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H I G H L I G H T S

• Existing electricity markets, based on energy, are inefficient.• We compare power-based scheduling to the current practice of increasing resolution.• Power-based scheduling results in less reserve activation at equal computation time.• Increasing the resolution requires great computational expense.• We provide a set of market rules to implement and price power-based bids.
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A B S T R A C T

Day-ahead electricity markets are inefficient due to their coarse discretisation of time and their representation of
electricity production and consumption in energy per time interval. This leads to excessive costs and infeasible
schedules in the market clearing results. Some real-world systems have increased the resolution to improve
accuracy, but this comes at a high computational cost. We propose an alternative, based on using linear power
trajectories in the day-ahead scheduling process, which represent the momentary electricity production.
Changing from a traditional energy-based to such a power-based formulation of the scheduling method can
reduce cost by several percentage points, leading to a cost reduction of millions of euros in real-world systems on
a yearly basis. Attempting to do so by increasing the resolution of the schedule would be accompanied by large
increases in computational demands. Furthermore, we provide market design options to implement power-based
bidding and pricing in day-ahead electricity markets, showing that pricing and market rules which encompass
existing markets are readily available for implementation, and illustrate these with examples.

1. Introduction

Day-ahead scheduling in electricity systems is currently very in-
efficient. Irrespective of the precise way of scheduling (unit commit-
ment (UC), one of its variants, or a self-dispatch market), the prevailing
paradigm is that generators must meet the (largely inflexible) energy
demand during each hour at minimal cost. To do so, the electricity
system model must accurately incorporate the characteristics of the
generators, the inflexible demand, and the varying output of renewable
electricity sources. Only if these models are fully accurate we can make
(day-ahead) schedules which ensure demand is met at minimal cost.

Current models, however, have some fundamental shortcomings.
First, the discretisation of electricity demand to energy per hour (or
other time interval) ignores information about momentary expected
consumption, which may be available [1]. Since electricity markets are

tasked with maintaining a momentary balance on the grid, ignoring
such information in day-ahead markets might create inefficiencies, as it
could lead to inefficient commitment decisions or infeasible schedules.
Furthermore, this discretisation on the generators’ side causes a mis-
representation of generator flexibility, and does not include any intra-
hour flexibility which may be required to follow demand precisely [2].
As a result, the day-to-day operation of these systems is inefficient,
increasing costs for end users.

These costs mainly arise from the need for more reserve capacity.
Since day-ahead schedules are made on erroneous assumptions, over-
estimating generator flexibility and not representing momentary load,
more reserve capacity must be on standby in real-time to compensate
for deviations from the day-ahead schedule. We note that these pro-
blems exist in both centralised (such as in most North American sys-
tems) and self-scheduling systems (such as most European markets) [3].
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While in the former these inefficiencies lead to a less efficient dispatch,
in the latter it leads to deterministic frequency deviations, which sig-
nificantly impact system security and reliability [4]: a generation
outage of 1300MW causes a frequency dip of 50mHz on the European
synchronous zone [5], while market-related frequency dips (appearing
on the turn of the hour, with smaller dips at the change of the pro-
gramme time units at 15, 30, and 45min) in the evening exceed
100mHz on average. These temporary episodes of shortage and over-
production are resolved via expensive reserves, intended to handle
unforeseen events.

It is important to note that these problems are entirely due to the
resulting electricity programmes not accounting for momentary pro-
duction or consumption levels, but taking only energy per unit of time
into account. These errors are therefore present in any system with
electricity programmes which ignore momentary production, irrespec-
tive of how these electricity programmes are constructed: in day-ahead
markets, via intra-day trading, or even through centralised scheduling
in a fully deterministic scenario. Increasing or reducing the number of
intermediary markets can therefore not solve this problem, nor should
they: their task is to allow parties to deal with uncertainty.

A solution should ensure electricity programmes better represent
momentary production and consumption. The current state of the art,
which is already implemented in real-world systems by various means,
is to increase the resolution of the electricity programmes, to the point
where the energy programmes better represent momentary in- and
output. This increase in resolution, however, comes at an exponentially
increasing cost in computation. We, however, propose to redefine
electricity programmes, explicitly basing them on momentary power in-
and output.1 In this paper, we compare power-based scheduling to in-
creasing the resolution, and provide market design options to imple-
ment it in practice. Furthermore, we define a market which provides
bid definitions and rules for bidding, market clearing, and pricing, all
compatible with power-based scheduling. Thus, we deliver a set of rules
for day-ahead markets which encourage momentary balance between
supply and demand.

1.1. Contribution

The main contributions of this paper are as follows. First, we pro-
pose a market which is formulated in terms of linear power trajectories
rather than energy per time unit. Using case studies based on five dif-
ferent real-world systems, with different sizes and fuel mixes, we
quantify the potential efficiency gain of increasing the temporal re-
solution of scheduling or changing the scheduling paradigm from en-
ergy- to power-based. We analyse the impact of both increasing the
resolution and changing to a power-based paradigm, analysing the
trade-off between cost and system security and computational effi-
ciency. We then discuss the barriers to implementing these solutions in
a market environment, and propose a set of market rules which enable
their implementation.

1.2. Organisation

First, we describe shortcomings in existing day-ahead scheduling
methods. We select and describe two alternative solutions to these
problems from literature, and discuss their respective pros and cons in
Section 2. In Section 3, we perform a quantitative analysis of these
alternatives based on various real-world systems. Section 4 describes
the implementation of these solutions in a market environment. Section
5 draws the conclusions.

2. Background

In this section we provide a brief review of shortcomings of day-
ahead electricity markets, and review some previously suggested solu-
tions.

2.1. Shortcomings in existing systems

Day-ahead scheduling in electricity systems is tasked with ensuring
that sufficient generation capacity is available to meet demand at any
given moment of the next day at minimal cost. To do so, time is dis-
cretised into programme time units (PTUs), and a balance between
supply and demand is established for each PTU. This balance holds for
the total amount of energy supplied and consumed during a PTU: we
will therefore refer to it henceforth as energy-based scheduling. This
balance does not, however, ensure that there is a momentary balance:
as shown in Fig. 2, the momentary output of supply and demand may be
entirely different all throughout the PTU, even if the energy balance
holds for the total PTU.

Furthermore, the ramping capabilities of a generator must currently
be described as a function of its total energy output during the previous
PTU. However, there is no immediate link between the energy output
during two consecutive PTUs; the ramping capability of a generator can
only be described as a function of its output in power at a previous
moment, not as a function of its output in energy during a previous
period. As a result of no intra-PTU information being used, and physical
constraints being misrepresented, day-ahead schedules are neither ne-
cessarily feasible nor efficient, even in systems with centralised real-
time dispatch [1].

