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Summary

Traditional noise barriers often rely on outdated design techniques and resource-intensive materials like

concrete and steel, however, with sustainability gaining importance, there is a need to align noise barrier

design with green construction principles. One of the most promising ways to mitigate the environmental

impact is through structural optimization aimed at reducing material usage for construction. Therefore,

the main research question is: What is the optimal geometry of the noise barrier made of a low tensile

strength material, in two dimensions and three dimensions under self-weight and uniformly distributed

lateral load?

The overall methodology employed to address the research questions consists of several key steps.

Firstly, the process begins with a two-dimensional analytical form-finding aimed at deriving optimal

cross-sections for the noise barrier. Apply the concept of uniform strength theory, which is a design

approach renowned for its capacity to yield structures with the utmost material efficiency, to attain con-

stant (maximum) stress shapes. These mathematical solutions are validated by Finite Element Analysis

(FEA) to ensure they meet the predefined stress criteria. Subsequently, numerical structural optimiza-

tion is performed to obtain the minimum weight geometries while adhering to stress constraints through

the utilization of a penalty function. A crucial aspect involves comparing the numerically optimized

geometries with the analytical solutions. The significant resemblance between these outcomes serves to

confirm the accuracy and reliability of the numerical optimization framework, also mutually proving the

fact that they represent optimal geometries. Ultimately, this validated optimization model is extended

into three dimensions, enabling the exploration of the minimum weight combination of the longitudinal

profile and the assigned varying cross-section along the noise barrier.

Analytical solutions describing the 2D uniform strength cross-sections of a noise barrier differ under

varying load conditions. The constant stress shape stemming from self-weight exhibited an exponential

function. This exponential progression of thickness along the central axis, from top to bottom, ensures

uniform compressive stress throughout the structure, implying a full utilization of the material when the

specified constant stress is the maximum allowable compressive stress in the structure. On the other

hand, while considering a uniformly distributed lateral load, the solution displayed a linear function.

ix
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Both the tension and compression boundaries along the height possess constant maximum bending stress.

Lastly, the load combination of self-weight and uniformly distributed lateral load generates two distinctive

symmetric geometries, dictated by the specified constant maximum tensile stress on the tension boundary:

zero or non-zero. The square root function ensures constant zero tensile stress along the height of the

tension boundary. The benefit of this solution is that it eliminates the necessity for additional structural

elements like reinforcement or foundation, particularly when using materials with low tensile strength for

constructing the noise barrier, thanks to the absence of tensile stress. On the contrary, when a non-zero

constant maximum tensile stress is specified for the tension boundary, it results in a linear geometry

similar to the case of considering only uniformly distributed loads. In this situation, the inclusion of

self-weight compensates for tensile bending stress from the lateral load and slightly reduces material

requirements, yet the impact is negligible. Another scenario considering load combination involves an

asymmetrical shape with zero bending moment in the structure. This is achieved by leveraging the

bending moment generated by the eccentricity of self-weight to counterbalance the bending moment

from lateral loads. However, this asymmetry may not be practically viable in real-world scenarios where

loads can originate from opposite directions.

The two-dimensional numerical structural optimization effectively integrated topology optimization and

shape optimization. Starting with topology optimization, it created a preliminary design for the optimal

material distribution within a rectangular box under self-weight and uniformly distributed lateral load

from one side. The result closely resembles the asymmetric analytical solution. Following this, shape

optimization was applied to further refine and control the geometries, building on the topology-optimized

result. The iterative shape optimization process consists of three main components: 1) parametrically de-

scribing the geometry using three coefficients of a second-order polynomial, ensuring a smooth boundary

shape; 2) conducting structural analysis using FEA tool Karamba3D, which employed a beam element

with a moment fixed connection at the bottom end subjected to a load combination; 3) implementing an

optimization algorithm with the goal of minimizing weight, and incorporating stress constraints using a

penalty function that can efficiently eliminate candidates violating specified constraints. The numerical

model successfully produced optimal cross-sections that closely matched analytical solutions considering

load combinations. This indicates that both analytical form-finding based on uniform strength the-

ory and numerical structural optimization aimed at minimizing weight can achieve optimal geometries,

reinforcing each other’s validity.

The validated two-dimensional numerical optimization framework was expanded into three dimensions

with two main differences in the structural model. Firstly, the beam element was substituted by the

3-node shear-deformable isotropic flat shell element. Additionally, all the rotational degrees of freedom

were released at the bottom support, allowing for the generation of a corrugated longitudinal profile, pos-

x



LIST OF TABLES

sessing sufficient inherent bending stiffness and obviating the need for the previously used moment-fixed

connection at the bottom. The corrugated shape offered the advantage of reducing the required cross-

sectional area along the longitudinal direction due to the substantial decrease in bending stress within the

structure. The optimal cross-sections derived from the 2D optimization formed the foundational shapes

assigned along the noise barrier, with the optimization algorithm further decreasing their dimensions to

achieve minimum weight structure respecting stress constraint. In scenarios where the desired maximum

tensile stress is zero, the resulting minimum weight configuration exhibited a ”semi-circle” corrugated

longitudinal geometry. This shape showcased optimal efficiency with the highest bending stiffness, trans-

lating into a material savings of 22.6%. Conversely, when the specified maximum tensile stress allows a

non-zero value, a sinusoidal wave shape outperformed the semi-circle profile in weight reduction, achiev-

ing a remarkable 60.5% material savings. The effectiveness of the 3D structural optimization process

was underscored by the substantial material savings achieved when compared to non-optimized reference

models.

In conclusion, this research provides significant insights into the optimal geometries of free-standing

structures, demonstrating the efficacy of both analytical and numerical approaches. Importantly, the

numerical optimization framework has been shown to be highly efficient and accurate, requiring remark-

ably short computational times while delivering impressive results.
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Chapter 1

Introduction

In recent years, sustainability has become an increasingly important topic, driving the need for more

environmentally-friendly construction practices. Structural optimization, aimed at reducing material

usage, has shown promise in mitigating the environmental impact of construction projects. The Nether-

lands, facing substantial infrastructure development, has a high demand for noise barriers to create

livable urban spaces. However, traditional noise barrier designs relying on outdated techniques and

resource-intensive materials like concrete and steel pose sustainability challenges, urging the need for

greener solutions.

To address these challenges, innovative concepts such as robotic shot earth fabrication and structurally

optimized geometry are being integrated into noise barrier design, aiming to preserve acoustic perfor-

mance while reducing environmental impact. Inspired by these advancements, this thesis explores novel

approaches to noise barrier design, seeking to minimize material usage by optimizing its shape to effi-

ciently handle gravity load and uniformly distributed load.

Efficient and effective use of the material is essential in designing a structure that can deliver optimal

load-carrying performance. Achieving an optimal shape can be realized through analytical and numerical

methods. One widely-adopted analytical concept is uniform strength theory with the design criterion

of constant stress. This design principle draws inspiration from natural structures like trees and bones,

known for their highly optimized forms characterized by a minimum stress response to loading.

Numerical structural optimization, on the other hand, involves defining objectives, constraints, and de-

sign variables to achieve the desired design outcome. Objectives could include minimizing the structure’s

weight, maximizing its stiffness, or minimizing the stresses or strains under certain load cases. Constraints

may include limits on the maximum allowable displacement or stress, or geometric constraints such as

maximum and minimum thicknesses or curvature limits. Design variables could include parameters that
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define the geometry or material properties of the structure.

On the other hand, numerical structural optimization involves defining design variables, objectives, and

constraints to attain the desired outcome. Design variables encompass parameters defining geometry,

load case, and material properties. Objectives may include weight minimization, stiffness maximization,

or stress/strain minimization under specific loads. Constraints encompass maximum allowable displace-

ment, stress, or geometric limitations like thickness and curvature bounds.

To find the optimal shape of a noise barrier, this paper will explore using these approaches to optimize the

structure. Also, compare the results of analytical and numerical approaches, and address the optimization

process and constraints involved in achieving an optimal design

This paper aims to explore these approaches in finding the optimal shape for a free-standing noise barrier

under various load conditions, encompassing two and three dimensions. The study will compare results

from analytical and numerical methods, highlighting the optimization processes and constraints involved

in achieving an optimal design.

1.1 Problem statement and research objectives

The main research question of this research is:

What is the optimal geometry, encompassing cross-section and longitudinal profile, of a noise barrier

(namely a free-standing wall) made of a low tensile strength material, when considering self-weight and

exposure to uniformly distributed lateral load?

To address the main research question, the following three sub-questions are formulated:

1. Can analytical form-finding based on uniform strength theory be effectively utilized to determine

optimal structural geometries under specific load conditions?

2. Can numerical structural optimization, starting from a basic shape without any foundational under-

standing, efficiently transform it into the optimal geometry that closely resembles analytical solutions,

employing a distinct strategy focused on minimizing weight under specified stress constraints?

3. When extending to three dimensions, is it feasible to adjust the longitudinal profile of the noise barrier

to enhance its bending stiffness against out-of-plane load?

The primary objective of this research is to determine the most efficient and sustainable design for a noise

barrier, which minimizes material usage while ensuring sufficient load-carrying capacity and structural

performance. The ultimate goal is to contribute to the development of environmentally friendly and

highly optimized noise barriers, promoting sustainable urban environments. Additionally, a secondary

objective of the research is to develop a practical numerical optimization framework capable of generating
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an optimal design that aligns with the results obtained through analytical derivation, thereby validating

the effectiveness and reliability of the proposed numerical methodology.

1.2 Thesis structure and research methodology

The following section provides a clear overview of the purposes and steps of each chapter.

Chapter 2 - Literature review

The purpose of this chapter is to provide background knowledge on analytical form-finding and numerical

form-finding.

Analytical form-finding:

Introduce the concept of uniform strength theory and explores various examples, such as tapered cables

and space elevators, constant stress arches, and constant maximum stress beams.

Numerical form-finding:

Investigate different approaches to the optimization problem to identify the most suitable framework for

addressing the research problem. Additionally, it introduces the background knowledge of optimization

Grasshopper plug-ins.

Chapter 3 - Analytical derivation and Numerical integration

This chapter presents the analytical derivation process for constant stress 2D cross-sections under various

load cases.

Uniform strength theory derivation:

Develop the equilibrium equations governing the form of constant stress shapes. Two load cases consider

self-weight and uniformly distributed load individually. One load combination considers self-weight and

uniformly distributed load.

FEA validation:

FEA is conducted to verify the accuracy of the analytical solutions and ensure that the derived shapes

meet the specified criteria.

Chapter 4 - Numerical structural optimization in two dimensions

Topology optimization serves as the initial step to gain insights into the optimal material distribution,

while shape optimization follows to refine the topology-optimized outcome based on stress constraints.
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The purpose of these numerical methods is to generate results that can be compared to the analytical

solutions, thereby demonstrating the capability and reliability of the numerical framework.

Topology optimization:

Topology optimization aims to find the optimal material distribution. However, there are limitations

in including self-weight in the iterations, making it essential to validate the chosen tool’s capacity to

incorporate self-weight.

Shape optimization:

The shape optimization design process consists of three main components: 1.) A parameterized geometry

description of the design space, 2.) A numerical structural analysis (FEA), and 3.) The optimization

algorithm with objective function and penalty function to incorporate constraints. The primary objective

in this phase is to develop an efficient parametric model that encompasses all three aspects mentioned

above.

Chapter 5 - Numerical structural optimization in three dimensions

The numerical structural optimization expands into three dimensions to determine the optimal geometry

of the noise barrier, encompassing both the longitudinal profile and cross-sections.

Longitudinal direction:

Three different corrugated shapes are investigated to identify the most effective design in terms of bending

capacity.

Cross-section assignment:

The cross-sections obtained from the 2D numerical optimization serve as the initial shapes. The optimiza-

tion algorithm gradually reduces the cross-sectional area while simultaneously adjusting the longitudinal

profile to achieve an optimal design.

Chapter 6-Conclusion

Present research findings on optimal noise barrier geometries through analytical derivation and numerical

structural optimization. The study demonstrates the efficacy of these methodologies in achieving material

savings and ensuring structural performance.

Chapter 7 - Recommendation

Provide recommendations for future research: explore higher-order polynomial representations, incorpo-

rate topology optimization in 3D framework and so on.
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Chapter 2

Literature review

Chapter 2 addresses the relevant background knowledge of the research.

2.1 Analytical form finding

Analytical form finding is an approach used in structural engineering to predict the geometrical optimal

shape and size of a structure based on its intended function and performance requirements. [10] This

process typically involves deriving the shape from a mathematical model of the structure using various

analytical techniques, such as equilibrium equations and energy methods.

The objective of analytical form finding can be minimizing the stress response of the structure under

certain load cases while satisfying other design constraints such as cost and weight. This can be accom-

plished by adjusting the shape, size, material stiffness, or a combination of these factors, to achieve an

optimal balance of performance and efficiency.

The concept of finding a structurally optimal shape through analytical approaches has been in use for a

considerable length of time. Dates back to 1691, Bernoulli proposed the problem of hanging cable and

solved it with calculus. The solution results in the famous form of ’catenary’. In 1947, Landweber [11]

published his work on cable functions, which helps to determine the tensile stress in the cable when it’s

loaded with uniform current underwater. In 1953, Ramsey [12] also found the geometrical configurations

of a chain and elastic string with analytical treatment. He derived the form of a parabola when the

string is loaded with a point load along its length, in the meantime, he adopted the concept of uniform

strength and discovered the cross-sectional area should be in proportion to the level of tension.

Develop upon the concept of analytical form finding, uniform strength theory is a structural design

criterion that aims to ensure all parts of a structure are equally stressed (constant stress) under a
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specific load case. [3] The specified constant stress in the entire member is generally the maximum

allowable stress of the material. In this way, it guarantees full utilization of the structure. This approach

is inspired by natural structures such as trees and bones which are known to be highly optimized and

exhibit a minimal stress response to loading.

2.1.1 Constant stress examples

Various examples listed below adopt the concept of uniform strength theory for analytical form finding.

All of them show that according to the criterion of constant stress along the cross-section under prevalent

load, the derived shape has the most optimized structural performance and the most efficient use of the

materials.

2.1.1.1 Homogeneous tapered cables

[1] explore the concept of tapered cable with constant stress criterion. Equilibrium equations, governing

the static geometry which a tapered cable complies with, were developed for two common cases of cable

application, namely the axially suspended (Fig 2.1 and Fig 2.2), and catenary cables (Fig 2.3). Fig 2.1

shows the different types of taper under the self-weight of the cable when it’s supported at the top end,

while Fig 2.3 depicts the constant stress catenary function when the cable is loaded by self-weight w and

supported in two dimensions.

Figure 2.1: Types of taper of the axially suspended cable, adapted from [1]

The E-Tapered shown in Fig 2.1 was derived with the use of constant stress theory. It assumed a vertical
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axially suspended cable geometry and the only external loading acting on the cable is its self-weight.

From the basic equilibrium in Eq 2.1, which means the increase of axial force in the cable comes from

the weight of an infinitesimal element dy, see Fig 2.2.

dT = γAdy (2.1)

At any point, the cross-sectional area A can be substituted by the relation of A = T
σ , where σ represents

the constant stress. After the substitution, the static equilibrium Eq 2.1 can be further simplified and

gives the following expression of area:

A(y) = A0e
γy
σ (2.2)

where : σ = constant stress

γ = specific weight

A0 = area at the bottom (y=0)

Eq 2.2 shows that when the cross-sectional area of the cable geometry increases exponentially from the

bottom to the top, the axial stress results from self-weight remains constant σ.

Figure 2.2: Forces on a tapered cable segment ∆y, adapted from [1]
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The second case in the paper considered the cable to be suspended in a two-dimensional manner. The

cable is supported between two points with a horizontal distance and loaded with its self-weight only.

From the left picture in Fig 2.3, static force equilibrium and moment equilibrium can be listed with a

vectorial format, see Eq 2.3 and Eq 2.4.

∑
F⃗ = 0

−T⃗ + (T⃗ + ∆⃗T ) + w⃗∆s = 0 (2.3)

∑
M⃗o = 0

r⃗ ∗ −T⃗ + (r⃗ + ∆⃗r) ∗ (T⃗ + ∆⃗T ) + r⃗w ∗ w⃗∆s = 0 (2.4)

Different from the first part, the form of the cable that conforms to the criterion of constant stress should

be derived first, that is the center line profile of the cable shown in Eq 2.5. After that, the varying area

along the cable center axis can then be derived, see Eq 2.6. Both the equations are derived from the

basic equilibrium Eq 2.3 and Eq 2.4.

y =
σ

γ
ln sec

γx

σ
(2.5)

A(s) =
TH

σ
cosh

γs

σ
(2.6)

where : TH = axial horizontal force in the cable

s = corordinate along the cable in 2D
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Figure 2.3: The two dimensions constant stress cable derivation, reprinted from [1]. Left: Equilibrium
of a cable element. Right: General form of the constant-stress catenary: ln secx function.

These equations were subsequently utilized to compare the performance of the optimum, tapered cable

against the conventional constant diameter cable. The advantages and disadvantages of tapered cables

are summarized in the paper.

2.1.1.2 Space elevator

The objective of [2] is to find a different design for the space elevator that can avoid excessive stress

occurring in the structure. The proposed solution employs the constant stress concept and gives a varied

cross-section along the height of the elevator, which guarantees the tensile stress in the structure remains

uniform.

The force acting on an infinitesimal element of the space elevator includes W (weight of the element),

FC (outward centrifugal force), FU (upward force results from the portion of cable above the element),

and FD (downward force results from the portion of cable below the element). The equilibrium equation

gives: FU+FC−FD−W = 0. The elevator remains in tension along the entire length, and the varying

tensile force adjusts in a way that the four forces are always in equilibrium for each element, see Fig 2.4.

The element at a distance of the radius of the geostationary orbit, the weight and centrifugal forces are

equal (W=FC). Accordingly, the tension forces at both ends must also be equal (FU=FD). If the element

is below geostationary height, the weight force (W) exceeds the centrifugal force (FC), which requires

FU>FD for equilibrium. This implies that the tension in the tower increases with a height from ground

level to geostationary height. Conversely, if the element is above geostationary height, the centrifugal

force (FC) exceeds the weight force (W), requiring FU<FD for equilibrium, so the tension in the tower

decreases with height. A free-standing structure has zero tension at both ends, and no restraint is needed
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to keep it in place. Therefore, the tension in a free-standing space elevator rises from zero at ground

level to a maximum value at geostationary height and then decreases to zero again at the upper end.

With this qualitative understanding, the author determined the quantitative variation of the tension in

the tower with height.

Figure 2.4: (a) Geometry (b) Internal forces acting on an infinitesimal element, reprinted from [2]

To derive the analytical solution that describes the geometry, the equilibrium equation can be rearranged

as FU-FD = W-FC, see Fig 2.4. Similar to Eq 2.1, the equilibrium means the increase of axial force

in the structure (FU-FD) comes from the weight of the infinitesimal element (W-FC). FU-FD can be

written as σdA with σ being the constant stress in the structure and dA being the increase of the area

of the element. With the explicit expression of W and FC substituted, the equilibrium becomes:

σdA =
AρgR2

y2
dy − AρgR2y

R3
g

dy (2.7)

where : σ = constant stress in the elevator

ρ = mass density

g = acceleration of gravity at Earth’s surface

y = distance of a point on the elevator from Earth’s center

R = Earth’s radius

Rg = radius of geostationary orbit
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From the basic equilibrium in Eq 2.7, and substitute ρg with γ (specific weight), the following relation

of the area can be derived.

A(y) = A0e
γR2

σ ( 1
R+ R2

2R3
g
− 1

y− y2

2R3
g
)

(2.8)

where : A0 = area at y=R

γ = specific weight

As it can be seen in Eq 2.8, the area along the elevator A(y) exhibits exponential growth from ground

level to geostationary height, followed by exponential decay beyond the geostationary height.

