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Abstract

The keel of a sailing yacht has been shown to constitute a signi�cant part of the overall resistance.
Where the details of this e�ect are not yet fully understood, Computational Fluid Dynamics (CFD)
analysis might reveal mechanisms unseen to the experimental eye.

An important step in CFD application is the simulation of a number of validation cases. In the
present study I simulate three di�erent validation cases in the commercial CFD solver FLUENT, ap-
plying a Reynold's Averaged Navier-Stokes (RANS) method with a realizable k − ε turbulence model
and a Volume of Fluid (VOF) free-surface approach. From these three validation cases I obtain �ve
drag coe�cients, four of which are within an acceptable range of error of the experimental values.

After this validation, I consider several mechanisms related to keel resistance. Simulations indicate
that the keel rudder interaction is Froude scaled and that the keel resistance can be scaled by a form
factor method, presumably by means of a �at plate skin friction line.



Idee 156

Een boekhouder, een rekenaar, kan zich vergissen. De Noodzakelykheid nooit. Ander voorbeeld.
Gegeven 'n schip met zóóveel diepgang, zóóveel tegenstand, zóóveel zeilen, enz. De wind blaast op
die zeilen met gegeven kracht, en uit 'n gegeven hoek. Stel alle noodige opgaven bekend, dat ze niet
kùnnen wezen omdat er zooveel faktoren aan ons gebrekkig waarnemingsvermogen ontsnappen. Wordt
gevraagd: de snelheid van 't vaartuig? Die berekening is niet gemakkelyk, en wat volkomen juistheid
aangaat onmogelyk. De Noodzakelykheid weet het. Haar ontsnapt niets. Zy brengt alles in rekening,
tot de wryving van 't vischje dat zich schuurde tegen 't scheepsboord, tot den invloed van den wind
op 'n hoofdhaar van den schepeling, tot den tegenstand van 'n zwevend schuimbolletje voor den boeg,
tot de verplaatsing van 'n atoom gas in de lading... alles! Zy weet de snelheid waarmee 't schip zich
moet bewegen volgens de háár alleen bekende gegevens, en ze noemt die snelheid, drukt ze uit: door
het feit!1

Multatuli, 1862

Idea 156

An accountant, a clerk, can make mistakes. Necessity never. Other example. Take a ship with a
certain draw, a certain resistance, so many sails etc. The wind blows on those sails with a given force
and from a given angle. Assume all necessary components are known, which they can not possibly be
because so many factors escape our limited powers of observation. Asked: speed of the vehicle? That
calculation is not easy and concerning correctness impossible. Necessity knows it. Nothing escapes
her. She accounts for everything down to the friction of the little �sh which rubbed against the hull
of the ship, down to the in�uence of the wind on the hair of the sailor, down to the resistance of
a �oating bubble of foam in front of the bow, down to the displacement of single atom of gas in the
cargo. . . Everything! She knows the speed at which the ship has to propel itself, according to the factors
known only to her, and she names this speed, expresses it: through the fact!1

Multatuli, 1862

1Multatuli, Ideeen, I.G.L. Funke, Amsterdam (1897), translation by Claire Evans
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Chapter 1

Introduction

Computational Fluid Dynamics (CFD) has been applied to various sports, including Formula 1 racing,
rowing, swimming, and sailing [2, 3, 4]. CFD aims to provide reliable estimates of physical quantities,
while at the same time it aspires to improve understanding of the mechanisms involved. Ultimately,
this knowledge can invoke innovations that give the athlete an edge in the competitive arena.

Despite it's numerous successes, CFD can easily lead to confusing or inadequate results. It is our
task to test CFD for any new application. Such a test, or validation case, encompasses the CFD sim-
ulation of a complete physical experiment. The ability to reproduce the results that were observed in
the experiment is the trial that CFD stands.

For various types of ships there have been several promising validation cases, including those for
sailing yachts [5, 6, 7]. However, none of these cases have explicitly addressed the resistance of the keel
of the sailing yacht. The TU Delft has extensive experimental data on the resistance of various keel
hull combinations [8, 9, 10]. These data facilitate a validation case that distinguishes between the hull
resistance and the keel resistance.

The hypothesis for the present study is: A simulation with the commercial CFD solver FLUENT
provides adequate estimates for both the hull resistance and the keel resistance of a sailing yacht.

The simulations indicate that in most cases this hypothesis is correct. Regarding the understanding
of mechanisms, the simulations suggest that the keel rudder interaction is Froude scaled, that the keel
resistance can be scaled by means of a form factor method, and that the keel resistance might best be
scaled by a �at plate skin friction line.

The present study continues previous studies by the novel combination of: speci�c keel resistance,
structured grids, grid convergence studies, and simulation error estimates.

First I explain the experimental setup and mathematical model in Chapter 2, apply it to some simple
problems in Chapter 3, and analyze some 2-dimensional cases in Chapter 4 in order to simplify the
simulations. In the main part of the report I validate the simulations for the bare hull in Chapter 5, and
for two keel hull combinations in Chapter 6. After the validation I discuss several practical implications
in Chapter 7. The report is then completed by a discussion.
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Chapter 2

Method

In the present study, the experiment and the simulation are in close relation. On the one hand the
numerical model - which in itself might be very interesting - remains useless without proper valida-
tion; without the ability to reproduce the experimental results. On the other hand, the experiments
leave questions unexplained; questions to be answered by physical information that is obviously there
but remains unseen to the experimental eye. Such questions might well be resolved by analysis and
interpretation of the calculated results. To fully understand this relation, it is important to have some
knowledge of both the experimental setup and the numerical model.

In this chapter, it is my objective to focus on the choices made, to explain why I consider certain
models appropriate. In order to maintain this focus I have decided to limit the amount of equations
and refer to the literature instead.

2.1 Dimensional Analysis

The aim of this section is to present the experimental and computational data in dimensionless form.
Such a presentation simpli�es the data and thus helps to understand the results. The correct dimen-
sionless parameters are found by means of a dimensional analysis, as presented by Ipsen [11].

Assume that the drag force F on a certain object moving through a �uid is determined by the
following parameters: a characteristic object size L, the velocity u∞, the �uid density ρ, the �uid
viscosity µ, and the gravitational acceleration g. Ipsen's method then results in two dimensionless
quantities, the Reynold's number:

Re =
ρu∞L

µ
(2.1)

and the Froude number:

Fn =
u∞√
gL

(2.2)

Together, these two quantities characterize the complete �ow. In large part, the viscous e�ects are
characterized by the Reynold's number whereas the free-surface e�ects are characterized by the Froude
number. The drag coe�cient:

CD =
F

1
2ρu

2
∞S

(2.3)

then acts as the dimensionless drag force, where S is the wetted surface. For this speci�c object,
we now assume that the drag coe�cient depends exclusively on the Reynold's number and the Froude
number. Unless speci�ed di�erently, in this study the Froude number is based on the waterline length
of the hull, while the Reynold's number is based on the mean chord length of the keel.
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2.2 Experimental Setup

Ship model testing involves an array of di�culties known as the scaling problem [12]. Because these
simulations are at the same model scale as the experiments, most scaling issues will not arise. How-
ever, one important aspect of the scaling problem is that in the International Towing Tank Committee
(ITTC) method the model is at the same Froude number but at a lower Reynold's number than the
actual ship [13]. This would result in a lack of turbulence in the model setup. As a remedy, the model
is equipped with turbulence stimulation strips, the e�ect of which I will study in Chapter 4.