In systems with self dispatch, this leads to even bigger problems. In
such systems, large deterministic frequency deviations can be observed
at the turn of the PTU, as shown in Fig. 1. These deviations are caused
by sharp changes in the ramping speed of generators at the turn of the
PTU. As generators are incentivised (through imbalance penalisation)
to adhere to their scheduled energy output only, they have no incentive
to follow actual demand. Consequentially, they aim to fulfil their en-
ergy schedule as cheaply as possible, which in practice leads to mo-
mentary unbalance as inflexible demand does not make the same sharp
changes, but follows a smooth trajectory instead. Any improvement to
day-ahead scheduling which leads to better demand-following of gen-
erators can therefore also mitigate the side effects of self dispatch.

In real-world systems, a variety of methods are used in order to
mitigate these problems. First of all, many systems employ a variety of
markets after day-ahead schedules have been fixed. CAISO implements
different ramping products to ensure the ramp requirements are met
[6]. MISO has previously investigated longer dispatch intervals and
additional ramping products [7]. Other solutions may include intra-day
markets, of which various implementations exist in the European
system [8], or real-time markets close to delivery. The core function of
such markets, however, is to allow parties to adjust their position when
imperfect information necessitates this. Furthermore, any inefficient
commitment decisions can no longer be reversed on such short notice.
Any changes to the market should therefore explicitly allow for enough
time to start up or shut down generators where necessary.

2.2. Improving demand following in day-ahead markets

To effect better demand following, better representing demand and
generation within the existing PTUs is paramount. There are three
possible changes to day-ahead scheduling which can improve its ac-
curacy: either we increase the resolution of the schedule, leading to
more PTUs per day; we impose restrictions on the behaviour within a
PTU after market clearing; or we change the market structure so that
the market result better matches the physical reality.

Increasing the resolution of the schedule means a day is divided into
more PTUs than is current practice. The length of each PTU therefore

1 Throughout this paper we mean by ‘energy’ and ‘power’ the physical
quantities, as respectively measured in Joule and Joule per second. We do not
mean to use either in the colloquial sense as a synonym for electricity.
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decreases. The energy level in a smaller PTU better approximates mo-
mentary output, leading to shorter periods for which an energy balance
must be guaranteed, better capturing the inflexibility of thermal units,
and better assessing total costs [9]. This improvement in efficiency,
however, would come at a computational cost [10]. Although this
burden could be reduced, e.g. through decomposition methods [11], it
is clear that increasing the number of decisions increases computational
cost. An alternative approach is PTUs of variable sizes. This can be done
through a rolling time horizon, using small PTUs for the near future
while using larger PTUs further away, but these cannot be used to
provide binding decisions beyond the smallest PTUs [12]. A more
adaptive approach is difficult to implement in a market, as it requires
prior knowledge of at the very least a demand curve [13]. The trade-off
between cost efficiency and computational efficiency is therefore im-
portant to understand in order to judge this solution on its effectiveness;
we examine this trade-off in Section 3.

A second alternative is to better approximate the intra-PTU output
and consumption with more precise trajectories describing momentary
output. These trajectories, if they correctly represent the technically
feasible parameters of the unit, ensure the day-ahead schedules are in
momentary balance. The most precise trajectories would describe the
momentary power output. Matus et al. [14] proposes the use of Che-
byshev polynomials to describe momentary power output. If these
trajectories cover aggregated groups of small users, just as they are
currently represented, these trajectories need not be very complex. The
simplest approach to this is to impose linear intra-PTU trajectories.
Such trajectories would mean all parties must have constant ramp rates
within a PTU. ENTSO-E and Eurelectric [4] proposed to schedule based
on energy, imposing linear intra-hour trajectories on the energy sche-
dules. Rather than following demand precisely, this smoothens demand
by imposing restrictions after market clearing. This has two dis-
advantages: imposing behaviour ex-post does not allow units to respond
directly to market signals; and the imposed trajectories could deviate
from the actual optimal solution as demand is not taken into account.

To avoid these shortcomings, scheduling methods could directly
incorporate such trajectories [15]. This method is a bit stricter than the
use of piece-wise intra-hour trajectories as proposed by Yang et al. [16],
but clearly distinguishes resolution increases from methodological
changes. The difference with existing scheduling methods is the en-
forcing of balance on the instantaneous power output (in MW) at the
beginning and end of a PTU, and the imposed linear trajectory between
these two points, rather enforcing this balance on the total output
during the PTU (in MWh).

Fig. 2 shows the relation between energy and power schedules: all
power profiles map to a single energy profile, but multiple power
profiles may map to the same energy profile, as is illustrated with three
distinct power schedules. As the area under the curves is equal, the
same amount of energy is scheduled in all cases, but the schedule de-
fines a precise trajectory for generators to follow. It is important to

notice that in this way the power-based scheduling approach not only
satisfies a given energy demand, but also a given ramp demand which is
not discernible in an energy schedule, while necessary to determine
feasibility of a generator schedule. The examples of Section 4.3 also
illustrate how ex-post changes to the market are not necessarily fea-
sible, as the wrong generators may be committed day-ahead; for this
reason we do not include this solution in our numerical evaluation in
Section 3.

3. Case study through numerical simulation

In order to examine the trade-off between solution quality and
computational cost, we analyse the two within-market solutions: in-
crease in resolution, and changing to a power-based formulation. We
compare these to the base case of energy-based scheduling with hourly
resolution using a realistic case study of five different electricity sys-
tems. We use unit commitment (UC) models to represent these systems.
We test whether the UC formulations are capable of providing the re-
quired electricity in real time by simulating real-time dispatch occur-
ring every 5min. These models allow us to measure the effect of the
assumptions underlying the market models, rather than the difficult-to-
model behaviour of parties within a self-dispatch market. By evaluating
deterministic cases in real time, we test how well the UC models are
able to deal with perfect information. We differentiate the runs as fol-
lows: by the model formulation, using EN for traditional energy-based
planning and PW for power-based planning; by stage using UC for the
unit commitment stage and RT for real-time dispatch; and by the re-
solution of the model, indicating the number of PTUs per clock-hour (1,
2, 3, 4, 6, or 12).

