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1
Introduction

In this introduction, we expound on the motivation behind this thesis research by intro-
ducing the need for climate adaptation and mitigation strategies like green, blue and yel-
low roofs within the Netherlands. We also explain why optimal placement of these roofing
options is needed. After that, we explain why uncertainty plays an essential role in the for-
mulation of this problem. Hence, we introduce the research questions and objectives and
highlight both the scientific and practical relevance of this study. Lastly, we present the
outline this report.

1.1. Research motivation
Being aware of climate change and its consequences, the Netherlands has implemented
National and Regional climate adaptation and mitigation strategies, which municipalities
and provinces are translating into plans of action [35]. Within those plans, green, blue and
yellow roofs are often cited as potential solutions to adapt to climate change and mitigate
its effects [8, 10]. Green roofs are systems which allow for the growth of different types of
vegetation on top of buildings. Blue roofs are layers for water collection, which can be in-
stalled beneath the green roofs or autonomously to provide temporary storage and slow
release of rainwater[6]. Yellow roofs is another name to indicate roofs with photovoltaic
(PV) panels.

Cities are densely paved. Thus, there is often no room for cheap and easy implemen-
tation of green or blue spaces like parks and new canals or solar fields. On the contrary,
roofs are empty spaces that are often also flat [6], thus suitable for PV panels and green and
blue roofs. Many municipalities subsidize the installation of green, blue and yellow roofs.
However, it is impossible to implement every roofing option on every building, as there is a
limited budget to fund such projects. Moreover, it has been noted both by researchers and
civil servants in the Netherlands that green, blue and yellow roofs placement is currently
not always occurring where they can provide the more added value [47, 51]. As stressed
in [47], there is a demand for a tool that determines which roofs type are needed in which
parts of the city that can be used both by municipalities and stakeholders to enhance deci-
sion making. We thus believe it is important to investigate the optimal placement of these
roofing options through the means offered by optimization.

1



2 1. Introduction

1.1.1. Green, blue and yellow roofs
By replacing the existing impervious black covers of roofs with a multi-functional roof,
many benefits can be yielded, both to the private owners of the buildings and the society
living in the area [16, 37]. From a private perspective, as an example, green and blue roofs
are believed to increase the property value of the construction and to increase the lifespan
of the roof [16, 37]. From the societal perspective, green roofs are believed to be beneficial,
e.g., in terms of urban heat island mitigation [11, 14, 38], while blue roofs are helpful in
rainfall water management [38, 43]. Both green and blue options are most suitable on flat
roofs [7] and are considered as adaptation strategies, as they can help to temper the effects
of extreme climate events such as heatwaves and heavy rainfall. Yellow roofs, instead, offer
great opportunities for municipalities to contribute to climate mitigation. The production
of clean energy is indeed beneficial to society as a whole, as fewer greenhouse gases are
produced compared to commonly used energy sources.

1.1.2. Optimal placement of roofing options
The effectiveness of green, blue and yellow roofs installation are highly dependent on the
municipality’ structure [47, 51]. There may be areas more subjected to flooding due to a
lack of efficient urban drainage systems or areas where heat stress is predominant [4]. Be-
sides, some roofs may be better exposed to solar radiation, and some spaces may have
too little greenery. From the perspective of a municipality, optimally placing these infras-
tructures can convey long-lasting benefits, mitigating the economic and social impact of
climate change [18]. Therefore, understanding which projects to prioritize with the limited
budget available may be the key to the success of municipalities and other stakeholders in
reaching their climate adaptation and mitigation goals.

Figure 1.1: Water level during heavy rainfall, and urban heat island. Source: [4]
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1.1.3. Problem uncertainty
Uncertainty characterizes this optimal placement problem for two main reasons: climate
change and uncertainty around the working of the roofs.Firstly, the added value of these
roofing options is contingent on climate variables, such as the amount of warm days and
rainfall. For the Dutch climate, the more the climate is going to change, the more green
and blue roofs will be needed, as heatwaves and rainfalls are predicted to appear more of-
ten and be heavier. Moreover, sunshine presence and thus solar radiation is the key for the
performance of PV panels, and that also changes over the years and is hard to predict [32].
Secondly, parameters that reflect the actual working of these roofing types are not agreed
upon in the literature. For example, an open discussion is how much heat green and blue
roofs can capture during a heatwave. Furthermore, many authors use economic equiva-
lents to weigh the positive and negative aspects of green, blue and yellow roofs, but they
are always just estimations. Making use of such values adds another level of uncertainty to
the problem.

1.2. Research objective
Within this study, we aim to capture, in a simple yet insightful formulation, the interaction
between climate, multi-functional roofs and the urban environment, and to output the
societal benefits derived by the optimal placement of different roofing options (Fig 1.2).
Optimization under uncertainty techniques will be used and compared to incorporate cli-
mate change predictions within the formulation. Moreover, given the deep uncertainty un-
derlying the used parameters, a sensitivity analysis will be performed to outline the main
parametric trade-offs.

Figure 1.2: The system modeled in this study.
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1.2.1. Research question
The following will be our main research question:

How to identify specific buildings where the placement of green, blue and/or yellow roofs will
maximize the municipalities’ climate adaptation and mitigation goals?

The following sub-questions will be answered during the investigation.

• What is the best way to model the functionality of green, blue and yellow roofs from
a municipality perspective, so that the effect on a societal level can be captured?

• How can different climate scenarios be incorporated into the problem?

• How do the uncertainties in the problem’s parameters affect the optimal solution?

• How robust is the model’ solution?

1.2.2. Research scope
The optimal placement model for green, blue and yellow roofs can be formulated in dif-
ferent ways. Even though specific aspects of the functioning of these roofing options can
be very complex, we limit this research to the most simplified yet correct modelling choice
possible. We will make specific design choices for this study, specially tailored to the prac-
tical use requirements. In addition, a big focus will be the uncertainty behind the problem,
for reasons that will become clear in the following chapters. A case study will be presented
for a specific municipality, but our method can be extended to any other location in the
Netherlands.

1.3. Relevance
1.3.1. Scientific relevance
To the best of our knowledge, there is no example in literature where the optimal placement
of green, blue and yellow roofs has been studied as a combination and with the means of-
fered by mathematical optimization. Some authors have indeed studied the optimal place-
ment of green, and blue options using other techniques [47, 51]. Others have used opti-
mization methods to find the optimal placement of yellow and green roofing options, but
only for energy production goals [38]. Uncertainty has instead mainly be studied in relation
with single green roofs performance [16, 30, 38]. Therefore, we wish to fill this research gap
by constructing an optimization model that uses building-specific parameters to output
a list of optimal locations for each roofing option. We also aim to analyze the interaction
between uncertain parameters and the optimal solution.

1.3.2. Practical relevance
This thesis is developed in collaboration with Sweco, a European engineering consultancy
company, active in the fields of consulting engineering, environmental technology and ar-
chitecture. The outcomes and tool resulting from this study will be deployed by Sweco
colleagues in the team of Geodata Consultancy, active in the Netherlands.
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The overall goal of this study is to create a tool that helps decision-makers understand
where to place green, blue and yellow roofs to maximize their contribution to climate adap-
tation and mitigation. This tool should be available and ready to use for colleagues at
Sweco. Investigating the societal benefits generated by the different roofing options, we
will provide the stakeholders with a method to quantify their added values in terms of
location-specific characteristics. Overall, we will offer a quick scan tailored to the city’s
climate-related issues, visible from the klimaateffectatlas [4]. The klimaateffectatlas is an
organized viewer that comprises multiple themes (drought, heat, flooding and waterlog-
ging) and shows how climate change will impact different areas of the Netherlands. It is
often used at Sweco as a base for climate stress tests. Moreover, we will be able to underline
the unpredictability of some factors that influence the solutions of our model, increasing
the awareness of the decision-makers regarding climate variables and technical aspects of
the different roofing options.

1.4. Report outline
In the first part of this report, we will introduce the concept of climate uncertainty, as well
as the fundamentals of roofing options design. Relevant previous work will be presented
in Chapter 2. Then, we intend to answer the first sub-question, presenting the choices
for the model construction in Chapter 3. In Chapter 4, we introduce details of the model
and present the methodologies used to analyse the parametric uncertainty. In addition, we
analyze the model’s behaviour in a case study for the municipality of Schiedam in Chapter
5. With our findings, we aim to eventually answer the main question and provide ideas and
suggestions for future research in Chapter 6.





2
Background

In this chapter, we provide an overview of the key aspects of the proposed problem, and we
review past research on the topic. More in detail, we first explain the importance of using
climate data to assess the benefits derived by sustainable roofing options. Following, we
briefly review the processes that scientists follow to create climate evolution data, which
will clarify the reason for its intrinsic uncertainty. Second, we introduce the technical fea-
tures of the roofing options, and we discuss previous work on quantifying their benefits,
costs, and effects on a societal level. Third, we introduce the concept of a Geographic in-
formation system (GIS), which will be the base for the data pre-processing in this work. In
the fourth section, we review the main features that will define our problem. Lastly, we dis-
close the theory behind optimization under uncertainty methods and sensitivity analysis.

2.1. Climate data
Green, blue and yellow roofs are part of the so-called climate adaptation and mitigation
strategies [37]. The climate conditions they are inserted in can influence their performance
and usefulness [48]. For example, a blue roof will positively contribute to the water man-
agement of an area if the same area faces unusual rainfall quantities, for which the existing
sewage system is not prepared. However, the climate is not easy to predict, and the un-
certainties in future roof performance are directly determined by the uncertainties within
the climate data used [48]. The intrinsic uncertainty present in climate data prediction lies
mainly in two aspects: climate change and the complexity of the climate system.

2.1.1. Climate change
"Climate is the statistical description of the weather at a location and describes the likeli-
hoods for a range of states and phenomena" [26]. Due to its intrinsic statistical nature, the
climate has some natural variability, which consists of some variation in time of the climate
system around a mean state within a time scale of months up to decades [29]. In normal
conditions, this statistical nature could be analyzed and reproduced in future prediction,
which would be uncertain, in a statistically measurable way. However, there is another as-
pect to consider, which is different from climate variability: climate change. The latter term
refers to variations in the state of climate variables that are statistically significant and per-
sistent within an extended period (more than a decade). When such a variation in climate
variables is proved, then it can be concluded that some human-induced climate change is

7



8 2. Background

happening [26]. Furthermore, this makes the description and prediction of future events
even harder since the statistical average states of the past cannot be deployed for drawing
the future state of the climate.

Numerical models are constructed to describe the complex interaction between the
earth system’s components and simulate future climate variables values. These numerical
models are called General Circulation Models (GCM) when they are deployed for a global
perspective. A GCM has on average a spatial resolution of 100x100 km, which can exclude
the representation of smaller-scale phenomena. GCM can be downscaled and be repre-
sentative a smaller area with a higher resolution (up to 11km). In that case, they are called
Regional Climate Models (RCMs). A RCM can has a finer grid for its computations, and
it is “guided” at the boundaries of its domain by a GCM [50]. Such models also take into
account climate change in order to provide the most reliable outcomes.

Figure 2.1: Scale of a RCM area. Source:[50]

2.1.2. Climate scenarios and projections
When making predictions about the future evolution of the climate, numerical models
need to simulate the complexity of the climate system. However, they also need to explore
and handle information about human interactions with such a system, which determine
climate change. They are called anthropogenic factors, and they involve socio-economic,
technological and demographic development. The evolution of such factors is not known
in advance. Nonetheless, its effects can be represented by different scenarios, where a sin-
gle scenario can result from a range of human development possibilities [26].

Those different scenarios can be represented by the emission pathways symbolizing
the possible increase in greenhouse gases concentration. The most common used emis-
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sion pathway method is the RCP (Representative Concentration Pathway). RCP is based on
the concept of radiative forcing: the difference between solar irradiance absorbed by the
Earth and the energy reflected, predicted in the year 2100 and expressed in W /m2. Radia-
tive forcing is the key figure for explaining the greenhouse effect and can thus well represent
the anthropogenic factors that influence climate models outputs. Common RCP values are
2.6, 4.5 and 8.5. Each of these values of radiative force would lead to different greenhouse
gases concentrations and thus different global temperature increases. RCP 2.6 is likely to
represent the situation in which the global temperature rises below 2 degrees Celsius by
2100. RCP 4.5 is considered as an intermediate scenario determining an increase of 2-3
degrees Celsius. In comparison, RCP 8.5 is considered the worst-case scenario with an in-
crease in global temperatures of up to 3.7 degrees Celsius [26]. Each RCP combined with a
GCM and its RCM downscaling leads to a precise climate projection.

Climate variables values are dependent on a specific climate projection, thus on a sys-
tem model bounded by specific future anthropogenic forcing, constructed on a precise
GCM and downscaled to an RCM. Therefore, those climate variables values over time and
space do not have to be considered as forecasts derived by some initial condition, but more
like projections based on specific scenarios [29].

In this study, we will extrapolate climate variables from multiple projections from the
EURO-CORDEX platform. The latter is a portal where scientific communities worldwide
publish their data about the predicted future evolution of the climate. The user of the plat-
form can choose, e.g., the GCM, RCM, type of RCP and variables. In this study, we will make
use of climate projections for the values of precipitation, maximum temperature, down-
welling shortwave radiation, and sunshine duration. We will thus be able to extract both
extreme weather events (heavy rainfall and heatwaves) and also the amount of sun-peak
hours per year, which are determinants for the production of energy given by PV panels
[28]. Scientists suggest that the best way to address uncertainties and make good use of
climate projections outputs is to employ ensemble simulations [29]. Therefore, we will
consider multiple climate projections for each considered variable to capture and properly
handle the uncertainty present within the climate data.

2.2. Working of green, blue and yellow roofs
Roof surfaces constitute up to 50% of the urban area and thus have a great potential to mit-
igate climate change in the urban environment [37]. Roofs can host different combinations
of green, blue and yellow roofs. An example is reported in Fig.2.2, where photovoltaic (PV)
panels are placed in combination with green roofs. In this section, we will present the main
characteristics of the roofing options considered in this study.

Green roof systems consist in a vegetation layer lying on some growing medium, called
substrate layer. There is a thin drainage layer underneath that, which collects the rainwa-
ter in excess in small quantities. Depending on the type of vegetation, the soil type, and
the layers’ depth, many different green roofs exist. The most common are called extensive
roofs. They include a substrate layer between 5 and 20 cm depth, and they are suitable for
sedum, grasses and mosses, and other drought-resistant vegetation types. Thanks to the
thin substrate, extensive green roofs can be installed on buildings that can not bear a high
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Figure 2.2: A Green-yellow roof.

load due to their construction characteristics.
On the contrary, intensive roofs have a thick tier of soil (>1m), which makes them appro-
priate for the growing of bigger shrubs and trees. Although the aesthetic and biodiversity
value of such a choice might be higher than the extensive equivalent, the thicker substrate
layer also results in higher loads and construction costs. Hence, extensive roofs are more
often selected, especially for implementation on existing buildings that were not conceived
to carry high loads [48].

Blue roofs are roof layers designed to retain water, thus delaying the amount of runoff to the
sewer system. The amount of storage depends on the layer’s thickness and consequently
is highly related to the load-bearing capacity of the construction. A control system can be
installed to regulate the drainage, making the blue roof what is called an active blue roof. In
these systems, a mechanical valve is present to control the amount of water stored on the
roof and automatically choose the timing of drainage. On the contrary, passive blue roofs
have no control of the water flow: when the water level reaches the outlet drain, the water
is released either into the sewage system or onto the streets. In such passive systems, rain-
water is stored on the roof until it evaporates [48].

A combination of green and blue functions is possible, and it is called Green-Blue system.
When blue roofs are not installed as stand-alone, they can be placed beneath a green roof
layer, enhancing the water retention capacity of the system (Fig. 2.3).

In this work, when not differently specified, we will consider only one type of green
roof, the extensive green roofs. Moreover, blue roofs will not be analyzed as stand-alone
but always coupled with green roofs as water retention layers beneath the vegetation. This
choice is made because studies have shown that the combination of the two functions has
a much greater impact [48]. Furthermore, since the performance of the roofs is maximized,
and real values are provided in literature for specific parameters, active blue roofs parame-
ters will be considered.

Yellow roofs, also called PV panels systems, can be implemented on roofs to supply the
building or the grid with clean electricity. When the sunlight hits the solar panels, it is
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Figure 2.3: A Green-blue roof.

Figure 2.4: Yellow roofs: the photovoltaic system absorbs the energy from the sun and translates in into power.

converted into electricity (Fig 2.4). The efficiency of such translation depends on multiple
factors: the system losses, the amount of sunlight received, the shadowing, the inclination
and the direction of the roof. In this study, we will make use of a software called ArcGIS Pro,
which computes the amount of solar radiation received by each building. Furthermore,
it has been shown that putting green roofs beneath the PV panels can foster energy pro-
duction. Indeed the operating temperature of PV panels is one of the main parameters on
which the efficiency of the system depends, and green roofs can decrease the temperature
in the surrounding [38].

