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Abstract. In this survey, we provide an in-depth exposition of our recent
results on the well-posedness theory for stochastic evolution equations,
employing maximal regularity techniques. The core of our approach
is an abstract notion of critical spaces, which, when applied to non-
linear SPDEs, coincides with the concept of scaling-invariant spaces.
This framework leads to several sharp blow-up criteria and enables one
to obtain instantaneous regularization results. Additionally, we refine
and unify our previous results, while also presenting several new con-
tributions. In the second part of the survey, we apply the abstract
results to several concrete SPDEs. In particular, we give applications
to stochastic perturbations of quasi-geostrophic equations, Navier-Stokes
equations, and reaction-diffusion systems (including Allen–Cahn, Cahn–
Hilliard and Lotka–Volterra models). Moreover, for the Navier–Stokes
equations, we establish new Serrin-type blow-up criteria. While some
applications are addressed using L2-theory, many require a more general
Lp(Lq)-framework. In the final section, we outline several open problems,
covering both abstract aspects of stochastic evolution equations, and con-
crete questions in the study of linear and nonlinear SPDEs.
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1. Introduction

In this survey, we give an exposition of the recent developments in [11,12],
where we build a comprehensive framework for establishing local and global
well-posedness for a class of Itô stochastic parabolic evolution equations of the
form (the reader is referred to Section 1.1 below for the unexplained notation):{

du + Au dt = F (u) dt + (Bu + G(u)) dW,

u(0) = u0.
(1.1)

Here, the term parabolic refers to the property that the leading operators have
suitable smoothing properties, which will be encoded in a maximal regularity
assumption. Notably, maximal regularity estimates are available for a large
class of operators, extending beyond standard second-order heat-type opera-
tors to include many others, such as those arising in fluid dynamics.

To maintain clarity and simplicity, this survey focuses exclusively on the
semilinear case, specifically equations of the form (1.1). This already includes
a wide range of highly nontrivial models (e.g. Navier–Stokes and reaction-
diffusion equations). However, it is worth noting that the references cited above
also address the more general quasilinear setting, and the case where the coef-
ficients depend on (t, ω) as well.

Additionally, this survey introduces several new abstract results and
demonstrates the application of our framework to specific SPDEs. Finally,
we provide a list of open problems to guide future research efforts.

The study of parabolic stochastic evolution equations has a rich history.
While it is not feasible to provide a comprehensive overview of the literature,
we will highlight several influential approaches that have significantly shaped
our framework. References to additional approaches can be found in Subsection
1.3.

The semigroup approach is thoroughly explored in the monograph by
Da Prato and Zabczyk [76] and the references therein. For the variational
setting, key works include those of Pardoux [211] and Krylov-Rozovskii [172],
as well as the monograph by Liu and Röckner [187]. Finally, the Lp-theory of
Krylov [163] is distributed across several papers, many of which are discussed in
Subsection 3.6. Our framework provides a bridge between, and in several cases,
an extension of these foundational approaches and viewpoints to stochastic
PDEs when restricted to the semilinear equation (1.1). This framework has
led to significant new results for a variety of SPDEs, including:
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• Reaction-diffusion such as Allen–Cahn, Cahn–Hilliard, Lotka–Volterra,
and Gray-Scott.

• Stochastic fluid dynamics, including the Navier–Stokes and primitive
equations.

The main novelty and the key advantage of our framework lies in its ability
to allow and capture critical nonlinearities and data. Criticality is a well-
established concept in PDE theory and mathematical physics, though its pre-
cise definition often depends on additional context. From a PDE point of view,
a critical space and/or setting can be identified whenever the PDE under con-
sideration admits scaling invariance. In this context, a space and/or setting
is called critical if it respects the scaling invariance of the underlying equa-
tion. As discussed in Subsection 1.2, scaling invariance determines a family of
invariant spaces rather than a single setting. For example, in the case of the
3D Navier–Stokes equations, both the Lebesgue space L3 and Besov spaces
Ḃ

3/q−1
q,p are scaling-invariant.

In addition to its natural connection with a given PDE, working with
critical spaces offers several advantages. As a general principle, the critical
setting provides the optimal framework for studying parabolic problems. More
importantly, it ensures well-posedness for a wide range of data and offers sharp
criteria for the explosion or blow-up of solutions to the corresponding PDE in
finite time. Blow-up criteria are particularly crucial in studying the global well-
posedness of PDEs, especially when limited information is available about the
solution’s behaviour (such as energy estimates).

In our approach to stochastic evolution equations (1.1), we use a (rela-
tively) abstract setting. This has the benefit of clearly identifying the require-
ments for proving well-posedness results for parabolic SPDEs. Additionally,
within the context of critical spaces, such an abstract framework is valuable
for addressing problems where global scaling invariance is not present (e.g.
SPDEs on domains and/or x-dependent coefficients). Further details will be
provided in Subsection 1.2.

The rest of this section is structured as follows. First, we provide a sim-
plified overview of the results from [11,12] in the case of semilinear stochastic
evolution equations (1.1). In Subsection 1.2, we demonstrate how the abstract
results relate to scaling invariance or critical spaces for 3D Navier–Stokes equa-
tions with transport noise. Subsection 1.3 offers a discussion of relevant litera-
ture for deterministic and stochastic evolution equations. Finally, in Subsection
1.4, we discuss some historical context and alternative approaches to SPDEs.
A complete overview of the current manuscript is presented in Subsection 1.5.
Applications to specific SPDEs are discussed in Sections 7 and 8.

1.1. A glimpse into our framework

In the study of parabolic equations, it is well-established that abstract
methods can be highly effective. When seeking local well-posedness and regu-
larity results for both existing and new classes of SPDEs, verifying the assump-
tions of our framework often proves more fruitful than attempting to develop
ad hoc methods for analyzing each SPDE individually. Moreover, the abstract
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conditions for global well-posedness derived through our approach frequently
lead to significantly stronger results than those obtained through ad hoc tech-
niques.

Before presenting the main result, we provide a more detailed description
of the terms in (1.1). Throughout this discussion, we will use several concepts
from operator theory and maximal regularity. For further details, the reader
is referred to Sections 2 and 3, respectively.

The setting The operator A is assumed to be sectorial on a UMD Banach
space X0 of type 2 (e.g. X0 = Lq with q ∈ [2,∞)) with domain X1 = D(A)
(with the graph norm). The linear part (A,B) of (1.1) is assumed to have so-
called stochastic maximal regularity. In most of the examples we have in mind,
A is a linear 2m-th order differential operator (possibly an operator matrix), F
depends on the derivatives of u up to the (2m−1)-th order, the operator B is a
linear m-th order differential operator, and G depends on the derivatives of u
up to the (m−1)-th order. The noise W is modelled as a cylindrical Brownian
motion on a Hilbert space U , and it is coloured through the processes Bu and
G(u).

The nonlinearities F and G are assumed to be defined on an interpolation
space Xβ , which lies between X0 and X1. These nonlinearities are typically
assumed to grow polynomially at a rate ρ + 1, with a restriction on the pair
(β, ρ), and where β ∈ (1/2, 1). Typically, we assume the existence of a constant
C such that for all u, v ∈ Xβ

‖F (u) − F (v)‖X0 + ‖G(u) − G(v)‖γ(U,X1/2) ≤ C(1 + ‖u‖ρ
Xβ

+ ‖v‖ρ
Xβ

)‖u − v‖Xβ ,

(1.2)

where ρ ≥ 0. Here the space γ(U ,X1/2) is the set of γ-radonifying operators
from U to X1/2, and it coincides with the Hilbert-Schmidt operators when
X1/2 is a Hilbert space. The natural occurrence of γ-spaces in the context of
stochastic analysis in a non-Hilbert space setting is discussed in Subsections
2.5 and 2.6.

We are interested in solutions to (1.1) with paths belonging to the
weighted space

Lp
loc([0, σ), tκ dt;X1) ∩ C([0, σ);X1− 1+κ

p ,p), (1.3)

where p ≥ 2, κ ∈ [0, p
2 − 1) ∪ {0}, σ is a stopping time, and X1− 1+κ

p ,p :=
(X0,X1)1− 1+κ

p ,p is the real interpolation space. The solution space (1.3) is nat-
ural when considering stochastic maximal Lp-regularity (see Subsection 3.2).
Moreover, the space X1− 1+κ

p ,p is optimal for handling pointwise evaluations
(or traces) of solutions (see Subsection 2.3). The role of the time weight κ ≥ 0
will become clear when addressing explosion criteria and the regularization
properties of solutions to (1.2) (see Theorem 1.1). We impose β ∈ (1 − 1+κ

p , 1)
to ensure that the nonlinearities F and G are rougher than the trace space
X1− 1+κ

p ,p. Note that this restriction is only technical: if (1.2) holds for some
β, then it also holds for any β′ > β.
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On the parameters p, κ, β and ρ, we impose the following condition:

1 + κ

p
≤ (1 + ρ)(1 − β)

ρ
. (1.4)

The condition (1.4) is a central assumption in our framework. If equality holds
in (1.4), we will refer to the corresponding setting or space for the initial data
as critical.

As previously mentioned, the parameter ρ is determined by the growth
of the nonlinearity, while β is typically derived from both the growth of
the nonlinearity and the choice of underlying function spaces, in conjunc-
tion with Sobolev embedding. It is important to note that the inequality
1/p ≤ 1+κ

p ≤ 1/2 always holds. By choosing p sufficiently large, the left-hand
side of (1.4) can be made arbitrarily small. The pair (p, κ) is, in principle,
flexible in applications; however, in Theorem 1.1 below we require that (A,B)
possesses stochastic maximal Lp-regularity with weight tκ dt.

Bird’s-eye view of the framework Below we provide an overview of our frame-
work. A conceptual map is presented in Figure 1. We limit ourselves to pro-
viding a loose form of the local well-posedness, blow-up criteria, and instanta-
neous regularization for (1.1), which will be detailed in Sections 4 and 5, see
Theorems 4.7, 5.1 and 5.2 there.

Theorem 1.1. Let X1 ↪→ X0 be as above. Suppose that the linear part (A,B)
has stochastic maximal Lp-regularity with weight tκ dt. Suppose that the non-
linear part (F,G) is as in (1.2) and that (1.4) holds. Assume that u0 ∈
L0
F0

(Ω;X1− 1+κ
p ,p). Then the following hold:

(1) (Local well-posedness) (1.1) has a unique maximal solution u with life-
time σ > 0 a.s. and

u ∈ Lp
loc([0, σ), tκ dt;X1) ∩ C([0, σ);X1− 1+κ

p ,p) ∩ C((0, σ);X1− 1
p ,p) a.s.

(2) (Blow-up criteria) The following hold a.s. on {σ < ∞}:
• lim

t↑σ
u(t) does not exists in X1− 1+κ

p ,p ;

• sup
t∈[0,σ)

‖u(t)‖X
1− 1+κ

p
,p

+ ‖u‖Lp(0,σ;X1− κ
p

) = +∞ ;

• sup
t∈[0,σ)

‖u(t)‖X
1− 1+κ

p
,p

= +∞ in the subcritical case.

(3) (Regularization) Under relatively weak assumptions, but still keeping u0 ∈
X1− 1+κ

p ,p a.s.,

u ∈ Cθ−ε
loc ((0, σ);X1−θ) a.s. for all θ ∈ (0, 1/2), ε ∈ (0, θ).

The result in (1) ensures the well-posedness of (1.1). Furthermore, when
κ > 0, it also shows instantaneous regularization of solutions to (1.1). Indeed,
in this case, the solution belongs to X1− 1

p ,p, while the initial data is in
X1− 1+κ

p ,p. This indicates an immediate improvement in the regularity of the
solution, as the inclusion X1− 1

p ,p ⊆ X1− 1+κ
p ,p is strict in the case A is an
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Figure 1. Diagram describing our results. The grey boxes
represent the assumptions, while the other boxes indicate the
outputs of our framework. The arrows show the flow of impli-
cations in which one proves the corresponding result. The
three central boxes correspond to Theorem 1.1, while the two
on the right correspond to Corollaries 5.10 and 5.11 presented
later in the manuscript

unbounded operator (e.g. a differential operator). The instantaneous regular-
ization result in (3) extends this further, including the important case where
κ = 0. Its proof relies on the above observation of the instantaneous regular-
ization when a non-trivial time weight is present. A detailed proof is provided
in Subsection 5.3. Finally, (2) gives several criteria for the explosion of solu-
tions to (1.1), which can be used to establish the global well-posedness of (1.1)
whenever (sufficiently strong) a priori estimates for its solution are available.
Let us point out that the first criterion in (2) is new. It is important to observe
that by choosing κ as large as possible, the conditions in (2) become easier to
check. For a detailed discussion, the reader is referred to Subsection 5.1.

Applications of our framework to SPDEs As discussed below (1.1), the frame-
work developed in [11,12] has been successfully applied to various concrete
SPDEs. Some applications were presented in [11, Sections 5-7] and [12, Section
7]. Below, we provide additional references to the places where our framework
has been applied, though it is worth noting that further applications to SPDEs
are still being prepared. A list of open problems is presented at the end of the
manuscript.

For reaction-diffusion equations (e.g. Allen–Cahn, Lotka–Volterra, and
Gray-Scott equations), local and global well-posedness results can be found
in [13,14]. Regarding stochastic fluid dynamic models, [16] proves the well-
posedness and sharp blow-up criteria of Navier–Stokes equations arising in
the study of turbulence. For the 3D stochastic primitive equations, commonly
used in atmospheric and oceanic dynamics, global well-posedness under vari-
ous assumptions is established in [1,5,6]. In [9], we enhanced the variational
setting and subsequently applied it to models such as the Cahn–Hilliard equa-
tion, tamed 3D Navier–Stokes equations, and more. This approach was further
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extended to the Lévy setting with more flexibility in the conditions on F in
[27]. The results from [9] were employed in [33] to study the stability of travel-
ling waves in reaction-diffusion equations. Our results have also been applied
to the thin-film equation, which is a quasilinear model (see [8]).

Typical improvements in our results include: the ability to handle rough
initial data, the derivation of optimal blow-up criteria for solutions, the han-
dling of rougher noise (e.g. rough Kraichnan noise), the inclusion of superlinear
diffusion, and the provision of instantaneous high-order regularity. It is impor-
tant to note that in the context of stochastic reaction-diffusion equations and
fluid dynamics, the roughness of the noise has significant physical relevance,
while the sharpness of the blow-up criteria is often essential for proving global
well-posedness. Finally, it is worth mentioning that our framework has proven
useful in the context of regularization by noise, where stochastic perturbations
improve the global well-posedness theory, as demonstrated in [2,3].

As Theorem 1.1 and Figure 1 show, there are two essential ingredients for
applying our results: maximal regularity estimates for (A,B) and the nonlin-
ear estimate (1.2) for (F,G). Typically, (1.2) is a relatively easy consequence
of Sobolev embedding and Hölder’s inequality. In contrast, the maximal reg-
ularity assumption on (A,B) is more technical. However, there is now a well-
established body of literature on maximal regularity, with corresponding esti-
mates available for a broad range of situations, particularly when B = 0. For
further details, the reader is referred to Section 3. Some open problems on
maximal regularity are also discussed at the end of this survey.

Finally, we mention that the diagram in Figure 1 can be further extended.
Indeed, if one has sufficiently strong energy bounds for the solution that can
be connected to the blow-up criteria, then global existence and uniqueness can
also be established. This will be demonstrated in several concrete examples
throughout the manuscript.

1.2. Scaling and criticality for stochastic Navier–Stokes equations

We now return to the concept of criticality in the PDE sense and try to
connect it to the abstract setting outlined in the previous subsection in the
special case of the Navier–Stokes equations with transport noise, which arise in
the study of turbulent flows [39,82,102,157,199]. In this discussion, we partly
follow the approach outlined in [16, Subsection 1.1]. The scaling arguments
presented here can also be applied to other SPDEs such as stochastic reaction-
diffusion equations, as discussed in Subsection 4.3.1.

Consider the following Navier–Stokes equations with transport noise on
R

d for the unknown velocity field u and pressures P and P̃n,

du = [Δu − ∇P + (u · ∇)u] dt +
∑

n≥1

[
(bn · ∇)u − ∇P̃n

]
dWn

t ,

∇ · u = 0. (1.5)

Here, (Wn)n≥1 is a family of standard independent Brownian motions and
(bn)n≥1 ∈ �2(N≥1; Rd). As is well-known, the pressures P and P̃n are uniquely
determined by u through the divergence-free conditions, so we focus on the
velocity field u in the following analysis. It is important to note that the above
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model is a simplified version of the physically relevant Navier–Stokes equations
with transport noise, where the noise coefficients (bn)n≥1 in (1.5), are typically
x-dependent. We will come back to this point below.

Next, we discuss the invariance of (local smooth) solutions to stochastic
Navier-Stokes equations (1.5) under the map u 
→ uλ, where λ > 0 and

uλ(t, x) := λ1/2u(λt, λ1/2x), (t, x) ∈ R+ × R
d. (1.6)

In the deterministic setting (e.g. bn ≡ 0), the invariance of Navier-Stokes
equations under the above mapping is well known. In the PDE literature (see
e.g. [50,182,223,247]), Banach spaces of functions (locally) invariant under the
induced map on the initial data, i.e.

u0 
→ u0,λ, where u0,λ := λ1/2u0(λ1/2·),
are referred to as critical for (1.5). Examples of such critical spaces include
the Besov space Ḃ

d/q−1
q,p (Rd; Rd) for 1 < q, p < ∞ and the Lebesgue space

Ld(Rd; Rd). Indeed, these spaces satisfy the scaling

‖u0,λ‖
Ḃ

d/q−1
q,p (Rd;Rd)

� ‖u0‖Ḃ
d/q−1
q,p (Rd;Rd)

, ‖u0,λ‖Ld(Rd;Rd) � ‖u0‖Ld(Rd;Rd),

where the implicit constants do not depend on λ > 0.
For the stochastic Navier–Stokes equations (1.5), similar behaviour

appears. More precisely, one can verify that if u is a (local smooth) solution to
(1.5) on R

d, then uλ is a (local smooth) solution to (1.5) on R
d, where the noise

(Wn)n≥1 is replaced by the scaled noise (βn
·,λ)n≥1, defined by βn

t,λ := λ−1/2Wn
λt

for t ≥ 0 and n ≥ 1. Indeed, βn
t,λ are independent standard Brownian motions

again, and for all n ≥ 1, we have∫ t/λ

0
(bn · ∇)uλ(s, x) dβn

s,λ = λ
∫ t/λ

0
(bn · ∇)u(λs, λ1/2x) dβn

s,λ

= λ1/2
∫ t

0
(bn · ∇)u(s, λ1/2x) dWn

s , (1.7)

which matches the scaling of the deterministic nonlinearity:∫ t/λ

0

(
uλ(s, x) · ∇)

uλ(s, x) ds = λ1/2
∫ t

0

(
u(s, λ1/2x) · ∇)

u
(
s, λ1/2x) ds.

A similar scaling argument also applies to the other deterministic integrals.
Note that the above argument can also be applied in the important case

where the bn are x-dependent. Indeed, if (1.5) holds only on a ball Br(x0),
one can replace the rescaling in (1.6) by uλ(t, x) = λ1/2u(λt, x0 +λ1/2x) which
results in a solution on Br/λ1/2(0) of the Navier–Stokes equations. If we now
let λ → ∞ and we assume that bn(x) ≈ bn(x0) if x ≈ x0 (which is the case
for Kraichnan noise, see e.g. [1, Proposition 2.1]), then the scaling argument
above can be applied analogously. Similar results hold if R

d is replaced by
other domains.

In this survey, results on the Navier–Stokes equations with transport
noise can be found in Subsections 7.3.4 and 8.4 for the two-dimensional and
three-dimensional cases, respectively. A partial discussion of the results proven
in [16] in the case of periodic boundary conditions, is provided below Theorem
8.26. At this point, the reader may find it unclear how our framework captures
the scaling invariance mentioned earlier. However, the key idea is that the
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assumptions in our main results, - specifically, the maximal regularity of (A,B)
and the mapping properties of (F,G) - preserve the scaling (see Figure 1),
and our framework preserves this property. Further details are provided in
Subsection 8.4.

Finally, it is worth mentioning that the 1/2-scaling loss in the noise (see
(1.7)), is responsible for the 1/2-loss of smoothness in the maximal regularity
for SPDEs, which will be discussed in Subsection 3. This also motivates the
appearance of X1/2 for the B- and G-parts, see Subsection 3.2 and (1.2).

1.3. Previous work on nonlinear equations through maximal
Lp -regularity

This subsection provides an overview of the literature on nonlinear evo-
lution equations using the maximal Lp-regularity approach. While we cannot
give a comprehensive review here, we focus on works that are directly related
to this framework for nonlinear evolution equations. Additional references for
specific SPDEs discussed earlier will be found in the main body of the survey.

1.3.1. Deterministic evolution equations. The well-posedness theory for quasi-
linear evolution equations has been an active area of research for several
decades. The terminology surrounding the concepts of “semi”, “quasi”, and
“fully” nonlinear equations varies across different research communities. In
the discussion, we follow the terminology used in the standard references for
deterministic evolution equations and PDEs [19,103,127,158,179,190,219].

Initially, quasilinear evolution equations were studied using the theory
of evolution systems for non-autonomous settings (see e.g. [18,73,74,234]).
Inspired by [71], a more direct approach utilizing linearization techniques was
introduced in [64], and is based on maximal Lp-regularity (see also [216] for
an overview on these topics). By this time maximal Lp-regularity for evolution
equations was already known in various contexts [73,88,180,221].

A significant observation made in [218] was that maximal Lp-regularity
could also be considered with power weights tκ dt with κ ∈ [0, p − 1). This
insight led to several variants of the theory. In [156] it was used to broaden the
class of admissible initial values and derive weaker abstract blow-up criteria
for global well-posedness. Building on this, [181] introduced the more flexible
condition (1.2) for the deterministic nonlinearity F . However, this came with
the restriction that the condition (1.4) holds with strict inequality, thus leading
to a subcritical setting. Shortly thereafter, in [222], it was recognized that
equality in (1.4) could be allowed, thereby extending the framework to include
the critical setting.

Applications to Navier–Stokes equations with Navier boundary condi-
tions were presented in [223]. Further results and applications can be found
in [220], where critical spaces have been identified for various concrete equa-
tions. Recently, in [193], further progress has been made in a slightly different
direction, and, in particular, no maximal regularity assumptions are needed
there.

For a comprehensive overview of these topics, the reader is referred to
the monographs [219] and [135], as well as the survey [255]. Notably, in [135,
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Chapters 17 and 18], the additional conditions on A (BIP) and X0 (UMD)
that appeared in earlier works [220,222,255] have been removed. The revised
approach now relies solely on criticality and maximal Lp-regularity of the linear
mapping v 
→ A(u0)v, where u0 is the initial value.

1.3.2. Stochastic evolution equations. The paper [205] and its extension to
nonzero B in [215] have played a central role in finding the right definition of
stochastic maximal Lp-regularity, a cornerstone assumption in Theorem 1.1.
Both papers provide general classes of operators that satisfy stochastic max-
imal Lp-regularity. Early contributions such as [204] for semilinear equations
and [132] for quasilinear equations, played a vital role in shaping the formula-
tion of Theorem 1.1. However, at the time these papers were written, several
key aspects of the (deterministic) theory were not yet developed. Notably,
criticality had not yet been formulated in an abstract framework, the oper-
ator B was restricted to be zero or small, and no weighted theory had been
established. Ultimately, the advancements in deterministic results discussed
in Subsection 1.3.1 were indispensable for the discovery and formulation of a
critical stochastic framework. Without these developments, the progression to
the current state of the theory would not have been possible.

1.4. Other approaches to well-posedness for nonlinear SPDE

There exist many different approaches and viewpoints on SPDEs. There-
fore, we cannot provide a complete overview here. However, we will at least
present a selection of approaches and viewpoints. Where applicable, we connect
these to our framework and highlight key differences.

1.4.1. The semigroup approach to nonlinear stochastic evolution equations.
For a collection of references on this approach, the reader is referred to the
monograph [76]. Many papers in this approach focus on stochastic evolution
equations in Hilbert spaces. While this framework is sufficient for many appli-
cations, it introduces limitations in the case of higher dimensions or rapidly
growing nonlinearities. For example in the case of cubic nonlinearities in dimen-
sion three, an L2-setting often becomes inadequate. The paper [38] extends the
semigroup approach to Lq-spaces or Sobolev spaces with q ∈ [2,∞), thereby
enabling far-reaching applications to nonlinear SPDEs.

1.4.2. Weak solutions in probabilistic sense. A powerful method for establish-
ing the existence of solutions to SPDEs is the use of compactness techniques.
In the deterministic setting, these methods are well-established and include
the Schauder and Schaefer fixed point theorems (see [95]). However, these
results do not guarantee uniqueness. In the stochastic setting, compactness-
based methods can be adapted to prove the existence of weak solutions. Com-
pactness arguments imply tightness of the laws of approximate solutions, and
Skorokhod’s theorem is then used to construct a new probability space where
a solution exists. For more details, see the monograph [34].

Usually, compactness is created through Sobolev embedding and para-
bolic regularization theory. Besides the examples in the above monograph,
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some far-reaching examples can be found in [81,225]. In [29], it is shown that
in the variational framework, some compactness comes for free.

Ensuring strong existence (solutions on the original probability space) is
often challenging. In certain cases, this can be achieved through uniqueness
results using Yamada-Watanabe-type theorems in infinite-dimensional settings
(see [178,210,224,243]).

1.4.3. Random field approach. The random field approach, originating from
[251], enables pointwise arguments and the use of scalar-valued stochastic cal-
culus. As discussed in [78], this method is ultimately equivalent to the semi-
group approach. Combining insights from both approaches often provides the
best results.

1.4.4. Rough path approach to PDEs. Brownian motion can be viewed as a
special case of rough paths, allowing certain SPDEs to be solved pathwise. This
approach was first introduced in the context of ODEs by [191], and a detailed
overview is provided in the lecture notes [104]. These notes also explore rough
PDEs and provide references on this rapidly developing field.

Unlike traditional SPDE frameworks, the rough path approach does not
require a semimartingale structure, making it applicable to a broader class of
driving processes, such as fractional Brownian motion. A key advantage of this
pathwise viewpoint is its ability to handle SPDEs that are classically ill-posed
[122]. In some cases, renormalization is required to give a rigorous meaning to
the equation [123–125].

Recent advancements have shown that even supercritical SPDEs can be
included through suitable approximation methods (see [47,48] and the lecture
notes [49]). Another significant benefit of the rough path approach, even in
ODE settings, is its direct construction of random dynamical systems for the
nonlinear solution operator. For infinite-dimensional settings, see [128–131],
and for applications in stability theory, refer to [174].

While the rough path framework shares some connections with parabolic
regularity theory, it primarily relies on Schauder estimates in space-time Hölder
spaces. Since Brownian motion paths belong to C1/2−ε for any ε > 0, there
is often a loss in regularity. This can present challenges in obtaining classical
solutions, especially in the critical settings considered in our framework.

1.5. Overview of the results in the survey

Our goal in this survey is to present the key ideas of our work within a sim-
pler framework that remains sufficiently general to cover a wide range of appli-
cations. We hope these results will serve as a valuable resource for researchers
working on SPDEs. We acknowledge that extracting the main insights from
our earlier works can be challenging, as those papers were presented in their
most general forms. Below, we outline the primary contributions of this survey
and what readers can expect.
Stochastic maximal regularity. In Section 3, we provide an overview of maximal
Lp-regularity both in the deterministic and stochastic setting. In Proposition
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3.11, we show that for linear equations, only the path properties of inhomo-
geneities influence the regularity. Furthermore, in Theorem 3.13 it is proved
that in the Hilbert space setting (A, 0) always exhibits stochastic maximal
Lp-regularity. This result generalizes the p = 2 case of [70] (see also [76, The-
orem 6.12(2)]), and builds on the deterministic case due to [80] (see also [135,
Corollary 17.3.8]).
Local well-posedness, blow-up criteria, and regularity. In Sections 4 and 5, we
present a slightly more general version of Theorem 1.1. We relax the condi-
tions on F and G in (1.2) by replacing the spaces Xβ by Xβ,1. Moreover,
Theorem 5.1(1) introduces a new blow-up criterion. In Subsection 5.3, we pro-
vide self-contained proofs of three parabolic regularization theorems in the
time variable. Applying these regularization theorems typically removes the
critical nature of the problem, paving the way for the application of classical
bootstrap methods. When combined with stochastic maximal Lp-regularity,
this approach facilitates enhanced spatial integrability and regularity.
Critical variational setting and its applications. Sections 6 and 7 focus on
the variational setting with p = 2 and are based on the results from [9].
We include additional results on higher-order smoothness and moments. Sec-
tion 7.3 demonstrates that a broad class of fluid dynamical models fits within
this framework, with detailed applications to two-dimensional Navier–Stokes,
Boussinesq, and quasi-geostrophic equations.
SPDEs in the Lp(Lq)-setting with either p > 2 or q > 2. Subsection 8.1 pro-
vides a self-contained analysis of the Allen–Cahn equation on domains O ⊆ R

3.
We explain why the Lp(Lq)-framework is necessary, and demonstrate how our
abstract results yield global existence and uniqueness. This example serves as
a blueprint for applying our techniques to other problems.

In Subsection 8.2, we summarize several results on reaction-diffusion
equations with transport noise and periodic boundary conditions. Moreover,
we include applications to both coercive systems and non-coercive systems. In
particular, we explain in detail the global well-posedness of the Lotka–Volterra
model, which is non-coercive.

In Subsection 8.3, we consider the so-called quasi-geostrophic equation
used in fluid dynamics. Here we partly demonstrate the power of our set-
ting. We identify the critical spaces and combine temporal regularization and
classical bootstrap techniques to obtain higher-order smoothness and integra-
bility. While the results here may be new, our primary aim is to demonstrate
the practical implementation of our techniques in a relatively straightforward
context.

Finally, Subsection 8.4 discusses local well-posedness and regularity
results for the stochastic Navier–Stokes equations with transport noise on R

d.
Moreover, for d = 2, we connect these local results to the global ones already
obtained in Subsection 7.3.4.

1.6. Notation

Below we collect some of the notation which often appears in the paper.
wa

κ(t) = (t − a)κ, and wκ(t) = tκ, weights, see Subsection 2.3.
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X0, X1 Banach spaces such that X1 ↪→ X0 densely and continuously.
Xθ,p = (X0,X1)θ,p real interpolation, Xθ = [X0,X1] complex interpola-

tion, see Subsection 2.2.
Lp

loc(O): all f : O → R such that for all compact subsets K ⊆ O, f |K ∈
Lp(K). The same notation will be used for other (weighted) function spaces.

Hs,q Bessel potential, Bs
q,p Besov, and W k,p Sobolev spaces, see Subsec-

tions 2.3 and A.1.
DB, DH, DW , see Example A.4.
W k,p

0 (O) closure of C∞
c (O) in W k,p(O).

0W
1,p, 0H

θ,p see Subsection 2.3.
C(O) continuous functions, Cs(O) Hölder continuous functions.
Cb(O), Cs

b (O): their subspaces of bounded functions.
Cθ1,θ2(I × O) = Cθ1(I;C(O)) ∩ C(I;Cθ2(O)) parabolic Hölder spaces.

f ∈ Cθ1,θ2
loc (I ×O) if f |J×K ∈ Cθ1,θ2(J ×K) for all compact subsets J ⊆ I and

K ⊆ O.
γ(U ,X) γ-radonifying operators, L2(U ,K) Hilbert-Schmidt operators,

see Subsection 2.5.
L0(S;X) strongly measurable functions on a measure space (S,A, μ).
W cylindrical Brownian motion on U , see Subsection 2.6.
U real separable Hilbert space.
(V,H, V ∗) Gelfand triple of Hilbert spaces, see Subsection 6.1.
(·, ·) inner product; 〈·, ·〉 duality.
(Ω,A,P) probability spaces, E expectation, Ft filtration, P progressive

σ-algebra.
A ∈ L (X1,X0), B ∈ L (X1,L2(U ,X1/2)) leading operators in deter-

ministic and stochastic part, see Subsections 3.2 and 4.1.
F deterministic nonlinearity, G stochastic nonlinearity, see Subsection

4.1.
p integrability in time, q integrability in space.
βj smoothness parameter, ρj power in nonlinearity, see Subsection 4.1.
P , Pn pressure term in fluid dynamics, P Helmholtz projection.
B, H, L: divergence free subspaces, see Subsections 7.3.3 and 8.4.

2. Preliminaries

2.1. The H∞-calculus for sectorial operators

The H∞-calculus is a powerful modern tool for analyzing evolution equa-
tions. Monographs on the H∞-calculus include [121,134,135,176]. After a very
brief introduction, we briefly mention the main concepts.

A well-known functional calculus is the one established for self-adjoint
operators (or normal operators) in Hilbert spaces. However, many differential
operators with nonconstant coefficients are not self-adjoint or normal. Further-
more, in a Banach space, the concepts of self-adjointness and normality are
not defined. This has led to the development of other calculi over the past cen-
tury. Motivated by an open problem of Kato, the H∞-calculus was introduced
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in [194]. Key results from this work were extended to Banach spaces in the
influential paper [68].

Let A : D(A) ⊆ X → X be a closed operator on a Banach space X. An
operator A is called sectorial if the domain and the range of A are dense in
X and there exists φ ∈ (0, π) such that σ(A) ⊆ Σφ, where Σφ := {z ∈ C :
| arg z| < φ}, and there exists C > 0 such that

|λ|‖(λ − A)−1‖L (X) ≤ C, ∀λ ∈ C \ Σφ. (2.1)

The quantity ω(A) := inf{φ ∈ (0, π) : (2.1) holds for some C > 0} is called
the angle of sectoriality of A.

For φ ∈ (0, π), the space H∞
0 (Σφ) consists of all holomorphic functions

f : Σφ → C such that |f(z)| � min{|z|ε, |z|−ε} for some ε > 0. For φ > ω(A)
and f ∈ H∞

0 (Σφ), we define f(A) ∈ L (X) through a contour integral over
Γ := ∂Σψ, where ψ ∈ (ω(A), φ):

f(A) := 1
2πi

∫
Γ

f(z)(z − A)−1 dz.

The operator A is said to have a bounded H∞(Σφ)-calculus if there exists
C > 0 such that

‖f(A)‖L (X) ≤ C‖f‖H∞(Σφ), ∀f ∈ H∞
0 (Σφ), (2.2)

where ‖f‖H∞(Σφ) := supz∈Σφ
|f(z)|. The angle of the H∞-calculus of A is

defined as

ωH∞(A) := inf{φ ∈ (0, π) : (2.2) holds for some C > 0}.

Without imposing conditions beyond sectoriality, it is possible to con-
struct an extended calculus that incorporates additional operators such as Az

for z ∈ C (see [121,135]). If an operator A admits a bounded H∞-calculus
with angle φ ∈ (0, π), then Ait ∈ L (X) for t ∈ R. Operators A satisfying this
property are said to have bounded imaginary powers (BIP). On Hilbert spaces,
the converse holds as well.

The H∞-calculus is a powerful abstract tool in the study of evolution
equations, including applications to (stochastic) PDEs. Knowing that an oper-
ator A has a bounded H∞-calculus, ensures the boundedness of many singular
integral operators.

In particular, many sectorial operators A encountered in applications and
studied on Lq(O) possess a bounded H∞-calculus (or at least λ + A does for
sufficiently large λ). Examples include uniformly elliptic operators with Dirich-
let or Neumann boundary conditions, or more generally Lopatinskii-Shapiro
boundary conditions, as well as the Stokes operator. Typically, one only needs
some regularity properties of the underlying domain O and (Hölder)-regularity
of the coefficients. For further examples and detailed references, see the notes
of [134, Chapter 10].

2.2. Complex and real interpolation

In the theory of evolution equations, both the complex and real interpo-
lation methods play a significant role. For a comprehensive treatment of gen-
eral interpolation theory, the reader is referred to the monographs [30,246].
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A concise introduction to complex and real interpolation can be found in
[133, Appendix C]. Additionally, [184] offers a novel perspective on interpola-
tion theory, unifying many classical and non-classical methods under a single
framework. Interestingly, the terms “complex” and “real” in these methods
are largely historical and bear little connection to the respective scalar fields.

A pair of Banach spaces (X0,X1) is called a Banach couple if both X0

and X1 embed continuously into a Hausdorff topological vector space H. This
set-up allows one to define the intersection X0 ∩ X1 and sum X0 + X1, both
of which are Banach spaces as well.

The space H is always kept fixed, and all of the definitions (intersection,
sum, interpolation, etc.) depend on it. In many situations, there is a rather
natural choice of H. For our purposes, one can take it to be the space of
measurable functions or the space of distributions, possibly vector-valued.

2.2.1. Complex interpolation. The complex interpolation method, introduced
by Calderón [46], relies on the theory of holomorphic functions on strips taking
values in X0+X1 (see [184] for an alternative definition). The resulting complex
interpolation space is denoted by [X0,X1]θ with θ ∈ [0, 1]. Here, [X0,X1]0 =
X0 and [X0,X1]1 = X1. For simplicity, we use the shorthand notation Xθ :=
[X0,X1]θ. It is important to note that [X0,X1]θ = [X1,X0]1−θ.

The complex interpolation spaces are crucial in evolution equations and
PDEs for several reasons (see [237,240,241,256]). One application is that
fractional Sobolev spaces, also known as Bessel potential spaces (see (2.6)),
can equivalently be defined by complex interpolation. More generally, if A
has (BIP), domains of fractional powers of sectorial operators can be iden-
tified with complex interpolation spaces in the following way. Suppose that
A ∈ L (X1,X0) is sectorial on X0, and X1 = D(A). Then for α > 0 and
θ ∈ (0, 1),

D(Aαθ) = [X0,D(Aα)]θ

if I+A has BIP (see [121, Theorem 6.6.9], [135, Theorem 15.3.9], [246, 1.15.3]).
This result holds particularly if A has a bounded H∞-calculus. It is well-known
that on Hilbert spaces the above identification of the domains of fractional
powers is equivalent to the boundedness of the H∞-calculus, and to BIP (see
[121, Theorem 7.3.1]).

2.2.2. Real interpolation. Real interpolation was introduced by both Lions
and Peetre in a series of papers predating the discovery of the complex
interpolation method. The primary motivation arose from its applications to
PDEs. For historical insights, see [30,246], and for PDE applications, consult
[73,74,190]. Real interpolation can be introduced in various equivalent ways,
many of which are unified under the framework in [184].

The real interpolation space is denoted as (X0,X1)θ,p for θ ∈ (0, 1) and
p ∈ [1,∞], or simply as Xθ,p. The space Xθ,p becomes larger as p increases.
For many choices of a space E, the following embedding holds:

Xθ,1 ↪→ E ↪→ Xθ,∞. (2.3)
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This applies, for instance, to E = Xθ,p and E = Xθ. It also applies if X1 =
D(A) and E = D(Aθ) (see [246, Sections 1.3.3, 1.10 and 1.15.2]). Furthermore,
if (X0,X1) are Hilbert spaces, then (see [133, Corollary C.4.2])

Xθ,2 = Xθ. (2.4)

One key application of real interpolation is in describing the regularity of
orbits of analytic semigroups (see [190, Section 2.2.1] or [135, Theorem L.2.4]):
for p ∈ (1,∞) and κ ∈ [0, p − 1), one has t 
→ tκ/pAe−tAx ∈ Lp(0, T ;X) if and
only if x ∈ (X,D(A))1− 1+κ

p ,p. Moreover, the following norm equivalence holds:

‖x‖X + ‖t 
→ tκ/pAe−tAx‖Lp(0,T ;X) � ‖x‖(X,D(A))
1− 1+κ

p
,p

. (2.5)

2.3. Function spaces and interpolation

In stochastic evolution equations, fractional smoothness in both space and
time is often required. While Hölder smoothness is very useful, working with
optimal Lp-estimates necessitates Lp-variants of Hölder smoothness. A suitable
class of function spaces for this purpose is the Bessel potential spaces, denoted
by Hs,p(0, T ;X). These spaces are vector-valued, reflecting the fact that, in
the evolution equation approach to PDEs, the spatial variable is represented
by the function space X. For a comprehensive discussion of these spaces and
their connections to evolution equations, we refer the reader to the monographs
[19,20,133,135,219].

To handle rough initial data and obtain regularization results, weighted
versions of the Bessel potential spaces are required. The standard class of
weights for defining such spaces is the Muckenhoupt Ap-class for p ∈ (1,∞)
(see [134, Appendix J.2] and [117, Chapter 7]). In our work, we specifically
consider power weights of the form wa

κ(t) = (t − a)κ for a ∈ R and κ ∈ R. It is
known that wa

κ ∈ Ap if and only if κ ∈ (−1, p − 1). In the stochastic setting,
Lp-theory often necessitates working with the more restrictive Ap/2-weights
due to the roughness of Brownian paths. However, since power weights wa

κ are
primarily used in evolution equations to temper the roughness of initial data,
we only need κ ≥ 0. Consequently, the relevant range of κ in this manuscript
is [0, p/2 − 1) ∪ {0}.

Let I ⊆ R be an open interval. For a measurable function w : I → [0,∞)
and strongly measurable function v, let

‖v‖Lp(I,w;X) :=
( ∫

I
‖v(t)‖pw(t) dt

)1/p
.

For w ∈ Ap one has that Lp(I, w;X) ⊆ L1
loc(I;X), meaning every u ∈

Lp(I, w;X) is integrable on compact subsets of I. Similarly, for p ∈ (2,∞)
and w ∈ Ap/2, Lp(I, w;X) ⊆ L2

loc(I;X). If w = 1, we simply write Lp(I;X).
The Bessel potential spaces are introduced through complex interpolation

as in [195] and [219, Section 3.4.5]. It is possible to give an equivalent definition
through fractional powers and restrictions under the additional assumptions
that X is UMD (see Subsection 2.4 for the definition).

To give the definition through complex interpolation let −∞ ≤ a < b ≤
∞, I = (a, b), p ∈ (1,∞), w ∈ Ap, and θ ∈ (0, 1). Define the vector-valued
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Bessel potential spaces by

Hθ,p(I, w;X) := [Lp(I, w;X),W 1,p(I, w;X)]θ, (2.6)

where W 1,p(I, w;X) is the Sobolev space of functions which satisfy u, u′ ∈
Lp(I, w;X). If w = 1, we omit it from the notation. If there exist constants
c, C > 0 such that c ≤ w(t) ≤ C for all t ∈ I, the weighted space Hθ,p(I, w;X)
and the unweighted space Hθ,p(I;X) are isomorphic.

In [11,12] the spaces 0H
θ,p(I, w;X) are extensively used to obtain esti-

mates with constants independent of the interval I. These spaces will also be
used at various points in the current manuscript. They are defined analogously
to Hθ,p but with W 1,p replaced by 0W

1,p = {u ∈ W 1,p : u(0) = 0}. For details,
we refer to the aforementioned references.

We will frequently rely on the following embedding results in which time
and space are mixed.

Proposition 2.1. (Trace embedding with fractional smoothness) Assume that
p ∈ (1,∞), κ ∈ [0, p − 1), θ ∈ (0, 1] and let 0 ≤ a < b < ∞. Let X0,X1 be
Banach spaces such that X1 ↪→ X0. Then the following hold:

(1) If θ > (1 + κ)/p, then

Hθ,p(a, b, wa
κ;X1−θ) ∩ Lp(a, b, wa

κ;X1) ↪→ C([a, b];X1− 1+κ
p ,p);

(2) If θ > 1/p, then

Hθ,p(a, b, wa
κ;X1−θ) ∩ Lp(a, b, wa

κ;X1) ⊆ Hθ,p
loc ((a, b];X1−θ) ∩ Lp

loc((a, b];X1)

⊆ C((a, b];X1− 1
p ,p).

The above result follows from [10,196] provided X1 = D(A) and A is
a sectorial operator on X0. The more general case follows from [7, Theorem
1.2]. The result is optimal in the sense that in many cases, there exists a
right-inverse for the trace map

Tr : Hθ,p(a, b, wa
κ;X1−θ) ∩ Lp(a, b, wa

κ;X1) → X1− 1+κ
p ,p

defined by Tru = u(a). Related results can be found in the recent work [59].
We will also need several other classes of function spaces on domains

O ⊆ R
d which could be either R

d, the flat torus T
d, a Lipschitz domain,

or smoother domains. In some cases, no assumptions on O beyond openness
will be required. We need the Bessel potential spaces Hs,q(O) which form a
complex interpolation scale in the sense that

Hs,q(O) = [Hs0,q(O),Hs1,q(O)]θ,

where s0, s1 ∈ R, s = (1 − θ)s0 + θs1 and q ∈ (1,∞). For the Fourier analytic
definition of the Bessel potential spaces Hs,q(Rd), see [245]. On domains O as
above, Hs,q(O) is defined by restriction. For s ∈ N0 and q ∈ (1,∞), Hs,q(O)
coincides with the classical Sobolev space W s,q(O).

To describe the space of initial data, we will often employ Besov spaces
Bs

q,p(O) for s ∈ R and q, p ∈ [1,∞]. These spaces can also be defined Fourier
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analytically on R
d and by restriction for O ⊆ R

d. For θ ∈ (0, 1) it holds that

Bs
q,p(O) = (Hs0,q(O),Hs1,q(O))θ,p

where s0, s1 ∈ R, s = (1 − θ)s0 + θs1, q ∈ (1,∞) and p ∈ [1,∞]. By (2.5)
and Proposition 2.1, this explains the necessity of Besov spaces. Note that
Bs

2,2(O) = Hs,2(O), which is often denoted by Hs(O).
We will make extensive use of Sobolev embedding results:

Hs0,q0(O) ↪→ Hs1,q1(O) for q0, q1 ∈ (1,∞),

and Bs0
q0,p(O) ↪→ Bs1

q1,p(O) for p, q0, q1 ∈ [1,∞],

which hold under the condition s0− d
q0

≥ s1− d
q1

and q0 ≤ q1. No conditions on
O are needed here since the spaces are defined by restriction from the R

d-case.
Similarly,

Hs0,q0(O) ↪→ Cs1
b (O) for q0 ∈ (1,∞),

and Bs0
q0,p(O) ↪→ Cs1

b (O) for p, q0 ∈ [1,∞],

if s0 − d
q0

≥ s1 and s1 ∈ (0,∞) \ N. Here, Cs
b (O) denotes the space of bounded

�s�-times continuously differentiable functions with all derivatives bounded
and (s − �s�)-Hölder continuous.

All the results extend naturally to the X-valued setting. To prove the
equivalence of the definitions through Fourier analysis and complex interpo-
lation, X must be a UMD space (see [11, Proposition 2.7] for details and
references), as discussed in the next subsection.

2.4. UMD spaces

For an introduction to UMD spaces and their historical development, the
reader is referred to [133, Chapter 4] and [214]. The abbreviation UMD stands
for unconditional martingale differences and describes a condition on a Banach
space X. UMD spaces have nontrivial types and cotypes and are reflexive.
Conversely, many classical reflexive spaces have UMD. Examples include Lp,
Sobolev space W s,p, Besov spaces Bs

p,q etc. for p, q ∈ (1,∞) and s ∈ R.
Although UMD is a probabilistic notion, it admits geometric and analyt-

ical characterizations (see [44] and [133, Chapter 5]). In particular, if X has
UMD, then many results from harmonic analysis extend to the vector-valued
setting. For instance, the boundedness of the Hilbert transform, Mikhlin multi-
plier theorem, and Littlewood-Paley theorem hold in this context. Conversely,
the boundedness of the Hilbert transform on Lp(R;X) already implies that X
is UMD.

The theory of Fourier multipliers plays a central role in function space
theory, making UMD a frequently encountered condition in the study of vector-
valued function spaces. This is one reason why UMD spaces are important for
our analysis. Another reason is that if X has UMD, there exist two-sided
estimates for stochastic integrals in terms of γ-radonifying operators. These
estimates are instrumental in obtaining sharp regularity bounds for solutions
to SPDEs. Before going into detail on stochastic integration in Subsection 2.6,
we first discuss this special class of operators.
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2.5. The space γ(U , X)
In the theory of stochastic evolution equations, it is often necessary to

consider noise that takes values in an infinite-dimensional Hilbert space. An
example of such a noise is space-time white noise. However, in many models,
the noise has to be coloured to get the well-posedness of the equation in a
classical sense.

The space on which the noise is modelled is the Hilbert space U , which
is often taken to be �2. The space X (or later X0) represents the space in
which the evolution equation is analyzed. If X is a Hilbert space, one typi-
cally assumes processes take values in the space of Hilbert-Schmidt operators
L2(U ,X) (see [133, Appendix D]). In the Banach space setting, a different
space of operators is required. This is the space of γ-radonifying operators,
denoted by γ(U ,X). For a detailed discussion and an extensive historical
overview of this concept, the reader is referred to [134, Chapter 9]. Below,
we summarize the aspects of the theory that will be relevant for our purposes.

Let (γi)i≥1 be a sequence of independent standard normal random vari-
ables on a probability space (Ω,P) and (ui)i≥1 an orthonormal basis for U .
A bounded linear operator R : U → X belongs to γ(U ,X) if

∑∞
i=1 γiRui

converges in L2(Ω;X). In this case, the γ-radonifying norm of R is defined as

‖R‖γ(U,X) :=
∥∥∥∑∞

i=1 γiRui

∥∥∥
L2(Ω;X)

.

The space γ(U ,X) is an operator ideal. If X is a Hilbert space, then γ(U ,X)
coincides with the space of Hilbert-Schmidt operators L2(U ,X) (see [134,
Proposition 9.1.9]).

If X = Lq(S) with q ∈ [1,∞), where (S,Σ, μ) is a measure space, then
γ(U ,X) = Lq(S;U) (see [134, Proposition 9.3.2]). Similarly, if X = Hs,q(O)
for s ∈ R and q ∈ (1,∞), then γ(U ,X) = Hs,q(O;U).

2.6. Stochastic integration

Let (Ω,A,P) denote a probability space with filtration F = (Ft)t≥0. A
process φ : [0, T ] × Ω → X is called strongly progressively measurable if for
all t ∈ [0, T ], φ|[0,t] is strongly B([0, t]) ⊗ Ft-measurable (where B denotes
the Borel σ-algebra). The σ-algebra generated by the strongly progressively
measurable processes is denoted by P and is a subset of B([0,∞)) ⊗ F∞.

To model the noise, we use a cylindrical Brownian motion, which is an
isonormal Gaussian process on the Hilbert space L2(R+;U) (see [136]).

Definition 2.2. Let U be a Hilbert space. A bounded linear operator WU :
L2(R+;U) → L2(Ω) is said to be a cylindrical Brownian motion in U if the
following are satisfied:

• for all f ∈ L2(R+;U) the random variable WU (f) is centered Gaussian;
• for all t ∈ R+ and f ∈ L2(R+;U) with support in [0, t], WU (f) is Ft-

measurable;
• for all t ∈ R+ and f ∈ L2(R+;U) with support in [t,∞], WU (f) is

independent of Ft;
• for all f1, f2 ∈ L2(R+;U) we have E(WU (f1)WU (f2)) = (f1, f2)L2(R+;U).
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Given WU , the process t 
→ W (t)h := WU (1(0,t]h) is a Brownian motion
for each h ∈ U .