3.1. Experimental setup

We study five systems with different fuel mixes, both in terms of
percentage of renewables as well as the composition of their fossil mix,
resembling real-world systems. Fuel mixes are different for these sys-
tems to control for both long and short start-up trajectories. We ignore
network constraints to isolate the effect on the different market designs,
but in principle they can be added trivially. From Open Power System
Data [17], we obtained time series with a 15-min resolution for Dutch
electricity demand and renewable (both solar and wind) production,
from which we constructed energy demand per five minutes through
cubic interpolation with MatLab’s interp1 function, followed by least-
squares linear interpolation to 5-min power intervals for the real-time
dispatching stage. The generation portfolio (including capacity limits
and fuel/generation type) is based on the DispaSET model [18] and a
meta-study by DIW [19]. These are shown in Table 2. Furthermore, we
made a few simplifying assumptions: Generator size is uniformly drawn
from (100, 1000) MW for all fuel types; GHG-emission cost is 7.5/ ton;
PJM was reduced in size; network constraints are ignored.
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Fig. 1. Frequency on the European system 10–2016 to 03–2017, averaged over all days of the month. Based on data from [28].
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3.1.1. Power vs Energy
We briefly recap the main differences between power-based and

energy-based UC formulations. We use computationally efficient MIP
models for both Energy [20] and Power [21]. These models include
energy output during start-up and shutdown phases. No reserve con-
straints are imposed. In the energy-based models, the decision variables
are the energy output of each generator during each time step and the
renewable energy used, whose sum is constrained to be equal to the
inflexible demand during the time step. In the power-based models, the
decision variables are the power output of generators and renewable
power at the end of a time step. Analogously, the supply–demand
balance constraint is enforced at the end of the PTU. By the assumption
of linear intra-period trajectories, a balance constraint at the beginning
and end of any given PTU ensures momentary balance. Energy balance
is therefore implied by these power balance constraints. For both
models, renewable energy can be curtailed (at a penalty of 50 /MWh) in
both the UC and RT stage. Furthermore, energy can remain unserved in
RT if necessary to ensure feasibility, but is penalised at 10000 /MWh.
Note that this is not possible in the UC stage: any unserved energy is
therefore entirely due to the UC stage being unable to account for
known events.

3.1.2. Model runs
We compare the performance of these two formulations by making a

day-ahead schedule at a given number of UC intervals per hour, and
then simulating the real-time execution of this schedule with a finer
resolution of 5min. We vary the number of UC intervals per hour from
1 interval/hour (which matches UC with an hourly resolution) to 12
intervals/hour (which matches setting commitment decisions every
5min, at the same time scale as the real-time dispatch). By using the

same demand profile in both stages in a deterministic setting, we are
able to assess which formulation better deals with perfectly known
events.

The UC models are solved for 48 h to prevent end-of-horizon effects
from influencing the results: the commitment decisions for the first 24 h
are evaluated. Initial conditions are derived from a lead-in day (starting
with all generators turned off) for the first day, and for subsequent days
the system state after 24 h of the previous day’s UC are used. The model
runs are fully deterministic: there is no uncertainty about demand or
renewable supply. Consequentially, we do not include the scheduling of
reserves in the formulation.

3.1.3. Scenarios
We consider a number of different systems, each representing a real-

world system. Each system has a different level of RES penetration, and
a different fossil fuel mix (leading to more/fewer highly flexible plants),
as shown in Table 1. The generators for these systems are generated
pseudo-randomly, where the maximum capacity and variable cost have
an uncertain range of 10% around the listed figures. The systems based
on Danish and German (DK, DE) portfolios have a relatively high RES
penetration, while we can classify the Dutch and British (NL, GB) sys-
tems as medium-RES. PJM has little installed RES capacity. The demand
and RES time series are taken from Dutch data of 2015 [17], and scaled
according to full system size and installed capacity. We evaluate the
models based on the data of two weeks: the week with the highest
ramping requirement of the dataset, and the week with the highest
variance in residual demand.

3.1.4. Performance indicators
We evaluate the formulations primarily by system security. We use

Fig. 2. Three power profiles with the same energy profile per PTU. Supply trajectory B also matches demand within each half-PTU.

Table 1
System fuel mixes in percentages.

System Total [MW] Fossil [MW] # generators Lignite Hard coal Oil Natural gas Nuclear Wind Solar Bio

NL 34,470 29937.2 58 0 23.93 0 58.34 1.42 9.14 3.89 1.19
DK 11,550 5999.1 16 0 20.87 0.43 18.35 0.09 42.6 5.37 12.29
GB 80,946 65743.53 127 0 25.58 3.56 39.43 11.62 13.5 0 1.03
DE 195,780 105573.9 192 10.85 14.73 1.37 14.9 6.17 19.92 20.67 3.11
PJM 17162.8 16239.6 39 0 36.21 6.51 31.22 19.71 0.51 0.09 0.97
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the curtailed load during real-time dispatch as a measure of how well
the unit commitment formulation is able to deal with perfect certainty.
in real systems, reserves would of course be in place to handle such
events, and load would not necessarily be curtailed. As setting reserve
capacity limits is a somewhat arbitrary decision and would impact the
efficiency of the scheduled generators, and there is no uncertainty to be
taken into account, reserves form no part of our UC formulations. We
could very well interpret load curtailment figures as reserve activation;
it is that part of demand which was met by the available generators in
the UC formulation, but not in the RT evaluation of that UC schedule. It
is a measure of how well the UC formulations are able to deal with
certainty (as there is no stochasticity involved in our experiments at
all).

Total cost is largely dominated by the arbitrarily imposed cost of
this curtailed load, and we therefore only consider cost as a metric for
those cases where there is no load curtailment. Finally, we are also
interested in the computational efficiency, as indicated by the total run
time.

Two important benchmarks are EN with resolution 1, representing
current practice in real-world power systems, and PW with resolution
12, where day-ahead schedules are made using the real-time dispatch
method, and is therefore the best schedule possible. We therefore use
the former as a benchmark for runtime, and the latter for total cost and
curtailed load.

3.2. Results

3.2.1. Curtailed load
Figs. 3–6 show the performance of real-time execution relative to

the optimal benchmark of PW-12, differentiated by the different UC
formulations and the resolution of the UC stage. Each data point in-
dicates the performance for a single day. Less is of course better, as
ensuring security of supply is an important goal of electricity markets.
For DK and DE, the high-RES systems, the difference is the clearest.

Clearly the PW outperforms the EN at each resolution, and the trend
of lower costs at higher resolutions is also sensible, as higher UC re-
solutions better approximate the real-time execution stage. At a re-
solution of 12 PTUs per hour, the PTU length is 5min and therefore
exactly matches the real-time execution phase. It is noteworthy that
even at this stage, the EN-formulation is unable to make minimal-cost
schedules which avoid load curtailment (as in the DK and DE systems).

In the high-RES scenarios, there is a clear improvement of PW over
EN. In the DK system, PW outperforms EN across all resolutions, while
for DE there is a single outlier at PW-1 (but the overall trend is still a
decrease of curtailed load as resolution increases, and of PW out-
performing EN). For systems NL and GB, the medium-RES systems, PW
quickly reduces its unserved energy to zero, while the EN formulation
must shed load even at higher resolutions. The results are mostly size-
invariant: GB is essentially a larger NL, and DE a larger DK. The dif-
ference between different levels of RES capacity, however, are clear.