2.3. Quantification of costs and benefits
This section will analyze costs and benefits linked to the placement of green, blue and yel-
low roofs. Costs must be considered taking into account the user of this model. As for
benefits, a distinction can be made between effects that occur mainly to owners/users of
the roofs (private) and the social effects (public) [37].
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2.3.1. Costs
For the aim of this study, it is important to define the cost item in relation to the user of
the tool. On the one hand, private entities such as residents and companies which own the
buildings will be responsible for the investment costs. Such costs can be reduced thanks to
the introduction of subsidies [49], which offset the costs to be more competitive with stan-
dard roof types [47]. Actors involved in the creation and sponsoring of such grants in the
Netherlands could be municipalities, but also in the future regional water authorities [49].
Indeed, the latter parties may also be interested in the analysis proposed in this study. In
this case, the item cost will be represented by the allocation of funds for subsidies, which
usually cover a percentage of the total investment.

Figure 2.5: Definition of cost for this study, based on the user of the model. Source: [49]

2.3.2. Benefits
In literature, benefits derived by green, blue and yellow roofs are often differentiated into
private and social benefits [15, 31, 37]. Private benefits include the ones reported in the
following table (Tab 2.1):

Private benefit Roof type Details
Electricity yield yellow Less electricity from the grid has to be purchased.
Energy savings green,blue Better isolation is achieved, resulting in less need

of heating and cooling systems.
Property value all Multi functional roofs increase the value of the building.
Lifespan increase green,blue Covering the roofs from damaging light and climate events

increases their lifespan.

Table 2.1: Private benefits derived by different roofing options.

These private advantages derived by the different roofing options are disclosed for com-
pleteness of discussion. However, they will not be taken into account further since the
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focus of this thesis will be on the societal benefits. Indeed, those benefits are the most
recognized in literature, and they are the reasons why such multi-functional roofs are sub-
sidized and installed in the first place: mitigate and adapt to climate change. The societal
advantages will be incorporated into the model, linked to the spatial characteristics of the
city whenever possible, and translated into economic benefits, as will be explained in the
next section. Below (Tab 2.2), we present a list of the most commonly cited societal advan-
tages derived by green. blue and yellow roofs [18, 37, 38].

Societal benefit Roof type Details
Clean energy production yellow Less greenhouse gases emissions.
Urban heat island reduction green Green roof can cool down the air.
Storm water runoff reduction green,blue Water buffering is made possible on top of roofs.
Increase of biodiversity green Different plant species increases biodiversity.
Pollution absorption green Plants covering the roof can absorb pollution.
Noise reduction green Noise is buffered by the plant and soil layers.

Table 2.2: Societal benefits derived by different roofing options.

2.4. Modeling green, blue and yellow roofs’ societal benefits
Different techniques have been adopted to quantify costs and societal benefits derived
from different roofing options.

2.4.1. Single building analysis
Costs and benefits of the different roofing options have been evaluated from the perspec-
tive of a single roof or a quantity of 1 m2 of roof. Multiple approaches have been used for
quantifying such aspects.

Cost-benefit analysis. Costs and benefits are the main aspects that decision-makers con-
sider when evaluating the placement of green, blue and yellow roofs. The economic feasi-
bility of such roofing systems has thus interested the scientific community, and many ex-
amples of cost-benefit analysis for green and blue roofs can be found in literature [18, 33].
The latter most often concern the evaluation of monetary equivalents of the mentioned
societal benefits. As an example, PV panels’ benefits are usually quantified in terms of
avoided emissions compared to non-renewable sources and investment and maintenance
costs [37].

MCA. Multi-Criteria Analysis (MCA) is used in several studies to compare different roofing
solutions to be applied to one specific building. In [41] the authors review the main fac-
tors for the selection of a green roof vs a traditional roof through the use of expert-based
weights and Analytic Hierarchy Process. The choice between extensive, semi-intensive and
intensive green roofs is instead considered in [46]. Here expert judgment is used again as a
tool to create the weights for the MCA.

Optimization problems. Optimization methods are used to tackle the problem of roofing
option selection too. A first approach is provided in [36]. Here, different types of green and
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yellow roofs are evaluated to maximize the return of investment based on constructed sus-
tainability factors. Energy simulations are deployed to derive the main parameters for the
optimization formulation. The objective is to maximize energy saving costs while minimiz-
ing the total expenses for installation of different types of green, white and yellow roofs on
one building.

2.4.2. Multiple buildings analysis

Zooming out from the single roof perspective, introducing multiple potential locations for
the different roofing options becomes a question of great interest in literature. Therefore,
many studies analyze location-specific benefits and costs to determine the most suitable
locations for the different roofing options.

MCA Multi-functional roofs are evaluated through economic criteria within the study
conducted by Arcadis, on behalf of the municipality of Rotterdam [37]. In this research, the
authors compare different roofing options on a common ground (the monetary equivalents
of benefits and costs), including green, blue and yellow roofs. An Excel tool is constructed,
which can receive as input the dimensions of a roof, the type of roofing applied, and the
subsidy rate to compute the economic advantages of the chosen option. On the one hand,
the approach is insightful in terms of evaluations of the pros and cons of every roofing sys-
tem and offers the possibility of comparing multiple buildings’ areas. On the other hand,
the tool cannot indicate which is the most viable or favourable option for buildings choice
among a set of suitable buildings, nor provides location-specific insights.

Spatial MCA An evolution of the analysis made in [37] is made by Versluis et al. in [49],
where a spatial analysis is performed based on the economic equivalents provided in the
original study. Here, the opportunities for roofing options on a municipality scale are ob-
tained per type of neighbourhood, deploying the adjusted monetary equivalents of bene-
fits. However, these costs are generalized and are not building-specific.

A finer grid is used for the analysis made in [51]. Here, green roofs’ potential is mapped
for the municipality of Rotterdam. Layers with opportunities and risks are created as a grid
over the city of Rotterdam. This allows for a visualization, e.g., of high heat stress or flood-
ing risk areas. This information is stored in fixed-dimension grid parts. Moreover, the best
areas for green roofs are identified, in terms of grid position, not in building-specific terms.

Optimization Multiple roofs’ focus and spatial analysis is instead merged through the means
of optimization in [38]. Here the authors construct an optimization model, which aims at
defining the best joint placement of PV panels and green roofs in order to maximize the en-
ergy production of each building. The authors also choose to deal mathematically with cli-
mate change uncertainty and parametric uncertainty. However, the considerations about
green roofs are partial since the only computed benefits are linked to the energy efficiency
of the building. The authors recommend researching the other positive aspects of green
roofs to refine the outcomes of such optimization problems.
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2.5. GIS
A geographic information system (GIS) is a framework that captures and analyses spatial
and geographic data. GIS applications are tools and software that allow the user to han-
dle and analyze spatial information data for visualization and mapping [17]. During this
research, GIS software used are ArcGIS Pro, FME and QGIS. ArcGIS Pro is used to compute
solar radiation potential for each building. FME, instead, is deployed to process the data
extrapolated from the Klimaateffectatlas [4] and construct building-specific parameters for
climate adaptation insights. Final results are mapped into the software QGIS.

2.6. Uncertainty in Optimization
In order to treat the uncertainty present in this problem, we adopt the framework and
nomenclature proposed in [19]. According to [19], data uncertainty in optimization can be
integrated into modelling problems through two main approaches: uncertainty/sensitivity
analysis and optimization under uncertainty. The first approach does not provide specific
unique solutions to the modelling of the problem, but it can explain alternative outputs
in light of different parameters’ choices. On the contrary, optimization under uncertainty
is implemented when a specific solution is needed. It can be divided into two main cate-
gories, namely robust and stochastic optimization. Robust optimization assumes that the
uncertain data lies within an uncertainty set and that it is not possible to infer anything
about its probability of occurrence [22]. Stochastic optimization assumes that the proba-
bility distribution of uncertain data is known or can be estimated. In the following sections,
both approaches (sensitivity analysis and optimization under uncertainty) will be used:
the first will be deployed to understand which variation in the parameters leads to certain
trends in the decision variables. In contrast, the second will enable integrating different
climate projection data within one single model, producing a unique solution.





3
Deterministic model

In this chapter, we will present the reasoning behind the construction of the model, which
looks for the optimal placement of green, blue and yellow roofs among a set of suitable
buildings. After providing the real-life problem description, we will explain the general
characteristics of the formulation in the second section. Such guidelines will be proposed
following the aim of filling some research gaps and of satisfying usability requirements.
Following this part, a comprehensive methodology will be constructed, which will guide
the reader towards the deterministic version of the model. Lastly, insights about the un-
certainty of the parameters will be provided to lead the reader to the optimization under
uncertainty model, which will be developed in the following chapters.

3.1. Real life problem description
A municipality or another interested stakeholder has a budget B to apply three roofing sys-
tems on the city’s buildings. The aim is to reduce the negative impact of climate change
on the city and reduce greenhouse gas emissions. Therefore, the roofing options among
which to choose are green, blue and yellow roofs. By allocating some budget now for green
and blue roofs, the costs derived by extreme events such as heatwaves and heavy rainfall
would be avoided in the future, thus achieving climate adaptation targets. Moreover, yellow
roofs (PV panels) can determine a positive impact in terms of climate mitigation, allowing
for a reduction in total greenhouse gases emissions, leading to some economic benefit for
the municipality [37]. Therefore, the objective of the problem is to maximize adaptation
and mitigation goals of the municipality analyzed in monetary terms by placing the three
types of roofs in the optimal locations, considering the difference in buildings’ suitability,
potential, and added value to the neighbourhood.

3.2. General characteristics
A deterministic formulation of the problem is provided in this section. The variability of
climate change scenarios is not yet considered, nor is the uncertainty behind certain pa-
rameters. The time frame where the effects of green, blue and yellow roofs are analysed is
25 years; thus, the time frame will be 2021-2045. This choice is determined by looking at
the average lifespan of green, blue and yellow roofs. The roofing option with the shortest
lifespan is yellow roofs: they last on average 25 years [18, 37, 38]. This choice forces the

17
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analysis to focus on 25 years in the future, as including more time would not allow a com-
parison between all roofing options on the same ground.

To properly formulate the problem in terms of optimization, we outline some model-
ing requirements and assumptions. The following are the major aspects that have been
considered for the problem formulation.

1. Computational complexity:
As explained in section 2.6, the problem is subject to two major types of uncertainty
to be tackled: the first deriving from climate variables which are uncertain by nature,
and the second linked to a lack of consensus in the literature regarding the parame-
ters used in the formulation. Therefore, one aim of this study is to identify the robust-
ness of the optimal solution under all these uncertainties. Performing optimization
under uncertainty methods and sensitivity analysis can be costly in terms of com-
putational complexity. Consequently, it is important to reduce to the minimum the
complexity of the formulation, allow for a feasible running time, and identify sensi-
tivity analysis results.

2. A location-specific solution:
It is important to stress that the goal of this model is to identify which buildings,
among the set of suitable ones, are most befitted to host green, blue and yellow
roofs. Therefore, specific characteristics of each roof should be used to define the
constraints. They should include, e.g. the risk of flooding in the area close to the
building and the irradiation potential of each roof.

3. The societal perspective:
Many benefits are mentioned for the three types of roofs, and literature divides those
into societal and individuals’ benefits [18][30][16]. In formulating the problem, a
scope limitation choice has been made to only account for the societal perspective.
Firstly, because such benefits have a strong link with location-specific characteristics,
thus they respect criterion 2. Secondly, because of Sweco’s interest in the project.

As a consequence, the following choices were made:

1. Simplify roofs functioning modeling:
Green, blue and yellow roofs have specific characteristics which make their perfor-
mances vary in different contexts. For example, green roofs can cool the air under
specific characteristics of the building and the climate condition. In contrast, blue
roofs can collect more or less water depending on the amount of rain already present
in the water storage layer. This study does not aim to precisely evaluate the quantities
of heat absorbed or water drained but to offer an overview. Thus, the choice has been
made to simplify as much as possible the treatment of such complexities. Therefore,
to describe the operations of the roofs in terms of mathematical constraints, a liter-
ature study has been performed to find parameters and functions that would allow
for such a correct but straightforward mathematical formulation of complex physical
phenomena.

2. Include parameters which reflect the municipality’s structure:
It is important to consider the shape of the city where the roofs are placed to achieve a
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result that reflects and incorporates the unique characteristics of each building. Such
characteristics need to be summarized into building-specific parameters, which ex-
press the impact on the municipality-scale of potentially placing one roofing option
on top of some specific building. For example, it is straightforward to think that blue
roofs may be beneficial for areas with high flooding risk. Thus a flooding risk utility
indicator needs to be constructed for each roof, referring to its location.

3. Include climate variables:
Climate variables can deeply influence the performance of green, blue and yellow
roofs [28, 48]. Therefore average values for climate variables would not be sufficient
for the time frame considered. Moreover, the climate is believed to see sharp changes
in the next decades. Thus current averages would not be able to represent the future
utility of the installations. Therefore, it is crucial to include climate variables as much
as possible in the formulation of the problem to underline within the solution the
functionality of the installations concerning the climate they operate in.

3.3. Model construction process
As outlined in Section 2.4, many possible societal benefits can be outlined for the place-
ment of green, blue and yellow roofs, while even more perspectives could be considered
when integrating them into a mathematical model. Therefore, it is important to make
modelling choices that allow the societal benefits of each roofing type to be comparable,
reliable, and consistent. We have thus chosen to take one source as the base for the mod-
elling choices. The funnel chart below indicates which steps are further taken to develop
from that a location-specific optimal placement model for different roofing options.

Figure 3.1: Modeling choices’ funnel.
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For the study chosen as starting point of the model, named LIFE@Urban Roofs [37], the
municipality of Rotterdam and its partners received a subsidy from the European Commis-
sion’s LIFE program for environmental and climate action. The aim of LIFE@Urban Roofs is
to provide insights into the advantages of multi-functional roofs. Therefore, it is developed
as a complete overview of costs and societal benefits, gathered together for all roof types
considered, using Dutch sources. The reference to the Dutch context is one of the main
reasons the study was considered well suited to be further deployed in this study. Many
other pieces of research [12, 47, 51] have tried to gather data and parameters for identifying
the best locations for implementing climate adaptation strategies. However, the different
approaches and sources used do not allow merging these multiple perspectives: the merg-
ing would result in non-consistent modelling choices. As an example, the damages caused
by stormwater flooding has been considered in [51] as the damage to buildings and streets.
In contrast, in [37] they have been considered in terms of shadow costs, thus the avoided
costs for renewing the sewage system in the area. If all those aspects were considered to-
gether, the benefits for different roofing options would be less comparable.

As stated in 2.4 the overview made in [37] is not location-specific. Parameters have a
fixed value or range of values, but there is no link between them and the location of the
considered roof. Therefore, the first step which we will go through is the Parameters’ spa-
tialization. Indeed, through FME software and open data sources, the impact of climate
change can be modelled and consequently used to modify the parameters into a location-
specific form. In this study, we include the impact of flooding, heat and solar radiation.
Instead, we exclude benefits derived by biodiversity increase and pollution mitigation of
green roofs, as those are far more complex to model in a location-specific way, and not of
great interest for the applicability aims required by Sweco.

Moreover, it is mentioned in the literature that climate variables can deeply influence
the results of the model. However, in [37] the parameters are not specified in such a way
that they become climate-dependent. We will, therefore, also integrate climate variables
into our model, modifying the parameters accordingly. Gurobi solver will be used to solve
the model and provide a solution.

3.4. Deterministic model
The following section provides an overview of the problem sets, decision variables, param-
eters, constraints, and objective function. Here, we consider only one climate projection as
input, and we assume fixed values for the parameters.

3.4.1. Sets and indices

i ∈ R set of roofs available for the installations.
j ∈ P set of mm of precipitation occurring within a period of intense rainfall.
z ∈ H set of max temperatures during heatwaves in deg Celsius.
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3.4.2. Parameters
In Table 3.1 the subscript G will indicate Green roofs, B Blue roofs and Y Yellow roofs.

Parameter Description Unit
B budget available from municipality ¤
s rate of subsidy ∈ [0,1]
pG , pB , pY price of the different installations ¤/m2

ai roof area available for installation m2

m(i , z) people affected by heat in day z people/day
w( j ) water falling during a heavy rainfall event j mm/day
d total sun peak hours in the considered period hours
rG (i ) utility rate for heat reduction. Areas with higher urban

heat island effect are assigned higher values ∈ [0,1]
rB (i ) utility rate of flooding reduction. Areas with higher

levels of water are assigned higher values ∈ [0,1]
rY (i ) rate of solar radiation which is actually captured by the roof,

due to shadowing and orientation ∈ [0,1]
hG thickness of water retention layer for green roofs, thus the water

which can be stored into the water layer during a heavy rainfall mm
kG rate of absorption of water for green roofs, during

a heavy rainfall event mm
kB rate of absorption of water for blue roofs, during

a heavy rainfall event mm
Q kWh produced during one peak hour by a PV panel kWh/m2

θ rate of increase in efficiency for PV panels due to GR presence ∈ [0,1]
cG avoided cost of heatwave ¤/person
cB avoided cost of extreme rainfall ¤/m3

cY economic benefit of producing clean energy, computed based
on avoided green house gasses emissions ¤/kWh

bG (i ) benefit derived by Green roof installation: sum of the
previous three factors ¤

bB (i ) benefit derived by Blue roof installation (adaptation) ¤
bY (i ) benefit derived by Yellow roof installation (mitigation) ¤

Table 3.1: Overview of the parameters and variables’ names.