2.1.1.3 Arches

During the seventeenth century, it was discovered that the zero-moment arch shape, also known as a

funicular arch, is similar to the shape of an inverted suspension chain, demonstrated by Hooke through

the experimental form-finding method [13]. [10] presents a mathematical model predicting the geometrical

configuration of a constant cross-section arch by imposing the moment-less condition, in order for such

structures to undergo only axial stresses when subjected to permanent loads. Expanding on the previous

work, [14] introduces a novel analytical approach for determining the optimal shape of a plane statically

determined arch with constant stress cross-section. Building upon the classic problem of a catenary

under self-weight, this study extends the analysis to include an inverted catenary under both self-weight

and given vertical load distribution. The results indicate the existence of a specific set of analytical

solutions that correspond to the minimum ratio of the self-weight to the total applied load, in contrast

to previous proposals. The paper derives the center line profile and the changing cross-sectional area of

the arch by specifying each cross-section is subject to constant axial compressive stress. Also, for the

arch-shape solution, it’s necessary to impose the design criterion of zero bending moments and zero shear

stress in the entire structure.

Similar to [14], [3] presents a theory that encompasses an extensive range of asymmetric arch con-

figurations and provides a comprehensive derivation of the equation governing the center-line profile,

cross-section area, and horizontal reactions of the arch, see the pin-ended arch geometry in Fig 2.5. The

design criteria are the same as [14]. Subsequently, symmetric arches are analyzed, and a new concept of

including a solution for achieving the least weight by determining the equation for a volume-minimizing,

the span-to-rise ratio is also presented.
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Figure 2.5: (a) Geometry and loads (b) Internal forces acting on the center line, adapted from [3]

The picture on the right-hand side in Fig 2.5 shows the forces acting on the arch, and the coordinate

systems used during the derivation process. An arbitrary point between point O and P has coordinates

(ξ, η), and arch length, λ, measured from O. s is the local coordinate along the arch in 2D. Three basic

equilibrium equations can be listed based on Fig 2.5 (b) :

1. Vertical equilibrium,
∑

FV = 0:

−T sin θ + S cos θ − qx−
∫ s

0

γAdλ+ VL = 0 (2.9)

where : T = compressive force in the arch

S = shear force in the arch

q = external load per unit span

γ = specific weight

VL = vertical reaction force at left end

2. Horizontal equilibrium,
∑

FH = 0:

−T cos θ − S sin θ +H = 0 (2.10)
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where : H = horizontal reaction force at left end

3. Moment equilibrium at point P,
∑

Mp = 0:

M +Hy − VLx+
qx2

2
+

∫ s

0

γA(x− ξ)dλ = 0 (2.11)

where : M = bending moment in the arch

As mentioned above, the equation governing the center-line profile, y = f(x), cross-section area A(x),

and horizontal reactions of the arch H, can be derived from the three basic equilibrium equations, Eq

2.9 to Eq2.11. However, some middle products are necessary beforehand, including xa, the x value of

the apex, and A0, the cross-sectional area at the apex:

xa =
cos−1(e−µh)

cos−1(e−µ(h−∆)) + cos−1(e−µh)
l (2.12)

where : µ =
γ

σ

σ = constant stress

h = y value of the apex

∆ = y value of the right end point

A0 =
γq

( σ
xa

cos−1(e−µh))2 − γ2
(2.13)

With Eq 2.12 and Eq 2.13, the center line profile and the area can be expressed as:

y = h+
1

µ
ln cos(

1

xa
cos−1(e−µh)(x− xa)) (2.14)

A = A0

√
1 +

κ

µ
tan2[

√
µκ(x− xa)] (2.15)
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where : µ =
γ

σ

κ = µ(1 +
q/γ

A0
)

It’s worth mentioning that the center-line profile, Eq 2.14, is independent of the external load, q. This

has been previously proved in [15]. The visualization of the arch can be seen in Fig 2.6.

Figure 2.6: (a) Stand-alone, constant stress 1:20 model (b) center-line profile. Input variables for a
real-size structure: γ = 25kN/m3, l = 6m,h = 6m,A0 = 0.3m2, reprinted from [3]

2.1.1.4 Beams

Timoshenko [4] proposed that the distance from the neutral axis of the beam to the most remote fibers

in the tension and compression side should have the same ratio of the tensile strength to the compressive

strength of the material to maintain uniform strength.

The maximum bending stress depends upon the section modulus of the beam. Accordingly, consider a

uniform-strength cantilever beam subjected to a vertical point load at the free end to provide bending,

the resulting shape is non-prismatic with varying cross-sections, see Fig 2.7.
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Figure 2.7: Cantilever beam with a point load at the end, adapted from [4]

The bending moment at distance x along the beam axis from the free end is Px. In order to maintain

constant maximum bending stress at the extreme fibre of the beam, the section modulus should vary

along the beam in the same proportion as the bending moment, the following equation is valid for the

beam with constant width b (perpendicular to the plane of the paper) and variable depth h(x) at x:

M

S
=

6Px

bh(x)2
=

6PL

bh2
0

= σ (2.16)

where : M = bending moment

S = section modulus

L = length of the cantilever beam

h0 = depth at x=L

σ = constant maximum bending stress

Solve h(x), and Eq 2.17 holds.

h(x) = h0

√
x

L
(2.17)

where : h0 =

√
6PL

bσ

The shape of h(x) is shown in Fig 2.7 and follows a parabolic function. The cross-sectional area at the

loaded end of the cantilever beam is zero due to the neglect of shear stress in the derivation. However,

15



2.1. ANALYTICAL FORM FINDING

in practical applications, it is necessary to consider this stress and give appropriate tip thickness in the

shape at the loaded end to ensure that there is enough cross-sectional area to transmit the shear force.

Extend from [4], some literature further includes the self-weight of the beam to establish equilibrium

equations and give solutions to particular cases. [16] and [5] derive an analytical solution for beams of

uniform strength considering self-weight and the specified uniformly distributed load.

The papers also discuss different possibilities, including constant depth with various widths or constant

width with various depths, to achieve uniform strength in the given boundary condition, like simply

supported, cantilever, or fixed beam.

Figure 2.8: General case of a beam subjected to uniformly distributed load q, adapted from [5]

Fig 2.8 shows a beam that is subjected to uniformly distributed load q. With constant width, variable

depth h(x) and the boundary condition is cantilever, constant σ multiplied by section modulus should

equal to bending moment from the self-weight of the beam and from uniformly distributed load q. The

defining equation is:

σ
bh(x)2

6
=

qx2

2
+ γb

∫ x

0

h(ξ)(x− ξ)dξ (2.18)

From Eq 2.18, h(x) can be derived after some math manipulations.

h(x) =
γx2

2σ
+

√
3q

σb
x (2.19)

To visualize the shape of a cantilever beam of constant maximum bending stress under self-weight and

an external load q, Eq 2.19 was plotted with Maple. The symbolic variables are the properties of C20/25

concrete with: γ = 25kN/m3, σ = 1300kN/m2. While q load is 2kN/m. The generated shape is shown
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in Fig 2.9.

Figure 2.9: Visualization of h(x)

2.1.2 Summary of the examples

The examples presented in the previous Sec 2.1.1 can be classified into three types.

1.

The first type of the examples examines structures subject to axial forces and satisfies the constant stress

condition throughout the structure. The equilibrium equations demonstrate that the increase of the axial

force is attributed to the weight of the infinitesimal segment. The term e
γ
σ shows in the results if there

are only axial forces present in the structure.

Table 2.1: Constant stress examples: Type 1

2.

As described in [1], a homogeneous cable of constant diameter hanging under its own weight takes

the form of a catenary when supported by the two endpoints. The basic two- dimensional catenary
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function y = a cosh x
a describes the fundamental geometric shape. On top of that, if add the constant

stress condition to the fundamental shape, it’s necessary to derive the new center line profile, constant-

stress catenary, and tapered cross-sections. The general mathematical form y = σ
γ ln sec γx

σ defines the

geometrical form of the constant-stress catenary. Similar to the two-dimensional hanging cable example,

the arch example has the same inverted catenary function, when considering a rigid, two-pin, moment-

less arch with a constant diameter cross-section under self-weight [10]. Adding the condition of constant

stress as the criterion, the result shows a similar fundamental form: y = h + σ
γ ln cos γx

σ , if specifies a

symmetric form under self-weight.

Table 2.2: Constant stress examples: Type 2

3.

The third type of constant stress example considers cantilever beams subjected to forces that induce a

bending moment in them. The criterion is that the maximum bending stress remains constant along the

beam axis. The results indicate that the relationship between the shape and the x-axis is determined by

taking half the exponent of the x in the bending moment expression. For instance, in the case of a point

load P applied on the free end of the beam resulting in a bending moment of Px, the exponent of x is 1,

which when divided by 2 becomes 1
2 . Therefore, it shows a square root function of x,

√
x, in the result.

18



2.1. ANALYTICAL FORM FINDING

Table 2.3: Constant stress examples: Type 3
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2.2 Numerical structural optimization

This chapter provides an overview of the relevant literature on numerical structural optimization tech-

niques. It begins by discussing different methods for structural optimization in Sec 2.2.1. Then, Sec

presents relevant research that explores the incorporation of these methods into optimization processes.

Sec offers an overview of optimization algorithms, while Sec delves deeper into the selected algorithm.

2.2.1 Structural optimization

Structural optimization aims to optimize the design of structures to achieve the desired structural per-

formance and efficiency. This section discusses the application of computational techniques to find the

optimal configuration, size, or shape of structural elements, considering various design objectives, con-

straints, and criteria. By optimizing the structural design, engineers can enhance structural strength,

stiffness, stability, and durability, while also ensuring that the structure meets safety standards and

functional requirements.

Generally, the main component of an optimization problem includes the objective function, which should

be either maximized or maximized. The formation of the objective function is based on the input design

variables. Constraints are the limitations or conditions that must be satisfied during the optimization

process. These constraints can be related to design variables or limits on stress levels or displacements.

To solve an optimization problem, an appropriate optimization algorithm is necessary. Throughout the

optimization process, it is common to perform sensitivity analysis to understand the influence of each

design variable on the objective function and constraints. Sensitivity analysis helps in identifying critical

variables and provides insights into their impact on the optimization results.

The structural optimization problem can be divided into three distinct types: size, shape, and topology,

based on the design freedom of the problem [17]. The choice of the design variables influences the final

optimized results. However, the three categories of structural optimization techniques describe only the

design problem and design space, and to solve the problem, an optimization algorithm is necessary.
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Figure 2.10: Three different structural optimization techniques, reprinted from [6]

The level of design freedom increases from (a) to (c) in Fig 2.10. In (a), the geometry of the structure is

predetermined, with only the size of the members allowed to vary.(b) offers a bit more design freedom,

although still quite constrained by the predefined structure. In (c), only a design space and boundary

conditions are given, allowing for the creation of any form within these constraints during the optimization

process. However, the advantage of greater design freedom comes with the drawback of an increased

number of design variables, which often leads to longer computing times. Additionally, the results of

topology optimization may require more post-processing due to less manufacturability in general.

2.2.1.1 Size optimization

Size optimization, where the design variables are restricted to the cross-sectional dimensions of the

members, is the easiest and earliest approach to improving structural performance. The technique

exhibits the lowest degree of design freedom, as only the sizes of the members are variables, and the

overall geometry remains unchanged. The most common purpose of this type of optimization is to

minimize material usage and thus the least cost. Since the structural members are usually manufactured

in discrete sizes and shapes, necessitating the treatment of size variables as discrete entities during the

optimization process [17].

The technique is particularly applied in spatial structures such as trusses, frames, and cable-strut systems

[18] [19]. However, size optimization is commonly combined with the other two optimization techniques

as a final step in multilevel optimization, which yields improved outcomes [20].

2.2.1.2 Shape optimization

The second type is shape optimization, also known as configuration optimization [17]. This type of op-

timization considers the continuous variation of geometric parameters, such as dimensions, angles, and
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curves, to explore different design possibilities in the predefined domain boundaries, yet the topology

remains fixed [21]. The objective of modifying the shape can be minimizing weight, maximizing stiffness,

minimizing stress concentrations, or achieving a specific aerodynamic performance [22]. Shape opti-

mization finds applications in various structural systems, including beams, trusses, shells, and complex

three-dimensional structures.

The general setup of shape optimization consists of three components: 1.) A way of describing geometry.

2.) Structural analysis. 3.) Optimization algorithm [23]. The first step of conducting shape optimization

is to define design variables to represent the boundary of the structural shape. This step is crucial because

if the design variables are not carefully selected, the accuracy of the FEA model for structural analysis

can deteriorate during optimization, rendering the results useless. This issue commonly arises when using

the coordinates of boundary nodes as design variables, as seen in early shape optimization studies [24].

A visual representation in Fig 2.11 demonstrates this problem, where the finite element model is suitable

for the initial design but clearly not accurate for the final design. To address the challenge, it is essential

to avoid a direct correspondence between the FEA model and the design variables, ensuring an adequate

number of elements for accurate structural analysis [25].

Figure 2.11: Independent node movement of a hole in a plate. Left: initial design, Right: final design,
reprinted from [7]

The three most used ways to represent the boundary shape of the structural elements are addressed

below:

1. Polynomial Representation of Boundaries:

Polynomials have been commonly employed to describe boundaries in shape optimization, with poly-

nomial coefficients as design variables [25]. After [26] used this technique, many studies have followed

this approach. A more comprehensive method involves defining the boundary as a linear combination of

shape functions, where the coefficients serve as design variables [27].
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2. Spline representation of boundaries:

Spline representation of boundaries is a modified technique to avoid oscillations in boundary shape

resulting from high-order polynomials. The spline function consists of low-order polynomial pieces,

ensuring smoothness. For example, the cubic spline function, known for its continuity and minimummean

curvature, is often favored [28]. Other approaches, like using Bezier and B-spline blending functions,

have been explored by Braibant et al [29]. The approach offers flexibility and automatic consideration

of boundary regularity requirements.

3. The Design Element Concept:

To enhance the accuracy of the FEA model for structural analysis, the design element concept, introduced

by Imam [30], has been employed. This approach divides the structure into distinct regions or design

elements, controlled by a set of key nodes that determine the geometry. Each design element corresponds

to a group of finite elements and is associated with a specific set of design variables that determine the

movement of key nodes during optimization. Isoparametric finite element interpolation functions are

commonly used to describe the boundaries of design elements in two-dimensional space [25].

After selecting the design variables, they can formulate the below structural optimization problem by

defining the objective function:

minimize f(x)

subject to ge(x) ≤ 0

gi(x) ≤ 0

(2.20)

Eq 2.20 [23] is the general mathematical representation of the optimization problem, where f(x) repre-

sents the objective function to be minimized. The formulas involve minimizing the objective function

while satisfying a set of constraints ge(x) ≤ 0 and gi(x) ≤ 0. The former one is an explicit constraint,

which can be directly expressed in terms of the design variables, such as upper and lower bounds, while

the latter one is an implicit constraint, which often pertains to structural responses, such as stress, dis-

placement, and natural frequency, and require a more complex evaluation to ensure they are satisfied.

The objective is to find the optimal values of the vector design variables x that lead to the minimum

value of the objective function while satisfying the given constraints.

After the initial geometrical model is built, the design model will be converted into a structural anal-

ysis model to evaluate the structural performance of the model (implicit constraints). The results of

the analysis then provide the information for the optimization algorithm to find a new set of design

variables. The iteration terminates when the specified design criteria are satisfied. There are numerous
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optimization algorithms available. These are broadly divided into two types: gradient-based optimization

techniques and gradient-free optimization algorithms. Gradient-based algorithms, such as the commonly

used gradient descent method, steer the search toward the optimum by calculating derivatives of the

objective function. Gradient-free algorithms, on the other hand, such as genetic algorithms or particle

swarm optimization, do not rely on derivatives and instead explore the search space through repetitive

iterations and evaluations of the objective function.

2.2.1.3 Topology optimization

The last optimization type is topology optimization. The numerical optimization methods proposed

by Bendsøe and Kikuchi [31] is a systematic approach to exploring the most efficient and lightweight

configurations for structural components. Most of the methods are based on finite element analysis

(FEA) where the design domain is discretized into a fine mesh of elements [8]. The fundamental concept

behind topology optimization is to represent the design domain as a grid or mesh of discrete elements,

where each element can either be active (filled with material) or inactive (void). By assigning design

variables to each element, which define its activity status, the optimization process seeks to find the

optimal distribution of active and inactive elements that minimizes a predefined objective function while

satisfying certain constraints. It allows the most freedom as the shape of a structure is significantly less

influenced by the input of the designer. Topology optimization inherently deals with discrete choices in

terms of elements’ presence or absence, and it aims to determine the optimal layout or distribution of

structural components [17].

The objective function can be defined based on various performance criteria such as minimizing struc-

tural compliance, maximizing stiffness, or minimizing material usage. Constraints can be imposed to

ensure structural stability, limit stress levels, or satisfy other design requirements. The optimization

algorithm iteratively updates the design variables, evaluating the objective function and constraints at

each iteration, until a satisfactory optimal solution is reached.

Topology optimization allows for the exploration of innovative and unconventional structural designs,

often resulting in complex and organic shapes that are highly efficient in terms of material usage and

structural performance, yet are mostly hard to manufacture and need post-processing. Nevertheless, it

provides insights into the fundamental behavior and load paths within a structure, leading to improved

designs that can be further refined and optimized through subsequent engineering processes. Topology

optimization has gained huge attention in recent years, accordingly, several numerical methods have

advanced to the point of practical implementation, notably the Solid Isotropic Material with Penalization

(SIMP) method and the Evolutionary Structural Optimization (ESO) method. The SIMP method was

originally introduced by Bendsøe in 1989 [32]. It involves penalizing intermediate densities to achieve
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optimal material distribution. On the other hand, the ESO method gradually eliminates inefficient

material from a structure. These methods have proven effective in optimizing the topology of structures

and have found practical applications in various fields. The methods are elaborated below:

1. Evolutionary Structural Optimization (ESO):

The ESO method, first proposed by Xie and Steven in the early 1990s [33], is a powerful numerical

method used to optimize the topology of structures. The fundamental concept behind ESO is the

gradual removal of inefficient material from a structure to improve its overall structural performance.

By iteratively eliminating elements or regions with low stress or strain energy, ESO aims to achieve

an optimal distribution of material within the given design domain. This method utilizes evolutionary

algorithms or optimization techniques to evolve the structure and find the most efficient configuration

and topology.

Determining the stress distribution of a structure with FEA is a crucial step during the evolutionary

procedure when ESO is dealing with stress level preoblem. Low-stress values in certain areas indicate

inefficiency, while a well-designed structure should ideally have stress levels close to a safe and uniform

level. To address this, a rejection criterion based on local stress levels is employed, where material under-

utilized is progressively removed. The stress level of each element is evaluated by for example comparing

its von Mises stress (σvm
e ) with the maximum von Mises stress of the entire structure (σvm

max). RRi in

Eq 2.21 is the current rejection ration [8].

σvm
e

σvm
max

< RRi (2.21)

The process of conducting FEA and element removal is iteratively repeated with the same rejection

ratio RRi until a steady state is achieved. In the steady state, no more elements are deleted based on

the current rejection ratio. ER (evolutionary rate) is then added to the rejection ratio, resulting in an

updated rejection ratio: RRi+1 = RRi + ER. The iteration process is started again with the increased

rejection ratio until a new steady state is reached. The evolutionary process stops when the optimum is

reached.

On the other hand, the ESO method can be also used to optimize a structure based on stiffness or

displacement, which means the mean compliance C, the inverse of the overall stiffness, is minimized.

The mean compliance is defined as the total strain energy or external work done by applied loads,

expressed as:

C =
1

2
fTu (2.22)
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The stiffness matrix of the structure changes when the element is removed, thus the mean compliance

also varies:

∆C =
1

2
uT
i Kiui (2.23)

where : ui = displacement vector of the ith element

From Eq 2.23, the sensitivity number for the mean compliance can be defined as:

αe
i =

1

2
uT
i Kiui (2.24)

According to the expression of αe
i , the increased mean compliance results from the elimination of the

ith element is equal to its elemental strain energy. Obviously, the most efficient way of minimizing C

is to remove the items with the lowest αi. The element removal ratio (ERR) determines the number of

elements to be removed, which is the ratio of the number of elements removed at each iteration to the

total number of elements in the initial structural model [34].