Table 2
Plant characteristics (based on [18,19]).

Fuel Min output Ramp Up Ramp Down Min Up Time Min Down Time SU Cost SU Time Efficiency GHG Fuel cost
[%Pmax] [MW] [MW] [h] [h] [ ] [h] [%] [ton/ MWh] [ / MWhin]

Coal 30 300 300 8 6 11724 7 0.395 0,95 9.3
Gas 40 670 670 5 1 11254 1 0.525 0,45 38.3
Oil 30 300 300 8 6 3528 7 0.41 0,79 20

Nuclear 90 206 206 24 24 20000 12 0.405 0 37
Lignite 30 300 300 8 6 13685 7 0.385 1 20

Bio 30 300 300 8 6 2000 7 0.45 0 25.8

Fig. 3. Unserved energy in the DK system.

Fig. 4. Unserved energy in the NL system.

Fig. 5. Unserved energy in the GB system.
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3.2.2. Runtime
Runtime, meanwhile, is mostly invariant to the formulation used,

but greatly increases as resolution increases, as is summarised in Fig. 9
for all systems on a logarithmic scale. At first, computational cost in-
creases slowly as resolution increases, but the run time for EN-12 and
PW-12 reaches a thousandfold increase over EN-1. This is a rather
straightforward result: computational time increases quickly due to the
increasing number of integer variables of the MIP formulation. What is
of more practical interest, however, is to examine the combination of
run time and curtailed load. For DK, it shows that the PW-2 formulation
delivers results which are already very close to the PW-12 solution, and
outperforms EN-6. EN-6 also has a computational cost increase of about
100x. If we keep in mind that currently Euphemia has a time limit of
about 40min [22], it is clear that such large increases in run time are
not acceptable. Given computational limits, these results show that the
only way to improve system security is to change the formulation from
energy-based to power-based.

3.2.3. Total cost
As the load curtailment cost component largely dominates the total

cost, we only assess the total cost of those cases where no load is cur-
tailed. These runs are shown in Fig. 8, displaying the relative perfor-
mance in terms of total cost (the sum of variable cost of generation,
startup costs, and wind curtailment). Overall, PW outperforms EN
slightly, although this not the case in a pairwise comparison. A close
examination of the experimental results suggests this is due to the fact
that startup decisions may fall on different days, depending on the
formulation. For example, if EN starts a generator on day 2, and PW
does not start that same generator until day 3, EN will likely outperform
PW on day 3, simply because the startup costs have already been ac-
counted for on day 2.

The qualitative conclusion is therefore that EN does not outperform
PW in cost efficiency. Quantitatively, PW has a slight advantage.
Although the advantage is certainly minor in relative terms, it must be
pointed out that the total electricity consumption of Germany was ap-
proximately 600 TWh in 2016, and a relative performance increase of
even 0.1% in absolute costs is in the order of magnitude of 20 million.

Overall, we see power-based scheduling has a number of ad-
vantages. It outperforms energy-based scheduling in terms of both re-
maining imbalance (Figs. 3–7) and cost (Fig. 8). An equally important
observation is that it delivers these advantages without an increase in
computational cost, as shown in Fig. 9. These results make power-based
scheduling a superior scheduling method for electricity markets.

Few real-world systems, however, are fully centralised. In most
systems, markets are employed to match supply and demand. In the
next section, we therefore explore which changes must be made to the

market design in order to successfully implement power-based sche-
duling in practice.

4. Market design

The implementation of a higher resolution of the day-ahead market
is rather simple: no fundamental changes are necessary, it suffices to
increase the resolution of the market clearing algorithm. The

Fig. 6. Unserved energy in the PJM system. Fig. 7. Unserved energy in the DE system.

Fig. 8. Total cost (EN divided by PW) in experiments without curtailed load, by
UC resolution.

Fig. 9. Average UC runtime increase over EN-1 on logarithmic scale for all
systems.
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implementation of power-based scheduling into a market, on the other
hand, is more complicated. Existing markets communicate energy
profiles to the market participants, who are expected to adhere to these
energy programmes. In a power-based market, however, market op-
erators should communicate power trajectories rather than energy
profiles. This requirement, in turn, may affect other aspects of the
market design as well. In this section, we discuss the changes necessary
for the successful implementation of power-based scheduling in a
market environment, including bidding rules, clearing rules, and pri-
cing rules.

In a centralised scheduling and dispatch system, implementation
would be relatively straightforward. It would suffice to have both
generators and demand communicate all their characteristics to the
market operator. This is existing practice in some systems (e.g. US
systems), but we realise this may not be desirable or feasible in others.
European systems, for example, work based on the Euphemia algo-
rithm, which is used for day-ahead market clearing in Europe [23]. We
therefore turn our attention to how these improvements to day-ahead
scheduling could be implemented if we require that market parties bid
and trade with each other, as is current practice.

4.1. Market rules for power-based scheduling

We start by describing existing market rules. We will then show that
the market clearing result is insufficient, and discuss required changes.
Changes to the clearing rule, in turn, require changes to the definition
of bids and the pricing rule, where for both we aim to stay as close to
the existing market (in terms of properties of the pricing rule and
freedom for the market parties) as possible. We define multi-period bids
as our starting point for bids, where parties communicate their physical
constraints (such as ramping or output limits) and variable costs. The
market is cleared for a fixed horizon (i.e. the next day), and commu-
nicates the precise power trajectories all parties should follow. We
enumerate the criteria for a pricing rule based on existing markets, and
define prices as a price per megawatt of output at the end of each PTU.
We then provide some examples of how these prices might seem
counterintuitive, but still guarantee adherence to these criteria.

Our foremost goal is to show that, given the characteristics of ex-
isting markets (which we aim to improve upon), it is possible to design
a consistent set of market rules which implement power-based sche-
duling. In doing so, we aim to describe the minimal requirements to
which bids and bidding rules must conform. Further improvements may
therefore well be possible.

4.1.1. Existing market design
European day-ahead electricity markets currently operate as fol-

lows. The day-ahead market is cleared 12–36 h in advance of delivery.
Bids are submitted through the national electricity market operators
(NEMOs) to a single European market clearing algorithm, Euphemia
[23]. The core of the algorithm is a constrained welfare maximisation
problem. As the submitted bids are inputs for the objective function and
constraints of the optimisation problem, Euphemia defines what per-
missible bids consist of. The atomic bid is a limit order for an amount of
energy [MWh] during a specified hour [h] at a specified price
[ /MWh]. More complex bids can extend or combine such bids by
creating dependencies or conditional acceptance; we review these
possibilities under bidding rules. The communicated result is the amount
of energy each party is supposed to deliver or consume during each
hour of the day; and a price for energy during each hour, which is the
marginal price of energy delivered during that hour. The concept of
marginal cost pricing is well-established in the power systems com-
munity. These so-called shadow prices, obtained from the dual vari-
ables of optimisation constraints in linear programming, form a com-
petitive equilibrium and ensure envy-free prices for all participants,
who all recover their costs [24].