The hull used in the experiments [9] is TU Delft hull number 366, the lines are shown in Figure 2.1.
It is a lower beam/draft ratio version of hull number 329, which is a typical International America's
Cup Class (IACC) hull scaled by a factor 1:7. Underneath the hull is - turn by turn - one of the keels
shown in Figure 2.2. The main dimensions of the hull, keels, and rudder (which will not be present in
the simulation) are tabulated in Tables 2.1 and 2.2. The keel pro�les do not have the sharp NACA 63
trailing edge, but have a 2 mm wide �attened edge.

Figure 2.1: The 366 hull as used in the simulations. The top view displays the sections of the hull, together with
a side contour. The bottom view displays the waterlines. Geometry from Ref. [9, 10]

Table 2.1: Hull Dimensions [8]

Length on Waterline 2.74 m
Beam on Waterline 0.487 m

Draft 0.159 m2

Displacement 0.071 m3

Wetted Surface 1.114 m2

Figure 2.2: The planforms of the di�erent keels. From Ref. [9]

The Delft Ship Hydromechanics Laboratory towing tank is 145 m long, 4.5 m wide and 2.5 m deep.
During the tests the model is attached rigidly in all six degrees of freedom (surge, sway, heave, roll,
pitch, and yaw). The model is towed at di�erent speeds, ranging from a Froude number of 0.10 to 0.60.
The model has turbulence stimulation by means of carborundum strips on the hull, keel, and rudder.
In this experiment, strips of 2.0 cm wide are placed on the hull at 0 cm, 76 cm, and 133 cm from the

10



Table 2.2: Appendage Dimensions [9]

Keel 1 Keel 3 Rudder

Span 0.374 0.245 0.321 m
Mean Chord 0.231 0.352 0.115 m

Wetted Surface 0.176 0.177 m2

Pro�le naca-63 naca-63 -
Thickness/Chord 0.10 0.066 0.14 -

bow waterline. A strip of 1.5 cm wide is placed at 1.5 cm from the leading edge of the keel. Finally, a
strip of 1.0 cm wide is placed at 1 cm from the leading edge of the rudder.

The total drag is measured, as well as the drag experienced directly by both the keel and the rudder.
For the validation I consider the zero heel, zero leeway drag coe�cients for a Froude number of 0.35,
that is a model velocity of u = 1.80 m/s. The experiments indicate that for low Froude numbers viscous
e�ects are dominant, while for high Froude numbers free-surface e�ects are more important. At this
intermediate Froude number of 0.35 both the viscous and free-surface e�ects can be expected to play
an important role, which makes it interesting for validation.

2.3 Mathematical Model

The mathematical model involves the choice of a reference system. The origin is located on a �xed posi-
tion close to the center of the hull, on the waterline directly above the level hull center of displacement.
The x-direction is along the incoming �ow direction (towards the stern of the hull), the y-direction
points horizontally to starboard, and the z-direction points vertically upwards.

2.3.1 Governing Equations

Assume that a �uid in the domain Ω is described completely by1 the density ρ, the velocity ~u, the
pressure p̃, and the viscosity µ. The governing equations for conservation of mass and momentum are
[11, 14, 15]:

∂tρ+∇ · (ρ~u) = 0
∂t(ρ~u) +∇ · (ρ~u⊗ ~u) = −∇p̃+∇ · τ̂ + ρ~g

(2.4)

For a Newtonian �uid the stress tensor τ̂ is:

τ̂ = µ

[
(∇~u+∇~uT )− 2

3
∇ · ~uI

]
(2.5)

where µ is the dynamic viscosity and I is the unit tensor.

These governing equations are the Navier-Stokes Equations.2 Since water is highly incompressible,
the problem is treated as an incompressible �ow. Applying a time average �lter results in the Reynold's
Averaged Navier-Stokes (RANS) equations, which e�ectively have an additional term in the momentum
equation known as the Reynold's stress tensor. The Reynold's stress tensor can be calculated from a
turbulence model. Since the complete �ow will be considered to be in the turbulent regime (due to the
turbulence stimulation strips), application of the reduced Euler Equations is not appropriate.

2.3.2 Discretization

In order to analyze the �ow numerically, the physical domain is �rst discretized into grid cells. The
�ow variables are subsequently assigned to each of the cells. It is therefore necessary to discretize the

1The pressure p̃ has a wiggle, to discriminate it from the convergence order p.
2The complete Navier Stokes Equations also include conservation of energy. I choose to drop this third equation

because it is of no importance in an incompressible �ow without signi�cant thermal e�ects. I performed a validation case
with and without the Energy equation and, indeed, the e�ect was minimal.
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governing equations. This model applies a Finite Volume Method with a 2nd order upwind discretization
scheme [16]. Compared to the 1st order upwind scheme, the 2nd order upwind scheme provides a higher
grid convergence order and better accuracy of the discretization.

2.3.3 Turbulence Model

The �ow will exhibit turbulence on di�erent scales. In order to explicitly model all relevant turbulence
scales, the number of cells in the discretized domain should be in the order Re

9
4 [17]. The present

problem has a Reynold's number in the order of Re = 1 × 106, which would require over 1013 cells in
the domain. This would require a 107 GB RAM machine, which is considerably larger than the typical
10-20 GB RAM machines available for these kind of calculations.

The remedy is to have a much smaller number of cells and model the turbulent e�ects associated
with scales smaller than the scale of the cells with a turbulence model. There are various models
available. Since the present model is likely to exhibit separation and recirculation at the �attened
trailing edge of the keel, the best option is the Realizable k− ε Model [14, 15, 18]. This is also the best
performing turbulence model in a comparative validation case for a backward facing step [19], where
the backward facing step is similar to the �attened trailing edge of the keel. Another bene�t of the
model is that it limits the unphysical growth of k at the leading edge stagnation point [20].

The model consists of two transport equations, one for the turbulent kinetic energy k and one for
the turbulent dissipation rate ε. It contains several empirically determined constants, in the present
simulation the values are: σk = 1.0, σε = 1.2, C2 = 1.9, and C1ε = 1.44 [14].

The Reynold's stress tensor can be calculated directly from k and ε, such that it can be applied in
the RANS momentum equation [14].

2.3.4 Wall Treatment

A turbulent �ow near a wall can be characterized by the dimensionless velocity u+ and dimensionless
wall distance y+, which are related to the local wall shear stress τw [14, 15]:

u+ = u

√
ρ

τw
, y+ =

ρy

µ

√
τw
ρ

(2.6)

Close the wall, u+ varies rapidly with y+. To illustrate this dependency I have simulated the bound-
ary layer of a �at plate. The simulation has a very �ne grid close to the wall (it is a near wall simulation
with wall y+=0.02). The velocity pro�le is shown in Figure 2.3, together with experimental results.
The pro�le has four di�erent layers: the viscous sublayer, the mixing layer, the Logarithmic layer and
the outer layer. For the viscous sublayer and the Logarithmic layer it is possible to approximate the re-
sults with either a Linear or a Logarithmic Law of the Wall [14, 15]. Both laws are indicated in the �gure.

It is impractical to model the complete boundary layer in each simulation, as it would require a very
�ne grid. Instead, it is possible to have the �rst cell in either the viscous sublayer or the Logarithmic
layer while adjusting the wall boundary condition to comply with the corresponding Wall of the Law.
For a proper application the y+ of the �rst cell center, which is known as wall y+, should either be
wall y+ ≤ 5 (viscous sublayer) or 30 ≤ wall y+ ≤ 300 (Log layer) [14].

In FLUENT the Standard Wall Function is a two layer model which applies either the Linear Law
or the Logarithmic Law boundary condition, depending on wall y+. The Enhanced Wall Treatment is
a blended version of the two layer model of a more general application [14].