3.4.3. Decision Variables

xY (i ) ∈R+ m2 of yellow roofs to be placed on roof i
yG (i ) , yB (i ) ∈ {0,1} active if Green and Blue roofs are to be placed on roof i respectively.

When green and blue roofs are placed, we assume they cover the whole available area;
we later derive the m2 of green and blue roofs to be placed on building i by simply multi-
plying the binary variables with a(i ), the area of the roof.



22 3. Deterministic model

3.4.4. Constraints
• Budget constraint:∑

i∈R
s · (pG · yG (i ) ·a(i )+pB · yB (i ) ·a(i )+pY ·xY (i )) ≤ B

Each entity which aims to apply green, blue and yellow roofs will have a specified
maximum budget for it. The actual prices pG , pY , pB may partially funded by the
municipality. In the latter case a the subsidy rate s would have a value different than
zero.

• Space constraint:

xY (i ) ≤a(i ) ∀i ∈ R (3.1)

yG (i ) ≥yB (i ) ∀i ∈ R (3.2)

A physical constraint must be modelled: the roof area available for installing differ-
ent roofing options cannot be exceeded. Green and blue roofs are considered roofing
substitutes, meaning they are installed over the whole roof area. Thus the binary vari-
ables are explanatory of this when multiplied by the total area. On the contrary, the
amount of PV panels to be placed is selected depending on the household’s needs. In
this frame, we will determine in this model the m2 of yellow roofs to be placed per
roof as a continuous variable, bounded as in Eq. 3.1.

We choose to allow blue roofs only as layers that can be placed beneath green roofs,
not as stand-alone systems. This is presented in Eq. 3.2.

Flat roofs and low sloped roofs are suitable for Green and Blue roofs, while PV panels
can also be placed on sloped roofs. In this frame, we will only consider as suitable the
flat roofs. otherwise, the non-flat roofs N set should be available only for Yellow roofs
installations, thus imposing by default yG ( j ) = 0, yB ( j ) = 0 ∀ j ∈ N .

• Benefit: clean energy production

bY (i ) = cY ·Q ·d ·xY (i ) · rY (i ) · (1+θ · yG (i )) ∀i ∈ R

Producing and deploying clean energy, i.e. energy derived by solar panels, can help
municipalities reach some important goals in terms of climate mitigation. In [37]
a study from CEDelft is used as a reference, to assign to each kW h of clean energy
produced, an equivalent in ¤. This economic equivalent is derived considering the
avoided emissions of different pollutants, which would be emitted in case the same
amount of energy would come from common dutch grey sources [37]. The latter are
summarized in the value cY and expressed in¤/kW h of energy produced.

A formula is taken from [38] in order to compute the energy yield in kW h of yel-
low roofs installations. This formula is indeed reflecting the major goals mentioned
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in section 4.4: the inclusion of both climate variables and specific characteristics of
each building. The energy yield provided by each m2 of PV panels is given by the
average amount of energy produced by 1 m2, Q, during a peak hour, multiplied by
the total amount of peak hours d . Then this factor is scaled with rY ,i , which captures
the intensity of the average solar radiation received by each rooftop. It takes values
∈ [0,1].

• Benefit: avoided storm water flooding

bB (i ) = cB (i ) · ∑
j∈P

(
kB ·w( j ) · yB (i )+kG ·hG · yG (i )

) ·a(i ) · rB (i ) ∀i ∈ R

It is possible to evaluate avoided costs determined by runoff water in terms of ¤/m3

of water in excess on the streets, as is done as an example in [37].
Here, bB (i ) represents the total avoided costs, derived from the m3 of water which
was retained by blue and green roofs for each heavy rainfall event. Such volume of
water is computed taking the area of blue (yB (i )·a(i )) and/or Green roofs (yG (i )·a(i ))
multiplied by the amount of water fallen during even j ∈ J , w j . The water can be cap-
tured only if the capacity of the layer allows for that. Thus, we consider that a portion
of the total water fallen kB can be stored by a blue roof layer. Also, green roofs will
store only a portion of kG of the maximum capacity hG .

During heavy rainfall, water gathers in the streets and may cause disruptions and
damage. Due to the shape of the city, some areas are more affected than others. The
difference among such areas is reflected in the usefulness of applying water reten-
tion roofs. Such usefulness is encapsulated into the parameter rB (i ). This approach
is similar to the one presented in [38], where the roofs with the higher solar radiation
potential were provided with higher scores between 0 and 1. As done in [47, 51], it
is assumed that roofs that are right on top of a high flooding-risk street have to be
prioritized. Thus they have to be assigned a high utility since they allow water man-
agement in the areas where it is most needed.

• Benefit: urban heat island mitigation

bG (i ) = ∑
z∈H

cG (i ) ·mG (i , z) · yG (i ) · rG (i ) ∀i ∈ R

Green roofs have the ability to alleviate heat stress in cities [18, 48], which , in turn,
can determine a reduction in costs derived by health effects on the population [37].
Results in [37] define the reduction in temperature obtained by green roofs in the
surrounding micro-climate in terms of impacted population. For every degree Cel-
sius higher than 25 and smaller than 31, some amount of people mG (i , z) can avoid
hospitalization due to heat. More information about its computations is given in Ap-
pendix A.1. Parameter mG (i , z) is roof-specific: the dimension of the roof, the amount
of greenery in the area, and the population density of the area are all considered.
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3.4.5. Objective function

max
∑
i∈R

(
bG (i )+bB (i )+bY (i )

)
We chose to convert all the beneficial aspects of Green, Blue and Yellow roofs into eco-

nomic benefits to quantify a municipality’s adaptation and mitigation goals. Hence, the
objective function maximizes the economic benefit derived from the avoided costs and
gained benefits, as defined in the equality constraints.

3.4.6. Deterministic problem overview

max
∑
i∈R

bG (i )+bB (i )+bY (i )∑
i∈R

s ·
(
pG · yG (i ) ·a(i )+pB · yB (i ) ·a(i )+pY · xY (i )

)
≤ B

xY (i ) ≤a(i ) ∀i ∈ R

yG (i ) ≥yB (i ) ∀i ∈ R

bG (i ) = ∑
z∈H

cG ·mG (i , z) · yG (i ) · rG (i ) ∀i ∈ R

bB (i ) =cB (i ) · rB (i ) ·a(i ) · ∑
j∈P

(
kB ·w( j ) · yB (i )+kG ·hG · yG (i )

) ∀i ∈ R

bY (i ) =cY ·Q ·d ·xY (i ) · rY (i ) · (1+θ · yG (i )
) ∀i ∈ R



4
Uncertainty in the problem

Real-life optimization problems often contain uncertain data, which can be inherently
stochastic or uncertain due to errors or lack of knowledge [22]. The task of uncertainty
characterization can be complex, but exploring the nature of uncertainty for parameters’
values provides more realistic outcomes than using deterministic values. Indeed, using
fixed values for parameters can lead to sub-optimal model outcomes [19]. This discussion
aims to characterize the different types of uncertainty that arise in the construction of the
model and to expound on the methodologies used to analyze and handle them.

4.1. Uncertain aspects of the problem
Green, blue and yellow roofs are highly interesting solutions for municipalities in the Nether-
lands which wish to adapt to climate change and to contribute to its mitigation [14, 37].
Finding the optimal placement for these roofing types is subject to three significant forms
of uncertainties: climate change, parameters and modeling uncertainty.

Climate uncertainty plays a role within the model because climate variables, such as
daily temperatures and rainfall influence how green, blue and yellow roofs work. Climate
predictions, however, are far from certain [25], especially when considering long-term pre-
dictions, which are also affected by climate change[26]. Nonetheless, long term predictions
need to be employed within this frame since it is important to evaluate the performance of
green, blue and yellow roofs over their entire lifespan [38]. These roofing systems are re-
ported to have an average lifespan of 40-50 years (green and blue roofs) and 25 years (yellow
roofs) [38]. Therefore, climate scenarios will be here considered up to the year 2045, and
they will lead to another uncertainty factor within the constructed model.

Parameters’ uncertainty is strongly linked to the functioning of green, blue and yellow
roofs, as this is very complex in itself. As an example, it is not known precisely how much
a green roof can cool the air, as this phenomenon depends on fluid interactions and of-
ten unavailable data, such as wind direction and evaporation potential [39]. Consequently,
some parameters linked to the operation of the roof systems will also determine uncer-
tainty within the model. In this discussion, this type of uncertainty will be referred to as
technical uncertainty.

25
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Another source of parametric uncertainty within the model arises from adopting economic
equivalents for the benefits derived from green, blue and yellow roofs. Indeed, different
roofing systems provide different benefits. For example, green roofs can mitigate urban
heat island, blue roofs can reduce stormwater runoff, and yellow roofs produce clean en-
ergy. It is thus important to compare these roofing systems on common ground to avoid
the complexity of multi-objective formulations. These types of sustainable development
technologies need to be supported by quantitative estimates of the costs and benefits to
encourage their use [16]. Some scholars have focused on determining the economic ben-
efits that arise with each roofing option by computing the monetary equivalents for their
different functions [16, 18, 31]. Moreover, during the discussions with the daily supervisor
at Sweco, it has been underlined that potential users of this model would be highly inter-
ested in the economic aspects of the optimal placement of green, blue and yellow roofs.

Modelling uncertainty originates from the assumptions made in the translation of phys-
ical phenomena into mathematical formulas. Even if replicating the real functioning of
these roofing systems through a mathematical model can be very complex, formulas are
constructed to represent in a simplified way the working of green, blue and yellow roofs in
relation to the municipalities’ system. Assumption and modelling choices are thus neces-
sary. However, since the model will be constructed with the best available knowledge and
with underlined limitations, modelling uncertainty will not further be taken into account
nor analyzed within this study.

4.2. Climate change uncertainty

As explained in Section 2.1, when dealing with climate adaptation and mitigation strate-
gies like green, blue and yellow roofs, climate change represents an aspect of deep un-
certainty that is not eliminated over the short, or long term [25]. Three primary sources
of uncertainty are recognized in climate long term predictions: natural climate variability,
uncertainties of the responses to climate forcing factors, uncertainties within those factors’
nature [25, 44]. As an example, political choices which would determine future greenhouse
gases emissions are unknown, and they would determine hard-to-predict values for a forc-
ing factor like CO2. Due to the complexity of these uncertainties, no method exists to un-
derstand the reliability of every scenario’s output.

To properly insert climate variables derived by future prediction within the model of
green, blue and yellow roofs’ optimal placement, it has been chosen to work on an ensem-
ble of possible future predictions. Indeed, scientists suggest employing ensemble simu-
lations to address uncertainties and make good use of climate projections outputs. Thus
multiple outputs are derived by different models [29] and further used. Considering differ-
ent possible future scenarios through multiple climate projections allows for more robust
and aware decision making. Different methods exist which can integrate this suggestion
within the frame of an optimization model.
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4.3. Tackling climate uncertainty in optimization

On the one hand, performing uncertainty and sensitivity analysis for climate variables can
lead to interesting insights regarding the influence of climate events’ occurrence on the
choice of installing green, blue and yellow roofs. On the other hand, it is believed that the
practical aims of this model will best be met when the climate uncertainty is incorporated
through the means of optimization under uncertainty. In literature, insights provided by
sensitivity analysis of climate variables are mainly used to choose whether or not climate
adaptation strategies need to be implemented at all [25]. For the aim of this model, it is
of no importance to decide whether or not to place the roofs by evaluating the response
of the roofs to certain climate events. Indeed, the model is constructed to be used by pol-
icymakers who are already willing to allocate a budget to implement this type of climate
adaptation strategy. Therefore, optimization under uncertainty will be adopted for climate
uncertainty. More specifically, we will integrate climate projections into the optimization
model through robust and stochastic optimization techniques.

4.3.1. Robust optimization

Some authors strongly suggest the use of robust optimization techniques for integrating
climate projection ensembles within decision-making models [34] [25]. Robust decision
making consists of a decision framework specifically suited for decisions with long-term
consequences and deep uncertainty [25]. More specifically, the goal of robust optimiza-
tion is to make a decision that is feasible for every possible set of constraints and optimal
with respect to some measure, an indication of robustness [21]. Several concepts can be
gathered under the name of robust optimization: from the classical strict robustness, or
min-max optimization, to the more recently developed light robustness and regret robust-
ness [21].

We reformulate our deterministic problem into a strict robust optimization problem.
Since the objective function is uncertain while the constraints (inequalities) are not, maxi-
mizing for the worst-case scenario corresponds to maximizing the benefits for the minimum-
benefit scenario. Let ω ∈Ω denote each possible projected climate scenario, where Ω is a
finite discrete set of such scenarios. In this case, climate variables d , w( j ) and m(i , z) -
respectively being the amount of sun-peak hours, the amount of rain during heavy rainfall
days, the impacted people during heatwaves - become d(ω), w( j ,ω), m(i , z,ω). The com-
puted benefits also become stochastic and receive an ω as a subscript. Indeed the climate
variables change for every scenario considered. Thus all variables depending on those cli-
mate variables also become uncertain.
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max min
ω∈Ω

(∑
i

bG (i ,ω)+bB (i ,ω)+bY (i ,ω)
)

s.t .
∑

i
s · (pG · yG (i ) ·a(i )+pB · yB (i ) ·a(i )+pY ·xY (i )

)≤ B

xY (i ) ≤ai ∀i ∈ R

yG (i ) ≥yB (i ) ∀i ∈ R

bG (i ,ω) = ∑
z∈H

cG ·mG (i , z,ω) · yG (i ) · rG (i ) ∀i ∈ R ∀ω ∈Ω

bB (i ,ω) = ∑
j∈P

cB (i ) · rB (i ) ·a(i )
(
w( j ,ω) · yB (i )+kG · yG (i )

) ∀i ∈ R ∀ω ∈Ω

bY (i ,ω) = cY ·Q ·d(ω) · xY (i ) · rY (i ) · (1+θ · yG (i )) ∀i ∈ R ∀ω ∈Ω

4.3.2. Stochastic optimization
In the literature, there exist some examples where stochastic optimization is used to incor-
porate climate uncertainty within optimization models [20, 38]. In these cases, two- and
multi-stage stochastic programming is used. The objective function is represented by max-
imizing the expected value of benefits derived by different climate scenarios. Each scenario
is part of the chosen ensemble of climate projections, and equal probability is assigned to
each of them.

Here a transcription of the optimal placement model for green, blue and yellow roofs
is performed, using a similar approach to the one presented in [20, 38]. Let ηω denote
the realization probability of scenario ω ∈ Ω, where Ω is a finite discrete set of projected
climate scenarios. Another change occurring within the transcription of the model into a
stochastic optimization model is the fact that the benefits bY (i ),bB (i ),bGR (i ) become sec-
ond stage variables with an ω subscript. Specifically, once the first stage decision is taken
about where to place green, blue and yellow roofs (yGR (i ), yB (i ), xY (i ) assume some value),
then the benefits are computed for each scenario ω.

max
∑
i∈R

∑
ω∈Ω

ηω

(
bG (i ,ω)+bB (i ,ω)+bY (i ,ω)

)
s.t .

∑
i

s · (pG · xG (i )+pY ·xY (i )+pB · xB (i )
)≤ B

xY (i ) ≤ai ∀i ∈ R

yG (i ) ≥yB (i ) ∀i ∈ R

bG (i ,ω) = ∑
z∈H

cG ·mG (i , z,ω) · yG (i ) · rG (i ) ∀i ∈ R ∀ω ∈Ω

bB (i ,ω) = ∑
j∈P

cB (i ) · rB (i ) ·a(i )
(
w( j ,ω) · yB (i )+kG · yG (i )}· ∀i ∈ R ∀ω ∈Ω

bY (i ,ω) = cY ·Q ·d(ω) · xY (i ) · rY (i ) · (1+θ · yG (i )) ∀i ∈ R ∀ω ∈Ω
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In the frame of this project, the outcome of both robust optimization and stochastic
optimization will be provided. Such outcomes will result in a unique solution for each run
in terms of optimal location and objective value. Such results will be then analyzed under
different combinations of parameters values, which are not linked with climate uncertainty,
but with technical and monetary parameter uncertainty, as will be explained in Section 4.4.

4.4. Parameters uncertainty
In the formulation of the optimal placement model for green, blue and yellow roofs, a total
of 8 parameters among the monetary equivalents and the roofing technical parameters are
considered uncertain. Indeed, literature often does not agree on the degree of advantages
these roofing systems can have nor provides unique fixed values for economic equivalents
of their benefits. Furthermore, cost-benefit analysis for green, blue and yellow roofs found
in literature often assume average monetary values are representative enough [18], or pro-
pose that model users provide those values as inputs [37]. Investigating the consequences
of some choices or others can be crucial for a deeper understanding of the matter.

Therefore, the uncertainty underlying the parameters will be investigated in this study.
The concept of uncertainty and sensitivity analysis will thus be applied to the economic
and technical parameters, as will be explained in the next sections, with the following aims:

• Identify the combination of parameters choices that provide similar results;

• Shed light on the impact of uncertain parameters on the model output;

• Suggest how to handle these uncertainties when solving a real-life problem.