4.1.2. Clearing rule
The market result of existing markets, however, does not provide

generators with sufficient information to follow a power trajectory; the
clearing result only communicates an amount of energy. This is there-
fore our first criterion for a new market design: the market result pro-
vides each participant with a piecewise-linear power trajectory to
follow.

4.1.3. Bid definition
In order to provide a power trajectory to bidders, the market op-

erator must receive precise information on the physical capabilities of
the bidders. Bids allow both generators and demand to provide these
required inputs to the scheduling problem. This means they must be
able to express their physical characteristics with enough precision to
allow for power trajectories as an output. In order to reach the desired
outcome, existing bids no longer suffice; the linear ramping constraint
is not included in existing bid definitions. Furthermore, due to the re-
quirement of linear ramping during a PTU, bids for a single PTU no
longer exist. Consequentially, we require a bid which explicitly links
two subsequent PTUs, and incorporates the linear ramping constraint.

A bid must at least consist of a lower and upper production limit at
the start/end of a PTU [MW]; a maximal ramp rate, both up and
downwards [MW/h]; and a price per unit of energy [ /MWh].

Using this bid definition, PTUs are linked to each other through the
ramp rates, which set limits on the intra-hour gradient of the resulting
power trajectory. Production limits, as in existing markets, are neces-
sary to ensure feasibility.

4.1.4. Pricing rule
In existing markets, the price of energy is the marginal price of

energy during that hour. We briefly recap the desired characteristics to
which a pricing rule must (and currently does) conform. For the pricing
rule, we aim for the following characteristics. These characteristics are
well-established in micro-economic theory.

• Efficient: Given all bids, social welfare is maximised.
• Incentive compatible (or truthful): honestly reporting your pre-
ferences is the best strategy (i.e. it maximises your own utility) given
that others do so as well (known as Bayes-Nash incentive compa-
tible) or irrespective of what others do (dominant-strategy incentive
compatible).
• (Ex-post) Individually rational: mechanism participants receive non-
negative utility from participating, in all possible states of the
market, implying costs are always recovered for all bidders.
• Budget balanced: a mechanism is strongly budget-balanced if the
sum of payments by the market operator is precisely 0.
• Envy-free: No generator values another production profile and cor-
responding payment higher than the profile and payment it is as-
signed.

It is impossible, however, to satisfy all five. Due to the impossibility
theorem by Myerson and Satterthwaite [25], the first four can never be
satisfied by a pricing mechanism simultaneously. Although it is possible
to design a mechanism that addresses incentive compatibility, such as
the celebrated Vickrey-Clarke-Groves mechanism [26], such a me-
chanism will have different downsides due to the impossibility theo-
rems of Myerson and Satterthwaite [25] and Green and Laffont [27]. In
practice, applying VCG would lead to discriminatory pricing, benefiting
larger generating companies (as each participant is paid according to
their impact on the total welfare of all other participants, and the im-
pact of a large company is bigger than that of a smaller one), and might
run a deficit. Existing markets face the same problem, and we therefore
follow their example of relaxing the criterion of incentive compatibility.
Implementing marginal pricing would ensure the four remaining cri-
teria are met, as they are fundamental properties of marginal pricing in
any situation.
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In implementing marginal pricing, however, we must overcome one
serious hurdle. In an energy-based market, the balance constraints are
enforced on the energy output, and the marginal cost of supplying an
additional unit of energy during a PTU can be expressed in /MWh,
resulting in a price for that PTU alone. In a power-based market,
however, PTUs are irrevocably linked to each other due to the linear
power trajectories, where increasing the output of a generator at the
end of one PTU increases the amount of energy in both the preceding
and in the subsequent PTU. Although these trajectories correspond to a
unique energy profile, we can no longer price the energy profiles since
they are no longer independent. Instead of pricing the energy output
during the PTU (in MWh), we must price the power output at the end of
the PTU (in MW). This uses the dual variable of the power balance
constraint at the end of a PTU, instead of the dual variable of the energy
balance constraint during the PTU, as the price for power delivery at
that moment. By doing so we can maintain the properties described
above, but the price is now in /MW.

Such prices may lead to a seemingly paradoxical situation. If each
bidder now pays their output at the end of the PTU times the price, the
situation arises where a generator which shuts down will receive no
payment for energy supplied during its last operational hour. It should
be noted, however, that when ramping upwards, generators are paid
more than their electricity output warrants. Since a generator which
ramps down must have ramped upwards at some earlier moment,
variable costs have already been recovered by the payments in the
previous hours. The apparent paradox is therefore illusory, as we will
further illustrate with a numerical example in the next section: mar-
ginal pricing of power profiles is fully individually rational.

4.1.5. Bidding rules
In designing bidding rules, we aim to describe the minimal set of

rules which ensure that bidders have at least the flexibility they cur-
rently have. Currently, Euphemia accepts (and by extension, NEMOs
offer) a number of bid products which extend the previously-described
atomic bid. These bids, linking PTUs, are known as complex bids. We
briefly list them, describe them, and discuss their incorporation in a
power-based market.

Load gradient orders. Load gradient orders describe dependencies
between PTUs to capture multi-period ramping constraints. They
consist of bids for sequential PTUs, linked by ramping constraints.
Clearly, this is captured by our description of a single bid. Block orders
describe subsequent PTUs for which a generator either runs during all
PTUs, or during none. Using our bid definitions, this can also be
accomplished through the minimal output levels of individual bids.
Furthermore, by bidding the appropriate ramping limits, participants
can ensure they run for multiple hours if their bid is accepted.

Flexible hourly orders. A flexible hourly order is an order for an amount
of energy delivered during a single PTU, where the precise PTU is to be
determined by the market outcome. This is the only bid type we cannot
cover in power-based scheduling, which is by design: as we impose
linear ramping during a PTU, it is no longer possible to start and end a
PTU at zero and still consume electricity. The alternatives for a party
desiring to place such a bid would be to replicate it for two subsequent
PTUs, or to turn to bilateral trading to ensure the desired power profile
can be followed.

Minimum income conditions. Minimum income conditions (MIC) are
bids which require fixed (start-up) costs to be covered. They impose
restrictions on how multiple subsequent sub-bids are accepted or
rejected. There are no barriers to imposing such restrictions on our
power-base bids.