The ESO method facilitates structural optimization by deactivating inefficient material based on stress

or strain energy levels. It is simple to use and comprehend, with no sophisticated mathematical pro-

gramming approaches. ESO is also applicable to 2D and 3D situations. However, since the ESO method

cannot restore eliminated material, material discarded early in the process may be necessary later for an

optimal design. As a result, while ESO improves initial ideas in general, it may not always achieve the

absolute optimum. The ESO algorithm is heuristic in nature and lacks theoretical rigor. Early ESO re-

search ignored critical numerical concerns in topology optimization, such as checkerboard patterns, mesh

dependency, and local optima problems. To solve these shortcomings, an improved algorithm known as

bi-directional evolutionary structural optimization (BESO) has been developed.

2. Bi-directional Evolutionary Structural Optimization (BESO):

The BESO method is a variation of the ESO method that allows for both the addition and removal

of material during the optimization process, initially proposed by y Yang et al [35]. BESO combines

the advantages of ESO with the flexibility of modifying the structure by adding new material. This bi-

directional approach enables the exploration of a larger design space, leading to improved solutions. By

iteratively modifying the structural topology based on predefined design criteria, BESO seeks to achieve

an optimal balance between material reduction and structural performance. The addition and removal
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of material are guided by sensitivity analysis, allowing for efficient and effective optimization of complex

structures.

BESO estimates the sensitivity numbers of void elements through linear extrapolation of displacement

fields obtained from FEA. Elements with the lowest sensitivity numbers are removed, while void elements

with the highest sensitivity numbers are converted into solid elements [35]. The numbers of removed

and added elements are determined separately using the rejection ratio (RR) and inclusion ratio (IR)

parameters. However, this approach of removing and adding separately requires a careful selection of

RR and IR values to get a reasonable result [36].

Huang and Xie [8] developed a BESO algorithm for stiffness optimization that addresses the procedure

and various challenges needed to be solved in topology optimization, including defining the optimiza-

tion problem, dealing with checkerboard patterns, handling mesh-dependency, and achieving solution

convergence.

Topology optimization aims to minimize the mean compliance (C), which is the same as maximizing the

stiffness, subject to a given constrained volume. The problem is formulated as follows:

minimize C =
1

2
fTu

subject to V ∗ −
N∑
i=1

Vixi = 0

xi = 0 or 1

(2.25)

f and u are the applied external force and displacement vectors, respectively. Vi represents the volume

of an individual element, V ∗ is the prescribed total volume, N is the total number of elements, and xi is

the binary design variable indicating the presence (1) or absence (0) of an element.

The BESO method calculates the sensitivity numbers (αe
i ) for each element based on the change in mean

compliance (∆Ci) resulting from the removal of the element. The sensitivity number is defined as:

αe
i = ∆Ci =

1

2
uT
i Kiui (2.26)

where ui is the nodal displacement vector of the ith element and Ki is the elemental stiffness matrix.

Two problems, checkerboard and mesh-dependency, occur with the above definition of sensitivity number.

The existence of a checkerboard pattern poses challenges in both interpreting and manufacturing the

optimal structure, see Fig 2.12. Mesh dependency refers to the issue of obtaining varying topologies

when different sizes of finite element meshes are employed. Ideally, finer mesh should results in the

same optimal structure but improved boundary representation, rather than producing a more intricate
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or qualitatively different structure [37].

Figure 2.12: A typical checkerboard pattern in the ESO method, reprinted from [8]

To avoid the above problems, a filtering and smoothing scheme is implemented. The nodal sensitivity

numbers (αn
j ) are initially calculated by averaging the elemental sensitivity numbers connected to each

node. This is achieved by assigning weight factors (wi) to the elemental sensitivity numbers based on

their distances from the node (rij). Closer elements have a greater influence on the nodal sensitivity

number.

αn
j = ΣM

i=1wiα
e
i (2.27)

wi =
1

M − 1
(1− rij

ΣM
i=1rij

) (2.28)

Where wi is the weight factor of the ith element, rij is the distance between the center of the ith element

and the jth node, and M is the total number of elements connected to the jth node.

The filtered nodal sensitivity numbers are then used to compute smoothed elemental sensitivity numbers

(αi). This process involves projecting the nodal sensitivity numbers onto the design domain using a

filtering scheme. The filter has a fixed length scale parameter rmin, which remains unchanged regardless of

mesh refinement. This scale parameter helps determine the nodes that significantly impact the sensitivity

of each element. By drawing a circle centered at the centroid of each element with a radius of rmin,

a circular sub-domain is formed. Nodes within this sub-domain contribute to the calculation of the

improved sensitivity number(αi) for the element.
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Figure 2.13: Nodes located within the circular sub-domain Ωi are used in the filter scheme for the ith
element, reprinted from [8]

αi =
ΣK

j=1wrijα
n
j

ΣK
j=1wrij

(2.29)

w(rij) = rmin − rij , j=1, 2, 3...K (2.30)

The filter scheme effectively smooths the sensitivity numbers throughout the entire design domain,

including the void elements. The void elements may exhibit high sensitivity numbers due to the presence

of nearby solid elements within the sub-domain. Consequently, some void elements may be converted

into solid elements in subsequent iterations.

To ensure convergence of the objective function during the evolutionary process, a simple averaging

scheme is employed. Huang and Xie [38] discovered that averaging the sensitivity number with its

historical information effectively addresses this issue.

αi =
αK
i + αk

i − 1

2
(2.31)

In this scheme, the sensitivity number αi at the current iteration k is computed by averaging the sensi-

tivity numbers from the current and previous iterations. The updated sensitivity number is then used for

the next iteration, thereby incorporating the complete history of sensitivity information from previous

iterations.

Before each new iteration, a target volume for the next step Vk+1 needs to be determined. The volume

evolution follows a formula:
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Vk+1 = Vk(1 +−ER), k=1, 2, 3... (2.32)

where ER represents the evolutionary volume ratio. Once the volume reaches its constraint, Vk+1 = V ∗

remains unchanged for the remaining iterations.

Next, elements with a sensitivity number below a threshold value αt
delh are removed, while void elements

with a sensitivity number exceeding αt
addh are added. It is important to note that αt

delh is always less

than or equal to αt
addh. The exact values of both thresholds can be determined through the following

steps:

1. Start with αt
addh = αt

delh = αth. Here, αth can be determined based on Vk+1.

2. Calculate AR, the volume addition ratio, which is the number of added elements divided by the total

number of elements in the design domain. If AR exceeds the maximum volume ratio ARmax, αt
delh and

αt
addh need to be recalculated in the next step. If AR is smaller than ARmax, skip step 3.

3. Computeαt
addh by sorting the sensitivity numbers of void elements = 0. The number of elements

that will become solid is equal to ARmax multiplied by the total number of elements in the design

domain. The sensitivity number of the element ranked just below the last added element becomes the

new αt
addh. The value of αt

delh should be chosen in a way that ensures the removed volume equals

(Vk − Vk+1 + Vaddedelements).

The iterations, including finite element analysis and element removal/addition, stop when both the

volume constraint and the convergence criterion are satisfied. The convergence criterion is expressed as

an error condition:

error =

∣∣∣∑N
i=1 Ck−i+1 −

∑N
i=1 Ck−N−i+1

∣∣∣∑N
i=1

≤ τ (2.33)

Here, k represents the current iteration number, τ is the allowable convergence tolerance, and N is an

integer determining the length of the last considered iterations [8].

In summary, the BESO method for stiffness optimization addresses various challenges in topology opti-

mization and involves iterative element removal and addition based on sensitivity numbers, incorporating

smoothing algorithms, filtering schemes, and convergence criteria.

3. Solid Isotropic Material with Penalization (SIMP):

The SIMP technique is another common topology optimization method that assumes each element is

made of an isotropic material with variable densities. It penalizes intermediate densities in order to
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achieve optimal material distribution within a specific design domain. Intermediate densities are penal-

ized by including an interpolation scheme in the optimization formulation, encouraging the selection of

materials with either extremely low or very high densities, ranging from void (near-zero density) to solid

(full density). The SIMP method has been shown to be useful in a variety of engineering applications

and has had a considerable impact on the field of topology optimization [8].

The problem formulation [8]:

minimize c = fTu

subject to V ∗ −
N∑
i=1

Vixi = 0

0 < xmin ≤ xi ≤ 1

(2.34)

The compliance c denoted here is twice the mean compliance C in Eq 2.25, defined in the BESO section.

In contrast to BESO, which uses either of the two discrete bound values, the SIMP method allows the

design variable xi to vary continuously from xmin to 1. The global stiffness matrix can be written as a

function of the design variables while taking the material interpolation technique into account:

K =
∑
i

xp
iK

0
i (2.35)

The sensitivity of the objective function c is can then be expressed as:

∂c

∂xi
= −pxp−1

i uT
i K

0
iui (2.36)

To solve the defined optimization problem, several different optimization algorithms can be employed,

like Optimality Criteria (OC) methods [39], the Method of Moving Asymptotes (MMA) [40], and so on.

As mentioned above, to avoid checkerboard patterns and mesh dependency issues, a filter scheme for

improving elemental sensitivities introduced by Sigmund [41] is utilized:

∂c

∂xi
=

1

xi

∑N
j=1 Hij

N∑
j=1

Hijxj
∂c

∂xj
(2.37)

where : N = total number of elements in the mesh
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Hij = rmin − rij , {i ∈ N | rij ≤ rmin} (2.38)

In Eq 2.37 and Eq 2.38, Hij is the mesh-independent weight factor, which becomes zero when outside

the circular filter area, see Fig 2.13. rij is the distance between the centers of elements i and j.

By introducing material penalization in Eq 2.35, the initial optimization problem, Eq 2.34 becomes

nonconvex, which can lead to local optima with grey regions. The continuation method, suggested

by Rozvany et al [42], has been proposed and proved to mitigate this issue. In this way, the penalty

exponent is progressively increased in small steps in subsequent cycles, which can help avoid local optima

and converge closer to the global optimum.

2.2.2 Effect of self-weight on topology optimization

As explained in Sec 2.2.1.3, the general problem statement of topology optimization is to minimize

compliance with specified external loads, respecting the volume constrained. However, when density-

dependent body forces, such as self-weight, are included, many numerical issues arise that necessitate

specific handling. The most challenging problems consist of non-monotonous behavior of the compliance,

the possible unconstrained character of the optimum, and the parasitic effect for low densities when using

the SIMP method [43].

Huang and Xie [9] developed an advanced BESO method employing SIMP material model, soft-kill and

hard-kill BESO, where the material stiffness is penalized using a power-law relationship as:

E(xi) = E0xp
i (2.39)

where : E0 = Young’s modulus for solid material

p = penalty exponent

In the soft-kill approach, a large penalty exponent p is used (p ≥ 3), and void elements are represented as

soft material, done by reducing the thickness of inefficient material. On the other hand, in the hard-kill

approach, the penalty exponent is infinity, resulting in zero stiffness for void elements.

To overcome the non-monotonous behavior of the compliance when including self-weight, the sensitivity

of the mean compliance C should be able to change sign when adjusting the value of the design variable.

Accordingly, the sensitivity might be either positive or negative to behave non-monotonous. To do this.
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a vector of Lagrangian multiplier λ = 1
2u is added to Eq 2.25:

C =
1

2
fTu+ λT (f −Ku) (2.40)

The sensitivity of the objective function that has the ability to be either negative or positive can then

be repressed as:

dC

dxi
=

∂fT

∂xi
u− 1

2
uT ∂K

∂xi
u (2.41)

However, the above expression of sensitivity encounters problems in the low-density regions when using

power-law material interpolation. Accordingly, a different interpolation scheme presented by Stolpe and

Svanberg [44] is adopted. The density ρi and Young’s modulus of the material Ei becomes:

ρi = xiρ
0 (2.42)

Ei =
xi

1 + q(1− xi)
E0 (2.43)

q is a new variable of the penalty factor and is larger than 0, which directly influences the non-monotonous

the behavior of the objective function. For the soft-kill BESO method, a large penalty factor q is

preferred to ensure convergence to a stable design. As for the hard-kill BESO method, q approaches

infinity, and Young’s modulus of soft elements becomes zero. A higher penalty factor q leads to weaker

non-monotonous behavior. When the penalty factor is infinite, the non-monotonous behavior completely

disappears. Consequently, the hard-kill BESO method may yield different solutions compared to the

soft-kill BESO method. Despite this, the hard-kill BESO method offers higher computational efficiency,

making it worth exploring for certain applications.

Several examples are presented in the paper [9] to prove the effectiveness of the proposed method for

the topology optimization including self-weight, and also the comparison between the soft-kill and the

hard-kill method.

Example 1

In the first example, a rectangular plate measuring 1 m x 0.5 m is pinned at both bottom ends. The goal

is to determine the optimal structure topology considering only its self-weight. The target amount of

available material after the optimization is limited to 15% of the design domain. The material properties
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assumption: Young’s modulus of 200 GPa, Poisson’s ratio of 0.3, and a density of 78 kg/m3. To exploit

symmetry, only half of the design domain is analyzed using a mesh of 100 x 50 four-node plane stress

elements. After the evolutionary process, the symmetric half region is mirrored to visualize the entire

structure. Both the soft-kill and hard-kill BESO methods are employed in this example. The parameters

for the soft-kill BESO include ER = 3%, ARmax = 2%, q = 5, and rmin = 30 mm. The settings for the

hard-kill BESO are the same as those for the soft-kill BESO except for q is infinite.

Figure 2.14: (a) the soft-kill BESO method with q=5 (b) the hard-kill BESO method with q=infinite,
reprinted from [9]

Both the soft-kill and hard-kill BESO methods give an arch-shaped structure that spans both end

supports to effectively carry its self-weight. Only a slight difference in the optimal shapes because of

different penalty factors q.

Example 2

The second example aims to optimize the classic MBB beam under a concentrated load F applied at the

mid-span of the beam and its self-weight. The support condition is the same as in the previous example.

Making use of symmetry, only half of the design domain meshes using 100 x 50 four-node plane stress

elements. The target volume ratio is set to 40% of the entire design domain. Young’s modulus E = 200

GPa, Poisson’s ratio ν = = 0.3, and density ρ = 78 kg/m3. Consequently, the expected total weight of

the final design is 3120 kg. The BESO method utilizes the following parameters: ER = 2%, ARmax =

2%, q = 5, and rmin = 0.3 m.

Fig 2.15 shows the results with the use of the soft kill method when considering different ratios between

external loads and self-weight. Bruyneel and Duysinx [45] draw the same conclusion that the optimal

topology varies depending on the ratio between the external force and self-weight. As F decreases, the

materials between the loading point and supports are removed accordingly.
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Figure 2.15: (a) zero self-weight (b) F=100% self-weight (c) F=50% self-weight (d) F=10% self-weight
(e) self-weight only, reprinted from [9]

The hard-kill BESO method is also tested with self-weight only in this non-monotonous problem, using

the same parameters as the soft-kill, except for q=infinite. The result shown in Fig 2.16 is similar to that

achieved with the soft-kill BESO method in Fig 2.15 (e). The mean compliance of the hard-kill design

is 0.037 N m, while in the soft-kill design, it’s 0.034 N m. This implies that the soft-kill BESO method

yields a somewhat better solution than the hard-kill BESO method, yet the hard-kill solution can still

be considered an approximation optimal design.

Figure 2.16: optimal topology with self-weight, hard-kill method, reprinted from [9]

2.2.3 Optimization in Grasshopper

Grasshopper is a Rhinoceros 3D visual programming language and environment that allows for parametric

design and computational modeling. Grasshopper’s parametric design capabilities, which allow for the
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production of flexible and adaptable models by defining relationships between design parameters, is one

of its key features, making it perfect for iterative and exploratory design processes.

Grasshopper can also work in collaboration with powerful Finite Element Analysis plugins to do struc-

tural analysis. This enables designers to analyze and optimize their designs’ performance and behavior

under various load scenarios. It may simulate structural behavior such as stress distribution, deflections,

and natural frequencies.

Grasshopper also includes a variety of optimization algorithm plugins that can be used to improve the

design process. These plugins offer a variety of optimization algorithms, including evolutionary algo-

rithms, genetic algorithms, particle swarm optimization, and others. These algorithms allow designers

to search for the best design solution based on predefined objectives and limitations.

Designers can develop an integrated and seamless workflow for parametric design exploration, structural

analysis, and optimization by combining Grasshopper’s parametric design capabilities, structural analysis

tools, and optimization algorithm plugins.

2.2.3.1 Opossum

Opossum is an optimization plugin developed for Grasshopper. It is a model-based optimization tool

specifically designed for architectural practice. According to Wortmann and Nannicini [46], model (or

surrogate)-based optimization strategies obtain satisfactory outcomes with a small number of simulations,

which means it reaches convergence faster.

Global black-box optimization

Unlike simulation-based optimization, which evaluates parametric models with numerical simulation to

find the relationship between variables and performance goals, Global black-box optimization methods,

also known as derivative-free methods, do not require a mathematical formulation. These methods offer

a balance between exploring the entire design space and focusing on promising regions to find the best

solution. (1) Direct search, (2) model-based methods, and (3) metaheuristics are the three categories of

Black-box methods for optimization. The first two types switch between local and global search, while

the third one limits an initially global search to an increasingly local one as the optimization process

develops.

Opossum employs two different best-performing,single-objective optimization algorithms: model-based

Radial Basis Function Optimization (RBFOpt) and evolutionary Covariance Matrix Adaptation Evolu-

tion Strategy (CMA-ES) [47].

1. RBFOpt: A global optimization algorithm based on radial basis function interpolation. It constructs

a response surface using a set of sample points and approximates the objective function based on this
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surface. RBFOpt iteratively selects new sample points to improve the interpolation and search for the

global optimum. It is suitable for problems with a moderate number of design variables and a smooth

objective function.

2. CMA-ES: For complex optimization problems in continuous search spaces, such as non-convex, ill-

conditioned, multi-modal, rough, or noisy, CMA-ES is a stochastic derivative-free numerical optimization

algorithm. It operates by sampling a normal distribution to generate candidate solutions. With each

iteration, the mean and variance of the distribution are updated based on the outcomes of the population,

gradually converging towards a global maximum.

Opossum GUI

Opossum’s GUI includes three tabs that provide increasing levels of control, see Fig 2.17. (1) The first

tab can choose between minimization or maximization of the objective function, select one of three pre-

sets of parameters: ’RBFOpt (fast and good)’, ’CMA-ES (slow but steady)’, and ’CMA-ES from start

point’, and start the optimization process. The first tab additionally shows an animated convergence

graph to keep viewers updated on the optimization’s progress. (2) The second tab allows users to

establish halting criteria depending on the number of iterations or the amount of time spent, as well

as to report the optimization runs. (3) The third tab receives RBFOpt command line options. When

enabled, this ”expert” window offers the user complete control, with settings input here overriding those

specified by the first two tabs. Opossum mimics the appearance and function of existing optimization

tools, including color schemes for optimization components and their relationships to variables and goal

values. Double-clicking on an optimization component launches a window with a GUI specific to that

tool, which includes the three tabs mentioned above for Opossum. Thus, Opossum delivers a difficult

and unique optimization package in an easy-to-use format.

Figure 2.17: Opossum GUI, reprinted from food4Rhino-Opossum

Evaluation

Abdul [48] compares Opossum with another optimization plugin for Grasshopper, GA and SA from

Galapagos, and concluded that RBFOpt and CMA-ES are the most robust algorithms in this benchmark.

CMA-ES was the best-performing and most convergent algorithm for evaluating large functions.
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Thomas [47] compared the performance of RBFOpt with five other solvers available in Grasshopper: the

GA and SA n Galapagos, the PSO of Silvereye, the DIRECT algorithm in Goat, and HypE in Octopus.

The results depict that DIRECT is the worst-performing solver and exhibits minimal improvement during

the optimization process. This is because its recursive subdivision in the dimensions corresponding to

the variables is too slow. The remaining metaheuristics, including the Pareto-based HypE, have similar

performance. Opossum’s RBFOpt is proven to be the best-performing solver. Take note of RBFOpt’s

quick progress in a few iterations. In conclusion, DIRECT is fully deterministic. RBFOpt experienced

the most stable convergence, while the single-objective metaheuristics exhibited wider, less stable ranges.