2.3.5 VOF Method

Since this is a strati�ed free-surface problem on a stationary grid I use the Volume of Fluid (VOF)
Method [14, 22]. This method solves the fraction of water in each grid cell. The Geometric Recon-
struction scheme assumes that the free-surface has a linear slope in each grid cell. Any other scheme
resulted in an overly smudged free-surface.
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Figure 2.3: Turbulent �at plate boundary layer. The arrows indicate the two Wall Laws, which apply in the
viscous sublayer and in the Log layer. The exact starting position of the outer layer depends on the Reynold's
number. The Linear and Log Law are from Ref. [14, 15], the simulation is a near-wall simulation (wall y+ =
0.02), and the experimental results by Coles & Hirst are from Ref [21]

2.3.6 Existence of a Solution

For the physical experiment it is quite clear that setting it up will lead to some physical result. For
the computational model this is not necessarily true. The model set up in the previous sections might
very well turn out to have no solution at all. It should be noted that up to this date there is no
proof of the existence of a smooth solution of the Navier-Stokes Equations for a general 3-dimensional
problem. In fact, �nding this proof was declared one of the million dollar problems in mathematics for
this millennium [23].

When the Realizable k − ε Model is included, the proof becomes somewhat easier, although again
there is no proof of a solution for a general 3-dimensional problem. For a reduced model however, it
can be shown that a solution exists [15].

2.3.7 Symmetry and Vortex Shedding

The symmetry of the problem suggests application of a symmetry plane in the xz-plane of the simula-
tion. However, this is only possible if there are no asymmetric e�ects. One of the asymmetric e�ects
that might arise from the �attened (or 'blunt') keel trailing edge is vortex shedding. A similar case
[24] shows this is likely to occur when the �attened edge based Reynold's number Reedge ≥ 1.9× 104,
whereas in the present simulation it is only Reedge = 3.6 × 103. Therefore I do not expect vortex
shedding and make use of a symmetry plane.

2.4 Grid

The division of the computational domain into a discrete number of cells is known as a grid. Some care
has to be taken in creating the grid, as poor grid quality will have a negative e�ect on convergence and
on the reliability of the calculated results.
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2.4.1 Grid Generation

Grids can be either unstructured or structured. Figure 2.4 shows a 2-dimensional example of a grid
around a sphere. It can be seen that in the structured case, each grid cell has four distinct neighbors.
This will increase the solver speed as it is easier to �nd the �ow variable in neighboring cells, since
they are simply the next cell in the numerical storage array.3 Another bene�t of the structured grid is
that it is easier to align the cells with the expected streamlines, thus minimizing numerical di�usion.
Therefore, I use structured grids in this study.

Figure 2.4: Examples of an unstructured (left) and a structured (right) grid around a 2-dimensional sphere

A structured grid comes in di�erent typical layouts. As illustrated in the right of Figure 2.4 a sphere
invites a circular shaped grid which is known as an O-Grid. The wing like geometry displayed Figure
2.5 invites an asymmetric layout, known as a C-Grid. These are the two grid layouts I will use.

Figure 2.5: Di�erent geometries invite di�erent grid layouts. On the right of the previous �gure is an O-Grid
around a 2-dimensional sphere, while this �gure displays a C-Grid around a wing section

An essential part of grid generation is to have the wall adjacent cell either in the viscous sublayer or
in the Logarithmic layer. Therefore, all simulation results come with the area averaged wall y+ of the
surfaces involved. Note that there is no exact a priori method to determine the �rst cell width. This
means that grids often have to be regenerated with a more appropriate wall cell thickness.

All grids are generated in GAMBIT, which is distributed with the FLUENT package.

2.4.2 Grid Convergence and Error Estimation

The discretization results in a simulation error. In general, a �ner grid is expected to show a smaller
error. It can be assumed that in a certain grid size range, known as the 'asymptotic range', the
simulation result fh can be expressed as a polynomial in the typical grid cell size h. Since the method
is 2nd order, the h2 term is likely to dominate this polynomial [25]:

fh = f0 +���*
0

g1h+ g2h
2 +O(h3) (2.7)

3Although it is not clear whether this is actually being utilized by FLUENT
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where f0 is the exact solution.

If the problem is simulated on three grids of di�erent re�nement, it is possible to calculate an ob-
served order of convergence p, which due to a number a reasons can di�er from the 2nd order of the
discretization. With knowledge of the observed p, it is then possible to make a Richardson Extrapola-
tion and calculate a Grid Convergence Index (GCI) [25, 26]. The extrapolation gives a more accurate
simulation result, the GCI gives an estimate of the error in that result.

Chapter 4 provides a rough 2-dimensional estimate of the asymptotic range for the keel and hull
grids. Then, after simulating the 3-dimensional case, I verify that the grids are indeed in the asymptotic
range. This can be done by means of the coarse to medium grid GCIcm, the medium to �ne grid GCIcm,
the re�nement factor r and the observed order of convergence p. The requirement is that the ratio [25]:

GCIcm
rp GCImf

= 1 (2.8)

The GCI involves the choice of a safety factor. It should be 3.0 for studies based on two grids,
and 1.25 for studies based on three grids. Only two out of the �ve 3-dimensional drag coe�cients are
based on three grid studies, whereas the remaining three drag coe�cients are based on two grid studies.
Therefore I choose the more conservative 3.0 safety factor.

2.5 Summary of Simpli�cations

The simulations of the bare hull and the keel hull combinations contain a number of simpli�cations.
Most of these simpli�cations were addressed in the previous sections, a number of simpli�cations will
be addressed in Chapter 4.

The following simpli�cations are all ready present in the selected experimental cases:

- All e�ects at model scale
- Measurements made for constant velocity
- No heel or leeway
- Fixed heave and pitch
- No wind or waves
- (Stimulation of) Fully turbulent �ow
- Tank �oor and walls limit the domain
- Air drag is neglected
- Hull and keel surface are smooth

The simulation has the following additional simpli�cations:

- Homogeneous �uid (including incompressibility)
- Newtonian �uid
- Application of the RANS equations
- Discretization
- Application of the Realizable k − ε Turbulence Model
- Wall Treatment
- Application of the VOF Model
- Assumption of an asymptotic range of simulation error (veri�ed in Chapters 4, 5, and 6)
- Richardson Extrapolation
- Upstream (1 LWL) and downstream (2 LWL) domain limits
- Perfectly smooth tank wall and bottom
- No turbulence stimulation strips (veri�ed in Chapter 4)
- No rudder (veri�ed in Chapter 4)
- Perfectly smooth hull and keel surface (veri�ed in Chapter 4)
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Calculated pathlines of the �ow around a sphere at a Reynold's number
of 1000. The �ow around a sphere is an example of a simple problem
with well known results, which o�ers the possibility of a straightforward
validation of the computational results.



Chapter 3

Benchmark Problems

A �rst step in the validation of a Computational Fluid Dynamics (CFD) method is the calculation
of a number of benchmark problems. These are relatively simple problems in terms of geometry and
required CPU time. Also, the available experimental data o�ers a straightforward validation of the
computational results. These benchmark problems serve both as an exercise in CFD modeling and a
challenge to the CFD method.

Furthermore, the problems o�er an illustration of several issues involved in CFD modeling. I have
selected a number of problems which illustrate: the e�ect of grid size; the e�ect of the discretization
scheme; the e�ect of physical detail; time evolution; and the free-surface. All issues illustrated here
were discussed - in theory - in the previous chapter.

3.1 Sphere Drag

A sphere moving through a �uid will experience a drag force. The drag coe�cient at di�erent Reynold's
numbers is well known from a wide range of experiments. For example, one review article selects 480
data points from over 40 di�erent experiments [27]. An extensive CFD validation for this same problem
also refers to a range of experiments [28]. The large number of experimental results has resulted in
textbook drag coe�cients based on such experiments [29, 30]. These textbook values are the exper-
imental values I will use here. A distinct e�ect exhibited by the data is a sudden drop of the drag
coe�cient - the 'drag crisis' - near Re = 3× 105.