Example 2.3. Let (Wn)n≥1 be independent standard Brownian motions. Then

W
2(f) =
∑
n≥1

∫
R+

〈f, en〉dWn in L2(Ω)

defines a cylindrical Brownian motion in �2, where (en)n≥1 is the standard
basis of �2.

For 0 ≤ a < b ≤ T and A ∈ Fa, the stochastic integral of 1(a,b]×Ah ⊗ x
is defined by∫ T

0
1(a,b]×A(r)h ⊗ xdW (r) := 1A(W (b)h − W (a)h)x ,

and extended to adapted step processes of finite rank by linearity. Here, the
tensor notation h ⊗ x is short-hand notation for the operator from U into X
given by u 
→ (u, h)Ux.

The space Lp
P ((0, T ) × Ω; γ(U ,X)) denotes the progressively measurable

subspace of Lp((0, T ) × Ω; γ(U ,X)). It can be shown that this coincides with
the closure of the adapted step processes of finite rank (see [203, Proposition
2.10]). Moreover, the latter paper provides a characterization of stochastic
integrability along with two-sided Lp-estimates under the assumption that X
is a UMD space. For details the reader is referred to [208, (5.5)]. These sharp
estimates for stochastic integrals play a crucial role in proving the maximal
Lp-regularity result of Theorem 3.14 below.

The following proposition provides a simple sufficient condition for sto-
chastic integrability. For the definition of (Rademacher) type 2, see [134, Chap-
ter 7]. Spaces of type 2 include Lp, W s,p, and Bs

p,q etc. for p, q ∈ [2,∞) and
s ∈ R.

Proposition 2.4. Let T > 0 and let X be a UMD Banach space with type 2.
Then for every p ∈ [0,∞), the mapping G 
→ ∫ ·

0
GdW extends to a contin-

uous linear operator from Lp
P (Ω;L2(0, T ; γ(U ,X))) into Lp(Ω;C([0, T ];X)).

Moreover, for p ∈ (0,∞) there exists a constant Cp,X such that for all
G ∈ Lp

P (Ω;L2(0, T ; γ(U ,X))), the following estimate holds

E sup0≤t≤T

∥∥∥ ∫ t

0
G(s) dW (s)

∥∥∥p

X
≤ Cp

p,XE‖G‖p
L2(0,T ;γ(U,X)).

The above result is also valid for the larger class of martingale type 2
spaces (see the survey [208, Theorem 4.7] and [210]). In [232] it was shown
that the constant Cp,X grows as C

√
p for p → ∞. An alternative proof based

on exponential tail estimates can be found in [69, Theorem 3.1].
It can be shown that if U is separable and (un)n≥1 is an orthonormal

basis for U , then for all p ∈ [0,∞) and G ∈ Lp
P (Ω;L2(0, T ; γ(U ,X))), the

following series representation holds with convergence in Lp(Ω;C([0, T ];X)):∫ ·
0
G(s) dW (s) =

∑
n≥1

∫ ·
0
G(s)un dW (s)un.
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For further details, the reader is referred to the survey [208]. Many standard
properties of the stochastic integral can be found there as well. For Itô’s for-
mula, the reader is directed to [42], which holds even in the UMD setting.
Further extensions of the above stochastic integration theory and alternative
proofs can be found in [257].

It is important to note that some standard results that hold when X is
a Hilbert space do not extend to the setting of Proposition 2.4. In particular,
the martingale representation theorem requires the precise characterizations
provided in [203].

3. Stochastic maximal regularity

Regularity estimates for linear equations play a crucial role in the theory
of nonlinear (S)PDE. In fact, the local well-posedness of nonlinear SPDEs can
often be obtained through linearization procedures.

However, before going into stochastic maximal Lp-regularity, we will first
discuss some basic Lp-theory for elliptic and parabolic partial differential equa-
tions (PDEs). This will serve to illustrate some of the techniques and difficul-
ties that one can expect in the study of maximal regularity. Additionally, in
Subsection 3.1.3, we will focus on the concept of maximal Lp-regularity in the
deterministic setting.

3.1. The deterministic case

We start our discussion with a concrete example of Lp-theory in the
context of elliptic equations. Similar results can be obtained in the scale of
Hölder spaces and this leads to Schauder theory. For details on both settings,
the reader is referred to the monographs [111,161,166].

3.1.1. The Laplace equation. On R
d, consider the following elliptic equation

u − Δu = f, (3.1)

where f ∈ Lp(Rd) is a given function and u is the unknown. The goal is to show
u ∈ W 2,p(Rd) and estimate its norm. It is clear that if u ∈ W 2,p(Rd), then the
left-hand side u − Δu ∈ Lp(Rd). However, the inverse problem - solving (3.1)
given f ∈ Lp(Rd) - is much more delicate when d ≥ 2. Indeed, it is unclear
how to derive information on the mixed derivatives such as ∂1∂2u. The unique
solvability is equivalent to having the estimate

‖u‖W 2,p(Rd) ≤ C‖f‖Lp(Rd) (3.2)

whenever u is a solution to (3.1). Furthermore, the closedness of the operator
u 
→ Δu on Lp(Rd) with domain D(Δ) = W 2,p(Rd) is also equivalent to (3.2).

For p = 2, the estimate (3.2) can be proved through the isometric prop-
erty of the Fourier transform. For p = 1 and p = ∞, the estimate (3.2) fails
when d ≥ 2, as the second order Riesz transform is unbounded on L1 and L∞

(see [166, p. 98] for a simple example in d = 2). For p ∈ (1,∞), the estimate
(3.2) can be proved through Calderón–Zygmund theory for singular integral
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operators or Fourier multiplier theory. In fact, Lp-theory for (3.1) motivated
the development of these theories.

More recent extensions of the above results involve variants of the equa-
tion (3.1) where Δ is replaced by a second-order operator with rough coeffi-
cients in either divergence or nondivergence form.

3.1.2. Heat equation. As a next step, we consider the zero-initial value prob-
lem for the heat equation on R

d over a time interval (0, T ), where T ∈ (0,∞)
is fixed:

∂tu − Δu = f with initial condition u(0, ·) = 0. (3.3)

In an Lp-setting, this problem allows us to investigate various estimates similar
to the elliptic case we discussed earlier. However, in this parabolic setting,
time regularity becomes equally important. Below we choose the spaces that
are well-suited for the sequel.

Initially, we focus on the case where f ∈ Lp((0, T ) × R
d), but it will

later prove useful to have more flexibility, considering different integrability
conditions in both time and space for the inhomogeneity f , specifically f ∈
Lp(0, T ;Lq(Rd)).

It is clear that ∂t−Δ maps from 0W
1,p(0, T ;Lq(Rd))∩Lp(0, T ;W 2,q(Rd))

into Lp(0, T ;Lq(Rd)). The inverse problem - solving for u in this space and
proving the estimate

‖u‖W 1,p(0,T ;Lq(Rd)) + ‖u‖Lp(0,T ;W 2,q(Rd)) ≤ C‖f‖Lp(0,T ;Lq(Rd)) (3.4)

is much harder. A possible approach is to consider the operator-theoretic view-
point. Let X0 = Lq(Rd) and X1 = D(Δ) = W 2,q(Rd) and use the variation of
constants formula for the solution u : [0, T ] → X to (3.3) as

u(t) =
∫ t

0
e(t−s)Δf(s) ds.

Since sups∈[0,T ] ‖esΔ‖L (X0) ≤ 1 < ∞, we can estimate ‖u‖Lp(0,T ;X0)

≤ C‖f‖Lp(0,T ;X0). If f ∈ C1([0, T ];X1), then one can check that (3.3) holds in
an a.e. sense. Therefore, to prove (3.4), by (3.2) it suffices to show

‖Δu‖Lp(0,T ;X0) ≤ C‖f‖Lp(0,T ;X0). (3.5)

Indeed, the missing estimate for ∂tu follows from ∂tu = Δu+f and the triangle
inequality. Moreover, the result for general f ∈ Lp(0, T ;X0) can be obtained
by a density argument. The estimate (3.5) can be interpreted as a singular
integral operator with an operator-valued kernel, where ‖ΔetΔ‖L (X0) ≤ Ct−1.
To prove the estimate (3.5), one can employ vector-valued (i.e. with values in
a Banach space) Fourier multiplier theory. For the latter, the reader is referred
to [24], [133, Section 5.6c] and [135, Section 13.3] and here the UMD condition
of Lq plays an important role again.

3.1.3. Abstract setting. The framework used for the heat equation can be
generalized to any linear operator A acting on a Banach space X0 with domain
D(A) ⊆ X0. Consider

u′ + Au = f with initial condition u(0, ·) = 0. (3.6)
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The operator A is said to have maximal Lp-regularity on (0, T ) if for every
f ∈ Lp(0, T ;X0), there exists a unique u ∈ Lp(0, T ;D(A)) such that for all
s ∈ [0, T ],

u(t) +
∫ t

0
Au(s) ds =

∫ t

0
f(s) ds,

and there is a constant C independent of f such that

‖u‖Lp(0,T ;D(A)) ≤ C‖f‖Lp(0,T ;X0). (3.7)

A function u that satisfies the above-integrated form of the equation (3.6) is
called a strong solution. From this, we immediately obtain an estimate for u′,
namely u′ = f − Au.

Next, we formulate several permanence properties. For a more detailed
discussion and further results, the reader is referred to [87] (see also [135,
Section 17.2]).

Theorem 3.1. Let p ∈ [1,∞). Let A be a linear operator with domain X1 =
D(A) ⊆ X. Suppose that A has maximal Lp-regularity on (0, T ). Then the
following assertions hold:
(1) A is closed, i.e. D(A) is a Banach space with its graph norm;
(2) the mapping f 
→ u defines an isomorphism M : Lp(0, T ;X0) → 0W

1,p

(0, T ;X0) ∩ Lp(0, T ;X1);
(3) for every λ ∈ C, λ + A has maximal Lp-regularity on (0, T );
(4) −A generates an analytic semigroup;
(5) A has maximal Lp-regularity on (0, T ′) for any T ′ ∈ (0,∞);
(6) A has maximal Lq-regularity on (0, T ) for all q ∈ (1,∞).

Due to the independence of the time interval, we can and will simply
write A has maximal Lp-regularity.

Remark 3.2. Maximal Lp-regularity can also be extended to the case T = ∞.
However, since we do not require this extension and since there are several
options, the interested reader is referred to [135, Section 17.2] for details on
this case.

It is important to note that the endpoint cases p = 1 and p = ∞ present
complications. Specifically, unbounded operators A fail to have maximal L1-
or L∞-regularity on reflexive spaces X0 as shown in a result by Baillon (see
[135, Section 17.4]).

If −A generates an analytic semigroup, a strong solution of (3.6) can be
expressed as a mild solution, i.e. it can be written in the form

u(t) =
∫ t

0
e−(t−s)Af(s) ds.

Conversely, a mild solution for which Au ∈ L1(0, T ;X0) can be shown to be a
strong solution. These results are discussed in [135, Proposition 17.1.3].

Thus, when D(A) is dense in X0, proving maximal Lp-regularity for p ∈
[1,∞) reduces to showing the boundedness of the integral operator

Au(t) = JAf(t) :=
∫ t

0
Ae−(t−s)Af(s) ds,



NoDEA Nonlinear SPDEs and Maximal Regularity Page 25 of 150   123 

for f ∈ Lp(0, T ;D(A)), as a mapping from Lp(0, T ;X0) into itself. The kernel
Ae−tA ∈ L (X0) has a singularity of order t−1 as t → 0. As mentioned below
(3.5), one can use operator-theoretic tools and harmonic analysis to study the
boundedness of the above integral operator.

The following result is due to [80] (see also [135, Corollary 17.3.8]) and
implies that analytic semigroup generators on Hilbert spaces always lead to
maximal Lp-regularity.

Theorem 3.3. Let X0 be a Hilbert space and suppose that −A generates a
strongly continuous analytic semigroup on X0 and let X1 = D(A). Then A
has maximal Lp-regularity for all p ∈ (1,∞).

Let us sketch the proof. One can equivalently consider λ+A for sufficiently
large λ ≥ 0, to reduce to the exponentially stable case (see Theorem 3.1). After
that one can prove the result for p = 2 by using the L2-isometric property of
the Fourier transform. Finally, the case p ∈ (1,∞) follows from Theorem 3.1
again.

As we will see later on, weights in time play an important role in the the-
ory. For the definition of maximal Lp

κ-regularity, one has to replace Lp(0, T ;X0)
in (3.7) by Lp(0, T, tκ dt;X0) on both sides.

Theorem 3.4. (Weighted maximal Lp-regularity) Let X0 be a Banach space
and suppose that −A generates a strongly continuous analytic semigroup. Let
p ∈ (1,∞) and κ ∈ (−1, p − 1). Then A has maximal Lp-regularity if and only
if A has maximal Lp

κ-regularity.

The above result is due to [218]. An alternative proof can be found in
[133, Section 17.2.e], where the cases p = 1 and p = ∞ are also discussed.
Moreover, it is shown there that maximal Lp-regularity can be obtained with
arbitrary Ap-weights (i.e. Lp(0, T ;X0) in (3.7) is replaced by Lp(0, T, w;X0)
with w ∈ Ap on both sides). For further results in this direction, the reader is
referred to [57].

For a long time, it was an open question whether being the generator of
an analytic semigroup on, say, an Lq-space with q ∈ (1,∞) \ {2}, is sufficient
to guarantee maximal Lp-regularity for p ∈ (1,∞), a question often referred
to as Brezis’ question. Some sufficient conditions for maximal Lp-regularity
were found in [73,88,180,221]. However, in general, the question was shown to
have a negative answer (see [137,139]), although all known counterexamples
are highly theoretical and not closely related to differential operators. Further
extensions of these counterexamples were later found in [96] (see also [135, Sec-
tion 17.4.c]). Around the same time that the first counterexamples appeared,
a characterization of maximal Lp-regularity was established in [253,254] (see
also [135, Sections 17.3a]) in terms of R-sectoriality.

After this discussion, we can return to the heat equation (3.3). Using the
above it can be shown that −Δ has maximal Lp-regularity on Lq(Rd) if and
only if p, q ∈ (1,∞) (see [135, Section 17.4bc]).

Remark 3.5. In the introduction, we mentioned the work by Da Prato and
Grisvard [73], which provides a maximal Lp-regularity result when X0 is
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replaced by a real interpolation space (X,D(A))θ,p, with no conditions on
A other than it being the generator of an analytic semigroup. Their method is
a “sum of operators approach”. The result in [253,254] can also be proved by
using a “sum of operators” approach, which was done in [140] (see also [135,
Sections 17.3c]).

3.2. Definition and basic properties in the stochastic setting

In this subsection, we consider the following linear variant of the stochas-
tic evolution equation (1.1) on [a, τ ] ⊆ [0, T ]{

du + Au dt = f dt + (Bu + g) dW,

u(a) = ua,
(3.8)

and we define the notion of stochastic maximal regularity for the pair (A,B).
Here, a ∈ [0,∞) and τ is a stopping time. As in the deterministic case, it is
primarily expressed through an a priori estimate, which plays a crucial role
in establishing both local and global well-posedness results. The definition of
stochastic maximal regularity will be more technical compared to the previous
cases, but it is precisely what can be proved in many applications.
Standing assumption for stochastic maximal regularity. Unless stated other-
wise, here and below X0 and X1 are Banach spaces with UMD and type 2,
X1 ↪→ X0 and A ∈ L (X1,X0) and B ∈ L (X1, γ(U ,X1/2)). The equation
(3.8) is to be understood in the Itô sense.

Similar to deterministic maximal regularity, we are given the inhomo-
geneities f and g, and aim to find necessary and sufficient conditions for the
well-posedness of a strong solution u. The concept of stochastic maximal reg-
ularity is a property of the pair (A,B), as both are leading order operators,
due to the irregularity of W . In applications, A might represent a second-order
elliptic operator, while B could be of order one. A joint parabolicity condition
is typically required to ensure well-posedness.

For instance, consider the following prototype example: for u ∈ X1 =
W 2,q(Rd) (with q ∈ [2,∞)),

Au = −Δu, and Bu = ((bn · ∇)u)n≥1, (3.9)

where b ∈ �2 := �2(N≥1) and U = �2. As we noted in Subsection 1.2, the
transport term (bn · ∇)u has the same scaling as the Laplace operator in
the deterministic part due to the scaling of the Brownian motion. To ensure
stochastic maximal L2-regularity with X0 = L2(Rd) an additional assumption
is required: there exists ν ∈ (0, 2) such that for all ξ ∈ R

d,∑
n≥1(bn · ξ)2 ≤ ν|ξ|2. (3.10)

This condition, often referred to as stochastic parabolicity, arises from the
energy estimate (see Theorem 3.17 below for an abstract version). It is also
sufficient for obtaining Lp(Lq)-estimates in the case p > 2 and q ∈ [2,∞), and
in the presence of temporal weights. For more details, the reader is referred to
Subsection 3.5.

There are also many important examples where B = 0 or B is relatively
small. While this case is simpler, it remains significant and nontrivial. In case
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the reader is willing to use the definition of stochastic maximal Lp-regularity
below as a black box, they could already go to Section 4, where we start with
the local existence and uniqueness theory for (1.1). In particular, if B = 0 or
B is relatively small, it is possible to use the well-established H∞-calculus as a
black box. Indeed, by Theorem 3.14 for every A on a suitable space, having a
bounded H∞-calculus implies that (A, 0) has stochastic maximal Lp-regularity
in the sense of Definitions 3.7 and 3.8 below.

3.2.1. Strong solutions. Before continuing, let us first define our solution con-
cept.

Definition 3.6. (Strong solutions) Let f ∈ L1(a, τ ;X0) a.s. and g ∈ L2(a, τ ; γ
(U ,X1/2)) a.s. both be progressively measurable. A progressively measurable
process u : [a, τ ] × Ω → X0 is called a strong solution to (3.8) on [a, τ ] if
u ∈ C([a, τ ];X0) ∩ L2(a, τ ;X1) a.s., and a.s. for all t ∈ [a, τ ],

u(t) − ua +
∫ t

a
Au(s) ds =

∫ t

a
f(s) ds +

∫ t

a
(Bu(s) + g(s)) dW (s).

In principle, we could also allow Bu and g to take values in γ(U,X0), but
later on, we will only need the above setting. The stochastic integral exists in
X0 (and also in X1/2) in the sense of Proposition 2.4.

3.2.2. Stochastic maximal Lp -regularity. The definition of stochastic maximal
Lp-regularity will be given in a weighted setting, as this framework leads to the
most robust results for applications. Recall that for a, κ ∈ R, wa

κ(t) = (t − a)κ

and wκ(t) = tκ. In the context of weighted stochastic maximal Lp-regularity,
the different scaling behaviour of Brownian motion (as discussed in Subsection
1.2), imposes additional restrictions compared to the deterministic setting as
seen in Theorem 3.4. In particular, we again lose 1/2-scaling, and therefore
we consider only power weights in the Ap/2 class. For p ∈ [2,∞), this means
we focus on κ ∈ [0, p

2 − 1) ∪ {0}, where {0} is added for the case p = 2. By
Hölder’s inequality, we have the embedding Lp(a, b, wa

κ;Y ) ↪→ L2(a, b;Y ) for
all p ∈ [2,∞) and κ ∈ [0, p/2−1)∪{0}, which ensures that stochastic integrals
with g ∈ Lp(0, T, wκ; γ(U , Y )) are well-defined, see Proposition 2.4.

As will be discussed in Subsection 3.3, it will be enough to consider zero
initial data in (3.8), i.e.{

du + Au dt = f dt + (Bu + g) dW,

u(a) = 0.
(3.11)

After these preparations, we are ready to give the two central definitions.

Definition 3.7. Let p ∈ [2,∞) and κ ∈ [0, p/2 − 1) ∪ {0}. We say (A,B) ∈
SMRp,κ if for all T ∈ (0,∞) there exists a constant CT such that for all
a ∈ [0, T ] and every stopping time τ : Ω → [a, T ], every progressively measur-
able f ∈ Lp(Ω;Lp(a, τ, wa

κ;X0)) and g ∈ Lp(Ω;Lp(a, τ, wa
κ; γ(U ,X1/2))), there

exists a unique strong solution u to (3.8) on [a, τ ] such that u ∈ Lp(Ω;Lp(a, τ,
wa

κ;X1)), and moreover the following estimate holds

‖u‖Lp(Ω;Lp(a,τ,wa
κ;X1)) ≤ CT ‖f‖Lp(Ω;Lp(a,τ,wa

κ;X0))
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+ CT ‖g‖Lp(Ω;Lp(a,τ,wa
κ;γ(U,X1/2))). (3.12)

In the deterministic situation, estimates for u′ can be obtained directly
from the equation. In the stochastic case, this seems not possible in general,
and the time regularity needs to be studied separately. Time regularity esti-
mates play an important role in nonlinear equations. For technical reasons, we
distinguish between the cases p > 2 and p = 2.

Definition 3.8. • For p ∈ (2,∞) and κ ∈ [0, p/2 − 1), we say (A,B) ∈
SMR•

p,κ if (A,B) ∈ SMRp,κ and for all θ ∈ (0, 1/2) for all T ∈ (0,∞)
there exists a constant CT,θ such that for all [a, b] ⊆ [0, T ], for every pro-
gressively measurable f ∈ Lp(Ω;Lp(a, b, wa

κ;X0)) and g ∈ Lp(Ω;Lp(a, b,
wa

κ; γ(U ,X1/2))), the strong solution u to (3.11) on [a, b] satisfies

‖u‖Lp(Ω;Hθ,p(a,b,wa
κ;X1−θ)) ≤ CT,θ‖f‖Lp(Ω;Lp(a,b,wa

κ;X0))

+ CT,θ‖g‖Lp(Ω;Lp(a,b,wa
κ;γ(U,X1/2))).

• We say (A,B) ∈ SMR•
2,0 if (A,B) ∈ SMR2,0 and for all T ∈ (0,∞)

there exists a constant CT such that for all [a, b] ⊆ [0, T ], for every
progressively measurable f ∈ L2(Ω;L2(a, b;X0)) and g ∈ L2(Ω;L2(a, b;
γ(U ,X1/2))), the strong solution u to (3.11) on [a, b] satisfies

‖u‖L2(Ω;C([a,b];X1/2)) ≤ CT ‖f‖L2(Ω;L2(a,b;X0))

+ CT ‖g‖L2(Ω;L2(a,b;γ(U,X1/2))).

In case (A,B) ∈ SMR•
p,κ we will say that (A,B) has stochastic maximal

Lp
κ-regularity.

Remark 3.9. Definitions 3.7 and 3.8 are slightly more restrictive than the ones
in [11], as we require that the constant CT be chosen uniformly over all a
and b. However, this condition does not present any issues in our applications.
An alternative approach would be to fix a = 0 and quantify over all possible
cylindrical Brownian motions on the given probability space. To see this, it
suffices to translate the problem back to one that starts at zero.

In the following remark, we explain how to reduce to f = 0.

Remark 3.10. Clearly (A, 0) ∈ SMRp,κ implies that A has maximal Lp-
regularity. Indeed, this follows by taking g = 0 and applying Theorems 3.1
and 3.4.

Conversely, if A is known to have maximal Lp-regularity, then to check
stochastic maximal Lp

κ-regularity for (A,B) it suffices to consider the case
where f = 0. Uniqueness is clear. For existence, recall that maximal Lp-
regularity implies the weighted variant maximal Lp

κ-regularity (see Theorem
3.4). Now, let v ∈ Lp(a, b, wa

κ;X1) be the strong solution of v′ + Av = f
with v(a) = 0. Let z ∈ Lp(Ω;Lp(a, b, wa

κ;X1)) be the strong solution of
dz + Az dt = (Bz + Bv + g) dW with z(a) = 0, where Bv + g serves as
the stochastic inhomogeneity. Then it can be shown that u = v + z is the
desired strong solution to (3.11). To obtain the required estimate for u, it suf-
fices to consider the estimate for v. By translation and restriction, it suffices to
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consider the problem on (0, c) with c = b − a ≤ T . By maximal Lp
κ-regularity,

we obtain the estimate

‖v‖W 1,p(0,c,wκ;X0) + ‖v‖Lp(0,c,wκ;X1) ≤ CT ‖f‖Lp(0,c,wκ;X0),

where CT does not depend on c. Therefore, for p ∈ (1,∞) following the argu-
ment in [11, Proposition 2.8], we obtain that for all θ ∈ (0, 1),

‖v‖Hθ,p(0,c,wκ;X1−θ) ≤ ‖v‖
0Hθ,p(0,c,wκ;X1−θ)

≤ CE‖v‖W 1,p(0,c,wκ;X0) + CE‖v‖Lp(0,c,wκ;X1), (3.13)

where the constant CE comes from the extension operator of [11, Proposition
2.5] and is also independent of c. This completes the proof for p > 2. For p = 2,
it remains to apply Proposition 2.1 with θ > 1/2, where the constant can again
be chosen independent of c by using the spaces 0H

θ,p(0, c, wκ;X1−θ) instead
(see [11, Proposition 2.10]).

3.3. Nonzero initial values and inhomogeneities with moments

Assuming stochastic maximal Lp-regularity, one can derive regularity for
equations with nonzero initial data, as in (3.8), even when f and g are not
integrable over Ω. This will be frequently applied to establish the regularity of
solutions to nonlinear equations.

Proposition 3.11. (Ω-Localization of inhomogeneities and initial data) Suppose
(A,B) ∈ SMR•

p,κ, where −A is the generator of a strongly continuous analytic
semigroup. Suppose that ua ∈ L0

Fa
(Ω;X1− 1+κ

p ,p). Let τ be a stopping time with
values in [a, T ]. Let f ∈ Lp(a, τ, wa

κ;X0) a.s. and g ∈ Lp(a, τ, wa
κ; γ(U ,X1/2))

a.s. be strongly progressively measurable. Then there exists a unique strong
solution u to (3.8) on [a, τ ] such that u ∈ Lp(a, τ, wa

κ;X1) a.s. Moreover, if
p > 2, then the following additional regularity holds a.s. for all θ ∈ [0, 1/2):

u ∈ Hθ,p(a, τ, wa
κ;X1−θ) ⊆ Hθ,p

loc ((a, τ ];X1−θ),

u ∈ C([a, τ ];X1− 1+κ
p ,p), and u ∈ C((a, τ ];X1− 1

p ,p).

If p = 2, then one has u ∈ C([a, τ ];X1/2) a.s.

Proof. The uniqueness assertion follows from Definition 3.7 and the linearity
of the problem. It remains to prove the existence and establish the stated
regularity. We first consider p > 2. For each n ≥ 1, define a stopping time by

τn = inf{t ∈ [a, τ ] : ‖f‖Lp(a,t,wa
κ;X0) + ‖g‖Lp(a,t,wa

κ;γ(U,X1/2)) ≥ n},

where we set inf ∅ = τ . Let fn := 1[a,τn]f ∈ Lp(Ω;Lp((a, T ), wa
κ;X0)) and

gn := g1[a,τn] ∈ Lp(Ω;Lp((a, T ), wa
κ; γ(U ,X1/2))). By the assumption (A,B) ∈

SMR•
p,κ, there exists a unique strong solution un to (3.11) with (f, g) replaced

by (fn, gn), such that un ∈ Lp(Ω;Lp(a, T, wa
κ;X1)). Moreover, for all θ ∈

[0, 1/2),

‖un‖Lp(Ω;Hθ,p(a,T,wa
κ;X1−θ)) ≤ CT,θ‖fn‖Lp(Ω;Lp((a,T ),wa

κ;X0))

+ CT ‖gn‖Lp(Ω;Lp(a,T,wa
κ;γ(U,X1/2))).
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Since for n ≥ m, un also is a strong solution to (3.11) on [a, τm] with (f, g)
replaced by (fm, gm), by uniqueness it follows that un = um on [a, τm].
Since for a.e. ω ∈ Ω, there exists an n ≥ 1 such that τn(ω) = τ(ω), it
follows that u := limn→∞ un a.s. exists, and a.s. for all θ ∈ [0, 1/2), one
has u ∈ Hθ,p(a, τ, wa

κ;X1−θ). The remaining regularity assertions follow from
Proposition 2.1.

To add the initial value, let v(t) = e−(t−a)Aua. Then on the interval [a, T ],
v is a strong solution to v′ + Av = 0 with v(a) = ua. Moreover, from (2.5) it
follows that

‖v‖Lp(a,T,wa
κ;X1) ≤ CT ‖ua‖X

1− 1+κ
p

,p
.

The same estimate holds for v′ by v′ = −Av. Therefore, from (3.13), we
conclude that v ∈ Hθ,p(a, T, wa

κ;X1−θ). By linearity, it follows that u + v is a
strong solution to (3.8) and it has the desired regularity.

The proof for p = 2 follows analogously, with the only modification being
the use of the fact that e−tA is strongly continuous on X1/2. �

The initial value was added directly using the analytic semigroup gen-
erated by A. A different argument can be used when A depends on (t, ω) as
discussed in [11, Propositions 3.10 and 3.12].

3.4. The case B = 0
In this subsection, we discuss several results in the case B = 0. By con-

sidering g = 0, one sees that (A, 0) ∈ SMRp,κ implies that A has maximal
Lp-regularity. As mentioned in Remark 3.10, if maximal Lp-regularity holds
for the deterministic setting, we can reduce the problem to f = 0. If, in addi-
tion, −A generates a strongly continuous semigroup, then it is standard (see
[248, Section 7.5]) to express the strong solution on [a, b] as

u(t) =
∫ t

a
e−(t−s)Ag(s) dW (s), t ∈ [a, b],

which in turn establishes uniqueness. Thus, in order to prove (A, 0) ∈ SMRp,κ,
by translation (after applying the vector-valued Burkholder-Davis-Gundy
inequality [208, (5.5)]) and considering 1(a,τ)g, it suffices to prove the cor-
responding estimate on (0, T ). By density, it is enough to show that there
exists a constant CT such that for all g ∈ Lp(Ω;Lp(0, T, wκ; γ(U ,X1)))

∥∥∥t �→
∫ t

0

e−(t−s)Ag(s) dW (s)
∥∥∥

Lp(Ω;Lp(0,T,wκ;X1))
≤ C‖g‖Lp(Ω;Lp(0,T,wκ;γ(U,X1/2))).

(3.14)

The estimate (3.14) can be seen as a stochastic integral operator of con-
volution type, with kernel e−tA ∈ L (X1,X1/2), which has a singularity of
order t−1/2 for t → 0. The following extrapolation theorem can be proved in
the same way as [189, Theorem 8.2] by Lorist and the second named author,
where a stochastic (and Ap/2-weighted) version of Calderón–Zygmund theory
with operator-valued kernels was developed.
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Theorem 3.12. (Extrapolation) Let X0 be a UMD space with type 2. Let p ∈
[2,∞). Let −A be the generator of a strongly continuous analytic semigroup
with D(A) = X1. If (3.14) holds for some p ∈ [2,∞) and κ = 0, then (3.14)
holds for all p ∈ (2,∞) and κ ∈ [0, p/2 − 1).

The special case of power weights with fixed p was also considered in [10,
Section 7] and can be seen as a stochastic analogue of Theorem 3.4.

3.4.1. The Hilbert space case. The following result can be viewed as a sto-
chastic version of Theorem 3.3 on analytic generators on Hilbert spaces. In
particular, it extends the work of Da Prato [70] (see also [76, Theorem 6.12(2)])
where it is shown that (A, 0) ∈ SMR2,0.

Theorem 3.13. Suppose that X0 is a Hilbert space, X1 = D(A), and −A gen-
erates a strongly continuous analytic semigroup on X0. Then for all p ∈ [2,∞)
and κ ∈ [0, p/2 − 1) ∪ {0}, one has (A, 0) ∈ SMR•

p,κ.

Before we turn to the general setting, we first present Da Prato’s proof
of (A, 0) ∈ SMR2,0 in the case e−tA is exponentially stable, in which case
the result even holds for T = ∞. By Theorem 3.3 and Remark 3.10, it suffices
to consider f = 0. Let (un)n≥1 be an orthonormal basis for U (which can be
assumed to be separable). Then by the Itô isometry,∥∥∥t 
→ ∫ t

0
Ae−(t−s)Ag(s) dW (s)

∥∥∥2

L2(Ω;L2(R+;X0))

= E
∑

n≥1

∫
R+

∫ t

0
‖Ae−(t−s)Ag(s)un‖2

X0
dsdt

= E
∑

n≥1

∫
R+

∫
R+

‖Ae−tAg(s)un‖2
X0

dt ds

(2.5)
� E

∑
n≥1

∫
R+

‖g(s)un‖2
X1/2,2

ds

= ‖g‖2
L2(Ω;L2(R+;L2(U,X1/2,2)))

(2.4)
� ‖g‖2

L2(Ω;L2(R+;L2(U,X1/2)))
.

Next, one could apply Theorem 3.12 to extrapolate the above result to
(weighted) Lp-spaces with p > 2. However, since we want to prove time-
regularity as well (see Definition 3.8), we argue differently (see below Theorem
3.14).

3.4.2. The role of the H∞-calculus. Below, we present one of the cornerstone
results in the theory of stochastic maximal Lp-regularity. The result provides a
sufficient condition for stochastic maximal Lp-regularity in terms of the H∞-
(functional) calculus of A (see Subsection 2.1). The unweighted case of the next
result was obtained by the second named author together with van Neerven
and Weis in [205], and through a different method in [208]. The extension to
the weighted setting is derived using a perturbation argument in [10, Section
7].
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Theorem 3.14. Let (O,Σ, μ) be a σ-finite measure space and let q ∈ [2,∞).
Suppose that X0 = Lq(O) or X0 is isomorphic to a closed subspace of Lq(O).
If there exists a λ ≥ 0 such that λ + A has a bounded H∞-calculus of angle
< π/2, then (A, 0) ∈ SMR•

p,κ for all p ∈ (2,∞) and κ ∈ [0, p/2−1). Moreover,
if q = 2, then additionally (A, 0) ∈ SMR•

2,0.

Remark 3.15. Theorem 3.14 is only formulated for the setting where X0 is
isomorphic to a closed subset of an Lq-space (e.g. a fractional Sobolev space).
However, by [207] it is possible to extend the result to a broader class of spaces.
It is an open problem to extend the result to arbitrary spaces X0 with UMD
and type 2. In particular, we do not know whether the result holds for spaces
such as X0 = L2(R;Lq(R)) with q ∈ (2,∞). On the one hand, this space is
not so important for evolution equations. On the other hand, for a space like
X0 = Lq(R;L2(R)) with q ∈ (2,∞), it is possible to obtain stochastic maximal
Lp-regularity from [205,208] and an extension of this observation was used by
the first named author to study 3D primitive equations with rough transport
noise, see [1, Appendix B]. It also remains unclear whether the assumption
that A has a bounded H∞-calculus can be relaxed. Some evidence that this
might be possible is provided by Theorem 3.13 where no additional conditions
are required in the Hilbert space case.

After this preparation, we can now give the proof of the Hilbert space
result of Theorem 3.13.

Proof of Theorem 3.13. By Theorem 3.3 and Remark 3.10 it suffices to con-
sider f = 0.

Let A0 be an invertible positive self-adjoint operator on X0 with D(A0) =
X1. The existence of such an operator follows from [237, Proposition 8.1.10].
By [134, Proposition 10.2.23], A0 has a bounded H∞-calculus of angle zero.

By translation and extending g by zero, it remains to prove

‖u‖Lp(Ω;Hθ,p(0,T,wκ;X1−θ)) ≤ CT,θ‖g‖Lp(Ω;Lp(0,T,wκ;γ(U,X1/2))), (3.15)

where u is the solution to du+Au dt = g dW with u(0) = 0. Now, we argue as
in [215, Theorem 3.9]. Let v ∈ Lp(Ω;Lp(0, T, wκ;X1)) be the strong solution to
dv+A0v dt = g dW with v(0) = 0. Then, by Theorem 3.14, for all θ ∈ [0, 1/2),

‖v‖Lp(Ω;Hθ,p(0,T,wκ;X1−θ)) ≤ CT,θ‖g‖Lp(Ω;Lp(0,T,wκ;γ(U,X1/2))).

Since A has maximal Lp
κ-regularity by Theorems 3.3 and 3.4, there is a unique

z ∈ Lp(Ω;Lp(0, T, wκ;X1)) which is a strong solution to z′ + Az = (A0 − A)v
with z(0) = 0, and the following estimate holds

‖z‖Lp(Ω;Lp(0,T,wκ;X1)) ≤ C‖(A − A0)v‖Lp(Ω;Lp(0,T,wκ;X0))

≤ C‖v‖Lp(Ω;Lp(0,T,wκ;X1))

≤ C‖g‖Lp(Ω;Lp(0,T,wκ;γ(U,X1/2))).

Here, the process z can be shown to be progressively measurable. Moreover, as
in (3.13) we see that the same type of estimate holds for
‖z‖Lp(Ω;Hθ,p(0,T,wκ;X1−θ)).
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It follows that u = v + z is in Lp(Ω;Lp(0, T, wκ;X1)) and is the required
strong solution. The estimate (3.15) follows by combining the estimates for v
and z. �

Remark 3.16. The proof technique of Theorem 3.13 can be extended to opera-
tors A that depend on time and Ω. However, it is crucial to assume that A has
deterministic maximal Lp-regularity, which is often a nontrivial condition. The
technique can even be extended to the Banach space setting if one knows that
there exists an operator A0 ∈ L (X1,X0) such that A0 has a bounded H∞-
calculus of angle < π/2 (for details, see the transference result [215, Theorem
3.9]).

3.5. Sufficient conditions in case B �= 0
If B �= 0, determining whether (A,B) ∈ SMR•

p,κ can be quite compli-
cated. An exception is the variational setting if p = 2 and κ = 0. In this case
the classical coercivity condition on (A,B) provides a sufficient condition for
(A,B) ∈ SMR•

2,0:

Theorem 3.17. (Variational setting) Let (V,H, V ∗) be a Gelfand triple as in
Section 6. Let X0 = V ∗ and X1 = V . Suppose that there exist θ,M > 0 such
that, for all v ∈ V ,

〈Av, v〉 − 1
2‖Bv‖L2(U,X1/2) ≥ θ‖v‖2

V − M‖v‖2
H .

Then (A,B) ∈ SMR•
2,0.

It is well-known that the coercivity condition implies that −A generates
a strongly continuous analytic semigroup on V ∗ (and then also on X1/2). For
instance, this can be deduced from Theorem 3.1.

Note that the condition of the above theorem leads to (3.10) when (A,B)
is as in (3.9) with V = W 1,2(Rd) and H = L2(Rd). For the standard proof the
reader is referred to [187, Chapter 4] and [9, Lemma 4.1]. Further details on
the variational setting are given in Section 6.

There are several concrete situations in which (A,B) ∈ SMRp,κ, and
the reader may consult a selection of them in Subsection 3.6. The first results
in an Lp-setting with p > 2 were obtained by Krylov in [162,163], where A is a
second order elliptic differential operator on R

d, and B a first order operator.
In Subsection 3.6.1, we discuss the joint parabolicity condition (stochastic
parabolicity) on the pair (A,B) in this concrete setting.

Using the following simple result (see [11, Proposition 3.8] for the proof),
one can transfer (A,B) ∈ SMRp,κ to (A,B) ∈ SMR•

p,κ.

Proposition 3.18. (Transference) Suppose that (A,B) ∈ SMRp,κ. If there is
a closed operator A0 such that D(A0) = X1 and (A0, 0) ∈ SMR•

p,κ, then
(A,B) ∈ SMR•

p,κ.

Often one chooses A0 to be an operator to which Theorem 3.14 is appli-
cable. For example, if A is a second-order differential operator with space-
dependent coefficients and boundary conditions, one could take A0 = −Δ
with the same boundary conditions, and then show that A0 has a bounded
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H∞-calculus of angle < π/2. A similar argument was used in the proof of
Theorem 3.13, where A0 was constructed more abstractly.

Thus, in many cases, to obtain (A,B) ∈ SMR•
p,κ, it suffices, by Propo-

sition 3.18 to check that (A,B) ∈ SMRp,κ. For this, one typically requires
tools from harmonic analysis, stochastic calculus, PDE theory, and perturba-
tion theory (see [15, Theorem 3.2]). A stochastic method of continuity (see [12,
Proposition 3.13]) ensures that it is enough to assume that u satisfies (3.11),
and to prove the a priori estimate (3.12). For a concrete differential operator
on a domain O ⊆ R

d one typically follows the roadmap outlined below.

• Find a starting point (A0, 0) for the stochastic method of continuity,
reducing the problem to the a priori estimate (3.12);

• By localization it is enough to consider the half-space and whole-space
cases;

• Reduce to the case of constant coefficients using a freezing argument
leveraging the smoothness of the coefficients;

• After that there are two options:
– Transform (A,B) into (Ã, 0) via a Doss-Sussman argument (see

[215, Section 3.5]). Show that the resulting problem (Ã, 0) has sto-
chastic maximal regularity via the transference result [215, Theorem
3.9] and deterministic maximal regularity.

– Show stochastic maximal regularity using stochastic calculus.

An example where this roadmap was applied can be found in [15]. We derived
stochastic maximal Lp-regularity in an Lq-setting for (A,B) where A is a
second-order operator and B is a first-order operator. A similar method was
used for the Stokes operator in [16] and a fourth-order operator in [8].

3.6. Further references

In this subsection, we provide a list of references on concrete situations in
which stochastic maximal regularity holds (or does not hold) and a selection
of related works. We focus solely on Gaussian noise and the (t, ω)-independent
setting as in the rest of the paper. However, these results can typically be
extended to cases where the dependency in (t, ω) is progressively measurable.
We will not consider lower-order terms, since they do not add anything to
the discussion below and they can be often added afterwards via perturbation
[15, Theorem 3.2]. We restrict ourselves to the real-valued case, though some
remarks on the system case can be found in Subsections 3.6.1, 3.6.2 and 3.6.3.
This subsection is not intended to be a comprehensive survey of the rapidly
growing literature on this topic. Since Theorems 3.13 and 3.14 provide general
conditions for (A, 0) ∈ SMR•

p,κ, we will not revisit that case. However, further
nontrivial results in this setting are discussed later in Subsections 3.6.4 and
3.6.5.

From this point onward, we focus on the case where B �= 0. The case
where B is relatively small is easy. Indeed, if there exists a δ > 0 small
enough and Cδ such that for all u ∈ X1, ‖Bu‖γ(U,X1/2) ≤ δ‖u‖X1 + Cδ‖u‖X0 ,
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then (A,B) ∈ SMR•
p,κ follows from a perturbation argument, see the above-

mentioned perturbation result or [37], [76, Theorem 6.24], [100] and [204, The-
orem 4.5].

3.6.1. Second order operators on R
d with B �= 0. Consider a second order

operator A and first order operator B, where A is in nondivergence form:

Au =
d∑

i,j=1

ai,j∂i∂ju and (Bu)n =
∑d

i=1 bi
n∂iu,

where ai,j = aj,i and bi
n are real-valued functions defined on R

d. In this context,
the stochastic parabolicity condition (see (3.9)) has a similar form. Indeed,
letting σi,j =

∑
n≥1 bi

nbj
n, the stochastic parabolicity condition for the above

pair of operators reads as follows:
There exists a θ > 0 such that

d∑
i,j=1

[ai,j(x) − 1
2σi,j(x)]ξiξj ≥ θ|ξ|2 for all x, ξ ∈ R

d. (3.16)

In the case where A is in divergence form, i.e. Au(x) =
∑d

i,j=1 ∂i[ai,j∂ju]
the same condition (3.16) applies, and most of the results below hold in both
situations.

Under suitable boundedness conditions on the coefficients and (3.16), one
can easily check that for the divergence form case, the coercivity condition of
Theorem 3.17 holds if V is a closed subspace of H1(Rd), and H = L2(Rd).
Therefore, (A,B) ∈ SMR•

2,0 for the choice X1 = V and X0 = V ∗.
For the case O = R

d, it was shown in a series of papers by Krylov
[159,162,163,167] that under suitable regularity conditions on the coefficients,
the stochastic parabolicity condition (3.16) implies that for X0 = Hs,q(Rd)
and X1 = Hs+2,q(Rd) with s ∈ R, one has (A,B) ∈ SMRp,0 if p = q ∈ [2,∞).
For x-independent coefficients, a similar result was established for p ≥ q ≥ 2
in [164] (note that we switched roles of p and q). When p = q, extensions to
systems with certain diagonal structures were considered in [150,198], and for
the stochastic Stokes system (also referred to as “turbulent Stokes system”)
in [197].

Under similar regularity conditions, and an additional continuity con-
dition at ∞, it was shown in [15] that one has (A,B) ∈ SMR•

p,κ for all
p ∈ (2,∞), q ∈ [2,∞), and κ ∈ [0, p/2 − 1). Moreover, the case p = q = 2
and κ = 0 is also included. Both divergence and nondivergence form systems
are covered in the previous work. These results also hold on T

d and can be
extended to smooth manifolds without boundary. Similar results for the sto-
chastic Stokes system can be found in [16].

3.6.2. Second order operators on domains with B �= 0. In case O is either
the half space R

d
+ = R+ × R

d−1 or a bounded smooth domain, sufficient con-
ditions for (A,B) ∈ SMRp,0 have been established in a series of papers. In
[160], it was shown that weighted Sobolev spaces Wn,2 can be used to han-
dle the blow-up of derivatives near the boundary, thereby avoiding the need
for compatibility conditions on the data, which had appeared in earlier works
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such as [37,38,100]. In this context, the stochastic parabolicity condition (3.16)
remains suitable for achieving higher-order regularity for linear equations. Fur-
ther extensions of these results were obtained in [151].

Under similar conditions, Lp-theory on the half-line and half-space was
developed in [170,171] for coefficients independent of x. The half space case
with VMO (vanishing mean oscillation) coefficients was addressed in [168].
Extensions to C1 and Lipschitz domains and weighted Sobolev spaces were
provided in [146–149,151]. In these papers, the space integrability is taken as
q = p. The form of the regularity estimates differs slightly from our definition
of SMRp,0. The reader is referred to [11, Lemma 6.11] and [185,186] for an
explanation of how the two formulations can be connected.

Finally, we note that in [89], under the geometric condition b · n = 0 on
∂O, it was shown that certain results valid in the full space setting can be
extended to domains with boundaries.

3.6.3. Further related results and counterexamples for B �= 0. The paper
[165, Theorem 5.3], discusses restrictions on weighted function spaces for con-
sidering SPDEs on domains with boundary conditions.

Extending the stochastic parabolicity condition (3.16) to systems or
higher-order equations is not straightforward. In [150], a system variant of
(A,B) is constructed (and extended in [90]) for which the L2-theory holds,
but the Lp-theory breaks down if p becomes large. Similar behaviour was
observed for a different class of examples in [43]. In the latter paper, the first
order derivative in B is replaced by a scalar multiple of (−Δ)1/2 on the torus.
A similar phenomenon is expected for higher-order equations. Some of the
above-mentioned issues are caused by the lack of integrability in Ω of the
solution.

In the variational setting, some abstract theory on higher order moments
was developed in [202] and further improved in [113]. The latter paper also
unifies results on systems [90] and higher order equations [252]. We should
note that the emphasis in the last two papers is on Schauder’s theory for
SPDEs. Finally, for measurable coefficients satisfying (3.16), an L∞-bound
was obtained in [79] using Moser iterations.

3.6.4. The case B = 0. The H∞-calculus of Theorem 3.14 provides a general
framework for having SMRp,κ. For a comprehensive list of examples of opera-
tors with a bounded H∞-calculus, the reader is referred to [134]. In particular,
the following class is included: all positive contraction semigroups on Lq which
have a bounded analytic extension to a sector. The positivity and contractivity
can be relaxed to regular contractivity [97, Theorem 4.2.21].

However, the H∞-calculus cannot be directly applied if A depends
on t or even (t, ω). Fortunately, there is a simple trick to reduce to the
time-independent situation provided that A has deterministic maximal Lp-
regularity (see [215, Theorem 3.9]). On the other hand, Theorem 3.13 indi-
cates that the H∞-calculus is not strictly necessary, suggesting that there are
aspects of the theory that are yet to be fully understood. Additionally, the
condition on X0 in Theorem 3.14 might not hold in some cases. Fortunately,
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it can be replaced with a more flexible condition as shown in [207] and the
proofs in [205,208]. This allows X0 to be a closed subspace of Besov spaces
Bs

q,r or Triebel-Lizorkin spaces F s
q,r with q, r ∈ (2,∞).

Motivated by the above discussion, there is room left for improvement in
the theory. It is also worth mentioning that for concrete examples, the H∞-
calculus is not established yet.

In the case where B = 0, various forms of (weighted) extrapolation results
for stochastic maximal regularity can be found in [143,188,189]. When combin-
ing these results, one can obtain Lp(Lq)-theory from L2-theory. The results in
[189] in particular imply the general extrapolation result of Theorem 3.12. In
the setting of time-dependent operators A such an extrapolation result does
not hold. Indeed, even for elliptic operators in divergence form with time-
dependent coefficients in the deterministic setting on L2, there are counterex-
amples to maximal Lp-regularity for p > 2 (see [28]).

For domains with lower regularity (polygonal, wedges) sufficient condi-
tions for (A, 0) ∈ SMRp,κ have been obtained in [61–63,152,189].

3.6.5. Stochastic maximal regularity in different scales. As in the determinis-
tic setting, regularity estimates can be considered across various scales, each
offering a unique insight into the possible solution space for a given (S)PDE.
Two examples of such scales, which have been extensively studied and dis-
cussed above, are the Hölder and Lp-scales. In all of the references below, we
assume B = 0 or that it is sufficiently small.

In the Lp-framework, one can also consider real interpolation spaces
instead of the complex ones we considered. The reader is referred to [37,40,75]
and [189] for more information.

Another extension of L2-theory can be given in terms of the γ-spaces
γ(L2(0, T ;H),X0) as shown in [206]. The approach provides different infor-
mation about the solution and includes X0 = Lq(O) with q in the full reflexive
range (1,∞). In this case, one obtains Lq(O;L2(0, T ))-estimates of the solution
and its derivatives. This framework was extended to Lq(O;Lp(0, T ))-estimates
in [23], and can also be obtained through the extrapolation theory of [188].
Estimates in Lq(O × (0, T );Lp(Ω)) were obtained in [142].

Another scale of interest is the parabolic tent space, with several results
on second-order SPDEs obtained in [25,26,215]. One key advantage of this
setting is that it only requires measurability in the x-variable. In some cases,
the H∞-calculus can also provide results in this direction in Lq-spaces.

3.6.6. Volterra equations. For stochastic maximal regularity results on
Volterra equations and nonlocal operators, the reader is directed to [58,84,85,
144,153,189] and references therein. Notably, [144] also incorporates a trans-
port noise term.
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4. Local existence, uniqueness and regularity

In this section, we discuss local existence and uniqueness for the following
stochastic evolution equation:{

du + Au dt = F (u) dt + (Bu + G(u)) dW,

u(0) = u0.
(4.1)

The nonlinearities F and G are assumed to be locally Lipschitz on certain
intermediate spaces with their local Lipschitz constants exhibiting controlled
growth. The interplay between the smoothness of these intermediate spaces
and the growth of the Lipschitz constants determines the classification of the
problem into sub-critical, critical, and super-critical regimes.