2.2.3.2 Karamba3D: Topology optimization

Karamba3D is a structural analysis plugin making use of FEM for Grasshopper. It stands out among

other Finite Element commercial programs due to its unique advantages: It is designed to be user-friendly,

making it accessible even to non-experts. Specifically tailored for architects and engineers during the

early design phase, Karamba3D offers an interactive experience [49].

A key feature of Karamba3D is its seamless integration with Grasshopper. This integration allows for

an easy combination of parameterized geometric models, FEA, and optimization algorithms such as

Opossum or Galapagos. This integration enhances the capabilities of Karamba3D, enabling efficient and

flexible design exploration and optimization.

BESO for Shells

The background knowledge and logic behind ’BESO for Shells’ has been described in Sec 2.2.1.3.

Figure 2.18: BESO for a rectangular plate under two corner loads, reprinted from Karamba3D 1.3.3

The main input to ”BESO for Shells” includes: Model / ElemIds / LCases / TargetRatio / MaxIter.

Important to note, ElemIds takes identifiers of the shell mesh that participates in the optimization, which

can exclude the mesh in non-design space. TargetRatio is the ratio between the final mass, only taking

into account the active elements, to the initial mass.

More advanced options under the submenu ”Settings” allow the user to further control the optimization

procedure. The mathematical meaning of each option is described in Sec 2.2.1.3: ER / ARmax / Nhist

/ Conv / Rmin / Rexp / KillThck. ER is the evolutionary ratio that specified the relation between the
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volume in two consecutive iteration steps, see Eq 2.32. ARmax means the proportion of the maximum

number of elements that can be added per step. Nhist is the number of iterations that happened before

achieving the convergence. Conv is the change of mass between two cycles. As mentioned before, to

prevent the occurrence of checkerboard patterns, a filtering scheme is implemented in the BESO algorithm

to evaluate the fitness of individual elements. Rmin is used to determine the sensitivity of the element

by defining the radius of the influence, see Fig 2.13. On the other hand, Rexp plays a role in weighting

the strain energy at nodes when calculating the sensitivity of an element. It determines the distance

within which the nodes are considered and influences the weight assigned to each node. The weight is

determined in Eq 2.44, with Rij = Rmin−R. R is the distance between a sample node and the center

of the element, while
∑

Rij is the sum of the distances from the center of the element to all nodes that

are closer than Rmin. KiillThick is the thickness of the soft element, which is a necessary value for the

BESO soft-kill method addressed in Sec 2.2.2.

w = (
Rij∑
Rij

)Rexp (2.44)

The output of ”BESO for Shells” includes the data of: Model / ModelHist / CHist / VHist / Info.

ModelHist, CHist, and VHist provide information on the intermediate result, including the history of

volume-weighted compliance and the volume of the structure.

Different Grasshopper Plugins for Topology Optimization

Apart from Karamba3D: BESO for Shells, there are several other plugins for topology optimization

using different methods available in the Grasshopper environment. For example, Millipede, TopOpt,

and tOpos use SIMP while Ameba uses BESO. Mariam and Zeynep [50] utilized a box as a case study

in order to compare the three plugins: Millipede, tOpos, and Ameba. The potential and efficiency of

the three plugins are addressed from an architectural approach. In conclusion, Ameba gives the noisiest

optimized geometry and tOpos produces the most realistic result. Considering computing speed, tOpos

utilizing GPU first reached convergence, while Ameba spent reasonable time, and they both eventually

achieved the desired volume fraction. On the other hand, Millipede is the least effective and took the

most time, yet did not achieve the desired volume fraction.

Though tOpos has been proven to be the most powerful topology optimization plugin in the paper, its

ability to include self-weight in the optimization process is lacking. Nevertheless, the dimension of tOpos

is only in three dimensions, and it was unable to generate shell shape geometry from a box design domain

to carry its self-weight eventually. In comparison, Karamba3D has a super intuitive ”Loads”-component

that is able to simulate the effect of gravity load in optimization iterations.
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Chapter 3

Analytical Derivation and Numerical

Integration

According to S. Timoshenko [4], the form of equal strength has a design criterion of constant stress in

all the cross-sections as explained in Section 2.1. The proposed mathematical model presented below

is based on the assumption that the structure is inextensible, and the material is homogeneous. These

are the common assumptions utilized in the previous works for structural optimization [1] [10] [3]. The

aim of the analytical form finding is to derive the math solutions of the constant stress geometry under

different load cases.

The research involves three analytical form-finding practices: two load cases and one load combination.

Each derivation initiates by establishing equilibrium according to the predefined criteria. Subsequently,

the obtained mathematical solutions are validated by Finite Element Analysis (FEA) tool Karamba,

aligning with the constant stress criterion.

3.1 Form of constant stress: self-weight

The first load case to be explored is self-weight. Firstly, the analytical expression of the cross-sectional

area is derived. Secondly, the geometrical model is built in Grasshopper and validated by Karamba.

3.1.1 Analytical derivation: self-weight

In order to obtain the equations that satisfy the uniform strength criterion, we must first examine an

infinitesimal segment of the member, see Fig 3.1.
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Figure 3.1: Infinitesimal segment of the member

A(y) represents the cross-sectional area at any arbitrary position y, while h(y) denotes the depth of the

cross-section at y. b stands for the unit width of the cross-section, oriented perpendicular to the plane

of the paper.

As the compressive stress in both the upper and lower cross-sections of the infinitesimal segment must

remain constant, the incremental increase in the cross-sectional area, denoted as dA, is intended to

compensate for the added weight of the segment, represented on the left-hand side of Equation 3.1.

Accordingly,

γ ·A(y) · dy = dA · σ (3.1)

where : σ = constant stress

γ = specific weight

Dividing Equ 3.1 by Aσ and integrating both sides, gives the following equations:

∫
γ

σ
dy =

∫
1

A
dA

γy

σ
+ c1 = lnA
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A = e
γy
σ +c1 = Ce

γy
σ , with C = ec1 (3.2)

A(y = 0) = C = A0 (3.3)

A(y) = A0e
γy
σ (3.4)

At y = 0, the area is A0, and Equ 3.4 gives the relation between A(y) and A0. To avoid A0 as 0 because

there is no self-weight on top of it, a point load P should be applied at the upper end y=0 to ensure a

valid area at y=0. A0 can be calculated by A0 = P
σ .

To visualize the outcomes of the mathematical solution given by Equation 3.4, the material properties

of concrete C20/25 have been utilized as input parameters for the equation, as detailed in Table 3.1.

Table 3.1: Input values to the variables in Eq 3.4

Fig 3.2 provides a graphical representation of Eq 3.4. Given that the cross-sections have a unit width of

b = 1m, the area A(y) is equivalent to the depth of the cross-sections h(y). Therefore, when considering

the location y=0, the area corresponds to 0.2m2, which can be expressed as 20cm.
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Figure 3.2: Static form of uniform strength: self-weight

The geometry appears as a rectangle with two linear boundaries instead of exhibiting an exponential

behavior. This arises due to the substantial difference in magnitude between the value of σ and γ.

Consequently, the term e
γy
σ tends toward one, leading to a negligible difference in the cross-sectional

area at the bottom and top positions. In this example, the structure possesses a height of 5 meters, and

the depth of the cross-section experiences a marginal increment, progressing from 20 cm to 20.19 cm.

3.1.2 FEA check: self-weight

The Grasshopper geometry model is built with the center axis y and varying cross-sections according

to the derived equations. The input parameters have been mentioned in the previous section 3.1.1, see

Table ??. The setup and results of the FEA model can be seen in Fig 3.3 and 3.4.
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Figure 3.3: Geometry model setup in Grasshopper

The structural input for Karamba includes three components: 1.) elements, 2.) boundary and support

conditions, and 3.) load cases.

Table 3.2: Input components for Karamba3D: self-weight

The shape and the axial stress can be seen in Fig 3.4. It remains under constant compressive stress

13300kN/m2, which is the compressive strength of C20/25, in the entire structure. The area at y = 0

is A0 = 20cm and increases exponentially to 20.19cm at the fixed bottom end at y=5. Based on the

analysis, it is evident that the influence of self-weight is minor when specifies a large number as constant

stress σ.
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Figure 3.4: Stress result of the constant stress shape considering self-weight: Uniform compressive stress
in the entire structure

3.2 Form of constant stress: uniformly distributed load q

Based on [4], it can be inferred that the maximum tensile and compressive stresses in a beam undergoing

pure bending are directly proportional to the distance of the out-most fibers from the neutral axis of

the cross-section. Therefore, when using a material with equal strength in tension and compression, it

is logical to choose a symmetric cross-section where the centroid lies in the middle of the beam’s height.

This ensures that the same factor of safety is obtained for fibers in both tension and compression that

will yield at the same time. In cases where the section is not symmetrical, the material is distributed

between the top and bottom in such a way that the centroid is still located at the center of its height.

3.2.1 Analytical derivation: uniformly distributed lateral load q

To obtain the form of constant stress under a uniformly distributed load q, it can be predicted that the

section modulus S varies along the height y in the same proportion as the bending moment M resulting

from the load, see Eq 3.5. In this way, the maximum bending stress located at the out-most fibre remains

constant σ along the height of the structure. This condition is advantageous in terms of material usage

as each cross-section would have the minimum required area to meet the strength requirements.

Fig 3.5 (a) shows a free-standing structure with height L loaded with the uniformly distributed lateral

load q. The bending moment at distance y is equal to qy2

2 . In order to gain the form of uniform strength,

the section modulus should be in proportion to y, explained in Eq 3.6. The structure has a unit width

b in the direction perpendicular to the plane of the paper, and a changing depth h(x) of cross-sections.
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Accordingly,

M

S
= σ (3.5)

where : σ = constant maximum bending stress

S = section modulus

When the cross-section is a rectangle with unit width b and varying depth h(y), the section modulus S

can be written as below:

M

bh(y)2/6
= σ

Then, the maximum bending stress at y=L and at any point y should equal to constant σ to obtain the

form of equal strength. Eq 3.6 shows the linear relation between h(y) and hL.

qL2/2

bh2
L/6

=
qy2/2

bh(y)2/6
= σ

h(y)

hL
=

y

L
, where hL = L

√
3q

bσ
(3.6)

h(y) = y

√
3q

σb
(3.7)

To visualize the constant maximum bending stress represented by Eq 3.7 with Matlab, the input for

symbolic variables is:

Table 3.3: Input values to the variables in Eq 3.7
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In contrast to the previous case where self-weight induced only compressive stress in the structure, the

specified constant stress σ is the tensile strength of the concrete instead of compressive strength in this

example. This deviation is justified by the fact that tensile stress is more critical in terms of material.

Consequently, if the structure is subjected to tensile stress, the design should be based on this criterion.

Fig 3.5 (b) shows the constant stress shape of h(y) in Eq 3.7. To sum up, the form of uniform strength

considering only uniformly distributed lateral load results in linear varying cross-sections along the center

axis.

Figure 3.5: (a) Geometry and loading (b) Form of constant maximum bending stress: uniformly dis-
tributed load q

3.2.2 FEA check: uniformly distributed load q

The Grasshopper geometry model is again built with the center axis y with the assigned cross-sections

varying in accordance with the derived equations h(y). The specific input parameters utilized for the

model are provided in Table 3.3, and the process of constructing the geometry model can be referenced

from Fig 3.3.

The components of Karamba3D include:
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Table 3.4: Input components for Karamba3D: uniformly distributed load q

The shape and the axial stress can be seen in Fig 3.6. As depicted in the figure, the maximum tensile

bending stress and the maximum compressive bending stress remain constant stress 1300kN/m2, which

is the tensile strength of C20/25, on both boundaries of the structure. The depth of the cross-section

increases from 0 to 27.17cm at the fixed bottom.

Figure 3.6: Stress result of the constant stress shape considering uniformly distributed lateral load q:
Uniform maximum bending stress

3.3 Form of constant stress- load combination

Extending from the above analytical derivation with either self-weight or uniformly distributed load q,

this section combines the two load cases and searches for the form of constant stress.

The present section covers three distinct cases, namely, Section 3.3.1 to Section 3.3.4, which address the

establishment of constant stress on the tension side of the structure. Secondly, Section 3.3.5 and Sec-
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tion 3.3.6 investigate the possibility of maintaining constant stress on both the tension and compression

boundaries of the structure. The criteria for Section 3.3.7 are twofold: 1) Zero bending moment through-

out the structure, and 2) Constant stress in all cross-sections. To satisfy these criteria, it is imperative

to determine the center-line profile of the structure and subsequently derive the varying cross-sections.

3.3.1 Analytical derivation: constant maximum tensile stress (σ = 0)

The first specified criterion when considering the combined load case of self-weight + uniformly dis-

tributed load q is: the addition of the maximum tensile bending stress induced by external loading q,

and the stress results from self-weight should maintain constant stress at the extreme side in tension, see

Eq 3.8. Specifically, the critical situation for a material with a lower tensile strength compared to com-

pressive strength is to ensure that the maximum allowable tensile stress in the structure is not exceeded.

In each cross-section along the height axis y, the maximum bending stress occurs at the extreme fibre,

while the stress induced by self-weight remains constant. Therefore, the logical criterion when adopting

uniform stress theory in this case is to fix the stress at one boundary of the structure along the height

to tensile strength, shown in Fig 3.7. The derived equation results in a symmetric shape, ensuring that

no matter where the uniformly distributed load q comes from, either from the right or left, the tensile

boundary remains under constant stress.

Figure 3.7: Geometry and loading: load combination

qy2/2

bh(y)2/6
−

γb
∫ y

0
h(ξ)dξ

bh(y)
= σ (3.8)
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where : σ = constant maximum bending stress

γ = specific weight

ξ = the coordinates along beam axis for an arbitrary cross-section

b = unit width of the cross-section

h(y) = depth of the cross-section at y

q = uniformly distributed load

The first term is the maximum tensile bending stress from load q, while the second term is the compressive

stress from self-weight. Rearrange Eq 3.8,the boundary condition is determined when y=0:

h(0) = 0 (3.9)

To simplify the math problem, firstly, the constant σ is set to zero at the right-hand side, and multiply

the equation by h(y):

3qy2

bh(y)
− γ

∫ y

0

h(ξ)dξ = 0

Derive the equation with respect to y.

6qy

bh(y)
− 3qy2h′(y)

bh(y)2
− γh(y) = 0 (3.10)

With the boundary condition Eq 3.9, the exact solution of h(y) in Eq 3.10 is solved with Matlab:

h(y) =
3
√
2γqy

2γ
(3.11)

From the solution, it is noticeable that the depth of the cross-section h(y) has a basic shape of
√
y along

the y-axis, see Fig 3.8. The input for symbolic variables in Eq 3.11:
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Table 3.5: Input values to the variables in Eq 3.11

Figure 3.8: Form of constant 0 tensile stress: load combination

3.3.2 FEA check: constant maximum tensile stress (σ = 0)

The Grasshopper geometry model is again built with the center axis y and varying cross-section according

to the derived equations h(y). The input parameters are shown in Table 3.5. As the constant stress σ is

specified as zero, it is expected that the tension boundary has constant zero stress in the entire structure.

The process of constructing the geometry model can be referenced from Fig 3.3.

The components of Karamba3D include:
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Table 3.6: Input components for Karamba3D: load combination

The shape and the axial stress can be seen in Fig 3.9. The stress on the tension boundary indeed remains

constant zero stress. The depth of the cross-section increases from 0 to 120cm at the fixed bottom y=5m.

Evidently, the figure illustrates that to maintain zero tensile stress in the structure as specified, a huge

amount of material is necessary.

Figure 3.9: Results of the constant stress shape (load combination): zero tensile stress on the tension
boundary

3.3.3 Analytical derivation: constant maximum tensile stress

In this section, the basic formula is the same as Eq 3.8 in the above Sec 3.3.1. However, different from

the previous part that set the constant σ = 0 to simplify the math problem and derive the closed-form

solution, the constant stress σ here is a non-zero value. Eq 3.8 can be written as follow:
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3qy2

bh(y)
− γ

∫ y

0

h(ξ)dξ = σh(y)

Derive the equation with respect to y.

6qy

bh(y)
− 3qy2h′(y)

bh(y)2
− γh(y) = σh′(y) (3.12)

The boundary condition is the same as above Eq 3.9. However, there is no closed-form solution to the

above non-linear differential equation. Accordingly, numerical methods are needed to approximate the

solutions.

ODE113 is a numerical solver in MATLAB for initial value problems, which means it is used to solve

differential equations where the value of the function and its derivative are known at a single point. It uses

an explicit Runge-Kutta (4,5) formula for non-stiff differential equations and an efficient method based on

backward differentiation formulas (BDF) for stiff differential equations. It is an adaptive step-size solver,

meaning that it automatically adjusts the step size to achieve the desired level of accuracy. It is also a

variable-order solver, which means that it can adjust the order of the method to estimate the solution at

each time step and balance the errors in the approximation. In summary, the reason to choose ODE113

to solve the equation here is that it’s a robust and efficient solver for non-linear differential equations,

which provides accurate and reliable numerical solutions for a wide range of problems.

Now, rearrange Eq 3.12 to get h’(y) as the second input argument for ODE113:

h′(y) =
6qyh(y)− γh(y)3

σh(y)2 + 3qy2
(3.13)

With y as the independent variable and h as the dependent variable h(y), the code below is provided for

Matlab ODE113:
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q = 2;

γ = 25;

σ = 1300;

yspan = 0 : 0.01 : 5;

h0 = 0.001;

[y,h] = ode113(@(y, h); (6qyh− γh3)/(σh2 + 3qy2),yspan,h0);

plot(-h/2,y,’k’);

hold on;

plot(h/2,y,’k’)

set(gca, ’YDir’, ’reverse’);

title(’Form of constant tensile stress: Self-weight+ load q’);

xlabel(’h(y)’, ’FontSize’, 10);

ylabel(’Y-axis’, ’FontSize’, 10);

As indicated in the third line of the code, the input step size for ’y’ is set to 0.01m, from y=0 to 5m.

The ODE113 solver approximates the dependent value ’h(y)’ for each input ’y’ to fit equations Eq 3.12

and Ed 3.13. This process generates a total of 501 ’h(y)’ values. Table 3.7 displays some intermediate

input ’y’ values at intervals of 0.5m along with their corresponding ’h’ values, with units in meters.

y h
0 0.001
0.5 0.0269
1 0.0540
1.5 0.0809
2 0.1077
2.5 0.1344
3 0.161
3.5 0.1875
4 0.2139
4.5 0.2402
5 0.2671

Table 3.7: Input y and output h

54



3.3. FORM OF CONSTANT STRESS- LOAD COMBINATION

Figure 3.10: Result of ODE113

3.3.4 FEA check: constant maximum tensile stress

The Grasshopper geometry model is constructed using the values obtained from the Matlab solver

ODE113. The cross-sections are assigned to each 0.02-length beam segment along the center-line ’y’

following Table 3.7. The structural input for Karamba can be found in Table 3.6.

The results of the FEA model can be seen in Fig 3.11. As evidenced by the Karamba model, the

numerical approximation derived from Matlab ODE113 is accurate, as the maximum tensile stress on

the tension boundary remains constant σ = 1300kN/m2.

Figure 3.11: Results of the constant maximum tensile stress shape (load combination)
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With the strict criterion of zero stress on the tension boundary along the height of the structure, Fig 3.9

in Sec 3.3.2 has a depth of 120 cm at the bottom. Compared with that, h(y=L) in this case is only 26.71

cm. This indicates that it’s much more efficient to set the constant stress to a non-zero allowable tensile

stress instead of 0. On the other hand, Fig 3.6 in Sec 3.2.2 has a depth of 27.17 cm at the bottom when

considering only stress from uniformly distributed load q, the value is also larger than the result in this

case. That is because the compressive stress from self-weight is in favor of the tension side, the material

can be decreased accordingly. However, there is no big difference between the two shapes when taking

into account self-weight which has only a minor influence on the structure.

