696 0.004037131

6 0.004351735 0.004275926

7 0.004238654 0.004226677

8 0.004073332 0.003842444

9 0.003385165 0.003076003

10 0.002352065 0.002082613

11 0.001402003 0.001165108

we get:

𝜃t,h,G(e, s, 𝛿) = 𝛿
𝜙(s)
G(s)

+ (1 − 𝛿) 𝜙(s) − 𝜙(s − e)
G(s) − G(s − e)}

, (A2)

where we define 0/0= 0. Note that 𝜙 is absolutely continuous w.r.t. G and that 𝜙(s) = 0, s≥M1,
since we assume, as usual, a ∈ L0

2(G), where L0
2(G) is the space of square integrable functions f

w.r.t. dG, with the property ∫ f (x) dG(x) = 0.
In the present model, the infection time is uniform on [0, E] and E is Uniform[0, M]. So we

get the following integral equation for the estimation of the density if w∈ [0, M),

E[𝜃t,h,G(E, S,Δ)|W = w]

= ∫e∈[w,M]

1
Me

{
∫s∈[w,e]

𝜙(s)
G(s)

ds
}

de + ∫e∈[w,M]

1
Me

{
∫s∈[e,w+e]

𝜙(s) − 𝜙(s − e)
G(s) − G(s − e)

ds
}

de

+ ∫e∈(0,w]

1
Me

{
∫s∈[w,w+e]

𝜙(s) − 𝜙(s − e)
G(s) − G(s − e)

ds
}

de

= Kh(w − t). (A3)

Differentiation w.r.t. w yields for the density estimate:

− 𝜙(w)
MG(w)

log(M∕w) + 1
M ∫

w

e=0

1
e

{
𝜙(w + e) − 𝜙(w)
G(w + e) − G(w)

− 𝜙(w) − 𝜙(w − e)
G(w) − G(w − e)

}
de

+ 1
M ∫

M

e=w

1
e
𝜙(w + e) − 𝜙(w)
G(w + e) − G(w)

de

= 𝜕

𝜕w
Kh(w − t), (A4)

So we get the representation

∫ Kh(t − y) d(Ĝn − G0)(y) = ∫ 𝜃t,h,Ĝn
(e, s, 𝛿) dP0(e, s, 𝛿),
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where Ĝn is the MLE and 𝜙 solves (A3) for G = Ĝn (compare to (11.44), p. 331 of Groeneboom &
Jongbloed, 2014).

This leads to

n2∕7 ∫ Kh(t − y) d(Ĝn − G0)(y) ∼ n2∕7 ∫ 𝜃t,h,G0 (e, s, 𝛿)(Pn − P0)(e, s, 𝛿), (A5)

where 𝜃t,h,G0 is defined by (A2), where G=G0, the underlying distribution function of the incu-
bation time, and 𝜙 is the solution of the equation (A3) and satisfies 𝜙(M1) = 0. Moreover, (A5)
would imply:

n2∕7 ∫ Khn(t − y) d(Ĝn − G0)(y)

→ N(0, 𝜎2), (A6)

where

𝜎2 = lim
n→∞

var
(

n2∕7 ∫ 𝜃t,hn,G0(e, s, 𝛿) dPn(e, s, 𝛿)
)
,

and n1/7hn → c> 0. A picture of the function 𝜙, solving (A3), is shown in Figure A1. This can be
found by a simple iteration procedure for the integral equation (A4) or a matrix equation after
discretization, which can also be found in Groeneboom (2020a).

Note that, letting Φ(s) = ∫ s
0 𝜙(u) du, and defining 0/0= 0.

E 𝜃t,h,G(E, S,Δ)

= 1
M∫s≤e

1
e
𝜙(s)
G(s)

G(s) de ds + 1
M∫e<s

1
e

{
𝜙(s) − 𝜙(s − e)
G(s) − G(s − e)

}
{G(s) − G(s − e)} de ds

= 1
M∫s≤e

1
e
𝜙(s) de ds + 1

M∫e<s

1
e
{𝜙(s) − 𝜙(s − e)} de ds

= 1
M ∫

M

e=0

1
e
Φ(e) de + 1

M ∫
M

e=0

1
e
{Φ(M1) − Φ(e) − Φ(M1) + Φ(0)} de

= 1
M ∫

M

e=0

1
e
Φ(e) de − 1

M ∫
M

e=0

1
e
Φ(e) de = 0,
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F I G U R E A2 Plot of Table A1. The
variances in the simulation are given by the blue
curve and the red curve gives the values
n−3∕7E 𝜃t,h,G(E, S,Δ)2, for t = 2, 3, … , 11, h= 3.4,
where G is the truncated Weibull distribution
function
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using 𝜙(s) = 0, s≥M1, were M1 is the upper bound of the support of the density of the incubation
time. Note that we use M ≥M1, where [0, M] is the interval containing the exit times (assumed to
be uniformly distributed on [0, M] in the simulation experiment). In Figure A1 we have M1 = 20
and M = 30. For the asymptotic variance, we get:

E 𝜃t,h,G(E, S,Δ)2

= 1
M∫s≤e

1
e
𝜙(s)2

G(s)2 G(s) de ds + 1
M∫s>e

1
e

{
𝜙(s) − 𝜙(s − e)
G(s) − G(s − e)

}2

{G(s) − G(s − e)} de ds

= 1
M∫s≤e

𝜙(s)2

e G(s)
de ds + 1

M∫s>e

{𝜙(s) − 𝜙(s − e)}2

e{G(s) − G(s − e)}
de ds. (A7)

Note that:

var
(

n2∕7 ∫ Kh(t − y) dĜn(y)
)

∼ var
(

n2∕7 ∫ 𝜃t,h,G0(e, s, 𝛿) dPn(e, s, 𝛿)
)

= n−3∕7E 𝜃t,h,G(E, S,Δ)2.

A table for the variances of the density estimates at t = 2, 3, … , 11, as computed from 1,000
samples of size n= 1, 000 and from n−3∕7E 𝜃t,h,G(E, S,Δ)2, as given by (A7). The table is given
graphically in Figure A2.