Linked orders. Finally, linked orders can be introduced by including
conditional acceptance between bids. Such bids can then be used to

capture price differences between operating ranges, but their use is
likely to be lower than in current markets due to the fact that our basic
bid already allows for restrictions on the range within which a plant can
be operated.

4.2. Implementation issues

So far, we have discussed the changes in market rules necessary to
implement power-based scheduling in a day-ahead market. There are a
two issues which fall outside the scope of this work, but which we still
touch upon briefly. First we discuss the impact a new market paradigm
has on flexible demand, within the context of the day-ahead market
(therefore ignoring its role in other ancillary markets); secondly, we
discuss imbalance settlement.

4.2.1. Role of hydro, storage and flexible demand
In essence, there is little difference between hydro-power and flex-

ible demand: both, to a certain physical limit, allow for intertemporal
shifting; tend to have high flexibility (i.e. high ramp rates); and by this
virtue, can increase the efficiency of electricity schedules if incentivised
properly. Under an energy-based market, there would be no incentive
to follow actual demand, and self-scheduling of hydro-power plants and
flexible demand could exacerbate momentary imbalances by quickly
ramping up in order to meet their full energy profile [4]. Creating in-
centives to follow linear power profiles reduces the negative impact
they have on the system, and are able to contribute to further system
stability by providing reserve capacity to compensate for actual im-
balances.

Systems with highly frequent (e.g. every 5min, as in the US) real-
time centralised dispatch, of course, face no such problems. For these
systems, however, there are potential efficiency gains because flex-
ibility now has a day-ahead value. These efficiency gains are also di-
rectly shown in our numerical results, where we dispatched all units
every five minutes in a central and optimal manner (simulating US real-
time markets). Using such dispatch, there are no deterministic im-
balances or frequency deviations, but still we showed efficiency gains.

Since both hydro-storage and flexible demand are constrained in
their total production and consumption (due to reservoir limits, or total
consumption limits), there are intertemporal dependencies: using a
flexible resource during one PTU means it is no longer available during
the next. In order to efficiently plan when these sources of flexibility
should be available, it is necessary to have a good understanding of the
flexibility of all other parties. Power-based scheduling, more so than
energy-based scheduling, provides this insight, irrespective of the dis-
patch method.

4.2.2. Imbalance settlement
Once the day-ahead schedules are known, how should deviations be

dealt with? This question, which we have barely touched upon in this
paper, is essential for the proper implementation of power-based
scheduling into a market. A well-functioning imbalance settlement
mechanism is imperative to incentivise market parties to actually
follow the power profile they have been assigned. Clearly, the existing
imbalance settlement mechanism of measuring the total amount of
energy during a PTU no longer suffices, but an appropriate imbalance
mechanism is yet to be designed.

4.3. Examples

We illustrate the application of marginal pricing to power output at
the end of a PTU with some examples. We consider two scenarios, SC1
and SC2, in a system with three generating units, whose data is shown
in Table 3, and the demand presented in Table 4 and Figs. 10 and 11.
Note that in the rows indicating demand in power, the values represent
the power demand at the end of the hour, while in the rows showing
demand in energy, they represent the energy demand during the hour, as
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is also shown in Figs. 10 and 11. This example consists of two con-
ventional generators (G1 and G2), and one fast-start unit (G3) which
provides system reserves if needed in real-time operation. We present
two examples: in SC1, we show that with power-based pricing costs are
recovered by the generators, even if the power output drops to zero at
the end of some hour during which they were producing. In SC2, we
show that the power-based market reaches a feasible solution where the
energy-based market does not, and as a result the power-based market
leads to a more efficient result in actual dispatch.

4.3.1. Scenario 1
Clearing the power-based market in SC1, G1 can completely supply

the required power trajectory, as shown in Table 5, which also lists the
associated energy profile, and the marginal prices in both markets. This

is also the cheapest solution. For all hours at the end of which the
amount of power traded is larger than 0, the price is equal to the cost of
the marginal unit, 25 /MW. Clearing an energy-based market, G1 is also
able to provide the entire demand, although it is not specified which
power trajectory the unit should follow. Since G1 is the only unit pro-
viding the demand, the marginal energy price for all hours during
which energy is traded is again 25 /MWh.

Upon first inspection of the power-based market result, G1 does not
seem to recover its operational cost, as there are fewer hours during
which it earns any income. G1 does recover its operational costs as is
shown in Table 6.2 This is due to the fact that the costs are recovered in
the earlier hours, where the power supplied at the end of an hour is
larger than the energy supplied during the hour because the generator
is ramping up, as could be seen in Table 5.

4.3.2. Scenario 2
In an energy-based market, G1 is expected to easily follow the de-

mand profile, as all energy ramps are below 65, and the energy demand
is the same in hours 2–6 as in SC1. G1 is therefore dispatched as in
scenario 1 in hours 2–6, and consequently we see the same price result.
This day-ahead schedule, however, is infeasible.

If we attempt to execute the day-ahead schedule, G1 cannot provide
the energy ramp of 60 MWh in hour 2 because the generator was not
already ramping up, and the actual ramp requirement was 120MW (see
Fig. 11). To supply demand we must rely on reserves provided by G3, as
shown in Table 7. G3, of course, is more expensive than G2, which
could have provided the required production profile had it been com-
mitted in the day-ahead market. Furthermore, we see that the day-
ahead market did not correctly account for the need of ramp-down
capacity in hour 5. Since G1 cannot ramp down fast enough to com-
pletely follow demand, it is necessary to use G3 to provide reserves
again in hour 4 and 5. This optimal redispatch is shown in Fig. 12.

The power-based market correctly represents these physical lim-
itations, and schedules as shown in Table 8: it commits both G1 and G2,
scheduling G2 where necessary to maintain an adequate ramping speed.
Fig. 12 shows the optimal dispatch, with the exception that G2 now
provides the power instead of G3. The marginal prices (shown in
Table 8) also deserve a closer look. At the end of hours 2 and 4, G2 is
the marginal generator, and therefore it sets the price. What stands out,
however, is the low price at the end of hour 5. Due to ramping con-
straints, an additional unit of power provided at that moment would
allow us to reduce the output of G2 by 1 at the end of hour 4, as there is
less ramp-down demanded from G1. Consequently, G1 provides addi-
tional power at the end of both hours 4 and 5, delivering in total 2
additional MWh of electricity during hours 4–6. The total electricity
output of G2 is reduced by 1MWh. The marginal cost of this 1MW
increased demand is therefore =2·25 37 13. Even though this price is
below the electricity production cost of all generators, costs are still
completely recovered, as is shown in Table 9. Moreover, the cost of
dispatch matches the costs in the power-based day-ahead market,
which was not the case for the energy-based market.

Table 3
Generator data.