3.3.5 Analytical derivation: constant stress on both boundaries

The previous sections considered the criterion of constant stress on the tension boundary, whereas this

section explores the possibility of a shape that maintains constant stress on both boundaries.

As we know, self-weight induces compressive stress, while a uniformly distributed load q creates tensile

stress on one side and compressive stress on the other. Achieving constant stress on both sides seems

unlikely with only these two stress types. Therefore, the concept is to search for additional stress required

to fully balance out the stress induced by load q, namely, the bending stress produced by the geometry’s

eccentricity, see the explanation shown in Fig 3.12.
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Figure 3.12: Geometry, loading and stress

1. Stress from self-weight:

w(y) = γb

∫ y

0

h(ξ)dξ, where w(y)= self-weight at y (3.14)

σsw =
w(y)

h(y)b
(3.15)

2. Stress from uniformly distributed load q

σq,max =
Mq(y)

bh(y)2/6
, where Mq(y) =

qy2

2

σq,max =
3qy2

bh(y)2
(3.16)

3. Stress from eccentricity
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Figure 3.13: center of mass: xc, Eccentricity: ec

xc =

∫ y

0
h(ξ)
2 h(ξ)dξ∫ y

0
h(ξ)dξ

(3.17)

ec(y) =

∣∣∣∣h(y)2
− xc

∣∣∣∣ (3.18)

With Eq 3.14, Eq 3.17, and Eq 3.18, the bending moment from the eccentricity of self-weight can be

expressed as:

Mec(y) = w(y) · ec(y) = γb

∫ y

0

h(ξ)dξ ·

∣∣∣∣∣h(y)2
−

∫ y

0
h(ξ)
2 h(ξ)dξ∫ y

0
h(ξ)dξ

∣∣∣∣∣

σec,max =
6Mec(y)

bh(y)2
(3.19)

Now, we can set up the equilibrium equation describing constant maximum stress on both boundaries

of the structure:

−σsw + σq,max − σec,max = −σsw − σq,max + σec,max = σ (3.20)

where : σ = constant stress
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From Eq 3.20, the following system of equations needs to be solved:

σq,max = σec,max (3.21a)

σsw = σ (3.21b)

Substitute each term with specific expressions, We can then rewrite Eq 3.21 to:

3qy2

bh(y)2
=

6 · γb
∫ y

0
h(ξ)dξ ·

∣∣∣∣h(y)2 −
∫ y
0

h(ξ)
2 h(ξ)dξ∫ y

0
h(ξ)dξ

∣∣∣∣
bh(y)2

(3.22a)

γb
∫ y

0
h(ξ)dξ

bh(y)
= σ (3.22b)

However, the solution h(y) that satisfies Eq 3.22a and Eq 3.22b doesn’t exist. The reason is that both

equations have their own closed-form solutions which contradict each other. Eq 3.22a has boundary

condition:

h(0) = 0 (3.23)

With the boundary condition, the closed-form solution to Eq 3.22a is solved with Matlab:

h(y) =
2
√
γqy

γ
(3.24)

To visualize h(y), input for the variables in Eq 3.24 can be found in Table 3.5. Plot the equation with

Matlab:

59



3.3. FORM OF CONSTANT STRESS- LOAD COMBINATION

Figure 3.14: Visualization of Eq 3.24

On the other hand, the solution to Eq 3.22b is also solved with Matlab. Firstly, rearrange the equation

and derive it with respect to y:

h(y) =
σh′(y)

γ
(3.25)

The solution to Eq 3.25 is:

h(y) = Ce
γy
σ (3.26)

The result ends up the same as Eq 3.2 in Sec 3.1.1 which considers only the self-weight of the structure.

Also, Eq 3.3 shows that C is the depth at y=0 and it should be a non-zero value. Therefore, the fact

that h(0) is a non-zero constant instead of zero contradicts the boundary condition of Eq 3.22a.

Though there is no solution to this case, Eq 3.24 gives a shape that is able to balance the bending moment

from load q by its self-weight and becomes momentless. The advantage is that without the existence

of a bending moment, there is no resulting tensile stress in the structure. This is particularly beneficial

for materials with low tensile strength. However, because the constant stress state is not fulfilled, the

material usage is not as efficient as in the previous cases.
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3.3.6 FEA check: zero bending moment, eccentricity + uniformly distributed

load q

The geometry model, based on the expression given by Eq 3.24, is created using Grasshopper to verify

the absence of bending moment in the structure. The input values for the variables in this equation

are provided in Table 3.5. The structural parameters used as input in Karamba are consistent with the

details specified in Table 3.6.

The shape and the axial stress can be seen in Fig 3.15. As shown in the label in Fig 3.15, no tensile

stress which implies no bending moment exists in the structure. However, the criterion of constant stress

is not met, resulting in an overall compressive stress level that is significantly lower than the material’s

capacity. The value of h(y) at the bottom of the structure is 113.14 cm.

Figure 3.15: Results of the zero moment shape

3.3.7 Analytical derivation: center line profile

The final solution is inspired by the constant stress arches [3] in 2.1.1.3. The criteria for this case include:

1.)zero bending moment and 2.) constant stress in all the cross-sections. The derivation process is similar

to the technique used in the paper. Firstly, establish the equilibrium equations, including horizontal and

vertical force equilibrium, and moment equilibrium. All the used variables can be seen in Fig 3.16. The

length of the wall measured along its center-line profile is denoted as C, where the applied load includes

both a uniformly distributed load q and the self-weight of the wall. In order to maintain constant stress

σ, the arch is designed with varying cross-sectional area A along its length. The wall is considered

pin-ended if no bending moment exists in the structure, as assumed in [3]. With the vertical reaction

denoted by V, and the horizontal reaction qL at the support. An arbitrary point between O and P is

identified by the coordinate ξ along the x-axis and the arch length σ measured from O. The internal
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forces acting on the arch cross-section at a given cross-section P include T, compressive force; S, shear

force; and M, bending moment.

Figure 3.16: A segment of the center line

1. Horizontal equilibrium,
∑

FH = 0:

−S sin θ − T cos θ + qL− qy = 0 (3.27)

2. Vertical equilibrium,
∑

FV = 0:

S cos θ − T sin θ + V −
∫ s

0

γAdσ = 0 (3.28)

Solve T (axial force) and S (shear force) with Matrix method:

− sin θ − cos θ

cos θ − sin θ


S
T


 qy − qL∫ s

0
γAdσ − V



The results are:

S = (

∫ s

0

γAdσ − V ) cos θ + (qL− qy) sin θ (3.29)

T = −(

∫ s

0

γA, dσ − V ) sin θ + (qL− qy) cos θ (3.30)
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3. Moment at S, Ms= 0:

M − V x+ qLy − qy2

2
+

∫ s

0

γA(x− ξ)dσ = 0 (3.31)

Divide Eq 3.31 with ds, and introducing the geometrical relation of ds, dx, dy:

dM

ds
− V cos θ + qL sin θ − qy sin θ + cos θ

∫ s

0

γAdσ = 0 (3.32)

Substitute the expression of S in Eq 3.29 into Eq3.32 results in:

dM

ds
+ S = 0 (3.33)

Eq 3.33 provides a constraint between M and S, which implies that the condition of zero moment is

sufficient to imply zero shear in the structure. As explained in Section 3.3.6, it’s possible for the free-

standing structure to be moment less if the resulting bending moments from load q and eccentricity of

self-weight have the same value but opposite sign in all the cross-sections. Accordingly, we can say that

S should be equal to 0. With the explicit expression of vertical reaction force V:

V =

∫ C

0

γAdσ (3.34)

Insert Eq 3.34 into Eq 3.29, set S to zero, and divide by sinθ. Note that sin(θ)
cos(θ) = 1

dx/dy = 1
x′ as x is a

function of y, x(y), and now we can get:

∫ C

s

γAdσ = (qL− qy)
1

x′ (3.35)

Derive Eq 3.35 with respect to y, it becomes:

−γA

sin θ
=

−q

x′ + (qL− qy)
−x′′

x′2 (3.36)

The varying area A is known to be a dependent variable to y, therefore, it’s necessary to substitute A

with another expression in Eq 3.36. Since S = 0, Eq3.27 and Eq3.28 can be rewritten as:

T cos θ = qL− qy (3.37)
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T sin θ =

∫ C

s

γAdσ (3.38)

Also, in the absence of shear force, axial force T becomes:

T = σA (3.39)

With Eq 3.37, Eq 3.38, and Eq 3.39, varying cross-sectional area A can be expressed by:

A =
qL− qy

σ cos θ
(3.40)

After substituting Eq 3.40 into Eq 3.36, and utilizing 1
sin θ as

√
1 + x′2 and 1

cos θ as
√

x′2+1
x′2 , the resulting

expression for Eq 3.36 can be expressed as:

γ

σ
(L− y)x′(x′2 + 1) = x′ + (L− y)x′′ (3.41)

As y is the independent variable and x is a function of y, Eq3.41 is a non-linear second-order differential

equation. There are two boundary conditions: 1.) x(0)=0 as the center-line start from the origin (0,0),

2.) x’(L)=0, this can be observed from Eq 3.41 when y=L. Unfortunately, there is no analytical solution

for the equation. However, we can again use ODE113 to find an approximate numerical solution. To do

so, it’s necessary to rearrange Eq 3.41 to get the expression of x” first:

x′′ =
γ

σ
x′(x′2 + 1)− x′

(L− y)
(3.42)

Below is the code for Matlab ODE113. ode system in the first line represents the system of equations

as a function that accepts four input arguments: y, x, L, g, and s, where g represents specific weight

γ and s represents constant stress σ. dxdy(1) is the first derivative of x(y), and dxdy(1) is the second

derivative of x(y)
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function dxdy=ode system(y,x,L,g,s)

dxdy=zeros(2,1);

dxdy(1)= x(2);

dxdy(2)= g*(x(2)^2 + 1)*x(2)/s - x(2)/(L - y);

end

Define the function handle with the aim of passing the predetermined values for L, g, and s to ode system.

The constant stress σ here is 1300 kN/m3 as the tensile strength of C20/25, γ is 25 kN/m3. The input

of the wall height is 0.5m. The assumed height is only 0.5m because the final shape is really tilted and

not feasible, there is no reason to make it higher as it will be more tilted.

L = 0.5;

g = 25;

s = 1300;

yspan = 0 : 0.001 : L;

x0 = [0 10.377];

[y,x] = ode113(@(y, x) ode system(y,x,L,g,s),yspan,x0);

The solution of x and x’ can be retrieved from the workspace in Matlab and directly fed into the

Grasshopper geometry model. Note that the numerical approximate solution of x’ can solve the varying

area A along the y-axis with Eq 3.40 and 1
cos θ as

√
x′2+1
x′2 .

3.3.8 FEA check: center-line profile

The geometry model of Eq 3.41 is set up with Grasshopper to check if there is no bending moment in the

structure and if the stress remains constant in all the cross-sections. The input parameters for Eq 3.40 is

q = 2kN/m, y is from 0 to 0.5 meter-height with step 0.001. The structural input for Karamba includes

the support: pin end at the bottom end, two load cases, uniformly distributed line load q acting on

the center line, and self-weight of the structure that provides both axial compressive stress and bending

stress due to eccentricity.
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The geometrical input of the FEA model was taken from the numerical solutions of ODE113, including

x and x’, which can solve the center line profile and the varying area respectively.

The center line profile is illustrated in Fig 3.17. Although the varying areas are not visible due to their

extremely small size, the bending moments for all cross-sections are nearly zero. However, it is important

to note that the resulting shape and cross-sectional area are not practical or feasible for a wall.

Figure 3.17: Results of the zero bending moment and constant stress shape

3.4 Discussion

This chapter presents the mathematical solutions of constant stress geometries under various load cases.

The constant stress condition is derived from the uniform strength theory, which ensures that all parts

of a structure are equally stressed (constant (maximum) stress) under specific loading conditions. When

the specified constant stress equals the maximum allowable stress of the material, it maximizes the

utilization of the entire structure.

In Sec 3.1, we derived the analytical solution for constant stress geometry under self-weight. The ex-

ponential increase of the cross-section in Eq 3.4: A(y) = A0 ∗ e
γy
σ is mainly influenced by the ratio of

γ
σ . Typically, σ has a much higher value than γ. For example, in the case of a standing wall made of

C20/25 concrete, σ is 13300kN/m2 (compressive strength), and γ is 25kN/m3 (specific weight of con-

crete). Consequently, the exponent γ
σ is nearly zero, leading to a negligible increase in the cross-section

depth of 0.19cm in a 5-meter-high structure, representing a percentage increment of 0.94%. Thus, for

cases where σ significantly outweighs γ, the constant-stress geometry subjected to self-weight exhibits

only a minor change in increasing the area.

In Sec 3.2, we derived the analytical solution for constant maximum stress geometry under uniformly

distributed load q. As the maximum bending stress in a symmetric and homogeneous cross-section is

proportional to the distance to the neutral axis, the maximum tensile bending stress is equal to the

maximum compressive bending stress at one cross-section. Consequently, Fig 3.6 illustrates the same

maximum stress on the tension and compression boundaries.
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The last load case discussed in Sec 3.3 involves the combination of self-weight and uniformly distributed

load. The criterion for this case is to achieve ”constant maximum stress on the tension boundary,”

which leads to two distinctly different geometries depending on the specified constant stress σ equals

0 or 1300 kN/m2, the tensile strength of the C20/25 concrete. When σ = 0, an analytical solution

was found. However, when σ = 1300kN/m2, no analytical solution exists for this particular case, and

numerical approximation is employed, resulting in a triangular geometry, similar to the form obtained

under uniformly distributed load q only. Fig 3.18 displays a comparison of the three results.

Figure 3.18: Comparison of the constant stress geometries

The middle and right graphs depict the forms of constant maximum tensile stress with σ = 0 and σ =

1300, respectively. It is evident that when allowing tensile stress to occur in the structure, the required

material decreases significantly, resulting in a completely different geometry. The bottom depth decreases

from 120 to 26.71 cm. When σ = 0, the structure achieves a compression-only form when subjected to

bending moment. Though require more material, the advantage of compression-only configuration is

remarkable when using materials with low tensile strength. Additionally, the symmetric shape ensures

that the tension boundary always remains at the specified constant stress no matter whether the load

comes from the left or right side, making it practical in real-world applications.

On the other hand, the difference between the left and right graphs lies in the inclusion of self-weight

in the derivation. As self-weight generates compressive stress, it proves beneficial for supporting the

side in tension, thereby requiring less material to maintain constant stress. The bottom depth decreases

from 27.17 to 26.71 cm with the assistance of self-weight. However, it is surprising that the numerical
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approximation of the right graph results in a similar linear shape, and the decrease in bottom depth is

negligible. To determine if self-weight truly does not significantly influence the form of constant stress

when the specified σ is non-zero, a comparison is conducted with various uniformly distributed loads q.

As a precautionary measure, the scale of load q needs to be adjusted as the current value of q=2kN/m

may be relatively large for the structure, potentially making the influence of self-weight indistinguishable.

Therefore, investigating the impact of self-weight under different loads q is essential to comprehend its

significance in shaping the constant stress geometry.

Figure 3.19: The influence of self-weight inclusion under different scales of uniformly distributed load q

The investigated variable q load includes 10 times larger and 10 times smaller values than the current

value. The results clearly demonstrate that, regardless of the scale of the uniformly distributed load,

the effect of self-weight on the constant stress geometry remains minor. The geometry retains its linear

shape, and the reduction in weight is negligible. However, one notable finding is that as the load q

increases, the positive influence of self-weight also slightly increases. While this influence remains small

overall, it indicates that self-weight can play a more significant role in optimizing the structure’s constant

stress geometry under higher load conditions.

The final comparison is between Fig 3.9 and Fig 3.15. Both load cases are the same, while one criterion

aims for constant stress of zero on the tension boundary, and the other focuses on achieving zero bending
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moment in the structure, achieved by utilizing the bending moment resulting from the eccentricity of

self-weight.

Figure 3.20: Comparison of constant stress geometry and zero bending moment geometry

Fig 3.20 shows that the two graphs exhibit high similarity, with both analytical expressions containing

a term of
√
γqy

γ . This similarity may be attributed to the underlying equilibrium logic shared by both

criteria: the effect of self-weight compensates for that of the uniformly distributed load. However, one

approach seeks to equalize stress, while the other equalizes the bending moment. It is observed that the

bottom depth of the right graph is slightly lower due to the use of eccentricity. However, the asymmetric

shape may not be practical in the real world, where the load q might come from another side, resulting

in this geometry working in the opposite way and worsening the stress condition.

In conclusion, this chapter’s results demonstrate the effectiveness of constant stress geometries under

various load cases and criteria. By utilizing analytical solutions and numerical approximations, we can

achieve optimal designs that ensure efficient material usage and practicality in real-world applications.

3.5 Case study

In this case study, we explore the use of sustainable materials in the design of a noise barrier. As

mentioned in Chapter 1, the chosen sustainable material is earth, which offers environmentally friendly

and cost-effective advantages. To ensure long-term durability, we account for the influence of water and
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frost on the material’s properties by reducing its tensile strength from 0.49 MPa to 0.2 MPa and flexural

strength from 1.25 MPa to 0.5 MPa.

The height of the noise barrier is set at 3 meters, and the density of the earth material is 2067 kg/m3

(20.28 kN/m3). Additionally, the uniformly distributed load q comprises two components: wind load as

the primary action and aerodynamic pressure as the accompanying action.

Wind load is calculated by: Extreme wind pressure * wind pressure coefficient (wall zone D)=

0.49kN/m2 ∗ 1.2 = 0.59kN/m2 (3.43)

Aerodynamic pressure is calculated by: aerodynamic pressure * reduction streamlined train * combina-

tion factor=

0.24kN/m2 ∗ 0.6 ∗ 0.8 = 0.12kN/m2 (3.44)

In SLS:

0.59 + 0.12 = 0.7kN/m2 (3.45)

The height of the noise barrier is set at 3 meters, and the density of the earth material is determined to

be (20.28kN/m3). Additionally, the uniformly distributed load q comprises two components: wind load

as the primary action and aerodynamic pressure as the accompanying action.

Using the real values as inputs to Eq 3.11, the optimized bottom depth is calculated to be 68 cm, and

the total weight of the structure is estimated at 34213 kg.

The sustainable noise barrier is designed and built at the InnovA58 site. Remarkably, the analytical

derivation indicates that no tension occurs in the structure, eliminating the need for reinforcement to

handle tension forces. Moreover, the conventional concrete strip foundation commonly used for noise

barriers is unnecessary in this case. Instead, the structure stands freely on a surface gravel foundation.

The gravel foundation not only provides a stable base but also aids in efficient water drainage and

prevents capillary action that might otherwise harm the structure.

To enhance sound insulation, a step-wise part is added on top of the base shape derived from the

analytical solution. This ensures that the noise barrier effectively serves its intended purpose.
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Figure 3.21: Sustainable noise barrier built at the InnovA58 site

In conclusion, this case study showcases the successful application of constant stress geometry in the

design of a noise barrier, offering an eco-friendly and economical solution while maintaining structural

integrity.
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Chapter 4

Numerical structural

optimization-2D

Sec 2.2 has elaborated the general numerical structural optimization techniques. Topology optimization

focuses on determining the optimal distribution of material within a given design space, allowing for the

identification of crucial regions or patterns that provide optimal structural performance. This process

helps obtain an initial idea of the overall geometry and layout of the structure, which should be the

optimal topology.

Once the topology optimization provides a fundamental model, shape optimization can be employed to

refine further and optimize specific design variables. Shape optimization involves modifying the geom-

etry or boundaries of the structure to improve specific performance criteria, such as stress distribution,

displacement, or other design objectives. It allows for more precise adjustments and design fine-tuning

based on given requirements or constraints.

In conclusion, preliminary design benefits greatly from topology optimization. Shape optimization, on the

other hand, is more advanced but relies on a foundational design to establish the initial parameters of the

optimization problem. When the problem is adequately defined and parameterized, shape optimizations

hold significant potential for achieving optimal outcomes [51]. By integrating topology optimization

and shape optimization techniques, designers can benefit from an iterative process that starts with a

coarse design approximation and progressively refines it to achieve a more sophisticated and optimized

shape. This approach can help balance structural performance, manufacturability, and other design

considerations.