For the leading operators A and B, we assume that the pair (A,B) sat-
isfies stochastic maximal Lp-regularity. Consequently, the natural path space
in which we seek a solution to (4.1) is:⋂

θ∈[0,1/2) Hθ,p(0, T, wκ;X1−θ) ⊆ Lp(0, T, wκ;X1) ∩ C
(
[0, T ];X1− 1+κ

p ,p

)
,

(4.2)
where wκ(t) = tκ and κ ∈ [0, p

2 − 1) in case p > 2. For p = 2, we instead use
the space L2(0, T ;X1) ∩ C([0, T ];X 1

2
).

In most situations, it suffices to work with the right-hand side of (4.2).
However, in certain cases, achieving optimal space-time regularity, as provided
by the left-hand side of (4.2), becomes essential. According to Proposition 2.1,
the so-called trace space X1− 1+κ

p ,p is the optimal space for the initial data u0

when searching for solutions with paths in the LHS of (4.2). The introduction
of time weights κ adds flexibility, enabling the analysis of qualitative properties
of solutions to (4.1) such as blow-up behaviour and regularity. These aspects
are explored further in Section 5 below.

4.1. Main assumptions

Recall that Xθ = [X0,X1]θ denotes the complex interpolation space,
while Xθ,r = (X0,X1)θ,r denotes the real interpolation space for θ ∈
(0, 1) and r ∈ [1,∞]. Furthermore, assume A ∈ L (X1,X0), and B ∈
L (X1,L2(U ,X1/2)). Additional assumptions on A and X1 are provided below.
In Remark 4.4, we discuss which of these conditions can be omitted or gener-
alized.

Assumption 4.1. Let X0 be a UMD space with type 2, and suppose that there
is a λ0 ≥ 0 such that λ0 + A is a sectorial operator on X0 and set X1 = D(A).
Let p ∈ [2,∞), κ ∈ [0, p/2 − 1) ∪ {0}. The mappings

F : X1 → X0 and G : X1 → γ(U ,X 1
2
)

satisfy the following local Lipschitz condition: For each n ≥ 1, there exists
Ln > 0 such that for all u, v ∈ X1 with ‖u‖X

1− 1+κ
p

,p
, ‖v‖X

1− 1+κ
p

,p
≤ n,

‖F (u) − F (v)‖X0 + ‖G(u) − G(v)‖γ(U,X 1
2
)
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≤ Ln

m∑
j=1

(
1 + ‖u‖ρj

Xβj,1
+ ‖v‖ρj

Xβj,1

)
‖u − v‖Xβj,1 ,

where βj ∈ (1 − 1+κ
p , 1) and ρj ≥ 0 satisfy

1 + κ

p
≤ (1 + ρj)(1 − βj)

ρj
for all j ∈ {1, . . . , m}. (4.3)

The condition (4.3) imposes an upper bound on 1+κ
p , which, in turn,

determines a lower bound for the smoothness of the trace space X1− 1+κ
p ,p where

the initial data u0 is taken. These bounds depend solely on the parameters of
the local Lipschitz condition for F and G. Even in the deterministic case, (4.3)
is known to be sharp for local existence and uniqueness (see [220, Theorem
2.4]).

The conditions on the deterministic part F and the stochastic part G
are very similar; however, G is required to have more space regularity (it is
X1/2-valued) due to the reduced parabolic regularization of the noise term.
To handle infinite-dimensional noise, we assume G takes values in the space of
γ-radonifying operators γ(U ,X 1

2
) (see Subsection 2.5). Given the constraints

on κ and p, we always have X1− 1+κ
p ,p ⊆ X 1

2
. Illustrative examples that clarify

the above are discussed in Subsection 4.3.
We define the couple (p, κ) or the setting (X0,X1, p, κ) as critical (resp.,

subcritical) for (4.1) if (4.3) holds with equality for some j (respectively, with
strict inequality for all j). Similar terminology extends naturally to the trace
space X1− 1+κ

p ,p. To provide an intuitive understanding of (4.3), we first rewrite
it as

(a) ρj

(
βj − 1+

1 + κ

p

)
+βj ≤ 1, (b) βj −

(
1− 1 + κ

p

)
≤ 1

ρj + 1
1 + κ

p
.

(4.4)
Part (a) of (4.4) can be roughly interpreted as follows. Due to parabolic

regularity theory, the smoothness of the solution is always one order higher
than that of the inhomogeneity or nonlinearity. This additional regularity is
leveraged to control the nonlinearities. The estimates for F and G consist of
two components: a “Lipschitz constant” which grows as a power of ρj , and a
“difference” part, both measured in the Xβj ,1-norm.

• In the first part of (a), the condition is derived from the distance of βj

to the smoothness parameter of the trace space X1− 1+κ
p ,p, modulated by

the power ρj .
• In the second part of (a), βj ∈ (0, 1) appears with a coefficient of one due

to the contribution of the “difference part”.
The condition (4.4) appeared in [11,220] in a more general form. Specifically,
βj − 1 + 1+κ

p was replaced by ϕj − 1 + 1+κ
p where ϕj ∈ [βj , 1). For the latter,

the above interpretation of the critical condition carries over verbatim.
Formula (b) says that the roughness of the nonlinearity, represented by

βj , can exceed the one of the trace space 1− 1+κ
p by a factor 1

ρj+1 < 1 appearing
in front of the quantity 1+κ

p .
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In the following remark, we offer an alternative perspective on the criti-
cality condition (4.3).

Remark 4.2. (Growth condition and criticality) Note that Assumption 4.1
(with v = 0) implies the following growth condition: For all n ≥ 1 and u ∈ X1

satisfying ‖u‖X
1− 1+κ

p
,p

≤ n, one has

‖F (u)‖X0 + ‖G(u)‖γ(U,X 1
2
) �n

m∑
j=1

(
1 + ‖u‖ρj+1

Xβj,1

)
. (4.5)

An important consequence of the above is that for all T < ∞ and u ∈
Lp(0, T, wκ;X1) that satisfy supt∈[0,T ] ‖u(t)‖X

1− 1+κ
p

,p
≤ n, ‖F (u)‖X0 and

‖G(u)‖γ(U,X 1
2
) are in Lp(0, T, wκ). We discuss this in some detail, as it reveals

another interpretation of the (sub)criticality condition (4.3). By Assumption
4.1,

‖F (u)‖Lp(0,T,wκ;X0) + ‖G(u)‖Lp(0,T,wκ;γ(U,X 1
2
))

�n

m∑
j=1

∥∥∥(
1 + ‖u‖ρj+1

Xβj,1

)∥∥∥
Lp(0,T,wκ)

�n

m∑
j=1

(
T

1+κ
p + ‖u‖ρj+1

Lp(ρj+1)(0,T,wκ;Xβj,1)

)
. (4.6)

Assuming 1+κ
p ≤ (1+ρj)(1−βj)

ρj
for a fixed j, Lemma 4.3 below shows

‖u‖ρj+1

Lp(ρj+1)(0,T,wκ;Xβj,1)
� T εj/p‖u‖θj(ρj+1)

Lp(0,T,wκ;X1)
‖u‖(1−θj)(ρj+1)

L∞(0,T ;X
1− 1+κ

p
,p

), (4.7)

where εj ≥ 0 and θj ∈ (0, 1) are such that (1 − θj)(ρj + 1) ≤ 1. Further-
more, when (p, κ) are subcritical, then εj > 0 and the exponent on the
Lp(0, T, wκ;X1)-norm of u is strictly less than 1. In the critical case, this expo-
nent equals 1. In particular, if (p, κ) are critical, the constant on the RHS(4.7)
does not tend to 0 as T ↓ 0 and therefore the existence of solutions to (4.1)
based on fixed point methods is quite delicate, see [11,220].

The estimate (4.7) together with [11, Proposition 2.10] can be used to
avoid [11, Lemma 4.9] and thus slightly improve the setting in [11], where
Xβj

was used instead of Xβj ,1 in the assumptions on F and G. A similar
improvement can be obtained in [220], where the condition called (S) before
Remark 1.1 can be omitted. This refinement is elaborated in detail in [135,
Section 18.2].

Lemma 4.3. (Critical interpolation estimate) Suppose that p ∈ [2,∞) and κ ∈
[0, p/2 − 1) ∪ {0}. Let β ∈ (1 − 1+κ

p , 1), ρ ≥ 0 be such that 1+κ
p ≤ (1+ρ)(1−β)

ρ .
Then there are constants C and ε ≥ 0 independent of T such that for all
u ∈ Lp(0, T, wκ;X1) ∩ L∞(0, T ;X1− 1+κ

p ,p) one has

‖u‖ρ+1
Lp(ρ+1)(0,T,wκ;Xβ,1)

≤ CT ε/p‖u‖(1−θ)(ρ+1)
L∞(0,T ;X

1− 1+κ
p

,p
)‖u‖θ(ρ+1)

Lp(0,T,wκ;X1)
,
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where θ = 1 − 1−β
1+κ

p

∈ (0, 1) satisfies θ(ρ + 1) ≤ 1. Finally, [ε > 0 and θ(ρ + 1)

< 1] if and only if 1+κ
p < (1+ρ)(1−β)

ρ .

Actually, the proof below holds for any p ∈ (1,∞) and κ ∈ [0, p − 1).

Proof. The above estimate can be extracted from the proof in [135, Lemma
18.2.7]. We present a detailed proof here since it is important to see how the
(sub)criticality condition enters.

The reiteration theorem for real interpolation (see [135, (L.2) and The-
orem L.3.1]) gives that Xβ,1 = (X1− 1+κ

p ,p,X1)θ,1 with θ = 1 − 1−β
1+κ

p

∈ (0, 1),

and therefore ‖x‖Xβ,1 ≤ C‖x‖1−θ
X

1− 1+κ
p

,p

‖x‖θ
X1

for x ∈ X1. Applying the latter

with x = u(t) and taking Lp(ρ+1)(0, T, wκ)-norms we obtain

‖u‖p(ρ+1)

Lp(ρ+1)(0,T,wκ;Xβ,1)
≤ Cp(ρ+1)‖u‖(1−θ)p(ρ+1)

L∞(0,T ;X
1− 1+κ

p
,p

)

∫ T

0
‖u(t)‖θp(ρ+1)

X1
tκ dt

≤ Cp(ρ+1)‖u‖(1−θ)p(ρ+1)
L∞(0,T ;X

1− 1+κ
p

,p
)T

ε‖u‖θp(ρ+1)
Lp(0,T,wκ;X1)

,

where in the last step we used Hölder’s inequality with θ(ρ + 1) + 1
r = 1

and ε = 1+κ
r . Note that thanks to 1+κ

p ≤ (1+ρ)(1−β)
ρ one has θ(ρ + 1) ≤ 1,

so that Hölder’s inequality can be applied. For the final assertion note that
θ = 1 − 1−β

1+κ
p

< 1
ρ+1 . �

Remark 4.4. (Comments and comparison with the assumptions in [11])
• The assumptions on A and X1 in Assumption 4.1 can be removed in case

there exists a sectorial operator A0 on X0 such that D(A0) = X1.
• As in [11], the results in the current manuscript extend in case the map-

pings A,B, F and G are (t, ω)-dependent in a progressively measurable
way, provided the stochastic maximal Lp-regularity assumption holds and
the estimates of Assumption 4.1 and (4.5) hold uniformly in (t, ω).

• In Assumption 4.1 we used the real interpolation space Xβj ,1 to for-
mulate the estimate for F and G. In contrast, in [11] uses the complex
interpolation spaces Xβj

, which leads to a stronger condition because
Xβj ,1 ↪→ Xβj

, see (2.3).
• In [11], we assumed that F = FL + Fc + FTr and G = GL + Gc + GTr,

where (Fc, Gc) are the “critical parts” as described in Assumption 4.1,
(FTr, GTr) are the “trace parts” that are locally Lipschitz on the trace
space X1− 1+κ

p ,p → X0 × γ(U ,X1/2), and (FL, GL) are globally Lipschitz
mapping X1 → X0×γ(U ,X1/2) (with relatively small Lipschitz constant).
In this manuscript, the trace parts are covered under the current assump-
tions, though distinguishing them may be conceptually useful. The global
Lipschitz parts (FL, GL) are omitted here, as they are typically unneces-
sary for applications.

4.2. Local existence and uniqueness

Definition 4.5. Suppose Assumption 4.1 is satisfied for some p ∈ [2,∞) and
κ ∈ [0, p/2 − 1) ∪ {0}. A pair (u, σ) is called an Lp

κ-strong solution of (4.1) if
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σ : Ω → [0,∞) is a stopping time and u : [0, σ] → X0 is a strongly progressively
measurable process such that

u ∈ Lp(0, σ, wκ;X1) ∩ C
(
[0, σ];X1− 1+κ

p ,p

)
,

and the following identity holds a.s. for all t ∈ [0, σ]:

u(t) − u0 +
∫ t

0
Au(s) ds =

∫ t

0
F (u(s)) ds +

∫ t

0
1[0,σ](s)[Bu(s) + G(u(s))] dW (s).

(4.8)

The integrals in (4.8) are well-defined. From Remark 4.2 and the assump-
tions on u, we see that F (u) ∈ Lp(0, σ, wκ;X0) and G(u) ∈ Lp(0, σ, wκ; γ(U ,
X1/2)) a.s. It remains to observe that due to the restrictions on κ we have
Lp(0, σ, wκ) ↪→ L2(0, σ) by Hölder’s inequality. Progressive measurability of
F (u) and G(u) holds as well, and thus the Bochner integral and stochastic
integral in (4.8) are well-defined (see Subsection 2.6).

Definition 4.6. Suppose Assumption 4.1 is satisfied for some p ∈ [2,∞) and
κ ∈ [0, p/2 − 1) ∪ {0}.

(1) A pair (u, σ) is called an Lp
κ-local solution to (4.1) if σ : Ω → [0,∞] is a

stopping time and u : [0, σ) → X0 is a strongly progressively measurable
process, and there exists an increasing sequence of stopping times (σn)n≥1

such that limn→∞ σn = σ a.s., and (u|[0,σn], σ) is a Lp
κ-strong solution to

(4.1). The sequence (σn)n≥1 is called a localizing sequence for (u, σ).
(2) An Lp

κ-local solution (u, σ) to (4.1) is called unique if for every Lp
κ-local

solution (v, τ) one has that a.s. u = v on [0, σ ∧ τ).
(3) An Lp

κ-local solution (u, σ) to (4.1) is called Lp
κ-maximal if for any other

unique Lp
κ-local solution (v, τ) to (4.1) one has that a.s. τ ≤ σ and u = v

on [0, τ).
(4) An Lp

κ-local solution (u, σ) of (4.1) is called global if σ = ∞ a.s.

If the word “unique” is left out in Definition 4.6((3)), then one obtains an
equivalent definition, see [12, Remark 5.6]. As explained in the latter remark,
in the quasilinear case (not considered in current manuscript) extra conditions
are required.

We can now state the main local existence and uniqueness result.

Theorem 4.7. (Local existence and uniqueness) Let p ∈ [2,∞) and κ ∈
[0, p/2 − 1) ∪ {0} and suppose that Assumption 4.1 holds. Assume that A ∈
L (X1,X0) and B ∈ L (X1, γ(U ,X1/2)) satisfy

(A,B) ∈ SMR•
p,κ.

Then for every u0 ∈ L0
F0

(Ω;X1− 1+κ
p ,p), there exists an Lp

κ-maximal solution
(u, σ) to (4.1) with σ > 0 a.s. Moreover, the following properties hold:

(1) (Regularity) For each localizing sequence (σn)n≥1 for (u, σ) one has
• if p > 2 and κ ∈ [0, p/2 − 1), then for all n ≥ 1 and all θ ∈ [0, 1/2)

u ∈ Hθ,p(0, σn, wκ;X1−θ) ∩ C([0, σn];X1− 1+κ
p ,p) a.s.,
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and one has the following instantaneous regularity

u ∈ Hθ,p
loc ((0, σ);X1−θ) ∩ C((0, σ);X1− 1

p ,p) a.s. (4.9)

• if p = 2, then for all n ≥ 1,

u ∈ L2(0, σn;X1) ∩ C([0, σn];X 1
2
) a.s.

(2) (Localization) Let v0 ∈ L0
F0

(Ω;X1− 1+κ
p ,p). If (v, τ) is the Lp

κ-maximal
solution to (4.1) with initial value v0, then a.s. on the set {u0 = v0} one
has τ = σ and u = v on [0, σ ∧ τ).

The results mentioned above were established in [11, Theorem 4.8], which
also addressed the quasilinear case and considered (t, ω)-dependent coefficients.
The proof relies on a Banach fixed point argument applied to a truncated
version of the equation, combined with suitable stopping time techniques. For
detailed proofs the reader is referred to [11, Sections 4.3-4.5].

Assumption 4.1 is slightly weaker than the corresponding conditions in
[11], owing to the use of the real interpolation spaces Xβj ,1. However, the
arguments from the earlier work extend directly to this setting by leveraging
Lemma 4.3. One of the strengths of Theorem 4.7 is that it is very general but
still powerful/optimal in concrete situations. We will demonstrate its appli-
cability to a wide range of parabolic SPDEs to obtain local existence and
uniqueness.

One can already see some of the uses of the weight wκ(t) = tκ in Theorem
4.7. It can be used to enlarge the class of initial values one can consider by
choosing κ ∈ [0, p/2 − 1) large. Moreover, in the latter case, we see the follow-
ing parabolic instantaneous regularization effect: If κ > 0 and X1 is strictly
contained in X0,

u(t) ∈ X1− 1
p ,p � X1− 1+κ

p ,p a.s. on 0 < t < σ, even if u0 ∈ X1− 1+κ
p ,p a.s.

(4.10)
Theorem 5.6 further explores this regularization effect, demonstrating that
it can be significantly extended as a consequence of blow-up criteria. For a
comprehensive discussion, see Section 5.

Finally, we establish the continuity of solutions with respect to the initial
data u0 in the path space defined in (4.2). The proof follows directly from the
arguments in [13, Proposition 2.9]. Together with Theorem 4.7, this continuity
result ensures the local well-posedness of (4.1) in X1− 1+κ

p ,p.

Proposition 4.8. (Local continuity) Let the assumptions of Theorem 4.7 hold
and assume u0 ∈ Lp(Ω;X1− 1+κ

p ,p). Let (u, σ) be the maximal Lp
κ-solution to

(4.1). There exist constants C0, T0, ε0 > 0 and stopping times σ0, σ1 ∈ (0, σ]
a.s. for which the following assertion holds:

For each v0 ∈ Lp
F0

(Ω;X1− 1+κ
p ,p) with E‖u0 − v0‖p

X
1− 1+κ

p
,p

≤ ε0, the

maximal Lp
κ-solution (v, τ) to (4.1) with initial data v0 has the property that

there exists a stopping time τ0 ∈ (0, τ ] a.s. such that for all t ∈ [0, T0] and
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γ > 0, one has

P
(

sup
r∈[0,t]

‖u(r) − v(r)‖X
1− 1+κ

p
,p

≥ γ, σ0 ∧ τ0 > t
)

≤ C0

γp
E‖u0 − v0‖p

X
1− 1+κ

p
,p

,

(4.11)

P
(
‖u − v‖Lp(0,t,wκ;X1) ≥ γ, σ0 ∧ τ0 > t

)
≤ C0

γp
E‖u0 − v0‖p

X
1− 1+κ

p
,p

, (4.12)

P(σ0 ∧ τ0 ≤ t) ≤ C0

[
E‖u0 − v0‖p

X
1− 1+κ

p
,p

+ P(σ1 ≤ t)
]
. (4.13)

The stopping time τ0 depends on (u0, v0). To some extent, the estimates
in the above result (4.11)-(4.12) show that (u, σ) depends continuously on the
initial data u0. Meanwhile, (4.13) provides a measure of the size of the length
of the time interval on which the continuity estimates (4.11)-(4.12) hold. A
key point is that the right-hand side of (4.13) depends on v0, but not on v. In
particular, {τ0 ≤ t} has small probability if t ∼ 0 and v0 is close to u0.

For future reference, note that the observation in [13, Remark 3.4] extends
trivially to stochastic evolution equations of the form (4.1).

4.3. Criticality in polynomial nonlinearities

Here we illustrate how to check Assumption 4.1 in a common scenario.
Specifically, we consider the nonlinearity of Allen–Cahn-type. This example
will also serve as a basis for addressing the Allen–Cahn equation in Subsections
8.1.

4.3.1. Allen–Cahn-type nonlinearity. In this example, we demonstrate how
to verify Assumption 4.1 for the following second-order parabolic PDE, often
referred to as Allen–Cahn equation

du =
(
Δu + u − u3

)
dt +

∑
n≥1

[
(bn · ∇)u + gn(·, u)

]
dWn

t on O,

u = 0 on ∂O, (4.14)

where O is a bounded smooth domain in R
d with d ≥ 2. A detailed investiga-

tion of this equation is provided in Subsection 8.1. The primary motivation for
considering (4.14) is that the deterministic Allen–Cahn equation with lead-
ing order nonlinearity, ∂tu = Δu − u3, shares the same local scaling as the
Navier–Stokes equations (see Subsection 1.2 and in particular (1.6)). Based on
the argument in Subsection 1.2, we expect critical spaces of the form B

d/q−1
q,p .

Below, we verify that Theorem 4.7 identifies these spaces correctly.
To simplify the analysis, we consider the weak PDE setting: for q ∈ [2,∞),

define

X0 = H−1,q(O) and X1 = H1,q
0 (O) = {u ∈ H1,q(O) : u|∂O = 0}.

(4.15)
Here, X1 captures the second-order nature of the SPDE, as it includes two
more weak derivatives than X0. The goal of this subsection is to investigate
the criticality of the Allen–Cahn-type nonlinearity F (u) = ±u3 (variants with
F (u) = ±un or other functions are possible as well).
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To study the mapping property of u 
→ F (u), note the following inclusion

Xβ,1 ↪→ Xβ = [X0,X1]β ↪→ [H−1,q(O),H1,q(O)]β = H−1+2β,q(O). (4.16)

Now, we perform the main estimate. Using Sobolev embeddings, we know
Lr(O) ↪→ H−1,q(O) for all r ∈ (1,∞) satisfying −d

r ≥ −1 − d
q . Since |F (u) −

F (v)| ≤ C(u2 + v2)|u − v|, Hölder’s inequality implies

‖F (u) − F (v)‖X0 � ‖F (u) − F (v)‖Lr(O)

�
∥∥(u2 + v2)|u − v|∥∥

Lr(O)

� ‖u2 + v2‖L3r/2(O)‖u − v‖L3r(O)

� (‖u‖2
L3r(O) + ‖v‖2

L3r(O))‖u − v‖L3r(O).

Again, using Sobolev embeddings, H−1+2β,q(O) ↪→ L3r(O) holds for all β ∈
(0, 1) such that −1 + 2β − d

q ≥ − d
3r . Combining this with (4.16), we obtain

‖F (u) − F (v)‖X0 � (‖u‖2
Xβ,1

+ ‖v‖2
Xβ,1

)‖u − v‖Xβ,1 .

This matches the form required in Assumption 4.1 with m = 1 and ρ = ρ1 = 2.
However, the choice β1 = β requires β > 1 − 1+κ

p . Otherwise, if β < 1 − 1+κ
p ,

we select β1 = 1 − δ 1+κ
p with δ ∈ ( ρ

ρ+1 , 1), ensuring β1 > 1 − 1+κ
p and the

condition (4.3) holds with the strict inequality (i.e. is subcritical), see (4.4)(b).
To analyze the criticality in (4.3), we need to specify the values of r and

β in the above construction. To this end, we distinguish the following cases.
Moreover, as it turns out below, to ensure β < 1, in all cases, we have to
assume q > d

2 .

(1) Case I: q > d
2 , and either q �= 2 or d �= 2. In this case, we can choose

r := dq
q+d corresponding to a sharp Sobolev embedding Lr ↪→ H−1,q, as

the relation −d
r = −1 − d

q holds. Next, for β, we observe that the sharp
Sobolev embedding in H−1+2β,q ↪→ L3r is achieved when β = 1

3 + d
3q .

Note that β < 1 since q > d
2 .

(2) Case II: q = 2 and d = 2. In this case, for any ε > 0, we can choose
r = 1+ε and correspondingly β = 2

3 +δε, where δε > 0 and limε→0 δε = 0.

Next, we examine the form of the condition (4.3) in these settings. Before
proceeding, it is useful to recall from the scaling argument in Subsection 1.2
that we expect the space for initial data in Theorem 4.7 to be given by a
Besov-type space with smoothness d

q −1 and macroscopic integrability q. Note
that the condition q > d

2 is natural because, when q ≤ d
2 , the smoothness of the

critical space is d
q − 1 ≥ 1 which equals or exceeds the smoothness of X1 as in

(4.15). Moreover, since X1− 1+κ
p ,p is a Besov space with smoothness 1 − 2 1+κ

p ,

the condition 1+κ
p < 1

2 implies that the smoothness of the trace space cannot
be lower than 0. Therefore, the expected smoothness for the trace space is
d
q − 1, and this leads to the restriction q < d. This formal reasoning can be
made precise by focussing on Case I, where sharp Sobolev embeddings are
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applied (preserving the scaling). In Case I, the condition (4.3) becomes

1 + κ

p
≤ 3(1 − β)

2
. (4.17)

If equality holds in this condition, then automatically β > 1 − 1+κ
p . We now

examine when equality holds in (4.17) for β of Case I. In this case, (4.17)
becomes

1 + κ

p
= 1 − d

2q
. (4.18)

Since 1+κ
p < 1

2 , this forces q < d, as anticipated. Therefore, in Case I, we find
that if

d
2 < q < d, and either q > 2 or d �= 2, (4.19)

then Theorem 4.7 ensures local well-posedness with initial data in

X1− 1+κ
p ,p = DB

1−2 1+κ
p

q,p (O)
(4.17)

= DB
d
q −1
q,p (O),

where DB is a Besov space with Dirichlet boundary conditions as discussed in
Example A.4. The above trace space has the correct scaling for the Allen–Cahn
equation, as explained in Subsection 1.2. Moreover, by (A.4), if we assume

q ∈ (d − 1, d), then DB
d
q −1
q,p (O) = B

d
q −1
q,p (O), i.e. no boundary conditions are

required for the initial data u0.
Local well-posedness can still be established using Theorem 4.7 for all the

other cases not considered in (4.19) but still within Cases I and II. In these
situations, however, the space for the initial data does not exhibit the natural
scaling of the Allen–Cahn nonlinearity. As noted earlier, the choice (4.19) gives
the full set of critical spaces achievable within the weak PDE framework, i.e.,
with the choice in (4.15). As we will see in Subsection 8.1, a broader range of
critical spaces can be obtained by choosing Xj = DH2j−δ,q(O) for δ ∈ [1, 2)
and j ∈ {0, 1}.

Finally, let us turn our attention to the diffusion coefficients gn(·, u).
Until now, we have focused primarily on the deterministic nonlinearity. At
this stage, it is useful to examine if there is a critical growth of gn for which
the diffusion term gn(·, u) dWn

t exhibits the same “roughness” as −u3 dt. More
precisely, we seek m > 1 such that if gn(·, u) = |u|m for some n ≥ 1, then the
term gn(·, u) dWn

t scales similarly to u3 dt. This question can be answered by
recalling that the deterministic Allen–Cahn equation is invariant under the
Navier–Stokes scaling in (1.6), i.e. for λ > 0,

uλ(t, x) = λ1/2u(λt, λ1/2x), (t, x) ∈ R+ × R
d,

where we (roughly) rescale a ball in the domain to the whole space. Arguing
as in (1.7), on R

d, the above scaling gives:∫ t/λ

0
(uλ(s, x))3 ds = λ1/2

∫ t

0
(u(s, λ1/2x))3 ds,∫ t/λ

0
gn(·, uλ(s, x)) dβn

s,λ = λ(m−1)/2
∫ t

0
|u(s, λ1/2x)|m dWn

t ,
(4.20)

where βn,λ = λ−1/2Wn
λt is the rescaled Brownian motion. Hence, the criti-

cal growth for the diffusion is m = 2. In case (gn(·, u))n≥1 grows more than
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quadratically, the prefactor in the scaling for g in (4.20) will have a power
larger than 1

2 . Therefore, in the latter case, as λ → ∞, the stochastic part
dominates the deterministic term, and the space of initial data for local well-
posedness will only depend on the diffusion g. However, we expect that global
well-posedness will be problematic in that case.

We leave it to the reader to check that if gn : R → �2 satisfies the
quadratic type bound ‖(gn(y) − gn(y′))n≥1‖
2 � (1 + |y| + |y′|)|y − y′|, then
G(u) = (gn(u))n≥1 satisfies the required estimate in Assumption 4.1. Further
details can be found in Subsection 8.1.

The critical relationship between drift and diffusion growth is not limited
to the Allen–Cahn situation. Indeed, it extends to more general polynomial-
type nonlinearities as outlined in [11, Subsection 5.3.2]. In the context of
reaction-diffusion equations, the optimal balance between drift and diffusion is
captured in Assumption 8.4(3). Additionally, we note tay conservative terms
of the form F (u) = div Φ(u) where Φ is a vector field, can also be included.
Specifically, for the Allen–Cahn equation (4.14), quadratic growth for Φ is crit-
ical. For other reaction-diffusion equations, this condition is discussed in [13,
Assumption 2.1(4)]). Conservative terms frequently arise in fluid dynamics.
For further details on these arguments, the reader is encouraged to explore
Subsection 7.2, Remark 7.9, and Subsection 8.4.

5. Blow-up criteria and instantaneous parabolic regularization

5.1. Blow-up criteria

Theorem 4.7 provides a robust framework for proving the existence of
Lp

κ-maximal (unique) solution (u, σ) to (4.1). In applications to SPDEs, the
question of whether global well-posedness holds (i.e. σ = ∞ a.s.), is crucial.
The occurrence of explosion or blow-up, where P(σ < ∞) > 0, can correspond
to the “unphysical” behaviour of the underlying SPDE. Addressing this ques-
tion is challenging, as our setting also includes complex problems like the 3D
Navier–Stokes equations, for which global well-posedness remains largely open
[98].

Global well-posedness is often tied to subtle energy balances, which in
the context of PDEs are expressed through a priori bounds on the lifetime
[0, σ) of the Lp

κ-maximal solution (u, σ). While abstract theory alone may not
fully capture these intricate energy dynamics - often associated with “sign”
or “dissipative” conditions - it is nevertheless effective for establishing general
conditions under which a blow-up can occur. Combining such abstract results
with energy estimates frequently leads to global well-posedness, see e.g. Section
6 and [5,6,8,9,14].

A blow-up criterion for (u, σ) can be expressed as:

P(σ < ∞, u ∈ Eσ) = 0, (5.1)

where Eσ represents a specific property of u or a function space to which u
might belong. The subscript σ stresses that this property involves the entire
lifetime [0, σ).
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According to Theorem 4.7, the condition u ∈ Eσ essentially imposes con-
straints on u(t) as t ≈ σ. From this criterion, one can deduce σ = ∞ a.s. if one
can prove u ∈ Eσ a.s. on {σ < ∞}. The latter requires some structure of the
SPDE under consideration, which is often encoded in energy estimates. The
efficiency of a blow-up criterion depends on the choice of E . In particular, a
blow-up criterion is more practical when the condition u ∈ Eσ is less restric-
tive. For example, if E is a function space, it is desirable for E to be as large as
possible. However, the function space E cannot be too rough, as the assertion
u ∈ Eσ has to prevent possible ill-behaviour of the solutions (e.g. explosion or
loss of regularity in finite time). As one can show [220, Subsection 2.2], the
critical setting introduced in Section 4 provides the “optimal” framework for
establishing blow-up criteria, at least in an abstract sense.

This section is organized as follows. Below we review the results from [12,
Section 4], where blow-up criteria for quasilinear stochastic evolution equations
were studied. Additionally, we present new results and provide some simplified
proofs, which are given in Subsection 5.2. Finally, in Subsection 5.3, we discuss
how blow-up criteria can also be employed to improve the regularity of the Lp

κ-
maximal solution (u, σ) following the approach of [12, Section 6].

The main result of this subsection reads as follows.

Theorem 5.1. (Critical case) Suppose that the conditions of Theorem 4.7 hold
with p ∈ [2,∞) and κ ∈ [0, p/2 − 1) ∪ {0}, and let (u, σ) be the Lp

κ-maximal
solution to (4.1). Then

(1) P
(

σ < ∞, lim
t↑σ

u(t) exists in X1− 1+κ
p ,p

)
= 0;

(2) P

(
σ < ∞, sup

t∈[0,σ)

‖u(t)‖X
1− 1+κ

p
,p

+ ‖u‖Lp(0,σ;X1− κ
p

) < ∞
)

= 0.

Note that the norms in (2) are well-defined since, by Theorem 4.7 and
Sobolev embedding with weights (see [11, Proposition 2.7]):

u ∈ H
κ
p ,p

loc

(
[0, σ), wκ;X1− κ

p

)
⊆ Lp

loc

(
[0, σ);X1− κ

p

)
a.s.

Theorem 5.1 should be compared with [12, Theorem 4.10]. Note that (1)
is new, and (2) improves [12, Theorem 4.10(3)], as Assumption 4.1 is (slightly)
weaker compared to the one used in [12]. The deterministic version of (1)
can be found in [220, Corollary 2.3]. However, our proof differs from the one
in [220], as the approach used in the latter heavily relies on the invariance
under time translation of the deterministic version of (4.1). Our proof also
provides new insights in the case of time-dependent leading operators (A,B).
The latter is also new in the deterministic case. Finally, (1) also extends to the
quasilinear setting of [12, Theorem 4.9]. As the proof below shows, one needs
an additional (but a rather mild) assumption, i.e. the existence of a suitable
extension operator for the couple (X0,X1). The reader is referred to Step 1 in
the proof of Theorem 5.1(1) for details.

The blow-up criterion (1) will be applied to 3D Navier–Stokes equations
in Subsection 8.4 leading to an “endpoint” version of the Serrin type criteria
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proven in [16, Theorem 2.9]. Moreover, (1) can also be useful when proving
bootstrapping results, see Subsection 5.3 and [12, Section 6]. Item (2) can
be often checked in applications, as the L∞-norm is easier to check through
energy estimates, see e.g. [14].

Next, let us discuss the sharpness of the conditions in Theorem 5.1. Note
that (1) and (2) are equivalent to (5.1) with Et = C([0, t];X1− 1+κ

p ,p) and Et =
L∞(0, t;X1− 1+κ

p ,p)∩Lp(0, t;X1− κ
p
), respectively. All the previously mentioned

spaces have space-time Sobolev index1 given by 1− 1+κ
p and therefore they are

sharp in the case that the critical condition (4.3) holds with equality for some
j.

It is unclear to us if Theorem 5.1(2) holds with the sup-norm or equiv-
alently if Theorem 5.1(2) holds without the term ‖u‖Lp(0,σ;X1− κ

p
). On this

point, comments are given below Problem 11 in the special case of the 3D
Navier–Stokes equations. In the subcritical case, this holds as the following
result proven in [12, Theorem 4.10(3)] shows. We provide a shorter proof in
Subsection 5.2 below.

Theorem 5.2. (Subcritical case) Suppose that the conditions of Theorem 4.7
hold with p ∈ [2,∞) and κ ∈ [0, p/2 − 1) ∪ {0}, and let (u, σ) be the Lp

κ-
maximal solution to (4.1). Then

P

(
σ < ∞, sup

t∈[0,σ)

‖u(t)‖X
1− 1+κ

p
,p

< ∞
)

= 0 if (p, κ) is noncritical.

Although the above function space Et = L∞(0, t;X1− 1+κ
p ,p) has space-

time Sobolev index 1− 1+κ
p , it is not sharp since the couple (p, κ) is noncritical.

Before going into the proofs, it is important to note that there are also
other blow-up criteria, often referred to as Serrin-type criteria, due to their
resemblance to the Serrin condition for the Navier–Stokes equations (see, e.g.,
[182]). In these criteria, the supremum term in Theorem 5.1(2) can be omitted.
For stochastic variants of this criterion, the reader is referred to [12, Theorem
4.11]. However, as follows from the proof of that result, it is crucial to work
with the complex interpolation spaces Xβj

rather than Xβj ,1 in Assumption
4.1 unless κ = 0 and ρj ≤ 1 for all j.

Remark 5.3. To check global well-posedness through any of the stated blow-
up criteria, it suffices to consider uniformly bounded u0 : Ω → X1− 1+κ

p ,p. This
follows from a localization argument based on Theorem 4.7(2). The reader is
referred to [12, Proposition 4.13] for details. One advantage of assuming inte-
grable initial data u0 is that it allows for the application of moment estimates
for the solutions.

Finally, we recall a fundamental property of the time σ which follows
from any of the blow-up criteria (see [12, Proposition 4.12]).

1The space-time Sobolev index of Lp(0, t; Xθ,r) is θ − 1
p
.
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Proposition 5.4. (Predictability of σ) Suppose that the conditions of Theorem
4.7 hold with p ∈ [2,∞) and κ ∈ [0, p/2 − 1) ∪ {0}, and let (u, σ) be the Lp

κ-
maximal solution to (4.1). Then for any localizing sequence (σn)n≥1 for (u, σ),
one has that for all n ≥ 1,

P(σ < ∞, σn = σ) = 0.

5.2. Proof of Theorems 5.1 and 5.2

We begin by proving Theorem 5.2, which introduces some tools and tech-
niques that will also be used in the proof of Theorem 5.1.

To prove these results, we rely on the following simpler blow-up criterion:

P

(
σ < T, sup

t∈[0,σ)

‖u(t)‖X
1− 1+κ

p
,p

+ ‖u‖Lp(0,σ,wκ;X1) < ∞
)

= 0. (5.2)

This criterion follows from [12, Theorem 4.10(1)] and Lemma 4.3. We briefly
outline the proof of this result. Using stochastic maximal Lp-regularity, one can
show that on the set appearing in (5.2), the limit limt↑σ u(t) exists. The proof
that the probability vanishes then proceeds by contradiction. By restarting
the equation at the random time σ on some nontrivial subset of A ⊆ Ω,
we can extend the lifetime of the solution u on this set A and this leads to
a contradiction with the maximality of σ. The details can be found in [12,
Sections 5.1 and 5.2].

5.2.1. Proof of Theorem 5.2. Before going into the proof, let us comment on
the main observation behind the proof of Theorem 5.2. As in [12], we argue
by contradiction and derive an a priori estimate which contradicts a stronger
blow-up criterion (which was proven in [12] arguing by contradiction with
the maximality of the Lp

κ-maximal solution (u, σ) to (4.1)). For simplicity, we
assume that Assumption 4.1 holds with m = 1 and we set ρ := ρ1, β := β1. In
case of subcritical nonlinearities, by Remark 4.2 and Lemma 4.3, there exists
δ ∈ (0, 1) such that

‖F (u)‖Lp(0,σ,wκ;X0) + ‖G(u)‖Lp(0,σ,wκ;γ(U,X1/2))

≤ C

[
1 + ‖u‖ρ+1−δ

L∞(0,σ;X
1− 1+κ

p
,p

)‖u‖δ
Lp(0,σ,wκ;X1)

]

≤ Cε + Cε‖u‖(ρ+1−δ)/(1−δ)
L∞(0,σ;X

1− 1+κ
p

,p
) + ε‖u‖Lp(0,σ,wκ;X1). (5.3)

In particular, if ‖u‖L∞(0,σ;X
1− 1+κ

p
,p

) is known to be bounded, then one can

estimate ‖u‖Lp(0,σ,wκ;X1) by combining stochastic maximal Lp-regularity and
the above with ε sufficiently small.

Proof of Theorem 5.2. By Remark 5.3 we may assume u0 is uniformly bounded
in X1− 1+κ

p ,p. It is enough to show that for any T < ∞,

P

(
σ < T, sup

t∈[0,σ)

‖u(t)‖X
1− 1+κ

p
,p

< ∞
)

= 0. (5.4)
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For simplicity, we assume that Assumption 4.1 holds with m = 1. The general
case is analogous.

We prove (5.4) by contradiction. Thus, suppose that the LHS(5.4) has a
positive probability. In particular, there exists a set Ω̃ of positive probability
and M ≥ 1 such that

sup
Ω̃

sup
t∈[0,σ)

‖u(t)‖X
1− 1+κ

p
,p

< M,

where we may assume M is so large that ‖u0‖X
1− 1+κ

p
,p

< M a.s. Now, we

perform the main estimate as described in (5.3). Note that, a priori, u might
not be Lp(wκ)-integrable up to random time σ. Therefore, we need to localize
in time. For � ≥ 1, set

τ
 := inf
{

t ∈ [0, σ) : sup
s∈[0,t)

‖u(s)‖X
1− 1+κ

p
,p

≥ M, or ‖u‖Lp(0,t,wκ;X1) ≥ �
}

,

where inf ∅ := σ. Note that (τ
)
≥1 is an increasing sequence of stopping times
and therefore τ = lim
→∞ τ
 is a stopping time as well. Moreover, it holds that
P(τ = σ) ≥ P(Ω̃) > 0. By the stochastic maximal Lp-regularity of (A,B) and
[11, Proposition 3.10], there exists K ≥ 1 such that, for all � ≥ 1 and ε > 0,

‖u‖Lp(Ω;L∞(0,τ�;X1− 1+κ
p

,p
)) + ‖u‖Lp(Ω×(0,τ�),wκ;X1)

≤ K
(‖u0‖Lp(Ω;X

1− 1+κ
p

,p
) + ‖F (u)‖Lp(Ω×(0,τ�),wκ;X0)

+ ‖G(u)‖Lp(Ω×(0,τ�),wκ;γ(U,X1/2))

)
≤ KεM + KCεM

(ρ+1−δ)/(1−δ) + Kε‖u‖Lp(Ω×(0,τ�),wκ;X1),

where in the last step we used (5.3) and the definition of τ
. Choosing ε =
(2K)−1 and letting � → ∞, Fatou’s lemma gives ‖u‖Lp(Ω;L∞(0,τ ;X

1− 1+κ
p

,p
)) +

‖u‖Lp(Ω×(0,τ),wκ;X1) < ∞. Since P(τ = σ) ≥ P(Ω̃) > 0 by construction, it
follows that

P

(
σ < T, sup

t∈[0,σ)

‖u(t)‖X
1− 1+κ

p
,p

+ ‖u‖Lp(0,σ,wκ;X1) < ∞
)

≥ P(Ω̃) > 0.

The above leads to the required contradiction with (5.2). �

5.2.2. Proof of Theorem 5.1. Next, we prove Theorem 5.1. We begin with
part (1). As in the previous subsection, we first outline the main idea behind
the proof which again starts by examining Lemma 4.3. As above, we assume
that Assumption 4.1 holds with m = 1, and we let ρ := ρ1 and β := β1.
Without loss of generality, we suppose that ρ > 0. By contradiction, if Theorem
5.1(1) does not hold, then there exists a set of positive probability Ω̃ on which
u ∈ C([0, σ];X1− 1+κ

p ,p). Now, for a random time λ < σ and any mapping uλ,

we can write (recall wλ
κ(t) = (t − λ)κ)

‖F (u)‖Lp(λ,σ,wλ
κ ;X0) + ‖G(u)‖Lp(λ,σ,wλ

κ ;γ(U,X1/2))

(i)

≤ C
(
1 + ‖u‖ρ+1

Lp(ρ+1)(λ,σ,wλ
κ ;Xβ,1)

)
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≤ C
(
1 + ‖u − uλ‖ρ+1

Lp(ρ+1)(λ,σ,wλ
κ ;Xβ,1)

+ ‖uλ‖ρ+1
Lp(ρ+1)(λ,σ,wλ

κ ;Xβ,1)

)
(ii)

≤ C

(
1 + ‖u − uλ‖ρ

L∞(λ,σ;X
1− 1+κ

p
,p

)‖u − uλ‖Lp(λ,σ,wλ
κ ;X1)

+‖uλ‖ρ+1
Lp(ρ+1)(λ,σ,wλ

κ ;Xβ,1)

)
, (5.5)

where the constant C varies from line to line. In (i) we used Remark 4.2 and
in (ii) Lemma 4.3. Now, mimicking the argument in (5.3), on Ω̃, we want
to choose uλ such that ‖u − uλ‖ρ

L∞(λ,σ;X
1− 1+κ

p
,p

) is as small as needed. If

this condition is satisfied, the quantity in front of ‖u − uλ‖Lp(λ,σ,wλ
κ ;X1) can

be made arbitrarily small, and this term can then be absorbed on the left-
hand-side of a corresponding estimate as in the proof of Theorem 5.2. Since
u ∈ C([0, σ];X1− 1+κ

p ,p) on Ω̃, one might intuitively choose uλ = u(λ, ω) ∈
X1− 1+κ

p ,p for λ ≈ σ(ω) and ω ∈ Ω̃. However, this approach fails because the
last term on the RHS of the previous expression is ill-defined as u(λ, ω) �∈
Lp(ρ+1)(λ, t, wλ

κ ;Xβ,1) for any t > λ. To resolve this issue, we instead work
with suitable extensions of u(λ, ω) with λ ≈ σ(ω), as outlined in Step 1 of the
following proof.

Proof of Theorem 5.1(1). As in the proof of Theorem 5.2, we may assume u0

is bounded. Moreover, it is enough to show that for any T ∈ (0,∞),

P
(

σ < T, lim
t↑σ

u(t) exists in X1− 1+κ
p ,p

)
= 0. (5.6)

Moreover, as above, we assume that Assumption 4.1 holds with m = 1 and
we argue by contradiction with the blow-up criterion (5.2). For the sake of
clarity, we divide the proof into several steps. In the first step, we introduce
and analyze the properties of the extension operator mentioned above.

Step 1: Let 0 ≤ μ1 < τ1 < ∞ and y ∈ C([μ1, τ1];X1− 1+κ
p ,p). For all

τ ∈ [μ1, τ1), set

yτ (t) := Ext(y(τ))(t − τ), t ∈ [τ,∞),

where Ext is the extension operator defined as

Ext : X1− 1+κ
p ,p → W 1,p(R+, wκ;X0) ∩ Lp(R+, wκ;X1),

Ext x(t) := (1 + t(λ + A))−1x.

Then, it holds that

lim
τ→τ1

sup
τ<t<τ1

‖y(t) − yτ (t)‖X
1− 1+κ

p
,p

= 0.

Let us mention that the explicit form of the extension operator used here
does not play any role below. However, this is the standard choice in case
D(A) = X1 for some sectorial operator A on X0. Now, by Proposition 2.1,
Ext x ∈ C([0,∞);X1− 1+κ

p ,p). Moreover, by continuity, for all τ < τ1 there
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exists τ0 ∈ [τ, τ1] such that

sup
τ<t<τ1

‖y(t) − yτ (t)‖X
1− 1+κ

p
,p

= ‖y(τ0) − yτ (τ0)‖X
1− 1+κ

p
,p

.

As Ext x(0) = x, we have

y(τ0) − yτ (τ0) = [y(τ0) − y(τ1)] + [Ext(y(τ1))(0) − Ext(y(τ1))(τ0 − τ)]

+ [Ext(y(τ1) − y(τ))(τ0 − τ)].

Hence, the claim of Step 1 follows from the above, the continuity of Ext and
y ∈ C([τ0, τ1];X1− 1+κ

p ,p).
Step 2: Setting up the proof by contradiction. By contradiction, we assume

that LHS(5.6) is positive. In particular, there exists a set of positive probability
Ω0 ∈ Fσ and a constant M ≥ 0 such that on Ω0

sup
t∈[0,σ)

‖u(t)‖X
1− 1+κ

p
,p

< M and lim
n→∞ sup

σn<t<σ
‖u(t) − u(σn)‖X

1− 1+κ
p

,p
= 0,

where (σn)n≥1 is a localizing sequence for the Lp
κ-maximal solution (u, σ).

Again we may assume ‖u0‖X
1− 1+κ

p
,p

< M a.s. Next, by combining [12, Lemma

2.7] and Egorov’s theorem, there exists a subset Ω′
0 ⊆ Ω0 of positive probability

and a sequence of stopping times (σ′
n)n≥1 such that σ′

n(Ω) is a discrete set
contained in [0, T ], σ′

n < σ a.s. on Ω′
0, limn→∞ σ′

n = σ a.s. on Ω′
0 and

lim
n→∞ sup

Ω′
0

sup
σ′

n<t<σ
‖u(t) − u(σ′

n)‖X
1− 1+κ

p
,p

= 0.

The reader is also referred to [12, Step 1, Theorem 4.9(1)] for an analogous
situation.

The discreteness of σ′
n(Ω) will be used in Step 3 when dealing with sto-

chastic maximal Lp-regularity estimates. The use of discrete stopping times
through [12, Proposition 3.11], allows us to avoid technical issues related to
stochastic maximal Lp-regularity with time weights located at a (non-discrete)
random time.

Coming back to the content of Step 2, note that the above and a final
application of Egorov’s theorem and Step 1 yield

sup
Ω̃

sup
t∈[0,σ)

‖u(t)‖X
1− 1+κ

p
,p

≤ M, and lim
n→∞ sup

Ω̃
sup

t∈[σ′
n

,σ)
‖u(t) − uσ′

n
(t)‖X

1− 1+κ
p

,p
= 0,

(5.7)

where Ω̃ ⊆ Ω′
0 is a set of positive probability and uσ′

n
:= 1{σ>σ′

n}Ext(u(σ′
n)).

Recall that {σ > σ′
n} ∈ Fσ′

n
due to [136, Lemmas 9.1 and 9.5]. In particular,

the process 1[σ′
n,∞)uσ′

n
is progressively measurable. Finally, by (5.7) and the

boundedness of Ext,

‖uσ′
n
‖

W 1,p(σ′
n,∞,w

σ′
n

κ ;X0)∩Lp(σ′
n,∞,w

σ′
n

κ ;X1)
�A,p,κ M. (5.8)

Step 3: Conclusion. The idea is to prove that

P

(
σ < T, sup

t∈[0,σ)

‖u(t)‖X
1− 1+κ

p
,p

+ ‖u‖Lp(0,σ,wκ;X1) < ∞
)

≥ P(Ω̃). (5.9)
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Thus, if P(Ω̃) > 0, then the above contradicts (5.2). By the pathwise regularity
in Theorem 4.7, to check (5.9) it suffices to show the existence of a stopping
time λ such that λ < σ a.s. and

P

(
σ < T, sup

t∈[λ,σ)

‖u(t)‖X
1− 1+κ

p
,p

+ ‖u‖Lp(λ,σ,wλ
κ ;X1) < ∞

)
≥ P(Ω̃). (5.10)

In the following, we focus on the proof of (5.10). From (5.7) it follows that for
each ε > 0 there exists N(ε) ≥ 1 for which

sup
Ω̃

sup
t∈[σ′

N(ε),σ)

‖u(t) − uσ′
N(ε)

(t)‖X
1− 1+κ

p
,p

< ε. (5.11)

To simplify the notation, we set λε := σ′
N(ε) and Vε := {σ > λε}. Note that,

for each ε > 0, the process v := 1Vε
u|[λε,σ) is a local Lp

κ-solution to{
dv + Av dt = 1Vε×[λε,σ)F (u) dt + (Bv + 1Vε×[λε,σ)G(u)) dW,

v(λε) = 1Vε
u(λε).