Figure 3.1: Di�erent grids used for calculation of the sphere drag coe�cient. The bottom of the grid is the axis
of rotation. The �ner grid is likely to give more accurate results

Since the problem is axisymmetric, the mesh is 2-dimensional. The mesh is shown in Figure 3.1.
The size of the mesh is 8192 cells. The width of the cells at the sphere boundary is 0.15 mm, resulting
in a wall y+ = 1.7 ± 0.8 at1 the 'drag crisis' point Re = 3 × 105. This permits the application of
Enhanced Wall Treatment. Detailed FLUENT settings are listed in the Appendix for all problems.

1All wall y+ are calculated for wall adjacent cell center.

17



0

4

8

12

1E+00 1E+02 1E+04 1E+06 1E+08

Re

D
ra

g 
C

oe
ffi

ci
en

t

0

1

1E+03 1E+04 1E+05 1E+06

Simulation

Experiment

Figure 3.2: Sphere drag coe�cient at di�erent Reynold's numbers. The insert is a detail of the Re = 103 to
Re = 106 region, displaying the absence of a distinct 'drag crisis' in the calculated results. Experimental values
from Ref. [29]

The calculated drag coe�cients are shown in Figure 3.2. The turbulence model was active over the
whole range of Reynold's numbers, although at lower Reynold's numbers the e�ect is minimal. For
example, at Re = 10 the turbulent viscosity ratio is less than 10−19. As can be seen, the results agree
well with the experimental values, except for the region of a Reynold's number of roughly 5 × 103 -
2× 105. In this region the calculated results do not show a distinct 'drag crisis'. One could state that
the model is unable to capture the transition from the (low Reynold's number) laminar regime to the
(high Reynold's number) turbulent regime. The absence of a 'drag crisis' is an obvious shortcoming of
this simple axisymmetric model.

The sphere drag problem serves well to illustrate the e�ect of the grid size. A larger number of cells
is expected to reduce the error in the solution, where the error is given by the di�erence between the
computational and the experimental drag coe�cient. This trend is illustrated by Figure 3.3. It can be
expected that such a �gure shows a linear upper bound on the error, and that the slope of this upper
bound is equal to the discretization order - which in this case is two. These expectations agree well
with the linear regression shown in Figure 3.3, which has a correlation coe�cient of 0.96 and a slope of
1.84.
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3.2 naca 63-010 Section Drag

The National Advisory Committee for Aeronautics (naca) has designed a number of wing sections.
The naca 63-010 wing section is the basis for the Delft Systematic Keel Series (DSKS). Initially I
intended to compare the results to the data provided for the naca 63 series [31]. However, since in the
experiments the �ow is partially laminar, this approach proved inadequate. Therefore I compare the
results to the fully turbulent �at plate skin friction line2 by Anderson [32, 33]:

CAndF =
0.074
Re1/5

(3.1)

Since a wing section is a cut of an in�nitely long wing, the model is 2-dimensional. The grid con-
tains 8640 cells, a detail of the grid is shown in Figure 3.4. The grid uses symmetry, such that only
the upper half of the problem is modeled. The width of the cells at the naca section boundary is 0.03
mm, resulting in a wall y+ = 3.4± 1.0 at Re = 1× 106. For higher Reynold's numbers the cell width
at the boundary was reduced to 0.003 mm, resulting in a wall y+ = 2.6 ± 0.6 at Re = 1 × 107. This
permits the application of Enhanced Wall Treatment.

Figure 3.4: Detail of the naca 63-010 grid

The calculated drag coe�cients are shown in Figure 3.5. The results illustrate the dramatic e�ect
of changing the discretization scheme from 1st order upwind to 2nd order upwind: the corresponding
drag coe�cients are reduced by roughly a half.

2This is the total skin friction coe�cient CF , di�erent from the local skin friction coe�cient cf
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Figure 3.5: naca 63-010 drag coe�cient. The Anderson fully turbulent �at plate skin friction line is from Ref.
[32]

3.3 naca 63-010F Section Drag

The naca 63-010 section of the previous problem has an in�nitely sharp trailing edge. In reality, the
DSKS keels have an 2 mm wide �attened trailing edge. The �attened trailing edge section is modeled
by the naca 63-010F grid.

Figure 3.6: naca 63-010F grid, detail of the �attened trailing edge. For a better grid the trailing cells should
have been more aligned with the expected streamlines, indicated by the arrow

A detail of the trailing edge is displayed in Figure 3.6. The width of the cells along the side of
the naca section boundary is 0.03 mm, resulting in a wall y+ = 3.4 ± 1.0 at Re = 1 × 106. Along
the �attened trailing edge, the cell width is 0.1 mm, resulting in a wall y+ = 1.0 ± 1.0 at Re =
1×106. For higher Reynold's numbers the cell width at the boundary was reduced to 0.003 mm, result-
ing in a wall y+ = 2.6±0.6 at Re = 1×107. This permits the application of Enhanced Wall Treatment.

Figure 3.7 compares the results of the sharp trailing edge naca 63-010 section and the �attened
trailing edge naca 63-010F section. The �attened edge results in a slightly higher drag, 90% of this
increase is due to a higher pressure drag and only 10% of the increase is due to a higher viscous drag.
Figure 3.8 shows several pathlines of the �ow in the trailing edge region.
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Figure 3.7: naca 63-010F drag coe�cient compared to the naca 63-010 drag coe�cient. The �attened edge
appears to give an increased drag. The Anderson fully turbulent �at plate skin friction line is from Ref. [32]

Figure 3.8: Several pathlines of the �ow in the trailing edge region, for Re = 3× 105

3.4 Broken Dam

The previous problems involved only one �uid. The last two problems, the 'Broken Dam' and the
'Surface Piercing Hydrofoil,' involve two �uids: water and air. The main challenge is in computing
the location of the water/air interface or 'free-surface.' These computations make use of the Volume
of Fluid (VOF) method. The original paper on this method presents several benchmark problems, the
'Broken Dam' is one of them [22]: An in�nitely long dam holds an amount of water 3 meters high and
1.5 meter wide. At time zero, the dam is removed and the water �ows freely to the right.

Figure 3.9: Time evolution of the free-surface for the broken dam problem. The arrow indicates the position of
the waterfront as referred to in the following �gure
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The domain is modelled by a simple 2-dimensional rectangular grid of 640 cells. The free-surface
is de�ned by a VOF volume fraction of 0.5. Other than previous problems, the VOF solution is time
dependent. Figure 3.9 displays the time evolution of the free surface.
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Figure 3.10: Progress of the waterfront in time, where z is the horizontal position of the waterfront, and a =
1.5 m is it's original horizontal position. Experimental values from Ref. [22]

The progress of the waterfront is compared to experimental data in Figure 3.10.

3.5 Surface Piercing Hydrofoil

The previous problems o�ered the possibility of a 2-dimensional model. This last problem is more
complicated since it requires a 3-dimensional, free-surface model.

Figure 3.11: The experimental setup of the surface piercing foil. From Ref. [34] (�ipped horizontal)

Figure 3.11 is a photograph of the experimental setup of the surface piercing foil [34]. It shows a
vertically positioned naca 0024 pro�le with a chord of 1.2 m, which moves horizontally through the
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water at a velocity of 1.27 m/s. This situation corresponds to a Froude number of 0.37 and a Reynold's
number of 1.52 × 106. When the �ow has evolved to a steady situation, the height of the free-surface
is measured at a number of positions along the pro�le.