The purpose of this chapter is to compare the numerical optimized results with the analytical representa-

tion of shapes derived from the previous Chapter 3. The procedures for integrating topology optimization
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and shape optimization are as follows:

1.) Validate Karamba3D ”BESO for Shells”-component’s ability to include self-weight in topology opti-

mization.

2.) Conduct topology optimization and compare it with results from Sec 3.3.

3.) Find an efficient parameterized interpretation of topology-optimized geometry to further perform

shape optimization.

4.) Write a penalty function to combine constraints (maximum allowable stress and minimum thickness)

into the objective function.

5.) Retrieve the least weight combination of design variables as the optimized result.

4.1 Validation of Grasshopper’s Topology Optimization Tool

It is crucial to consider the impact of self-weight during the topology optimization procedure, as to

compare the numerical results with analytical results which include self-weight in the derivation. Con-

sequently, the first step is to assess the capability of the topology optimization tool to incorporate

self-weight considerations. In this study, the chosen tool for this purpose is the ”BESO for Shells”-

component in Karamba3D, as it offers an intuitive approach for defining gravity loads, as discussed in

Sec 2.2.3.2.

In Section 2.2.2, we discussed the application of the extended BESO algorithm to incorporate the effect of

self-weight in each iteration of the topology optimization process. As demonstrated in the first example,

when considering a rectangular design domain measuring 1m × 0.5m with pin supports at both ends,

the optimization resulted in an arch-shaped structure after removing 85 % of the material [9]. Building

upon this assumption:

Material: Young’s modulus of 200 GPa, Poisson’s ratio of 0.3, and a density of 78 kg/m3

BESO parameters: ER = 3%, ARmax = 2%, rmin = 30 mm, Target ratio 15 %

The topology optimization conducted with Karamba resulted in a shape similar to Fig 2.14 [9]. Notably,

the ”BESO for Shells” component in Karamba3D utilizes the soft-kill method, which suggests that the

expected result should be closer to Figure (a) as illustrated in the paper [9]. However, the obtained

result appears to resemble Figure (b) instead. This discrepancy could be attributed to the absence of a

user-defined input for the penalty factor q in Karamba, which is set to 5 in the referenced paper.
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Figure 4.1: Comparison of BESO soft-kill result from [9] example 1 and Karamba3D result

In the second example, both self-weight and a point load F are applied to the classic MBB beam. With

the same material properties and parameters setting, except for the Target ratio 4̄0 %, Karamba is able

to generate similar results shown in Fig 2.15, see the comparison below.

Figure 4.2: Comparison of BESO soft-kill results from [9] example 2 and Karamba3D result

The two examples presented serve as validation for the ”BESO for Shells” component in Karamba3D,

demonstrating its capability to generate satisfactory results while considering the influence of self-weight.

This successful validation allows for the continuation of the research.

4.2 Topology optimization

Topology optimization was conducted in this section to gain initial insights into the most efficient shape.

The assumptions are the same as the ones made in the analytical derivation in Sec 3.3.6.
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4.2.1 Topology optimization model setup

The design space was defined as a rectangular area with dimensions of 1.6m x 5m. The selected material

for the optimization was concrete C20/25 with a specific weight of γ = 25kN/m3 and Young’s modulus

of E = 200 GPa. The load combination consisted of the self-weight of the structure plus a uniformly

distributed load of q = 2kN/m applied on the left boundary of the design space. The support condition

was set as a moment fixed at the bottom end. Additionally, a mesh size of 0.1m x 0.1m was chosen.

It’s somewhat tricky with the ”Loads”-component to demonstrate line load for mesh, as ”MeshLoad” only

takes surface loads. To properly transfer line load to the mesh shell employed here, short truss elements

that have the same length as the mesh size were integrated at the loaded boundary using Karamba3D’s

‘MeshBreps’-component, in order to take the block load. The cross-sectional area of such intermediate

truss elements must be extremely small, or else the structural analysis results will be influenced.

Following the preparation of the model, topology optimization was conducted to determine the optimal

shape. The initial result is depicted in Figure 4.3 (a). The graph reveals that the mesh at the top left

corner experiences the greatest displacement and is therefore unable to effectively transfer the line load

anymore. Consequently, material in that region is removed. However, it is important to maintain a fixed

height of 5 meters to ensure comparability with the analytical derivation result, which assumes a height

of 5 meters.

To address this issue, a non-design space needs to be constrained, with the associated mesh elements

excluded from the topology optimization process. Specifically, a 0.2m x 5m rectangle was defined at the

left boundary and set as a fixed region, as illustrated in Fig 4.3 (b).

Figure 4.3: The effect of defining non-design space, design domain box:1.6 ∗ 5m
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The results of topology optimization provide clear insights into the efficient utilization of materials

within the structure. Fig 4.3 demonstrates that the core of the cross-section has zero density, indicating

that these areas have less influence on the overall structural performance and can be removed without

compromising the structural integrity.

4.2.2 Comparative results from analytical and numerical methods

The numerical method has a limitation in that the optimized shape is dependent on a particular load

case. Specifically, when a uniformly distributed load q is applied in one single direction, causing one side

to be in tension and the other side to be in compression, the topology optimization algorithm removes

mesh based on the result from this specific load case, and results in asymmetric shape. In contrast,

analytical derivation employing the concept of constant stress allows for a logical criterion: ’maximum

tensile stress from load q in all cross-sections along the height + compressive stress from self-weight =

constant.’ This criterion gives a symmetric shape and ensures that the side in tension always remains

constant regardless of the direction of the uniformly distributed load, which is the case in the real world.

Given the aforementioned limitation, the topology optimization algorithm is incapable of producing a

symmetric shape based on the specified load case. Therefore, for a meaningful comparison, the analytical

result for the second criterion presented in Sec 3.3 is considered, where the eccentricity of self-weight is

utilized to balance the bending moment induced by the load q. Figure 4.4 depicts the optimized shapes

obtained through analytical and numerical methods. Remarkably, the boundaries of these two shapes

exhibit a striking similarity.

Figure 4.4: Comparison of numerical and analytical results from Sec 3.3.6
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4.3 Shape optimization

Two main reasons drive the decision to perform shape optimization on the results of topology optimiza-

tion. Firstly, it is crucial to avoid having a hollow core in the structure, as mass plays a critical role in

providing effective sound insulation. While one approach is to fill the void with non-structural and more

environmentally friendly material, another intriguing possibility is to conduct shape optimization assum-

ing the use of a monolithic material, aiming to achieve the lightest possible weight while maintaining

structural integrity.

Secondly, topology optimization often yields non-smooth skeletal structures that are impractical and

challenging to manufacture. Therefore, it becomes necessary to employ a smoothing algorithm to refine

and interpret the result, making it more feasible for practical implementation [52].

4.3.1 Shape optimization model setup

In Sec 2.2.1.2, three approaches for representing the boundary shape of structural elements were dis-

cussed. In this study, the chosen strategy involves utilizing a polynomial representation of the boundaries.

Polynomials have been extensively employed in shape optimization to represent boundaries, where the

coefficients of the polynomial function serve as design variables [25]. To implement this approach, a C#

code was developed within the Grasshopper environment. Two inputs are required for the code: p takes

a list of points lying on the target curve as input, and d is the desired degree of the resulting polynomial

function. As output, the code generates a function of y, denoted as f(y), with the desired degree and its

corresponding coefficients. Below is the Pseudo code representation:

Algorithm 1 Polynomial function approximation

Create empty lists x and y
for each point in p do

Add the x-coordinate of the point to list x
Add the y-coordinate of the point to list y

end for
Sort the list y in ascending order while maintaining the corresponding order of elements in x
Find the polynomial coefficients factors that best fit the data points (y, x) using the desired degree d
and the QR method
Create an empty list elements
for each coefficient in factors do

Add a string element to list elements in the format coefficient ∗ yindex
end for

A polynomial function with a degree of at least 6 would be required to achieve a perfect fit of the

curve, resulting in more than 7 coefficients. With the use of polynomials to represent the design space,

the coefficients are the variables to optimize. However, optimizing such a large number of variables

simultaneously is not efficient and hard to control.
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In order to balance computational efficiency and accuracy, the degree of the polynomial function was set

to 2, which provides a reasonable approximation of the numerical result. By reducing the degree and

the number of coefficients to just three, it becomes more manageable to optimize the variables.

The three coefficients have distinct influences on the resulting curve. The coefficient for x2 determines

whether the curve is concave or convex, while the coefficient for x governs the starting angle of the curve.

The constant term allows for horizontal shifting of the curve. By focusing on these three variables, it

becomes clear how they individually affect the shape of the curve, simplifying the optimization process

and saving significant computational time.

Figure 4.5: Polynomial approximation: coefficients as design variables

After defining the design variables, the structural performance of the design is evaluated using Karamba3D,

a finite element analysis (FEA) tool. The boundary condition and load cases are the same as those in

the previous sections. For shape optimization, the selected tool is Opossum, as discussed in Sec 2.2.3.1.

4.3.2 Penalty function

The objective of the optimization is to minimize the weight of the structure while ensuring that the

maximum allowable tensile stress of the material is not exceeded. Since Opossum is a single objective

optimization tool, it is necessary to incorporate the constraints into the objective or fitness function

to guide the optimization process. This is achieved by using a penalty function, which allows the

optimization algorithm to consider and enforce the satisfaction of the constraints.

In the context of optimization, constraints represent limitations or conditions that the solution must

adhere to. These constraints can take the form of equality or inequality constraints. The penalty function

assigns a penalty value based on the violation of each constraint, with the penalty value increasing as the
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constraint violation becomes larger [53]. The objective function, which is the function to be minimized

or maximized, is modified by adding the penalty term that accounts for the constraint violations. This

modified objective function, incorporating the penalty term, is then optimized by the algorithm to find

feasible solutions that satisfy the constraints.

By incorporating the penalty function into the objective or fitness function, the optimization algorithm

is guided toward finding solutions that not only minimize the objective but also respect the specified

constraints. This ensures that the optimized design meets the required performance criteria while con-

sidering the constraints imposed by the design problem.

The concept of the penalty function is mathematically defined based on the work of Thomas [54]. In Fig

4.6, the application of the penalty function is illustrated. The demonstrated list presenting stress values

is shown on the left-hand side as input, which should be the maximum tensile stress that occurs in the

structure.

The utilization, in this case, is calculated as the ratio between the tensile strength of the material

(0.13kN/m3) and the maximum tensile stress in the structure. It is desirable to have design solutions

with utilization ranging from 0.6 to 0.8 as these values indicate an efficient use of the material. Therefore

take this desired design space as the target utility that results in a value of 1, indicating no penalty. If

the utilization falls below this range, it is considered an inefficient shape and is penalized by assigning

a penalty value greater than 1. This penalty value serves to amplify the weight of the inefficient shape

during the optimization process, discouraging its selection. Conversely, designs with maximum stress

exceeding the maximum allowable stress in the structure should not be considered. These designs receive

a higher penalty function than the inefficient range, effectively eliminating them from consideration in

the optimization process.
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Figure 4.6: Demonstration of penalty function

Fig 4.5 illustrates the minimum weight result obtained using the previously mentioned penalty function.

However, upon closer inspection, it is evident that the thinnest cross-section depth of 6.3 cm of this

solution is not a feasible thickness for a noise barrier.

To address this issue, a second constraint was incorporated into the penalty function. This constraint

should ensure that the thickness of the resulting shape remains within the acceptable range. By imposing

this additional constraint, the optimization algorithm is guided toward finding solutions that not only

minimize weight but also satisfy the thickness requirement.

Figure 4.7: Infeasible result without thickness constraint, minimum thickness: 6.3 cm, weight: 3322.8
Kg
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The penalty function for enforcing the thickness constraint follows a similar approach to the stress

constraint. In this case, a minimum allowable thickness of 20 cm is defined. Designs with a thickness

below this value incur a higher penalty, indicating their infeasibility. Conversely, designs with a thickness

exceeding 30 cm, which may indicate excessive material usage and weight, receive a penalty, yet lower

than the penalty for solutions in the unacceptable range. The solutions with a thickness of 20-30 cm

receive no penalty as the desired range.

To combine the penalties for stress and thickness constraints, a weighted sum approach is employed. The

penalties for stress violation and thickness violation are multiplied by their respective weights and then

summed together. The weights can be adjusted based on the relative importance of each constraint in the

optimization problem. And the existence of the square root effectively smooths the penalty values [54]:

pfin =
√
p1(x) + p2(x) (4.1)

Figure 4.8: Grasshopper script for shape optimization

By striking a balance between the objective of weight minimization and the constraints imposed, the

optimization algorithm can efficiently explore solutions that achieve both stress requirements and the

desired thickness range. This approach guarantees that the resulting optimized shape is both feasible

and practical.

4.3.3 Optimized results for varying target utilization

To validate the shape optimization model, the initial step involves replicating the geometry obtained

through analytical methods in Section 3.3. This is achieved by adjusting the input parameters to the

penalty function that determines the target range of utility, namely ’minS’ and ’maxS’, as illustrated in

Fig 4.8.
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4.3.3.1 Asymmetric

Fig 4.4 demonstrates the similarity between the topology optimization result and the analytical result.

In the analytical derivation, the criterion for achieving this asymmetric shape is to balance the bending

moments caused by the uniformly distributed load and the eccentricity of self-weight, resulting in no

bending moment and thus no tensile stress in the structure. To reproduce this geometry through nu-

merical shape optimization, a target utility close to zero is desired, indicating a maximum tensile stress

of zero in the structure.

This serves as the starting point to validate the accuracy of the numerical model. Fig 4.9 shows a

comparison of the analytical and the numerical shape optimization results.

Figure 4.9: Comparison of analytical derivation (left) and shape optimization (right) results: Asymmetric

The solution obtained through analytical derivation exhibits a square root shape, while the numerical

model represents the shape using a second-degree polynomial, resulting in a similar overall shape and

the tensile stress in the structure is nearly zero. However, a slight deviation from the analytical solution

is observed at the top boundary due to the imposed 20cm thickness constraint. Nevertheless, the bottom

depth and weight have a high degree of similarity between the analytical and numerical results, confirming

the accuracy of the numerical model.
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The subsequent step involves examining the influence of various input values assigned to the target utility

on the resulting geometry. This investigation enables a comprehensive understanding of how the shape

progresses from a utility value of zero to one, shedding light on the dynamics of the optimization process.

Table 4.1: Numerical shape optimization: Asymmetric shape

Once again, the results presented herein were obtained by optimizing for the least weight while considering

the constraints related to utility and thickness. It can be observed that as the desired utility increases,

the shape undergoes a transition from convex to concave. The highest tensile stress is concentrated in

the middle of the tensile side; however, it does not achieve a uniform distribution of tensile stress across

the entire height of the structure, which indicates a less efficient design. Moving from the second graph

to the rightmost graph, the material is gradually removed from the bottom and added to the top. It

is anticipated that with higher utility, the weight of the structure should decrease. However, the final

shape exhibits a higher weight compared to the shape with a lower maximum tensile stress in it. This

discrepancy may be attributed to the optimization algorithm introducing unnecessary material at the

top in order to generate a higher bending moment that satisfies the utility constraint. Consequently, this

geometry lacks practicality and loses its physical significance.

4.3.3.2 Symmetric

The content of this section is almost the same as the previous section, with the key difference being that

the geometries presented here are symmetric. The first step is again to verify if the numerical model

can produce results that align with the analytical solutions. In Sec 3.3.1, a symmetric shape with a

constant zero tensile stress at the out-most fibre along the height was examined. To achieve this shape,

the target utility is set to zero, indicating a maximum tensile stress of zero in the structure. The figure
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below illustrates the comparison between the analytical solution and the numerical optimized results.

Figure 4.10: Comparison of analytical derivation (left) and shape optimization (right) results: Symmetric

The analytical derivation yields a square root-shaped solution, while the numerical model employs a

second-degree polynomial to represent the shape, resulting in a similar overall shape and negligible

tensile stress in the structure. The bottom depth and weight exhibit a high degree of similarity between

the two results.

Another shape explored in the analytical derivation in Sec 3.3.3 is a geometry with constant tensile stress

along the extreme fiber, equivalent to the material’s tensile strength. To generate this geometry, the

desired utility input should be set to one, indicating a maximum tensile stress equal to the material’s

tensile strength. It is important to note that there is no analytical solution to this equation, and thus

the result was numerically approximated using the Matlab ODE113 method in Sec 3.3.3. The resulting

geometry exhibits a triangular shape. Consequently, the second-degree polynomial is expected to have

one degree lower, implying that the variable ’c’ should be close to zero.
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Figure 4.11: Comparison of analytical derivation (left) and shape optimization (right) results: Symmetric
with constant stress

The numerical shape optimization indeed yields a linear shape represented by a linear function. All the

values closely align with each other. The slight deviation observed can be attributed to the fact that the

analytical result is not a perfect linear shape and is therefore lighter than the numerical result.

The following step is to explore the impact of different input values assigned to the target utility on the

resulting symmetric geometry. This analysis will provide valuable insights into how the shape evolves as

the desired utility value changes.

85



4.4. DISCUSSION

Table 4.2: Numerical shape optimization: Symmetric shape

Except for the first graph, the remaining three graphs all display linear results with a constant maximum

allowable stress on the extreme fiber. These numerical results effectively support the ”uniform strength

theory” utilized in the analytical derivation. In numerical shape optimization, the primary objective is

to minimize the weight of the structure while adhering to the stress constraint, which yields the exact

same results as the constant stress geometry. From this, we can deduce that the uniform strength theory

serves as a valuable criterion for generating structures that are both lightweight and efficient.

4.4 Discussion

In this section, we discuss the methodology and results of numerical structural optimization in two

dimensions. Firstly, topology optimization was conducted to determine the optimal distribution of the

material within a rectangular box subjected to self-weight and uniformly distributed load from one side.

This step provides first insights into the optimal topology and allows us to analyze its similarities with

the analytical derivation.

After obtaining the fundamental geometry from topology optimization, shape optimization was con-

ducted to further refine the outcome and eliminate any hollow-core resulting from the previous topology

optimization. The contour of the topology optimization result was then interpreted by a second-degree

polynomial, which has three coefficients serving as design variables for shape optimization. The objec-

tive function of shape optimization is to minimize the weight of the cross-section with unit width while

adhering to stress and thickness constraints for practicality. These constraints are implemented in the

penalty function since Opossum is a single objective optimization plug-in in Grasshopper.
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By setting different desired utilities for the structure, the optimization algorithm generates various min-

imum weight results accordingly, which can be compared to the analytical derivation to validate its

correctness.

Topology optimization:

The first step in topology optimization involved validating the capability of the Karamba3D ”BESO

for Shells” component to include self-weight in the optimization process. The results obtained from

Karamba exhibited a striking resemblance to the outcomes achieved by Huang, Xiaodong, and Xie,

YM [9], confirming its effectiveness in handling self-weight considerations. However, it’s worth noting

that the results of topology optimization are highly sensitive to inputs, such as ER/ARmax/Rmin (as

discussed in Sec 2.2.1.3). As a consequence, careful manipulation of these advanced inputs was necessary

to obtain the expected outcomes.

Additionally, to ensure the meaningfulness of the results, we found it essential to restrict the non-

design space in our research by fixing the desired height of the structure. This constraint was vital in

preventing the algorithm from inadvertently removing the upper part of the wall, which could lead to

an undesirable short wall that lacks practicality. By successfully managing these critical aspects during

topology optimization, we laid a solid foundation for desired results.

Another noteworthy finding was the high similarity between the topology optimization result and one of

the analytical results, which followed the criterion of having no bending moment in the structure. This

criterion was achieved by balancing the bending moment resulting from the uniformly distributed load

and the eccentricity of the geometry. The similarity between the two shapes is expectable, considering

the limitation of topology optimization, which can only produce an asymmetric shape due to the assigned

uniformly distributed load in a single direction. In real-world scenarios, loads may come from both sides,

making the asymmetric shape impractical. In contrast, the analytical derivation employs the concept

of constant stress on the loaded boundary in tension, resulting in a symmetric shape that ensures the

boundary in tension remains constant regardless of the direction of the uniformly distributed load. As

a result of the limitation of topology optimization, the optimized asymmetric geometry compensates for

the bending moment from the external load by utilizing the bending moment from the eccentricity of

self-weight, leading to a similar shape as the analytical solution.