4.5. Tackling parameters’ uncertainty in optimization
In this study, the method proposed in [19] is followed to analyze the parametric uncertainty
behind the problem. We sample the parameters from their uncertainty ranges and solve the
model for multiple combinations of such parameters. We thus obtain multiple solutions,
which differ both by roof placement and total benefits gained. The approach introduced
in this section offers tools to understand which parameters’ values lead to which type of
solutions. We analyse the similarity between solutions through a specific measure: cosine
similarity. The output of this phase is later provided as input to a clustering algorithm that
identifies similar solutions. Eventually, CART subspace partitioning analyses the classifica-
tion made in the clustering and provides insights into the variation of the model outcomes
in relation to the sampled parameters. The reasons for the choices made are elaborated in
the following sections.

4.5.1. Sampling method
Different literature sources provide different values for the parameters used in this model.
Initially, a collection of potential values for each parameter was made with the aim of using
all of them to perform different model experiments (Table 4.1 ). However, the methodology
expounded in Section 3.3 underlines the importance of starting from one single proposed
approach for the sake of consistency. Furthermore, many parameters were expressed with
different units and had thus to be contextualized and appropriately converted, which turned
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out to be a very complex issue. Therefore, parameters’ values are taken from the single
source chosen as a starting point ([37]) but are considered as random variables instead of
deterministic values. The mentioned overview of parameters (Tab 4.1) made it possible to
clearly define the ranges inside which the uncertain parameters would lie. Since we con-
sider all sources equally reliable, each uncertain parameter is associated with a uniform
distribution within the provided range.

Parameter Values Unit Source Note

Water retention 300-800 ¤/m3 of water [37] m3 water stored
30 $/m2 roof per year [18]
0.73-2.06 $/m2 roof per year [30]
8-26 $/m2 roof per year [16] infrastr. improvement
0.00071-0.0024 $/m2 roof per year [16] avoided flooding

Heat stress mit. 0.5-1.5 ◦ Celsius [33] unknown GR unit
0.0083-0.0012 $/m2 [16] convert in¤/◦
less patients - [37] summarize

Clean energy per pollutant ¤/m2 of roof [37] summarize
CO2 equivalent kg/CO2eq [23] convert in¤/m2

Efficiency PV+GR 1.35–3.35 % [33]
3.33–8 % [38]

Table 4.1: Different sources provide different estimations for the economic and technical parameters.

The first step of the proposed methodology starts with randomly sampling the param-
eters from the specified ranges to later solve the problem with different combinations of
such parameters and output different experiments-specific solutions. The most common
sampling technique used in the literature concerning green roofs is the Latin hypercube
sampling technique [19, 30].

Latin hypercube sampling (LHS) is a method that generates a near-random sample of
parameter values from a known uncertainty range [5]. It generates a random sample of
N points for each uncertain input. The sample points are distributed across all possible
values within the provided ranges, contrary to other sampling methods like Monte Carlo,
where sampled points can end up all clustered closely. It works as follows: first, each input
distribution is partitioned into N intervals of equal probability, then one sample from each
interval is taken [5]. The LHS method is considered to be appropriate for the model under
analysis in this thesis. Indeed, choosing a uniform distribution associated with LHS will
make it possible to consider sampled parameters distributed across the whole considered
ranges.

4.5.2. Format of the input for uncertainty analysis
The vectors representative of the experiment-specific output must be formatted appropri-
ately to perform the next steps present in this Chapter. Since the aim is to provide vectors
representing the variation in locations chosen for each type of roof, we chose to output for
each roof i ∈ R the associated vector of benefits for the three roofing options. Let n be the
number of roofs in set R. Then for every combination of parameters m, vector X, will con-
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tain the benefits for each roofing option placed on each roof.

X(m) =



bG (0,m)
...

bG (n −1,m)
bB (0,m)

...
bB (n −1,m)

bY (0,m)
...

bY (n −1,m)





3 ·n

n

n

n

This vector will store first the vector of benefits derived from green roofs. This amount
xG (i ,m) will correspond to zero if a green roof is not placed under the combination of
parameter m for roof i . The same vectors for blue and yellow options are vertically con-
catenated further to compare results for each combination m, creating one single vector.
Therefore, in total, we will have m vectors of the shape of X(m), where m is the total amount
of possible combinations of parameters. Thus, the final input matrix for the next sections
will have dimension [3n,m]

4.5.3. Similarity matrix
Given two data points or vectors, a similarity matrix is a matrix filled with scores that ex-
press how close or similar they are. The similarity differs for each type of distance metric
chosen. The cosine distance is a distance metric that measures the closeness between two
vectors by looking at the cosine of the angle spanned by the two vectors [2]. Given two
vectors a and b, the cosine distance is computed as follows:

cos(θ) = a ·b

‖a‖‖b‖ =

n∑
i=1

ai bi√
n∑

i=1
a2

i

√
n∑

i=1
b2

i

Figure 4.1: Two 2-dimensional vectors a and b and their cosine distance.

In our case, it is not possible to have negative vector orientation, as the benefits for each
type of roof and location cannot be negative by definition. Thus the scores inside the sim-
ilarity matrix take values between 0 and 1, where 1 indicates that the two vectors are the
same, and 0 occurs when two vectors are orthogonal to each other.
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The cosine distance is preferred over other distance metrics, such as the Euclidean dis-
tance. Indeed, cosine distance evaluates the angle spanned by the vectors in the 3 ·n di-
mensional space. Thus it is heavily influenced by the presence of 0 in the vector since that
would correspond to a missed vector component in one dimension [40]. Since each en-
trance of the vector corresponds to a direction in the space, cosine similarity considers the
ordering we have chosen for the input. Indeed, value xG (i ,m) will contribute to the similar-
ity if it is close to value xG (i , l ) for some combination of samples m and l . On the contrary,
Euclidean distance does not take this order into account, and compute the distance based
on the module of the vectors.

The cosine measure is also helpful in this case as it applies well to high-dimensional
and sparse vectors[40]: our output matrix indeed contains a majority of zero-values. All in
all, the cosine distance can reflect similar investment patterns between the m experiment
vectors, which depend on the uncertain parameters.

4.5.4. Clustering technique
The cosine distance matrix is provided as input to a clustering algorithm to cluster the out-
comes and identify similar groups of results. Among all existing clustering techniques, a
hierarchical clustering algorithm is chosen in this frame, as done in a similar problem han-
dled in [19]. Hierarchical clustering is preferred over non-hierarchical clustering because it
systematically evaluates all potential groupings and lets the analyst choose the number of
clusters after visualizing the potential clusters on a dendrogram.

Figure 4.2: Dendrogram example for hierarchical clustering.

Between the existing agglomerative and non-agglomerative clustering options, agglom-
erative hierarchical clustering is preferred. It relies less on the initialization of parameters
and thus on fewer external choices [1]. The algorithm receives as input the similarity matrix
described in Section 4.5.3. A linkage criterion must be chosen. In the case of a predefined
cosine distance, there are three possible linkage methods: single, complete and average [1].
Computing single linkage proximity between two clusters means computing the distance
between their two closest objects. On the contrary, complete linkage defines the shortest
link-distance as the proximity between their two furthest removed objects. Consequently,
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the clusters that are combined have the smallest distance between any two cluster ele-
ments. Finally, with average linkage, the proximity between two clusters is the mean of
all proximities between the objects of both clusters in comparison [1]. Therefore, all data
points within each of the two clusters have equal influence on the proximity. We use the
complete linkage method, as is done in [19], to ensure the creation of compact clusters with
a high in-cluster design similarity.

4.5.5. Choosing the number of clusters
The choice of the number of clusters for the chosen method lies in the hands of the analyst.
First of all, the practical utility of clustering needs to be taken into account. For example,
clustering the high number of solutions in a high number of clusters may result in a lack of
insights. Furthermore, by looking at the dendrogram, it is possible to feel the distribution
of the considered experiments. However, a precise method exists which is able to quantify
how well clustered the data is: the silhouette score or coefficient. Let us call a the average
intra-cluster distance, namely the average distance between each point within a cluster
and b the average inter-cluster distance, namely the average distance between all clusters.
Then the silhouette score is defined as follows [42]:

(b −a)

max(a,b)

4.5.6. Subspace partitioning
The final aim of the sensitivity analysis is to identify which uncertainties lead to high sim-
ilarity of outcomes. Classification and Regression Trees (CART) is used to explore such
patterns, following the example contained in [19]. After each experiment is processed by
hierarchical clustering, it gets a clustering label assigned. Understanding which variable
determines the most such classification is the role of CART algorithm. CART receives as an
independent input of data (X 1, ..., X p ,Y ) consisting of some explanatory variable X k and a
categorical variable Y , which needs to ’be explained’. In our case, each X k corresponds to
one of the sampled uncertain parameters and Y to the cluster label. A CART tree is formed
through recursive partitioning: the ’rule’ defined by the underlying parameters is identified
for each split in the branches. It follows the principle of minimizing some heterogeneity
criterion. The criteria considered in this thesis to check on the performance of the tree are
entropy and Gini index [13].

We can look at the CART tree as a mapping process, which we call map T . To each
sample (X 1

i , ..., X p
i ,Y ) the map assigns a leaf t . We call p( j |t ) the proportion of data labels

j in a leaf t . The entropy index Et and the Gini index D t quantify how well the splitting
represents the data. They are composed as follows [13]:

Et =
∑

j
p( j |t ) log p( j |t )

D t =
∑

i

∑
j 6=i

p(i |t )p( j |t ) = 1−∑
i

p(i |t )2

Both indices are equal to 0 when only one label is present in leaf t , and they are max-
imum when all labels are present with equal probability. CART thus splits a leaf into two
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sub-leaves, identifying a threshold for a key variable. The difference between the hetero-
geneity of a leaf and the total resulting heterogeneity within the two sub-leaves is maxi-
mized and positive. The procedure stops when no more splitting is possible [13].

4.6. Modeling uncertainties: overview
Overall, climate uncertainty will be integrated into the model with optimization under
uncertainty techniques. In contrast, parameters uncertainty will be tackled through the
means offered by uncertainty analysis. Thanks to the nature of the objective functions in
robust and stochastic optimization, the model will consider different climate scenarios but
always output unique solutions. The run of the model will then be replicated for multi-
ple combinations of uncertain economic and technical parameters. Thus, this phase will
output a solution assigned to each combination of parameters, which will later be analyzed
with the mentioned sensitivity methods. This methodology will identify the key parametric
uncertainties which influence the model’s solutions. The process will help both the analyst
and the client understand which aspects to focus on when deciding about the placement
of green, blue and yellow roofs.
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Case study

In this chapter, we provide the results of a case study, for which the municipality of Schiedam
is selected as the area of interest. Schiedam is chosen due to a nice and long collaboration
between the Sweco team and the municipality. An overview is here provided of the inputs
and outputs of the constructed model. First, climate data is presented and analysed. We
then explain how the set of suitable roofs is constructed, given an area of interest. After
that, we present how the parameters that summarize the structure of the city and the tech-
nical working of the roofs for each building are created. In the fourth section, the model
settings and performance are expounded, leading to the model output analysis. The solu-
tion is further processed during the uncertainty analysis in the fifth section. The last two
sections replicate the analysis of results and uncertainty for another version of the model:
the multi-time step model.

5.1. Input Climate data
As pointed out in Section 2.1 the performance of the sustainable roofing options heavily
depends on climate and its uncertainty [28, 48]. Thus the use of future climate projection
is the key to understand how useful their application is and to quantify their benefits [38].
In this section we will explain which climate projections are used in this thesis, and how
they were handled to be used by the model.

5.1.1. Choice of climate data
Since this model is going to be potentially deployed for Dutch clients, it has been suggested
by Sweco experts to chose the KNMI (Koninklijk Nederlands Meteorologisch Instituut) as
the scientific institute to take the data from. Since we wanted to analyse different RCP sce-
narios and the variables of precipitation, maximum temperature, downwelling shortwave
radiation and sunshine duration, two main GCM were left in the EURO-CORDEX portal:
the CNRM-CM5, developed by the french National Centre for Meteorological Research, and
the ICHEC-EC-EARTH, developed by the Irish Center of High-end Computing. KNMI has
downscaled those GCM using the RACMO22E RCM. Furthermore, to allow consistency in
the data for different variables, it has been chosen to extrapolate the daily values for each of
them, even if some of the variables has smaller time-steps available, e.g., one record every
3 hours. In the following table, an overview of the selected climate projections is provided.

35
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Institute Driving Model Experiment Ensemble RCM model
KNMI CNRM-CM5 RCP 2.6 r1i1p1 RACMOE22
KNMI CNRM-CM5 RCP 4.5 r1i1p1 RACMOE22
KNMI CNRM-CM5 RCP 8.5 r1i1p1 RACMOE22
KNMI ICHEC-EARTH RCP 2.6 r12i1p1 RACMOE22
KNMI ICHEC-EARTH RCP 4.5 r12i1p1 RACMOE22
KNMI ICHEC-EARTH RCP 8.5 r12i1p1 RACMOE22

5.1.2. Climate data analysis
The chosen data is first downloaded from the EUROCORDEX platform and then processed
to extract the features needed for the application to the problem. We wish to extrapolate
the days in which precipitation quantities and maximum temperatures are high enough
to determine some positive contribution provided by the adaptation measures. Moreover,
we wish to determine the amount of hours in which PV panels can produce a reasonable
amount of energy

Heavy rainfall For the Dutch climate, the KNMI defines an extreme rainfall event in
correspondence to a precipitation exceeding 25 mm/h or 50 mm/day [48]. However, it is
noted that the ability of green and blue roofs to delay runoff, and thus mitigate the stress on
the sewage system, can be appreciated already starting from a daily precipitation amount
of 25mm/day [48]. The sum of the mm for the days in which this condition applies are re-
ported in Fig 5.1 grouped by climate projection. In this study, we will refer to the days with
a daily precipitation amount of 25mm/day as mid-intense rainfall days

Heat The KNMI defines heatwaves as 5 consecutive days of which at least 2 present
temperatures above 30◦ Celsius and 3 above 25◦ Celsius [48]. However, following the ap-
proach presented in [48], we consider that cooling is desired independently of the duration
of the warm period, and for all days with a maximum temperature above 25◦ Celsius. More-
over, as in [47], we assume that a green roof can cool maximum 1◦ at the pedestrian level.
So we consider days in which the temperatures do not go over 31◦. Indeed, we consider
that, above that temperature, the potential mitigation achieved by a green roof would not
be enough to avoid hospitalization. In Fig 5.1 we report the average degrees reached during
hot days for every climate projection considered.

Sun peak hours With respect to climate mitigation, the performance of yellow roofs can
be measured by taking into account what are called sun peak hours [38]. A sun peak hour
refers to a moment in time in which the measured solar radiation is at least 1 kW/m2 in
one hour. In correspondence to this condition of solar radiation, it is possible to state how
much energy a certain amount of PV panels can produce [38]. To compute such quantity
we use two datasets taken from the EUROCORDEX platform: the daily downwelling short-
wave radiation, expressed in W /m2 and the sunshine hours per day, expressed in h. We
thus multiply the two quantities to obtain a value of W h/m2 which represents the daily
average of solar insolation. This value corresponds to the amount of sun peak hours. In Fig
5.2, the difference over specific climate projections is presented for this quantity.
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Figure 5.1: Total mm of rain during mid-heavy rainfall, and average max temperature during hot days in the
period from 2021 to 2045.

Figure 5.2: Amount of sun peak hours in 25 years (2021-2045) at the selected location.

5.2. Set of suitable roofs
Not every building is suitable for the placement of all roofing options. Therefore, once the
area of interest is selected, it is crucial to identify the buildings whose roofs are adequate
for hosting green, blue and/or yellow roofs.
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In Appendix A.1 we expound the details and procedures which allows us to select the
set of suitable roofs in the selected area. We mainly consider two factors: the roofs’ slope
and area. In Fig 5.3 we report an overview of the area of interest, with the suitable roofs.
The latter account for a total of 1120 roofs.

Figure 5.3: Suitable buildings in the municipality of Schiedam

5.3. Spatial Parameters
As explained in Section 3.2, the model inputs are required to be building-specific and to
encapsulate the usefulness of applying green, blue or yellow roofs solutions on each roof.
In the following subsection an overview is provided about how each climate-derived risk
can be encapsulated into modeling parameters. More details are given in Appendix A.1

5.3.1. Flooding risk
Heavy precipitation over a short period can cause local flooding. A large part of the Dutch
streets and squares can be flooded during heavy showers [4] (Fig:5.4). The factor rB (i ) used
in the formulation expresses the usefulness of applying water retention roofs (green and
blue roofs) on top of buildings, based on their location (Fig. 5.5). The parameter cB (i ) is
instead assessing the costs due to flooding that are avoided thanks to the installation of
some m2 of green or blue roof. Both factor are dependent on the location of roof i .



5.3. Spatial Parameters 39

Figure 5.4: Water level during
heavy rainfall event.

Figure 5.5: Water level during heavy rainfall event. The
volume of water found in the building buffer is used to
construct rB .