(5.12)

Now, the idea is to apply stochastic maximal Lp-regularity and argue as in
(5.5) to control the nonlinearities F (u) and G(u). However, in principle, the
Lp(wκ;X1)-norms are not finite up to the stopping time σ even on Ω̃. Thus,
another localization argument is needed. For each � ≥ 1, set

τε,� :=inf
{

t ∈ [λε, σ) : sup
t∈[λε,σ)

‖u(t) − uλε
(t)‖X

1− 1+κ
p

,p
≥ ε or ‖u‖Lp(λε,t,wλε

κ
;X1) ≥ 


}
∧ T,

where inf ∅ := σ ∧ T on Vε, and τε,
 = λε otherwise. Note that τε,
 are
monotone in � ≥ 1, and converge pointwise to a stopping time τε as � →
∞. Moreover, due to (5.11) and Ω̃ ⊆ Ω′

0 ⊆ ⋂
n≥1{σ > σ′

n} (the latter by
construction), for all ε > 0,

Ω̃ ⊆ {τε = σ ∧ T} ∩ Vε. (5.13)

Now, by (5.12), the stochastic maximal Lp
κ-regularity of (A,B) and [12, Propo-

sition 3.11], there exists a K > 0 independent of � ≥ 1 such that

‖u‖Lp(Vε;L∞(λε,τε,�;X1− 1+κ
p

,p
)) + ‖u‖Lp(Vε×(λε,τε,�),wλε

κ
;X1)

≤ K
(
‖u(λε)‖Lp(Vε;X1− 1+κ

p
,p
) + ‖F (u)‖Lp(Vε×(λε,τε,�),wλε

κ
;X0)

+ ‖G(u)‖Lp(Vε×(λε,τε,�),wλε
κ

;γ(U,X1/2))

)
(i)
≤ CKM + CK

(
E
[
1Vε

‖u − uλε
‖ρp

L∞(λε,τε,�;X1− 1+κ
p

,p
)‖u − uλε

‖p
Lp(λε,τε,�,wλε

κ
;X1)

])1/p

(ii)
≤ CKM + CKερ‖u − uλε

‖Lp(Vε×(λε,τε,�),wλε
κ

;X1),

where in (i) we argued as in (5.5) and used (5.8) as well as Lemma 4.3, while
(ii) follows from the definition of τε,
. Now, as ρ > 0 by assumption, choosing
ε = ε� := (2CK)−1/ρ leads to

‖u‖Lp(Vε;L∞(λε
 ,τε
,�;X1− 1+κ
p

,p
)) + ‖u‖

Lp(Vε×(λε
 ,τε
,�),w
λε

κ ;X1)
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≤ CKM + 1
2‖u‖

Lp(Vε×(λε
 ,τε
,�),w
λε

κ ;X1)

, (5.14)

where we used again the uniform control in ε in (5.8) and Lemma 4.3. From
the definition of τε,
, it follows that ‖u‖Lp(Vε×(λε,τε,�),w

λε
κ ;X1)

< ∞. Hence,
absorbing the last term on RHS(5.14) in the corresponding LHS and letting
� → ∞, Fatou’s lemma implies

‖u‖Lp(Vε;L∞(λε
 ,τε
 ;X
1− 1+κ

p
,p

)) + ‖u‖
Lp(Vε×(λε
 ,τε
 ),w

λε

κ ;X1)

< ∞.

Thus, (5.10) with λ = λε

follows from the above and (5.13). As explained at

the beginning of Step 3, this concludes the proof of Theorem 5.1(1). �

To prove Theorem 5.1(2) one can, in principle, follow the argument in [12].
However, since the conditions on F and G in Assumption 4.1 are weaker since
they are formulated in terms of the real interpolation spaces Xβj ,1 instead of
the complex interpolation spaces Xβj

, we need a variant of [12, Lemma 5.11],
where on the left-hand side of the estimates real interpolation is used. For
unexplained notation, the reader is referred to [12, Section 5].

Lemma 5.5. (Interpolation inequality) Let p ∈ (1,∞), κ ∈ [0, p − 1), ψ ∈
(1 − 1+κ

p , 1), and set ζ = (1 + κ)/
(
ψ − 1 + 1+κ

p

)
. Then there exists a θ0 ∈

[0, 1+κ
p ) such that for all θ ∈ [θ0, 1), there is a constant C > 0 such that the

following estimate holds for all 0 ≤ a < b ≤ T and all f ∈ 0MRθ,κ
X (a, b) ∩

L∞(a, b;X1− 1+κ
p ,p) ∩ Lp(a, b;X1− κ

p
),

‖f‖Lζ(a,b,wκ;Xψ,1) ≤ C‖f‖1−φ
L∞(a,b;X

1− 1+κ
p

,p
)‖f‖(1−δ)φ

0MRθ,κ
X (a,b)

‖f‖δφ
Lp(a,b;X1− κ

p
),

(5.15)
where we can take δ ∈ (0, 1] and φ ∈ [0, 1] such that

(1 − δ)φ ≤ p

1 + κ

(
ψ − 1 +

1 + κ

p

)
. (5.16)

Proof. As in [12, Lemma 5.11], by interpolation it suffices to consider θ = θ0.
Let μ be such that μ > ψ and μ ∈ (1 − κ

p , 1). Then by the reiteration theorem

‖x‖Xψ,1 ≤ C‖x‖(1−λ)
X

1− 1+κ
p

,p
‖x‖λ

Xμ
, for all x ∈ X1, where λ ∈ (0, 1) satisfies

ψ = (1 − λ)(1 − 1+κ
p ) + λμ. Therefore,

‖f‖Lζ(a,b,wκ;Xψ,1) ≤ C‖f‖1−λ
L∞(a,b;X

1− 1+κ
p

,p
)‖f‖λ

Lλζ(a,b,wκ;Xμ).

Note that λζ = (1 + κ)/
(
μ − 1 + 1+κ

p

)
. Thus, we have reduced the problem

to estimating ‖f‖Lλζ(a,b,wκ;Xμ). The latter case has already been considered in
[12, Lemma 5.11(1)], where the estimate was proved (where φ = 1) and

(1 − δ) ≤ p

1 + κ

(
μ − 1 +

1 + κ

p

)
=

p

λζ
,

and thus we obtain (5.15) with φ = λ and thus (5.16) follows from the definition
of ζ. �
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5.3. Instantaneous regularization

Instantaneous regularization phenomena are a well-known feature of
deterministic parabolic PDEs. A classical example is the heat equation, whose
solutions become smooth for any positive time t > 0, regardless of the initial
data’s regularity. Similar results hold for many deterministic nonlinear PDEs.

For nonlinear (S)PDEs, a standard approach to obtaining regularity is
through a bootstrapping argument. The idea is as follows: given u with some
initial regularity, one first determines the regularity of f := F (u) and g := G(u)
and then applies parabolic smoothing to deduce a new regularity estimate for
u. If this yields an improvement, the process can be iterated to further enhance
the regularity of u.

However, in critical settings, this classical bootstrapping method fails.
Specifically, if u belongs to a scaling-invariant space, then the regularity of the
inhomogeneities f = F (u) and g = G(u) is just sufficient to recover the initial
regularity of u, but not to improve it. In other words, when the regularity is
critical or scaling-invariant, bootstrapping does not enhance the smoothness
of u (see Lemma 4.3). Concrete instances of this breakdown can be found in
[12, Section 1.4], [16, Theorem 2.12], and [13, Section 7].

In the deterministic setting, a way to break the limitation of the clas-
sical bootstrapping method was introduced by Angenent in [21,22] (see also
[219, Chapter 5] and [110]). This approach, often referred to as the “param-
eter trick”, involves first proving high-order time regularity, which is then
transferred to spatial smoothness using elliptic regularity. Unfortunately, this
technique cannot be applied to SPDEs because high-order time regularity fails
due to the temporal roughness of the noise.

In [12, Section 6], we developed a new method for bootstrapping regu-
larity in both time and space by exploiting the instantaneous regularization
properties of weighted function spaces (see Proposition 2.1(2) and (4.10)) and
the blow-up criteria as in Subsection 5.1. These results have been success-
fully applied to various equations, including the 2D Navier–Stokes equations
[16, Theorem 2.4], reaction-diffusion equations [13, Theorem 2.7], 3D primi-
tive equations [1, Theorem 3.7], and thin-film equations [8, Proposition 2.13].
The key idea is to introduce a time weight α > 0 to balance the desired gain
in integrability r > p. In critical settings, this adjustment does not disrupt
the scaling (i.e. the space-time Sobolev index) of the maximal regularity space
(4.2). The gain in integrability r > p corresponds to choosing α > 0 such that

1
p

=
1 + α

r
. (5.17)

The usefulness of these weights arises from the fact that wα(t) = tα only “acts”
at t = 0. Indeed, by Proposition 2.1((2)) and Hölder’s inequality,⋂

θ∈[0,1/2) Hθ,r(0, t, wα;X1−θ) ⊆ Lr(ε, t;X1−θ) ∩ C([ε, t];X1− 1
r ,r)

for all ε ∈ (0, t). Here, Lr(ε, t;X1) ∩ C([ε, t];X1− 1
r ,r) has space-time Sobolev

index 1 − 1
r > 1 − 1

p as r > p. Thus, for positive times, this method yields a
gain in integrability/smoothness. After this, we can apply the above-mentioned
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classical bootstrap method. To make the above picture rigorous, one must
ensure “compatibility” between the settings (p, 0) and (r, α) through blow-up
criteria such as the ones in Theorem 5.1. For the proofs, the reader is referred
to Theorem 5.7 below or [12, Proposition 6.8] for the general case. Finally, let
us mention that the important case p = 2 - relevant for problems like the 2D
Navier–Stokes equations [16, Theorem 2.4] and for 3D primitive equations [1,
Theorem 3.7] - is technically more challenging and it will not be fully discussed
here. When p = 2, (5.17) cannot be satisfied for any weight α ∈ [0, r

2 − 1)
admissible in the stochastic maximal Lr-regularity (see Definitions 3.7 and
3.8). To overcome this difficulty, in [12, Proposition 6.8], we compensate the
increment of time Sobolev index − 1+α

r > − 1
2 = − 1

p by “penalizing” the spatial
regularity X1−θ. This involves “shifting” the scale downwards by an amount
δ := 1

2 − 1+α
r > 0 to ensure that the space-time Sobolev index of new weighted

spaces remains the same as the one of L2(0, T ;X1) ∩ C([0, T ];X1/2), i.e. 1
2 .

After bootstrapping time regularity, the problem transitions to a noncrit-
ical setting, where the classical bootstrap method can be applied to achieve
spatial regularity. In [12, Theorem 6.3] we presented an abstract result for this
purpose. However, based on experience with its application, we now find it
better to perform spatial bootstrapping “manually”. Moreover, on unbounded
domains, the abstract results often impose unnecessary restrictions. Below,
we illustrate the classical bootstrapping argument for spatial regularity in a
concrete problem, detailed in Proposition 8.20, particularly in Steps 2 and 3.
Moreover, the same method is applied to the Navier–Stokes equations on R

d

in Theorem 8.26.
Before diving into the above-mentioned unweighted situation, we first dis-

cuss the bootstrap in a critical regime where a time weight is already present.
This allows us to introduce the basic technical ideas in a more elementary sit-
uation. The following result on instantaneous time regularization, is a special
case of [12, Corollary 6.5 and Proposition 6.8 with δ = 0].

Theorem 5.6. (Parabolic regularization in time for κ > 0) Suppose that the
conditions of Theorem 4.7 hold with p ∈ (2,∞) and κ ∈ (0, p/2 − 1), and let
(u, σ) be the Lp

κ-maximal solution to (4.1). Suppose that (A,B) ∈ SMR•
r,α for

all r ∈ (2,∞) and α ∈ [0, r/2 − 1). Then the following path regularity holds
a.s.

u ∈ Hθ,r
loc ((0, σ);X1−θ) ∩ Cθ−ε

loc ((0, σ);X1−θ),

θ ∈ [0, 1/2), r ∈ [2,∞), ε ∈ (0, θ).

Proof. The Hölder regularity follows from the Hθ,r-regularity and Sobolev
embedding into Cθ− 1

r (see [135, Corollary 14.4.27]). So it remains to prove the
Hθ,r-regularity.

In the following, it suffices to consider r � p large. Fix an arbitrary ε > 0.
Note that there exists α ∈ [0, r/2 − 1) such that

1
p

<
1 + α

r
<

1 + κ

p
. (5.18)
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Note that, by Theorem 4.7,

1Vu(ε) ∈ L0
Fε

(
Ω;X1− 1

p ,p

)
⊆ L0

Fε

(
Ω;X1− 1+α

r ,r

)
,

where V := {σ > ε}. Again, by Theorem 4.7, there exists an Lp
κ-maximal

(resp., Lr
α-maximal) local solution (v, τ) (resp., (v̂, τ̂)) to (4.1) with initial

data 1Vu(ε) at time ε. In particular, a.s.,

v̂ ∈ ⋂
θ∈[0,1/2) Hθ,r(ε, τ̂ , wα;X1−θ) ⊆ ⋂

θ∈[0,1/2) Hθ,r
loc ([ε, τ̂);X1−θ), (5.19)

where the inclusion follows from [12, Proposition 2.1(1)].
By (5.19) and the arbitrariness of ε > 0, it is enough to show that

σ = τ = τ̂ a.s. on V and u = v = v̂ a.e. on [ε, τ) × V.

Now, we split the proof into two steps. Before doing so, let us comment on
the role of (v, τ), while the one of (v̂, τ̂) is evident. The maximal Lp

κ-maximal
solution (v, τ) is used because the restriction of (u, σ) to times t ≥ ε, i.e.
(1Vu, σ1V + ε1Vc), is not maximal anymore. However, maximality is needed
to connect the settings (p, κ) and (r, α). Therefore, we need an intermediate
maximal solution (v, τ) to adjust this.

Step 1: σ = τ a.s. on V and u = v a.e. on [ε, τ) × V. Note that
(1Vu, σ1V + ε1Vc) is also an Lp

κ-local solution to (4.1) with initial time ε.
Thus, by maximality of τ , we conclude that σ ≤ τ and u = v a.e. on
V × [ε, σ). On the other hand, on the set {σ > τ} by Theorem 4.7 we have that
limt↑τ v(t) = limt↑τ u(t) exists in X1− 1

p ,p ↪→ X1− 1+κ
p ,p. Therefore, by Theorem

5.1,

P(σ > τ) = P
(

σ > τ, lim
t↑τ

v(t) exists in X1− 1+κ
p ,p

)

≤ P
(

τ < ∞, lim
t↑τ

v(t) exists in X1− 1+κ
p ,p

)
= 0.

Hence, the claim of Step 1 is proved.
Step 2: τ = τ̂ a.s. on V and v = v̂ a.e. on [ε, τ)×V. The proof of Step 2,

is similar to the one of Step 1. Indeed, let us begin by noticing that the second
inequality in (5.18) and (5.19) implies

v̂ ∈ C([ε, τ̂);X1− 1+α
r ,r) ⊆ C([ε, τ̂);X1− 1+κ

p ,p) (5.20)

as X1 ↪→ X0. Moreover, from Hölder’s inequality [12, Proposition 2.1(3)] and
(5.18), it follows that (v, τ) is an Lp

κ-local solution to (4.1) with initial time
ε. Hence, from the maximality of τ , it follows that τ̂ ≤ τ a.s. on V and
v̂ = v a.e. on [ε, τ̂) × V. As above, it remains to show P(τ > τ̂) = 0. By
the second inequality in (5.18) and (4.9) in Theorem 4.7(1), it follows that
limt↑τ v̂(t) = limt↑τ v(t) exists in X1− 1

p ,p ↪→ X1− 1+α
r ,r a.s. on {τ > τ̂}. There-

fore, by Theorem 5.1 applied to the Lr
α-maximal solution (v, τ),

P(τ > τ̂) = P
(
τ > τ̂ , lim

t↑τ
v̂(t) exists in X1− 1+α

r ,r

)
≤ P

(
τ < ∞, lim

t↑τ
v̂(t) exists in X1− 1+α

r ,r

)
= 0.
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This proves the claim of Step 2 and concludes the proof. �

As explained below (5.17), the case κ = 0 is more involved. Indeed,
the instantaneous regularization (4.9) provides some extra room as was used
in (5.18) and (5.20), and does not hold if κ = 0. Under the slightly more
restrictive additional condition (5.21), we will still obtain the following result,
which slightly extends [12, Proposition 6.8 with δ = 0].

Theorem 5.7. (Parabolic regularization in time for κ = 0) Suppose that the
conditions of Theorem 4.7 hold with p ∈ (2,∞) and κ = 0, and let (u, σ)
be the Lp

0-maximal solution to (4.1). Suppose that for each n ≥ 1 there is a
constant Cn > 0 such that for all ‖x‖X1− 1

p
,∞ ≤ n,

‖F (x)‖X0 + ‖G(x)‖γ(U,X1/2) ≤ Cn

m∑
j=1

(
1 + ‖x‖ρj+1

Xβj,1

)
, (5.21)

where βj , ρj, and m are as in Assumption 4.1. Suppose that (A,B) ∈ SMR•
r,α

for all r ∈ (2,∞) and α ∈ [0, r/2−1). Then the following path regularity holds
a.s.

u ∈ Hθ,r
loc ((0, σ);X1−θ) ∩ Cθ−ε

loc ((0, σ); X1−θ), θ ∈ [0, 1/2), r ∈ [2, ∞), ε ∈ (0, θ).

Note that (5.21) does not follow from Assumption 4.1 due to the sec-
ond exponent in the real interpolation space X1− 1

p ,∞ used in the condition
‖x‖X1− 1

p
,∞ ≤ n.

Proof. Step 1 in the proof of Theorem 5.6 can be repeated verbatim. As for
the second step, let r � p and suppose that α ∈ (0, r

2 − 1) satisfies (5.17).
Now, to repeat Step 2 of Theorem 5.6, we first need to check that (v̂, τ̂) is an
Lp

0-local solution to (4.1). Note that (5.19) still holds in this case and by the
trace embedding it follows that v̂ ∈ C([ε, τ);X1− 1

p ,r) a.s., see Proposition 2.1.
We claim that one still has

v̂ ∈ Lp
loc([ε, τ̂);X1) ∩ C([ε, τ̂);X1− 1

p ,p). (5.22)

As soon as we know this, the second part of the proof of Theorem 5.6 can be
repeated literally as X1− 1

p ,p = X1− 1+α
r ,p ⊆ X1− 1+α

r ,r. To prove (5.22), we use
maximal Lp-regularity once more. Indeed, let (τ̂n)n≥1 be a localizing sequence
for τ̂ . By Proposition 3.11 it suffices to check that F (v̂) ∈ Lp(ε, τ̂n;X0) and
G(v̂) ∈ Lp(ε, τ̂n; γ(U ,X1/2)) a.s. By (5.21) and (4.6) it remains to check that
v̂ ∈ Lp(ρj+1)(ε, τ̂n;Xβj ,1) a.s. for every j ∈ {1, . . . , m}. Fix j and θj ∈ (0, 1 −
βj). Note that θj ∈ (0, 1

2 ), as 1−βj < 1
p = 1+α

r and α < r
2 − 1. By (5.19), a.s.,

for all n ≥ 1,

v̂ ∈ Hθj ,r(ε, τ̂n, wε
α;X1−θj

) ⊆ Lrj (ε, τ̂n;X1−θj
),

where by Sobolev embedding with − 1
rj

= θj − 1+α
r , see e.g. [11, Proposition

2.7]. Thus, a.s.,

v̂ ∈ Lrj (ε, τ̂n;X1−θj
) ∩ C([ε, τ̂n];X1− 1

p ,r) ⊆ Lp(ρj+1)(ε, τ̂n;Xβj ,1),
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where the latter can be proved similarly as in Lemma 4.3 using condition (4.3)
for κ = 0. �

After either Theorem 5.6 or 5.7 has been applied, one can often apply the
more classical procedure to bootstrap regularity in space, see the discussion
at the beginning of the section. We will explain such a procedure in detail in
Subsection 8.3 in a particular example.

Remark 5.8. (1) We do not know whether Theorem 5.6 holds in the impor-
tant situation where p = 2 and κ = 0. However, as explained below (5.17),
this can be fixed by stepping δ := 1+α

r − 1
2 > 0 downwards in the spatial

smoothness (X0,X1), see [12, Proposition 6.8].
(2) In light of the new result of Theorem 5.1(1), the non-criticality condition

in [12, Theorem 6.3(2)] can be removed.

In the subcritical regime, the standard bootstrap procedure can also be
applied for p = 2 and κ = 0. This is the content of the following result.

Proposition 5.9. (Parabolic regularization in time for p = 2 and κ = 0) Sup-
pose that the conditions of Theorem 4.7 hold with p = 2, κ = 0 and let (u, σ)
be the L2

0-maximal solution to (4.1). Assume that there exists ϕ ∈ (0, 1) such
that, for all x ∈ X1 satisfying ‖x‖X1/2 ≤ n,

‖F (x)‖X0 + ‖G(x)‖γ(U,X1/2) �n 1 + ‖x‖ϕ
X1

. (5.23)

Finally, suppose that u0 ∈ L0
F0

(Ω;X 1
2+ε) for some ε > 0 and (A,B) ∈

SMR•
r,α for all r ∈ (2,∞) and α ∈ [0, r/2 − 1). Then the following path

regularity holds a.s.

u ∈ Hθ,r
loc ((0, σ);X1−θ) ∩ Cθ−ε

loc ((0, σ); X1−θ), θ ∈ [0, 1/2), r ∈ [2, ∞), ε ∈ (0, θ).

The condition (5.23) does not imply that either F or G is sublinear due
to the n-dependent implicit constant. Moreover, arguing as in Lemma 4.3, one
can check that (5.23) holds in case the setting (p, κ) = (2, 0) is subcritical for
(4.1), i.e. (4.3) holds with the strict inequality for all j. The argument below
also works for p > 2. However, we do not state this here, as Theorems 5.6 and
5.7 cover the cases p > 2 and also include the critical setting.

Proof. For each n ≥ 1, let

σn := inf{t ∈ [0, σ) : ‖u(t)‖X1/2 + ‖u‖L2(0,t;X1) ≥ n} ∧ n,

where inf ∅ := σ. It is clear that (σn)n≥1 is a localizing sequence of stopping
times for (u, σ). Let fn = 1[0,σn]F (u) and gn = 1[0,σn]G(u). Then by (5.23),
a.s.,

‖fn‖2/ϕ

L2/ϕ(0,σn;X0)
+ ‖gn‖2/ϕ

L2/ϕ(0,σn;γ(U,X1/2))
�n

∫ σn

0
‖u(t)‖2

X1
dt �n 1.

Set p̂ := 2/ϕ > 2 and let κ̂ ∈ (0, p̂/2 − 1) be such that 1+κ̂
p̂ > 1

2 − ε. Thus,

u0 ∈ X1− 1+κ̂
p̂ ,p̂ a.s. Now, let vn be the Lp̂

κ̂-solution to the following linear initial
value problem:

dv + Av dt = fn dt + (Bv + gn) dW, v(0) = u0.
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Clearly, vn is also an L2-solution to the above problem. Since u is also an
L2-solution on [0, σn], it follows from SMR2,0 that u = vn a.e. on Ω × [0, σn].
Thus, u is an Lp̂

κ̂-solution to (4.1) on [0, σn]. Since n was arbitrary, (u, σ)
is a local Lp̂

κ̂-solution to (4.1). Moreover, it is maximal since Lp̂
κ̂-solutions are

also L2-solutions. As the conditions of Theorem 4.7 hold with (p, κ) = (2, 0) by
assumption, they also hold with (p, κ) replaced by (p̂, κ̂) in (4.3) (use 1+κ̂

p̂ < 1
2 ).

Hence, (u, σ) is the unique Lp̂
κ̂-solution of (4.1) given by Theorem 4.7. The

stated regularity assertions are now immediate from Theorem 5.6. �

Thanks to the regularization results of Theorems 5.6 and 5.7, or Propo-
sition 5.9, one can “transfer” blow-up criteria to a rougher setting. This, in
particular, allows one to show the global well-posedness of SPDEs for very
rough initial data in case it holds for smooth data. For instance, this proce-
dure has been applied to 2D Navier–Stokes equations in [16, Theorem 2.12]
and to reaction-diffusion equations in [14, Theorem 3.2 and 5.2].

Corollary 5.10. (Transference of blow-up criteria) Suppose that the conditions
of Theorem 4.7 hold and let (u, σ) be the Lp

κ-maximal local solution to (4.1)
provided there. Suppose that for some r ≥ p, the solution satisfies

u ∈ Hθ,r
loc ((0, σ);X1−θ) a.s. for all θ ∈ [0, 1/2). (5.24)

Let α ∈ [0, r/2 − 1) be such that 1+α
r ≤ 1+κ

p . Then the following assertions
hold:

(1) For all s > 0,

P
(
σ < ∞, lim

t↑σ
u(t) exists in X1− 1+α

r ,r

)
= 0;

P
(
s < σ < ∞, sup

t∈[s,σ)

‖u(t)‖X
1− 1+α

r
,r

+ ‖u‖Lr(s,σ;X1− α
r

) < ∞)
= 0.

(2) If either (p, κ) is critical and 1+α
r < 1+κ

p , or (p, κ) is noncritical, then
for all s > 0,

P
(
s < σ < ∞, sup

t∈[s,σ)

‖u(t)‖X
1− 1+α

r
,r

< ∞)
= 0.

The regularization condition (5.24) can be verified through either Theo-
rem 5.6-5.7 and Proposition 5.9, or [12, Proposition 6.8] in case p = 2, κ = 0,
and the setting is critical.

In the above the parameter s > 0 is necessary because u0 may not belong
to X1− 1+κ

p ,p, which would make the norms in expressions like (2) ill-defined
when s = 0. However, these norms are well-defined for positive times s >
0 thanks to the assumed instantaneous regularization. Note that in (1) we
automatically avoid s = 0 since σ > 0 a.s. by Theorem 4.7.

The advantage of Corollary 5.10 over the blow-up criteria in Subsection
5.1 is that the initial pair (p, κ) does not influence the explosion of the solu-
tion. In other words, the global well-posedness of (4.1) is independent of the
specific setting considered. Furthermore, one benefit of (2) is that (p, κ) could



  123 Page 62 of 150 A. Agresti and M. Veraar NoDEA

be critical, but only the supremum needs to be estimated when applying the
result. This approach, for example, appears in [14, Theorem 3.2].

In many situations, the argument used in the proof of Corollary 5.10
can be extended further. Indeed, for many SPDEs also high-order integrabil-
ity/smoothness can be established (see references below (5.17)). Additionally,
one can prove that the blow-up criteria can be transferred between different
settings, as demonstrated in [13, Theorem 2.10], [16, Theorem 2.9], [1, Theorem
3.9], and [8, Proposition 1.8].

Proof of Corollary 5.10. The argument below is a variation of the one given
in [13, Theorem 2.10]. We only provide the details for the first statement in
(1), the others follow similarly by applying Theorem 5.1(2) or Theorem 5.2
instead of Theorem 5.1(1).

First in (1): Let us begin by recalling that, by Theorem 5.1(1),

P
(
σ < ∞, lim

t↑σ
u(t) exists in X1− 1+κ

p ,p

)
= 0. (5.25)

Next, we will use the (r, α)-setting. Fix s > 0 and let V := {σ > s}. Note that
from the instantaneous regularization assumption (i.e. either Theorem 5.6 or
5.7 or Proposition 5.9 hold), u ∈ Cloc((0, σ);X1−θ) for any θ ∈ (0, 1/2). In
particular, 1Vu(s) ∈ L0

Fs
(Ω;X1− 1+α

r ,r). By Theorem 4.7 (up to translation),
we can find an Lr

α-maximal solution (v, τ) to (4.1) with initial value 1Vu(s) at
initial time s. Again, by the instantaneous regularization assumption,

v ∈ Hθ,�
loc ((s, τ); X1−θ) ∩ Cθ−ε

loc ((s, τ); X1−θ) a.s. for all θ ∈ [0, 1/2), � > 2, ε ∈ (0, θ).
(5.26)

Moreover, due to Theorem 5.1(1),

P
(

τ < ∞, lim
t↑σ

v(t) exists in X1− 1+α
r ,r

)
= 0.

To conclude it suffices to show that τ = σ on V and u = v on [s, σ) × V. To
prove the latter, we argue as in the proofs of the instantaneous regularization
results. Indeed, note that (u1V×[s,σ), σ1V +s1Vc) is an Lp

κ-local solution to the
same equation as (v, τ). Therefore, by maximality of τ , we obtain σ ≤ τ a.s. on
V and u = v on [s, σ) × V. Therefore, it is enough to show P(s < σ < τ) = 0.
On the set {s < σ < τ}, (5.26) gives that u = v ∈ C((s, σ];X1−θ) a.s. for all
θ ∈ [0, 1/2). Thus,

P(s < σ < τ) = P
(

s < σ < τ, lim
t↑σ

u(t) exists in X1− 1+κ
p ,p

)

≤ P
(

σ < ∞, lim
t↑σ

u(t) exists in X1− 1+κ
p ,p

)
= 0,

where in the last equality we used (5.25). �
We conclude this section by addressing the question of whether two solu-

tions arising from two different choices of (p, κ) actually lead to the same
solution, i.e. whether different settings are compatible. This is the right time
to explore this question, as the instantaneous regularization results presented
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above suggest that different choices of the parameters (p, κ) lead to the same
regularity at least for positive times.

The result below is a version of [13, Proposition 3.5] for (4.1). Note that
[13, Proposition 3.5] is not included in the following result, as in [13] we also
vary the spatial regularity (which here is encoded in Xθ). Of course, we could
also cover [13, Proposition 3.5] by upgrading the level of generality and also
varying the ground space (X0,X1), and hence obtain compatibility in terms
of all parameters (p, κ,X0,X1). However, we prefer to present the following
compatibility result in a simplified setting.

Corollary 5.11. (Compatibility) Suppose that the conditions of Theorem 4.7
hold for two pairs of parameters (p1, κ1) and (p2, κ2), and let (u1, σ1) and
(u2, σ2) be the corresponding maximal Lpi

κi
-solutions for i = 1 and i = 2.

Assume that p1 ≤ p2 and that the solution (u1, σ1) instantaneously regularizes
to

u1 ∈ Hθ,p2
loc ((0, σ1);X1−θ) a.s. for all θ ∈ [0, 1/2). (5.27)

Then σ1 = σ2 a.s. and u1 = u2 a.e. on [0, σ1) × Ω.

The assumption (5.27) is only for positive times and allows us to connect
the (p1, κ1)-setting to the (p2, κ2)-one. We do not expect compatibility to hold
without any sort of instantaneous regularization. As before the regularization
can be checked through either Theorem 5.6-5.7, and Proposition 5.9 or [12,
Proposition 6.8] in case p = 2, κ = 0, and the setting is critical. From the
proof below, one can check that the condition (5.27) can be relaxed. It is
only used to prove that (u1, σ1) is a local Lp2

κ2
-solution to (4.1) in the (p2, κ2)-

setting. Indeed, by Lemma 4.3, the assumption (5.27) can be replaced by
u1 ∈ ⋂

i∈{1,...,m} L
p2(ρi+1)
loc ((0, σ1);Xβi

) a.s.

Proof. As the assumptions of Theorem 4.7 hold for (pi, κi) with i ∈ {1, 2}, it
follows that u0 ∈ ∩i∈{1,2}X1− 1+κi

pi
,pi

a.s. By localization (i.e. Theorem 4.7(2)),

it is enough to consider u0 ∈ ∩i∈{1,2}Lpi(Ω;X
1− 1+κi

pi
,pi

). We claim that there

exists a stopping time τ ∈ (0, σ1 ∧ σ2) a.s. and

u1 = u2 a.e. on [0, τ) × Ω. (5.28)

Due to Proposition 4.8 and comments below it, [13, Remark 3.4] extends to
the stochastic evolution equation (4.1), the claim (5.28) follows verbatim from
the arguments in Steps 1 and 2 of [13, Proposition 3.5]. Next, we show how
(5.28) leads to the claim of Corollary 5.11. By (5.27) and the claim (5.28), we
obtain

u1 ∈ Hθ,p2
loc ([0, σ1), wκ2 ;X1−θ) a.s. for all θ ∈ [0, 1/2).

In particular, (u1, σ1) is a local Lp2
κ2

-solution to (4.1). By the maximality of
(u2, σ2), we obtain that σ1 ≤ σ2 a.s. and u1 = u2 a.e. on [0, σ1)×Ω. It remains
to show σ1 = σ2. Note that, on {σ1 < σ2}, u1 = u2 ∈ C((0, σ1];X1− 1

p2
,p2

).
Since p2 ≥ p1, it follows that limt↑σ1 u1(t) exists in X1− 1

p1
,p1

=: Y on {σ1 <
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σ2}, we find

P(σ1 < σ2) = P
(

σ1 < σ2, lim
t↑σ1

u1(t) exists in Y

)

≤ P
(

σ1 < ∞, lim
t↑σ1

u1(t) exists in Y

)
= 0,

where in the last step we used Theorem 5.1(1). �

6. Critical variational setting

In this section, we focus on the variational setting, for which a collection
of references can be found in the introduction. The strength of this approach
comes from the fact that it immediately gives global well-posedness under a
coercivity condition.

Traditionally, the variational setting relies on a monotonicity condition
imposed on the coefficients. However, this condition is violated in many prac-
tical examples. To address this limitation, we present a variant of the critical
variational framework introduced in [9], which circumvents the need for mono-
tonicity assumptions by instead imposing a suitable local Lipschitz condition.
For completeness, let us recall that F : V → V ∗ is weakly monotone if there
exists a constant C such that 〈u−v, F (u)−F (v)〉 ≤ C‖u−v‖H for all u, v ∈ V .
For example, it fails for the Allen–Cahn equation in the strong setting, the
Cahn–Hilliard equation, and the 2D Navier–Stokes equations (see Section 7).

In Theorem 6.2, we establish local well-posedness in the variational set-
ting, while Theorem 6.4 provides global well-posedness under a coercivity con-
dition. We emphasize that we do not assume compactness of the embedding
V ↪→ H. As before, for simplicity, we restrict our presentation to the case
where the problem is (t, ω)-independent and focus exclusively on the semilin-
ear setting.

Recent work in [27] extends the results of [9] to the case of Lévy noise,
additionally allowing for singular drifts and introducing a more flexible local
Lipschitz condition.

6.1. Setting

Let (V,H, V ∗) be a Gelfand triple of real Hilbert spaces, i.e. V ↪→ H ↪→
V ∗ are dense and continuous, and the duality pairing between V and V ∗

satisfies 〈v, x〉 = (v, x)H for all v ∈ V and x ∈ H. Moreover, it holds that
[V ∗, V ]1/2 = (V ∗, V )1/2,2 = H. For further details, see [9], and [244, Section
2.1]. In relation to the framework of Subsection 4.1, we set X0 = V ∗, X1 = V ,
and consequently, X1/2 = H.

We adopt the notations Vβ,1 = (V ∗, V )β,1 and Vβ = [V ∗, V ]β with the
corresponding norms given by

‖x‖β,1 = ‖x‖(V ∗,V )β,1 and ‖x‖β = ‖x‖[V ∗,V ]β .

Assumption 6.1. Let A ∈ L (V, V ∗) and B ∈ L (V,L2(U ,H)). Suppose that
the following hold:
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1 There exist θ > 0 and M ≥ 0 such that for all u ∈ V ,

〈u,Au〉 − 1
2‖Bu‖2

L2(U,H) ≥ θ‖u‖2
V − M‖u‖2

H ;

2 For each n ≥ 1, there exists an Ln ≥ 0 such that for all u, v ∈ V with
‖u‖H , ‖v‖H ≤ n

‖F (u) − F (v)‖V ∗ + ‖G(u) − G(v)‖L2(U,H)

≤ Ln

m∑
j=1

(1 + ‖u‖ρj

βj ,1 + ‖v‖ρj

βj ,1)‖u − v‖βj ,1,

where βj ∈ (1/2, 1) and ρj ≥ 0 satisfy

(2βj − 1)(ρj + 1) ≤ 1, j ∈ {1, . . . , m}. (6.1)

Part 1 above asserts that the linear part of (4.1) is coercive, which in
turn ensures that (A,B) has stochastic maximal L2-regularity (see Theorem
3.17). Moreover, from the discussion following that theorem, it follows that −A
generates a strongly continuous analytic semigroup on V ∗. Part 2 is equivalent
to the condition 2βj ≤ 2+ρj

ρj+1 , and is a special case of Assumption 4.1 with p = 2
and κ = 0. We emphasize that no further growth bounds are assumed on F
and G.

6.2. Main results

Below we leave out the prefix L2
0 in the solution concept, as we consis-

tently assume p = 2 and κ = 0. Consequently, whenever we refer to a maximal
solution in this section, we mean an L2

0-maximal solution.

6.2.1. Local existence, uniqueness and regularity. The following theorem gives
very general conditions for local existence and uniqueness, and provides three
blow-up criteria for global existence.

Theorem 6.2. (Local existence, uniqueness, and blow-up) Suppose that Assump-
tion 6.1 holds. Then for each u0 ∈ L0

F0
(Ω;H) there exists a maximal solution

(u, σ) to (4.1) with σ > 0 a.s. and

P

(
σ < ∞, sup

t∈[0,σ)

‖u(t)‖H + ‖u‖L2(0,σ;V ) < ∞
)

= 0;

P

(
σ < ∞, lim

t↑σ
u(t) exists in H

)
= 0;

P

(
σ < ∞, sup

t∈[0,σ)

‖u(t)‖H < ∞
)

= 0 if the setting is noncritical.

Proof. From Assumption 6.11 (and the discussion below it), it follows that A
is a sectorial operator of angle < π/2, and (A,B) ∈ SMR•

2,0. Therefore, the
local existence and uniqueness follow from Theorem 4.7 with p = 2 and κ = 0.
The blow-up criteria are immediate from Theorem 5.1. �
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The following result establishes regularization properties in the subcrit-
ical setting, assuming additional stochastic maximal regularity conditions on
the linear part (A,B). It follows directly from Proposition 5.9.

Corollary 6.3. (Regularity in the subcritical setting) Suppose that Assumption
6.1 holds. Suppose that there is a ϕ ∈ (0, 1) such that for every n ≥ 1 there is
a constant Cn ≥ 0 such that

‖F (v)‖V ∗ + ‖G(v)‖γ(U,H) ≤ Cn(1 + ‖v‖ϕ
V ), for all v ∈ V with ‖v‖H ≤ n.

Suppose there is an ε ∈ (0, 1) such that u0 ∈ L0
F0

(Ω; [H,V ]ε) a.s. and (A,B) ∈
SMR•

r,α for all r ∈ (2,∞) and α ∈ [0, r/2 − 1). Then the solution (u, σ)
provided by Theorem 6.2 satisfies

u ∈ Hθ,r
loc ((0, σ); [V ∗, V ]1−θ) ∩ Cθ−ε

loc ((0, σ); [V ∗, V ]1−θ),

r ∈ (2,∞), θ ∈ (0, 1/2), ε ∈ (0, θ).

6.2.2. Global well-posedness under a coercivity condition. The following is
the primary global well-posedness result in the variational framework. Under
a coercivity condition, it provides global existence, uniqueness, and continuity
with respect to the initial data. The result can be proved in the same way
as [9, Theorems 3.5 and 3.8]. While the coercivity condition holds for many
equations, it also has limitations. In Sections 7 and 8.2.3, we present both
coercive and noncoercive examples for which we derive global well-posedness.
For the noncoercive examples, we cannot rely on Theorem 6.4.

Theorem 6.4. (Global well-posedness) Suppose that Assumption 6.1 holds, and
there exist θ′ > 0, M ′ ≥ 0 such that

〈v,Av − F (v)〉 − 1
2‖Bv + G(v)‖2

L2(U,H) ≥ θ′‖v‖2
V − M ′‖v‖2

H − M ′, v ∈ V.

Then for every u0 ∈ L0
F0

(Ω;H) there exists a unique global solution u ∈
L2

loc([0,∞);V ) ∩ C([0,∞);H) to (4.1). Moreover, for every p ∈ (0, 2) and
T > 0 there are constants CT and Cp,T such that

supt∈[0,T ] E‖u(t)‖2
H + E

∫ T

0
‖u(t)‖2

V dt ≤ CT (1 + E‖u0‖2
H),

E supt∈[0,T ] ‖u(t)‖p
H + E

∣∣∣ ∫ T

0
‖u(t)‖2

V dt
∣∣∣p/2

≤ Cp,T (1 + E‖u0‖p
H).

Furthermore, the following continuous dependency on the initial data holds: if
un

0 ∈ L0
F0

(Ω;H) are such that ‖u0 − un
0‖H → 0 in probability, then for every

T ∈ (0,∞),

‖u − un‖L2(0,T ;V ) + ‖u − un‖C([0,T ];H) → 0 in probability,

where un is the unique global solution to (4.1) with initial data un
0 .

It is unclear whether the above maximal estimate holds for p = 2 (see
Problem 4). However, Subsection 6.3.2 provides sufficient conditions under
which this is possible.
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Remark 6.5. (Sufficient condition for coercivity) Suppose that ‖G(v)‖L2(U,H)

≤ C(1+‖v‖β) for some β ∈ (0, 1). To check the coercivity condition of Theorem
6.4 it is enough to check 〈v, F (v)〉 ≤ M ′′(‖v‖2

H + 1) for all v ∈ V . Indeed, for
every ε > 0 one has

‖Bv + G(v)‖2
L2(U,H) ≤ (1 + ε)‖Bv‖2

L2(U,H) + Cε‖G(v)‖2
L2(U,H)

≤ ‖Bv‖2
L2(U,H) + ε‖B‖2‖v‖2

V + 2CεC
2(1 + ‖v‖2

β).

By Assumption 6.11 and interpolation estimates we obtain that for every δ > 0

〈v,Av − F (v)〉 − 1
2‖Bv + G(v)‖2

L2(U,H)

≥ 〈v,Av〉 − 1
2‖Bv‖2

L2(U,H) − ε
2‖B‖2‖v‖2

V − δCεC
2‖v‖2

V − CεCδ‖v‖2
H

− M ′′(‖v‖2
H + 1)

≥ (θ − ε
2‖B‖2 + δCεC

2)‖v‖2
V − Cδ,ε(‖v‖2

H + 1).

It remains to choose ε > 0 small enough, and after that δ > 0 small enough.

Remark 6.6. (Large deviations) Recently, in the setting of Theorem 6.4,
Theewis and the second named author established a large deviation princi-
ple in [244]. Notably, no additional conditions are imposed, allowing for a
broad class of equations to be covered. This includes all applications from [9,
Section 4] as well as those in Section 7, except for part of Subsection 7.3.7. In
particular, the result extends to large deviations on unbounded domains with
transport noise - a previously unknown case that is especially relevant in fluid
dynamics [60,92,236].

6.3. Higher order moments

In this subsection, we explain how one can extend the Lp-moment bounds
of Theorem 6.4 to other values of p ≥ 2.

6.3.1. Second order moments. One can take p = 2 in Theorem 6.4 in case the
coercivity is strengthened as follows: there exists an η > 0, θ′ > 0, M ′ ≥ 0
such that for all v ∈ V

〈v,Av − F (v)〉 − (
1
2 + η

)‖Bv + G(v)‖2
L2(U,H) ≥ θ′‖v‖2

V − M ′‖v‖2
H − M ′.

Such an η can always be obtained from the usual coercivity condition in case
‖G(v)‖L2(U,H) ≤ C(1 + ‖v‖V ). Indeed,

‖Bv + G(v)‖2
L2(U,H) ≤ 2‖Bv‖2

L2(U,H) + 2‖G(v)‖2
L2(U,H)

≤ (2‖B‖2 + 2C2)‖v‖2
V + 2C2.

Thus, taking η small enough, the coercivity remains essentially unharmed.

6.3.2. Lp(Ω)-moments with p > 2. Estimates for higher-order moments with
p ∈ [2,∞) can also be derived; however, they do not follow automatically, as
explained in [43] for a specific class of examples.
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Suppose that B(v)∗v = 0 for all v ∈ V and lim‖v‖V →∞
‖G(v)‖L 2(U,H)

‖v‖V
= 0.

Then there exist constants C and CT independent of p ∈ [2,∞) such that for
all p ∈ [2,∞), T ∈ (0,∞)∥∥∥ sup

t∈[0,T ]

‖u(t)‖H

∥∥∥
Lp(Ω)

+ p−1/2‖u‖Lp(Ω;L2(0,T ;V )) ≤ C(CT + ‖u0‖Lp(Ω;H)).

(6.2)

Indeed, under this condition, for every ε > 0 we can find Cε such that
‖G(v)‖L2(U,H) ≤ ε‖v‖V + Cε. This bound is sufficient to verify the required
coercivity condition from [113, Corollary 3.4], which then yields the desired
result.

6.3.3. Exponential moments. Exponential moments are useful for studying
convergence rates in numerical schemes and this was used for stochastic
Navier–Stokes equations in [31,32]. From (6.2) we can obtain exponential
moment bounds in the abstract setting of Theorem 6.4 under the additional
hypothesis of Subsection 6.3.2. Indeed, letting p → ∞ in (6.2), it follows that∥∥ supt∈[0,T ] ‖u(t)‖H

∥∥
L∞(Ω)

≤ C(CT + ‖u0‖L∞(Ω;H)) if u0 ∈ L∞(Ω;H). More-
over, letting Mu0 := C(CT + ‖u0‖L∞(Ω;H)), for all ε ∈ (0, (2M2

u0
e)−1), we

have

E exp
(
ε‖u‖2

L2(0,T ;V )

)
≤

∞∑
n=0

εnE‖u‖2n
L2(0,T ;V )

n!
≤

∞∑
n=0

(2εM2
u0

n)n

n!

≤
∞∑

n=0

(2εM2
u0

e)n =
1

1 − 2εM2
u0

e
,

where we applied the standard estimate nn

n! ≤ en.

6.3.4. Regularization through a stronger setting. In Theorems 5.6, 5.7 and
Proposition 5.9 we have explored various regularization results. Here we
present a different type of regularization result using a stronger Gelfand triple
(Ṽ , H̃,

Ṽ ∗) such that H̃ = V and Ṽ ∗ = H. When coercivity holds in the (Ṽ , H̃, Ṽ ∗)-
setting, one can apply Theorem 6.4 directly in this smoother framework (see
e.g. the Allen–Cahn case in Subsection 7.1.2). However, in many examples
coercivity fails in the stronger setting - such as for Cahn–Hilliard (Subsection
7.2), and in fluid dynamics (Subsection 7.3).

The bootstrap result will be formulated under the assumption that the
solution exists globally in the (V,H, V ∗)-setting. For example, this holds when
the conditions of Theorem 6.4 are satisfied. The current formulation has the
advantage that it can be iterated.

Theorem 6.7. (Regularity through the strong setting) Suppose that Assumption
6.1 holds. Suppose the solution provided by Theorem 6.2 exists globally, i.e.
σ = ∞ a.s. Assume that A and B also define bounded operators A ∈ L (Ṽ ,H)
and B ∈ L (Ṽ ,L2(U , V )), and that (A,B) and (F,G) satisfy Assumption
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6.1 in the case (V,H, V ∗) is replaced by (Ṽ , H̃, Ṽ ∗). Suppose that there exist
constants α1, α2 ∈ [0, 1), γ1, γ2 ≥ 0, C ≥ 0 such that

‖F (v)‖H ≤ C(1 + ‖v‖Ṽ )α1(1 + ‖v‖V )2−2α1(1 + ‖v‖H)γ1 , v ∈ V,

‖G(v)‖L2(U,V ) ≤ C(1 + ‖v‖Ṽ )α2(1 + ‖v‖V )2−2α2(1 + ‖v‖H)γ2 , v ∈ V.

Let u0 ∈ L0
F0

(Ω;V ). Then u ∈ L2
loc([0,∞); Ṽ ) ∩ C([0,∞);V ) a.s.

Note that the stated regularity can often be further improved by using
Corollary 6.3 in the (Ṽ , H̃, Ṽ ∗)-setting since the latter typically is subcritical.

Proof. It follows from Theorem 6.2 that there exists a maximal solution (ũ, σ̃)
to (4.1) in the (Ṽ , H̃)-setting. Since it is also a local solution in the (V,H, V ∗)-
setting, by uniqueness we obtain ũ = u on [0, σ̃). We claim that σ̃ = ∞ a.s. To
show this we will use the blow-up criteria of Theorem 6.2 in the (Ṽ , H̃)-setting.

Fix T ∈ (0,∞). Let (τk)k≥1 be a localizing sequence for (ũ, σ̃ ∧T ). Then,
in particular, u ∈ C([0, τk];H) ∩ L2(0, τk;V ) a.s. Let

σk = inf
{

t ∈ [0, τk] : ‖u(t) − u0‖H ≥ k or
∫ t

0
‖u(s)‖2

V ds ≥ k
}

,

where we set inf ∅ = τk. Then (σk)k≥1 is a localizing sequence for (ũ, σ̃)
as well. Letting uk(t) = u(t ∧ σk) we have uk ∈ L2(Ω;C([0, σk];H)) ∩
L2(Ω;L2(0, σk;V )) and a.s. for all t ∈ [0, T ],

uk(t) = u0 −
∫ t

0

1[0,σk](s)[Auk(s) − F (uk(s))] ds

+
∫ t

0

1[0,σk](s)[Buk(s) + G(uk(s))] dW (s).

By Itô’s formula (see Lemma A.5) applied to 1
2‖ · ‖2

V = 1
2‖ · ‖2

H̃
we obtain

1
2‖uk(t)‖2

V +
∫ t

0
1[0,σk](s)Euk(s) ds = 1

2‖u0‖2
V

+
∫ t

0

1[0,σk](s)[Buk(s) + G(uk(s))]∗u dW (s),

where

Euk(s) = 〈uk(s), Auk(s) − F (uk(s))〉Ṽ ,Ṽ ∗ − 1
2
‖Buk(s) + G(uk(s))‖2

L2(U,V ).

By the conditions on F and Young’s inequality we obtain for any ε > 0

〈uk, F (uk)〉Ṽ ,Ṽ ∗ ≤ ‖uk‖Ṽ ‖F (uk)‖Ṽ ∗

≤ C(1 + ‖uk‖Ṽ )α1+1(1 + ‖uk‖V )2−2α1(1 + ‖uk‖H)γ1

≤ ε(1 + ‖uk‖2
Ṽ

) + C1,ε(1 + ‖uk‖V )4(1 + ‖uk‖H)γ̃1 ,

where γ̃1 = 2γ1
1−α1

. For the Itô correction for any ε > 0 we have

1
2
‖Buk + G(uk)‖2

L2(U,V ) ≤ (
1
2

+ ε)‖Buk‖2
L2(U,V ) + C2,ε‖G(uk)‖2

L2(U,V ).

By the conditions on G and Young’s inequality again, we obtain for any δ > 0

‖G(uk)‖2
L2(U,V ) ≤ δ(1 + ‖uk‖2

Ṽ
) + C1,δ(1 + ‖uk‖V )4(1 + ‖uk‖H)γ̃2 ,
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where γ̃2 = 2γ2
1−α2

.
Therefore, by the above first choosing ε > 0 and then δ > 0 small enough,

and by the coercivity condition on (A,B) in the (Ṽ , H̃, Ṽ ∗)-setting (with con-
stants (θ̃, M̃)), we find that

1
2‖uk(t)‖2

V + θ̃
4

∫ t

0
1[0,σk](s)‖uk(s)‖2

Ṽ
ds

≤ 1
2‖u0‖2

H + Cθ̃

∫ t

0
(1 + ‖uk(s)‖V )4(1 + ‖uk(s)‖H)γ̃ ds

+ Mθ̃

∫ t

0

(‖uk(s)‖2
V + 1) ds

+
∫ t

0
1[0,σk](s)[Buk(s) + G(uk(s))]∗uk(s) dW (s).