Additionally, it is worth noting that although the bottom depth of the topology-optimized result is larger

than the analytical solution, the weight is lighter. This is due to the algorithm removing the material

at the core of the structure as it is considered inefficient. The advantage of this hollow structure lies

in identifying the non-structural part, and the empty space can be filled with sustainable materials to

provide sufficient sound insulation, allowing for significant structural material savings.
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Figure 4.12: Topology optimization and analytical from of zero-bending moment

Shape optimization:

The decision to conduct shape optimization can be attributed to three main reasons:

Firstly, although topology optimization yields a significant advantage by saving structural material at the

core of the hollow geometry, it may not always align with the practical choice of using monolithic material

for the entire structure. In such cases, it becomes essential to restrict the zero density, which influences

the optimal geometry without including a hollow part, to ensure the geometry remains practical.

Secondly, the results of topology optimization often exhibit a zig-zag boundary. To address this issue

and improve manufacturability, it is necessary to find a way to interpret and represent the geometry

with smooth contours.

Thirdly, to enable a valuable comparison between numerical methods and analytical derivations, it is

crucial to generate a symmetric shape. As topology optimization inherently produces an asymmetric

result, a second-degree polynomial is employed to approximate the density contour, and its three coeffi-

cients are treated as design variables for shape optimization. By doing so, we can achieve a symmetric

shape that aligns with the analytical solution and facilitates a more meaningful comparison between the

two methods.

In summary, shape optimization plays a critical role in refining the topology optimization results, im-

proving manufacturability, and enabling valuable comparisons with analytical derivations.

The results of shape optimization demonstrate remarkable similarities to the analytical solutions, as
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evident from Fig 4.9, 4.10, and 4.11. The slight discrepancies observed could be attributed to the

limitations of the second-order polynomial used in the approximation. As the degree of the polynomial

increases, which also means more design variables, the polynomial expressions become more similar to

the analytical solutions. Nevertheless, considering the trade-off between computational efficiency and

accuracy, the three design variables utilized in the optimization process suffice to achieve favorable

outcomes.

Another important factor influencing the results is the penalty function employed in the optimization

process. Deviations observed in the numerical optimized results are primarily due to the constraints

imposed in the penalty function, particularly the 20-centimeter constraint. In setting up the penalty

function, it is advisable to assign higher penalties to unacceptable design spaces compared to inefficient

design spaces, promoting faster convergence as the algorithm avoids such regions. Additionally, the

square root method, Eq 4.1, for combining two constraints proves to be effective, leading to desired

results.

It is noteworthy that the right three graphs in Fig 4.1 were not covered in the analytical part. These

shapes fail to satisfy the criterion of uniform strength theory on the loaded boundary, which implies

that the analytical solutions for these shapes do not exist. Furthermore, as the desired utility increases,

allowing higher tensile stress in the structure, it is observed that the weight of the optimal shape does

not decrease, indicating that these results are neither efficient nor practical in achieving uniform strength

theory.

In conclusion, Opossum emerges as a robust tool for optimization, producing results comparable to

analytical derivations. Despite the different criteria utilized by the two methods—constant maximum

tensile stress for analytical derivation and minimum weight geometry with stress constraints for shape

optimization—, they yield similar outcomes. It is worth noting that no closed-form solution existed in

analytical derivation for ”constant maximum tensile stress under self-weight and uniformly distributed

load,” leading to numerical approximation using Matlab’s non-linear differential solver ODE113. The

impressive performance of Opossum in achieving nearly identical results underscores its efficacy in nu-

merical optimization.
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Chapter 5

Numerical structural

optimization-3D

The previous sections focus on two-dimensional cross-sections, while The third part of the research delves

into the three-dimensional optimization of the structure. The optimizations primarily target two aspects:

the corrugated shape in the longitudinal direction and the cross-sectional area along the noise barrier,

varying in both the longitudinal and vertical directions.

In the first section, five variables are introduced to control the longitudinal shape of the noise barrier.

These variables play a crucial role in determining the specific corrugated configuration.

The second section focuses on another set of two variables that dictate the assignment of the cross-section

along the longitudinal direction of the noise barrier.

Subsequently, the setup for finite element analysis (FEA) using Karamba is presented. This step is crucial

for evaluating structural performance and obtaining accurate results during the optimization process.

Finally, the optimization process is carried out using Opossum, where seven design variables are manip-

ulated to attain the minimum weight. The resulting outcomes are subsequently discussed and analyzed.

5.1 Longitudinal direction-3 types of corrugations

The design of the longitudinal shape of the noise barrier takes inspiration from various types of corrugated

sheets commonly found in roof structures, floors in railway vehicles or bridges, and the aircraft industry

[55]. These corrugated shapes are well-known for their ability to enhance bending stiffness and increase

buckling loads in structures, making them particularly intriguing for the current research. The objective
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is to leverage the unique stiffening effects offered by these special shapes and incorporate them into the

design of the noise barrier.

Three fundamental types of corrugation have been identified as the base shapes, which will then be

combined using an interpolation function to create the final longitudinal profile. The interpolation

weights assigned to each shape determine their respective contributions and importance in the overall

design. Through the optimization process, it becomes evident that the corrugation with a higher weight

demonstrates superior structural performance. The five design variables in total encompass both the

geometric properties of the shapes and the interpolation process, allowing for comprehensive control over

the longitudinal shape.

5.1.1 Individual design variables for each type of corrugations

Three main types of corrugated shapes construct the longitudinal shape of the noise barrier. The first

type consists of circular shapes formed by two arcs within one cycle. These shapes are controlled by two

design variables: the angle t and the radius R of the circle. The first row in Fig 5.1 illustrates this type

of shape.

The second type of shape is trapezoidal, as shown in the second row in Fig 5.1. It requires three variables

to control its geometry: the angle θ, half the height h, and half the length l of one cycle.

The third type is the sinusoidal shape, commonly used in corrugated cardboard. It follows the general

equation y = a ∗ sin(b ∗x), where a controls the amplitude and b controls the frequency of the sinusoidal

curve. This shape provides a smooth undulating pattern.

The following top view illustrations depict the longitudinal corrugated shapes:
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Table 5.1: Three corrugated shapes and variables

By combining and interpolating these three types of shapes, the final longitudinal shape of the noise

barrier can be obtained. The interpolation weights of each type determine their contributions to the

overall design.

5.1.2 Combine and reduce the number of variables

In the previous section, each of the three corrugated shapes has its own set of variables to control the

generation of individual waves. However, it is possible to reduce the number of variables by identifying

the relationships between certain parameters.

The height and length of a single cycle can be controlled by two independent variables for all three types

of shapes. The main reason for doing this is to ensure that the three corrugations can be effectively

combined using the interpolation function to create the final geometry. To achieve this, it is crucial to

maintain consistency in the scale of the shapes. Specifically, the height and length of all three shapes

should remain the same but retain their corrugation characteristics when manipulating the input to the

design variables.

For the circular shapes, the parameters R and t are chosen to serve as independent variables governing

the height and length of the shapes. In the case of trapezoidal shapes, the height h and half-length l

depend on both R and t. The relationships between these variables can be seen in the figure below:

92



5.1. LONGITUDINAL DIRECTION-3 TYPES OF CORRUGATIONS

Figure 5.1: Relationships of variables: circular and trapezoidal shape

Length: 4R cos (t) = 2l, l = 2R cos (t) (5.1a)

Height: R−R sin (t) = h (5.1b)

Similarly, the parameters a and b used in sinusoidal shapes also depend on R and t. The relationships

between these variables are shown in Fig:
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Figure 5.2: Relationships of variables: circular and sinusoidal shape

Length: 4R cos (t) =
2π

b
, b =

2π

4R cos (t)
(5.2a)

Height: R−R sin (t) = a (5.2b)

It is important to note that there is still one independent variable to control the start angle of the

trapezoidal shapes, which is unrelated to the R and t parameters.

Reducing the number of variables provides several advantages. Firstly, it significantly reduces computa-

tional time and power requirements, making the optimization process more efficient. Additionally, this

step ensures that the three shapes have consistent dimensions, specifically the same length and height

in one cycle. This is crucial for interpolation between the shapes. If the initial seven parameters are all

independent and result in the three corrugations having different sizes, the interpolation would not be

meaningful.

5.1.3 Interpolation function

The interpolation function plays a crucial role in determining the respective contribution of each shape.

By assigning weights to the three types of corrugation, the interpolation function allows for a combi-

nation of their characteristics to achieve an optimal design solution. The choice of weights becomes

particularly important as it determines the relative importance of each shape and can significantly in-
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fluence final structural performance. The weights for each shape are S1 (circular), S2 (trapezoidal), and

S3( sinusoidal). Inside the triangle shown in Fig 5.3 is the design space of interpolation weights, which

have the following relationship [56]:

Figure 5.3: Interpolation function

0 ≤ S1 ≤ 1 (5.3a)

0 ≤ S2 ≤ 1 ∩ S2 ≤ 1− S1 (5.3b)

S3 = 1− S1− S2 (5.3c)

Figure 5.4: Three types of corrugated shape with the same scale

The final shape is the weighted results of three corrugations:

yf = y1 ∗ S1 + y2 ∗ S2 + y3 ∗ S3 (5.4)
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where : yf = y value of the final weighted shape

y1 = y value of the circular corrugation

y2 = y value of the trapezoidal corrugation

y3 = y value of the sinusoidal corrugation

Setting design variables to control the weights of the three shapes offers several advantages. Firstly, it

provides flexibility in adjusting the contribution of each shape to the overall design. By manipulating the

weights, it becomes possible to explore and understand the structural properties of the shapes, like bend-

ing stiffness in this case. Additionally, the use of variable weights allows for a more nuanced exploration

of the design space in one model. This enables a fine-tuning of the design to meet specific performance

requirements or constraints. In conclusion, this approach provides greater control and flexibility in

achieving an optimal design solution that meets the desired structural performance requirements.

5.2 Cross-section assignment

After determining the longitudinal curve, another key aspect of defining the geometry of the noise barrier

is the assignment of cross-sections. These cross-sections not only vary along the longitudinal direction

but also across the height of the wall. The process of assigning cross-sections involves two steps of

interpolation.

Firstly, five control points are selected along the longitudinal curve. The cross-sections assigned to

these control points are obtained through interpolation between two symmetric shapes derived in Sec

4.3.3.2. Subsequently, a linear interpolation is performed between these control points to determine the

cross-sections along the longitudinal curve.

The two chosen base shapes for interpolation are the optimized results with desired utilities of 0 and

0.2, as depicted in the first two graphs of Fig 4.2. These two shapes represent extreme weights, and

the interpolation function enables the calculation of intermediate weights. The optimization algorithm

gradually reduces the cross-sectional area at the control points with lower stress levels, aiming to achieve

the lightest possible result.

5.2.1 Interpolation of two shapes

Five control points have been strategically placed along the longitudinal curve, as shown in Fig 5.5.

The red dots denoted as ”A” are positioned along the center-line of the curve, while the blue dots,

denoted as ”B”, are located at the extremities of the curve. All the red dots are assigned the same cross-

section, while all the blue dots are assigned a different cross-section. As the application of a uniformly
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distributed load is on one side in the numerical model, consequently, the blue dot at the crest and the

trough experience different stresses, leading to the optimization of distinct cross-sections. However, it is

important to note that in real-world scenarios, where loads may be applied from both sides, maintaining

symmetry is essential, resulting in the same cross-section being assigned to the two extreme blue spots.

Figure 5.5: Five control points on the longitudinal curve

The cross-sections assigned to the control points are derived through interpolation of two base shapes

obtained from the previous 2D optimization in Sec 4.3.3.2. These base shapes represent the optimized

minimum weight results under constraint utilities of 0 and 0.2. In the 3D model, the cross-section

corresponding to a utility of 0 (referred to as ’shape 1’) represents the largest area, while the cross-

section with utility 0.2 (referred to as ’shape 2’) represents the minimum cross-sectional area that can

be assigned to the control points.

Figure 5.6: First two graph taken from Fig4.2, referred to as Shape 1 and Shape 2

With the interpolation function, it becomes feasible to generate intermediate shapes between Shape 1 and

Shape 2. Specifically, the resulting three coefficients of the second-degree polynomials lie within the range
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of the three coefficients corresponding to Shape 1 and Shape 2. This allows for the creation of a smooth

transition between the two base shapes, providing greater flexibility in designing the overall geometry.

In Fig 5.7, index 1 corresponds to Shape 1, index 2 corresponds to Shape 2, and N represents the

interpolation weight. The interpolation weight N varies from 0 to 1, resulting in a continuous spectrum

of intermediate geometries. Here, two more design variables are added to control the interpolation weight

of cross-sections at point A and point B.

Figure 5.7: Interpolation of two base cross-sections

The weighted coefficients of the polynomial a+ by+ cy2 can be calculated using the following equations

5.5. Let’s take point A as an example, and use the lower index A to represent the weight and resulting

coefficients at point A.

aA = a1 ∗N1A + a2 ∗N2A (5.5a)

bA = b1 ∗N1A + b2 ∗N2A (5.5b)

cA = c1 ∗N1A + c2 ∗N2A (5.5c)

The main goal is to find an optimized longitudinal corrugated profile that results in the lowest possible

interpolation weight of Shape 1 assigned to the control points. This approach allows us to achieve a

geometry with the minimum weight and thinner cross-sections, leading to a more efficient design.

5.2.2 Linear interpolation between control points

After assigning the weighted results of cross-sections at the five control points, the next step involves

creating the cross-sections along the longitudinal curve between two consecutive control points, using the
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linear interpolation technique to ensure a smooth transition. With this, the design of the longitudinal

corrugated shape and the cross-section assignment is completed in one cycle. To effectively compare the

weight of all the candidates, which may have different lengths of one cycle, the complete cycle is repeated

until it reaches a length of ten meters. The figure below illustrates an example of the linear interpolation

technique.

Figure 5.8: Example of the linear interpolation

5.3 Structural optimization

The previous section discussed how the design variables were defined to generate the geometry, and this

section focuses on evaluating the structural performance of the design using Karamba3D, a finite element

analysis (FEA) tool. The objective function remains the same as in the 2D cross-section optimization,

which is to minimize weight while adhering to stress constraints, and the penalty function logic remains

unchanged. As mentioned, there are seven design variables in total. Three of them generate the three

different corrugated shapes, two of them control the interpolation weight of each corrugation, and the

other two control the interpolation weight of the two base cross-sections.

The main difference in this part is: The previous part focus on two-dimensional cross sections, as a

result, the support condition at the bottom needs to be moment fixed to resist bending moment from

uniformly distributed load. On the other hand, when the model extends to three dimensions, the purpose

of optimizing the longitudinal shape aims to find the shape that can provide enough bending capacity

when the structure works as a whole. Accordingly, the rotational freedom at the bottom should be

released to generate a shape that can provide enough bending stiffness itself.

The main distinction in this section lies in the focus on three-dimensional geometry. In the previous part,

the emphasis was on two-dimensional cross-sections, which necessitated fixing the support condition at

the bottom to resist bending moments from the uniformly distributed load. However, in the current
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5.3. STRUCTURAL OPTIMIZATION

three-dimensional model, the optimization of the longitudinal shape aims to discover a configuration

that can offer sufficient bending capacity when the structure functions as a whole. Consequently, the

rotational freedom at the bottom is released to generate the optimal longitudinal shape capable of

providing adequate bending stiffness on its own with the least material.

Ultimately, the interpolation weight of the three corrugated shapes is expected to offer valuable insights

into which corrugation yields superior structural performance, as it holds a greater significance in the

optimal solution. Additionally, the optimized longitudinal shape is expected to yield the lowest interpo-

lation weight of the larger cross-section, Shape 1, assigned to the control points, Thus contributing to

achieving the minimum weight for the final geometry.

5.3.1 FEA

To conduct finite element analysis, the geometry model was transformed into a structural model using the

”MeshToShell”-component in Karamba3D. This process converts the mesh into TRIC element, which

is a 3-node shear-deformable isotropic flat shell element developed by Argyris et al [57]. The TRIC

element has 6 rigid-body and 12 straining modes of deformation, allowing it to capture axial straining,

symmetrical and antisymmetrical bending, and transverse shearing. Notably, the element exhibits fast

convergence properties.

The ”MeshToShell” component takes into account the thickness of each mesh and the material properties

as input. In this case, the mesh size is set to 0.1*0.2 m, and the material used is concrete C20/25,

consistent with the material selection in the 2D optimization and analytical derivation for comparison

purposes.

Regarding boundary conditions, the model simulates an infinitely long wall. Hence, the left and right

ends are constrained in the longitudinal direction (x-axis). The bottom support is hinged support with

fixed displacements in the x, y, and z directions, while the rotational degrees of freedom are released to

allow the optimization algorithm to generate a geometry with sufficient bending stiffness to withstand

the loads.

The loads applied include the self-weight of the noise barrier and a uniformly distributed load acting

on the wall’s surface. In the previous two-dimensional models, the uniformly distributed load q was

represented as a 2kN/m line load along the centerline of a unit-width cross-section. For the current

three-dimensional model, the load is equivalent to a 2kN/m2 surface load applied on the mesh’s surface.

The structural model’s configuration can be observed in Fig 5.9.
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5.3. STRUCTURAL OPTIMIZATION

Figure 5.9: Boundary conditions and load case of the structural model

The ”ShellView” component is used to visualize the results of the structural analysis. It displays the

cross-section of the shell with thickness variations along the longitudinal direction and the height of the

wall.

The thickness of the shell may consist of different layers subjected to either tensile or compressive stress.

Each layer is identified by an ”Index of Layer,” with zero spanning the entire cross-section thickness. The

”Position of results” ranges from -1 to 1, corresponding to the lower boundary and the upper boundary

of the current layer. It is important to note that the local coordinate system might be arbitrary, so the

orientations need to be checked beforehand. In this case, the local z-axis points to the upper boundary.

The specific result of interest is the maximum tensile stress occurring in the structure. To obtain this

information, we should examine the first principal stress (tensile) at position 1, which represents the

upper boundary loaded in tension. This analysis allows us to evaluate the structural performance and

identify critical areas of the design, and optimize the geometry based on this value.

5.3.2 Optimization and results

The approach for conducting structural optimization in three dimensions is similar to the two-dimensional

method. The primary objective remains the minimization of the structure’s weight while ensuring that

the maximum allowable tensile stress of the material is not exceeded. To achieve this, the Opossum

optimization tool is employed once again. Given that Opossum is a single-objective optimization tool,

the stress constraint is incorporated into the objective function using a penalty function, guiding the

optimization process effectively. Further details on the definition of the penalty function can be found

in Sec 4.3.2.

Within the 3D model, there exist seven design variables that can be manipulated to attain the optimal
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5.3. STRUCTURAL OPTIMIZATION

geometry. Among these variables, three control the generation of three different corrugated shapes in

the longitudinal direction, while two regulate the interpolation weight of each corrugation to produce the

combined shape with weighted contributions. Additionally, the other two variables govern the interpo-

lation weight of the two base cross-sections. A visual representation of these seven design variables can

be seen in Fig 5.10.