Figure 3.12: The grid around the pro�le, seen from the top and seen from the side. The �uid �ows in from the
left

The grid for this problem contains 118,800 cells, and is displayed in Figure 3.12. Because the prob-
lem is symmetric in the central vertical plane, I model only one half of the problem. Again, the solution
is time dependent. I monitor the drag coe�cient on the pro�le to see when the problem has reached
a stationary solution. I start with a �at free-surface and run the calculations on a coarse grid. Then I
use the solution of the coarse grid as an initial solution for the �ne grid. For the �ne grid the cell width
at the naca boundary is 1.7 mm, resulting in a wall y+ = 52± 17. This permits the application of a
Standard Wall Function.
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Figure 3.13: The wave height along the pro�le. Experimental values from Ref. [34]
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I compare the calculated wave height along the pro�le to that from the experiment. As can be seen
in Figure 3.13, the calculated solution is quite good except at the area around a chord of roughly 0.5 m.
This is a known di�culty which is related to separation [34], an e�ect responsible for the development
of bubbles - see Figure 3.11 - in that area.

The accuracy of the solution can be expressed by the Root Mean Squared (RMS) di�erence between
experiment and calculation. For the coarse grid the RMS = 0.0225, for the �ne grid it reduces to RMS
= 0.0206. Since the solution becomes more accurate for the �ner grid, one can be con�dent that at
least part of the error could disappear on an even �ner grid. However, re�ned grid calculations would
require considerable longer CPU time and therefore are beyond the scope of these benchmark problems.3

Finally, it should be noted that the drag coe�cient does not reach a steady state but appears to
oscillate with a frequency of roughly 1 Hz and an amplitude of roughly 1% of the mean value. In
retrospect this is probably due to having a too large time step for the �ner grids.

3.6 Conclusions

These kind of problems o�er a �rst rough indication of the possibilities and limitations of the compu-
tational method. Furthermore, they o�er a valuable introduction to the �eld of Computational Fluid
Dynamics. The results are promising, the main limitation is the inability to calculate the correct tran-
sition from laminar to turbulent �ow.

3Results might improve by forcing the leading part of the �ow to be laminar, thus forcing a �xed transition point.
This is in fact related to the absence of a distinct drag crisis in the case of the sphere.
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Chapter 4

2-Dimensional Grid and Boundary

Choices

Before applying the method to the full 3-dimensional sailing yacht cases, I make some choices for the
grid and boundaries based on 2-dimensional simulations. Because the 2-dimensional simulations are
much faster than the 3-dimensional simulations, this approach is likely to speed up the overall progress.
The objective of this chapter is not to compare simulations with experimental results, but to clarify
the e�ect of assumptions and simpli�cations in the simulation itself.

4.1 Asymptotic Range

In order to make a Richardson Extrapolation, the grids should be in the asymptotic range: a Log-Log
plot of the error versus the number of grid cells should result in a straight line [25]. The hull is mod-
eled by an axisymmetric body with the same lengthwise distribution of displacement, whereas the keel
is modeled by an in�nitely long wing section. The e�ect of the free-surface and also the interaction
between the keel and the hull are of course absent in this 2-dimensional simpli�cation. As reference
values, I take the extrapolated values of very �ne grids. For the hull, the wall cell width is 1.7 mm
which typically results in wall y+ = 59±16. This permits the application of a Standard Wall Function.
For the keel, the wall cell width is 0.05 mm which typically results in wall y+ = 2.2±1.8. This permits
the application of Enhanced Wall Treatment.

Figures 4.1 and 4.2 are Log-Log plots of the error versus the number of grid cells along the chord.
The observed convergence orders are phull = 2.5 and pkeel = 2.3, which corresponds reasonably well
with the 2nd order scheme. It can be concluded that at 16 cells over the chord both grids are in the
asymptotic range. Of course, a �nal veri�cation of the asymptotic range according to Formula 2.8 can
be made only after the 3-dimensional simulations.

4.2 Turbulence Stimulation Strips

Does the k − ε model invoke the same amount of turbulence as the turbulence stimulation strips?
This question is addressed using the same 2-dimensional models as used in the previous section.1 The
turbulence strips are modeled in two di�erent ways: by having areas with surface roughness, and al-
ternatively by having areas with a �xed wall shear stress. Both the surface roughness and wall shear
stress of the turbulence stimulation strips are known from the experiments. In order to accommodate
the surface roughness, both the keel and hull wall cell width are 3 mm. For the hull this results in wall
y+ = 118 ± 21 without strips and in wall y+ = 120 ± 37 with strips. For the keel it results in wall
y+ = 142± 48 without strips and in wall y+ = 153± 64 with strips. This permits the application of a
Standard Wall Function.

1The in�ow velocity is 2.05 m/s instead of 1.80 m/s, since I originally intended to perform the 3-dimensional simulations
at two di�erent velocities.
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Figure 4.1: Convergence of the hull drag for an increasing number of grid cells. A linear dependency in the Log-
Log plot indicates that the grid is in the asymptotic range. The black face label is clearly out of the asymptotic
range, in this case the grid is to coarse
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Figure 4.2: Convergence of the keel drag for an increasing number of grid cells. A linear dependency in the
Log-Log plot indicates that the grid is in the asymptotic range. The black face labels are clearly out of the
asymptotic range, in these cases the grid is to coarse

As illustrated in Figure 4.3, the surface roughness and the �xed wall shear stress have a similar
e�ect on the turbulent intensity. Over all, the turbulence invoked by the k-ε model seems appropriate.
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4.3 Rudder E�ect

What is the e�ect of the rudder on the keel drag? To have an indication of the order of magnitude, I
model the keel and the rudder as in�nitely long wing sections.2 It is then possible to observe the e�ect
of the rudder on the keel drag for various distances between both. Both the keel and rudder wall cell
width are 3 mm, which results in wall y+ = 138±30 for the keel and wall y+ = 135±31 for the rudder.
This permits the application of a Standard Wall Function.
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Figure 4.4: E�ect of the rudder on the keel drag and vice versa. The dotted lines indicate the reduced dynamic
pressure q. The arrow indicates the actual distance

As illustrated in Figure 4.4, the in�uence at the actual distance of 1.1 m is in the order of 0.1 %.
That is, the rudder has only a minor e�ect on the keel drag. Figure 4.4 also indicates that the keel
might have a substantial e�ect on the rudder drag. Finally, the lines indicate in large part the e�ect
can be explained by the reduced dynamic pressure q = 1

2ρu
2, as a direct result of the reduced �ow

velocity u.

4.4 Surface Roughness

Below a certain tresshold, surface roughness does not have an e�ect on the drag. In that case, the
surface boundary condition can be considered to be a perfectly smooth wall. The surface roughness is
expressed as the average grit size (i.e. grain size) diameter. From turbulent �at plate literature results
[11], the maximum allowable keel roughness can be estimated to be 0.05 mm, while the maximum
allowable hull roughness can be estimated to be 0.07 mm.

For a more speci�c estimate I have simulated the 2-dimensional hull and keel drag for various sur-
face roughnesses. The hull and keel wall adjacent cell widths are 2 mm. For a surface roughness of
0.02 mm this results in wall y+ = 69 ± 17 for the hull and in wall y+ = 86 ± 28 for the keel. This
permits the application of a Standard Wall Function. Figure 4.5 indicates that there is no drag in-
crease up to a roughness of 0.02 mm, and that the drag increase for a roughness of 0.05 mm is still very
limited. In accordance with the literature estimate, the hull is more tolerant to roughness than the keel.