5.3.2. Urban Heat Island
In any city in the world the Urban Heat Island (UHI) effect is a phenomenon affecting the
health and well-being of its inhabitants. Compared to its surroundings, a urban area in-
deed experiences significant higher temperatures, which compose the ‘island’ of heat. The
main sources of this problem can be found in the increased use of materials with high so-
lar absorption and in anthropogenic heat production [45]. Since future temperatures are
predicted to rise also in the Netherlands [47, 48], it is important to find smart ways for mit-
igating this effect. We make use the klimaateffect atlas layer for UHI [4] to compute the
utility factor rG (i ) for heat reduction in correspondence to each building (Figs. 5.6, 5.7).
The parameter mG (i , z) instead evaluates for each building i and each hot day z how many
people can avoid health issues due to heat thanks to the placement of a green roof. Details
about this procedure are provided in Appendix A.1.

Figure 5.6: Heat stress is mod-
eled through the use of a urban
heat island layer.

Figure 5.7: Heat stress is modeled through the use of a
urban heat island layer. The average increase in tem-
perature for the buffered area is used to construct rG .
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5.3.3. Solar Radiation Potential
Following the workflow reported in [38] another input, rY (i ), is needed for the model. This
parameter expresses how much solar radiation potential there is on each building, thus
provides an indication about how useful and/or efficient it will be to place solar panels on
a specific roof. The outlook of such quantities for our area of interest are reported in Figs.
5.8, 5.9.

Figure 5.8: Overview: the darker the
roof, the higher the value of rY .

Figure 5.9: Zoom into computa-
tions of solar potential.

5.3.4. Technical parameters
The contribution to the urban climate resilience is not only mapped through the construc-
tion of spatially-derived parameters, but it is also linked to the technical functioning of the
roofs, and their response to climate. We report a detailed discussion about this in Appendix
A.1.

Response to heavy rainfall For the fixed-parameters model we refer to [48] and assume a
depth of water layer of 10mm and 60mm respectively for green and blue roofs. Moreover
we consider that for the amount of mid-heavy rainfall, the roofs have an absorption rate of
the incoming water of 80%.

Performance during heatwaves As reported before, it is assumed that green roofs can help
mitigating the urban heat in its surroundings by maximum 1◦ Celsius, as is done in [47].

Relation with solar radiation The production of energy from yellow roofs is strictly linked
to the amount of solar radiation received by the roof [37, 38]. Among multiple possible
methods, we will estimate how much energy is produced by each m2 of PV panels by look-
ing at the amount of sun peak hours, as is done in [38].
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5.4. Stochastic model with fixed parameters: results
Provided with the input of the computed parameters per building and the climate data, the
model will find the optimal location for the three different roofing options. In this para-
graph, we will discuss the solutions obtained when running the stochastic and robust for-
mulation of the model with fixed parameters. In this case, the uncertainty behind these
parameters is not considered, and average values taken from literature are deployed, as
shown in the following table.

Parameter Value Description Source
B 5000000 budget available from municipality (¤) choice
s 0.2 subsidy rate covering the total investment choice

costs (∈ [0,1])
pG 80 cost for installation of green roofs (¤/m2) [37]
pB 30 cost for installation of blue roof, as a layer

beneath the green roof layer (¤/m2) [9]
pY 315 cost for installation of yellow roofs roofs (¤/m2) [37]
hG 10 thickness of water retention layer for green

roofs (mm) [48]
kG 0.8 water absorption rate for green roofs,

during a heavy rainfall event (%) [48]
m(i , z) 1.079e-5* people per hot day affected by heat

*rescaled per buiilding i and temperature z [27]
kB 0.8 rate of absorption of water for blue roofs,

during a heavy rainfall event (%) [48]
Q 187.5 Wh produced during one peak hour by a

m2 PV panels (Wh/m2) [37]
θ 0.05 rate of increase in efficiency for PV

panels due to GR presence (∈ [0,1]) [38]
cG 5000 avoided heat cost healthcare per heat

day (¤/person) [49]
cB 500,300,200 depending on city area and then rescaled on

the number of rainfall events (¤/m3) [24]
cY 0.0700734e-3 economic benefit of producing clean energy, based

on avoided green house gasses emissions (¤/Wh) [37]

Table 5.1: Overview of the values for each parameter used in the model.

The user of the model can choose a budget and subsidy scenario. In this case we chose
to allocate 5 million¤ of budget and to cover the cost of installation by 20%.

5.4.1. Results
We will present in this Sections the results derived both by the stochastic model and the ro-
bust model, presented in Section 4.3. The stochastic model finds the combination of loca-
tions and roof types which maximizes the average benefits, considering that each climate
scenario has the same probability of occurrence. In this case, since the available climate
scenarios are 6, each benefit computed per roof and climate projection has a weight of 1/6.
Conversely, the robust model finds the best locations for the three types of roofing options,
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which yields the highest amount of total benefit in the case in which this is minimum. More
specifically, it computes the total benefit for each climate scenario, and chooses the loca-
tions which sum up to the max benefit for the worst (least beneficial) projection. In the
following Table (5.2), an overview of the solution is provided for the two models.

Model m2 GR m2 BR m2 YR benefit heat benefit flood benefit energy tot benefit
Stoch 19,164.9 1,651.4 74,341.1 773,028.3¤ 50,449¤ 8,109,866.6¤ 8,933,343.9¤
Robust 19,164.9 3,136.1 74,199.1 638,216¤ 63,430.1¤ 6,673,950¤ 7,375,596¤

Table 5.2: Solutions of stochastic and robust model, compared.

The difference between the two models -stochastic and robust- with the chosen fixed pa-
rameters is not extreme: the decision variables differ for a small amount only in the case
of blue and yellow roofs. The total computed benefits decrease in the robust case, for heat
mitigation and clean energy production. As can be seen in figure 5.10, the budget distribu-
tion is not extremely different in the two solutions.

Figure 5.10: Budget distribution in the stochastic and robust models; starting budget of 5 Million ¤ and 20%
subsidy rate.

Looking deeper into the data, the variation of m2 in yellow and blue roofs appears to
be due to a modification of two roofing options in two roofs only: one building receives
an addition of blue roof layer, while another will have its yellow roof removed. The small
observed variation can be attributed to two causes.

On the one hand, as observed in Section 5.1, the highest variation in climate variables is
present among the projection for sun peak hours. Indeed, for the scenario with RCP 8.5 and
GCM CNMR, which happens to be the worst case scenario, the amount of sun peak hours
is sensibly smaller than for the other scenarios. This difference persists when considering
the average of all climate projection’s sun peak hours. This explains why there is one yel-
low roof less in the robust case than in the stochastic one. On the other hand, the observed
variation between the two models does not involve many changes in the decision variables,
because of how the model is constructed. Indeed, the computed parameters per building
are not changing, while the climate variables values are. Looking again at the model as
a knapsack problem, we deduce that all benefits are scaled in a linear way depending on
the climate, but that the order of the ratios benefit/costs has less occasions to face a change.

On the contrary, a big variation can be seen in the computed benefits. Indeed those directly
depend on the climate. The worst case climate scenario presents more precipitation, less
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hot days and less sun peak hours in total. Therefore, even if the total m2 of green roofs
do not change, the benefit derived from heat mitigation decreases. Furthermore, a small
decrease in the total m2 of yellow roofs, associated with less sun peak hours, yields to a re-
duction in the total benefit derived from the production of clean energy. Vice versa, a small
blue roofs’ increase contributes to a benefit increase for flooding protection.

Lastly, it is interesting to notice that the difference in total amount of m2 for blue and
yellow roofs is not proportional: blue roofs covering is nearly double for the robust case
with respect to the stochastic one, while the yellow roofs are reduced by an amount which
is only close to 1%. The cause of that can be traced back to the the difference in costs per
m2 of the two options, 315¤/m2 for yellow roofs and 30¤/m2 for blue roofs.

Figure 5.11: Zoom of one area of the map, showing the solution of the stochastic model.

In Fig 5.11 a portion of the solution is shown in a map constructed in QG I S. We observe that
densely populated and less green areas are preferred for the placement of green roofs. This
is completely in line with the idea that there is a high utility in placing green roofs where
there is a higher chance of finding people suffering from heatwaves. Moreover, industrial
areas are preferred for the placement of PV panels. This can be easily explained by the fact
that industrial buildings usually have a very big flat area, that determines on average high
values of solar radiation. It is also possible to deduce that the utility of reducing the effects
of a flooding event or heatwave in industrial areas is not appreciable from the fact that
the model does not propose the installation of green or blue roofs in such areas. At last, the
blue roofs are placed on residential buildings (thus having a higher monetary benefit), with
a relatively big area and located where the level of predicted water made it rank high in the
value of utility rB .
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5.4.2. Insights about Budget variation
Clearly, a higher budget availability will determine a higher amount of roofing options in-
stalled (Fig.5.12). To provide insights about how the selected roofs will be chosen when a
different budget is allocated, we run the model for a budget B varying from 1 million ¤ to
90 million ¤, with steps of 10 million at a time. For completeness we also show the results
for 5 Million budget, which is our base case. The results show a linear increase in the total
benefit (objective function) in correspondence to the proposed linear increase of the bud-
get (Fig 5.13). The last part of the graph has a change in the slope, due to the fact that green
and blue roofs (in big quantity in the last trial) do not lead to linearly increasing benefits
with the same impact that yellow roofs do. Indeed, they depend on rainfall and heat events
which are not constant, nor force the value of benefits as much as the amount of sun-peak
hours do.

Figure 5.12: Plot showing the total m2 of each roof type chosen, in correspondence to different budget.

Figure 5.13: Plot of changing budget against determined total benefits.

Another interesting aspect to notice, and shown in Fig 5.12, is the prevalence of yellow
roofs in correspondence to low and medium budgets, while for model runs where more
budget is available green and blue roofs will be chosen in greater quantities. This aspect
can be explained looking at the model as a ’knapsack problem’. Given a certain capacity of
the knapsack (budget), and some items which have their value (benefit) and weight (cost),
which combination of items maximises the total value of the knapsack? In our case, there
are three items per building (one green, one blue and pv panels in a certain amount) that
can be placed in the municipality. Each of the options has its cost and its benefits. It is
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possible to notice that the highest benefit/cost ratio is achieved by some buildings with
yellow roof options before that happens for the equivalent blue and green option. Given
the higher cost per m2 for the yellow roofs, this can be explained by looking at the relatively
high benefits derived from yellow roof options. Indeed, the parameters used on average
determine higher benefits for the yellow roofs, derived by the total energy production of
the 25 years. A big variation for the m2 quantities of green and blue roofs is present in cor-
respondence to the step between 80 and 90 million budget. This is determined by the fact
that, once all possible or useful roofs are covered with the yellow option, green and blue
roofs can be placed in relatively high amounts due to their relative low price (80 and 30 ¤
compared to 315 per m2).

Location-wise yellow roofs are gradually added with preference to bigger and flatter
buildings, which have as a consequence higher rY expressing relative radiation potential.
In correspondence to higher budgets, green and blue roofs are placed in locations where
the higher levels of water are found in the Klimaateffect altlas. In the following figure, some
scenarios related to sampled solutions from different budgets are reported in Fig.5.14.

(a) Zoom into the solution map, budget of 1 million.

(b) Zoom into the solution map, budget of 40 million.

(c) TZoom into the solution map, budget of 90 million.

Figure 5.14: Variation in the solution for a portion of Schiedam, with a budget changing from 1 Million to 40
Million, and 90 Million¤.
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5.5. Stochastic model: uncertainty analysis
In the following analysis, we will explore which variations can be observed in the model’s
outcomes when the parameters are considered in their uncertain nature. We first randomly
sample the parameters, and run the model one time for each combination of parameters.
The resulting solutions are later grouped in clusters to treat the outcome in a more com-
pact way. The final step consists in applying CART algorithms to infer the link between the
sampled parameters and the solutions’ characteristics.

Like in [38], we perform the uncertainty analysis for the stochastic model, among the two
proposed models. The first motivation for this choice is that it is not known how proba-
ble each climate scenario is. Thus, optimizing for a worst-case scenario that may have a
smaller probability of occurrence may not be beneficial. Furthermore, from the practical
perspective, using a combination of climate scenarios may provide more insights into fur-
ther uncertainty and sensitivity analysis steps. We report in the following table (Tab. 5.3)
the uncertain parameters and their uncertainty range. Whenever possible, the ranges are
taken directly from the literature; otherwise, a variation of + or - 20% is used.

Parameter Range Type Source
kG [0, 0.8] param (%) [48]
m(i , z) +/-20% applied each value param (people/day) [27]
kB [0.3, 0.8] param (%) [48]
Q [120, 200] param (Wh/m2) [38]
θ [0.005, 0.08] param (%) [38]
cG [3000, 11000] econom (¤/person) [49]
cB (i ) +/-20% applied to value per building econom (¤/m3) [24]
cY [0.056058e-3, 0.084088e-3] econom (¤/Wh) [37]

Table 5.3: Uncertain parameters: ranges.

As explained in Section 4.5, each parameter is sampled using Latin Hypercube method
from a uniform distribution over the specified ranges. We sample 3 values from the dis-
tribution of each parameter. In Fig. 5.15 we provide an example of the distribution of a
sampled parameter, Q.

Figure 5.15: Example for sampling 3 values from the distribution of Q.

We wish to run the same model with a different combination of parameters. With eight
parameters, 38 total runs have to be performed. However, due to computing restrictions, 38

experiments could not be completed. Therefore, we merge the uncertainty of m(i , z) and
cB under the name adu , adaptation strategies uncertainty; thus, we run the model 37 times.
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5.5.1. Results
The results of these runs can be seen in Fig. 5.16. Here, we plot the total amount of m2

covered by each roofing option in correspondence to each experiment. Like in the fixed
parameters model, yellow roofs have a dominant presence in most runs. Moreover, a trade-
off exists between the yellow roofs number and the total number of roofs placed. Indeed,
the highest peaks in the y axis are reached when yellow roofs are less present. With the
same budget, more green and blue m2 can be placed than m2 of yellow roofs, due to their
price.

Figure 5.16: Amount of m2 chosen for green, blue and yellow roofs in correspondence to different parameters
sampling.

To better visualize the variation happening among the different experiments, we zoom
into 100 random experiments and report the amount of m2 and the total benefits derived
in Fig .5.18. Fig. 5.17 reports the same information, but in a pie-chart scatter plot, which
reports total benefits on y axis, experiment number on x axis and has a dimension propor-
tional to the total m2 of roofs placed. Moreover, the ratios of roofing option are represented
by the slices of the pie (blue proportion is increased to make it visible).

Figure 5.17: Plot of 100 experiments. y axis represents total benefits.

From Figs 5.17 and 5.18 it is possible to see that the variation in total benefit is not
linearly dependent on the amount of m2 for the different roofing options. In general, a
tendency appears: results with smaller quantities of blue roofs tend to have higher total
benefits, and smaller total m2 of roofs. Different combinations of sampled parameters con-
tribute to these variations in a non-trivial way. In the following section, we will analyze in
more detail which experiments lead to the most similar solutions, and which combinations
of parameters lead to which optimal placement to answer our research questions.
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(a) Zoom into the solution of 100 experiments, total m2 placed per type of roof for every experiment

(b) Zoom into the solution of 100 experiments, total benefits in¤

Figure 5.18: A detail of different experiments outputs: total m2 per roofing option and total benefit.

5.5.2. Clustering of results
As explained in Section 4.5.3, post-processing the outcomes of the previous phase is neces-
sary due to high number of experiments. Otherwise, it would be hard to draw insights about
how the parameters influence the solutions. The cosine similarity is chosen to understand
how each solution relates to the others in terms of distribution of roofing types around the
municipality. We first compute similarity and plot the results in the matrix presented in Fig.
5.19. The darker the colour, the higher similarity between experiments’ results.

The experiments’ results are obtained combining multiple values for the uncertain pa-
rameters and they tend to be very similar on average. It is thus possible to conclude that
the parametric changes influence the choice of location less than the total benefits. This
high average similarity across experiments could be a good sign for the robustness of the
proposed model. It is worth noticing that the cosine similarity can spot the similarities as
for roof placement and not for the benefit derived by each placement, as it considered the
angle spanned by two vectors and not their modules.

Nonetheless, ’stripes’ of clearer colour are present in Fig. 5.19. They indicate that some
experiments are very different from others. Such stripes, however, do not form a repetitive
grid. This characteristic makes the following analysis even more interesting: a repetitive
pattern would mean that only one specific parameter is responsible for the main changes
in the solution. On the contrary, a variation in the structure of colours of the similarity ma-
trix suggests that a combination of multiple sampled parameters influences the solution.
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Figure 5.19: Cosine similarity matrix

The method used in this study to group similar outcomes is called hierarchical cluster-
ing and it is explained in Section 4.5.3. In Fig 5.20 we report the dendrogram generated from
applying agglomerative hierarchical clustering with complete linkage to the computed sim-
ilarity matrix. The results are equally distanced in the x axis, while the y height at which any
two objects are joined together reflects the distance between the elements. An horizontal
line can be drawn at some height; the elements that are joined together below that line are
part of the cluster represented by the closest horizontal link between elements.