Figure 5.10: Seven design variables in the 3D model

5.3.2.1 Optimization results: UC=0

In the first practice, the optimization algorithm minimizes the weight of the geometry while targeting

a desired utility of zero, which implies that the maximum value obtained from the first principal stress

at the upper boundary should ideally be zero. The details of the longitudinal profile can be observed in

Figure 5.2, and the cross-sections assigned at control points A and B are depicted in Figure 5.3. The total

numbers of design variables are ten in both figures, however, S3, N2A, and N2B are not independent

variables as the sum of the interpolate weight should always be one. As a result, only seven variables

are needed to be optimized.
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5.3. STRUCTURAL OPTIMIZATION

Table 5.2: Optimized design variables for longitudinal profile, UC=0

Table 5.3: Optimized design variables for cross-sections at control points A and B, UC=0

The circular corrugated shape exerts significant dominance over the longitudinal profile with an interpo-

lation weight of 0.95, while the trapezoidal shape has no contribution to the results, and the sinusoidal

shape has a minor influence with an interpolation weight of 0.05. Since the trapezoidal shape does not

impact the final geometry, the third variable, Angle θ, becomes irrelevant. On the other hand, the second

design variable, Angle t, is set to 0.1, equivalent to 18 degrees as the start angle of the arc.
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Regarding the cross-section, Fig 5.6 has illustrated that Shape 1 boasts the largest area, while Shape 2

has the smallest area. The interpolation function effectively creates intermediate cross-sectional areas

between these two extremes. Point A, positioned along the centerline of the profile, is subjected to lower

loads and necessitates a thinner cross-section. The optimized results reveal an interpolation weight of

0.28 for Shape 1 and 0.72 for Shape 2 at point A. In contrast, point B, located at the extreme position

of the longitudinal profile and experiencing higher loads, yields corresponding interpolation weights of

0.47 for Shape 1 and 0.53 for Shape 2. Consequently, Shape 2 has a higher interpolation weight at point

A, and generates a cross-section smaller than the one assigned at point B.

The figure below provides a clearer illustration of the optimized geometry with the utility constraint set

to zero. The top view offers insights into the linear interpolation of the cross-sections between the control

points located at the wave crest and wave through. This arrangement ensures a smooth transition of the

varying cross-sections along the longitudinal profile.

Figure 5.11: Illustration of optimized geometry with UC=0, top view and perspective view

Finally, the first principal stress at position 1, representing the upper boundary subjected to tension, is

demonstrated below. Note that the right and left boundaries experience extremely high stress, and as a

result, the right-most and left-most parts are not visualized, and the tensile stress in these areas is not

taken into account. The model is designed to simulate an infinitely long wall; thus, ideally, each cycle

should have the same stress results or at least be identical.
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Figure 5.12: First principal stress in the upper boundary layer, UC=0

The maximum tensile stress that occurs in the structure is 20 kN/m2, which is close to the target of

zero utility. The length of the longitudinal curve is 13.07 meters, and the total weight of the structure

is 63949 kg. Therefore, the weight per meter is 4892.8 kg/m. However, since the length of this noise

barrier is intended to cover 10 meters, it is more meaningful to divide the total weight by 10m, resulting

in 6394.9 kg per meter.

5.3.2.2 Optimization results: UC=0.2

In the second practice, the optimization algorithm minimizes the weight of the geometry with a desired

utility of 0.2, which implies that the maximum value obtained from the first principal stress at the upper

boundary should ideally be 260 kN/m2. The details of the longitudinal profile can be observed in Figure

5.4, and the cross-sections assigned at control points A and B are depicted in Figure 5.5.
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Table 5.4: Optimized design variables for longitudinal profile, UC=0.2

Table 5.5: Optimized design variables for cross-sections at control points A and B, UC=0.2

The sinusoidal corrugated shape completely dominates the longitudinal profile with an interpolation

weight of 1, while the other two shapes have no contribution to the results. Since the trapezoidal shape

does not impact the final geometry, the third variable, Angle θ, is irrelevant.

In this case, either point A or point B has the smallest cross-section Shape 2, which means Shape 2

is assigned along the entire longitudinal direction. The interpolation weight for Shape 1 is zero at all
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the control points. Regarding the objective of minimum weight, it makes sense for the optimization

algorithm always to choose the smallest cross-section when stress is allowed to occur in the structure.

And the longitudinal shape is manipulated to satisfy the stress constraints.

The figure below provides a clearer illustration of the optimized geometry with the utility constraint set

to 0.2. The top view clearly shows that the cross-sections don’t vary along the longitudinal direction.

Figure 5.13: Illustration of optimized geometry with UC=0.2, top view and perspective view

Finally, the first principal stress at position 1, representing the upper boundary subjected to tension, is

demonstrated below. Note that the right and left boundaries experience extremely high stress, and as a

result, the right-most and left-most parts are not visualized, and the tensile stress in these areas is not

taken into account. The model is designed to simulate an infinitely long wall; thus, ideally, each cycle

should have the same stress results or at least be identical.
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Figure 5.14: First principal stress in the upper boundary layer, UC=0.2

The maximum tensile stress that occurs in the structure is 247 kN/m2, which is close to the target of

260 maximum allowable tensile stress. The length of the longitudinal curve is 11.36 meters, and the total

weight of the structure is 32592 kg. Therefore, the weight per meter is 2868.3 kg/m. However, since

the length of this noise barrier is intended to cover 10 meters, it is more meaningful to divide the total

weight by 10m, resulting in 3259.2 kg per meter.

5.4 Discussion

In Chapter 4, it was demonstrated that the optimization model and methodology are capable of producing

precise results, which were also confirmed by analytical solutions in Chapter 3. Building upon this success,

the optimal cross-section results and optimization framework are being utilized in the three-dimensional

optimization.

The primary objective of this chapter is to assess the efficiency of different corrugated shapes and

investigate how the longitudinal corrugated profile can influence the size of the cross-sections assigned

to it. By combining the three selected corrugations with interpolation weights, we aim to identify

which shape dominates and provides the best structural performance under specific stress constraints.

Accordingly, it’s anticipated that one interpolation weight will be close to one, while the weights for the

other two shapes will be nearly zero. This approach also enables us to reduce the number of design

variables, thus saving computational power.

Regarding the cross-sections, we utilize the left two results from Fig 4.2, which are the optimal symmetric

shapes obtained from 2D optimization with desired utilities of 0 and 0.2. These two shapes are chosen
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to represent the extreme cases, with Shape 1 having the largest area and Shape 2 having the smallest

area. The design space lies between these two extremes, and the objective of the minimum weight result

is to assign a cross-section closer to the smaller extreme at control points, with the assistance of an

optimized longitudinal profile. Additionally, the linear interpolation of cross-sections between control

points ensures a smooth transition of varying cross-sections along the longitudinal direction, making the

geometry more feasible and manufacturable.

One concern of the 3D structural model is establishing the appropriate boundary conditions at the

left and right ends to simulate an infinitely long wall. The logical approach would be to fix all three

rotational DOFs (Rx, Ry, and Rz). However, the outcomes obtained by fixing each of these rotational

DOFs are rather unexpected. Take ”straight longitudinal profile + cross-section Shape 1” as an example.

Inspecting the principal stress 1 in layer 1, which represents the maximum tensile stress on the upper

boundary in tension, it’s expected that the front view of the 10-meter-long wall exhibits zero stress in

all the mesh. The results of fixing Rx, Ry, or Rz are illustrated in Fig 5.15.

Figure 5.15: Front view of the straight wall with cross-section Shape 1: principal stress one in the upper
boundary layer in tension
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The findings reveal the following: Although fixing Rz yields the most accurate results, there is minimal

difference compared to fixing Ry or releasing all the rotational DOFs. On the other hand, fixing Rx leads

to higher stress concentrations at both ends, which is clearly undesirable. Based on these observations,

Rz is fixed in both optimization scenarios with desired utilities of 0 and 0.2. However, in the case of

target utility 0, where Rx has been fixed, exceedingly high tensile stress still occurs at the bottom corner.

To address this issue, the maximum tensile stress in the 0.5-meter-long region from both the left and

right ends was not displayed and consequently not taken into account in the optimization process. This

is the reason why the stress results at both ends are not shown in Fig 5.12. Apart from this concern,

the optimized results in both cases align well with the desired utility and demonstrate satisfactory

performance.

Another significant distinction between 2D cross-section optimization and 3D structural optimization lies

in their strategies for ensuring bending capacity. In the three-dimensional context, the entire structure

collaborates to provide adequate bending resistance by adapting its shape. Consequently, it becomes

necessary to release the rotational degree of freedom (DOF) at the bottom support condition, enabling

the optimization algorithm to create a corrugated longitudinal profile that inherently possesses bending

stiffness. As illustrated in Fig 5.16, the corrugated profile, when countering out-of-plane loading, dis-

tributes the bending moment over a greater distance compared to a straight longitudinal profile. This

better distribution leads to reduced stress and material requirements. The optimized result of the corru-

gated longitudinal profile should exhibit adequate bending stiffness, hence even in practical applications

where the bottom connection cannot be fully hinged, the impact on stress result is negligible.

Figure 5.16: Comparison of bending moment between straight and corrugated longitudinal profiles

The optimization methodology is again proven to be really powerful by comparing the material savings

with the non-optimized one, which is the ”straight longitudinal profile + cross-section Shape 1”, shown

in the figure below:
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Figure 5.17: Material savings of the optimal results with desired utility 0 and 0.2

The optimized design variables in two cases are shown in Fig 5.2, Fig 5.3 (for UC=0), and Fig 5.4, Fig 5.5

(for UC=0.2). Based on these results, we can make a conclusion that the corrugated shape ”semi-circle”

has the strongest bending stiffness, however, it’s not as efficient as a sinusoidal wave when allowing a bit

of stress to occur in the structure. As with the same length and height of one cycle, the curve length

of the semi-circle is always longer than the sine wave. Additionally, when the desired utility is larger

than zero (UC¿0), the algorithm will always assign interpolation weight 1 to the smallest cross-section

and adjust the longitudinal shape to satisfy the stress constraint. On the other hand, when the target is

zero tensile stress in the structure (UC=0), the assigned cross-section is somewhere in between the two

extremes.

The optimized design variables in both cases are illustrated in Fig 5.2, 5.3 for UC=0, and 5.4, 5.5 for

UC=0.2. From these results, we can deduce that the corrugated shape ”semi-circle” exhibits the highest

bending stiffness. However, it is not as efficient as the sinusoidal wave when allowing a slight degree of

stress in the structure. This is because, for the same length and height of one cycle, the curve length of

the semi-circle is always longer than that of the sine wave, which results in a larger weight.

Moreover, when the desired utility is non-zero (UC> 0), the optimization algorithm always assigns

an interpolation weight of 1 to the smallest cross-section and adjusts the longitudinal shape to satisfy

the stress constraints. Conversely, when the target is zero tensile stress in the structure (UC = 0),
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the assigned cross-section falls somewhere between the two extremes, allowing for a balance between

structural strength and material savings.

In conclusion, 3D structural optimization demonstrates the efficiency and effectiveness of various corru-

gated shapes. The optimized results prove that the selection of appropriate corrugation and interpolation

weights can lead to significant material savings while maintaining structural capacity under specific stress

constraints.
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Chapter 6

Conclusion

Sec 3.4, 4.4, and 5.4 have provided advanced discussion for analytical uniform strength geometry, and nu-

merical optimization in two dimensions, and in three dimensions. In this chapter, the general conclusions

are made to answer the research questions.

The main research question of this research is: What is the optimal geometry, encompassing cross-section

and longitudinal profile, of a noise barrier (namely a free-standing wall) made of a low tensile strength

material, when considering self-weight and exposure to uniformly distributed lateral load?

Before summarizing our findings and drawing conclusions, there are three important sub-questions we

need to address, which are crucial for understanding the outcomes and implications of this research.

1. Can analytical form-finding based on uniform strength theory be effectively utilized to determine

optimal structural geometries under specific load conditions?

• The analytical derivations based on uniform strength theory yield constant (maximum) stress

geometries, representing the most efficient structure under specific load cases. When the specified

constant stress matches the material’s maximum allowable stress, the structure’s utilization is

maximized as all cross-sections experience equal stress levels.

• The reliability of the analytical solutions for the constant stress 2D cross-sections was verified

through numerical integration (FEA). The stress results confirm the precision of the mathematical

representation of the geometries, as the presence of the specified constant stress in the structure

aligns with the criteria outlined in the equations.

• The mathematical expression of the optimal structural geometry offers convenience, with design

conditions such as loads and material properties as variables in the equation. Altering these inputs

provides immediate access to optimal geometries.
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2. Can numerical structural optimization, starting from a basic shape without any foundational under-

standing, efficiently transform it into the optimal geometry that closely resembles analytical solutions,

employing a distinct strategy focused on minimizing weight under specified stress constraints?

• The numerical structural optimization process achieves minimum weight outcomes from a rectan-

gular design space. Through the incorporation of topology optimization and shape optimization

techniques, the framework has successfully generated optimal cross-sections that exhibit a close

resemblance to the analytical solutions. This outcome underscores the framework’s ability to yield

optimal results even in situations where the most intuitive shape isn’t readily apparent.

• The remarkable similarity between the outcomes of mathematical solutions and numerically opti-

mized geometries provides strong evidence that both analytical form-finding, grounded in uniform

strength theory, and numerical structural optimization focused on weight reduction, are capable of

attaining optimal geometries. This mutual reinforcement underscores the validity and effectiveness

of both approaches.

• The numerical framework’s advantage lies in its flexibility to manipulate different desired utilities

and design variables, yielding various results based on the user-defined input.

3. When extending to three dimensions, is it feasible to adjust the longitudinal profile of the noise barrier

to enhance its bending stiffness against out-of-plane load?

• The release of the rotational degrees of freedom at the bottom support enables the optimization al-

gorithm to generate a geometry that provides sufficient bending stiffness on its own. The optimized

result of the corrugated longitudinal profile demonstrated superior resistance to out-of-plane loads

compared to a flat wall, as the bending moment is more evenly distributed, resulting in reduced

stress and subsequent material usage.

• The application of 3D numerical structural optimization with corrugated shapes as design variables

showcases its efficiency and effectiveness in achieving material savings while ensuring bending

capacity. This efficiency is evidenced through tremendous material savings compared with a non-

optimized reference model.

We can now draw conclusions in relation to the stated objectives. The primary goal of this research is

to ascertain the optimal geometries for a noise barrier constructed from a low-tensile strength material,

while considering a load combination consisting of self-weight and uniformly distributed lateral load

• The load combination of self-weight and uniformly distributed lateral load gives rise to two distinct

symmetric geometries based on the predefined constant maximum tensile stress at the tension

boundary. An analytical solution, h(y) = 3
√
2γqy
2γ , exists when the value is zero; in contrast, when

the specified stress is a non-zero value, a numerical approximation reveals a linear geometry. These
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outcomes underscore that specifying constant tensile stress instead of mandating zero tensile stress

considerably reduces material demands.

• The square root geometry, h(y) = 3
√
2γqy
2γ , ensures a persistent zero tensile stress along the ten-

sion boundary’s height. This analytical solution has the advantage of obviating the need for extra

structural components like reinforcement or foundation, especially when employing materials with

limited tensile strength for building the noise barrier. Additionally, its symmetrical nature is prac-

tical in real-world scenarios, ensuring that the tension boundary maintains the specified constant

stress even when lateral loads originate from the opposite direction.

• Balancing the bending moment coming from the lateral load can be achieved by utilizing the eccen-

tricity of self-weight, resulting in an asymmetric shape, h(y) =
2
√
γqy

γ , with zero bending moments

in the structure. Nonetheless, this asymmetric form is not feasible in practical applications, as it

exacerbates stress conditions when loads are applied from the opposite direction.

• The 3D optimization outcomes indicate that the corrugated ”semi-circle” profile showcases supe-

rior bending stiffness. However, it is outperformed by a sinusoidal wave profile when considering

minimum weight structure. Specifically, when the objective is to maintain zero tensile stress (UC

= 0), the semi-circle profile achieves a 22.6% reduction in total weight by decreasing the required

cross-sectional area. Conversely, for non-zero desired utility, the sinusoidal wave profile attains an

impressive 60.5% decrease in total weight, leading to substantial material efficiency gains.

The secondary objective of the research is to develop a practical numerical optimization framework

capable of generating an optimal design that aligns with the results obtained through analytical form-

finding utilizing uniform strength theory.

The numerical optimization process for two-dimensional cross-sections begins with topology optimization,

generating the optimal material distribution within a rectangular design space. The resulting topology-

optimized shape is then represented using a second-order polynomial, with its three coefficients serving

as design variables to parametrically describe the geometry. Subsequently, Finite Element Analysis

(FEA) is performed using Karamba3D, employing ”beam elements” fixed at the bottom and subjected

to load combination along the center line. The final step involves optimization using Opossum, aiming

to minimize weight while adhering to the specified stress constraint, integrated into a single objective

function through a penalty function approach. The stress constraint, utilizing the concept of the utility

ratio (maximum tensile stress in the structure / tensile strength), corresponds to the specification of

constant stress in analytical derivation.

Regarding the three-dimensional geometry model, three corrugated longitudinal profiles are selected as

design space. These profiles are then combined using a shape function to create the final profile, with
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the corrugation displaying a higher interpolation weight contributing more significantly to the overall

geometry. For the cross-section assignment of the 3D structure, the optimal geometries obtained from

the 2D optimization act as foundational shapes. These shapes are combined utilizing an interpolation

function. The weighted outcomes of the cross-sections are allocated to five control points situated along

the length of the barrier. Cross-sections between these control points are further linearly interpolated to

ensure a seamless transition of variable cross-sections along the entire barrier. In terms of the structural

model, the utilized element is a 3-node shear-deformable flat shell element. The absence of fixed rotational

degrees of freedom at the bottom allows the optimization algorithm to create a geometry that inherently

offers bending stiffness. The barrier’s left and right ends are simulated as infinitely long walls (fix x and

Rz). Ultimately, the optimization procedure is the same the method employed in the 2D approach.

Below are some general remarks for the numerical optimization framework:

• Topology optimization employing Karamba3D’s ”BESO for Shells” component effectively includes

self-weight during iterations. The sensitivity to certain inputs necessitates careful manipulation to

achieve desired outcomes. Restricting the non-design space by fixing the structure’s height prevents

impractical results.

• Shape optimization addresses issues like non-monolithic structures, zig-zag boundaries, and lack of

symmetry in topology optimization results.

• The penalty function utilized in shape optimization successfully incorporates constraints into a

single objective function. A proper setup for determining the penalty function is crucial to achieving

desired outcomes.

• Slight discrepancies between numerical and analytical solutions may arise due to the limitations of

the second-degree polynomial. Nevertheless, Opossum proves to be a robust optimization tool as

its capability to reproduce comparable results to all analytical solutions.
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Chapter 7

Recommendation

In this chapter, several recommendations for further research are presented:

1. In the current research, the three coefficients of second-order polynomial serve as the design variables

to describe the boundary of cross-sections, however, there is a limitation of it to generate an accurate

shape. It would be interesting to explore the use of higher-order polynomials or different methods, such

as Non-uniform rational basis spline (NURBS) or Bezier and B-spline blending functions, to describe the

geometry more accurately and efficiently.

2. Incorporating topology optimization into the three-dimensional structural optimization framework

could be an intriguing aspect. Investigate whether assigning the topology-optimized cross-sections along

the longitudinal direction and then conducting shape optimization to adjust the longitudinal profile

and outer boundary of the cross-section would yield better results, compared to first optimizing the 3D

geometry and then conducting topology optimization to remove inefficient parts. The potential benefit of

topology optimization is to fill the non-structural inner part of the geometry with sustainable materials,

achieving the highest material savings.

3. While the optimal geometries proposed in this research consider desired utility zero, implying no tensile

stress exists in the model and thus linear analysis suffices, allowing for tensile stress in the structure could

lead to significant material savings. To ensure structural safety, incorporating a real material model that

accounts for nonlinear material behavior would better simulate real-world complexities, leading to more

accurate results.
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4. The current optimization objective focuses on minimizing the weight of the structure while incorpo-

rating stress constraints through the penalty function. However, the deflection of the structure is not

considered. To account for achieving maximum stiffness, adding a maximum deflection constraint to the

penalty function or conducting multi-objective optimization, including weight minimization and stiff-

ness maximization, could provide a more comprehensive understanding of trade-offs and compromises in

structural design.

5. Addressing the challenge of manufacturability for the optimized model is crucial. Given the limitations

of additive manufacturing, it might be necessary to fine-tune the optimized model and generate a 3D

smoothed model that retains almost the same structural performance but is easier to fabricate.

By pursuing these research recommendations, it leads to more sophisticated and practical design solutions

in various engineering applications.
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