2Again, the in�ow velocity is 2.05 m/s instead of 1.80 m/s.
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Now that the tolerable roughness is known, the next question is: How smooth is the actual surface
of the ship model? In the TU Delft Ship Hydromechanics Laboratory, ship models are sandpapered
and painted repeatedly. After the last paint has dried, there are still some imperfections in the surface.
As a last treatment, the surface is smoothed with U.S. manufactured waterproof Norton Aqua T223
Advance sandpaper with a 600 CAMI grit designation. This corresponds to an average grit diameter of
0.016 mm [35], which is smaller than the tolerable 0.02 mm. This implies that the surfaces are smooth
enough to be considered as perfectly smooth walls.
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Figure 4.5: The relative drag increase versus the surface roughness diameter. Clearly a roughness up to 0.02
mm does not e�ect the drag

4.5 Conclusions

The grids should have at least 16 cells along the keel chord and the hull waterline in order to be in
the asymptotic range. The presence of turbulence stimulation strips does not require any additional
or speci�c simulation, other than that the k-ε model is applied over the complete domain. The rudder
has a negligeble e�ect on the keel drag and can con�dently be ommitted from the simulation. Finally,
the model surface can be considered as a perfectly smooth wall.
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The calculated wave height for the bare hull at a Froude number of 0.35.
The calculation of the drag of the bare hull serves as a last stepping
stone, before turning to the the drag of the keel hull combination.



Chapter 5

Validation for the Bare Hull

In this chapter I compare simulation results for the bare hull to the experimental results. Of course
this is not the actual problem of interest, however it would be desirable to be able to simulate the hull
drag before adding a keel.

5.1 Grid

In order to make a proper grid convergence study and a Richardson Extrapolation, the problem is
calculated on three di�erent grids. The coarse grid has 16,120 cells, the medium grid has 51,408 cells
and the �ne grid has 199,640 cells. To give an idea, the di�erent hulls have 38, 60, and 94 cells over
the length of the ship. All grids are block structured O-grids. Figure 5.1 displays the grid on the hull,
together with a midship slice perpendicular to the far �eld �ow direction.

Figure 5.1: The �nest grid used for the calculation of the bare hull drag coe�cient

5.2 Wall y+

The �rst cell widths along the hull are 3.6 mm for the coarse grid, 2.3 mm for the medium grid, and
1.1 mm for the �ne grid. This results in a wall y+ of 121± 30, 87± 29, and 44± 18 respectively. This
permits the application of a Standard Wall Function.

5.3 Time Convergence

In time, the drag coe�cients tend to oscillate. After some initial wiggles, the coe�cients appear to settle
for a periodic behavior, with an exponentially decaying amplitude. Instead of letting the amplitude

31



fade out, I make a least squares �t. From that �t I determine the average value. Figure 5.2 shows the
�t for the �nest grid.
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Figure 5.2: An example of the time convergence of the drag coe�cient. The �t is a periodic function with an
exponentially decaying amplitude

5.4 Grid Convergence, Richardson Extrapolation

Figure 5.3 illustrates the grid convergence for this case. The drag coe�cients are plotted against the
typical cell size. The observed order of the convergence is p = 1.89. The GCI ratio of Formula 2.8 is
found to be 0.934, which indicates that the grids are the asymptotic range.

The experimental drag coe�cient is 0.0057 [9, 10]. The left label in Figure 5.3 indicates the extrap-
olated drag coe�cient found in the simulation: 0.0055± 0.0006.

5.5 Conclusions

The di�erence between the simulated and experimental drag coe�cient is smaller than the simulation
error. This indicates that FLUENT gives a good estimate of the bare hull drag coe�cient.
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ranging from 1.1 % to 2.6 % of the ship's length. The left label indicates the extrapolated value
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Pathlines traced from the Keel 1 surface, for the medium grid. Drawn
from the velocity �eld, these pathlines are an illustration of the vast
amount of physical information that results from such a 3-dimensional
RANS simulation.



Chapter 6

Validation for the Keel Hull

Combination

The model has been set up and validated for some simple cases, a number of simpli�cations have been
motivated and veri�ed, and the simulation showed promising results for the bare hull case. Finally
everything is in place to perform the keel hull combination simulations.

For the simulation of Keel 1 I had prior knowledge of the experimental results. The simulation of
Keel 3 was blind, I viewed the experimental results only after completing the simulation.

6.1 Grid

The problem is calculated on three di�erent grids. For keel 1, the coarse grid has 40,512 cells, the
medium grid has 136,728 cells and the �ne grid has 324,096 cells. To give an idea, in the di�erent
grids the keel 1 has 16, 24, and 32 cells over the chord, thus being in the asymptotic range established
in Figure 4.2. The Keel 3 case has slightly larger grids, with 24 and 32 cells over the chord in the
coarse and medium grid. Figure 6.1 displays the grid for Keel 1. The 38-block structured grids are a
combination of a global O-grid and a local C-grid in the xy-plane around the keel.

Figure 6.1: The medium grid used for the calculation of the Keel 1 drag coe�cient. The detail on the right
illustrates the C-grid around the keel and the high cell density at the trailing edge
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6.2 Wall y+

The keel trailing edge is a challenge for proper grid generation. It requires much smaller grid cells than
the remaining domain. Therefore I have chosen to have the �rst layer of cells at the keel side in the
viscous sublayer (wall y+ < 5) and at the same time have the �rst layer of cells at the hull and the
keel bottom in the Logarithmic layer (30 < wall y+ < 300). This is enabled by FLUENT's Enhanced
Wall Treatment, since it is a blended model [14]. The cell widths and resulting wall y+ are shown in
Table 6.1.

Table 6.1: First cell width and wall y+

width wall y+
keel grid hull keel side keel bottom hull keel side keel bottom
1 coarse 3.0 mm 0.050 mm 4.0 mm 92 ± 27 2.3 ± 0.7 161 ± 21
1 medium 2.0 mm 0.033 mm 2.7 mm 76 ± 24 1.6 ± 0.7 121 ± 14
1 �ne 1.5 mm 0.025 mm 2.0 mm 61 ± 24 1.3 ± 0.8 96 ± 10
3 coarse 6.0 mm 0.120 mm 6.0 mm 201 ± 54 3.7 ± 1.2 125 ± 4
3 medium 4.0 mm 0.120 mm 4.0 mm 133 ± 33 3.8 ± 1.4 93 ± 4

6.3 Time Convergence

The keel drag coe�cient converges rapidly in time, whereas for Keel 1 the hull drag coe�cient oscillates.
In the same manner as in Figure 5.2 I have made a least squares �t to determine the average value.
However, for the Keel 3 case I used a di�erent iteration sequence that resulted in a properly converging
drag, shown in Figure 6.2. Because the hull drag coe�cient converges much slower than the keel drag
coe�cient, I have opted to converge the coarse and medium grid for both coe�cients and converge the
�ne grid for the Keel 1 drag coe�cient only. I then use the bare hull convergence order for the hull
drag coe�cient Richardson Extrapolation.
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Figure 6.2: Example of the time convergence of the hull drag for the Keel 3 case
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6.4 Grid Convergence, Richardson Extrapolation

Figure 6.3 illustrates the grid convergence for Keel 1. The drag coe�cients are plotted against the
typical cell size. The observed order of the convergence for the Keel 1 drag coe�cient is p = 1.85.
The GCI ratio (Formula 2.8) is found to be 0.992 for Keel 1, which indicates that the grids are the
asymptotic range.
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Figure 6.3: Richardson Extrapolation of the Keel 1 drag coe�cient. The di�erent grids have an average cell
length ranging from 3% to 7% of the keel's chord. The grey faced label indicates the extrapolated value with error
bars

Together with the bare hull results of the previous chapter, the resulting hull and keel drag coe�-
cients are displayed in Table 6.2. Note that the convergence order in brackets is taken from the bare
hull simulation and that the convergence order in square brackets is taken from Keel 1.