Letting

a(t) = 2Cθ̃

∫ t

0
(1 + ‖u(s)‖V )2(1 + ‖u(s)‖H)γ̃ ds,

Zk(t) = 1
2 (1 + ‖uk(t)‖2

V ) + θ̃
4

∫ t

0
1[0,σk](s)‖uk(s)‖2

Ṽ
ds,

ξ(t) = 1
2 (‖u0‖2

H + 1) + Mθ̃

∫ t

0
(‖u(s)‖2

V + 1) ds,

ζ(t) = 1
2 (1 + sups<σ̃∧t ‖u(s)‖2

V ) + θ̃
4

∫ t∧σ

0
‖u(s)‖2

Ṽ
ds,

we obtain that a.s. for all t ∈ [0, T ],

Zk(t) ≤ ξ(t) +
∫ t

0
Zk(s)a(s) ds +

∫ t

0
1[0,σk](s)[Buk(s) + G(uk(s))]∗uk(s) dW (s).

Since u ∈ L2(0, T ;V ) ∩ C([0, T ];H) a.s., the processes a and ξ are continuous,
increasing, and finite a.s. Applying the stochastic Gronwall Lemma A.7 we
find that

P(supt∈[0,T ] Z
k(t) > μ) ≤ eR

μ E(ξ(T ) ∧ λ) + P(ξ(T ) ≥ λ) + P(a(T ) > R),

where μ, λ,R > 0 are arbitrary. Letting k → ∞ we find that

P(ζ(T ) > μ) ≤ eR

μ E(ξ(T ) ∧ λ) + P(ξ(T ) ≥ λ) + P(a(T ) > R). (6.3)

Letting μ → ∞, λ → ∞ and finally R → ∞, it follows that ζ(T ) < ∞ a.s.
Therefore, after letting T → ∞, we can conclude that a.s. on the set {σ̃ < ∞}
we have supt<σ̃ ‖u(t)‖2

V +
∫ σ̃

0
‖u(s)‖2

Ṽ
ds < ∞, and thus by Theorem 6.2, σ̃ = ∞

a.s., which proves the claim.
Now, the desired regularity is immediate from the claim and the fact that

(ũ, σ̃) is a maximal solution in the (Ṽ , H̃, Ṽ ∗)-setting. �

Remark 6.8. No Lp(Ω)-integrability is stated in Theorem 6.7. In general, we
do not expect this to hold. The tail bound in (6.3) can be used to obtain
some integrability properties of u in the (Ṽ , H̃, Ṽ ∗)-setting if additionally the
conditions of Theorem 6.4 hold. For simplicity, assume u0 ∈ L2(Ω;H). Then
ξ(T ) ∈ L1(Ω) and thus after letting λ → ∞ in (6.3) we find that

P(ζ(T ) > μ) ≤ eR

μ E(ξ(T )) + P(a(T ) > R).
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This still leads to very poor integrability results due to the factor eR unless
a(T ) has exponential integrability properties. The latter is the case if u0 ∈
L∞(Ω;H), B(v)∗v = 0 for all v ∈ V , and lim‖v‖V →∞

‖G(v)‖L 2(U,H)

‖v‖V
= 0 by

(6.2). To see what integrability can be deduced for ζ(T ), let ε > 0 be such
that E exp(εa(T )) < ∞ (therefore ε might depend on ‖u0‖L∞(Ω;V ) and T , see
Subsection 6.3.3). Then letting R = log(μb) with b ∈ (0, 1) we find that

P(ζ(T ) > μ) ≤ μb−1E(ξ(T )) + P(a(T ) > log(μb)) ≤ μb−1E(ξ(T ))

+
1

μεb
E exp(εa(T )).

Multiplying by μp−1 with p ∈ (0, 1) and integrating over [0,∞) we obtain that

Eζ(T )p ≤ 1 +
∫ ∞

1

P(ζ(T ) > μ) dμ ≤ 1 +
∫ ∞

1

[
μp+b−2E(ξ(T ))

+ μp−1−εbE exp(εa(T ))
]
dμ.

The latter is finite if p < min{1 − b, εb}. Letting b = 1
ε+1 we obtain that, for

all p ∈ (0, ε
ε+1 ),

E supt∈[0,T ] ‖u(t)‖2p
V + E

( ∫ T

0
‖u(t)‖2

Ṽ
dt
)p/2

< ∞.

7. Selected applications through L2-theory

In this section, we will explain several examples which can be covered
through the L2-theory presented in Section 6. Along the way, we will highlight
some of the limitations of this setting, which will motivate our treatment of
certain examples using stochastic maximal Lp-regularity in an Lq or Hs,q-space
(see Section 8).

As discussed in Section 6, in the variational setting, a coercivity condi-
tion ensures global well-posedness (see Theorem 6.4). In Subsection 7.1, we
apply this result to the stochastic Allen–Cahn equation. We first examine the
equation in the analytical weak setting for d = 1, and then for d ≤ 4 in the
strong setting, which fails to be weakly monotone (see the beginning of Section
6).

In Subsection 7.2, we consider the stochastic Cahn–Hilliard equation for
d ∈ {1, 2}. The latter also fails to be weakly monotone, and turns out to be
critical for d = 2.

In Subsection 7.3, we apply the results to an abstract fluid dynamics
model and discuss consequences for 2D stochastic Navier–Stokes equations
and Boussinesq equations, which are critical but not weakly monotone.

In some cases where the coercivity condition fails, the L2-setting can still
give local well-posedness. Obtaining global well-posedness for these problems
can be quite challenging. We will indicate some of the ideas needed for the
3D stochastic primitive equation in Subsection 7.3.7. Moreover, in Subsection
8.2.3, we study a Lotka–Volterra model in detail. The Lp-setting plays a key
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role in this context, as it is used to ensure positivity of the solution, which is
crucial for global well-posedness.

7.1. Stochastic Allen–Cahn equation with transport noise

In this subsection, we consider the following Allen–Cahn type equation
on a domain O ⊆ R

d:

du =
(
Δu + u − u3

)
dt +

∑
n≥1

[
(bn · ∇)u + gn(·, u)

]
dW n

t on O, u = 0 on ∂O,

(7.1)

and initial value u(0, ·) = u0. In Subsection 7.1.1 we consider Dirichlet bound-
ary conditions, and in Subsection 7.1.2 periodic boundary conditions. The
(Wn)n≥1 are independent standard Brownian motions. The quadratic diffu-
sion assumption is optimal from a scaling point of view, see Subsection 4.3.1.

7.1.1. Weak setting. To analyze (7.1) in the so-called weak setting, we let
V = H1

0 (O) and H = L2(O). In this way V ∗ = H−1(O), and we set

〈v,Au〉 = (∇u,∇v)L2(O), and 〈v, F (u)〉 = (v, u)L2(O) − (v, u3)L2(O).

For the noise, let U = �2 and let (en)n≥1 be its standard orthonormal basis.
Then WU (1[0,t]en) = wn

t uniquely extends to a cylindrical Brownian motion
on U . Let

(Bu)en =
∑d

j=1 bj
n∂ju, and G(u)en = gn(·, u). (7.2)

To check Assumption 6.1 for F , note that as in Subsection 4.3.1,

‖F (u) − F (v)‖V ∗ � ‖u − v‖L2(O) + (‖u‖2
L3r(D) + ‖v‖2

L3r(D))‖u − v‖L3r(D)

� (1 + ‖u‖2
β + ‖v‖2

β)‖u − v‖β ,

where −1 − d
2 ≤ −d

r , with r ∈ (1, 2), and where 2β ≥ d
2 + 1 − d

3r . Just based
on the F -part we see that ρ = ρ1 = 2 in Assumption 6.1. Therefore, the
(sub)criticality condition (6.1) becomes β ≤ 2/3. Taking β = 2/3, we see that
for d = 1 we can take r ∈ (1, 2) arbitrarily. For d = 2, the lower bound on
β implies r ≤ 1, which is not admissible in the above Sobolev embedding.
Recently, a variation of the above method was introduced that allows d = 2
in the weak setting (see [27]). In the case d ≥ 3, the best choice is to define r
by −1 − d

2 = −d
r . One can check that this gives 2β ≥ 2

3 + d
3 , which is false for

d ≥ 3. Therefore, from now on we assume d = 1.
Suppose that b ∈ L∞(O; �2) and that the parabolicity condition (3.10)

holds, i.e. supO ‖b‖
2 < ν for some constant ν < 2. Finally, for simplicity,
we assume that g : O × R → �2 is globally Lipschitz in the second variable
and g(·, 0) ∈ L2(O; �2) (see Remark 7.2 below for weaker conditions). These
conditions imply that Assumption 6.11 holds, since

〈u,Au〉 − 1
2
‖Bu‖2

L2(U,H) = ‖∇u‖2
L2(O) − 1

2
‖b∇u‖2

L2(O)

≥ ν‖∇u‖2
L2(O) ≥ ν‖u‖2

V − Mν‖u‖2
H .
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Moreover, one can check that G is Lipschitz from H into L2(U ,H) and thus
Assumption 6.12 holds as well by the above discussion. Finally, since

〈u, F (u)〉 = ‖u‖2
L2(O) − (u, u3)L2(O) ≤ ‖u‖2

H , (7.3)

the coercivity condition of Theorem 6.4 follows from Remark 6.5. Hence, The-
orem 6.4 yields

Theorem 7.1. (Allen–Cahn in the weak setting) Let d = 1 and suppose that
supO ‖b‖2


2 < 2, g(·, 0) ∈ L2(O; �2) and there is a constant L such that

‖g(x, y) − g(x, y′)‖
2 ≤ L|y − y′|, x ∈ O, y, y′ ∈ R.

Then for every u0 ∈ L0
F0

(Ω;L2(O)), (7.1) has a unique global solution u ∈
L2

loc([0,∞);H1
0 (O)) ∩ C([0,∞);L2(O)) a.s.

Additionally, the estimates and continuity properties stated in Theorem
6.4 hold, where L2-moments are also included by Subsection 6.3.2. Since the
setting of Theorem 7.1 is subcritical, in some cases, we can obtain further
regularity. Indeed, for instance, if b = 0, then by Theorem 3.13 and the text
below Theorem 3.17, (A, 0) ∈ SMR•

p,κ for all p ∈ [2,∞) and κ ∈ [0, p/2−1)∪
{0}. Therefore, if u0 ∈ Hδ(O) for some δ > 0, Proposition 5.9 and Sobolev
embeddings show that

u ∈ Lr
loc((0, σ); DH1(O)) ∩ C

θ/2,θ
loc ((0, σ) × O), r ∈ [2,∞), θ ∈ (0, 1).

To include higher dimensions, one could choose one of the following options:
1 consider the strong setting V = H2(O) ∩ H1

0 (O), H = H1
0 (O) and V ∗ =

L2(O);
2 use Lp(Lq)-theory with p > 2 and q ≥ 2.

A disadvantage of 1 is that it leads to compatibility conditions for b and g
(for more details see the comments at the beginning of Subsection 8.1). Option
2 will be the start of our discussion on Lp(Lq)-theory in Subsection 8.1.

Remark 7.2. (Critical quadratic diffusion) As discussed at the end of Subsec-
tion 4.3.1, a scaling argument suggests that a quadratic growth for g is natural.
The reader can check that Theorem 7.1 also holds if b = 0 and the measurable
mapping g : O × R → �2 satisfies g(·, 0) ∈ L∞(O; �2), and moreover there
exists L > 0 such that, for all x ∈ O and y, y′ ∈ R,

‖g(x, y) − g(x, y′)‖
2 ≤ L(1 + |y| + |y′|)|y − y′|,
‖g(x, y)‖
2 ≤ L(1 + |y|) +

√
2|y|2.

Let us remark that the first in the above serves to check Assumption 6.1 for
G, while the second allows one to check the coercivity condition of Theorem
6.4 (therefore using the dissipative effect of −u3 which was not used in (7.3)).
The factor

√
2 is optimal for the coercivity to hold.

It is also possible to deal with transport noise and quadratic nonlinearities
simultaneously. To check coercivity one can argue as in [14, Lemma 3.3 and
3.4], see also Theorem 1.1 there.
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7.1.2. Strong setting. For simplicity, suppose that O is the d-dimensional torus
T

d. We explore what changes in the strong setting when considering the Allen–
Cahn equation. Alternatively, one could consider R

d or a d-dimensional man-
ifold without boundary. A domain with boundary conditions could also be
considered, provided additional compatibility conditions are met.

Assumption 7.3. Let bj = (bj
n)n≥1 : T

d → �2 for j ∈ {1, . . . , d}, and g =
(gn)n≥1 : T

d × R → �2 be B(Td)- and B(Td) ⊗ B(R)-measurable maps,
respectively. Assume that

1 There exists ν ∈ (0, 2) such that for all x ∈ T
d,∑

n≥1

∑d
i,j=1 bi

n(x)bj
n(x)ξiξj ≤ ν|ξ|2 for all ξ ∈ R

d;

2 ‖bj‖W 1,d+δ(Td;
2) ≤ M for every j ∈ {1, . . . , d};
3 g ∈ C1(Td × R; �2), and there exists a constant L such that

‖g(x, y) − g(x, y′)‖�2 + ‖∂yg(x, y) − ∂yg(x, y′)‖�2 ≤ L|y − y′|, x ∈ O, y, y′ ∈ R.

As noted in Remark 7.2, quadratic growth for the diffusion g is possible.
For further details see [9, Assumption 5.16(5)] and the comments provided
below it. For simplicity, we do not pursue this here.

Let V = H2(Td), H = H1(Td). It can be verified that V ∗ = L2(Td)
with respect to the pairing of H. Thus, for u ∈ V and v ∈ V ∗ we set 〈u, v〉 =
−(Δu, v)L2(Td)+(u, v)L2(Td). Let A = −Δ and F (u) = u−u3, and define B and
G as in (7.2). Checking Theorem 6.4 in this case is conceptually similar to the
previous case. However, since the duality pairing and the space H = H1(Td)
contain one more derivative, the calculation becomes more cumbersome. To
check the coercivity condition, derivatives must be taken into account, and the
function G is no longer globally Lipschitz because of the chain rule.

We begin by examining the mapping properties of F . This becomes sim-
pler since V ∗ = L2(Td). Using |F (u) − F (v)| ≤ 2(u2 + v2)|u − v| and applying
Hölder’s inequality we obtain

‖F (u) − F (v)‖V ∗ � ‖u − v‖L2(Td) + (‖u‖2
L6(Td) + ‖v‖2

L6(Td))‖u − v‖L6(Td)

� (1 + ‖u‖2
H2β1 (Td) + ‖v‖2

H2β1 (Td))‖u − v‖H2β1 (Td),

� (1 + ‖u‖2
β1

+ ‖v‖2
β1

)‖u − v‖β1 ,

where we used [V ∗, V ]β1 = H2β1(Td) and Sobolev embedding with 2β1 − d
2 ≥

−d
6 (see Subsection 2.3 for the definition of the fractional Sobolev spaces).

On the other hand, we already saw that (6.1) gives β1 ≤ 2
3 as (sub)criticality

condition. Thus we find that d ∈ {1, . . . , 4} are admissible and subcritical for
F .

The G-term was globally Lipschitz in the weak setting. This no longer
holds in the strong setting, since we need to estimate the H1-norm of G. By
Assumption 7.33 for u, v ∈ V one has

‖∇[G(u) − G(v)]‖L2(Td;
2) = ‖∂xg(·, u) − ∂xg(·, v)‖L2(Td;
2)

+ ‖∂yg(·, u)∇u − ∂yg(·, v)∇v]‖L2(Td;
2)
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≤ L‖u − v‖L2(Td) + ‖∂yg(u)‖L∞(Td;
2)‖∇u

− ∇v‖L2(Td) + ‖[∂yg(u) − ∂yg(v)]∇u‖L2(Td;
2)

≤ L‖u − v‖L2(Td) + L‖∇u − ∇v‖L2(Td) + L‖|u − v||∇u|‖L2(Td).

By Hölder’s inequality and Sobolev embedding (using again d ≤ 4) we have

‖|u − v||∇u|‖L2(Td) ≤ ‖u − v‖L8(Td)‖∇u‖
L

8
3 (Td)

� ‖u − v‖H3/2(Td)‖u‖H3/2(Td).

The estimate for ‖G(u)−G(v)‖L2(Td;
2) was already observed before. Therefore,
it follows that

‖G(u) − G(v)‖L2(
2,H1(Td)) ≤ (1 + ‖u‖ 3
4
)‖u − v‖ 3

4
,

and thus we can set ρ2 = 1 and β2 = 3
4 , which is critical for G and thus for

(F,G) (if d = 4).
Next, we check Assumption 6.11. First, observe that

∂k(Bu)en = ∂k[bn · ∇u] =
∑d

j=1 bj
n∂k∂ju +

∑d
j=1 ∂kbj

n∂ju.

To estimate 1
2‖∇Bu‖2

L2(Td;
2) we split into the above two parts. By Assumption
7.31

∑d
k=1

∫
Td

∑
n≥1

∣∣∣∑d
j=1 bj

n∂j∂ku
∣∣∣2 dx ≤ ν

∫
Td

∑d
k,j=1 |∂j∂ku|2 dx = ν‖Δu‖2

L2(Td).

For the second term, one can check that

∑d
k=1

∫
Td

∑
n≥1

∣∣∣∑d
j=1 ∂kbj

n∂ju
∣∣∣2 dx

(i)

≤ ∑d
j=1 ‖∇bj

n|2Ld+δ(Td;�2)‖∇u‖2
Lr(Td)

(ii)

≤ ∑d
j=1 ‖bj

n‖2
W1,d+δ(Td;�2)‖∇u‖2

Hμ(Td),

(iii)

≤ α‖u‖H2(Td) + Cα‖u‖2
H1(Td),

where in (i) we applied Cauchy-Schwarz and Hölder’s inequalities with 1
d+δ +

1
r = 1

2 , and in (ii) Sobolev embedding with μ − d
2 ≥ −d

r which is possible for
some μ ∈ (0, 1). Moreover, in (iii) we used standard interpolation estimates
and arbitrary α > 0. Using (a + b)2 ≤ (1 + ε)a2 + Cεb

2, we can conclude that

1

2
‖∇Bu‖2

L2(Td;�2) ≤ (1 + ε)ν − α

2
‖Δu‖2

L2(Td) +
Cε

2

d∑
j=1

‖bj
n‖2

W1,d+δ(Td;�2)‖u‖2
H2(Td).

Similarly, one can check that 1
2‖Bu‖2

L2(Td;
2) ≤ ν
2‖∇u‖2

L2(Td). From these esti-
mates one can deduce that B ∈ L (V,L2(U ,H)) and by taking ε so small that
(1+ε)ν−α

2 = (1 − θ) with θ > 0, and using 〈u,Au〉 = ‖Δu‖2
L2(Td) + ‖∇u‖2

L2(Td),
we find that

〈u,Au〉 − 1
2‖Bu‖2

L2(U,H) ≥ θ‖Δu‖2
L2(Td) + θ‖∇u‖2

L2(Td) − Cα,ε

2
‖u‖2

H1(Td)

= θ‖u‖2
V − Cα,ε

2
‖u‖2

H
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To check the coercivity condition of Theorem 6.4 note that the following
subcritical growth estimate holds:

‖G(v)‖2
L2(
2,H) =

∥∥g(·, v)
∥∥2

L2(Td;
2)
+

∥∥∂xg(·, v) + ∂yg(·, v)∇v
∥∥2

L2(Td;
2)

≤ C(1 + ‖v‖L2(Td))
2 + L‖∇v‖2

L2(Td) ≤ C ′(1 + ‖v‖H)2.

Therefore, by Remark 6.5 it suffices to prove that 〈v, F (v)〉 ≤ M ′′(‖v‖2
H + 1)

for all v ∈ C2(Td). For the linear part in F , this is obvious. For the cubic part,
this follows from

〈v,−v3〉 = (Δv, v3)L2 − (v, v3)L2 = −3
∫
Td |∇v|2v2 dx − ∫

T4 v4 dx ≤ 0.

Now, Theorem 6.4 implies that

Theorem 7.4. (Allen–Cahn in the strong setting) Let d ∈ {2, 3, 4} and suppose
that the above conditions hold on (b, g). Then for every u0 ∈ L0

F0
(Ω;H1(Td))

there exists a unique global solution u such that u ∈ L2
loc([0,∞);H2(Td)) ∩

C([0,∞);H1(Td)) a.s.

Additionally, the estimates and continuity properties stated in Theorem
6.4 hold, including L2-moments as discussed in Subsection 6.3.2. The case
d = 1 can also be considered by introducing a dummy variable. Since the
growth estimates for F and G are subcritical when d ≤ 3, Corollary 6.3 further
implies that for θ ∈ [0, 1/2), r ∈ [2,∞), ε ∈ (0, θ)

u ∈ Hθ,r
loc ((0,∞);H2−2θ(Td)) ∩ Cθ−ε

loc ((0,∞);H2−2θ(Td)).
Here we used that (A,B) ∈ SMR•

p,κ for all p ∈ [2,∞) and κ ∈ [0, p/2 −
1) ∪ {0} (see [15]). Later we will see that significantly more regularity can be
achieved by applying Theorem 8.15 (see Example 8.16).

7.2. The stochastic Cahn–Hilliard equation

A prominent case of an SPDE that is not weakly monotone (see the
beginning of Section 6) is the Cahn–Hilliard equation, which was considered
in many papers (see [52,72] and references therein). For simplicity, we consider
the equation on a bounded C2-domain O ⊆ R

d. The arguments easily extend
to unbounded domains (in case the elliptic result (7.5) below holds).

On O consider the following equation with a trace class gradient noise
term:⎧⎪⎨

⎪⎩
du + Δ2u dt = Δ(f(u)) dt +

∑
n≥1 gn(·, u,∇u) dWn

t , on O,

∇u · n = 0 and ∇(Δu) · n = 0, on ∂O,

u(0) = u0, on O.

(7.4)

Here, n is the outer normal vector of O, and (Wn)n≥1 are independent Brow-
nian motions on a given probability space Ω.

Below, we closely follow the presentation of [9, Section 5.1].
We make the following assumptions on f and g:

Assumption 7.5. Let d ≥ 1 and ρ ∈ [0, 4
d ]. Suppose that f ∈ C1(R) and

|f(y) − f(y′)| ≤ L(1 + |y|ρ + |y′|ρ)|y − y′|,



NoDEA Nonlinear SPDEs and Maximal Regularity Page 77 of 150   123 

f ′(y) ≥ −C,

and suppose that g : R × R × R
d → �2 is such that g(·, 0, 0) ∈ L2(O; �2) and

‖g(x, y, z) − g(x, y′, z′)‖�2 ≤ L|y − y′| + L|z − z′|, x ∈ O, y, y′ ∈ R, z, z′ ∈ R
d.

For example the classical double well potential f(y) = y(y2 − 1) =
∂y[14 (1−y2)2] satisfies the above conditions for d ∈ {1, 2}. Let H = L2(O) and
set

V := H2
N (O) = {u ∈ H2(O) : ∂nu|∂O = 0},

where ∂nu = ∇u · n and n denotes the outer normal vector field on ∂O.
We define A ∈ L (V, V ∗) and F : V → V ∗ by

〈v,Au〉 = (Δv,Δu)L2 , and 〈v, F (u)〉 = (Δv, f(u))L2 .

Of course, we need to ensure f(u) ∈ L2(O) and this will be done below. Let
B = 0, and let G : V → L2(U ,H) be defined by (well-definedness is checked
below)

(Gn(u))(x) = gn(x, u(x),∇u(x)).

To apply Theorem 6.4 we first check Assumption 6.1. By the smoothness
of O and standard elliptic theory (see [111, Theorem 8.8]) there exist θ,M > 0
such that

‖u‖2
H2(O) ≤ θ‖Δu‖2

L2(O) + M‖u‖2
L2(O), u ∈ V. (7.5)

Hence, 〈u,Au〉 = ‖Δu‖2
L2(O) ≥ θ‖u‖2

V −M‖u‖2
H for all u ∈ V , which gives the

required coercivity condition for A. Without loss of generality, we may assume
f(0) = 0. For the local Lipschitz estimate, note that with ρ1 = ρ,

‖F (u) − F (v)‖V ∗ � ‖f(·, u) − f(·, v)‖L2(O)

� ‖(1 + |u|ρ1 + |v|ρ1)(u − v)‖L2(O) (by Assumption 7.5)

� (1 + ‖u‖ρ1

L2(ρ1+1)(O) + ‖v‖ρ1

L2(ρ1+1)(O))‖u − v‖L2(ρ1+1)(O) (by Hölder’s inequality)

� (1 + ‖u‖ρ1
H4β1−2(O) + ‖v‖ρ1

H4β1−2(O))‖u − v‖H4β1−2(O) (by Sobolev embedding).

In the Sobolev embedding we need 4β1 − 2 − d
2 ≥ − d

2(ρ1+1) . Therefore, the
condition (6.1) leads to ρ1 ≤ 4

d . Moreover, we can consider the critical case
2β1 = 1 + 1

ρ1+1 . The function G satisfies Assumption 6.1 with ρ2 = 0 and
β2 = 3

4 . Indeed,

‖G(u) − G(v)‖L2(O;
2) � ‖u − v‖L2(O) + ‖∇u − ∇v‖L2(O)

� ‖(u − v)‖H1(O) � ‖u − v‖ 3
4
.

To check the coercivity condition of Theorem 6.4, integrating by parts it follows
that for all v ∈ V ,

〈F (v), v〉 = −(∇v,∇(f(v)))L2 ≤ −
∫

O
f ′(v)|∇v|2 dx ≤ C‖∇v‖2

L2(O)

≤ ε‖v‖2
V + Cε‖v‖2

H ,
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where we used standard interpolation estimates and where ε > 0 is arbitrary.
By Remark 6.5 this implies the required coercivity condition, and thus by
Theorem 6.4 we deduce the following.

Theorem 7.6. (Global well-posedness) Suppose that Assumption 7.5 holds. Let
u0 ∈ L0

F0
(Ω;L2(O)). Then (7.4) has a unique global solution

u ∈ C([0,∞);L2(O)) ∩ L2
loc([0,∞);H2

N (O)) a.s.

Also, L2-moment bounds hold by Subsection 6.3.2, and the continuous
dependency of Theorem 6.4 holds in the above setting. Furthermore, if ρ1 <
4/d, then one can check that Proposition 5.9 gives that

u ∈ Hθ,r
loc ((0, σ);H2−4θ(O)) ∩ Cθ−ε

loc ((0, σ);H2−4θ(O)),

θ ∈ [0, 1/2), r ∈ [2,∞), ε ∈ (0, θ).

Remark 7.7. In case d ≥ 3, one can apply Lp(Lq)-theory to establish global
well-posedness for (7.4) in case of the classical double well potential; however,
this will not be considered in this survey. Regularity can also be obtained
through Lp(Lq)-theory. Alternatively, for d ∈ {1, 2} one could apply Theorem
6.7 and Proposition 5.9 to obtain regularity.

7.3. Fluid dynamics models via L2-setting

In this subsection, we consider several models from fluid dynamics which
fit into a unified abstract framework, mostly two-dimensional. In particular,
this includes 2D Navier Stokes, quasigeostrophic, and 2D Boussinesq equations,
all of which we examine in more detail. A similar setting was also considered in
[60], where it was shown that the following models are included: 2D magneto-
hydrodynamic equations, 2D magnetic Bénard problem, 3D Leray α-model for
Navier–Stokes equations, shell models of turbulence. While we do not delve
into these latter models, our framework accommodates them as well. Models
which do not fit into this the L2-setting are considered in Subsection 8.3 and
8.4.

All of the above equations are typically treated using Galerkin approxi-
mation since they do not conform to the classical variational setting. However,
in our theory, they do not present any additional difficulties and can be seam-
lessly incorporated. Notably, our approach does not require compactness of
embeddings, allowing us to include unbounded domains. Finally, it is worth
mentioning that most 2D fluid dynamics models are critical in the L2-setting.

7.3.1. Abstract formulation. The general problem we consider has the form

du + Au dt = Φ(u, u) dt + (Bu + G(u)) dW, u(0) = u0. (7.6)

Here, Φ : Vβ1 × Vβ1 → V ∗ is assumed to be bilinear and satisfies certain
estimates (see below). A key condition will be that 〈u,Φ(u, u)〉 = 0 for all
u ∈ V . In many models, Φ is of the form Φ(u, v) = div(u ⊗ v) with V a
first-order Sobolev space.
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Assumption 7.8. (1) (A,B) is coercive, i.e. there exist θ > 0 and M ≥ 0 such
that for all v ∈ V ,

〈v,Av〉 − 1
2‖Bv‖2

L2(U ;H) ≥ θ‖v‖2
V − M‖v‖2

H .

(2) For some β1 ∈ (1/2, 3/4], Φ : Vβ1 × Vβ1 → V ∗ is bilinear and satisfies

‖Φ(u, v)‖V ∗ ≤ C‖u‖β1‖v‖β1 , 〈u,Φ(u, u)〉 = 0, u, v ∈ V.

(3) For some β2 ∈ (1/2, 1), G : Vβ2 → L2(U ,H) is globally Lipschitz.

Let F : Vβ → V ∗ be given by F (u) = Φ(u, u). Then F satisfies Assump-
tion 6.1 with ρ1 = 1 and β1 as in Assumption 7.8. Note that β1 = 3/4 is the
critical case of Assumption 6.1. In many applications with d = 2, one is forced
to take β1 = 3/4 as will be explained in a simplified setting in the following
remark.

Remark 7.9. Let d = 2. If V = H1, H = L2 and V ∗ = H−1, then Vβ = H2β−1.
Thus

‖∇(u2) − ∇(v2)‖H−1 � ‖u2 − v2‖L2 ≤ ‖u + v‖L4‖u − v‖L4

≤ C(‖u‖β + ‖v‖β)‖u − v‖β

if 2β − 1 − 2
2 ≥ − 2

4 . This leads to β ≥ 3
4 , which means criticality cannot be

avoided. One can also check that the scaling u(λ·) by λ > 0 of the nonlinearity
in the H−1-norm and ‖ · ‖3/4 = ‖ · ‖H1/2 -norm both coincide with λ−1/2 for
λ ↓ 0. The criticality in the above is one of the reasons that the more classical
variational settings do not apply to many standard fluid dynamics models.

Another problem of the classical variational setting is that the nonlin-
earity F is not weakly monotone (see the beginning of Section 6), which, for
instance, follows from a scaling argument considering u(λ·) and let λ → ∞.

Theorem 7.10. Suppose that Assumption 7.8 holds, Then for every u0 ∈
L0
F0

(Ω;H) there exists a unique global solution u ∈ L2
loc([0,∞);V )∩C([0,∞);

H) a.s. to (7.6). Moreover, for all T ∈ (0,∞) and p ∈ (0, 2],

E supt∈[0,T ] ‖u(t)‖p
H + E

∣∣∣ ∫ T

0
‖u(t)‖2

V dt
∣∣∣p/2

≤ CT,p(1 + E‖u0‖p
H).

Furthermore, the following continuous dependency on the initial data holds: if
un

0 ∈ L0
F0

(Ω;H) are such that ‖u0 − un
0‖H → 0 in probability, then for every

T ∈ (0,∞),

‖u − un‖L2(0,T ;V ) + ‖u − un‖C([0,T ];H) → 0 in probability,

where un is the unique global solution to (7.6) with initial data un
0 .

Finally, if B(v)∗v = 0 for all v ∈ V and lim‖v‖V →∞
‖G(v)‖L 2(U,H)

‖v‖V
= 0,

then there are constants C,CT > 0 such that for all p ∈ [2,∞),∥∥ supt∈[0,T ] ‖u(t)‖H

∥∥
Lp(Ω)

+ p−1/2‖u‖Lp(Ω;L2(0,T ;V )) ≤ C(CT + ‖u0‖Lp(Ω;H)).
(7.7)

In fluid dynamics, B(v)∗v = 0 (or equivalently (B(v)h, v)H = 0 for h ∈ U)
often follows from the fact that the coefficients appearing in B are divergence-
free.
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Proof. It suffices to check the conditions of Theorem 6.4 and its extension to
p = 2 of Subsection 6.3.2. Assumption 6.11 is immediate. To check Assumption
6.12 note

‖F (u) − F (v)‖V ∗ = ‖Φ(u, u − v) + Φ(u − v, v)‖V ∗ ≤ C(‖u‖β1 + ‖v‖β1)‖u − v‖β1 ,

which gives the desired estimate with ρ1 = 1, which indeed satisfies (6.1). Since
G is globally Lipschitz, we can take ρ2 = 0.

The coercivity condition of Theorem 6.4 follows from Remark 6.5 and
the fact that

〈u, F (u)〉 = 〈u,Φ(u, u)〉 = 0. (7.8)

Now, we are in the situation that Theorem 6.4 applies. Note that the
moment estimates extend to γ = 1 by the conditions on G and Subsection
6.3.2. The final assertion on p-th moments follows from (6.2). �

Remark 7.11. From (7.8) and Remark 6.5 it is clear that the assumption
〈u,Φ(u, u)〉 = 0 can be relaxed to: for all ε > 0 there exists a constant Cε > 0
such that for all u ∈ V ,

〈u,Φ(u, u)〉 ≤ ε‖u‖2
V + Cε‖u‖2

H .

7.3.2. Regularity through a stronger setting. Via Theorem 6.7 we can upgrade
the regularity of Theorem 7.10 under suitable conditions.

Theorem 7.12. (Regularity through the strong setting) Suppose that the condi-
tions of Theorem 7.10 hold. Suppose that A and B also define bounded oper-
ators A ∈ L (Ṽ ,H) and B ∈ L (Ṽ ,L2(U , V )). Suppose that there exist con-
stants θ̃ > 0 and M ≥ 0 such that for all u, v ∈ Ṽ

〈v, Av〉Ṽ ,Ṽ ∗ − 1
2
‖Bv‖2

L 2(U;V ) ≥ θ̃‖v‖2
Ṽ − M̃‖v‖2

V ,

‖Φ(u, v)‖H ≤ M‖u‖[H,Ṽ ]3/4
‖v‖[H,Ṽ ]3/4

,

‖G(u) − G(v)‖L 2(U,V ) ≤ M(1 + ‖u‖[H,Ṽ ]3/4
+ ‖v‖[H,Ṽ ]3/4

)‖u − v‖[H,Ṽ ]3/4
,

‖Φ(v, v)‖H ≤ M‖v‖1/2

Ṽ
‖v‖V ‖v‖1/2

H ,

‖G(v)‖L 2(U,V ) ≤ C(1 + ‖v‖V ).

Let u0 ∈ L0
F0

(Ω;V ). Then the solution provided by Theorem 7.10 satisfies
u ∈ L2

loc([0,∞); Ṽ ) ∩ C([0,∞);V ) a.s. Moreover, if there is an ε ∈ (0, 1) with
u0 ∈ [V, Ṽ ]ε a.s., there exist γ ≥ 0, δ ∈ (0, 2] such that

‖Φ(v, v)‖H ≤ M‖v‖2−δ

[H,Ṽ ]3/4
‖v‖γ

V , v ∈ V,

and (A,B) ∈ SMR•
r,α in the (Ṽ , V,H)-setting for all r ∈ (2,∞) and α ∈

[0, r/2 − 1), then

u ∈ Hθ,r
loc ((0,∞); [H, Ṽ ]1−θ) ∩ Cθ−ε

loc ((0,∞); [H, Ṽ ]1−θ),

r ∈ (2,∞), θ ∈ [0, 1/2), ε ∈ (0, θ).
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Proof. In the same way as in Theorem 7.10 one can check that Assumption
6.1 holds in the tilde setting. Therefore, the first assertion is immediate from
Theorem 6.7. The second assertion follows from Corollary 6.3 applied in the
tilde-setting. �

7.3.3. Helmholtz decomposition. Let O ⊆ R
d be an open set, possibly

unbounded. To introduce the Helmholtz decomposition, we begin by defin-
ing some useful spaces. Let L

2(O) denote the solenoidal subspace of L2, i.e.
the L2-closure of all u ∈ C∞

c (O; Rd) such that divu = 0. Let G
2(O) denote

the space of weak gradients, i.e.

G
2(O) = {∇p ∈ L2(O) : p ∈ L2

loc(O)}
equipped with the norm ‖∇p‖L2 . Clearly, L

2(O) is a closed subspace of
L2(O; Rd). From de Rham’s theorem in differential geometry, one can deduce
that also G

2(O) is a closed subspace of L2(O; Rd) and L
2(O)⊥ = G

2(O).
Details can be found in [242, p14] (see also [235, p81]).

Let P : L2(O; Rd) → L
2(O) be the orthogonal projection. This projection

is called the Helmholtz projection. The orthogonal decomposition u = Pu+∇p
with ∇p = u − Pu ∈ G

2(O) is referred to as the Helmholtz decomposition.

7.3.4. Navier–Stokes with no-slip condition. We consider the Navier–Stokes
system on an arbitrary open set O ⊆ R

d with d = 2. We do not assume
any specific regularity for O and it may also be unbounded. For simplicity, we
focus on the no-slip boundary condition; however, the techniques presented are
not limited to that setting. For example, the Navier boundary condition case
can be handled with only minor adjustments. Additionally, periodic boundary
conditions can also be considered, and they typically offer a simpler framework
for analysis.

The problem we study on O is as follows:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

du =
[
νΔu − (u · ∇)u − ∇P

]
dt +

∑
n≥1

[
(bn · ∇)u + gn(·, u) − ∇P̃n

]
dW n

t ,

div u = 0,

u = 0 on ∂O,

u(0, ·) = u0.

(7.9)

Here, u := (u1, u2) : [0,∞) × Ω × O → R
2 denotes the unknown velocity field,

P, Pn : [0,∞) × Ω × O → R the unknown pressures, (Wn
t : t ≥ 0)n≥1 a given

sequence of independent standard Brownian motions and

(bn ·∇)u :=
(∑

j∈{1,2} bj
n∂ju

k
)

k=1,2
, (u ·∇)u :=

(∑
j∈{1,2} uj∂ju

k
)

k=1,2
.

One can also cover the Stratonovich formulation of the noise in (7.9), but for
simplicity, we will not do this here. The reader is referred to [16, Appendix A]
to see which additional terms need to be considered.
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Assumption 7.13. Let d = 2. Let bj = (bj
n)n≥1 : O → �2 be measurable and

bounded and suppose that there exists a μ ∈ (0, ν) such that for all x ∈ O
1
2

∑
n≥1

∑
i,j∈{1,2} bi

n(x)bj
n(x)ξiξj ≤ μ|ξ|2 for all ξ ∈ R

d.

Moreover, g : O × R
2 → �2 satisfies g(·, 0) ∈ L2(O; �2) and

‖g(x, y) − g(x, y′)‖
2 ≤ Lg|y − y′|, x ∈ O, y, y′ ∈ R
2.

In the above, gn : R → R
2, so �2 is understood as an R

2-valued sequence
space.

To rewrite (7.9) as (7.6), we will apply the theory of Subsection 7.3.3.
Using the notation introduced there let U = �2 with standard basis (en)n≥1,

H = L
2(O), V = H

1
0(O) = H1

0 (O;R2) ∩ L
2(O) and V ∗ := H

−1(O) = (H1
0(O))∗.

Let J : H
1
0(O) → H1

0 (O; R2) be the canonical embedding. Then J∗ : H−1(O;
R

2) → V ∗. We claim that J∗f = Pf for all f ∈ L2(O; R2). Indeed, for all
v ∈ V ,

〈v, J∗f〉 = (v, f)L2(O) = (Pv, f)L2(O) = (v, Pf)L2(O) = 〈v, Pf〉.
By the divergence free condition (u · ∇)u = div(u ⊗ u), where u ⊗ u is

the matrix with components ujuk. Assuming u0 ∈ L
2(O), after applying the

Helmholtz projection P to (7.9) (using the same notation P for J∗ as introduced
in Subsection 7.3.3) we can write (7.9) in the form (7.6) with

A = −νPΔ, Φ(u, v) = −Pdiv[u ⊗ v], (Bu)en = P[(bn · ∇)u], and
G(u)en = Pgn(·, u).

We will say that u is a solution to (7.9) if u is a solution to (7.6) with the above
choices. As it is known, if u is sufficiently regular, then ∇p can be recovered
from u, see Subsection 7.3.3.

Below we check Assumption 7.8 for each of these mappings. Clearly, A
and B have the required mapping properties. Indeed, for A this follows from

|〈v,Au〉| = ν|(∇v,∇u)L2(O)| ≤ ν‖v‖H1(O)‖u‖H1(O)

for all u, v ∈ H
1(O). For B this follows from

‖Bu‖2
L 2(U,H) =

∫
O
∑

n≥1 |P[(bn · ∇)u]|2 dx ≤ ∫
O ‖b‖2

�2 |∇u|2 dx ≤ ‖b‖2
L∞(O;�2)‖u‖2

V .

The coercivity in Assumption 7.8(1) follows from the ellipticity condition in
Assumption 7.13 in a similar way as we have seen for the Allen–Cahn equation
in Subsection 7.1.1.

Since d = 2, by the Sobolev embedding V3/4 ↪→ L4 (see [16, Lemma A.7]),
it follows that for all u, v, z ∈ V ,

|〈z,Φ(u, v)〉| =
∣∣∣∑2

j,k=1(∂jzk, ujvk)L2(O)

∣∣∣ � ‖z‖H1(O)‖u‖L4(O;R2)‖v‖L4(O)

� C ′
d‖z‖H1(O)‖u‖ 3

4
‖v‖ 3

4
,
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which proves the desired mapping property. The bilinearity is clear from the
definition.

Note that for u ∈ C∞
c (O; R2) with div(u) = 0 (and by density for u ∈ V )

we can write

〈u, Φ(u, u)〉 =
∑

j,k∈{1,2}
(∂juk, ujuk)L2(O) = − 1

2

∑
j,k∈{1,2}

∫
O(∂juj)u

2
k dx = 0.

For G we note that G(0) ∈ L2(U ,H), and

‖G(u) − G(v)‖2
L2(U,H) =

∫
O

∑
n≥1

|gn(·, u) − gn(·, v)|2dx

≤ L2
g

∫
O

|u − v|2 dx = L2
g‖u − v‖2

H .

Thus we are in a position to apply Theorem 7.10 to obtain the following result.

Theorem 7.14. (Global well-posedness of 2D Navier–Stokes equations) Let d =
2. Suppose that Assumption 7.13 holds, Then for every u0 ∈ L0

F0
(Ω; L2(O))

there exists a unique global solution u ∈ L2
loc([0,∞); H1

0(O))∩C([0,∞); L2(O))
to (7.9). Moreover, for all T ∈ (0,∞) and p ∈ (0, 2]

E supt∈[0,T ] ‖u(t)‖p

L2(O;R2)
+ E

∣∣∣ ∫ T

0
‖u(t)‖2

H1(O;R2) dt
∣∣∣p/2

≤ CT,p(1 + E‖u0‖p

L2(O;R2)
).

(7.10)

The continuous dependency as stated in Theorem 7.10 holds as well.
Finally, note that for u ∈ C∞

c (O; R2),

(B(u)en, u)H =
2∑

j,k=1

∫
O

ukbj
n∂ju

k dx

=
1
2

2∑
j,k=1

∫
O

bj
n∂j(uk)2 dx = −1

2

2∑
k=1

〈(uk)2,div(bn)〉D(O).

Therefore, if div(bn) = 0 in distributional sense, then B(v)∗v = 0. The lat-
ter can be extended to all v ∈ V by continuity. Moreover, if additionally
lim|x|→∞

‖g(x)‖�2

|x| = 0, then Theorem 7.10 implies that (7.7) holds, and thus,
in particular, (7.10) holds for all p ∈ (0,∞). The estimate (7.10) also extends
to all p ∈ (0,∞) if bj ∈ W 1,∞

b (O; �2) by applying a refined version of the latter.
From Theorem 7.12 we obtain the following regularity result for the

strong setting. We formulate the result for special domains only, since we need
some elliptic regularity theory in the proof.

Theorem 7.15. (Strong regularity) Let d = 2 and suppose that O = R
2 (or the

two-dimensional torus). Suppose that Assumption 7.13 holds and that b1, b2 ∈
W 1,∞(O; �2) and u0 ∈ L0

F0
(Ω, H1(O)), and

‖∂xg(x, y)−∂xg(x, y′)‖�2+‖∂yg(x, y)−∂yg(x, y′)‖�2 ≤ Lg|y − y′|, x ∈ O, y, y′ ∈ R
2.
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Then the solution u to (7.9) provided by Theorem 7.14 satisfies
u ∈ L2

loc([0,∞); H2(O)) ∩ C([0,∞); H1(O)) a.s. Moreover, if b1 = b2 = 0,
then

u ∈ Hθ,r
loc ((0,∞); H2−2θ(O)) ∩ Cθ−ε

loc ((0,∞); H2−2θ(O)),

r ∈ (2,∞), θ ∈ [0, 1/2), ε ∈ (0, θ).

Moreover, if div(bj) = 0 for j ∈ {1, 2}, then (Bv)∗v = 0, and thus using
Remark 6.8 we see that if u0 ∈ L∞(Ω; H1

0(O)), then there exists an r ∈ (0, 1)
depending on ‖u0‖L∞(Ω;H1

0(O)) and T such that

E‖u‖2r
C([0,T ];H1(O)) + E‖u‖2r

L2(0,T ;H2(O))) < ∞.

Proof. By elliptic regularity theory ‖Δv‖L2(O;R2) +‖u‖L2(O;R2) � ‖v‖H2(O;R2).
The coercivity of (A,B) in the strong setting can be deduced from this.

Most of the other conditions are straightforward to check, and we only
comment on the mapping properties of Φ and G. One has that

‖Φ(u, v)‖L2(O;R2) =
( ∫

O |(u · ∇)v|2 dx
)1/2

≤ ‖u‖L4(O;R2)‖v‖H1,4(O;R2)

� ‖u‖H1/2(O;R2)‖v‖H3/2(O;R2)

� ‖u‖1/2
L2(O;R2)‖v‖H1(O;R2)‖u‖1/2

H2(O;R2),

where we applied Sobolev embedding and standard interpolation inequali-
ties. The penultimate estimate shows the required estimate for Φ(u, v) since
[Ṽ ∗, Ṽ ]3/4 ⊆ H3/2(O; R2). The last two estimates also show the required two
estimates for Φ(v, v) of Theorem 7.12.

For G by the Lipschitz properties of g and ∂xg one has

‖G(u) − G(v)‖L 2(�2,H1(O;R2)) � ‖u − v‖L2(O) + ‖∂yg(·, u)∇u − ∂yg(·, v)∇v‖L2(O;�2)

The first term can be bounded as before. The second term can be bounded as

‖∂yg(·, u)∇u − ∂yg(·, v)∇v‖L2(O;
2)

≤ ‖∂yg(·, u)(∇u − ∇v)‖L2(O;
2) + ‖(∂yg(·, u) − ∂yg(·, v))∇v‖L2(O;
2)

� ‖∇u − ∇v‖L2(O;R2) + ‖(u − v)∇v‖L2(O;R2)

� ‖∇u − ∇v‖L2(O;R2) + ‖u − v‖L4(O;R2)‖∇v‖L4(O;R2)

� (1 + ‖v‖H3/2(O;R2))‖u − v‖H3/2(O;R2).

Similarly, ‖G(v)‖L2(
2,H1(O;R2)) � C(1 + ‖v‖H1(O;R2)). �

After Theorem 7.15 one can bootstrap further regularity. This is not
immediately possible in the setting of Theorem 7.14 due to the fact that the
nonlinearity Φ is critical. In the case of periodic boundary conditions, the reg-
ularity conditions on b1, b2 can be relaxed considerably if one applies Lp(Lq)-
theory. Moreover, at the same time much stronger regularity assertions can be
proved. For details the reader is referred to [16].
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In Subsection 8.4, we will come back to the Navier–Stokes equations in
the case the domain is R

d with d ∈ {2, 3}. There Lp(Lq)-theory will be used
to derive (local) well-posedness and regularity.

Remark 7.16. Related result on the Navier–Stokes can be found in [112,114].
Higher order regularity could be of use in numerical schemes for stochastic

Navier–Stokes equations as considered in [35,36,257].

7.3.5. Boussinesq equation. The Boussinesq equation is an extension of the
Navier–Stokes system in which the temperature θ is added as an unknown.
It is widely studied in the deterministic setting. Moreover, in the stochastic
setting it is for instance studied in [60,92].

In this section, we consider the following Boussinesq equation on an arbi-
trary open set O ⊆ R

d with d = 2:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du =
[
ν1Δu − (u · ∇)u − ∇p + θe2

]
dt

+
∑
n≥1

[
(bn · ∇)u + gn(·, u, θ) − ∇p̃n

]
dWn

t ,

dθ =
[
ν2Δθ − u · ∇θ

]
dt +

∑
n≥1

[
(̃bn · ∇)θ + g̃n(·, u, θ)

]
dWn

t ,

divu = 0,

u = 0 and θ = 0 on ∂O,

u(0, ·) = u0.

(7.11)

Here, e2 = (0, 1) is a standard unit vector in R
2. Again for simplicity, we

only consider Dirichlet boundary conditions. In case the temperature vanishes
(i.e. θ = 0), the above equation reduces to (7.9). Below we show that (7.11)
also fits in the setting of Theorem 7.10. Note that (u · ∇)u = div(u ⊗ u) and
u · ∇θ = div(uθ) by the condition div(u) = 0.

Assumption 7.17. Suppose that bj : O → �2 satisfies Assumption 7.13 with ν

replaced by ν1. Suppose the same holds with (b, ν1) replaced by (̃b, ν2). Suppose
that g, g̃ : O × R

2 × R → �2 and g(·, 0), g̃(·, 0) ∈ L2(O; �2) and

‖g(x, y) − g(x, y′)‖
2 + ‖g̃(x, y) − g̃(x, y′)‖
2 ≤ Lg|y − y′|, x ∈ O, y, y′ ∈ R
2.

In the same way as in Subsection 7.3.4 we can derive a well-posedness
result for (7.11) from Theorem 7.10. Let U = �2 as before, and set

H = L
2(O) × L2(O), V = H

1
0(O) × H1

0 (O), and V ∗ := H
−1(O) × H−1(O).

Let u0 ∈ L
2(O) × L2(O). After applying the Helmholtz projection P we

can write (7.11) in the form (7.6) with A = (A1, A2), Φ = (Φ1,Φ2), B =
(B1, B2) and G = (G1, G2), where

A1(u, θ) = −ν1PΔu − Pθ1e2, Φ1((u, θ1), (v, θ2)) = −Pdiv[u ⊗ v],

A2(u, θ) = −ν2Δθ, Φ2((u, θ1), (v, θ2)) = −div(vθ1),

B1(u, θ))en = P[(bn · ∇)u, G1(u, θ)en = Pgn(·, u, θ),

(B2(u, θ))en = (̃bn · ∇)θ, G2(u, θ)en = g̃n(·, u, θ).
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As before Assumption 7.8 holds for each of these mappings. Thus we are in a
position to apply Theorem 7.10 to obtain the following result.