In our case, it is clear that clusters with many elements are already formed at small y
values. The great distance between the first joints of elements and the last signifies that
the data will probably be well clustered also when considering a small amount of clusters.
The silhouette method, presented in Section 4.5.5, can be deployed to choose a correct
and representative number of clusters. We tried multiple cluster numbers and computed
the silhouette value. The best silhouette value was found in correspondence to 25 and 750
clusters. We choose to group the solutions in 25 clusters, as that would result in a more
compact and insightful input for the next phase.

Overall, we run the model for 37 = 2187 times and obtain 2187 solutions, which are
clustered into 25 groups of similar results. Within these clusters, green, blue and yellow
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Figure 5.20: Dendogram for hierarchical clustering applied to the solutions generated from multiple param-
eters’ sampling.

roofs are similarly distributed around the municipality. In the following sections, we will
look into the details of each solution vector and the parameters underlying each run to find
which parameters determine which group of solutions.

5.5.3. Parametric trade-offs

Through the division in clusters, we can look into the source of variation in the solutions in
a more compact way. Ideally, the solutions which are similar to each other should share
some similar sampled parameters. Therefore, we use subspace partitioning to find the
"rules" behind the distribution in our "experiment-parameters pattern". Classification and
regression trees (CART) are part of the subspace partitioning methods. As each experiment
has a label assigned by the clustering, we deploy CART for classification [19]. We ask the
algorithm to determine the main drivers beneath the given classification.

Running the algorithm, we are able to identify the main parametric drivers of the classi-
fication and get a quantification of their importance with command . f eatur e_i mpor t ances.
The results are reported in the following table (Tab 5.4).

Parameter importance
θ 0.501

cG 0.420
Q 0.068

adu 0.011

Table 5.4: Importance of each parameter in the CART classification.
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Parameters kb, kg and c y are not reported, as they have an importance score close to
0. Q and adu play some minor role. The main parameters that close solutions have in
common are θ and cG . This can be explained by the fact that θ is the parameter that says
how much increase in benefits derived by yellow roofs there is when a green roof is placed
on the same building, as per the formula below:

bY (i ) = cY ·Q ·d · xY (i ) · rY (i ) · (1+θ · yG (i )
) ∀i ∈ R

Therefore, θ is determinant for the location choice of each roof type: a bigger θ forces the
placement of green roofs in buildings where yellow roofs are there already. Instead, a small
θ would leave "freedom" to the green roofs to be assigned to areas with more heat/flooding
problems.

Parameter cG further pushes the model in the same direction. It is a linear term and
defines the benefits derived by the green roofs; when cG is small the heat reduction bene-
fits derived by green roofs are minor. It is important to remember that to place blue roofs,
we assume that a green layer has to exist already. Therefore, the smaller number of green
roofs, the smaller the probability of placement for a blue roof. In a more detailed analysis
reported in Appendix A.2, we see that θ can be determinant for the blue roofs’ placement.
Parameters kB and kG ,instead, are less influential. they are linked to the flooding mitiga-
tion potential of blue and green roofs, which yields generally low economic benefits. This
is due to how the benefits are computed: the shadow cost of a one-time replacement of a
sewage system, with the capacity necessary to capture the water quantity during each mid-
heavy rainfall event.

We do not underline specifically which locations are picked in spite of others for each
cluster, as that would be extremely detailed and not so relevant. However, we can make
some general considerations. The cosine distance and the hierarchical clustering assign
the same label to experiments with a similar distribution of roofs all around a municipality.
The solutions are then similar in any of these two cases:

• if the same types of roofs are placed in close-by locations,

• if there is no big variation in the roofs’ types per location or in total.

More specifically, two experiments which differ only because one green roof is placed in
a different location are similar and probably clustered together. Two experiments which
differ by one yellow roof and one green roof are considered less similar. Indeed, when the
parameters change, they change in the same way for each roof; thus, we do not expect a big
location change for the same roof type. The parameters influence more the trade-offs be-
tween the benefits among different roofing types. Therefore, the parameters will influence
more the total composition of roof types, both per location and in total.

Furthermore, the overall goal is to maximize the total gained benefits. Consequently,
we are interested in understanding which impact each parameter has on the total benefits
gained by the municipality. In Fig. 5.21 a visualization of the share of the total benefits per
roof type, for every cluster is given. Later, we will look into the CART tree details to see if
the parameters that lead to some specific placement also drive the variation of benefits.
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Figure 5.21: Share of benefits for each cluster.

In Fig. 5.21, it is possible to see which clusters contain solutions that have a higher share
of total benefits for green, blue or yellow roofs. Through CART, we would like to have quan-
titative insights about the drivers of some specific type of solution: e.g. when many green
roofs are chosen for a cluster, which parameter combination lies beneath the clustered ex-
periments?

We focus on analyzing the tree path towards some meaningful clusters. We thus look
into clusters with more than 1% of the total data (22 elements). Among those, we look into
some specific clusters with either very high or very low proportion of green roofs: clusters
1, 6, 10, 14, and 19. A simplified scheme of the resulting tree is presented in Fig.5.22. Here,
the condition inside one block determines the solutions partition in the next level; the el-
ements for which the condition is satisfied go to the left, the others to the right; the Gini
index is reported for each step and refers to the classification of all experiments, not only
the ones reported in the leaves.

Clusters 1, 14 and 19 are characterized by a high proportion of yellow roofs’ benefits and
a small proportion of green roofs’ benefits. The reason behind these proportions is easy to
understand for cluster 1, when looking at Fig. 5.22: the experiments inside the cluster are
defined by the smallest values possible of θ and cG . The latter parameters are indeed the
ones that would favour the presence of green roofs. Going down into the tree, we find out
that cluster 1 is also characterized by the highest possible values for Q and lowest for adu .
Here, a high Q boosts the energy production of yellow roofs, while a low adu decreases the
potential of both green and blue roofs. As a consequence, this cluster has also one of the
smallest proportions of blue roofs benefits.

Furthermore, clusters 14 and 19 do not have the smallest possible value of θ, but they
share the smallest possible value of cG . The latter aspect seems to characterize the experi-
ments with low benefits derived by green roofs, which is completely in line with the shape
of the model, and with the results obtained in Table 5.4.

On the contrary, clusters 6 and 10 have the highest presence of green roofs. They are
both defined by the highest possible value of cG . However, Cluster 6 has a smaller pro-
portion of green and blue benefits mainly for two drivers: θ and Q. Indeed, experiments
in cluster 10 are characterized by the highest value possible for θ, and the highest value
possible for Q. In contrast, cluster 6 exceeds those thresholds for a non-significant number
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Figure 5.22: Simplified CART tree representation. The tree shows which parametric features lead more
strongly to the formation of the clusters.

of experiments. This aspect is in line with the hypothesis made about the fact that highly
efficient yellow roofs would "force" green roofs to be placed on the same buildings. As a
matter of fact, high Q values lead to high energy production by yellow roofs, and a high θ to
an increase in the same production, due to green roofs’ presence.

Clus nr in-clus Underlying uncertainties Remarkable characteristics
1 267 θ ≤ 0.03, cG ≤ 5666 high yellow roofs’ benefits proportion and

among lowest of blue roofs’ benefits.
6 50 0.03 < θ ≤ 0.05, cG > 8333, high proportion of green roofs’ benefits but

Q ≤ 146 slightly smaller than clus 10
10 67 θ > 0.05,cG > 8333, Q > 146 high proportion of green roofs’ benefits
14 254 θ > 0.03, cG ≤ 5666 high yellow roof benefits
19 222 θ > 0.03, cG ≤ 5666 high yellow roof benefits

Table 5.5: Overview of some clusters’ main features and underlying parameters’ ranges.

Overall, CART tree classification seems to provide interesting insights into the relevance
of the parameters for the different solutions. When the differences among the solutions are
evaluated with respect to the roofs types’ placement, the most influential parameters are
θ and cG . We further wanted to understand whether the same parameters combinations
can explain the variations in benefits among different clusters. Looking at the results in
Fig. 5.22 and in Table 5.5 we deduce that examples exist of clusters where there is a clear
link between the total sum of benefit per roof type and the parameters. Indeed, the same
parameters can lead both to similar distributions of roofs and similar benefits.
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5.6. Multi-time step model: results
In this section we introduce a multi-time step model, which is developed starting from the
deterministic model presented in Chapter 3. We split the budget over time and look into
which roofs will be placed in which moment of time as a response to climate variables.

A new set will be introduced, T , set of years under analysis, spanning from 2021 to 2045.
As a consequence of the multi time-step reformulation, the decision variables get one more
dimension, time dimension t ∈ T .

xY (t , i ) ∈R+ m2 of yellow roofs to be placed on roof i in year t
yG (t , i ) , yB (t , i ) ∈ {0,1} active if Green and Blue roofs are to be placed

on roof i in year t
The problem takes the following shape:

max
∑
i∈R

∑
t∈T

(bG (t , i )+bB (t , i )+bY (t , i ))

∑
i∈R s · (pG · xG (t , i )+pY · xY (t , i )+pB · xB (t , i )) ≤ B(t ) ∀t ∈ T

xY (t , i ) ≤ a(i ) ∀i ∈ R ∀t ∈ T

yG (t , i ) ≥ yB (t , i ) ∀i ∈ R ∀t ∈ T∑
t∈T yG (t , i ) ≤ 1 ∀i ∈ R∑
t∈T yB (t , i ) ≤ 1 ∀i ∈ R∑
t∈T xY (t , i ) ≤ a(i ) ∀i ∈ R

bG (t , i ) =∑
z∈H

∑
v≥t cG ·mG (v, i , z) · yG (t , i ) · rG (i ) ∀i ∈ R ∀t ∈ T

bB (t , i ) =∑
j∈P

∑
v≥t cB (i )·a(i )·(kB ·w(v, j )·yB (t , i )+kG ·hG ·yG (t , i )

)·rB (i ) ∀i ∈ R ∀t ∈ T
bY (t , i ) =∑

v≥t cY ·Q ·d(v) ·xY (t , i ) · rY (i ) · (1+θ · yG (t , i )) ∀i ∈ R ∀t ∈ T

The objective function will consist of the sum of the benefits for each roof and each
year. Note that, since the decision variables are defined to represent which roofing option
is placed in one moment, they can be different from 0 only one time. Consequently, the
benefits are also expressed in the same way, and benefit in time t for roof i will consist of
benefits gathered from time t until the last element of set T for roof i . We run the model
with a budget of 5 million¤ per year and a subsidy rate of 20%. Moreover, some constraints
are added, which were not present in the deterministic formulation. They are added to en-
sure that each roof can be used only once for each roofing option.
To gain further insights into the model’s behaviour in response to the climate, we present
the solutions derived from applying the presented formulation to two different climate pro-
jections: RCP 4.5 CNRM and RCP 8.5 ICHEC.

5.6.1. Results RCP 4.5 CNRM
The first climate projection, RCP 4.5 CNRM, is characterized by the following aspects: 49.3
mm of yearly average of heavy rain ( only reporting days with >25 mm/day); 11.4 days of
heat on average per year (temperatures between 25 and 31 degrees Celsius); and 372.77 sun
peak hours on average per year. We use the same parameters used for the fixed parameters
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model runs. The results (Fig. 5.23) show that the first choice will always be for the place-
ment of yellow roofs in the first years, while the other two options are mainly considered
in the last years. The last two years do not see any new roof installation since all available
buildings with a utility different from 0 will have already been used for all viable options.

Figure 5.23: RCP 4.5 CNRM outlook.

In Fig. 5.23, we see that some blue and green roof options already appear in 2026. The
highest values for total mid-heavy rain is indeed reached in the year 2026. This forces the
presence of flooding adaptation strategies like green and blue roofs. Since we force the
problem to place blue roofs only as layers beneath the green roof, the high demand for
blue roofs may force the same amount of green roofs to be placed this year. Something
slightly different happens for the year 2028, where the amount of mid-heavy rain is close
to 0, while many hot days would appear, with an average temperature of 27.85 degrees Cel-
sius. Such characteristics would determine high values for the number of people who avoid
hospitalization during a heatwave thanks to green roofs. Therefore, some green roofs are
placed too. The following year, 2029, some space is also left to green and blue options not
only for the relatively high values of hot days and mm of rain but also thanks to the slight
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decrease in total sun peak hours for the following years. It should also be noted that in the
last years, all the best roofs for PV installations would not be available (high solar irradia-
tion per m2, thus high rY ), as the installation may have happened in the previous years.

The same path of sun peak hours and the sharp peak in mid-heavy rainfall leaves some
space for green and blue options again in the year 2033 and lastly in 2035. After this year,
since the best roofs for yellow options have already be covered, more green and blue roofs
are appearing, covering more m2. At this point, the roofs with the highest utility for adap-
tation will probably have reached levels of benefits that outweigh the performances of the
least efficient roof for PV panels installation (low rY ). In the year 2037, all roofs with a pos-
itive utility for yellow roofs placement will be covered, while the same will happen in the
year 2042 for green and blue options.

5.6.2. Results RCP 8.5 ICHEC
Fig 5.24 shows RCP 8.5 ICHEC projections for climate and roofing choices. In this case,
fewer mid-heavy rainfall events than the previously analyzed projection (21 vs 38) occur,
with a slightly lower mean (49.20) per year. Moreover, it presents 8 hot days per year on av-
erage and an average amount of sun peak hours comparable to RCP 4.5 CNRM. The results
shown below underline the difference in choices for green, blue and yellow roofs, reacting
to this different climate projection (Fig 5.24). The main difference between these results
and the previous is the absence of green and blue roofs in the first years. The latter phe-
nomenon can be explained by the previously underlined characteristics, specifically look-
ing at the quantity of mid-heavy rainfall in those first years. Very often, they present no
mid-heavy precipitation at all. A clear response to the peak in heat and precipitation in
2034 is visible in the amount of green and blue roofs placed.

The most interesting aspect for this climate projection is the complete absence of roofs
choices for 2042 and 2043 (2041 has a minimal amount of green roofs installed). This ab-
sence confirms that the rainfall amounts are a crucial driver for the decisions made by the
model. Indeed, in those years, no mid-heavy precipitation is present. Thus, the benefits
derived from flooding protection are 0, leading to no choice for blue roofs. Green roofs
absence can be explained through the same reasoning, as in our model, they also work as
water collectors, even if for smaller volumes than blue roofs. Furthermore, the benefits de-
rived by heat mitigation are minimal for those years. For 2042 and 2043, less than 5 days
per year happen to be hot days, with average temperatures of 25.76 and 26.87, respectively.

In both analyses, a pattern emerges: yellow roofs are also preferred when considering
multi-time steps, where benefits are cumulative from year t when the roof option is placed.
This result is consistent with the results obtained when time is not considered, and the so-
lution derives from here and now decisions considering the benefits of the next 25 years.
Another interesting aspect is the influence of rainfall patterns compared to heat patterns
for green, and consequently, blue roofs.
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Figure 5.24: RCP 8.5 ICHEC: outlook.

5.7. Multi-time step model and uncertainty
In this section, we analyse the behaviour of the multi-time step model, both when different
climate projections and parametric uncertainty are considered. Furthermore, we propose
a methodology for the practical use of multiple solutions obtained when uncertainty is in-
tegrated into a multi-time step model: the one-branch tree.

5.7.1. Climate scenarios uncertainty
We now examine how the multi-time step model behaves with different climate inputs and
compare the derived solutions. The year 2021 presents the same solution for every climate
scenario: placing all the m2 of yellow roofs allowed by the allocated budget. From the fol-
lowing year, the solutions start to diverge from each other as the climate projections do.
The likeness between each of these solutions can be investigated through the use of cosine
similarity. As explained in section 4.5.3, such measure is able to indicate how close two so-
lution vectors are in terms of locations chosen for each roofing type. The only difference
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now is that the solution vector also reports the year when a roof placement is decided. The
results of the cosine similarity computations are shown in the table below (Tab 5.6).

RCP 2.6 C RCP 4.5 C RCP 8.5 C RCP 2.6 I RCP 4.5 I RCP 8.5 I
RCP 2.6 C 1.000000 0.214815 0.344474 0.317740 0.274244 0.283933
RCP 4.5 C 0.214815 1.000000 0.399363 0.298959 0.290510 0.311389
RCP 8.5 C 0.344474 0.399363 1.000000 0.236223 0.364884 0.307034
RCP 2.6 I 0.317740 0.298959 0.236223 1.000000 0.329898 0.263473
RCP 4.5 I 0.274244 0.290510 0.364884 0.329898 1.000000 0.310343
RCP 8.5 I 0.283933 0.311389 0.307034 0.263473 0.310343 1.000000

Table 5.6: Similarity matrix for the results of the multi-time step model, run with different climate inputs.

The similarities between the results are relatively low. This mainly happens because of
the big dimension of the input and its high sparsity. Indeed, for each projection we report
the solution as a vector of length 3(roofing options)x1120(amount of roofs)x 25(the years in
which the decision is taken). Moreover, the lower the similarity the more the solution differs
in terms of when and where each roofing option is placed. This low average similarity can
thus also be a sign that climate variables are influential in the pattern of solutions of the
multi time-step model. Extreme weather events logically make adaptation measures such
as green and blue roofs more necessary in some moments specifically, while solar radiation
heavily depends on the sun’s presence and intensity.

Figure 5.25: Solutions for each time step, climate scenario and combination of parameters.