Name Min Max Ramp rate Offer price
[MW] [MW] [MW/h] [ /MWh]

G1 0 200 65 25
G2 0 100 120 37
G3 0 60 180 90

Table 4
Demand data. Power in MW at the end of the hour, energy in MWh during the
hour.

Hour 0 1 2 3 4 5 6 7

Power SC1 0 30 90 150 120 60 0 0
Power SC2 0 0 120 120 150 30 30 0
Energy SC1 – 15 60 120 135 90 30 0
Energy SC2 – 0 60 120 135 90 30 15

Fig. 10. Demand in Scenario 1.

Fig. 11. Demand in Scenario 2.

Table 5
SC1: Dispatch and prices for both power- and energy-based markets.

Hour 0 1 2 3 4 5 6 7

G1 [MW] 0 30 90 150 120 60 0 0
G2 [MW] 0 0 0 0 0 0 0 0

G3 fast-start [MW] 0 0 0 0 0 0 0 0

G1 [MWh] 0 15 60 120 135 90 30 0

Energy-based prices [ /MWh] 0 25 25 25 25 25 25 0
Power-based prices [ /MW] 0 25 25 25 25 25 0 0

Table 6
SC1: Costs and income in the day-ahead market.

Energy-based Power-based

Costs Income Costs Income
[ ] [ ] [ ] [ ]

G1 11,250 11,250 11,250 11,250
G2 0 0 0 0

G3 fast-start 0 0 0 0

2 The income is simply the sum-product of the dispatch rows and the corre-
sponding prices in Table 5.
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5. Conclusion

Existing electricity markets are inefficient: their very design makes
it so. Markets let parties trade energy, to be delivered anywhere within
a programme time unit. Ensuring energy balance during such a time
unit, unfortunately, does not guarantee the momentary balance of
supply and demand which is a necessary condition for the safe and
reliable operation of electrical power systems. Energy-based scheduling
methods consistently misrepresent the flexibility of generators. Since
average energy levels do not provide any information about the mo-
mentary output of a generator, and ramping limits are dependent on
momentary output rather than average levels, traditional energy-based
scheduling overestimates their flexibility. In practice, this means gen-
erators must misrepresent their ramp rate when a market is cleared
simply to ensure the resulting schedule is feasible. Energy-based mar-
kets, in short, trade the wrong product.

Scheduling electricity in terms of power, rather than energy, can
improve electricity markets in a number of ways. Primarily, it improves
the efficiency of day-ahead schedules at a lower computational cost
than increasing the resolution does. Day-ahead schedules based on
power trajectories are, in all ways, superior to energy-based schedules.
The reduction in load curtailment (or reserve activation) runs in the
order of a few percentage points. This reduces costs for consumers, and

reduces the need for online thermal power plants, improving the
competitive position of renewable electricity sources. In self-dispatch
systems, power-based scheduling also alleviates the imbalances which
follow from the existing market design, preventing frequency shocks
which threaten security of supply and freeing up expensive reserves,
and resulting in more efficient schedules in general. By committing to a
specific trajectory (i.e. always linear), efficiency might be lost in some
very specific cases, such as when a cheap generator might be able to
reach its maximal output during a programme time unit but this would
result in a non-linear trajectory. The gains, arising from better re-
presentation of both the momentary inflexible demand and generation,
as well as a better (if overly conservative) representation of the actual
constraints on generators outweigh the losses, as the experimental re-
sults corroborate. The experimental results furthermore indicate that a
power-based market’s relative performance increases when the share of
renewable electricity sources in the system increases, which is an im-
portant conclusion with an eye on the policy goals of most in-
dustrialised countries.

Coordinating power-based trajectories in a market was until now an
unresolved problem. We have defined a market which fills this gap by
providing bid definitions and rules for bidding, market clearing, and
pricing, delivering a set of rules for day-ahead markets which en-
courage momentary balance between supply and demand. The pro-
posed market model is very much in line with the operation of existing
markets, making only the minimal changes necessary to fully capture
the advantages of power-based scheduling. In doing so, it improves
economic efficiency and makes way for further integration of RES.

In our experiments, we assumed the absence of transmission con-
straints in order to show as clearly as possible that the inefficiency of
schedules is solely due to the assumptions underlying energy-based
schedules. This can easily be extended to include transmission con-
straints. Transmission constraints are also more accurately expressed in
power than in energy. When transmission constraints are expressed in
terms of energy rather than power, transmission lines face the same
problem as a generator reaching its maximal output: a line rated at 100
MWh per hour may require flows in excess of 100MW to actually
transport 100MWh. Therefore, power-based network constraints can
also improve transmission congestion management. Power-based
scheduling incorporates the true transport capacity, reducing the
margin of error the system operator must take into account, therewith
increasing the efficiency of the system. Our proposed power-based
market design can easily be extended to include transmission con-
straints. Power-based locational marginal prices (LMPs) can be used to
include network constraints. Power-based LMPs are obtained in the
same (mathematical) way as the LMPs in energy-based markets. The
difference is the meaning of these power-based LMPs, which is exactly
the same meaning of the prices we present in this paper: they reflect the
cost of providing 1MW of power at a given location at the end of a
programme time unit or period.

Looking ahead in this line of research, the market design requires
rethinking of the imbalance penalisation rules. Existing imbalance
settlement in self-scheduling markets does not incentivise generators to
actually follow the assigned power trajectory. These imbalance rules

Table 7
SC2: Actual dispatch [MW] for energy-based market, and day-ahead prices.

0 1 2 3 4 5 6 7

G1 0 0 65 120 95 30 30 0
G2 0 0 0 0 0 0 0 0
G3 0 0 55 0 55 0 0 0

Price [€/MWh] 0 0 25 25 25 25 25 25

Fig. 12. Actual dispatch in Scenario 2.

Table 8
SC2: Power-based schedule [MW] and prices.

Hour 0 1 2 3 4 5 6 7

G1 0 0 65 120 95 30 30 0
G2 0 0 55 0 55 0 0 0
G3 0 0 0 0 0 0 0 0

Price [€/MW] 0 0 37 25 37 13 25 0

Table 9
SC2: Costs and money recovered according to day ahead, and the cost of actual dispatch.

Energy-based Power-based

Day-ahead cost Day-ahead income Dispatch Cost Day-ahead cost Day-ahead income Dispatch Cost
[ ] [ ] [ ] [ ] [ ] [ ]

G1 11,250 11,250 8500 8500 10,060 8500
G2 0 0 0 4070 4070 4070
G3 0 0 9900 0 0 0

Total 11,250 11,250 18,400 12,570 14,130 12,570
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must therefore be redesigned to account for momentary power rather
than total energy per time unit.