Theorem 7.18. (Well-posedness of stochastic 2D Boussinesq equations) Let
d = 2. Suppose that Assumption 7.13 holds, Then for every (u0, θ0) ∈ L0

F0

(Ω; L2(O) × L2(O)) there exists a unique global solution (u, θ) ∈ L2
loc

([0,∞); H1
0(O) × H1

0 (O)) ∩ C([0,∞); L2(O) × L2(O)) to (7.9). Moreover, for
all T ∈ (0,∞) and p ∈ (0, 2]

E supt∈[0,T ] ‖u(t)‖p
L2(O;R2) + E

∣∣∣ ∫ T

0
‖u(t)‖2

H1(O;R2) dt
∣∣∣p/2

+ E supt∈[0,T ] ‖θ(t)‖p
L2(O) + E

∣∣∣ ∫ T

0
‖θ(t)‖2

H1(O) dt
∣∣∣p/2

≤ CT,p(1 + E‖u0‖p
L2(O;R2) + E‖θ0‖p

L2(O)).

The continuous dependency as stated in Theorem 7.10 holds as well.
Moreover, extensions to Lp-moments (see below Theorem 7.14) and higher
regularity as in Theorem 7.15 and the text below it hold as well.

Remark 7.19. In (7.11) one can replace θe2 by a more complicated nonlinear
function of (u, θ). However, in that case, one needs a variant of Theorem 7.10,
where an additional F is added to the equation. For this, one needs to check
coercivity by hand.

7.3.6. Quasi-geostrophic systems with α = 1. Quasi-geostrophic equations
have a geophysical origin and have been proposed in [126] as a two-dimensional
incompressible model. On R

2 they take the following form:⎧⎪⎨
⎪⎩

dθ = −[
(−Δ)αθ + (u · ∇)θ

]
dt +

∑
n≥1

[
(bn · ∇)θ + gn(·, θ)] dWn

t ,

u = R⊥θ,

θ(0, ·) = θ0.

(7.12)
Here, θ represents temperature again, and R⊥θ := (−R2θ,R1θ), where Rj =
∂j(Δ)−1/2 for j ∈ {1, 2}, are the Riesz transforms. Note that R̂jφ(ξ) = iξ

|ξ| φ̂(ξ)

for ξ ∈ R, where φ̂ denotes the Fourier transform of φ : R
2 → C. The same

model can be considered in the periodic setting, or on compact manifolds
without boundary although some technical complications arise (see [217] for
the deterministic case). For simplicity, we focus on the flat case, and since we
apply L2-theory in this section, we are restricted to α = 1. In Section 8.3, we
will show how Lp(Lq)-theory can be used to prove global existence, uniqueness,
and regularity in the case α ∈ (1/2, 1).

In the deterministic case global well-posedness is obtained in [66,217] for
α ∈ (1/2, 1], and the critical case α = 1/2 was addressed in [45,154], and
the reader is referred to [65] for recent progress on this case. In the stochastic
case with periodic boundary conditions, global existence and uniqueness for
(7.12) was considered in [227,250] for α ∈ (1/2, 1] using compactness methods,
though these methods are not applicable in our setting on the full space.

The proof below can also be extended to the two-dimensional torus or
more general compact two-dimensional manifolds in dimension three.
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Theorem 7.20. (Well-posedness of stochastic quasi-geostrophic systems) Let
d = 2 and α = 1. Suppose that b and g satisfy Assumption 7.13 with O replaced
by R

2. Then for every θ0 ∈ L0
F0

(Ω;L2(R2)) there exists a unique global solu-
tion θ ∈ L2

loc([0,∞);H1(R2)) ∩ C([0,∞);L2(R2)) to (7.12). Moreover, for all
T ∈ (0,∞) and p ∈ (0, 2]

E supt∈[0,T ] ‖θ(t)‖p
L2(R2) + E

∣∣∣ ∫ T

0
‖θ(t)‖2

H1(R2) dt
∣∣∣p/2

≤ CT,p(1 + E‖θ0‖p
L2(R2)).

The continuous dependency as stated in Theorem 7.10 holds as well. As
in the previous examples, similar extensions to p-th moments and on regularity
can be made.

Proof. In order to write (7.12) for α = 1 in the form (7.6), let V = H1(R2),
H = L2(R2) and U = �2. Let

〈u,Av〉 =
∫
R2 ∇u ∇v dx, Φ(θ1, θ2) = −(R⊥θ1 · ∇)θ2

(Bθ)en = (bn · ∇)θ, G(θ)en = gn(θ).

The coercivity of Assumption 7.8(1) can be checked as in previous examples.
Concerning the first part of Assumption 7.8(2), it suffices to observe that
Φ(θ1, θ2) = −div(θ2R

⊥θ1) since div(R⊥θ1) = 0. Since R⊥ is bounded on L4

(by Mikhlin’s Fourier multiplier theorem [117, Theorems 4.3.7 and 6.2.7]), as
in the previous examples, it follows that Φ has the required mapping properties
with β1 = 3/4. Also, the mapping properties of B and G can be checked as
before.

The second part of Assumption 7.8(3) follows from

〈θ,Φ(θ, θ)〉 = (θR⊥θ,∇θ) = 1
2

∫
R2 R⊥θ · ∇(θ2) dx = 1

2

∫
R2 div(R⊥θ)θ2 dx = 0

which is clear for θ ∈ C1
c (R) and extends to θ ∈ V by density and continuity.

It remains to apply Theorem 7.10. �

7.3.7. Other fluid dynamics models. Besides the models already discussed,
numerous other fluid dynamics models can be addressed within the critical
variational setting. For example, the so-called tamed Navier–Stokes equation
in the unbounded domain R

3 can be treated, as detailed in [9, Subsection 5.2],
where the strong setting is required. In contrast, a different method based on
probabilistic weak solutions was used in [226].

It is also noteworthy that certain simplified 2D liquid crystal models can
be included in our framework. For instance, [225] considered such models on
bounded domains, and the same can be done in our setting. There are several
advantages of our setting, such as not requiring the domains to be bounded,
and the ability to consider gradient noise under the optimal condition given
in (3.10).

A particularly important model for ocean dynamics are the 3D primi-
tive equations. The well-posedness of the deterministic case remained an open
problem for many years before being resolved in the landmark paper [51]. One
of the challenges with the primitive equations is that they are not coercive in
the sense of Theorem 6.4. However, the linear part is coercive, which makes it
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relatively straightforward to obtain local existence and uniqueness using The-
orem 6.2. Through our methods, global existence and uniqueness were recently
established in [5,6], where various stochastic versions of the primitive equa-
tions with transport noise were considered. To verify the blow-up criteria for
global existence, several sophisticated energy bounds were derived. Moreover,
various stochastic Gronwall lemmas were employed, so moment bounds could
not be obtained in this case. Finally, the case of rough transport noise and
higher-order regularity was addressed in [1] using Lp(Lq)-theory.

8. Selected applications through Lp(Lq)-theory

In this section, we will give several applications of the local well-posedness
theory of Section 4 and the blow-up criteria discussed in Section 5, specifically
in situations where the L2-theory turns out to be insufficient. Such limitations
may arise due to factors like boundary conditions or rough (transport) noise.
These scenarios are illustrated in Subsections 8.1, 8.3, 8.2, and 8.4, respectively.
Notably, in the latter subsections, we demonstrate how rough noise and high-
order polynomial-type nonlinearities necessitate the use of Lp(Lq)-techniques.
Additionally, in these cases, the distinction between q and p becomes crucial,
as evidenced in Subsection 8.4 and the deterministic analyses in [109,223].

In Subsection 8.1, we extend our investigation of the stochastic Allen–
Cahn equation in a weak setting, building on the analysis initiated in Sub-
section 7.1. Recall that in the L2 framework, the dimensional restriction lim-
ited us to d = 1. In this subsection, we consider the Allen–Cahn equation
on O ⊆ R

3 with Dirichlet boundary conditions, employing an even weaker
setting. By allowing q �= 2, we eliminate the dimensional restriction for well-
posedness. Following a general local well-posedness result, we provide a self-
contained proof of global existence for specific parameter choices. Furthermore,
we present several regularization results. Moreover, we indicate how some of
the more advanced techniques can be used to obtain global well-posedness for
rough initial data as well.

In Subsection 8.2, we follow the works [13,14] to study reaction-diffusion
equations with periodic boundary conditions under rough transport noise.
We establish general results on local well-posedness and derive a global well-
posedness result for systems satisfying a specific coercivity condition. For these
results, we outline the proofs, which are based on Itô’s formula for ‖ · ‖ζ

Lζ(Td)

with sufficiently large ζ ≥ 2. Additionally, we include an application to a simple
predator-prey system that lacks coercivity in the variational sense (see Theo-
rem 6.4). Here, we provide a detailed proof of global well-posedness, showcasing
a technique that could be applied to other non-coercive systems.

In Subsection 8.3, we revisit the quasi-geostrophic equation on T
2. Com-

pared to Subsection 7.3.6, the use of Lp(Lq)-techniques enables us to handle
fractional regularity α up to the critical value 1/2. For this model, we establish
results on global well-posedness in critical spaces and regularity of the solution.

Finally, in Subsection 8.4, we address the Navier–Stokes equations with
transport noise in the full space R

d. We prove local well-posedness, Serrin’s
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blow-up criteria, and regularity results. The endpoint Serrin criterion in The-
orem 8.272 seems a new result, even in the periodic case.

8.1. 3D Stochastic Allen–Cahn equation with quadratic diffusion

Consider the Allen–Cahn equation on a smooth and bounded domain
O ⊆ R

3:

du =
(
Δu + u − u3

)
dt +

∑
n≥1 gn(·, u) dWn

t , u = 0 on ∂O, (8.1)

with the initial value condition u(0, ·) = u0. In Subsection 7.1, this equation
was analyzed in an L2-setting. In the weak setting, the analysis was constrained
to d = 1 due to the growth of the nonlinearity, while in the strong setting, it
was limited to d ≤ 4 with periodic boundary conditions to avoid compatibility
conditions on g.

To see this, note that the strong setting for (8.1) is X1 = H2,2(O) ∩
H1,2

0 (O) and X0 = L2(O) as detailed in Example A.4. Therefore, X1/2 =
H1,2

0 (O) and verifying Assumption 4.1 requires gn(·, 0)|∂O = 0, as u|∂O = 0. In
general, such compatibility conditions are often unnatural and lead to various
difficulties, which can be circumvented using Lp(Lq)-theory.

To keep the discussion as self-contained as possible, we do not consider
gradient noise, as this introduces additional complications in the case of Dirich-
let boundary conditions (see Subsection 8.2 for the periodic case). Finally, let
us mention that the results below extend also to unbounded domains with
slight modifications to the conditions on g.

Unlike the following subsections and our work [14], our goal here is to
establish the global well-posedness of (8.1) in the simplest possible manner,
as shown in Theorem 8.2 below. While more sophisticated methods allow for
deeper results, we focus on presenting a relatively straightforward case to famil-
iarize the reader with the core arguments.

In particular, we limit the application of the instantaneous regularization
results from Section 5.3 and instead rely on the subcritical blow-up criteria in
Theorem 5.2, whose proof is comparatively simpler than that of Theorem 5.1.
Later, in Theorem 8.3, we demonstrate how the global well-posedness of (8.1)
can be extrapolated to a critical setting using instantaneous regularization.

As a first step, it is instructive to examine the scaling of (8.1).

8.1.1. Scaling, criticality and setting. The Allen–Cahn nonlinearity was pre-
viously analyzed in an Lq-weak setting in Subsection 4.3, where it was treated
as (4.1) with the choices X0 = H−1,q(O) and X1 = H1,q

0 (O). As noted in
that subsection, the Allen–Cahn equation shares the same (local) scaling as
the Navier–Stokes equations analyzed in Subsection 1.2. Therefore, in light of
our theory, we expect local well-posedness and blow-up criteria in the critical
space B

3/q−1
q,p (O), accommodating potential boundary conditions.

The analysis in Subsection 4.3 demonstrates that (see (4.19) and the
comments below it), by applying Theorem 4.7, one can establish local well-
posedness of (8.1) in the critical space DB

3/q−1
q,p (O) for 3

2 < q < 3 (see Example
A.4 for the notation). In particular, the smoothness of the critical space satisfies
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3
q −1 > 0. This smoothness condition is linked to restrictions on the time weight
κ ∈ [0, p

2 − 1)∪{0}, see (4.17)-(4.18). Positive smoothness of the critical space
can impose significant constraints, especially in studying global well-posedness,
where global bounds must be proven in a space with positive smoothness to
verify blow-up criteria, as discussed in Subsection 5.1. Since this weight range
is natural in the context of SPDEs (see Subsection 3.2), we adopt an even
weaker setting to address these limitations:

X0 = DH−δ,q(O) and X1 = DH2−δ,q(O), (8.2)

with δ ∈ [1, 2). Here we avoid δ > 2, as in this case, X1 would become larger
than Lq(O), resulting in distributions rather than functions (actually we will
use an even smaller interval for δ, due to restrictions related to Sobolev embed-
dings). Regarding the diffusion coefficients gn, the discussion at the end of Sub-
section 4.3 highlights that quadratic growth in g is natural, ensuring that the
deterministic and stochastic components of (8.1) maintain the same scaling.
Specifically, we assume that the measurable mapping g = (gn)n≥1 : O×R → �2

satisfies for all x ∈ O and y, y′ ∈ R,

g(·, 0) ∈ L∞(O; �2) and ‖g(x, y)−g(x, y′)‖
2 � (1+|y|+|y′|)|y−y′|. (8.3)

8.1.2. Local regularity and regularity. Before addressing the global well-
posedness of (8.1), our first objective is to establish its local well-posedness. To
this end, we apply Theorem 4.7. To begin, we reformulate (8.1) as a stochas-
tic evolution equation (4.1). More precisely, we interpret (8.1) as (4.1) with
(X0,X1) given by (8.2), U = �2, and for u ∈ X1,

Au = −ΔDu, F (u) = u − u3, Bu = 0, G(u) = (gn(·, u))n≥1,

(8.4)
using the notation introduced in Example A.4.

We say that (u, σ) is a (unique) (p, κ, δ, q)-solution to (8.1) if (u, σ) is a
Lp

κ-solution to (8.1) with the choices (8.2), (8.4) and U = �2.
By Appendix A.1 and Theorem 3.14, (−ΔD, 0) ∈ SMR•

p,κ for all p > 2
and κ ∈ [0, p

2 − 1). To apply Theorem 4.7 for obtaining local well-posedness, it
remains to check the local Lipschitz condition of Assumption 4.1 with F and
G as above. Similar as in Subsection 4.3.1, for u, v ∈ X1 = DH2−δ,q(O),

‖u3 − v3‖X0 ≤ ‖u3 − v3‖Lr(O) ≤ 2(‖u‖2
L3r(O) + ‖v‖2

L3r(O))‖u − v‖L3r(O).

Here we used Sobolev embeddings with − 3
r = −δ − 3

q , where we impose 2 ≤
q < 6/δ and δ ∈ [1, 3/2) in order to guarantee r ∈ (1,∞). It remains to embed
Xβ1 = DH2β1−δ,q ↪→ L3r(O) for suitable β1 ∈ (1/2, 1). Sobolev embedding
gives the required embedding for 2β1 − δ − 3

q = − 3
3r = − δ

3 − 1
q . This implies

β1 = δ
3 + 1

q which lies in (1
2 , 1) due to δ ∈ [1, 3

2 ) and 2 ≤ q < 6
δ . Thus, we

conclude

‖F (u) − F (v)‖X0 ≤ C(1 + ‖u‖2
Xβ

+ ‖v‖2
Xβ

)‖u − v‖Xβ1
.

Since ρ1 = 2, the criticality condition (4.3) becomes:
1+κ

p ≤ 3
2 (1 − δ

3 − 1
q ) = 3

2 − 1
2

(
δ + 3

q

)
. (8.5)
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This illustrates the advantage of Lp(Lq)-theory, as this condition always holds
for sufficiently large p and q. Some admissible cases include (δ, q, p, κ) equal
(1, q, 4, 0) and (1, 3, p, κ), provided the restrictions q ∈ [2, 6

δ ), p ∈ [2,∞) and
κ ∈ [0, p/2 − 1) ∪ {0} are satisfied.
For G, by (8.3), it follows that

‖G(u) − G(v)‖γ(
2,X 1
2
) ≤ ‖g(·, u) − g(·, v)‖γ(
2,Lr(O))

� ‖g(·, u) − g(·, v)‖Lr(O;
2)

≤ L‖(1 + |u| + |v|)(u − v)‖Lr(O)

≤ L̃(1 + ‖u‖L2r(O) + ‖v‖L2r(O))‖u − v‖L2r(O).

Here we used Sobolev embedding with − 3
r = 1 − δ − 3

q . It remains to embed
Xβ2 = DH2β2−δ,q ↪→ L2r(O) for suitable β2 ∈ (1/2, 1). Sobolev embedding
gives the embedding for 2β2 − δ − 3

q = − 3
2r = 1

2 − δ
2 − 3

2q . This implies
2β2 = 1

2 + δ
2 + 3

2q , which ensures β2 ∈ (1/2, 1). Since ρ1 = 1, the critical-
ity condition (4.3) gives the same inequality (8.5). This proves the required
local Lipschitz property for G. Since g(·, 0) ∈ L∞(O; �2), G also satisfies the
necessary mapping property.

Theorem 4.7 and the above discussion yield

Proposition 8.1. (Local well-posedness in critical spaces) Suppose that δ ∈
[1, 3

2 ), q ∈ [2,∞) and that p ∈ (2,∞) and κ ∈ [0, p
2 − 1) satisfy

q < 6
δ and 1+κ

p + 1
2 (δ + 3

q ) ≤ 3
2 . (8.6)

Suppose g : O × R → �2 is measurable and satisfies (8.3). Then for any

u0 ∈ L0
F0

(Ω; DB
2−δ−2 1+κ

p
q,p (O)), (8.1) has a (unique) (p, κ, δ, q)-solution (u, σ)

satisfying a.s. σ > 0 and

u ∈ Hθ,p
loc ([0, σ), wκ; DH2−δ−2θ,q(O)) ∩ C([0, σ); DB

2−δ−2 1+κ
p

q,p (O))

a.s. for all θ ∈ [0, 1
2 ). (8.7)

Furthermore, the setting is subcritical whenever strict inequality holds in (8.6).

Before proceeding further, let us discuss the scenario where the setting
is critical, i.e. (8.6) holds with equality. When (8.6) holds with equality, the
condition 1+κ

p < 1
2 implies q < 3

2−δ . Combining this restriction with the first
condition in (8.6), it follows that the optimal constraint is q < 3

2−δ for δ ∈
(1, 4

3 ], and no new critical spaces emerge for δ > 4
3 . Therefore, when q < 3

2−δ

and δ ∈ (1, 4
3 ], one can set κ = p

2 (3 − δ − 3
q ) − 1 resulting in the space for the

initial data:

DB
2−δ−2 1+κ

p
q,p (O) = DB

3
q −1
q,p (O),

which is critical for (8.1), see Subsection 8.1.1. By choosing δ = 4
3 and letting

q ↑ 9
2 , one can reach critical spaces with smoothness up to − 1

3 . In particular,
by choosing q = 3, p ≥ 3 and κ = p

2 (2 − δ) − 1, the above result yields local
well-posedness of (8.1) in the critical space L3(O) ⊆ DB0

3,p(O).
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8.1.3. Global well-posedness. As announced at the beginning of this subsec-
tion, we aim to establish a global well-posedness result for (8.1) under specific
choices of the parameters (p, κ, δ, q), employing the relatively simple blow-up
criterion of Theorem 5.2. To motivate the parameter selection, let us recall
some key considerations.

As we have seen in Subsection 7.1, the Allen–Cahn nonlinearity u−u3 is
dissipative, enabling an a priori Lq-bound that facilitates global well-posedness
through a blow-up criterion. However, as noted earlier, the choice q = 2 is
insufficient for (even) the local well-posedness of (8.1) in three dimensions.
Based on the comments below 8.1 and the requirement of a subcritical setting,
we aim to establish a bound in Lq with q > 3. Once an Lq-bound is achieved,
to derive global well-posedness using Theorem 5.2, it is necessary to ensure

that Lq(O) ↪→ DB
2−δ−2 1+κ

p
q,p (O). Since 1+κ

p < 1
2 , this embedding condition

forces δ > 1. Consequently, we choose δ = 4
3 . This choice is somehow arbitrary

but motivated by the discussion on critical spaces following Proposition 8.1.
Finally, as in Subsection 7.1 (see also Remark 7.2), we require a condition

ensuring that the dissipation of −u3 counterbalances the energy production
from g(u). Therefore, we assume that

‖g(x, y)‖2

2 ≤ C(y2 + 1) + γy4, x ∈ O, y ∈ R, (8.8)

where γ ∈ (0, 1). As we will demonstrate in the proof below, the condition
γ < 1 is crucial for obtaining an Lq-bound with q > 3 and managing the
Itô-correction. The case γ = 1 can still be handled, but it requires a more
sophisticated argument, see [14, Theorem 3.2]).

Theorem 8.2. (Global well-posedness) Let g : O × R → �2 and suppose that
(8.3) and (8.8) hold for some γ < 1. Let q = 1+ 2

γ > 3 and δ = 4
3 . Fix p ∈ (2, 3)

and κ > 0 such that 1+κ
p < 5

6 − 3
2q and 1+κ

p > 1
3 . Then for every u0 ∈ L0

F0

(Ω;Lq(O)), (8.1) has a global (in time) (p, κ, δ, q)-solution u such that (8.7)
holds with σ = ∞.

The condition 1+κ
p < 5

6− 3
2q is used to enable δ = 4

3 in (8.6). The condition
on (p, κ) ensures that 2

3 < 2 1+κ
p and therefore the validity of the embedding:

Lq(O) ⊆ DB
2
3 −2 1+κ

p
q,p (O). (8.9)

We use a non-trivial weight κ > 0 in order to apply the ‘easy’ regularization
result of Theorem 5.6. The need for regularization is explained in Step 1 below.

Proof. The existence of a (p, κ, δ, q)-solution to (8.1) with (p, κ, δ, q) as in the
statement of Theorem 8.2 follows from Proposition 8.1. It remains to show
σ = ∞ a.s.

Step 1: We prove the a priori bound (8.10) below for u up to the blow-
up time σ from Itô’s formula. Note that if we merely know that (8.7) holds,
then ∇u is only defined as a distribution (recall that δ = 4

3 ). Thus, to apply
the Itô formula to compute ‖u‖q

Lq , we need more regularity. To this end, we
employ the results in Subsection 5.3. Let 0 < s < T < ∞ and (σn)n≥1 be a
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localizing sequence and fix n ≥ 1. Note that σn < σ a.s. (see Proposition 5.4).
By Theorem 5.6 a.s. on {σn > s},

u ∈ C([s, σn]; DH2−δ−2θ,q(O)), θ ∈ (0, 1/2).

In particular, u(s) ∈ DB
1−2/p̃
q,p̃ (O)) a.s. on {σn > s} where p̃ ∈ (2, 6) is fixed.

For Itô’s formula, we will need C([s, T ];Lq(O))-regularity of a suitable process.
To obtain this, the random variable 1{σ>s}u(s) will be our initial value to a
linear stochastic evolution equation in the Lp̃-setting for X̃0 = DH−1,q(O).
We check that F (u) and G(u) have the required integrability and regularity
to apply maximal Lp̃-regularity. By Sobolev embedding using θ small enough,
δ = 4

3 and q ≥ 3 we find that a.s. u ∈ C([s, σn];L2q(O)). In particular, by
Sobolev embedding, we find that

F (u) ∈ C([s, σn], L2q/3(O)) ⊆ C([s, σn], DH−1,q(O)).

Since g grows at most quadratically, we find that G(u) ∈ C([s, σn];Lq(O; �2)).
Let Γ ⊆ {σn > s} be Fs-measurable. Since (−Δ, 0) ∈ SMR•

p̃,0 (see
Definition 3.8) on the space X̃0 = DH−1,q(O), we know that there is a unique
Lp̃-solution

vn ∈ Lp̃
loc([s,∞); DH1,q(O)) ∩ C([s,∞); DB

1− 2
p̃

q,p̃ (O))

to the linear problem

dv + Av dt = 1[s,σn)×ΓF (u) dt + 1[s,σn)×ΓG(u) dW, v(s) = 1Γu(s).

Clearly, vn is an Lp̃∧p-solution on X0 = DH−δ,q(O) to this problem as well.
Since ũ := 1Γu is an Lp̃∧p-solution on X0 to the same problem on [s, σn ∨ s],
by (Δ, 0) ∈ SMR•

p∧p̃,0 on the space X0 it follows that ũ = vn on [s, σn ∨ s],
and thus u = vn on [s, σn] × Γ.

By Itô’s formula applied to ‖vn‖q
Lq(O) we obtain that a.s. for all t ≥ s

‖vn(t)‖q
Lq(O) =‖1Γu(s)‖q

Lq(O) − q
∫ t

s

∫
O |vn|q−2|∇vn|2 dxdr

+ q
∫ t

s

∫
O |vn|q−2vn1[s,σn]F (u) dxdr

+ q
∫ t

s

∫
O |vn|q−2vn1[s,σn]G(u) dxdW

+ q(q−1)
2

∫ t

s

∫
O |vn|q−21[s,σn]‖G(u)‖2


2 dxdr.

In the above, one can replace F (u) and G(u) by F (vn) and G(vn) since u = vn

on [s, σn] × {σn > s}. Let f(y) = y − y3 be the Allen–Cahn nonlinearity. The
assumption on g and the choice of q yields

yf(y) + q−1
2

‖g(x, y)‖2
�2 ≤ −y4 + y2 + q−1

2
C(y2 + 1) + q−1

2
γy4 ≤ C′(1 + y2), y ∈ R,

where C ′ depends only on C and γ. Therefore, we can conclude that

‖vn(t)‖q
Lq(O) ≤ ‖1Γu(s)‖q

Lq(O) + C ′′ ∫ t

s
(1 + ‖vn(r)‖q

Lq(O)) dr + Mt,
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where C ′′ depends on q, C ′ and the Lipschitz constant of G, and M is a con-
tinuous local martingale. The stochastic Gronwall Lemma A.7 applied to the
process t 
→ ‖vn(t)‖q

Lq(O) implies that

E supt∈[0,T ] ‖vn(t)‖λq
Lq(O) ≤ Cλ(1 + E‖1Γu(s)‖λq

Lq(O)), λ ∈ (0, 1).

Taking Γk,n = {‖u(s)‖Lq(O) ≤ k} ∩ {σn > s} and letting n → ∞, we can
conclude

E supt∈[0,σ∧T ) 1Γk
‖u(t)‖λq

Lq(O) ≤ Cλ(1 + E‖1Γk
u(s)‖λq

Lq(O)),

where Γk = {‖u(s)‖Lq(O) ≤ k} ∩ {σ > s}. In particular,
supt∈[s,σ∧T ) ‖u(t)‖Lq(O) < ∞ a.s. on Γk. Since Γk increases to {σ > s} a.s., it
follows that

sup
t∈[s,σ∧T )

‖u(t)‖Lq(O) < ∞ a.s. on {σ > s}. (8.10)

Step 2: Conclusion. From (8.10) proven in Step 1 and (8.9), it follows
that

P(σ < ∞) = lim
s↓0,T→∞

P(s < σ < T )

= lim
s↓0,T→∞

P
(
s < σ < T, sup

t∈[s,σ)

‖u(t)‖
DB

2
3 − 2

p
q,p (O)

< ∞)
= P

(
σ < ∞, sup

t∈[0,σ)

‖u(t)‖
DB

2
3 − 2

p
q,p (O)

< ∞)
= 0,

where in the last step we used Theorem 5.2 and the fact that we are in the
subcritical setting. Thus, σ = ∞ a.s. as desired. �
8.1.4. Refining the global well-posedness and regularity. In Theorem 8.2, we
established global well-posedness of (8.1) under the growth assumption (8.8)
and a very specific choice of the parameter (p, κ, δ, q). Notably, we excluded
the case of critical initial data. While the growth assumption on g is natu-
ral and intrinsically tied to the energy dissipation properties of the SPDEs,
the particular choice of parameters is somewhat restrictive. This limitation
can be addressed by extrapolating the global existence through instantaneous
regularization. This is connected to the fact that, if instantaneous regulariza-
tion holds, the blow-up criteria become independent of the specific parameter
setting. This result is formalized in Corollary 5.10 (see also Figure 1).

The independence of the blow-up criteria from the choice of (p, κ) implies
that whenever a blow-up criterion guarantees global well-posedness in one
parameter setting, the same conclusion holds across all other settings where
local well-posedness can be established. This is the content of the following
result.

Theorem 8.3. (Global well-posedness and regularization in critical spaces) Let
the assumptions of Proposition 8.1 be satisfied and suppose that (8.8) holds with
γ ∈ (0, 1). Then for all δ ∈ [1, 3/2), q ∈ [2,∞), p ∈ (2,∞) and κ ∈ [0, p

2 − 1)
satisfying (8.6), there exists a global (unique) (p, κ, δ, q)-solution u to (8.1)
satisfying (8.7) with σ = ∞ and a.s.

u ∈ Lr
loc((0,∞); DH1,r(O)) ∩ C

θ/2,θ
loc ((0, σ) × O), r ∈ (2,∞), θ ∈ (0, 1).
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As noted above Theorem 8.2, the case γ = 1 is also valid. From the discus-
sion below Proposition 8.1, it follows that Theorem 8.3 establishes global well-
posedness of (8.1) with initial data belonging to the critical spaces DB

3/q−1
q,p (O)

with smoothness up to − 1
3 .

Proof. Let (p, δ, κ, q) be as in the statement of Theorem 8.2 and let (u, σ) be
the (p, δ, κ, q)-solution of (8.1). Arguing as in Step 1 in the proof of Theorem
8.2 and employing Theorem 5.7 in case κ = 0, one can readily show that (u, σ)
instantaneously regularizes in time: a.s.

u ∈ Hθ,r
loc ((0, σ); DH2−δ−2θ,q(O)), r ∈ (2,∞), θ ∈ (0, 1).

From the above smoothness and iterating the argument in Step 1, one also
obtains (see the proof of Proposition 8.19 for a detailed argument for another
equation)

u ∈ Lr
loc((0, σ); DH2−δ,r(O)) ∩ C

θ/2,θ
loc ((0, σ) × O), r ∈ (2,∞), θ ∈ (0, 1).

(8.11)

Hence, it remains to prove σ = ∞ a.s. Recall that (8.8) holds with γ < 1.
In light of (8.11), one can repeat almost verbatim the proof of [13, Theorem
2.10] or following Corollary 5.10 (with the minor difference of varying also the
integrability parameter q) to show that, for all s > 0,

P(s < σ < ∞, supt∈[s,σ) ‖u(t)‖Lq̃(O) < ∞) = 0, (8.12)

where q̃ = 1 + 2
γ (as in Theorem 8.2). Now, by (8.11), one can repeat the

proof of Theorem 8.2 for (u, σ) and obtain the a priori bound (8.10) for the
(p, κ, δ, q)-solution (u, σ). Arguing as in Step 2 of Theorem 8.2, the latter a
priori bound and (8.12) prove the claim of Theorem 8.3. �

Let us also mention that using (8.11) and the argument of Corollary 5.11
(see also Proposition 8.8 below), one can show that solutions to (8.1) with
different choices of the parameters (p, κ, δ, q) are compatible.

In the next subsection, we discuss further improvements of Theorems 8.2
and 8.3, but we only present this in the case of periodic boundary conditions
(see also Example 8.16). In particular, we present higher order regularity, a
priori bounds, the critical setting with q = 3 and γ = 1, and continuous
dependence on the initial data.

8.2. Reaction-diffusion equations

Systems of reaction-diffusion equations appear everywhere in models
coming from applied science, e.g. chemistry, physics, biology, etc. The Allen–
Cahn equation of the previous subsection is an example of a scalar reaction-
diffusion equation. During the last two decades, a lot of work has been done on
stochastic reaction-diffusion equations [53–55,77,101,173,177,192,228–230].
Physical motivations for stochastic perturbations of transport type can be
found in [13, Subsection 1.3].

In the deterministic setting, global well-posedness is known to hold for
a large class of problems, which only satisfy a weak version of a coercivity
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condition. The survey [213] provides an overview of a certain class of models,
where some of them can be analyzed by maximal Lp-regularity techniques and
backward equations. For quadratic systems with mass control, see [99,141]. It
seems a difficult problem to prove global well-posedness in the same generality
as was recently done in the deterministic setting. In this context, two open
problems are formulated in Problems 7 and 8 at the end of this manuscript.

Recently, in [13] based on Theorem 4.7, a general local well-posedness
theory was developed for systems of reaction-diffusion equations. Moreover,
higher-order regularity and blow-up criteria were obtained as well. In the
follow-up paper [14] global well-posedness was proved for some classes of
equations, and also some concrete models such as the Allen–Cahn equation
(see Subsection 7.1), predator-prey models (see Subsection 8.2.3), coagulation
dynamics, Brusselator (e.g. Gray Scott model). Some of these models are only
weakly coercive and new arguments were needed for the global well-posedness.

Many of the previous models require Lp(Lq)-techniques for p, q > 2. This
is because Sobolev embeddings improve if p, q are large. In Subsection 8.2.1,
we explain a local well-posedness theory for reaction-diffusion equations on
T

d. In Subsection 8.2.2, we present some global well-posedness results in the
case the system is coercive in an appropriate sense. Without such coercivity,
the problem of global well-posedness can be much harder. Such an example is
given by a Lotka–Volterra model. For the latter, we prove global well-posedness
in Subsection 8.2.3. Many of the results below hold on smooth domains with
suitable boundary conditions. However, if there is a gradient/transport noise,
then it is not known when the leading linear part (A,B) has stochastic maximal
Lp-regularity (except if B = 0). For this reason, we only consider periodic
boundary conditions for now. In the rest of this subsection, we take

X0 = H−δ,q(Td; R
), and X1 = H2−δ,q(Td; R
), where δ ∈ [1, 2) is fixed.
(8.13)

Note that X1− 1+κ
p ,p = B

2−δ−2 1+κ
p

q,p (Td; R
). As in Subsection 8.1, the parame-
ters q and p will be used for spatial and time integrability, respectively, and
the parameter δ is used to decrease spatial smoothness. The parameter κ is
related to the critical weight tκ used for the time-integrability.

8.2.1. Local well-posedness, regularity and positivity. The results of this sub-
section are a special case of [13] (see Remark 8.12 for the generalization). We
will only consider d ≥ 2. The case d = 1 can either be considered by adding a
dummy variable, or by separate treatment (See [13, Section 6]).

Consider the following system of stochastic reaction-diffusion equations:⎧⎨
⎩

dui − νiΔui dt = fi(·, u) dt +
∑

n≥1

[
(bn,i · ∇)ui + gn,i(·, u)

]
dW n, on T

d,

ui(0) = u0,i, on T
d,

(8.14)

where i ∈ {1, . . . , �} and � ≥ 1 is an integer. Here, u = (ui)

i=1 : [0,∞) ×

Ω × T
d → R


 is the unknown process, (Wn)n≥1 is a sequence of standard
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independent Brownian motions on the above mentioned filtered probability
space. The notation (bn,i ·∇)ui :=

∑d
j=1 bj

n,i∂jui is used, where the coefficients
bj
n,i model small scale turbulent effects. Note that the SPDEs (8.14) are coupled

only through the nonlinearities f and g, but there are no cross interactions in
the diffusion terms −νiΔui and (bn,i · ∇)ui, which is a standard assumption
in reaction-diffusion systems.

The following is our main assumption on the coefficients and nonlineari-
ties.

Assumption 8.4. Let d ≥ 2, � ≥ 1 be integers. We say that Assumption 8.4
(p, κ, q, h, δ) holds if q ∈ [2,∞), p ∈ [2,∞), h > 1, δ ∈ [1, 2) and for all
i ∈ {1, . . . , �} the following hold:

(1) There is an α > δ − 1 such that for all j ∈ {1, . . . , d}, (bj
n,i)n≥1 ∈

Cα(Td; �2).
(2) There exists μ > 0 such that for all x ∈ T

d and ξ ∈ R
d,∑d

j,k=1

∑
n≥1 bj

n,i(x)bk
n,i(x)ξjξk ≥ (2νi − μ)|ξ|2.

(3) The maps fi : T
d × R → R and gi := (gn,i)n≥1 : T

d × R → �2, are
B(Td) ⊗ B(R)-measurable. Suppose that fi(·, 0) ∈ L∞(Td), gi(·, 0) ∈
L∞(Td; �2), and for all x ∈ T

d and y, y′ ∈ R,

|fi(x, y) − fi(x, y′)| � (1 + |y|h−1 + |y′|h−1)|y − y′|,
‖gi(x, y) − gi(x, y′)‖
2 � (1 + |y|h−1

2 + |y′|h−1
2 )|y − y′|.

(4) One of the following cases holds:
i p ∈ (2,∞), q ∈ [2,∞), and δ ∈ [1, h+1

h ), satisfy

1 + κ

p
+

1
2

(
δ +

d

q

)
=

h

h − 1
, and

d

d − δ
< q <

d(h − 1)
h + 1 − δ(h − 1)

;

ii p = q = 2, κ = 0, δ = 1 and h ≤ 4+d
d with the additional restriction

h < 3 if d = 2.

As commented at the end of Subsection 4.3 or in [11, Subsection 5.3.4],
the relation between the growth of the drift and diffusion is optimal from a
scaling point of view.

It is clear that if Assumption 8.4(1)-(3) hold for δ = 1 and h, then it also
holds for some δ > 1 and all h̃ > h. However, the validity of Assumption 8.4(4)
depends on the specific choice of (δ, h) for which conditions (2)-(3) are verified.
In particular, if h > 1+ 4

d , then Assumption 8.4(4i) holds with q = d(h−1)
2 > 2,

δ > 1 and any p ≥ 2
2−δ (note that κ = p(1 − δ

2 ) − 1 ∈ [0, p
2 − 1)). The

integrability q = d(h−1)
2 is particularly relevant because the Lebesgue space

Ld(h−1)/2 is invariant for the reaction-diffusion equations (8.14). The reader
is referred to [13, Subsection 1.4] for the scaling analysis of (8.14). Although
one can always increase the parameter h in Assumption 8.4, this comes at the
cost of obtaining smaller critical spaces. Moreover, the lower bound h > 1 + 4

d
is not optimal for ensuring that Assumption 8.4(4i) holds. Indeed, as shown
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in [13, Lemma 2.5] for d = 3, Assumption 8.4(4i) holds for all h > 2 within
a suitable range of parameters (p, κ, q, δ). The same suboptimality is observed
for dimensions d > 3. For further discussion and a comparison with Fujita’s
critical exponent introduced in [105], we refer the reader to [13, Remark 2.6].
Finally, by adding a dummy variable, one can increase the dimension and our
discussion also includes the case d = 1.

As usual, we view (8.14) as a stochastic evolution equation on X0 given
in (8.13). More precisely, we say that (u, σ) is a (unique) (p, κ, q, δ)-solution to
(8.14) if (u, σ) is a Lp

κ-solution to (4.1) with (X0,X1) as in (8.13), U = �2 and

(Au)i = −νiΔui, (Bu)i = ((bn,i · ∇)ui)n≥1,

(F (u))i = fi(u), (G(u))i = (gn,i(·, u))n≥1.

Here we stress the dependence on (p, κ, q, δ) in the definition of solutions.
However, in Proposition 8.8 we will see that the solutions to (8.14) for different
choices of the parameters actually coincide. In the following, we compare the
above definition of solutions with the one used in [13].

Remark 8.5. Using Assumption 8.4(p, κ, q, h, δ) and [13, Lemma 3.2], one can
check that the above defined (p, κ, q, δ)-solution to (8.14) gives, for all i ∈
{1, . . . , �},

fi(·, u) ∈ Lp
loc([0, s), wκ;H−δ,q(Td)),

(gn,i(·, u))n≥1 ∈ Lp
loc([0, s), wκ;H1−δ,q(Td; �2)).

These were used to define a solution in [13], but are equivalent by stochastic
maximal regularity.

To simplify the notation in the sequel from now on, we write

Hs,q = Hs,q(Td; R
) and Bs
q,p = Bs

q,p(T
d; R
).

The main result on local well-posedness reads as follows (see [13, Theorem
2.6]).

Theorem 8.6. (Local existence and regularization in critical spaces) Let

Assumptions 8.4(p, κ, q, h, δ) be satisfied. Then for any u0 ∈ L0
F0

(Ω;B
d
q − 2

h−1
q,p ),

the problem (8.14) has a (unique) (p, κ, δ, q)-solution (u, σ) such that a.s. σ > 0
and

u ∈ Lp
loc([0, σ), wκ;H2−δ,q)) ∩ C([0, σ);B

d
q − 2

h−1
q,p ). (8.15)

Moreover, u instantaneously regularizes in space and time: a.s.,

u ∈ Lr
loc((0, σ);H1,r) ∩ C

θ/2,θ
loc ((0, σ) × T

d; R
), r ∈ (2,∞), θ ∈ (0, 1). (8.16)

As in Subsection 1.2 or in [13, Subsection 1.4], a scaling argument shows

that the spaces B
d
q − 2

h−1
q,p are locally scaling-invariant and they are critical in the

PDE sense for (8.14). It is interesting to note that the smoothness of B
d
q − 2

h−1
q,p

does not depend on (p, κ, δ). Moreover, we can take q close to its upper bound
d(h−1)

h+1−δ(h−1) . Due to the Sobolev embedding, this gives the largest class of
initial data which we can consider. In the limit for q to its upper bound, this
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gives smoothness 1−δ. Taking δ close to its upper bound h+1
h , we almost reach

smoothness − 1
h . Of course, the latter is only possible if the regularity exponent

of Assumption 8.4 satisfies α ≥ h+1
h − 1 = 1

h . As discussed below Assumption
8.4, if h > 1+ 4

d , then Theorem 8.6 can always be applied with δ > 1, q = d(h−1)
2

and any p ≥ 2
2−δ . This choice results in the critical space B

d
q − 2

h−1
q,p = B0

q,p with
zero smoothness. Thus, due to the elementary embedding

L
d(h−1)

2 ⊆ B0
d(h−1)

2 ,p
if p > d(h−1)

2 ,

applying the above with δ > 1, q = d(h−1)
2 and p ≥ max{q, 2

2−δ } ensures
local well-posedness of (8.14) for initial data in the critical Lebesgue space
L

d(h−1)
2 . See also [13, Remark 2.8(c)] for related discussion. The regularity

assertion (8.15) can be further improved if the data (bj
n,i, fi, gi) have further

smoothness in the x-variable. In this way, one can even obtain C∞-regularity
in space if these coefficients are C∞ in space. The latter heavily relies on the
periodic boundary conditions. For different boundary conditions compatibility
conditions are required.

The proof of Theorem 8.6 given in [13] relies on Theorem 4.7. Here, the
stochastic maximal regularity is nontrivial due to the b-term. A detailed proof
can be found in [15]. The estimates for F (u) = f(u) and G(u) = g(·, u) are rel-
atively straightforward extensions of what we have already seen in Subsection
4.3 (see [13, Lemma 3.2]). The time-regularity in (8.16) follows from Theorems
5.6 and 5.7. After that, a classical bootstrap argument can be used to increase
the regularity in space. Details in the case of the quasi-geostrophic equation
are given in the proof of Proposition 8.19 below.

Remark 8.7. (The need for Lp(Lq)-theory for rough Kraichnan model) In the
case of a reaction-diffusion advected by a turbulent fluid, under a time-scale
separation assumption, the fluid’s influence can be modelled through transport
noise as in (8.14), see [13, Subsection 1.3]. In this context, a natural choice of
(bn)n≥1 is given by the Kraichnan model [157]. In a turbulent regime, the
regularity parameter α > 0 in Assumption 8.4(1), which reflects the spatial
correlation of the turbulent fluid, see e.g. [1, Proposition 2.1], is typically small.
Therefore, the reader can readily check that if α is small and h is large, then
Assumption 8.4(4) (which is equivalent to that local well-posedness of (8.14))
can only hold if the exponents q and p are sufficiently large.

Although it seems an academic question, it can be important and non-
trivial to show that solutions obtained from different settings coincide. The
following result is taken from [13, Proposition 3.5], and is an extended version
of Corollary 5.11 where also the integrability q and the growth h are allowed
to vary.

Proposition 8.8. (Compatibility) Suppose that Assumptions 8.4 holds for two
sets of parameters (p, κ, q, h, δ) and (p0, κ0, q0, h0, δ0). Let u0 ∈
L0
F (Ω;B

d
q − 2

h−1
q,p ∩ B

d
q0

− 2
h0−1

q0,p0 ). Let (u, σ) and (v, τ) be (p, κ, q, δ)- and (p0, κ0,
q0, δ0)-solutions to (8.14) respectively. Then σ = τ and u = v.
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Via regularization arguments and the blow-up criteria of Theorems 5.1(2)
and 5.2 one can obtain the following.

Theorem 8.9. (Blow-up criteria) Let the assumptions of Theorem 8.6 be sat-
isfied and let (u, σ) be the (p, κ, q, δ)-solution to (8.14). Let h0 ≥ 1 + 4

d .
Suppose that p0 ∈ (2,∞), h0 ≥ h, δ0 ∈ (1, 2) are such that Assumption
8.4(p0, κ0, q0, h0, δ0) holds. Let ζ0 = d

2 (h0 − 1). The following hold for all
0 < s < T < ∞:
(1) If q0 = ζ0, then for all ζ1 > q0

P
(
s < σ < T, sup

t∈[s,σ)

‖u(t)‖Lζ1 (Td;R�) < ∞)
= 0.

(2) If q0 > ζ0, p0 ∈ (
2

δ0−1 ,∞)
, p0 ≥ q0, and d

q0
+ 2

p0
= 2

h0−1 , then

P
(
s < σ < T, sup

t∈[s,σ)

‖u(t)‖Lζ0 + ‖u‖Lp0 (s,σ;Lq0 ) < ∞)
= 0.

(3) If p0 = q0 = 2, δ0 = 1, then

P
(
s < σ < T, sup

t∈[s,σ)

‖u(t)‖L2 + ‖u‖L2(s,σ;H1,2) < ∞)
= 0.

The parameters (p, κ, q, δ) can be different from the parameters for which
we could provide energy bounds, i.e. (ζ0, ζ1, p0, q0). This makes the above blow-
up criteria very flexible in applications. Due to (3) in some cases it can even
suffice to prove L2-bounds. The parameter s is very useful in applications.
It allows to take parabolic regularization of the solution into account in the
formulation of blow-up criteria. As we have seen in Theorem 8.3, this allows
us to obtain global well-posedness also for rough initial data.

Via the blow-up criteria, regularity and a maximum principle of [169],
the following result on positivity (in a distributional sense) was proved in [13]
through Lp(Lq)-theory.

Proposition 8.10. (Positivity) Let the assumptions of Theorem 8.6 be satisfied.
Let (u, σ) be the (p, κ, δ, q)-solution to (8.14) provided in Theorem 8.6. Suppose
that u0 ∈ [0,∞)
 a.s., and that for all i ∈ {1, . . . , �}, n ≥ 1, y = (yi)


i=1 ∈
[0,∞)
 and x ∈ T

d

fi(x, y1, . . . , yi−1, 0, yi+1, . . . , y
) ≥ 0,

gn,i(x, y1, . . . , yi−1, 0, yi+1, . . . , y
) = 0.

Then a.s. for all x ∈ T
d and t ∈ [0, σ), u(t, x) ≥ 0.

Example 8.11. In the case of the Allen–Cahn equation � = 1, and f(y) =
−y3 + y. The latter satisfies the above condition. Therefore, to obtain the
positivity of the solution of the stochastic Allen–Cahn equation with periodic
boundary conditions, we need to consider a gn such that gn(x, 0) = 0. Besides
some regularity, no conditions on the coefficients bj

n are needed.

Remark 8.12. In [13] the following more general setting is considered. All coef-
ficients are allowed to depend on (t, ω) as well. The terms νiΔui are replaced
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by a more general operator in divergence form to model inhomogeneous con-
ductivity and may also take into account the Itô correction in the case of
Stratonovich noise. An additional conservative term div[Ψ(u)] dt is added to
the equation. The coefficients a and b can be assumed to have Sobolev regu-
larity Hα,r(Td; �2) for some r ≥ 2 such that α − d

r > 0.

8.2.2. Global well-posedness for coercive systems. In [14] we introduced a so-
called Lζ-coercivity estimate, which gives sufficient conditions for the global
existence of the solution in Theorem 8.6. If ζ = 2 and αi = 1, the condition
reduces to the classical coercivity estimates such as the one in the variational
setting in Theorem 6.4.

In simplified form, the assumption is as follows.

Assumption 8.13. (Lζ-coercivity) Let ζ ∈ [2,∞). We say that Assumption
8.13(ζ) holds if there exist constants θ,M,C, α1, . . . , α
 > 0 such that a.e. in
[0,∞) × Ω for all v = (vi)


i=1 ∈ C1(Td; R
),

∑�
i=1 αi

∫
Td |vi|ζ−2

(
νi∇vi · ∇vi − vifi(·,v)

ζ−1
− 1

2

∑
n≥1

[
(bn,i · ∇)v + gn,i(·, v)

]2)
dx

≥ θ
∑�

i=1

∫
Td |vi|ζ−2|∇vi|2 dx − M

∑�
i=1

∫
Td |vi|ζ dx − C.

Moreover, if a local solution u is known to take values in a subset S of
R


, then it is enough to consider v which takes values in S in the above.
To get a better intuition of what Assumption 8.13 means, it is helpful to

state a sufficient condition for it in the special case where b = 0. More general
conditions can be found in [14, Lemmas 3.3 and 3.5].

Lemma 8.14. (Pointwise Lζ–coercivity if b = 0) Let ζ ∈ [2,∞). Suppose b = 0.
If there exist constants α1, . . . , α
,M > 0 such that for all y ∈ R




∑

i=1 αi|yi|ζ−2

[
yifi(·,y)

ζ−1 + 1
2‖(gn,i(·, y))n≥1‖2


2

]
≤ M(|y|ζ + 1),

then Assumption 8.13(ζ) holds.

If � = 1, the latter is equivalent to yf(·,y)
ζ−1 + 1

2‖(gn(·, y))n≥1‖2

2 ≤ M(y2+1).

For instance, if f(y) = −y3 this implies g can grow at most quadratically, and
the condition becomes more restrictive if ζ increases. Similar results can be
checked for other classes of nonlinearities.

If Assumption 8.13(ζ) holds with sufficiently large ζ, then one can obtain
global existence using the following method as done in [14, Theorems 3.2]:

• apply Itô’s formula to rewrite ‖ui‖ζ
Lζ(Td)

;

• calculate
∑

i αi‖ui‖ζ
Lζ(Td)

;
• estimate the latter through Assumption 8.13;
• apply the stochastic Gronwall Lemma A.7 to find an a priori estimate for

u;
• apply the blow-up criteria of Theorem 8.9 (2) to get σ = ∞.