Table 6.2: Drag Coe�cients: The values observed in the simulation compared to the experimental values. The
last column indicates the validity of the simulation, where A indicates that the di�erence between simulation
and experiment is within half the error, B indicates that the di�erence is within the error, and C indicates that
the di�erence is larger then the error

observed
keel planform surface convergence present simulation experiment o�set valid

order [9, 10]

none hull 1.89 0.0055 ± 0.0006 0.0057 -4% A

1
hull 〈1.89〉 0.0057 ± 0.0004 0.0058 -3% A
keel 1.85 0.0085 ± 0.0008 0.0091 -7% B

3
hull 〈1.89〉 0.0061 ± 0.0006 0.0055 10% C
keel [1.85] 0.0074 ± 0.0010 0.0071 5% A
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6.5 Wave Height

The simulation results in a certain wave pattern. Although it is not the main objective of the simulation,
it would be nice to compare the wave height along the hull with the experimental results. However,
these experimental results are not available for this case. Therefore Figure 6.4 compares the present
results with the results from a potential �ow simulation for the same case.
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Figure 6.4: Comparison of the free-surface height along the hull, taken from the present Keel 1 simulation and
from a potential �ow simulation. The present data is for a VOF fraction from 0.4 to 0.6. The potential �ow
results by Moolenaar are from Ref. [36, 37]

6.6 Conclusions

Three drag coe�cients are in excellent agreement with the experimental results, two are in good agree-
ment and one is in poor agreement. In general, the coe�cients are within 10% of the experimental
results.
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Slices at di�erent lengthwise positions, where the colors indicate the
�ow velocity (top) and turbulent intensity (bottom). The slices show a
distinct e�ect of the keel and hull wake.



Chapter 7

Practical Implications

Although the simulations are not completely validated, I propose some methods that could give better
understanding of some mechanisms involved. I consider the interaction between keel and rudder, the
scaling of this interaction, and the scaling of the keel drag. For this chapter the amount of simulation
details (convergence, wall y+, etc.) is so large that I have decided to place it in an Appendix.

7.1 Keel Rudder Interaction

From experiments the keel is known to have a substantial e�ect on rudder performance. In the keel
wake, the rudder experiences a reduced �ow velocity and an increased turbulent intensity. Here I look
at the e�ect of changing the rudder position and of changing the Froude number. I average the �ow
velocity reduction and turbulent intensity over a rectangular envelope enclosing the rudder, positioned
perpendicular to the far �eld velocity.

The position of the rudder, and thus the distance behind the trailing edge of the keel, has an e�ect
on the velocity reduction and the turbulent intensity experienced by the rudder. Figure 7.1 shows
that the velocity reduction due to the bare hull may constitute a substantial part of the total velocity
reduction. The turbulent intensity can be seen to originate almost completely from the keel.

A di�erent ship speed might change this keel and hull wake. Instead of changing the ship speed,
I have changed the Froude number and Reynold's number accordingly by means of a di�erent gravity
and viscosity. Since - by dimensional analysis - the �ow is characterized by the Froude number and
Reynold's number, this leads to the same results [11, 12]. For these simulations the rudder is in the
actual rudder position (D = 1.11 m). Figure 7.2 illustrates that the ship speed has an e�ect on the
velocity reduction, but has hardly any e�ect on the turbulent intensity.
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Figure 7.1: The velocity reduction and turbulence experienced by the rudder, as a function of the rudder distance
behind the trailing edge of the keel. The arrow indicates the actual rudder distance
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Figure 7.2: The velocity reduction (top) and turbulence (bottom) experienced by the rudder for di�erent Froude
numbers. The Reynold's number has been scaled accordingly
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7.2 Scaling Keel Rudder Interaction

Towing tank experiments rely on the assumption that the e�ects can be scaled by either the Froude
number or the Reynold's number [12, 13]. Due to the setup of the experiment - where the experimental
and full scale Froude number are equal - it would be desirable to have the keel rudder interaction scale
with the Froude number.

0%

20%

40%

60%

80%

1E+04 1E+05 1E+06

Re

R
el

at
iv

e 
V

el
oc

ity
 R

ed
uc

tio
n

D=0.00m

D=0.36m
    dy
d Log x 

= -0.32 

    dy
d Log x 

= -0.03 

Figure 7.3: The Reynold's number dependency of the velocity reduction at two di�erent positions behind the
keel trailing edge. The resulting slopes are displayed in the following �gure. Typically Remodel = 4 × 105 and
Refull scale = 7× 106

I have changed the Reynold's number by means of a di�erent viscosity,1 and then analyzed the keel
rudder interaction. As an example Figure 7.3 displays the Reynold's number dependency of the velocity
reduction experienced by the rudder, for two di�erent rudder positions. It shows that, were the rudder
to be positioned directly at the keel trailing edge, the velocity reduction would change severely with
a changing Reynold's number. For a larger keel rudder distance, this dependency is smaller. I have
quanti�ed this dependency by taking the slope:

∂
(

1− u
u∞

)
∂Log(Re)

(7.1)

The resulting slopes are displayed in Figure 7.4. It is clear that close to the keel trailing edge
the wake depends on the Reynold's number, while at the actual experimental rudder position (D =
1.11 m) there is hardly any dependence. For normal rudder positions, the keel rudder interaction can
con�dently be taken to be Froude scaled.

1I choose to increase the viscosity, thereby lowering the Reynold's number. A higher Reynold's number would have
been less likely to lead to a converging simulation.
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7.3 Scaling Keel Drag

The keel drag is scaled by means of the form factor method, which relies on the assumption that the
total keel drag coe�cient CT depends on the residuary keel drag coe�cient CRes, the form factor (1+k),
and the skin friction coe�cient2 CF as [12]:

CT = CRes + (1 + k)CF (7.2)

By changing the Reynold's number by means of a di�erent viscosity, I can verify this dependency
for the current simulation. Plotting CT against CF should show a linear dependency. Figure 7.5 shows
the simulated values with a linear �t. The correlation coe�cients are 0.990 for Keel 1 and 0.994 for
Keel 3. This supports the assumption that the form factor method can be applied.

For practical application of the form factor method, it is important to know how the skin friction
should be scaled. Among several options, there are two main candidates. The �rst is the ITTC-57 ship
correlation line intended for free-surface ship hulls [13]:

CITTCF =
0.075

[Log(Re)− 2]2
(7.3)

The second is the turbulent �at plate skin friction line by Anderson [32, 33]:

CAndF =
0.074
Re1/5

(7.4)

Figure 7.6 shows the simulated results together with both these lines. To apply the form factor
method successfully, for each keel the ratio of the simulated skin friction and these lines should be
constant. Figure 7.7 shows these ratios for the present data. The Anderson �at plate skin friction line
leads to more constant ratios than the ITTC-57 ship correlation line. Although the error margins are
quite large, this might be an indication that for the scaling of the keel drag the Anderson line is more
suitable than the ITTC-57 line.

7.4 Conclusions

The hull and keel wake are characterized by the reduced �ow velocity and the turbulent intensity. The
simulations show a distinct wake of the hull and keel at the rudder position. The wake depends on
the rudder position and on the Froude number. Close to the keel trailing edge the wake depends on
the Reynold's number, for larger keel rudder distances the wake does not and is therefore Froude scaled.

The simulations support the assumption that keel drag can be scaled by means of the form factor
method. To scale the skin friction drag, the Anderson �at plate correlation line might be more suitable
than the ITTC-57 ship correlation line.