Furthermore, market manipulation is important to investigate.
Inefficiencies in day-ahead scheduling create a need for reserves and
balancing. At least in theory, it is possible in a self-dispatch system to
create momentary imbalances, for which the system operator will then
reward whoever resolves it. In a power-based market, the market result
is a momentary schedule from which, in theory, it is more difficult to
profitably deviate. The manipulation of such a market will of course

strongly depend on its relation with other markets, including the im-
balance settlement mechanism referred to previously.
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Appendix A. UC Formulations

In this Appendix, we briefly describe the unit commitment formulations used in the experiments. First we introduce the notation used in the UC
formulations.
Indices and Sets

g Generating units, running from 1 to G
S Slow-start generating units
1 Generators with =TU 1g

s g Startup segments, running from 1 (the hottest) to Sg (the coldest)
t Hourly periods, running from 1 to T hours

…i [1, 2, ] intervals of startup and shutdown trajectories

Parameters

Cg
LV Linear variable production cost [€/MWh]

Cg
NL No-load cost [€/h]

Cg
SD Shutdown cost [€]

Cgst
SU Startup cost for segment s [€]

CVW Variable production cost (bid) of wind [€/MWh]
Dt

E Energy demand for hour t [MWh]
Dt

P Power demand at the end of hour t [MW]
Pg Maximum power output [MW]
P g Minimum power output [MW]
Egi

SD Energy output during the ith interval of the shutdown ramp process [MWh]
Egsi

SU Energy output during the ith interval of the startup ramp process type s [MWh]
Pgi

SD Power output at the beginning of the ith interval of the shutdown ramp process [MW]
Pgsi

SU Power output at the beginning of the ith interval of the startup ramp process type s [MW].
RDg Ramp-down capability [MW/h]
RUg Ramp-up capability [MW/h]
RUg Shutdown ramping capability [MW/h]
SUg Startup ramping capability [MW/h]
SDg

D Duration of the shutdown process [h]
SUgs

D Duration of the startup process type s [h]
Tgs

SU Time defining the interval limits of the startup segment +s T T, [ , )gs g s
SU

, 1
SU [h]

SUg Minimum down time [h]
TUg Minimum up time [h].
Wt

E Available renewable energy for hour t [MWh]
Wt

P Available renewable power at end of hour t [MW]

Continuous Non-Negative Variables

wt
E Renewable energy output for hour t [MWh]

wt
P Renewable power output at the end of hour t [MW]

egt Energy output above minimum output for hour t [MWh]
egt Total energy output at the end of hour t, including startup and shutdown trajectories [MWh]
pgt Power output above minimum output at the end of hour t [MW]
pgt Total power output at the end of hour t, including startup and shutdown trajectories [MW]

Binary Variables

ugt 1 if the unit is producing above minimum output and 0 otherwise
ygt 1 if the unit starts up and 0 otherwise
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zgt 1 if the unit shuts down and 0 otherwise
gst Startup type s. 1 if the unit starts up and has been previously down within +T T[ , )gs g s

SU
, 1

SU hours

A.1. Energy-based UC formulation

The energy-based formulation, based on Gentile et al. [20], is the traditional approach to unit commitment. The objective is to minimise the total
cost of production:

+ + + +C u C C z C e C wmin
t g

g gt
s

gs gst g gt
g

g gt t
NL SU SD LV VW E

g (A.1)

subject to an energy balance

=e D w t
g

gt t t
E E

(A.2)

Individual generators must adhere to commitment and startup/shutdown logic:

=u u y z g t,gt g t gt gt, 1 (A.3)

= +
y u g t,

i t

t

gi gt
TU 1g (A.4)

= +
z u g t1 ,

j t

t

gi gt
TU 1g (A.5)

The startup trajectories differ per startup type, which depends on the amount of time the generator has been offline:

=

+
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T
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,
gs
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(A.6)

= y g t,
s

gst gt
g (A.7)

Generators are also subject to maximum electricity production limits, and limits on ramping during the startup and shutdown phases.

+e P P u P SD z SD SU y g t( ) ( ) max( , 0) ,gt g g gt g g g t g g g t, 1 ,
1 (A.8)

+e P P u P SU y SU SD z g t( ) ( ) max( , 0) ,gt g g gt g g gt g g g t, 1
1 (A.9)

+e P P u P SU y P SD z g t( ) ( ) ( ) ,gt g g gt g g gt g g g t, 1
1 (A.10)

The change in electricity output is constrained by ramping limits:

RD e e RU g t,g gt g t g, 1 (A.11)

The total amount of electricity production for thermal generators is the sum of the startup trajectory, the shutdown trajectory, and the output
when up; renewable generators generate between 0 and the maximum available.
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w W t0 t t
E E (A.13)

The startup and shutdown trajectories are linear interpolations of reaching minimal stable output from 0, and vice versa. Note that these are
derived from the power output at the beginning of the respective segment, and the energy output
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where
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(A.16)
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A.2. Power-based UC formulation

The power-based UC formulation is based on [21].
The objective is to minimise the total cost of production:

+ + + +C u C C z C e C wmin
t g

g gt
s

gs gst g gt
g

g gt t
NL SU SD LV VW E

g (A.18)

where once again

= +C C C SU g s,gs gs g gs
SU SU NL D (A.19)

= +C C C SD gg g g g
SD SD NL D (A.20)

The key difference between the two formulations is that the supply–demand balance is written in terms of power.

=p D w t
g

gt t t
P P

(A.21)

As above, individual units must adhere to commitment constraints, as well as their start-up and shut-down logic:

=u u y z g t,gt g t gt gt, 1 (A.22)

= +
y u g t,
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t
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= +
z u g t1 ,

j t

t

gi gt
TU 1g (A.24)

The power output for slow-start units is again the sum of output in a shutdown or startup trajectory and the output in the ‘on’-state:
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There are different startup trajectories for different startup types, depending on for how long the generator has been offline.
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= y g t,
s

gst gt
g (A.27)

The startup and shutdown trajectories are again linear interpolations.

=P
P

SU
i g s·( 1) ,gsi

g

gs
D

SU

(A.28)

=P P
P

SD
i g·( 1)gi g

g

g
D

SD

(A.29)

Since the total output of generators is defined in terms of power, rather than energy, we must write the ramping constraints and resulting energy
output as a function of the power output:

RD p p RU g t,g gt g t g, 1 (A.30)

=
+

e
p p

g t
2
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g t gt, 1

(A.31)

Similarly, the wind output in power and energy, respectively, are

w W tt t
P P (A.32)

= +w w w t
2t

t tE 1
P P

(A.33)

Finally, we also express the startup and shutdown output in power.

++ +p P P u P SD z SU P y g t( ) ( ) ( ) ,gt g g gt g g g t g g g t, 1 , 1 (A.34)
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