We summarize the result one obtains in the next theorem.
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Theorem 8.15. (Global well-posedness) Suppose that Assumptions 8.4(p, κ, q,

h, δ) and 8.13(ζ) hold with ζ ≥ d(h−1)
2 ∨2. Then for any u0 ∈ L0

F0
(Ω;B

d
q − 2

h−1
q,p ),

there exists a unique global (p, κ, δ, q)-solution u : [0,∞) × Ω → R

. Moreover,

the following additional assertions hold:

(1) The regularity assertions (8.15) and (8.16) hold with σ replaced by ∞.
(2) For all λ ∈ (0, 1), there exist N0,λ > 0 such that for any T < ∞, i ∈

{1, . . . , �},

E supt∈[0,T ] ‖ui(t)‖ζλ
Lζ +E

∣∣∣ ∫ T

0

∫
Td 1Γ|ui|ζ−2|∇ui|2 dxdt

∣∣∣λ ≤ N0,λ

(
1+E‖u0‖ζλ

Lζ

)
.

(3) Suppose that p ≥ q ≥ d(h−1)
2 . The solution depends continuously on the

initial data in the following sense: If un
0 → u0 in B

d
q − 2

h−1
q,p in probability,

then for all T < ∞, u(n) → u in C([0, T ];B
d
q − 2

h−1
q,p ) in probability.

Parts (2) and (3) follow from [14, Theorem 5.2 and Corollary 5.4], and
require more delicate arguments which we cannot explain here.

Note that the condition q ≥ d(h−1)
2 in (3) implies that d

q − 2
h−1 ≤ 0.

Thus, the continuous dependency is formulated in a space of distributions.
An exception is ζ = p = q = 2 if d(h − 1) ≤ 4, in which case the result is
formulated for the space L2(Td; R
). However, in the latter case, it is better to
use Theorem 6.4 since it gives additional information.

The above result for instance applies to the stochastic Allen–Cahn equa-
tion in any dimension and with gradient noise, but also to many systems. To
make a comparison with Theorem 8.2 we present some of the details in the
case b = 0 and d = 3.

Example 8.16. (Allen–Cahn with periodic boundary conditions for d = 3 for
b = 0) Let b = 0. For the Allen–Cahn equation one has � = 1 and f(y) =
−y3 + y and h = 3. Let ζ = q = p = 3, δ ∈ (1, 4

3 ), and κ = 2 − 3δ
2 . Suppose

that g(·, 0) ∈ L∞(Td),

‖g(x, y) − g(x, y′)‖
2 ≤ L(1 + |y| + |y′|)|y − y′| and

‖(gn(·, y))n≥1‖2

2 ≤ M(y2 + 1) + y4.

It follows that Assumption 8.4 holds. Moreover, from Lemma 8.14 we see
that Assumption 8.13(ζ) holds. Therefore, the conditions of Theorem 8.15 are
satisfied, and we obtain global well-posedness for any u0 ∈ L0

F0
(Ω;B0

3,3(T
3)).

In particular, u0 ∈ L0
F0

(Ω;L3(T3)) is allowed. Taking a larger q and δ, one
can even go to spaces of initial data with negative smoothness down to −1/3.

The above condition on g is slightly weaker than what we have encoun-
tered in Theorem 8.2 in the case of Dirichlet boundary conditions. The differ-
ence is that with the help of the more powerful general theory presented here,
we are allowed to consider a critical setting.
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8.2.3. Lotka–Volterra. As an example, we present a stochastic predator-prey
model with diffusivity. For the deterministic theory, the reader is referred to
[67,119]. Stochastic perturbations can model uncertainties in the determina-
tion of the external forces and/or parameters, see e.g. [56,209] and the ref-
erences therein. Moreover, transport noise can model the ‘small-scale’ effect
of migration phenomena of the species, but for simplicity of the presentation,
we leave it out of the discussion here. As a special case, our model below
also includes the SIR model (susceptible-infected-removed). In the periodic
stochastic setting global well-posedness was obtained for these models for the
first time in [14, Section 4.2].

Predator-prey models typically do not satisfy the coercivity estimates of
Theorems 6.4 and 8.15. This is due to the system structure of the equation and
because the diffusion equation for the “predator“ is typically not dissipative.
Fortunately, one can prove some control using the stochastic Gronwall Lemma
A.7 as soon as one can provide an a priori bound for the “prey”. Finally, we
mention that since the positivity of the solution is required in predator-prey
models, the noise has to be multiplicative.

Consider the following system on the d-dimensional torus T
d with d ∈

{1, 2, 3, 4}:{
du − νΔu dt =

[
λ1u − χ1,1u

2 − χ1,2uv
]
dt +

∑
n≥1 gn,1(·, u, v) dWn,

dv − μΔv dt =
[
λ2v − χ2,2v

2 + χ2,1uv
]
dt +

∑
n≥1 gn,2(·, u, v) dWn,

(8.17)
and initial data u(0, ·) = u0 and v(0, ·) = v0 . The unknowns u, v : [0,∞) ×
Ω × T

d → R model the population of the prey and predator, respectively.
The main assumptions on g1 = (gn,1)n≥1 and g2 = (gn,2)n≥1 are as

follows.

Assumption 8.17. Let 1 ≤ d ≤ 4 and λi ∈ R, χi,j ≥ 0 for i, j ∈ {1, 2}. Let
g1, g2 : R

2 → �2 and suppose that there exists an M > 0 such that for all
x ∈ T

d, y, y′, z, z′ ≥ 0,

g1(x, y, 0) = g2(x, 0, z) = 0 (8.18)
2∑

i=1

‖gi(x, y, z) − gi(x, y′, z′)‖
2 ≤ C(1 + |y|1/2 + |y′|)1/2|y − y′|, (8.19)

1
2
‖g1(x, y, z)‖2


2 ≤ C
(
1 + y2

)
+ χ1,1y

3 + χ1,2y
2z, (8.20)

1
2
‖g2(x, y, z)‖2


2 ≤ C
[
1 + (1 + y)z2 + y2z + y3

]
+ χ2,2z

3.

(8.21)

The condition (8.18) is to ensure the positivity of u and v. Condition
(8.19) is a local Lipschitz condition. The conditions (8.20) and (8.21) are cer-
tain growth conditions of which we do not know the optimality. The above
problem fits into the setting of Theorem 8.6 with p = q = 2, δ = 1, h = 2, and
κ = 0. Thus, local well-posedness and regularity are immediate. Note that to
include d = 1 one can add a dummy variable.
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Although the above model does not satisfy the usual coercivity condi-
tions, we can still obtain global well-posedness.

Theorem 8.18. (Global well-posedness – Lotka–Volterra) Suppose that Assump-
tion 8.17 holds. Then for every u0, v0 ∈ L0

F0
(Ω;L2(Td)) with u0, v0 ≥ 0

a.s., there exists a (unique) global solution (u, v) ∈ L2
loc([0,∞);H1(Td; R2)) ∩

C([0,∞);L2(Td; R2)) a.s. of (8.17) and u, v ≥ 0 a.s.
Moreover, u and v have the following regularity for all r ∈ [1,∞) and

θ ∈ (0, 1)

u, v ∈ Lr
loc((0,∞);H1,r(Td)) and u, v ∈ C

θ/2,θ
loc ((0,∞) × T

d).

Furthermore, if un
0 , vn

0 ∈ L0
F0

(Ω;L2(Td)) with un
0 , vn

0 ≥ 0 a.s. are such that
un

0 → u0 and vn
0 → v0 in L2(Td) in probability, then un → u and vn → v

in C([0, T ];L2(Td; R2))∩L2(0, T ;H1(Td; R2)) in probability for every T < ∞,
where (un, vn) are the solutions to (8.17) with initial data (un

0 , vn
0 ).

From the formulation of the above result, it almost seems that the above
result can be proved through L2-theory, and on more general domains with
more general boundary conditions. This is indeed true if one only wants to
show local well-posedness, which also follows from Theorem 6.2. However, the
global well-posedness is much harder to show. In the proof, we need positivity
of the solution, and this follows from Proposition 8.10, which requires Lp(Lq)-
theory. We explain in detail how the positivity is used to obtain the global
existence. For this, we will use the blow-up criteria of Theorems 6.2 or 8.9.
For simplicity we assume χ1,1 = χ2,2 = λ2 = 0, as this does not change the
argument much. Suppose that (u, v) is a maximal solution with maximal time
σ.

Applying Itô’s formula to ‖u‖2
L2(Td) we find that

‖u(t)‖2
L2(Td) =‖u0‖2

L2(Td) − ∫ t

0

∫
Td 2ν|∇u(s)|2 dxds

+ 2
∫ t

0

∫
Td λ1u(s)2 − χ1,2u(s)2v(s) dxds

+
∫ t

0

‖g1(·, u(s), v(s))‖2

2 ds + Mt,

where M is a continuous local martingale. Using the positivity of u and v
we know the signs in the above terms and thus we can apply the assumption
(8.20) to obtain the bound

‖u(t)‖2
L2(Td) + 2ν‖∇u‖2

L2(0,t;L2(Td)) ≤ ‖u0‖2
L2(Td) + 2Ct + ‖u‖2

L2(0,t;L2(Td)) + Mt.

Now, one could take expectations and apply a classical Gronwall argument.
Alternatively, one can apply the stochastic Gronwall Lemma A.7 and imme-
diately deduce that a.s. for all T < ∞

sup
t∈[0,σ∧T )

‖u(t)‖L2(Td) < ∞ and ‖∇u‖2
L2(0,σ∧T ;L2(Td)) < ∞. (8.22)
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The above argument cannot directly be translated to v. We can still apply
Itô’s formula to get

‖v(t)‖2
L2(Td) =‖v0‖2

L2(Td) − ∫ t

0

∫
Td 2μ|∇v(s)|2 dxds

+ 2
∫ t

0

∫
Td χ2,1u(s)v(s)2 dxds

+
∫ t

0

∫
Td

‖g2(·, u(s), v(s))‖2

2 dxds + M̃t,

where M̃ is a continuous local martingale again. Now, one can repeat the
application of the bound (8.21) to obtain

‖v(t)‖2
L2(Td) + 2μ

∫ t

0
‖∇v(s)‖2

L2(Td) ds

≤ ‖v0‖2
L2(Td) + 2

∫ t

0

∫
Td

[
C(1 + v(s)2 + u(s)2v(s) + u(s)3)

+ (C + χ2,1)u(s)v(s)2
]
dxds + M̃t

≤ ‖v0‖2
L2(Td) + 2C̃

∫ t

0

∫
Td

(
1 + v(s)2 + u(s)3 + u(s)v(s)2

)
dxds + M̃t,

where in the last step we used 2u2v = 2u3/2(u1/2v) ≤ u3 + uv2. To bound the
L2-norm of v we will use the stochastic Gronwall Lemma A.7. This time we
need its full power. We claim that∫
Td

(
v(s)2 + u(s)3 + u(s)v(s)2

)
dx ≤ Nε,u(s)[1 + ‖v(s)‖2

L2(Td)] + ε‖v‖2
H1,2(Td),

where ε > 0 is arbitrary, and Nε,u ∈ L1(0, σ ∧T ) a.s. and Nε,u(t) and depends
on u|[0,t]. To prove this we use interpolation estimates, and consider each term
separately. For the mixed term, by Sobolev embedding with d ≤ 4,∫

Td u(s)v(s)2 dx ≤ ‖u(s)‖L4(Td)‖v(s)‖2
L8/3(Td)

≤ ‖u(s)‖H1,2(Td)‖v(s)‖2
H1/2,2

≤ ‖u(s)‖H1,2(Td)‖v(s)‖L2(Td)‖v(s)‖H1(Td)

≤ Cε‖u(s)‖2
H1,2(Td)‖v(s)‖2

L2(Td) + ε‖v(s)‖2
H1(Td),

which is of the required form due to u ∈ L2(0, σ ∧ T ;H1(Td)). Similarly,∫
Td u(s)3 dx ≤ ‖u(s)‖3

H2/3,2(Td) ≤ ‖u(s)‖L2(Td)‖u(s)‖2
H1,2(Td),

which is also of the required form due to u ∈ L2(0, σ ∧T ;H1(Td))∩L∞(0, σ ∧
T ;L2(Td)).

Choosing ε > 0 small enough we can thus conclude

‖v(t)‖2
L2(Td) + μ

∫ t

0
‖∇v(s)‖2

L2(Td) ds

≤ C‖v0‖2
L2(Td) +

∫ t

0

Nε,u(s)[1 + ‖v(s)‖2
L2(Td)] + M̃t.

By the stochastic Gronwall Lemma A.7 this implies (8.22) with u replaced by
v. Thus, Theorem 6.2 implies σ = ∞ as required.

The final assertion on the continuous dependency in the norm of
C([0, T ];L2) follows from [14, Theorem 5.2]. However, it can be seen from
the proof that the convergence holds in L2(0, T ;H1) as well. An alternative
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way would be to extend the proof of [9, Theorem 3.8] to the above setting.
For this, one needs to use the tail estimates for the above solutions which are
provided by the stochastic Gronwall lemma.

8.3. Quasi-geostrophic equations with α ∈ (1/2, 1)
In Subsection 7.3.6, we considered quasi-geostrophic systems on R

2 but
only in the case α = 1. This is because L2 is critical for the corresponding
SPDE. In the case α < 1, critical spaces change accordingly. In particular, more
regularity from the critical space is needed in this context, and thus Lp(Lq)-
techniques come naturally. For details, the reader is referred to Subsection
8.3.1 below. Let us anticipate that Lp(Lq)-techniques are also handy in this
context, as for quasi-geostrophic equations Lζ-bounds with ζ < ∞ are typically
available, see Lemma 8.21.

Here we consider the quasi-geostrophic equation on the two-dimensional
torus T

2:⎧⎪⎨
⎪⎩

dθ = −[
(−Δ)αθ + (u · ∇)θ

]
dt +

∑
n≥1 gn(·, θ) dWn

t ,

u = R⊥θ,

θ(0, ·) = θ0.

(8.23)

In the following, we focus on the case α ∈ (1/2, 1), as the situation where
α = 1 is an exceptional case and it can be dealt with in the same way as in
Subsection 7.3.6. Proving regularity in the α = 1 setting is a bit more work but
is certainly possible and can be done in a similar way as in [16] for p = q = 2.

As before R⊥θ = (−R2θ,R1θ) = (−∂2Δ−1/2θ, ∂1Δ−1/2θ) with θ a peri-
odic distribution. Note that R̂jθ(n1, n2) = nj

|n| θ̂(n) with n ∈ Z
2, where we set

0/0 = 0. The definition of (−Δ)α on the space of periodic distributions is given
through the Fourier series as ̂(−Δ)αθ(n) = |2πn|2αθ̂(n) for n ∈ Z

2.

8.3.1. Scaling. Here, as in Subsections 1.2 and 4.3, we discuss the scaling of
(8.23) by mainly looking at the deterministic part of the SPDE. We will after-
wards make assumptions on the diffusion coefficients gn so that the nonlinear
diffusion (gn(·, u))n≥1 becomes as critical as the deterministic part, see the
text below (4.20). Of course, this is not a limitation of our framework. Indeed,
the latter can be applied even if the diffusion dominates the scaling, but in
this situation, one obtains critical spaces which differ from the one in the
deterministic setting. For simplicity, we do not pursue this here.

Consider the deterministic quasi-geostrophic equation on R
2:

∂tθ = −(−Δ)αθ + (R⊥θ · ∇)θ. (8.24)

One can easily check that global solutions to the above are invariant under the
rescaling:

θ 
→ θλ where θλ(t, x) := λ1− 1
2α θ(λt, λ

1
2α x) for (t, x) ∈ R+ × R

2,

where λ > 0. Thus, spaces which are invariant under the induced map on
the initial data θ0 
→ θ0,λ := λ1− 1

2α θ0(λ
1
2α ·) are given by L2/(2α−1)(R2)
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and B
1−2α+2/q
q,p (R2). Indeed, the corresponding homogeneous variants of these

spaces satisfy

‖θ0,λ‖
Ḃ

1−2α+2/q
q,p (R2)

� ‖θ0‖Ḃ
1−2α+2/q
q,p (R2)

, and

‖θ0,λ‖L2/(2α−1)(R2) � ‖θ0‖L2/(2α−1)(R2).

The previous can be expressed by saying the Sobolev indexes of the spaces
L2/(2α−1)(R2) and B

1−2α+2/q
q,p (R2) are both equal to 1 − 2α.

Next, we aim to study the optimal scaling of the diffusion so that the
stochastic equation (8.23) has the same scaling (and, consequently, critical
spaces) as the deterministic counterpart (8.24). To this end, we argue as in
the case of the Allen-Cahn equation (4.20): If gn(·, θ) = |θ|m for some m ≥ 1,
then∫ t/λ

0
(R⊥θλ(s, x) · ∇)θλ(s, x) ds = λ1− 1

2α

∫ t

0
(R⊥θ(s, λ

1
2α x) · ∇)θ(s, λ

1
2α x) ds,∫ t/λ

0
gn(·, θλ(s, x)) dβn

s,λ = λm(1− 1
2α )− 1

2
∫ t

0
|θ(s, λ 1

2α x)|m dWn
t .

(8.25)
Thus, choosing m = 3α−1

2α−1 , we obtain that (8.23) has the same local scaling of
the deterministic counterpart (8.24) and therefore the same critical spaces.

8.3.2. Local well-posedness and regularity. In order to analyze (8.23) for all
α ∈ (1/2, 1), it is not enough to use L2-theory. Indeed, in the weak set-
ting α = 1 already led to the critical setting in Subsection 7.3.6, and in the
strong setting, coercivity fails. Another disadvantage of the strong setting is
that regularity in space is needed for the diffusion nonlinearity (gn(·, u))n≥1.
Motivated by the scaling argument in the previous subsection, we assume
that g := (gn)n≥1 : T

2 × R → �2 is a measurable mapping satisfying
g(·, 0) ∈ L∞(T2; �2) and

‖g(x, y) − g(x, y′)‖
2 � (1 + |y|mα−1 + |y′|mα−1)|y − y′|, x ∈ T
2, y, y′ ∈ R.

(8.26)

where mα := 3α−1
2α−1 . Of course, we could allow for higher growth of g. However,

the latter will cause critical spaces for (8.23) to differ from the ones of (8.24).
We leave the details to the interested reader. Here we will consider (8.23) in
weak PDE setting:

X0 = H−1,q(T2) and X1 = H−1+2α,q(T2). (8.27)

Note that Xβ = H−1+2αβ,q(T2). As usual, we see (8.23) in the form (8.23)
with U = �2, the above choice of X0 and X1, and

Aθ = (−Δ)αθ, F (θ) = div(R⊥θ θ), Bθ = 0, G(θ) = (gn(·, θ))n≥1.
(8.28)

Restrictions on q to make the above mappings well-defined are given below.
In the above, we also used that, at least formally, div(R⊥θ θ) = (R⊥θ ·∇)θ, as
divR⊥θ = 0. As is well-known, the conservative form of F in (8.28) is handier
for the weak analytic formulation of SPDEs.
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As usual, we say that (θ, σ) is a (unique) (p, κ, q)-solution to (8.23) if
(θ, σ) is a maximal Lp

κ-solution to (4.1) with the above choice of Xj , U and
(A,B, F,G).

Next, we turn to check Assumption 4.1 in the current situation. Let
Φ(θ1, θ2) := div(R⊥θ1 θ2). By Hölder’s inequality and the boundedness of the
Riesz transform, one has

‖Φ(θ1, θ2)‖X0 � ‖θ2R
⊥θ1‖Lq(T2) � ‖θ1‖L2q(T2)‖θ2‖L2q(T2) � ‖θ1‖Xβ1

‖θ2‖Xβ1
,

where in the last step we used Sobolev embedding with −1+2αβ1 − 2
q ≥ − 2

2q .
Thus we may choose β1 = q+1

2αq . Since we need β1 < 1 this gives the restriction
q > 1

2α−1 . We obtain

‖F (θ1) − F (θ2)‖X0 ≤ ‖Φ(θ1, θ1 − θ2)‖X0 + ‖Φ(θ1 − θ2, θ2)‖X0

� (‖θ1‖Xβ1
+ ‖θ2‖Xβ1

)‖θ1 − θ2‖Xβ1
.

On the other hand, since the nonlinearity is quadratic, the criticality condition
(4.3) is 1+κ

p ≤ 2(1 − β1). We can find p > 2 and κ ∈ [0, p/2 − 1) such that
equality holds if and only if 2(1 − β1) < 1/2, which is equivalent to β1 > 3/4.
Using the above value of β1 this leads to the condition 1

q > 3α
2 − 1.

Thus, if α ≤ 2/3 we choose any q > 1
2α−1 , and if α ∈ (2/3, 1) we choose

q ∈ ( 1
2α−1 , 2

3α−2 ). Of course, we always have the restriction q ≥ 2. The param-
eters (p, κ) are then chosen such that

1 + κ

p
+

1
αq

+
1
α

= 2. (8.29)

Next, let us turn our attention to G. Due to (8.26) and the Hölder inequality,
for θ1, θ2 ∈ X1,

‖G(θ1) − G(θ2)‖γ(
2,H−1+α,q)

(i)

� ‖g(θ1) − g(θ2)‖γ(
2,Lζ)

� (1 + ‖θ1‖mα−1
Lmαζ + ‖θ2‖mα−1

Lmαζ )‖θ1 − θ2‖Lmαζ

(ii)

� (1 + ‖θ1‖mα−1
Xβ2

+ ‖θ2‖mα−1
Xβ2

)‖θ1 − θ2‖Xβ2

where in (i) we used that Lζ(T2) ↪→ H−1+α,q(T2) with − 2
r = −1 + α − 2

q

(note that r ∈ (1, q), as we are assuming q > 1
2α−1 , and thus q > 2

1+α ) and
in (ii) we used Xβ2 = Hβ2,q(T2) ↪→ Lmαζ(T2) with β2 = 1

2α + α−1
2αmα

+ 1
αq .

With standard computations, the reader can check that the (sub)criticality
condition (4.3) with β2 as above and ρ2 = mα takes the form (8.29) in the
critical case (this was indeed expected due to the scaling argument in (8.25)).

In the case (p, κ) satisfies the equality (8.29), the critical space of initial
values becomes

(X0,X1)1− 1+κ
p ,p = B

−1+2α−2α 1+κ
p

q,p (T2) = B
1−2α+ 2

q
q,p (T2),

which is also critical from a PDE point of view, see Subsection 8.3.1. Moreover,
for α ∈ (1/2, 2/3] we can allow smoothness down to 1 − 2α. If α ∈ (2/3, 1), we
can allow smoothness down to α−1. Interestingly, in all situations, the limiting
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smoothness is negative. As in Subsections 8.1 and 8.2, the above picture can be
refined by choosing Xj = H−δ+2jα,q(T2) with δ ∈ (1, 2] instead of the choice
in (8.27).

Since 1+A can be shown to have an H∞-calculus by a periodic analogue
of the argument in [134, Theorem 10.2.25], it follows from Theorem 3.14 that
(A, 0) ∈ SMR•

p,κ for all p ∈ (2,∞) and κ ∈ [0, p/2 − 1). Now, Theorem
4.7 implies the following and is our first step in showing the existence and
uniqueness of a global solution. Here we say that (u, σ) is a (p, κ, q)-(maximal)
solution if it is an Lp

κ-(maximal) solution with spaces Xj = H−1+2αj,q(T2) for
j ∈ {0, 1}.

Proposition 8.19. (Local well-posedness in critical spaces) Let α ∈ (1/2, 1). Let
q ≥ 2 be such that q > 1

2α−1 , and such that q ∈ ( 1
2α−1 , 2

3α−2 ) if α > 2/3. Let
p > 2 and κ ∈ [0, p

2 − 1) be as in (8.29). Let g be as in (8.26) and

θ0 ∈ L0
F0

(Ω;B
1−2α+ 2

q
q,p (T2)).

Then (8.23) has an (p, κ, q)-solution (θ, σ). Moreover, a.s.

θ ∈ Hλ,p
loc ([0, σ), wκ;H−1+2α−2αλ,q(T2)), λ ∈ [0, 1/2),

θ ∈ C([0, σ);B
1−2α+ 2

q
q,p (T2)) ∩ C((0, σ);B

−1+2α(1− 1
p )

q,p (T2)).

From the scaling argument in Subsection 8.3.1, the above yields local
well-posedness in critical spaces of Besov-type for (8.23). Noticing that

L2/(2α−1)(T2) ⊆ B0
2/(2α−1),p(T

2)

for p ≥ 2
2α−1 , the above also implies local well-posedness in the Lebesgue

critical space L2/(2α−1)(T2).
Next, we would like to show that the above solution exists globally, i.e.

σ = ∞. To show this, we will use one of the blow-up criteria. However, to
check the required bounds, we need to apply Itô calculus to bound ‖θ‖q

Lq(T2),
but for this, we need that θ is H1(T2)-valued. To show that, we first bootstrap
the regularity of θ locally in time on (0, σ).

Proposition 8.20. (Instantaneous regularization) Let α ∈ (1/2, 1). Let q ≥ 2
be such that q > 1

2α−1 , and such that q ∈ ( 1
2α−1 , 2

3α−2 ) if α > 2/3. Let
p > 2 and κ ∈ [0, p

2 − 1) be as in (8.29). Let g be as in (8.26) and

θ0 ∈ L0
F0

(Ω;B
1−2α+ 2

q
q,p (T2)). Let (θ, σ) be the (p, κ, q)-solution of (8.23) given

by Proposition 8.19. Then a.s. for all r, ζ ∈ (2,∞), λ ∈ (0, 1)

θ ∈ Lr
loc((0, σ);Hα,ζ(T2)) ∩ C

λ/2,αλ
loc ((0, σ) × T

2). (8.30)

In case g ∈ Cn(T2×R) for some n ≥ 1, an iteration of the argument below
shows more spatial smoothness for the solution of (8.23). In particular, if g ∈
C∞(T2 ×R), then θ ∈ Hλ,r

loc ((0, σ);Cn
b (T2)) a.s. for any n ∈ N and λ ∈ [0, 1/2).

All these higher-order regularity results appear to be new, cf. [16, Theorem
2.7] and [16, Theorem 4.2]. Moreover, Proposition 8.20 also holds in the case
α = 1. However, the proof of time regularization (see Step 1 in the proof below)
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requires more care because L2-data is critical for the corresponding SPDEs, see
Subsection 8.3.1. However, in the latter case, the time regularization follows
almost verbatim from the argument in [16, Proof of Theorem 4.1 part C]. After
that, one can use the argument of Proposition 8.20 again.

Proof. To improve the regularity of (θ, σ), we use a bootstrap technique. We
first bootstrap the integrability in time, and then we use the latter to improve
the integrability in space. After that, we can also improve the Sobolev regu-
larity in space. It is convenient to start by bootstrapping time regularity, as it
can be done using abstract results such as the one in Section 5.3.

In the proof below, for notational brevity, we write

θ ∈ Sr,ζ,γ a.s. if θ ∈ ⋂
λ∈[0,1/2)H

λ,r
loc ((0, σ);Hγ−2αλ,ζ(T2)) a.s.

Note that by Proposition 8.19 we know that θ ∈ Sp,q,2α−1 a.s. Below, (σn)n≥1

is a localizing sequence for (θ, σ).
Step 1: Integrability in time. Since p > 2 we can use Proposition 8.19 and

Theorems 5.6 and 5.7 to obtain that θ ∈ ⋂
r∈(2,∞) Sr,q,2α−1 a.s.

Step 2: Integrability in space. We will show that θ ∈ ⋂
r,ζ∈(2,∞) Sr,ζ,2α−1

a.s. For this, it is enough to show that there exists an δ > 0 such that for all
ζ ∈ [q,∞),

θ ∈ ⋂
r∈(2,∞) Sr,ζ,2α−1 a.s. ⇒ θ ∈ ⋂

r∈(2,∞) Sr,ζ+δ,2α−1 a.s.

To prove this let ζ ≥ q be given. Let s ∈ (0,∞). Then on the set {σn >
s} × (s, σn)

‖F (θ)‖H−1,ζ+δ(T2) � ‖θR⊥θ‖Lζ+δ(T2) � ‖θ‖2
L2ζ+2δ(T2) � ‖θ‖2

H2α−1,ζ(T2),

where the last step holds if we can show 2α − 1 − 2
ζ ≥ − 2

2ζ+2δ = − 1
ζ+δ for a

suitable δ independent of ζ. For this, let δ = min{q2(2α−1− 1
q ), 1/8} > 0 and

note that

2α − 1 − 1
ζ

≥ 2α − 1 − 1
q

≥ δ

q2
≥ δ

ζ(ζ + δ)
.

The latter implies the desired estimate. By (8.26), for G a similar argument
works.

For the initial value, by the trace result of Proposition 2.1 we have a.s.

1σ>sθ(s) ∈ B
−1+2α(1− 1

r )

ζ,r (T2) ⊆ B
−1+2α(1− 1+κ̃

r )

ζ+δ,r (T2)

by Sobolev embedding if 2ακ̃
r − 2

ζ ≥ − 2
ζ+δ . The latter holds with κ̃ = r/4 by

the choice of δ. Indeed,

2ακ̃

r
≥ κ̃

r
=

1
4

≥ 2δ ≥ 2
ζ

− 2
ζ + δ

.

Since (A, 0) ∈ SMRr,κ̃ for Y0 = H−1,ζ+δ(T2) and Y1 = H2α−1,ζ+δ(T2),
the desired implication follows from stochastic maximal Lr

κ̃-regularity from
Proposition 3.11 with deterministic and stochastic inhomogeneities F (θ) and
G(θ) and initial value 1σ>sθ(s).
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Step 3: Sobolev smoothness in space. Here we prove (8.30). For simplicity,
here we assume α > 2

3 . In the case α ∈ ( 1
2 , 2

3 ], it is enough to apply the
argument below twice.

Fix s > 0 and n ≥ 1. From Step 2, we know that, a.s. on {σn > s},

θ ∈ C([s, σn];H−1+2α−ε,ζ(T2)) (8.31)

for all ε > 0 and ζ < ∞. Next, we would like to estimate F (θ) = div(R⊥θ θ)
and G(θ) on the stochastic interval {σn > s} × Ω by knowing (8.31). To this
end, we fix ε > 0 small and ζ < ∞ large so that −1 + 2α − ε > 2

ζ and
−1 + 2α − ε > 1 − α. As for the first condition, one can check that a choice of
the parameters is always possible, while for the second one needs α > 2

3 . With
ε and ζ as before, we have the following embedding at our disposal:

H−1+2α−ε,ζ(T2) ⊆ L∞(T2) and H−1+2α−ε,ζ(T2) ⊆ H1−α,ζ(T2),

where the first follows from Sobolev embedding. Thus, (8.31) implies G(θ) ∈
L∞(s, σn;Lζ(�2)) a.s. on {σn > s}. Moreover,

‖F (θ)‖H−α,ζ(T2) ≤ ‖θR⊥θ‖H1−α,ζ(T2) � ‖θ‖2
H1−α,ζ(T2)∩L∞(T2),

where in the last step, we used standard multiplication results for functions
with fractional Sobolev smoothness, see e.g. [239, Proposition 2.1.1]. Thus,
F (θ) ∈ L∞(s, σn;H−α,ζ(T2)) a.s. on {σn > s}. As in Step 2, for the initial
value we have

1{σ>s}θ(s) ∈ H−1+2α−ε,ζ(T2) ⊆ B
α(1−2 1+κ̃

r )

ζ,r (T2)

for any r < ∞ provided κ̃ ∈ [0, r
2 − 1) is sufficiently large.

As r < ∞ and ζ < ∞ can be chosen arbitrarily large, we can conclude
the desired Sobolev regularity from (A, 0) ∈ SMRr,κ̃ for Y0 = H−α,ζ(T2) and
Y1 = Hα,ζ(T2). To establish the claimed Hölder regularity in, observe that for
all λ ∈ (0, 1

2 ) and sufficiently large r, ζ ∈ (2,∞),

Hλ,r
loc (0, σ;Hα(1−2λ),ζ(T2))

⊆ C
λ−1/r
loc ((0, σ);C(T2)) ∩ Cloc((0, σ);Cα(1−2λ)−2/ζ(T2)).

The claimed regularity follows from the arbitrariness of λ ∈ (0, 1). �

8.3.3. Global existence and uniqueness. After these preparations, we now have
enough regularity of the local solution (θ, σ), to obtain an a priori bound by
Itô calculus in a similar way as presented in [14, Lemma 3.12].

Lemma 8.21. (A priori estimate) Let α ∈ (1/2, 1). Let q ≥ 2 be such that
q > 1

2α−1 , and such that q ∈ ( 1
2α−1 , 2

3α−2 ) if α > 2/3. Let p > 2 and κ ∈
(0, p/2 − 1) be as in (8.29). Suppose that θ0 ∈ L0

F0
(Ω;B

1−2α+ 2
q

q,p (T2)) and let
g : T

2×R → �2 be as in (8.26) and also of linear growth, i.e. for some Lg ≥ 0,

‖g(x, y)‖
2 ≤ Lg(1 + |y|) for all x ∈ T
2, y ∈ R.
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Let (θ, σ) be the (p, κ, q)-maximal solution of (8.23) given by Proposition 8.19.
Then for all T > s > 0 and ζ ≥ 2 one has

sup
t∈[s,σ∧T )

1σ>s‖θ(t)‖Lζ(T2) < ∞ a.s. (8.32)

Moreover,

E sup
r∈[s,σ∧T ]

1Γk,s
‖θ(r)‖ζ

Lζ(T2)
≤ CT

(
1 + E1Γk,s

‖θ(s)‖ζ
Lζ(T2)

)
, (8.33)

where Γk,s = {σ > s, ‖θ(t)‖L(T2) ≤ k}. Furthermore, if there exists an ε > 0
such that −1 + 2α(1 − 1+κ

p ) > ε and θ0 ∈ Lq(Ω;Hε,q(T2)), then

E sup
r∈[0,σ∧T )

‖θ(r)‖q
Lq(T2) ≤ CT

(
1 + E‖θ0‖q

Lq(T2)

)
. (8.34)

Proof. By Proposition 8.20, θ is locally regular on (0, σ) and, in particular,
θ ∈ C((0, σ) × T

2) ∩ L2
loc((0, σ);Hα,η(T2)) a.s. for any η < ∞. Now fix η such

that η > 2/α and η ≥ ζ. Then Hα,η(T2) ⊆ L∞(T2) by Sobolev embedding.
Let (σj)j≥1 be a localizing sequence for (θ, σ ∧ T ). Let

τj = inf{t ∈ [s, σj ] : ‖θ(t) − θ(s)‖C(T2) + ‖θ‖L2(s,t;Hα,η(T2)) ≥ j}
on the set {σ > s}∩{‖θ(s)‖ ≤ j − 1}, and τj = s otherwise. The convention is
that inf ∅ = σj . Let Γ ∈ Fs be such that Γ ⊆ {σ > s}. Let θ(j)(t) = 1Γθ(t∧τj).
Since (θ, σ) is a (p, κ, q)-maximal solution of (8.23), it follows that

θ(j)(t) − θ(j)(s) = − ∫ t

0
1[s,τj ]×Γ

[
(−Δ)αθ + F (θ)

]
dr

+
∑
n≥1

∫ t

s

1[s,τj ]×Γgn(θ) dWn.

From the definition of τj we see that ‖θ(j)‖L∞((s,τj)×T2) ≤ 2j − 1 on the set
{τj > s}. Let ξ ∈ C2

b (R) be such that ξ(y) = |y|ζ for |y| ≤ 2j − 1. By an
extended version of Itô’s formula (see and [81, Proposition A.1]) we obtain
that a.s. for all t ∈ [s, T ],

‖θ(j)(t)‖ζ
Lζ(T2)

= ‖θ(j)(s)‖ζ
Lζ(T2)

+ ζD(t) + ζS(t),

where

D(t) =
∫ t

s

∫
T2 1[s,τj ]×Γ

[
− θ|θ|ζ−2(−Δ)αθ − θ|θ|ζ−2R⊥θ · ∇θ

+
1
2
(ζ − 1)|θ|ζ−2‖g(θ)‖2


2

]
dxdr,

S(t) =
∑

n≥1

∫ t

s

∫
T2 1[s,τj ]×Γθ|θ|ζ−2gn(θ) dxdWn.

Here, the terms
∫
T2 |θ|ζ−2θ(−Δ)αθ dx and

∫
T2 θ|θ|ζ−2R⊥θ · ∇θ dx are under-

stood in the distributional sense. Indeed, θ|θ|ζ−2 ∈ Hα,η(T2) by [241, Corollary
10.5]. Moreover, as η > 2/α, Hα,η(T2) is a Banach algebra by [241, Proposition
10.2]. The distributional pairing is well defined by dividing (−Δ)α equally over
both sides. For the convective term, the first derivative can be divided over
the terms since α > 1/2. To prove the Itô formula, one uses a mollifier argu-
ment combined with the above pairing. Next, we need another approximation
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argument to estimate the first two spatial integrals in D(t), and then obtain
the claimed energy estimate. Fix θ ∈ Hα,η(T2) and let (θn)n≥1 ⊆ C∞(T2) be
a sequence such that θn → θ in Hα,η(T2). Then, using [241] as before, one can
check that supn≥1 ‖|θn|ζ−2θn‖Hα,η(T2) < ∞. Choosing a weakly convergent
subsequence of the latter, the limit can be identified as |θ|ζ−2θ. Therefore,
since θn → θ in Hα,η(T2) strongly, we obtain∫

T2 |θ|ζ−2θ(−Δ)αθ dx = limn→∞
∫
T2 |θn|ζ−2θn(−Δ)αθn dx ≥ 0,

where the estimate follows from [93, Proposition II.3.24 and Example II.3.26]
and [217, Lemma 2.1]. Next, for the convective term in D(t), one see that
supn≥1 ‖θn|θn|ζ−2R⊥θn‖Hα,η(T2) < ∞, and again by choosing a weakly con-
vergent subsequence, we deduce that∫

T2 θ|θ|ζ−2R⊥θ · ∇θ dx = limn→∞
∫
T2 θn|θn|ζ−2R⊥θn · ∇θn dx.

Integrating by parts, we get∫
T2

θn|θn|ζ−2R⊥θn · ∇θn dx =
1
ζ

∫
T2

R⊥θn · ∇|θn|ζ dx

= −1
ζ

∫
T2

div(R⊥θn)|θn|ζ dx = 0,

where we also used that div(R⊥θn) = 0.
Therefore, using the linear growth of g we can conclude that

‖θ(j)(t)‖ζ
Lζ(T2)

≤ ‖θ(j)(s)‖ζ
Lζ(T2)

+ C
∫ t

s

∫
T2 1[s,τj ]×Γ(|θ|ζ + 1) dxdr + ζS(t).

Taking the supremum over time and then expectations, after applying the
Burkholder-Davis-Gundy inequality we obtain that

E supr∈[s,t] ‖θ(j)(r)‖ζ

Lζ(T2)
≤ E‖θ(j)(s)‖ζ

Lζ(T2)
+ CE

∫ t

s

1[s,τj ]×Γ(‖θ‖ζ

Lζ(T2)
+ 1) dr

+ C′E
(∑

n≥1

∫ t

s

1[s,τj ]×Γ

∣∣∣ ∫
T2

|θ|ζ−1|gn(θ)| dx
∣∣∣2 dr

)1/2

.

Applying Minkowski’s inequality, the linear growth of g once more, and ab ≤
εa2 + Cεb

2 we obtain

(∑
n≥1

∫ t

s
1[s,τj ]×Γ

∣∣∣ ∫
T2 |θ|ζ−1|gn(θ)| dx

∣∣∣2 dr
)1/2

≤
(∫ t

s

1[s,τj ]×Γ

∣∣∣ ∫
T2

|θ|ζ−1|g(θ)‖�2 dx
∣∣∣2 dr

)1/2

≤
(
2
∫ t

s
1[s,τj ]×Γ[‖θ‖2ζ

Lζ(T2)
+ 1] dr

)1/2

≤
(
[2 supr∈[s,t] ‖θj‖ζ

Lζ(T2)
+ 1]

∫ t

s
1[s,τj ]×Γ[‖θ‖ζ

Lζ(T2)
+ 1dr]

)1/2

≤ ε[supr∈[s,t] ‖θj‖ζ

Lζ(T2)
+ 1] + Cε

∫ t

s
1[s,τj ]×Γ[‖θ‖ζ

Lζ(T2)
+ 1] dr.
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Taking expectation, combining the estimates, and choosing ε > 0 small enough
we can conclude

E
[
supr∈[s,t] ‖θ(j)(r)‖ζ

Lζ(T2)
+ 1

]
≤ 2E

[
‖θ(j)(s)‖ζ

Lζ(T2)
+ 1

]
+ C ′

εE
∫ t

s

(‖θj‖ζ
Lζ(T2)

+ 1) dr

Therefore, Gronwall’s inequality applied to y(t)=E
[
supr∈[s,t] ‖θ(j)(r)‖ζ

Lζ(T2)
+1

]
gives that

E
[
supr∈[s,T ] ‖θ(j)(r)‖ζ

Lζ(T2)
+ 1

]
≤ 2E

[
‖θ(j)(s)‖ζ

Lζ(T2)
+ 1

]
e(T−s)C′

ε .

Letting j → ∞ we obtain that

E
[
supr∈[s,T ] 1Γ‖θ(r)‖ζ

Lζ(T2)
+ 1

]
≤ 2E1Γ

[
‖θ(s)‖ζ

Lζ(T2)
+ 1

]
e(T−s)C′

ε ,

which proves the required bound (8.33). Taking Γk,s = {‖θ(s)‖Lζ(T2) ≤ k} ∩
{σ > s}, and noting that Γk,s ↑ {σ > s} it follows that a.s. on {σ > s} one
has supr∈[s,T ] ‖θ(r)‖Lζ(T2) < ∞, which is (8.32).

To derive the bound (8.34) if θ0 ∈ Lq(Ω;Hε,q(T2)), note that we
can take X0 = H−1,q(T2) and X1 = H−1+2α,q(T2) and let κ̃ ≥ κ be
such that 0 < −1 + 2α(1 − κ̃+1

p ) < ε. Then the trace space satisfies

Hε,q(T2) ↪→ B
−1+2α(1− κ̃+1

p )
q,p (T2) ↪→ Lq(T2). As in the proof of Proposition

8.19 one can see that there is a maximal (p, κ̃, q)-solution (θ̃, σ̃) to (8.23).
By Corollary 5.11 σ̃ = σ̃ and θ̃ = θ. Now, it remains to observe that a.s.

θ = θ̃ ∈ C([0, σ);B
−1+2α(1− κ̃+1

p )
q,p (T2)) ⊆ C([0, σ);Lq(T2)). Now, we can let

k → ∞ and s ↓ 0 in (8.33) for ζ = q. �

Next, the energy bound will be used to derive σ = ∞ through blow-up
criteria.

Theorem 8.22. (Global existence and uniqueness) Let α ∈ (1/2, 1). Let q ≥ 2
be such that q > 1

2α−1 , and such that q ∈ ( 1
2α−1 , 2

3α−2 ) if α > 2/3.
Let p > 2 and κ ∈ (0, p/2 − 1) be such that 1+κ

p + q+1
αq = 2. Suppose

θ0 ∈ L0
F0

(Ω;B
1−2α+ 2

q
q,p (T2)) and g : T

2 × R → R satisfies

g(·, 0) ∈ L∞(T2; �2), and ‖g(x, y) − g(x, y′)‖�2 ≤ Lg|y − y′|, x ∈ T
2, y, y′ ∈ R.

Then there exists a unique (p, κ, q)-solution θ of (8.23). Moreover, a.s.

θ ∈ Hλ,p
loc ([0,∞), wκ;H−1+2α−2αλ,q(T2)) ∩ C([0,∞);B

1−2α+ 2
q

q,p (T2)),

θ ∈ Hλ,r
loc ((0,∞);H1+α−2λ,ζ(T2)), r, ζ ∈ (2,∞), λ ∈ [0, 1/2).

Moreover, each of the bounds (8.32), (8.33), and (8.34) hold with σ = ∞.
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Proof. On the set {s < σ < ∞}, for all ζ ≥ 2 one has a.s. supt∈[s,σ∧T )

1σ>s‖θ(t)‖Lζ(T2)< ∞. Therefore, on {s < σ < ∞} a.s.

‖F (θ)‖Lr(s,σ;H−1,q(T2)) � ‖θR⊥θ‖Lq(T2) ≤ ‖θ‖2
L2r(s,σ;L2q(Td)) < ∞

and

‖g(θ)‖Lr(s,σ;H−1+α,q(T2)) �
∥∥(1 + ‖θ‖Lq(T2))

∥∥
Lr(s,σ)

< ∞.

Since 1σ>sθ(s) ∈ B
−1+2α(1− 1

r )
q,r (T2) (see Proposition 8.20), it follows from

(A, 0) ∈ SMR•
r,0 and Proposition 3.11 that on {s < σ < ∞} a.s.

θ ∈ C([s, σ];B−1+2α(1− 1
r )

q,r (T2)).

In particular, choosing sufficiently large r > 2, we find that limt↑σ θ(t) exists in

B
−1+2α(1− 1

r )
q,r (T2) ↪→ B

1−2α+ 2
q

q,p (T2) = X1− 1+κ
p ,p, where we used that −1+2α >

1 − 2α + 2
q due to q > 1

2α−1 . From Theorem 5.1(1) it follows that

P(s < σ < ∞) = P
(
s < σ < ∞, lim

t↑σ
θ(t) exists in X1− 1+κ

p ,p

)
= 0.

Since σ > 0 a.s. we can conclude that P(σ < ∞) = lims↓0 P(s < σ < ∞) = 0.
The regularity assertions follow from Propositions 8.19 and 8.20. �

Remark 8.23.

• A priori estimates for ‖θ‖L2(Ω;L2(s,σ;Hα(T2))) and ‖θ‖Lp(Ω;L∞(0,T ;Lp(T2)))

were derived in [227, (3.6) and Theorem 3.3] under the condition that θ0 ∈
Lp(T2). In the latter, the unique strong solution was obtained through
probabilistic weak solutions and pathwise uniqueness.

• Theorem 8.22 excludes the borderline case α = 1/2, which is considered
hyperbolic instead of parabolic. In the deterministic setting, global well-
posedness and regularity have been obtained in [45,65,154] on various
domains. In the stochastic case, the global existence and uniqueness for
(8.23) for α = 1/2 seems completely open.

8.4. Stochastic Navier–Stokes equations on the whole space

In this subsection, we analyze the following stochastic Navier–Stokes
equations on R

d with d ≥ 2:⎧⎪⎨
⎪⎩

du =
[
νΔu − (u · ∇)u − ∇P

]
dt +

∑
n≥1

[
(bn · ∇)u + gn(·, u) − ∇P̃n

]
dW n

t ,

div u = 0,

u(0, ·) = u0.

(8.35)

Here, u denotes the unknown velocity field, P the deterministic pressure and
P̃n the turbulent pressure. Physical motivations for the model (8.35) have been
already discussed in Subsection 1.2. Here, the noise is understood in the Itô
sense, ν > 0 and the mappings bn and gn will be specified below. However, the
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arguments below also extend to transport noise in Stratonovich formulation
(see [16] for a similar situation) and variations of the Navier–Stokes equations
such as the Boussinesq and magneto-hydrodynamic equations.

Stochastic Navier–Stokes equations on R
3 have been recently investi-

gated, see e.g. [91,145,175]. The results below appear to be the first results in
the case of a non-small transport noise. Below, we show how some of the argu-
ments in [16] to the whole space case. Nevertheless, we also obtain an endpoint
Serrin-type blow-up criterion (see Theorem 8.272 below), which is new even
in the periodic case and complements [16, Theorem 2.9] (the proof in the peri-
odic case is analogous). Moreover, we prove that the solution instantaneously
regularizes in time and space as we previously did in the periodic case. How-
ever, the argument to prove space regularity on R

d differs from the one in our
above-mentioned paper, since the latter used the boundedness of the under-
lying domain. For completeness, let us mention that the ‘small data implies
global’ result of [16, Theorem 2.11] also extends to the current situation. For
brevity, we do not state this here.

Next, we collect the assumptions on coefficients b = (bn)n≥1 and the
nonlinearity g = (gn)n≥1.

Assumption 8.24. We say that Assumption 8.24(p, δ, q, ε) holds if δ ∈ (−1, 0],
ε ≥ 0, and either

[
p ∈ (2,∞), q ∈ [2,∞)

]
or

[
p = q = 2

]
, and the following are

satisfied:
(1) There exists an α > −δ such that b ∈ Cα(Rd; �2).
(2) b satisfies the parabolicity condition, i.e., there exists ν0 ∈ (0, ν) such

that ∑
n≥1(bn · ξ)2 ≤ 2ν0|ξ|2 for all ξ ∈ R

d.

(3) b is nearly constant at infinity, i.e., there exists b∞ ∈ �2 such that

lim|x|→∞ ‖b(x) − b∞‖
2 ≤ ε.

(4) The mapping g decomposes as g =
∑


i=1 gi where gi : R
d × R

d → �2

satisfy gi(0, ·) ∈ (L1 ∩ L∞)(Rd; �2) for all i ∈ {1, . . . , �}. Moreover, for all
i ∈ {1, . . . , �} there exists ηi ∈ [0, 1] such that and for all x ∈ R

d and
y, y′ ∈ R

d,

‖gi(x, y) − gi(x, y′)‖
2 � (|y|ηi + |y′|ηi)|y − y′|.
Note that ηi = 1 is allowed, and therefore gi can grow quadratically.

In particular, scaling-invariant nonlinearities in the diffusion part are allowed,
see [16, Subsection 1.1] and Subsection 1.2. As we will see later in the proof,
the decomposition of the diffusion g is used in checking Assumption 4.1. It is
unclear to us whether this can be removed.

A prototype choice of the transport noise coefficients b is the Kraichnan
model on R

d, see e.g. [106, Section 2 and Appendix C]. Note that the regularity
assumption (1) holds for sufficiently high correlation, see [106, Proposition 2.6
and Remark 2.7]. On the other hand, the condition (3) is artificial and does
not hold for the Kraichnan noise. However, one can choose a finite collection of
divergence-free vector fields bn ∈ S(Rd; Rd) for which the corresponding vector
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b = (bn)n∈{1,...,N} is an approximation of the Kraichnan noise. The parameter
ε allows us to cover also the case of small transport noise which is sometimes
employed, cf. [41,145,183]. For later use, we gather some comments on the
Assumption 8.24(3) in the following.

Remark 8.25. (On Assumption 8.24(3)) Condition (3) is only used to obtain
stochastic maximal Lp-regularity for the couple (A,B) in (8.36) below. At the
moment, it can be avoided in some cases. Indeed, it follows from [197] that (3)
can be removed if p = q (under possibly additional assumptions on b). Note
that the results in [197] readily extend to the time-weighted case by employing
Theorem 3.12 at the beginning of his proof. Hence, the reader can check that
some of the results below are also valid without (3) (for instance, the well-
posedness in the critical space Ld, see Theorem 8.26 and (8.38)). We choose
not to state such results, as the unnatural restriction q = p gives limitations
on the application of the nonlinear theory developed in Subsections 4 and 5.1,
which we believe can be removed by a further investigation of the linear theory.