5.7.2. Climate and parametric uncertainty
In this section we produce multiple results derived from considering both different climate
scenarios and multiple options for the uncertain parameters. However, this time, we only
look at the more influential parameters: θ and cG . We sample 4 elements from their un-
certainty ranges and store the solutions for each climate projection and each combination
of parameters. We are therefore left with 6(climate projections)*4(sampled θ)*4(sampled
cG )=96 experiments.
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The idea behind the multi-time step model is to provide decision-makers with sugges-
tions about when and where to place which roofing option. However, suppose all the un-
certainties in the problem are considered. In that case, it turns out to be hard to provide a
concise suggestion for all the years to come, as multiple results are determined by multi-
ple climate and parameters’ options (Fig 5.25). Therefore, we suggest and implement the
use of a one-branch tree. We assume that the solutions derived from the first 5 years can be
boiled down to one solution to construct the tree with a proper root. This is indeed feasible,
as climate forecasts tend to be closer to each other for the first years. Thus, the branching
would happen in correspondence of the year 2026. In Fig. 5.26, we provide an idea about
how the tree would look like, with 96 branches.

Figure 5.26: One branch tree, where all possible future branches are considered.

To make all these possible solutions more insightful, we decide to cluster all the branches
to obtain a one-branch tree with fewer branches. This way, the clusters will have similar re-
sults, which can be better explained to a decision-maker. We compute the cosine similarity
among all experiments from the year 2026 to the year 2045, which results in Fig. 5.27.

Figure 5.27: Cosine similarity between experiment with varying climate input projection and parame-
ters(right), and dendogram for hierarchical clustering with complete linkage applied to cosine distance (left).
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A dendrogram for the hierarchical clustering with complete linkage is presented in Fig.5.27.
We choose the number of clusters with the highest average silhouette value among values
between 2 and 6, as we do not wish to visualize more branches. 4 is the number of total
clusters with the best silhouette score. This results in the possibility of presenting the tree
in a different shape ( Fig. 5.28). In practice, we provide a municipality with decisions for
the first 5 years, and we explain the future possibilities as 4 different scenarios. After this
first consultancy, if required, the model could be run again after the first 5 years to provide
a more robust solution as more reliable future climate predictions may become available.

Figure 5.28: One-branch tree with clustered future solutions after year 2026.



6
Conclusion

In this last chapter, we will evaluate which limitations influence the presented work. We
will furthermore draw conclusions for the mentioned research questions. Eventually, we
will provide some suggestions to further elaborate on this study in the form of recommen-
dations.

6.1. Limitations
Some limitations in our approach will be underlined for the data quality, modeling and
analysis choices.

6.1.1. Data limitations
The model constructed in this study can easily be extended and deployed for other mu-
nicipalities in the Netherlands since all data sources are publicly available. The availability
of such data sources comes at a cost: the quality of the data may not be the most reliable,
complete, or accurate. Our study focuses on modelling a system that comprises three main
parts: climate, buildings, and urban environment (Fig 6.1). Each of these parts has its own
data source. For the modeling of each parts, some pre-processing has to be performed on
the data retrieved from 3 different data sources.

Figure 6.1: The modeled system.

61
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Climate
EUROCORDEX platform is chosen as the source for climate data [26], as it includes nu-
merous projections with the needed time-step and specificity. As it is challenging, if not
impossible [26], to assess the reliability of each prediction, we have to accept to use data
that is not highly reliable. We have tackled this problem using an ensemble of predictions,
as suggested in [26, 34]. Nonetheless, in the multi-step model, the decision variables take
a value every year; thus, they are deeply linked to the accuracy of the exact values of the
climate data for each year.

Buildings
Buildings’ data is needed in this frame for two main aims. Firstly, for retrieving or com-
puting some model parameters. Secondly, for selecting the suitable buildings for roofing
application in a given area. Most of the necessary data can be easily retrieved in the open-
source BAG and AHN for the first aim. Contrarily, the second case may be presenting some
limitations. On the one hand, the data that we use may not be accurate, especially for the
slope of the roofs. On the other hand, more information could be needed to investigate the
suitability of each roof more properly, e.g. buildings materials or load-bearing capacity of
the roofs. Therefore, completeness does not characterize the set of data used for this part
of the system under study.

Urban environment
The Klimaateffectatlas ([4]) is our primary source when it comes to the urban environ-
ment’s data. We use it both to retrieve information about greenery and population and
assess the impact of extreme weather events on the area of interest. Especially for the lat-
ter aspect, some limitations for usability have to be underlined. First, the UHI layer has a
thick grid; thus, it is not highly accurate. Secondly, since it is publicly available, we use a
layer that indicates the water depth on the streets in the event of heavy rainfall. However,
it should be underlined that these predictions are not as accurate as others (e.g. 3Di flood
simulation map)[51], which unfortunately are not available for all cities nor freely accessi-
ble. Therefore, lack of accuracy should be taken into consideration when working with this
type of data.

6.1.2. Modeling limitations
As mentioned in Chapter 3, the formulation proposed in this study is a first attempt to
model the complex interactions happening between the system’s components (Fig. 6.1).
We made some assumptions and simplifications, which we underline in this subsection.

General simplifications
To start, due to the format of the data in our main source ([37]), we chose to simplify the
price item. Indeed, we consider a fixed price for m2 of roof type, while possibilities exist to
specify a price based on area and slope of the roof, as is done in [51]. Furthermore, many
studies compute future benefits also considering the inflation rate of future years. [31, 49].
Since we do not perform this, the derived benefits must be considered non actualized with
the inflation rate.
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We also assume that the whole roof area may be covered by green, blue and yellow roofs,
while in reality, the area to set up the roofing may be smaller for each option. In the case
of green and blue roofs, this may happen mainly because of design choices, while for PV
panels, it may be due to the reduced efficiency of the PV panels in some spots, due to shad-
owing or inclination of the roof [3].

Heat mitigation
Green roofs are very complex systems, which can mitigate two main effects of climate
change: extreme heat and extreme rainfall [39, 45]. The phenomena underlying these ef-
fects entail complex interactions between the roof and the surrounding environment. It is
thus complex to model. Indeed, it is not clear how much decrease in temperature can be
achieved in the surrounding micro-climate by each m2 of green roof. Nor is the amount of
rain that can be retained by a layer of green roof easily predictable. Therefore, we simplified
these processes and wrote some linear formulas to represent these complex processes.

The utility of heat mitigation is represented by parameter rG , that takes values between
0 and 1. We shape this parameter following a similar methodology presented in [38] for
yellow roofs. The limitation of this approach lies in how rG influences the computation of
benefits bG (i ). More specifically, it acts as a factor that scales the total number of people
for which heat-related problems can be avoided. Using this approach means that, in areas
where the UHI effect is the most intense, the entire computed population would be ben-
efited. On the contrary, in correspondence to small values of UHI, rG would reduce the
amount of people that benefit from a green roof in each location.

Flooding mitigation
Blue and green roofs’ functioning during rainfall is also interesting and challenging to model,
as water capture depends on multiple internal and external factors [48]. We chose to sim-
plify this behaviour by introducing a factor that states the average rate of rainfall capture,
kB and kG . They represent on average, how much water can be captured during a mid-
heavy rainfall event.

Moreover, the same limitations mentioned for the green roofs apply to the utility factor
of flooding risk mitigation, that is constructed in a similar way (see Appendix A.1). The
utility factor, in this case, can be interpreted as follows. The areas where the higher levels
of water can be found on the streets in the event of flooding have the highest priority; thus,
100% of the water collected contributes to alleviating the risk. In areas where the water
levels are lower, the priority decreases. Therefore, only a part of the total amount of water
that could be collected results in a benefit.

6.1.3. Analysis limitations

It is worth mentioning that our approach for the uncertainty analysis may not be the only
one possible for our aims. Furthermore, our results are dependent on the amount of clus-
ters considered and on the clustering performance. We report in Appendix A.2, an example
of analysis where a different amount of clusters and thresholds are considered.
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6.2. Conclusions
The ultimate goal of this thesis is to construct and test the robustness of a model which can
identify specific buildings where the placement of green, blue and yellow roofs maximizes
the municipalities’ climate adaptation and mitigation goals. To the best of our knowledge,
we model the functionality of green, blue and yellow roofs, linking it to the climate data
and the urban environment information. We use the software FME and ArcGIS to process
the input data and create the parameters for the optimization formulation. Moreover, we
use multiple climate projection data in the form of an ensemble to tackle the uncertainty
related to future predictions. More precisely, we propose in Sections 4.3 a stochastic and a
robust version of the problem that consider multiple projections.

We use Gurobi within Python to solve the problem for one case study in the city of
Schiedam and we compare the outcomes of two different models. The results presented
in Section 5.4 show a slight discrepancy between the two models’ outcomes, suggesting
that both can work properly for practical aims. Moreover, the solutions are in line with
common sense. Green and blue roofs are proposed for higher UHI and flooding risk areas,
especially in the city centre. Instead, yellow roofs are mainly proposed in industrial areas,
which present flatter and bigger roofs with higher solar radiation potential.

Focusing on the stochastic model formulation, we analyze the parametric uncertainty
underlying the model. The high average similarity between the solutions suggests that the
model is robust: the optimal placement of roofs types is not varying too much. Through
the steps described in Section 5.5 we elaborate on which specific variation in the parame-
ters leads to which change in the solutions in terms of total benefits. We conclude that the
model is highly sensitive to changes in the values of θ and cG : the rate of increase in energy
production of yellow roofs when green roofs are installed as well, and the cost of heat per
person avoiding the hospital every day.

We also implement another model version that can look into time-specific details: the
multi-time step model. In this case, we assume that the decision-maker is sure about the
roofs’ placement in the following 5 years but still wants to look into the possibilities of
placement for the following 20 years, considering both climate and parametric uncertainty.
We present the solution to this question in the shape of a one-branch tree in Section 5.7.

In conclusion, we have constructed three model versions where we incorporated cli-
mate uncertainty through methods derived by the theory of optimization under uncer-
tainty. We analyzed the models’ robustness and response to parameters by looking at the
results’ spatial variability and the variation in total benefits. Moreover, we investigated
time variability through the multi-time step model. We gathered all considerations made
about the uncertainty of the problem and presented them as practical suggestions to the
decision-makers at Sweco. Eventually, the fixed-parameter model version has been merged
into a single F ME flow with the parameters’ computation, after having been linearized to
be solved by a free solver (see Appendix A.3). This will allow Sweco colleagues to make use
of the tool constructed in this study with a single click.
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6.3. Recommendations
To the best of our knowledge, this work is the first attempt at constructing a proper opti-
mization formulation for the optimal placement of three types of roofing options interact-
ing with daily climate data and the urban environment. Consequently, there is much to
further explore, starting from here. In this section, we provide some suggestions for future
research based on the findings of this work.

Two aspects of the methodology can be improved without modifying the model, if more
data and computing power is available. Suppose data was available about the current
placement of green, blue and yellow roofs. In that case, it could be possible to evaluate
the current distribution’s efficiency in terms of achieved benefits and compare it to the so-
lution suggested from the model. Secondly, if more computing power was available, more
samples could be taken from the distribution of the parameters, and a more in-depth un-
certainty analysis could be performed.

However, the same model could be reformulated in order to overcome the limitations
drawn in Section 6.1.2. Indeed, the working of green and blue roofs has been investigated
in relation to location-specific ([47, 51]) and climate information ([48]). Due to its com-
plexity, the two processes have here been merged simplistically. However, adopting a more
detailed perspective would allow computing the resulting benefits in a more precise way.
Perhaps, as is done in [48], quantities like humidity and evaporation rates per day could be
considered to better specify the amount of water retained by each roof on each day. More-
over, including micro-climate aspects in the parameters’ computations may provide more
specific insights about the cooling capacities of green roofs, which is here considered fixed.

Furthermore, other beneficial aspects of the roofing options may be considered. For
example, the cooling capacity of green roofs for buildings’ interior may lead to a decrease
in air conditioning usage during heatwaves. In turn, this could lead to societal benefits
[24, 45]. Moreover, aspects like biodiversity increase, pollution absorption and water qual-
ity increase may be included in such a model. This would perhaps add weight to the po-
tential of green and blue options, which are not always the first choice for the model con-
structed in this frame.
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A
Appendix

A.1. GIS parameters
Set of suitable roofs
Not every building is suitable for the placement of all roofing options. Therefore, once the
area of interest is selected, it is crucial to identify the buildings whose roofs are suitable for
hosting green, blue and/or yellow roofs.

The suitability of each building to a sustainable roofing option is subject to the struc-
tural characteristics of the roof. A roof is considered suitable if it can bear the load imposed
by the application of the layers and if it allows for a good functioning of the chosen roof-
ing option [47, 51]. Many studies have investigated the link between load-bearing capacity
and characteristics of the buildings such as age and dimensions [18, 47, 51]. However, it is
difficult to infer any strong relationship between these quantities and the roof’s strength,
and it is therefore always suggested to perform a real-check on each roof to determine the
structural suitability. The functional suitability, thus the characteristics that make green,
blue and yellow roofs able to efficiently perform their roles, mainly entail the roof’s area
and slope. In this study, we extrapolate data about these quantities and infer from that the
suitability of the roofs.

Roof’s area:
Since applying sustainable roofing options onto small areas would generate few benefits,
many studies only consider roofs with a specific minimum area. In this frame, the choice
has been made to consider only buildings with an area of at least 30 m2. On the one hand,
some policies in the Netherlands require a roof to be at least 10 m2 to be eligible for, e.g.,
green roofs subsidies [47]. On the other hand, the workflow followed for the estimation of
solar power potential [3] suggests that 30 m2 is the lower limit for a roof to produce enough
energy from PV panels installation. Experts at Sweco were also suggesting 30 m2 as the
minimum area needed to install green and blue roofs. The data about each roof’s area is
extrapolated from the Basisregistratie Addressen en Gebouwen BAG, the database contain-
ing all buildings’ shapes and information for the Netherlands.
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Roof’ slope:
Roofs with a maximum slope of 45◦ are reported to be suitable for green roofs installa-
tion [15, 47, 51]. However, the stronger the slope, the higher the costs of installation [51],
while the efficiency decreases: water retention capacity of sloped roofs is lower than for flat
roofs, and consequently also the potential for heat mitigation is lower. Notwithstanding,
the studies taken as the primary sources of parameters’ values for this thesis mainly deal
with flat roofs [37, 48]. Consequently, for the case study of Schiedam, we consider only flat
roofs or roofs which have some portion of flat surface. To be able to select roofs with such
characteristics, a dataset has been used, which can be found in [7]. The dataset is con-
structed based on the current Actueel hoogtebestand Nederland (AHN3), the actual height
dataset of the Netherlands, and the BAG. The variation in height for each building is used
to estimate which portion of a roof is flat, and a number between 0 and 100 represents it.
A 0 indicates a lot of variation in height, e.g. a pitched roof or a roof with chimneys and
other objects. 100 indicates that no variation is present in the flatness. After observing the
data associated with each building, it was chosen to use 70 as the threshold for selecting
suitable buildings in this first phase. Indeed, with this choice, a selection of mainly flat
buildings with some elements on top is made.

Other factors:
It is important to stress that all three roofing options considered in this study entail a heavy
load on the building’ structure. PV panels are light compared to green and blue equivalents
per m2 (11.4 kg /m2 for yellow, 40-80 kg /m2 for green to which 25-100 kg /m2 of weight is
added when a blue roof layer is placed beneath the green roof [9]). Indeed, all these op-
tions determine a higher load than the one required to be born by construction regulations
in the Netherlands (NEN normen en richtlijnen). The link between age and strength of
the roofs has been investigated based on existing data about green and yellow roofs. How-
ever, the unsatisfying results led to considering all buildings selected (with an area bigger
than 30 m2 and a slope coefficient of at least 70) to be suitable for green, blue and yellow
roofs. This assumption was supported through the many interviews with Sweco experts,
who could make some considerations regarding roofs’ strength. Firstly, it was declared that
most of the buildings could be reinforced to increase the roof’s load-bearing capacity. Sec-
ondly, most flat roofs in the Netherlands are currently covered with white gravel, which
could make some space for the other roofing options when removed.

Spatial Parameters
As explained in Section 3.2, the model inputs are required to be building-specific and to
encapsulate the usefulness of applying green, blue or yellow roofs solutions on each roof.
In the following subsections, it will be explained how each climate-derived risk can be en-
capsulated into modelling parameters.

Flooding risk:
Heavy precipitation over a short period can cause local flooding. This type of flooding is
most common in summer. A large part of the Dutch streets and squares can be flooded
during heavy showers [4].
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The factor rB (i ) used in the formulation expresses the usefulness of applying water re-
tention roofs (green and blue roofs) on top of buildings, based on their location. The com-
putations behind this factor are formulated into the software FME. The workflow takes as
an input the shapes of the buildings (from the BAG dataset) and the dataset from the Kli-
maateffectatlas [4], which depicts the water level during a heavy rainfall event. Following
the procedures applied by Sweco in a similar project, a buffer of 20m is taken around the
building. As can be seen in Fig A.2, the buffer intersects the water depth layer (reported
entirely in Fig A.1), and the intersected values are handled to compute an estimation of the
volume of water per m2 which surrounds the building in case of heavy rainfall. This value
is computed for each element in the set of suitable inputs and is rescaled between 0 and
1. In this way, buildings surrounded by the highest levels of water would get the highest
utility rate. In contrast, the ones positioned in an area that would not be affected by heavy
rainfall receive a low utility rate. This way of scoring is derived from the concept behind the
formulation of a similar rate for solar radiation in [38].