Before stating the main results of this section, we define suitable func-
tion spaces in which we study (8.35). Let P be the Helmholtz projection on
S ′(Rd; Rd):

(P̂f)k(ξ) = f̂k(ξ) − ∑d
j=1

ξjξk

|ξ|2 f̂ j(ξ),

where k ∈ {1, . . . , d}, f = (fk)d
k=1 ∈ S ′(Rd; Rd) and ·̂ denotes the Fourier

transform on R
d. By standard Fourier methods, it is clear that the P restricts to

a bounded linear operator on Bessel-potential and Besov spaces in the reflexive
range. Therefore, we can define:

H
s,q(Rd) := P(Hs,q(Rd; Rd)) and B

s
q,p(R

d) := P(Bs
q,p(R

d; Rd))

for all s ∈ R
d and 1 < q, p < ∞. By applying the Helmholtz projection to the

first line in (8.35), one can readily check that (8.35) is (formally) in the form
of (4.1) with the choice:

Au = −νΔu, Bu = (P[(bn · ∇)u])n≥1,

F (u) = P[div(u ⊗ u)], G(u) = (P[gn(·, u)])n≥1,
(8.36)

where we used the conservative form of the Navier–Stokes nonlinearity div(u⊗
u) = (u · ∇)u, as divu = 0. The latter choice allows one to accommodate for
weaker settings in the spatial variables.

Next, we introduce the solution concepts for (8.35). Let Assumption
8.24(p, δ, q, ε) be satisfied and let κ ∈ [0, p

2 − 1) ∪ {0}. Then we say that (u, σ)
is a (unique) (p, δ, κ, q)-solution to (8.35) if (u, σ) is a Lp

κ-maximal solution to
(4.1) with the above choice of the linear operators (A,B) and the nonlinear
mappings (F,G) as in (8.36), U = �2 and Xj = H

−1+δ+2j,q(Rd) with j ∈ {0, 1}.
Note that compared to Subsections 8.1 and 8.2, we replaced δ by −δ in our
definition of the spaces X0 and X1, to be coherent with the notation in [16].

Theorem 8.26. (Local well-posedness and regularization in critical spaces) Let
Assumption 8.24(p, δ, q, ε) be satisfied. Assume that (p, δ, q) satisfies one of the
following conditions:
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• δ ∈ [− 1
2 , 0], d

2+δ < q < d
1+δ , and 2

p + d
q ≤ 2 + δ;

• δ = 0, and p = q = d = 2.
Then, there exists ε > 0 for which the following assertions hold. Letting κ :=
−1 + p

2 (2 + δ − d
q ), for all u0 ∈ L0

F0
(Ω; Bd/q−1

q,p (Rd)) there exists a (unique)
(p, δ, κ, q)-solution (u, σ) to (8.35) satisfying σ > 0 a.s. and

u ∈ Hθ,p
loc ([0, σ), wκ; H1+δ−2θ,q) a.s. for all θ ∈ [0, 1/2),

u ∈ C([0, σ); Bd/q−1
q,p ) ∩ C([0, σ); B1−2/p

q,p ) a.s.

Finally, if ε = 0, then (u, σ) instantaneously regularize in time and space: a.s.

u ∈ Lr
loc((0, σ); H1,ζ) ∩ Cθ−ε

loc ((0, σ); H1−2θ,ζ),

θ ∈ [0, 1/2), ε ∈ (0, θ), r < ∞, ζ ∈ [q,∞). (8.37)

Recall from Subsection 1.2 that the Besov space B
d/q−1
q,p (Rd; Rd) is

scaling-invariant (or critical) for (8.35). In case one can take δ = − 1
2 (the

latter depending on the smoothness of b, see Assumption 8.24(1)), in Theorem
8.26 one can choose q ∼ d

1+δ ∼ 2d and therefore the above establishes local
well-posedness in critical spaces of smoothness > − 1

2 . It is unclear whether
the previous threshold is optimal. For further discussion, the reader is referred
to Problem 10. Before going further, let us also note that the invariant space
Ld(Rd; Rd) is always included in Theorem 8.26. Indeed, the case d = 2 is clear
while for d ≥ 3 it is enough to apply Theorem 8.26 with δ ∈ (−[α ∧ 1

2 ], 0),
q = d and p ≥ d and note that

L
d(Rd) ⊆ B

0
d,p(R

d). (8.38)

The instantaneous regularization result of (8.37) is new even in the well-known
case δ = 0 and q = p = d = 2. The main difficulty in this case is related to the
criticality of the energy space L2 in two dimensions (the reader is referred to
the comments below [16, Theorem 2.4] for details). As the proofs below show,
the assumption ε = 0 can be removed for (8.37) to hold for a fixed but large r,
however, ε would also depend on such parameter r. Due to the unboundedness
of the domain, the argument used in [16, Theorem 2.4] to prove instantaneous
regularization does not extend to the current situation. Instead, here we use
the one employed in Theorem 8.22. With the aid of the latter argument, the
reader can check that higher-order regularity results as in [16, Theorem 2.7] can
also be obtained. Another issue related to the unboundedness of the domain
is that in (8.37) we need ζ ∈ [q,∞).

The following shows that if σ < ∞ on a set of positive probability, then
critical norms have to blow up a.s. on the same set.

Theorem 8.27. (Stochastic Serrin-type criteria) Let the assumptions of Theo-
rem 8.26 be satisfied with ε = 0. Assume that (p0, δ0) and q0 ∈ [q,∞) satisfy
one of the following conditions:

• δ0 ∈ [− 1
2 , 0], d

2+δ0
< q0 < d

1+δ0
, and 2

p0
+ d

q0
≤ 2 + δ0;

• δ0 = 0, and p0 = q0 = d = 2.
Then, for all s > 0, the following blow-up criteria hold:
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1 P
(
s < σ < ∞, ‖u‖Lp(s,σ;Hγ0,q0 ) < ∞)

= 0 where γ0 :=
2
p0

+
d

q0
− 1

(Serrin-type criterion);
2 P

(
σ < ∞, lim

t↑σ
u(t) exists in Bd/q0−1

q0,p0

)
= 0 (endpoint Serrin-type crite-

rion).

As the proof below shows, if ε > 0 is small, then 1 and 2 still hold with
(q0, p0, δ0) = (q, p, δ).

The criteria 1-2 are sharp as both the space Lp0(0, T ;Hγ0,q0) and C([0, T ];
B

d/q0−1
q0,p0 ) respect the scaling of the Navier–Stokes equations. Indeed, their

space-time Sobolev indexes coincide with −1 which is the Sobolev index of
critical spaces B

d/q0−1
q0,p0 as

2
p0

+ γ0 − 2
q0

= −1 and
2
∞ +

d

q0
− 1 − d

q0
= −1. (8.39)

Here, the factor ‘2’ for the time integrability comes from the parabolic scaling.
The reader is referred to the comments below Theorem 5.2 for comments on
Sobolev indexes. Let us stress that the endpoint criteria 2 also holds in the
periodic case analyzed in [16] and follows immediately from the results in the
latter references and Theorem 5.1(1).

Concerning the terminology, the criterion 2 is a natural extension to the
stochastic setting of Serrin-type criteria, see e.g. [182, Theorem 11.2]. Indeed,
in the special case where q0 > d and p0 = 2/(1 − d

q0
), we have γ0 = 0 and

therefore 1 coincides with

P
(
s < σ < ∞, ‖u‖Lp0 (s,σ;Lq0 ) < ∞)

= 0,

which is a stochastic version of [182, Theorem 11.2]. The blow-up criterion 1
is therefore a “endpoint” version of 2, i.e., taking p = ∞ in the latter. In the
deterministic setting, there are available more refined versions of the endpoint
Serrin-type criterion. An extension of these results is the content of Problem
11, to which the reader is referred for more details.

In Theorem 7.14 we have seen that for p = q = d = 2, δ = 0, (8.35) has a
unique global solution u ∈ L2

loc([0,∞); H1)∩C([0,∞); L2) a.s. Combining this
with Theorem 8.27, we obtain higher-order regularity of this global solution.

Corollary 8.28. (2D Global well-posedness and regularity) Let the assumptions
of Theorem 8.26 be satisfied with p = q = d = 2, ε = 0, and ηi ≡ 0. Then the
global (2, 0, 0, 2)-solution u satisfies for all

u ∈ Lr
loc((0,∞); H1,ζ) ∩ Cθ−ε

loc ((0,∞); H1−2θ,ζ) a.s.,
θ ∈ [0, 1/2), ε ∈ (0, θ), r < ∞, ζ ∈ [2,∞).

8.4.1. Proof of Theorems 8.26 and 8.27. To prove the stated results, we employ
the abstract results of Sections 4 and 5. The following is the R

d-analogue
of [16, Lemma 4.2], which serves to check Assumption 4.1 for the nonlin-
earities. Below, we employ the shorthand notation Xj := H

−1+δ+2j,q :=
H

−1+δ+2j,q(Rd) for j ∈ {0, 1} and

Xθ := [X0,X1]θ = H
−1+δ+2θ,q and Xθ,p := (X0,X1)θ,p = B

−1+δ+2θ
q,p ,
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for θ ∈ (0, 1) and 1 < q, p < ∞.

Lemma 8.29. Assume that Assumption 8.24(p, κ, q, ε) holds and d
2+δ < q <

d
−δ . Let F and G be as in (8.36). Then β := 1

2 (1 − δ
2 + d

2q ) ∈ (0, 1) and there
exists a C > 0 such that for all v, v′ ∈ X1,

‖F (v) − F (v′)‖X0 + ‖G(v) − G(v′)‖γ(�2;X1/2) ≤ C(‖v‖Xβ + ‖v′‖Xβ )‖v − v′‖Xβ .

Proof. We start by showing the estimate for the F -part. As F (0) = 0, it is
enough to prove the local Lipschitz estimate. Now, note that for all v, v′ ∈ X1,

‖F (v) − F (v′)‖X0 � ‖v ⊗ v − v′ ⊗ v′‖Hδ,q

(i)

� ‖v ⊗ v − v′ ⊗ v′‖Lλ

� (‖v‖L2λ + ‖v′‖L2λ)‖v − v′‖L2λ

(ii)

� (‖v‖Hθ,q + ‖v′‖Hθ,q )‖v − v′‖Hθ,q

� (‖v‖Xβ
+ ‖v′‖Xβ

)‖v − v′‖Xβ
, (8.40)

where λ := dq
d−δq , θ := d

q − d
2λ , and in (i) and (ii) we used the Sobolev embed-

ding Lλ ↪→ Hδ,q and Hθ,q ↪→ L2λ. Note that q < d
−δ implies that λ ∈ ( q

2 , q]
and therefore θ > 0. Moreover, q > d

2+δ implies θ < 1 + δ and β < 1.
Next, we discuss the G-parts. By triangular inequality, it is enough to

show the corresponding estimate for a fixed gi with i ∈ {1, . . . , �}. Moreover,
we only discuss the local Lipschitz estimate, as the growth assumption follows
from gi(·, 0) ∈ (L1 ∩ L∞)(Rd; Rd) and the argument below, see Assumption
8.24(4). Thus, for all v, v′ ∈ X1, we have

‖Gi(v) − Gi(v′)‖γ(
2,Hδ,q) ≤ ‖P[gi(·, v) − gi(·, v′)]‖γ(
2,Hδ,q)

(iii)

� ‖gi(·, v) − gi(·, v′)‖γ(
2,Lλi )

� ‖gi(·, v) − gi(·, v′)‖Lλi (
2)

�
∥∥(|v|ηi + |v′|ηi)|v − v′|∥∥

Lλi

� (‖v‖ηi

L(ηi+1)λi
+ ‖v′‖ηi

L(ηi+1)λi
)‖v − v′‖L(ηi+1)λi ,

where in (iii) we used Lλi ↪→ Hδ,q where λi ∈ [λ, q] satisfies λi(1+ηi) ≥ q and
λ is as below (8.40). Note that the choice of λi is always possible as ηi ∈ [0, 1].
Now, since λi ≤ λ and ηi ≤ 1, the claimed estimate for Gi follows from the
Sobolev embeddings Hθ,q ↪→ Lλi(1+ηi) as in (8.40). �

With this preparation, we are now ready to prove Theorems 8.26 and
8.27.

Proof of Theorem 8.26. For the reader’s convenience, we divide the proof into
three steps.

Step 1: The existence of a (unique) (p, κ, δ, q)-solution (u, σ) to (8.35),
where κ = −1 + p

2 (2 + δ − d
q ). To prove Step 1, we employ Theorem 4.7. Let

us first note that the stochastic Lp-maximal regularity for (A,B) follows from
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[16, Remark 3.3] with ε = 0, and in case ε > 0, then it follows from the ε = 0
case and the perturbation result of [15, Theorem 3.2]. Thus, it remains to
check Assumption 4.1. From Lemma 8.29, it follows that (4.3) is satisfied with
m = 1, ρ1 = 1 and β1 = 1

2 (1 − δ
2 + d

2q ) provided κ and p satisfy

1 + κ

p
≤ (1 + ρ1)

ρ1
(1 − β1) = 1 − d

2q
+

δ

2
. (8.41)

Note that the application of Lemma 8.29 is legitimate, as for δ ≥ − 1
2 we have

d
1+δ ≤ d

−δ . It is clear that if p = 2 and κ = 0, then the above can only hold if
d = q = 2 and δ = 0. Next, we focus on the case p > 2. Note that, due to the
choice κ = −1+ p

2 (2+ δ − d
q ), our assumptions immediately give κ ∈ [0, p

2 − 1)
and that the condition (8.41) is satisfied. Moreover, let us point out that the
restrictions δ ≥ − 1

2 and q < d
1+δ come from enforcing an equality in (8.41).

Indeed, to allow the equality (8.41), as 1+κ
p < 1

2 and p > 2, it is necessary
that 1 − d

2q + δ
2 < 1

2 which implies q < d
1+δ . Thus, the restriction δ ≥ − 1

2 is a
consequence of the restriction q < d

−δ in Lemma 8.29: d
1+δ ≤ d

−δ if and only if
δ ≥ − 1

2 .
Therefore, the assumptions of Theorem 4.7 are satisfied and therefore it

ensures the existence of a (unique) (p, κ, δ, q)-solution to (8.35) with space of
initial data given by

X1− 1+κ
p ,p = B

1+δ−2 1+κ
p

q,p = B

d
q −1
q,p ; (8.42)

where the last equality follows from the choice of the weight κ = −1 + p
2 (2 +

δ − d
q ).
Step 2: (Instantaneous time regularization) If ε = 0, then

u ∈ Hθ,r
loc ((0, σ); H1+δ−2θ,r) a.s. for all θ ∈ [0, 1/2), r < ∞. (8.43)

Arguing as in Step 1, if ε = 0, then the stochastic maximal Lp-regularity for
(A,B) follows from [16, Remark 3.3]. To prove (8.37), we distinguish three
cases.

• If p > 2 and 2
p + d

q ≤ 2 + δ, then κ > 0 and (8.43) follows from Theorem
5.6.

• If p > 2 and 2
p + d

q = 2 + δ, then κ = 0 and (8.43) follows from Theorem
5.7 where we used that the constant C in Lemma 8.29 is independent of
v, v′.

• If p = q = 2, then d = 2, δ = 0 and κ = 0. In this case, (8.43) follows
almost verbatim from the arguments in [16, Part (C) of Theorem 4.1, p.
43-44] by using [12, Proposition 6.8] and Lemma 8.29.
Step 3: If ε = 0, then (8.37) holds. From Step 2, we know that the

solution instantaneously lies in a subcritical space. Hence, one can apply the
classical bootstrap argument (via Proposition 3.11) to prove space regularity
as we did in the proof of Theorem 8.22. For brevity, we omit the details. �

Proof of Theorem 8.27. By Corollary 5.10 and the proof of Theorem 8.26, it
is enough to show the claim of Theorem 8.27 with (p0, δ0, q0) = (p, δ, q). In the
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latter situation, 2 follows from Theorem 5.1(2) and (8.42). While for 1, note
that κ

p = 1 + δ
2 − 1

p − d
2q and

X1− κ
p

= H
1+δ−2 κ

p ,q = H
2
p − d

q −1,q.

Therefore, 1 with (p0, δ0, q0) = (p, δ, q) is a consequence of [12, Theorem 4.11]
and the fact that the constant C in Lemma 8.29 is independent of v, v′. �
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Appendix A. Technical results

A.1. Extrapolation spaces

In this appendix, we present results on interpolation-extrapolation scales
for sectorial operators, which we use at several places. For a more detailed
presentation, we refer to [19, Chapter 5] and [121, Section 6.3].

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Let A be a sectorial operator on a Banach space X such that 0 ∈ ρ(A).
The latter implies that (X, ‖A−1 · ‖X) is a normed space. Define the extrapo-
lated space X−1,A as the completion of (X, ‖A−1 · ‖X), i.e.

X−1,A := (X, ‖A−1 · ‖X)∼,

where ∼ denotes the completion of the space. Clearly, X ↪→ X−1,A and if
x ∈ X, then we have

‖x‖X−1,A
= ‖A−1x‖X ≤ ‖A−1‖L (X)‖x‖X .

Since D(A) = X, this also shows that D(A) � x 
→ Ax ∈ X extends to a linear
isometric isomorphism from X onto X−1,A. The extension of this map will be
denoted by T−1,A or simply T−1 if no confusion seems likely.

To proceed further, let us note that A induces a closed linear operator
A−1 on X−1,A given by

A−1 := T−1AT−1
−1 . (A.1)

One can check that A−1|X = A. By (A.1), A is similar to A−1. These simple
observations lead to the following.

Proposition A.1. Let A be a sectorial operator on X such that 0 ∈ ρ(A). Then
A−1 is the closure of A in X−1,A with D(A−1) = X. Moreover, the following
hold:

(1) A−1 is a sectorial operator on X−1,A and ω(A−1) = ω(A);
(2) If A ∈ BIP(X), then A−1 ∈ BIP(X−1,A);
(3) If A has a bounded H∞-calculus on X, so does A−1 and ωH∞(A−1) =

ωH∞(A).

Recall that BIP was introduced in Subsection 2.1 (see also [121,135]).
The previous proposition shows that if A−1 is sectorial, then the fractional

powers (A−1)α for α > 0 are well-defined closed linear operators on X−1,A.
Let us denote by Xα−1,A the domain of (A−1)α,

X−1+α,A :=
(
D((A−1)α), ‖(A−1)α · ‖X

)
, α ≥ 0.

By Proposition A.1 one has D(A−1) = X and thus X0,A = X.
Let α ≥ −1 and let Aα be the realization of A−1 on Xα,A, i.e.

D(Aα) := {x ∈ Xα,A : A−1x ∈ Xα,A},

Aαx := A−1x, if x ∈ D(Aα).

Note that A0 = A and Aα = A−1 if α = −1. Under suitable assumptions,
(Xα,A)α≥−1 becomes an interpolation scale with respect to complex interpo-
lation (see [121, Theorem 6.6.9]).

Proposition A.2. Let A ∈ BIP(X) be such that 0 ∈ ρ(A). Let (Xα,A)α≥−1 be
as above. Then

Xα(1−θ)+βθ,A = [Xα,A,Xβ,A]θ, α, β ≥ −1, θ ∈ (0, 1).

isomorphically.
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In the above setting (Xα,A, Aα)α≥−1 is called the interpolated-
extrapolated scale of A.

The following alternative characterization of the spaces X−α,A for α ∈
(0, 1) is given in [19, Section 5.1.4], where A∗ denotes the adjoint of A.

Theorem A.3. Let A be a sectorial operator on a reflexive Banach space X
such that 0 ∈ ρ(A). Then for each ϑ ∈ [0, 1], X−ϑ,A is isomorphic to the dual
of the space

Xϑ,A∗ = (D((A∗)ϑ), ‖(A∗)ϑ · ‖X∗)

with the duality pairing induced by the (X,X∗)-pairing. More concisely,
X−ϑ,A = (Xϑ,A∗)∗.

In the following examples, we look at operators which will be used later.

Example A.4. (Dirichlet Laplacian) In this example we specialize the above
construction to the strong Dirichlet Laplacian DΔq where q ∈ (1,∞). In this
example, we assume that O ⊆ R

d is a bounded C2-domain. However, many of
the results below also hold on domains with less smoothness and unbounded
domains. The results for O = R

d or O = T
d are much simpler and can be

presented for all smoothness parameters. Let W 1,q
0 (O) := {u ∈ W 1,q(O) :

u|∂O = 0}. The strong Dirichlet Laplacian is defined as

DΔq : W 2,q(O) ∩ W 1,q
0 (O) ⊆ Lq(O) → Lq(O), DΔqf := Δf.

By [83], Aq := − DΔq has a bounded H∞-calculus on Lq(O) with angle
ωH∞(Aq) = 0. Thus, Aq generates an extrapolated-interpolated scale, which
will be denoted by (

DH2α,q(O), A2α,q

)
α∈[−1,∞)

.

Therefore, DH2,q(O) = W 2,q(O) ∩ W 1,q
0 (O) and DH0,q(O) = Lq(O). By

Proposition A.2, for all −2 ≤ s1 < s2 < ∞ one has

DHs,q(O) = [DHs1,q(O), DHs2,q(O)]θ, ϑ ∈ (0, 1), s := (1 − θ)s1 + θs2.
(A.2)

Moreover, by Theorem A.3, DH−s,q(O) = (DHs,q′
(O))∗ for s ∈ (0, 2). We

define the extrapolated Dirichlet Laplacian as DΔs,q := −As,q with s ≥ −2.
Note that DΔ0,q = DΔq.

By [231] and (A.2) one has the following identification:

DHs,q(O) =

{
Hs,q(O) if s ∈ (0, 1/q),
{Hs,q(O) : u|∂O = 0} if s ∈ (1/q, 2).

(A.3)

Here, Hs,q(O) denotes the Bessel potential spaces on domains (see [246, Sec-
tion 4.3.1]). We avoided s = 1/q, as in this case, the description is more
complicated. The identification (A.3) implies DH1,q(O) = W 1,q

0 (O), and by
the above duality one has

DH−1,q(O) = (W 1,q′
0 (O))∗ =: W−1,q(O).
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The above identities and integration by parts arguments show that DΔ−1,q

is the ‘weak Dirichlet Laplacian’, i.e. DΔ−1,q : W 1,q
0 (O) ⊆ W−1,q(O) →

W−1,q(O) and (see [220, Example 3] for details)

−〈g, DΔ−1,qf〉 =
∫

O ∇g · ∇f dx, f ∈ W 1,q
0 (O), g ∈ W 1,q′

0 (O).

The same integration by parts arguments allows us to consider the divergence
operator div :=

∑d
j=1 ∂j as a map div : Lq(O; Rd) → DH−1,q(O) defined by

−〈g,divF 〉 :=
∫

O F · ∇g dx, ∀F ∈ Lq(O; Rd), g ∈ W 1,q′
0 (O).

Finally, we identify the real interpolation spaces as Besov spaces. For any
θ ∈ (0, 1) and q, p ∈ (1,∞) we define

DB−2+4θ
q,p (O) := (DH−2,q(O), DH2,q(O))θ,p.

By [30, Theorem 4.7.2] and (A.2) for −2 ≤ s0 < s1 and θ ∈ (0, 1) one has

DBs
q,p(O) = (DHs0,q(O), DHs1,q(O))θ,p, where s := (1 − θ)s0 + θs1.

The notation DB is motivated by the following identification (see [118]):

DBs
q,p(O) =

{
Bs

q,p(O), s ∈ (0, 1/q),
{u ∈ Bs

q,p(O) : u|∂O = 0}, s ∈ (1/q, 2).
(A.4)

Here, Bs
q,p(O) denotes the usual Besov spaces on domains (see [246, Section

4.3.1]). For s0, s1 ≥ −2 the following embedding results will be frequently used
without further reference: If s0 − d/q0 ≥ s1 − d/q1, then

DHs0,q0(O) ↪→ DHs1,q1(O), 1 < q0 ≤ q1 < ∞,

DBs0
q0,p0

(O) ↪→ DBs1
q0,p1

(O), 1 < q0 ≤ q1 < ∞, 1 ≤ p0 ≤ p1 ≤ ∞,

DBs0+ε
q,p0

(O) ↪→ DBs0
q,p1

(O), ε > 0, q ∈ (1,∞), p0, p1 ∈ [1,∞],

DBs0+ε
q,∞ (O) ↪→ DBs0

q,p1
(O), ε > 0, q ∈ (1,∞), p1 ∈ [1,∞],

DBs0
q,1(O) ↪→ DHs0,q(O) ↪→ DBs0

q,∞(O), q ∈ (1,∞).

A.2. Itô’s formula

The following infinite-dimensional version of Itô’s formula for ‖ · ‖2
H is

completely standard, and can be traced back to the early work on the varia-
tional setting (see [172,212]), where also more general versions can be found.
A shorter proof in a special case was obtained in [169]. For an overview, the
reader is referred to the recent paper [120].

Lemma A.5. (Itô’s formula in Hilbert spaces) Let (V,H, V ∗) be a Gelfand
triple of Hilbert spaces as in Section 6. Let u0 ∈ L0

F0
(Ω;H). Consider

the strongly progressively measurable processes Φ ∈ L2(0, T ;V ∗) a.s., and
Ψ ∈ L2(0, T ;L2(U,H)) a.s. Let u ∈ C([0, T ],H) ∩ L2(0, T ;V ) a.s. be a pro-
gressively measurable process such that, a.s. for all t ∈ [0, T ],

u(t) = u0 +
∫ t

0
Φ(s) ds +

∫ t

0
Ψ(s) dW (s).

Then, a.s. for all t ∈ [0, T ],

‖u(t)‖2
H = ‖u0‖2

H + 2
∫ t

0
〈Φ(s), u(s)〉 ds + 2

∫ t

0
Ψ(s)∗u(s) dW (s) +

∫ t

0
tr(Ψ(s)) ds.
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The above form can be proved through the orthonormal basis expansion
‖u‖2

H =
∑

n≥1 |(u, hn)|2 by reducing to the scalar-valued Itô formula. Here it
helps to take hn ∈ V .

Next we state a relatively standard Itô formula for ‖u‖q
Lq(O). It is also

stated in [79, Lemma 3.3] under slightly different conditions, and we follow
their proofs below.
Lemma A.6. Suppose that O ⊆ R

d is an open set. Let q ∈ [2,∞). Let v, φ,Φj ,
ψn : [0, T ] × Ω → Lq(O) be progressively measurable for j ∈ {1, . . . , d} and
n ≥ 1, and suppose that

• v0 ∈ L0
F0

(Ω;Lq(O));
• v ∈ L2(0, T ;H1,q

0 (O)) ∩ C([0, T ];Lq(O)) a.s.;
• φ ∈ L1(0, T ;Lq(O)) a.s.;
• Φ ∈ L2(0, T ;Lq(O; Rd)) a.s.;
• (ψn)n≥1 ∈ L2(0, T ;Lq(O; �2)) a.s.;

and a.s. for all t ∈ [0, T ], the following identity holds in H−1,q(O):

v(t) = v0 +
∫ t

0
φ(s) ds +

∫ t

0
div(Φ(s)) ds +

∑
n≥1

∫ t

0
ψn(s) dWn

s .

Then, a.s. for all t ∈ [0, T ],

‖v(t)‖q
Lq(O) =‖v0‖q

Lq(O) + q
∫ t

0

∫
O |v(s)|q−2

[
v(s)φ(s) − ∇v(s) · Φ(s)

]
dxds

+ q
∑

n≥1

∫ t

0

∫
O |v(s)|q−2v(s)ψn(s) dxdWn

s

+ q(q−1)
2

∫ t

0

∫
O |v(s)|q−2‖ψ(s)‖2


2 dxds.

The same formula holds if O is replaced by the d-dimensional torus T
d.

The integrability of each of the terms follows from Hölder’s inequality. In
particular, the stochastic integral term defines a continuous local martingale
(Mt)t∈[0,T ] where the quadratic variation satisfies

[M ]t =
∑
n≥1

∫ t

0

∣∣∣ ∫
O

|v(s)|q−2v(s)ψn(s) dx
∣∣∣2 ds ≤

∫ t

0

‖v(s)‖2q−2
Lq(O)‖ψ(s)‖2

Lq(O;�2) ds.

Proof. By a cut-off argument, it suffices to consider the case of bounded
domains. Let Θn be the approximation of | · |q as in [79, Lemma 3.3] using
the Itô formula of [211, p. 62]. Then, as explained there, one has∫

O Θn(v(t)) dx =
∫

O Θn(v0) dx +
∫ t

0

∫
O Θ′

n(v(s))φ(s) dxds

− ∫ t

0

∫
O Θ′′

n(v(s))∇v(s) · Φ(s) dxds

+ q
∑

n≥1

∫ t

0

∫
O Θ′

n(v(s))ψn(s) dxdWn
s

+ q(q−1)
2

∫ t

0

∫
O Θ′′

n(v(s))‖ψ(s)‖2

2 dxds.

It remains to let n → ∞. All terms converge by the dominated convergence
theorem and the pointwise convergence properties of Θn and its derivatives.
To obtain a dominating function it suffices to use Hölder’s inequality and the
bounds |Θn(z)| ≤ C|z|q, |Θ′

n(z)| ≤ C|z|q−1 and |Θ′′
n(z)| ≤ C|z|q−2, where C is

independent of n and z ∈ R. �
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A.3. Stochastic Gronwall lemma

When analyzing S(P)DEs one often has to rely on Gronwall arguments. In
the case of nonlinear equations, it can happen that the integrability of moments
(even in L1) does not hold, and more sophisticated results are required. Sto-
chastic Gronwall lemmas can provide such results, and be independently traced
back to [112] and [249].

Below we present a special case of the version of the stochastic Gronwall
lemma of [108, Corollary 5.4]. We should mention that in the latter work only
right-continuity is assumed. A surprising feature is that M does not appear on
the right-hand sides of the concluded estimates. For Z : [0,∞) × Ω → [0,∞)
we will write Z∗

t := sups∈[0,t] Zs below. Moreover, Z is called increasing if a.s.
for all s ≤ t one has Zs ≤ Zt.

Lemma A.7. Suppose that the following conditions hold:
• X : [0,∞) × Ω → [0,∞) is a.s. continuous and adapted;
• A : [0,∞) × Ω → [0,∞) is a.s. continuous, increasing, adapted, and

A0 = 0;
• M : [0,∞) × Ω → R is a continuous local martingale with M0 = 0;
• H : [0,∞) × Ω → [0,∞) is continuous, increasing and adapted;
• For all t ≥ 0, a.s.,

Xt ≤ ∫ t

0
Xs dAs + Mt + Ht. (A.5)

Then, for all T, u,w,R > 0,

P(X∗
T > u) ≤ eR

u E(HT ∧ w) + P(HT ≥ w) + P(AT > R).

Moreover, the following Lp-estimate holds for all p ∈ (0, 1) and T > 0,∥∥e−AT X∗
T

∥∥
Lp(Ω)

≤ (1 − p)−1/pp−1‖HT ‖Lp(Ω).

The above result also holds if the processes are only defined on a random
time interval [0, τ ] and follows by extending them constantly on (τ,∞). The
tail estimate can be seen as a weak L1-estimate. The moment estimate does
not extend to p = 1.

In applications, we take At =
∫ t

0
as ds, where a ∈ L1([0,∞)) is a nonneg-

ative progressively measurable process, and thus
∫ t

0
Xs dAs =

∫ t

0
asXs ds.

Proof. For completeness, we include the short proof of [108] in the special case
of continuous processes. By continuity, we may assume the estimate (A.5)
holds a.s. for all t ≥ 0. Let Yt := Xte

−At , and let X̃t denote the right-hand
side of (A.5). By Itô’s formula applied to Ỹt = X̃te

−At we find that

Ỹt =
∫ t

0

e−As dX̃s −
∫ t

0

X̃se
−As dAs

=
∫ t

0

e−AsXs dAs + Nt + H̃t −
∫ t

0

X̃se
−As dAs ≤ Nt + H̃t,

where Nt =
∫ t

0
exp(−As) dMs and H̃t =

∫ t

0
exp(−As) dHs ≤ Ht. Therefore,

we find that, a.s. for all t ≥ 0, Yt ≤ Ỹt ≤ Nt + Ht.
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Next we will show that

P(Y ∗
T > u) ≤ 1

uE(HT ∧ w) + P(HT ≥ w). (A.6)

By a localization argument, we may suppose that N is a martingale.
Let τ = inf{t ≥ 0 : Ht ≥ w} and σ = inf{t ≥ 0 : Yt ≥ u}. Note

that u1{sups∈[0,t] Ys>u} ≤ Yt∧σ ∧ u. On the set {H0 < w} one has (due to the
nonnegativity of X and thus Y )

Yt∧σ ∧ u = Yt∧τ∧σ ∧ u + (Yt∧σ ∧ u − Yt∧τ∧σ ∧ u

≤ Nt∧τ∧σ + Ht∧τ∧σ ∧ u + u1{τ<t}
≤ Nt∧τ∧σ + Ht ∧ w + u1{Ht≥w},

where we used that H is increasing. On the set {H0 ≥ w} one has Yt∧σ ∧ u ≤
u1{Ht≥w} again since H is increasing. Below we write E(ξ;A) =

∫
A

ξdP. From
the above, it follows that

E(u1{sups∈[0,t] Ys>u}) ≤ E(Yt∧σ ∧ u)

≤ E(Yt∧σ ∧ u;H0 < w) + E(Yt∧σ ∧ u;H0 ≥ w)

≤ E(Ht ∧ w;H0 < w) + E(u1Ht≥w;H0 < w)

+ E(u1Ht≥w;H0 ≥ w)

≤ E(Ht ∧ w) + uP(Ht ≥ w).

Here we used that E(Nt∧τ∧σ;H0 < w) = E(N0;H0 < w) = 0 since N and
thus its stopped version are martingales starting at zero. Taking t = T , the
above estimate gives (A.6).

The estimate (A.6) applied with u replaced by e−Ru implies

P(X∗
T > u) ≤ P(X∗

T > u,AT ≤ R) + P(AT > R)

= P(e−AT X∗
T > e−AT u,AT ≤ R) + P(AT > R)

≤ P(Y ∗
T > e−Ru) + P(AT > R)

≤ eR

u E(HT ∧ w) + P(HT ≥ w) + P(AT > R).

It remains to prove the Lp bound for p ∈ (0, 1). Taking w = λu with
λ > 0 to be determined, then (A.6) and Fubini’s theorem imply that

E‖Y ∗
T ‖p =

∫ ∞
0

p up−1P(Y ∗
T > u) du

≤ ∫ ∞
0

p up−2E[HT ∧ (λu)] du +
∫ ∞
0

p up−1P(HT > λu) du

= λ1−p

1−p E‖HT ‖p + λ−pE‖HT ‖p.

Minimization leads to λ = p, and thus we find that

E‖e−AT X∗
T ‖p ≤ ‖Y ∗

T ‖p
p ≤

(
p1−p

1−p + p−p
)
E‖HT ‖p = p−p

1−pE‖HT ‖p,

as desired. �
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Open problems

Below we include a list of open problems. It is a selection of problems
that we believe could furhter advance the theory and understanding. It is in no
way exhaustive, as there are many more open problems even for linear SPDEs.

Sufficient conditions for stochastic maximal Lp -regularity for nonzero B

In Subsection 3.6 and before, we have seen several concrete cases in which
(A,B) satisfies stochastic maximal Lp-regularity. However, there is no satis-
factory operator-theoretic condition which covers most of these cases. It is
obvious from a fixed point argument that if (A, 0) has stochastic maximal
Lp-regularity and ‖B‖L (X1,γ(U,X1/2)) < εA,p with εA,p depending on the max-
imal regularity constant, then (A,B) has stochastic maximal Lp-regularity.
However, this usually leads to an unsatisfactory theory.

Problem 1. (Sufficient conditions for stochastic maximal regularity) Find rea-
sonable sufficient abstract conditions for stochastic maximal Lp-regularity of
(A,B).

Although the case B = 0 is well-studied, the following also remains open.

Problem 2. (Optimal condition for stochastic maximal regularity) Let X0 = Lq

with q ∈ (2,∞). Let A be a sectorial operator of angle < π/2. Find a necessary
and sufficient condition for stochastic maximal Lp-regularity of (A, 0).

A sufficient condition is given in terms of the H∞-calculus (see Theorem
3.14). However, for q = 2 no conditions on A are needed (see Theorem 3.13).

Extrapolation of stochastic maximal regularity The extrapolation Theorem
3.12 shows that if B = 0, then stochastic maximal Lp-regularity can be extrap-
olated to all r ∈ (2,∞). In the case B is not small the following is open:

Problem 3. (Extrapolation of stochastic maximal regularity) Suppose that
(A,B) ∈ SMR•

p,0 for some p ∈ [2,∞). Does one have (A,B) ∈ SMR•
r,0

for all r ∈ (2,∞) (or at least some large range for r)?

An extrapolation result in a linear variational setting for (A,B) with each
A self-adjoint, was recently obtained in [29], where also the (t, ω)-dependent
case is covered. However, the extrapolation only gives SMR•

r,0 for all r ∈
[2, 2 + ε), where ε > 0 is small. We do not know whether the selfadjointness
can be omitted. An alternative approach can be found in [4, Appendix A],
where a small improvement in space integrability was obtained.

L2-moments in the variational setting In Theorem 6.4 we obtained a bound
for E supt∈[0,T ] ‖u(t)‖p

H for p ∈ (0, 2), but p = 2 is excluded in general. In
Section 6.3.2, conditions are discussed under which one can extend this bound
to p = 2. However, we do not know whether this condition can be omitted or
not.
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Problem 4. (Energy bounds for critical variational SPDEs) In the variational
setting of Theorem 6.4, is there a constant CT such that for all u0 ∈ L2

F0
(Ω;H)

one has

E sup
t∈[0,T ]

‖u(t)‖2
H ≤ CT (1 + E‖u0‖2

H)?

A model example for which we do not know whether the L2-bound
holds is the Allen–Cahn equation on the one-dimensional torus T with a one-
dimensional quadratic noise:

du =
(
Δu + u − u3

)
dt + γu2 dW.

For γ2 < 2, Section 6.3.2 gives an L2(Ω)-bound. But for γ2 = 2 we do not
know whether it holds.

In Theorem 6.4 we stated a result on the continuous dependency on the
initial data in terms of convergence in probability. In [9, Theorem 3.8] it is
also explained that the following holds as well: if un

0 → u0 in L2(Ω;H), then
un → u in Lp(Ω;L2(0, T ;V ) ∩ C([0, T ];H)) for any p ∈ (0, 2). It is natural to
ask when convergence takes place for p = 2.

Problem 5. (Continuity in the energy space for critical variational SPDEs)
Let the assumptions of Theorem 6.4 be satisfied. Let un

0 , u0 ∈ L2
F0

(Ω;H) be
such that un

0 → u0 in L2(Ω;H). Does one have un → u in L2(Ω;L2(0, T ;V ) ∩
C([0, T ];H)), where un and u are the solutions to (4.1) corresponding to un

0

and u0, respectively?

The above seems open even if Assumption 6.1 holds, B = 0, G : V →
L2(U ,H) and 〈v, F (v)〉 � 1 + ‖v‖2

H . Note that, in the latter case, one always
has L2-moments of the solution if u0 ∈ L2(Ω;H) (see Subsection 6.3.2).

Bootstrapping regularity in the critical case for p = 2 Theorems 5.6 and
5.7 provide a way to bootstrap regularity for parabolic SPDEs, but only for
p > 2. The case p = 2 can be included in the case that the nonlinearities are
subcritical as we have seen in Proposition 5.9. Under further restrictions, a
regularization for p = 2 was obtained in [12, Proposition 6.8] which covers the
critical case.

Problem 6. (Time regularization in Hilbert spaces) Let X0 be a Hilbert space.
Does the regularization result of Theorem 5.7 extend to p = 2 in the critical
case (i.e. equality in (6.1) holds for some j)?

Stochastic reaction-diffusion equations In Subsections 8.2 we discussed the
global well-posedness of some coercive systems. We also included a non-
coercive case in Subsection 8.2.3, where a predator-prey model was discussed.
Some triangular models we are able to treat as well (see [14] for the Brussela-
tor and Gray-Scott model both with cubic f). Unfortunately, we are quite far
from the general theory in the deterministic setting (see [213] for triangular
systems and [99,141] for (super)-quadratic models).
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Problem 7. (Reaction-diffusion with triangular structure) Let O be T
d or R

d

and � ≥ 2. Consider the reaction-diffusion system (8.14) with (bn,i)n≥1 ∈
Cγ(O; �2) for some γ > 0 and with possibly additional boundary conditions in
case O �= T

d. Does global well-posedness hold for the reaction-diffusion system
(8.14) under the following conditions for a fixed h > 1 and each i ∈ {1, . . . , �}:
(1) u0 ∈ [0,∞)
;
(2) gi : R


 → �2 is globally Lipschitz and gi(u) = 0 for all u ∈ [0,∞)
 with
ui = 0;

(3) fi(u) ≥ 0 for all u ∈ [0,∞)
 with ui = 0;
(4) |fi(u) − fi(u′)| � (1 + |u|h−1 + |u′|h−1)|u − u′| for all u, u′ ∈ [0,∞)


(polynomial growth);
(5) ∃K1,K2 ≥ 0 such that

∑

j=1 fj(u) ≤ K0+K1

∑

j=1 uj for all u ∈ [0,∞)


(mass conservation);
(6) There exist r ∈ R


 and a lower triangular invertible � × � matrix R with
nonnegative entries such that Rf(y) ≤ [1 +

∑

i=1 yi]r componentwise for

all y ∈ [0,∞)
 (triangular structure).
Does the global well-posedness hold with gi having superlinear growth? Is it
possible to allow for optimal growth of g, i.e. Assumption 8.4(3)?

In the deterministic case, the above result is due to [200,201] (see also
[213, Theorem 3.5]), and it is based on Lp-estimates and a duality argument.
A stochastic version of the former fact is highly non-trivial in the presence of
(non-small) noise coefficients bn,i, even if the smoothness parameter γ is large.

Another situation in which global well-posedness is known in the deter-
ministic setting is the case of quadratic nonlinearity. A model example of the
latter is the Lotka–Volterra type nonlinearity fi(u) = −uiτi + ui

∑

j=1 cijuj ,

where cij = −cji (see [99, p. 287]).

Problem 8. (Reaction-diffusion with quadratic growth) Let O be T
d or R

d and
� ≥ 2. Consider the reaction-diffusion system (8.14) with (bn,i)n≥1 ∈ Cγ(O; �2)
for some γ > 0 and with possibly additional boundary conditions in case O �=
T

d. Does global well-posedness hold for the reaction-diffusion system (8.14)
under the following conditions for each i ∈ {1, . . . , �}:
(1) u0 ∈ [0,∞)
;
(2) gi : R


 → �2 is globally Lipschitz and gi(u) = 0 for all u ∈ [0,∞)
 with
ui = 0;

(3) fi(u) ≥ 0 for all u ∈ [0,∞)
 with ui = 0;
(4) ∃K1,K2 ≥ 0 such that

∑

j=1 fj(u) ≤ K0+K1

∑

j=1 uj for all u ∈ [0,∞)


(mass conservation);
(5) |fi(u) − fi(u′)| � (1 + |u| + |u′|)|u − u′| for all u, u′ ∈ [0,∞)
 (quadratic

growth).
Does the global well-posedness hold with gi having superlinear growth? Is it
possible to allow for optimal growth of g, i.e. with h = 3

2 in Assumption 8.4(3)?

The proof of global well-posedness for quadratic nonlinearities in the
deterministic setting given in [99] relies on several non-trivial facts from
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PDE theory with bounded and measurable coefficients, cf. [99, Appendix
A]. A stochastic version of the latter is at the moment not available even
in the case of small noise coefficients bn,i (here we mean that bn,i �= 0 but
‖(bn,i)n≥1‖L∞(O;
2) ≤ ε for some small ε > 0).

Navier–Stokes equations with transport noise. Navier–Stokes equations with
transport noise appeared in several instances of the present manuscript, see
Subsection 1.2, 7.3 and 8.4. At the moment the local well-posedness theory
of Navier–Stokes equations with transport noise is not as mature as the cor-
responding theory in the deterministic case. Here we propose three problems
concerning the extensions of deterministic results to the stochastic setting,
which we believe are important steps in understanding stochastic fluids and
connect well with the framework discussed in this manuscript.

In the study of fluid flows, it is well known that boundaries have impor-
tant effects on the overall dynamics. In particular, the so-called no-slip bound-
ary condition u|∂O = 0, where u denotes the velocity field, is one of the most
relevant ones and plays an important role. However, in contrast to the 2D
case (see Subsection 7.3), the (local) well-posedness of the 3D Navier–Stokes
equations with transport noise is unknown.

Problem 9. (Stochastic Navier–Stokes equations with no-slip boundary condi-
tions) Let O be a bounded and sufficiently regular domain of R

3. Is it pos-
sible to prove local well-posedness of the 3D Navier–Stokes equations on O
(see either (7.9) or (8.35)) with no-slip boundary conditions and non-small
transport noise? Or, in other words, does Theorem 8.26 still hold for the 3D
Navier–Stokes equations on domains with no-slip boundary conditions for a
certain choice of the parameters (p, κ, δ, q)?

In the above, by non-small transport noise, we mean that the transport
noise satisfies the natural condition (3.9) and not ‖(bn)n≥1‖L∞(O;
2) ≤ ε for
some small ε > 0. Indeed, from the arguments in Subsection 8.4, it is clear
that the above problems are only concerned with checking the stochastic max-
imal Lp-regularity used in Theorem 4.7. In case of small transport noise, the
latter can be easily checked for appropriate values of (p, κ, δ, q) (say q > d
and δ small) by combining Theorem 3.14 for the Stokes operator with no-slip
boundary conditions and subsequently a perturbation argument [15, Theorem
3.2] to include a small transport noise. Let us mention that the H∞-calculus
for the Stokes operators with no-slip boundary conditions on a smooth domain
is well-known, see e.g. [138, Theorem 9.17].

Next, we turn our attention to problems without boundaries. For con-
venience, we focus on the three-dimensional case. As commented below The-
orem 8.26 (see also [16, Theorem 2.4] for the periodic case), under suitable
assumptions on the transport noise coefficients b, our framework provides well-
posedness in the critical spaces B

3/q−1
q,p with smoothness > − 1

2 (corresponding
to integrability q < 6). However, in the deterministic setting, the celebrated
Koch-Tataru result [155] shows that even the endpoint smoothness −1 can be
reached. Therefore, it is natural to ask if such a threshold is natural in the
stochastic case or is a matter of technique.
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Problem 10. (Largest critical space for stochastic Navier–Stokes equations)
Let O be either T

3 or R
3. Let (bn)n≥1 ∈ C∞(O; �2) be non-zero, and with

possibly additional conditions at infinity if O = R
3. Can one prove local well-

posedness for such stochastic Navier–Stokes equations with transport noise b
(see (8.35) for O = R

3) in a critical space with smoothness less or equal to
− 1

2? What is the optimal smoothness threshold?

In the above, by scaling-invariant space, we mean a function space with
Sobolev index equal to −1, as it is for B

3/q−1
q,p or H3/q−1,q. Hence, the above

question is not limited to Besov spaces. Possibly, other types of maximal reg-
ularity could be employed as discussed in Subsection 3.6.5.

Our final open problem concerns a refinement of the endpoint Serrin-type
criterion for stochastic Navier–Stokes equations proved in Theorem 8.272 (see
also the comments below (8.39) for the periodic case).

Problem 11. (Refined endpoint Serrin-type criterion) Let O be either T
3 or

R
3 and correspondingly let (u, σ) be the maximal (p, δ, κ, q)-solution to the 3D

Navier–Stokes equations with (non-trivial) transport noise b on O (see (8.35)
for O = R

3) as provided by Theorem 8.26 for O = R
3 and [16, Theorem

2.4] for O = T
3; with the appropriate regularity assumptions on the transport

noise coefficients and the parameters (p, κ, δ, q). Prove or disprove the following
blow-up criterion:

P(σ < ∞, supt∈[0,σ) ‖u(t)‖
B

3/q−1
q,p (O;R3)

< ∞) = 0.

The above problem is motivated by [94] where the deterministic case of
the above is proven for the critical space L3. The Besov space case was later
obtained in [107]. Improvements can be found in [17,86,233]. A quantitative
version was recently obtained by Tao [238].

Besides the intrinsic interest in the above problem, we hope that a pos-
sible solution to Problem 11 could also suggest under which assumptions the
blow-up criterion of Theorem 5.1(1) holds with the lim-condition replaced by
a sup-one.
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Monographs in Mathematics. Birkhäuser/Springer, (2019). Function spaces

[21] Angenent, S.B.: Nonlinear analytic semiflows. Proc. Roy. Soc. Edinburgh Sect.
A 115(1–2), 91–107 (1990)

[22] Angenent, S.B.: Parabolic equations for curves on surfaces. I. Curves with p-
integrable curvature. Ann. of Math. (2) 132(3), 451–483 (1990)

[23] Antoni, M.: Regular random field solutions for stochastic evolution equations.
PhD thesis, Dissertation, Karlsruher Institut für Technologie (KIT), (2017)

[24] Arendt, W., Bernhard, M., Kreuter, M.: Elliptic problems and holomorphic
functions in Banach spaces. Illinois J. Math. 64(3), 331–347 (2020)

[25] Auscher, P., Portal, P.: Stochastic and deterministic parabolic equations with
bounded measurable coefficients in space and time: well-posedness and maximal
regularity. J. Differ. Equations 420, 1–51 (2025)

[26] Auscher, P., van Neerven, J., Portal, P.: Conical stochastic maximal Lp-
regularity for 1 � p<∞. Math. Ann. 359(3–4), 863–889 (2014)

[27] Bechtel, S., Germ, F., Veraar, M.C.: An extended variational setting for critical
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[81] Debussche, A., Hofmanová, M., Vovelle, J.: Degenerate parabolic stochastic
partial differential equations: quasilinear case. Ann. Probab. 44(3), 1916–1955
(2016)

[82] Debussche, A., Pappalettera, U.: Second order perturbation theory of two-
scale systems in fluid dynamics. Journal of the European Mathematical Society,
(2024)

[83] Denk, R., Dore, G., Hieber, M., Prüss, J., Venni, A.: New thoughts on old
results of R. T. Seeley. Math. Ann. 328(4), 545–583 (2004)

[84] Desch, G., Londen, S.-O.: Maximal regularity for stochastic integral equations.
J. Appl. Anal. 19(1), 125–140 (2013)

[85] Desch, W., Londen, S.-O.: A generalization of an inequality by N. V. Krylov.
J. Evol. Equ. 9(3), 525–560 (2009)

[86] Dong, H., Du, D.: The Navier-Stokes equations in the critical Lebesgue space.
Comm. Math. Phys. 292(3), 811–827 (2009)

[87] Dore, G.: Maximal regularity in Lp spaces for an abstract Cauchy problem.
Adv. Differential Equations 5(1–3), 293–322 (2000)

[88] Dore, G., Venni, A.: On the closedness of the sum of two closed operators.
Math. Z. 196(2), 189–201 (1987)

[89] Du, K.: W 2,p-solutions of parabolic SPDEs in general domains. Stochastic Pro-
cess. Appl. 130(1), 1–19 (2020)

[90] Du, K., Liu, J., Zhang, F.: Stochastic Hölder continuity of random fields gov-
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4(2), 311–395 (1969)

[118] Gui, C., Lou, Y.: Uniqueness and nonuniqueness of coexistence states in the
Lotka-Volterra competition model. Comm. Pure Appl. Math. 47(12), 1571–1594
(1994)
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