Figure A.1: Water level during heavy rainfall event.

Another important factor that is spatialized starting from the main source [37] is cB (i ):
the one-time shadow costs derived from increasing the sewage system capacity. Here,
the monetary benefit derived from the roofs’ storage is reported as the avoided costs, and
spread over the total amount of mid-heavy rainfall events. Such operation is more expen-
sive in an area like the city centre [24]. The scale used in [49] is employed, which considers
the value estimated in [24] and derives the following: or dense urban areas like the city cen-
tre 500¤/m3, other urban areas have a cost of 350¤/m3, while rural areas have 200¤/m3.
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Figure A.2: Flooding risk buffer.

Urban Heat Island:
In any city in the world, the Urban Heat Island (UHI) effect is a phenomenon affecting the
health and well-being of its inhabitants. An urban area experiences significantly higher
temperatures than its surroundings, composing the "island" of heat. The main sources of
this problem can be found in the increased use of materials with high solar absorption and
in anthropogenic heat production. The structure of the area also contributes to the phe-
nomenon, mainly affected by the presence of high buildings and the consequent scarcity of
air circulation [45]. Since future temperatures are predicted to rise also in the Netherlands
[47, 48], it is essential to find smart ways for mitigating this effect.

A map exists for the Netherlands [4], where urban heat island is estimated and pre-
sented with an index between 0 and 4 which equally spans a UHI value between +0.2◦ and
> +2◦ Celsius over the measured temperature. We make use of this layer to compute the
utility factor rG (i ) for heat reduction in correspondence to each building. The buffer of 20m
around each building is taken (Fig A.4), and the utility factor rG is computed as the average
of the UHI index weighted per area of influence. This value is computed for each building
and is later rescaled to assume values between 0 and 1.

Urban heat island affects the population living in cities, as high temperatures can cause
societal issues like death excess among fragile individuals and labour loss due to heat [37,
45, 51]. The study taken as the main source of parameters values estimates avoided health-
care costs per person and evaluates the reduction in patients per 1000 inhabitants at 1%
more green within 200 meters. However, these estimates merge the contribution of mul-
tiple factors derived by greening a roof: avoided healthcare costs because of urban heat
island mitigation, increase in greenery view, biodiversity increase and improvement of air
quality. Therefore, the analysis about heatwaves impact in the Netherlands made in [27]
was considered. From this study we derive the amount of patients entering the hospital
because of extreme heat, and the consequent costs.

In [27] it is reported that 1.079 people in 100000 go into hospital in the Netherlands
every day in which the max temperature reaches or goes above 30◦ Celsius. We do not
assume that the amount of people influenced by each roof is a constant as in [37], but
we compute such value based on population density and greenery presence. Population
density for each area is taken from the open dataset of Centraal Bureau voor de Statistiek
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Figure A.3: Heat stress is modeled through the use of a urban heat island layer.

Figure A.4: Heat stress buffer.

(CBS). From the ray of influence considered, it is possible to estimate the number of peo-
ple for each building, which the decreased temperature could influence in the surround-
ing micro-climate. This value is multiplied by the rate of hospitalized people due to heat
(1.079/100000). Following, since the relative increase of greenery plays a critical role [37],
it is assumed that this hospitalization value is valid for a 1% increase in greenery. Thus the
value is scaled based on which proportional increase each roof and size is yielding in its sur-
roundings. Note that the latter correspond to the shape of the polygon where the amount
of greenery is reported in [4]. The latter computations form the parameter mG (i , z), which
is also depending (thus will be scaled based) on z ∈ H , the temperatures during hot days
with more than 25◦ .
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Solar Radiation Potential:
Following the workflow reported in [38] another input, rY (i ), is needed for the model. This
parameter expresses how much solar radiation potential there is on each building, thus
provides an indication about how useful and/or efficient it will be to place solar panels on
a specific roof.

The procedure described in [3] is followed to compute such values. A digital surface
model (DSM) dataset is loaded into the software Ar cG I S. A DSM shows the elevation of the
ground and its features( such as trees, sidewalks and buildings) and it comes in the shape of
a raster layer. Such data is processed by a function, Area Solar Radiation, which computes
the solar radiation based on a sophisticated model. The latter considers the sun’s position
throughout the year and at different times of day, obstacles that may block sunlight, such
as nearby trees or buildings, and the slope and orientation of the surface. The output is
provided as a new raster layer where each cell value is the amount of solar radiation in watt-
hours per square meter (Wh/m2) at that location. The average of this value is computed
for each rooftop and later rescaled between 0 and 1.

Figure A.5: Solar radiation potential.

Technical parameters
The contribution to the urban climate resilience is not only mapped through the construc-
tion of spatially-derived parameters, but it is also linked to the technical functioning of the
roofs. Indeed, the roofs’ performance against extreme weather events is also a complex
theme.
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Response to heavy rainfall:
The response to medium/heavy rainfalls is simulated in [48], where an analysis is con-
ducted regarding the water retention potential of a green-blue roof system. For this thesis,
the interest lay in discovering an average value of water retention which a base green-blue
system could achieve. For rainfall events with more than 25mm/day, it was discovered that
such a system would retain the water properly during the summer period but would fail
to help in water management during the more wet periods [48]. Therefore, here we will
consider a system with an adaptive valve. Such a structure is composed of a water reten-
tion layer of 60 mm whose content can be tuned by opening or closing a valve, based on
predicted rainfall. A valve would stay close during a heavy rainfall event to allow for a delay
of discharge of the water into the sewage system and for water usage for evaporation. In
case of predicted heavy rainfall, the valve would be opened to empty the water layer and
capture the upcoming rain. A controlled system like the one described is, on average able
to retain 80% of the rain over the whole year, considering only rainfall events of more than
25 mm/day [48].

Performance during heatwaves:
The reduction in hospitalizations mentioned in [27] is referred to every day with a tem-
perature above 30 ◦Celsius. As is done in [47] it is assumed that each roof can reduce the
surrounding micro-climate temperature by 1 ◦Celsius. Thus, it can avoid the number of
hospitalizations mentioned in [27] for every day with 31◦. To make this value more climate-
specific, we have scaled the value of hospitalizations per hot day m(i , z) for every possible
temperature. We assume that 0 hospitalizations due to heat would occur in correspon-
dence to 25◦ Celsius; then, we interpolate the other values linearly up to 1.079/100000 in
correspondence to 31◦Celsius.

Relation with solar radiation:
The production of energy from yellow roofs is strictly linked to the amount of solar radia-
tion received by the roof [37, 38]. Among multiple possible methods, we will estimate how
much energy is produced by each m2 of PV panels by looking at the amount of sun peak
hours, as is done in [38]. Sun-peak hours are the number of hours per day when the solar
radiation is at least 1000 W/m2. Associated with each sun-peak hour, a quantity Q of energy
can be produced, based on the PV system’s efficiency and the energy grid. The estimation
of Q value is taken from [37].
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A.2. Computational insights
CART classification complete figure
We report here A.6 the complete version of the simplified CART tree reported in the results.
We choose a maximum depth value of 7.

Figure A.6: Caption

CART classification on a smaller sample of experiments
The adopted CART classification algorithm is heavily dependent on the way the classifi-
cation is made. We here report an analysis made when a different number of clusters is
chosen and further analysed. We choose to divide the 2187 solutions into 52 clusters. We
then look only into the clusters which explain more than 1% of the data; thus we exclude
clusters with less than 21 elements. By doing so, we focus our attention on the clusters
which represent more the entire data set. This operation results in 19 clusters to be further
analyzed, which we denominate clusters of interest.

For each parameter and each cluster of interest, we compute the inter quartile range
(IQR), the difference between the 75th and 25th quantile of the distribution of the data.
This procedure would allow to gain some first insights about which parameter may be of
higher importance. To make the IQRs from different parameters comparable, we rescale
such values using the 50th quantile. We now present both these rescaled IQRs and the 50%
quantiles in the tables of Fig A.7. By colouring the internal values with a heatmap, it is pos-
sible to have a first impression about which parameters are more characteristic of certain
clusters and which are not.

The parameters showing the smallest values in IQRs and highest variation in 50% quan-
tile are the ones which most probably are determinant for each cluster. Indeed, a small IQR
shows that for most experiments the parameters were sampled with the same value. Re-
member that each parameter can take 3 different values. If the IQR is small, this means that
most of the experiments were generated using one or two values for the parameter.Instead,
different colours, thus values, for the vertical lines in the 50% quantile can also mean that
the clusters differ from one another by that parameter. In our case, it looks like kB will not
be extremely significant for the variations in the decision variables, nor will kG . On the con-
trary, cG , adu , cY , Q and θ may all be more determinant in the choice of location and type
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Figure A.7: Inter quantile ranges rescaled and 50% quantile for each parameter sampled and each cluster.

of roof in the solution. We will look into this more in depth in the next step of the analysis:
subspace partitioning.

We select only the clusters of interests with a silhouette value of more than 0.7, resulting
in a total of 8 clusters to be analysed with the CART algorithm. This way, the results pro-
vided by the tree will be more insightful. Using a high silhouette value as a threshold allows
to select only clusters which are very well formed: they have a high in-cluster similarity and
a low similarity with elements from the other clusters. A simplified scheme of the resulting
tree is presented in Fig.A.8.

The fourth cluster is the only one whose elements are all uniquely determined by one
specific parameter: θ. All other clusters are created having other main drivers. As an exam-
ple, cluster 5 has all experiments derived from θ > 0.055 and cG ≤ 8333. The other clusters
also have some main driver, but they are less influenced by each mentioned parameter. In-
deed, the other clusters can be found going down into the tree’s branches. For those clus-
tered experiments some division derived by some parameter can be identified. However,
such divisions have a higher Gini index, as the parameters characterize a smaller propor-
tion of elements for each cluster.

The most important detail derived by looking at the CART tree is the presence at the first
layers of the tree of 2 determinant parameters: θ and cG . From this analysis, it is shown that
the lowest value in the uncertainty range for θ is likely to determine a complete absence of
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Figure A.8: Simplified CART tree representation. The tree shows which parametric features lead more strongly
to the formation of the clusters

nr in-cluster Underlying uncertainties Remarkable characteristics
1 36 θ > 0.055, cG > 8333, adu > 1.067 highest blue roof benefits proportion
2 54 0.03 < θ ≤ 0.05, kG > 0.267 high proportion of blue roofs

but lower benefits
3 108 0.03 < θ ≤ 0.05, kG > 0.267 higher relative amount of yellow

roofs compared to cluster 2
4 36 θ ≤ 0.03 no blue roofs
5 75 θ ≤ 0.05, cG ≤ 8333 highest proportional amount

of yellow roofs after cluster 4
6 65 θ ≤ 0.05, cG ≤ 8333, adu ≤ 1.067 relative results comparable to cluster 3
7 38 0.03 < θ ≤ 0.05, kG > 0.267 small amount of roofs
8 30 0.03 < θ ≤ 0.05, kG ≤ 0.267 small amount of roofs

blue roofs’ presence, and a decrease in green roofs’ placement (Fig. A.9). The parameter θ
is present in the formula that computes the benefit derived by each roof. It links yellow and
green roofs, and it determines an increase in the energy production of yellow roofs when
the green roof is present on top of the same building. From previous analysis it has been
shown that indeed yellow roofs seem to be always the first and most chosen solution at
all given budgets. It is thus significant to see that also the presence of green roofs may be
driven by the contribution they could give in the energy production of PV panels. The de-
crease in green roofs investments has as a consequence the reduction, or even absence in
this case, of blue roofs. This happens because the model allows the placement of blue roofs
only in correspondence to an already existing green roof. The less green roofs the smaller
the possibility of installing blue layers.

It is insightful to both look at the distribution in benefits over the clusters (Fig. A.9), and
into the total amount of roofs chosen where to place each option (Fig. A.10). Note that the
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(a) Total benefits derived by green, blue and yellow roofs in the decision variables per cluster. Remind that each cluster has
a different amount of elements clustered

(b) Total benefits derived by green, blue and yellow roofs in the decision variables per cluster, rescaled over total benefit.

Figure A.9: Clusters benefits’ distribution

total takes into account all experiments clustered together.

(a) Total roofs covered by green, blue and yellow roofs in the decision variables per cluster. Remind that each cluster has a
different amount of elements clustered

(b) Total roofs covered by green, blue and yellow roofs in the decision variables per cluster, rescaled over total roofs.

Figure A.10: Clusters benefits’ distribution
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The highest green and blue benefits (both total and relative) can be found in cluster 1,
which in the CART tree seems to be determined by the highest values possible for θ, cG and
adu. This underlined perfectly how a growth in the linear parameters comprised in the
computation of benefits derived by adaptation measures (green and blue) leads to a higher
presence of such roofing options in the decision variables. Conversely to what explained in
the last paragraph for cluster 4, here the high value of θ is determining a higher presence
of green roofs. Moreover, parameter cG is the monetary equivalent of having one person
in hospital due to heat. The highest value possible for this parameter is including both the
hospitalization costs and the work loss, as is chosen in our main source, [37]. Parameter
adu expresses the variation in the added values derived by adaptation measures, both in
terms of heat reduction (green) and flooding mitigation (both blue and green). Therefore, it
is clear how these factors can lead the model to propose more locations to have green and
blue roofing options installed. Since cluster 5, with a comparable amount of experiments,
is presenting the exact complementary values of determinant parameters, it is interesting
to notice that it presents much lower values for the total amount of green and blue options
(Fig. A.10).

Overall, the results are in line with the ones obtained with fixed values of the parame-
ters, and the difference in the solutions are well explained by the model’ shape. In the next
sections, we will pick the parameters which determine the highest variations, and combine
the uncertainty analysis with a more insightful version of the model: the multi step model.

CART regression

Before feeding the solutions to the CART algorithm, we use clustering as a dimensional-
ity reduction phase. The tree can better detect the discriminant rules behind the assigned
(cluster) labels, appearing as a more compact yet labelled input. In our case, we use CART
in classification mode.
However, it is possible to deploy CART in regression mode, to directly link the sum of ben-
efits with the parametric drivers. This way, the tree would provide "best guesses" for the
continuous values of the benefits, based on some partitioning of the parameters space.
We have reported the resulting tree in Figure A.11. We have not followed this as the main
methodology since the tree is less insightful due to the many experiments and many values
that the benefits can take (see Fig. A.11).

It is interesting to observe that the importance of the parameters is similar in the two
cases, except for parameter theta. Theta is very relevant in CART classification, while it
loses its importance in CART regression. A change in green roofs’ benefits is minor com-
pared to the consistently higher benefits derived by yellow roofs. Moreover, the small added
yellow benefit derived for one roof when a green roof is added beneath the PV panels is rel-
atively small compared to the total sum over all buildings of the yellow roofs. Then it makes
sense that theta does not play a significant role in the CART regression as that only ’sees’ the
sum of benefits and not the locations.
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Figure A.11: Results of CART regression, applied to the sum of benefits per roof.

A.3. Linear version of the model
Since Gurobi optimizer is not freely available for companies, it was important to find an
alternative for Sweco to make use of the constructed model. The most important opti-
mization problem solvers all require the input to be a linear program. Therefore, we had to
reformulate our fixed-parameter problem into a linear problem. Then we make use of pulp
package and solve the model for any input provided.

The main challenge consists in linearizing the expression for the benefits derived by
yellow roofs bY (i ). Indeed the formula contains the multiplication between two decision
variables, xY (i ) and yG (i ).

bY (i ) = cY ·Q ·d ·xY (i )·rY (i )·(1+θ·yG (i )) = cY ·Q ·d ·xY (i )·rY (i )+cY ·Q ·d ·xY (i )·rY (i )·θ·yG (i )

For the aim, we make use of the big M method, as is done in [38]. To remove the non
linearity present in xY (i ) · yG (i ), we introduce two new continuous variables. We call them
ζ1(i ) and ζ2(i ). The new variables should satisfy the following constraints ∀i ∈ R:

ζ1(i )+ζ2(i ) = xY (i ) ζ1(i ) ≤ M · yG (i ) ζ2(i ) ≤ M(1− yG (i ))

Here, M has to be a sufficiently large number. Thanks to this, now the expression of
benefits for yellow roofs bY (i ) can be reformulated in a linearized way as follows:

bY (i ) = cY ·Q ·d · xY (i ) · rY (i )+ cY ·Q ·d · rY (i ) ·θ ·ζ1(i )
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A.4. Codes
The python codes created in this study are reported in the following Gihub repository:
https://github.com/lisamarietalia/MSc_thesis_repository.git. Here, we report
the code needed to extract climate events of interest for this study. Moreover, we report the
code for developing the uncertainty analysis using Gurobi solver. There are also examples
for the use of the robust and stochastic version of the model and of the multi-time step
formulation. Lastly, I have stored the code that allows to run the stochastic model without
Gurobi. Instead we solve the linearized problem using pulp.
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