2This is the total skin friction coe�cient CF , di�erent from the local skin friction coe�cient cf

46



0.006

0.010

0.014

0.006 0.008 0.010 0.012

C

C

Keel 1

F

T

0.006

0.010

0.014

0.004 0.006 0.008 0.010

C

C

Keel 3

F

T

Figure 7.5: The total drag versus the skin friction. Application of the form factor method relies on a linear
dependency of these variables

47



0.004

0.006

0.008

0.010

0.012

0.014

1E+4 1E+5 1E+6

Re

C

Keel 1
Keel 3
ITTC-57
Anderson

F

Figure 7.6: The skin friction compared to the ITTC-57 ship correlation line [13] and the Anderson turbulent
�at plate friction line [32]. Typically Remodel = 4× 105 and Refull_scale = 7× 106

48



1.0

1.1

1.2

1.3

1.4

1E+4 1E+5 1E+6

Re

Keel 1
Keel 3

C
   

:
F

S
im

ul
at

io
n

IT
T

C
-5

7

1.0

1.1

1.2

1.3

1.4

1E+4 1E+5 1E+6

Re

Keel 1
Keel 3

C
   

:
F

S
im

ul
at

io
n

A
nd

er
so

n

Figure 7.7: The observed skin friction devided by: the ITTC-57 Ship Correlation Line [13] (left), and divided
by the Anderson turbulent �at plate friction line [32] (right). The form factor method relies on a constant value
of these ratios for each keel. Typically Remodel = 4× 105 and Refull_scale = 7× 106

49



The swot analysis was originally designed as a tool for Marketing Strat-
egy [38]. It has now found it's way into other disciplines, such as Sport
Psychology. First it identi�es the main goal of the simulation. Then
it observes the internal strengths and weaknesses of the simulation (i.e.
method, grid, and solver). Finally, it discusses external opportunities
and threats that might e�ect future simulations.



Chapter 8

Discussion

The main goal of the simulations is to provide reliable estimates of the drag coe�cients of keel hull
con�gurations. The present study indicates that FLUENT can give reliable estimates. The di�erence
between the simulation drag results and the experiment was within the error margin for four out of �ve
drag coe�cients obtained. In general, the simulation drag results are within 10% of the experimental
results.

The simulations indicate that the keel rudder interaction is Froude scaled, that the keel drag can
be analyzed with the form factor method, and that the Anderson �at plate skin friction line might be
more appropriate to do so than the ITTC-57 ship correlation line.

8.1 Strengths

structured grid. All the simulations are run on structured grids. This is associated with faster
convergence and more reliable results [7]. Also it facilitates a better representation of the boundary
layer. I have not encountered any other application of a structured grid (i.e. without triangular cells)
for a keel hull con�guration.

wall y+. I have taken much care to have all the grids in the proper range of wall y+. Even more, the
values are often close to the most desirable 1 (viscous sublayer) or 30 (Log layer).

grid convergence study. The veri�cation of the asymptotic range combined with simulations on
two or three grids lead to a proper GCI grid convergence study. The observed 3-dimensional convergence
orders are near the discretization order of two.

error margin. The GCI grid convergence study at the same time provides an extrapolated drag
coe�cient together with an error margin. Without this study, it would not have been possible to
determine objectively if the estimated drag coe�cients are within an acceptable margin of error.

8.2 Weaknesses

turnover time. The turnover time of the simulations is far too long. If it was lower, I could have
run the simulation for more cases.

free-surface distortion. For the keel hull combinations, the grid cell size growth might lead to
distortion of the free-surface. There appears to be a trade o�. The distortion appears for the present
VOF Geometric Reconstruction scheme, while the distortion does not appear for other VOF schemes
like 'Quick' - which then however give an overly smudged free-surface.

turbulence stimulation. At the end of my project, I have reconsidered the results in Figure 4.3,
concerning the added turbulence intensity due to the turbulence stimulation strips. Although the decay
of the turbulence seems to happen in a natural fashion, I now have some doubts about the e�ect the

51



added turbulence has on the drag coe�cient. More precisely, I now think that the assumption that no
turbulence stimulation is needed in the simulation is correct for the hull but not for the keel. For the
2-dimensional case, I have evaluated the added drag due to the turbulence stimulation strips. For the
hull it is in the order of -0.5%, whereas for the keel it is in the order of 5%. This might be an important
factor, recommendable for future research.

grid. Although the grids are found to be in the asymptotic range, I would suggest to use �ner grids
for future simulations. The problem is that a coarser grid will lead to higher grid growth factors and
also to a smaller number of cells in the boundary layer.

8.3 Opportunities

better grid generation. More specialized grid generators are (becoming) available, facilitating
better and faster block structured grid generation.1

open channel flow. Fluent 6 does not facilitate the correct boundary conditions for open channel
�ow, however in Fluent 12 the correct settings should be available. This would enable running a time
steady simulation.

machine improvements. Improvements in machine capacity and speed are likely to decrease future
simulation turnover time.

amount of validation data. The amount of validation data at the TU Delft is overwhelming.
Reference [9] alone contains over 50 cases, of which I have studied three.

8.4 Threats

bias. While setting up a simulation one can become biased by the experimental results known a priori.
For future research it might be considered to do a larger number of 'blind' simulations, with a posteriori

knowledge of the experimental results.

unjustified confidence. One might be inclined to be convinced by such simulations too hastily.
Each CFD application requires proper validation of a similar case.

1Like ICEMCFD, which gives far nicer results [7, 39].
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Appendix A

Symbols and Acronyms

Symbol Description Page Literature

ε turbulent dissipation rate 12 [14, 15, 18]
µ dynamic viscosity 9 [11, 14, 15]
ν kinematic viscosity, not used in this report - [11]
ρ density 9 [11, 14, 15]
τ shear stress 12 [14, 15]
τ̂ stress tensor 11 [11, 14, 15]
Ω computational domain 11 [15]
c chord 10 [8, 9, 32]
CD drag coe�cient 9 [11, 12]
CF skin friction drag coe�cient 46 [11, 12]
CT (total) drag coe�cient 46 [11, 12]
F drag force 9 [11]
Fn Froude number 9 [8, 9, 12]
g gravitationl acceleration 9
h simulation result for any variable 14 [25]
I unit tensor 11 [11, 14, 15]
k turbulent kinetic energy 12 [14, 15, 18]
L typical model size 9 [11]
p convergence order 15 [25, 26]
p̃ pressure 11 [11, 14, 15]
q dynamic pressure 1

2
ρu2 28 [11]

r grid re�nement rate 15 [25, 26]
Re Reynold's number 9 [8, 9, 11, 12]
S wetted surface 10 [8, 9, 12]
u velocity 11 [11, 14, 15]
u∞ far-�eld or in�ow velocity 9 [11]
u+ dimensionless �ow velocity 12 [14, 15]
x coordinate in �ow direction 11
y coordinate in starboard direction 11
y+ dimensionless wall distance 12 [14, 15]
z coordinate in upward direction 11

Acronym Description Page Literature

CAMI Coated Abrasives Manufacturers Institute 29 [35]
CFD Computational Fluid Dynamics 7 [2, 12, 14, 15]
CPU Central Processing Unit (processor) 17
DSKS Delft Systematic Keel Series 19 [8]
GB Gigabyte 12
GCI Grid Convergence Index 14 [25, 26]
IACC International America's Cup Class 10 [8]
ITTC International Towing Tank Committee 10 [8, 9, 12, 13]
LWL Length over Water Line 10 [8, 9, 12]
NACA National Advisory Committee for Aeronautics 19 [11]
RAM Ready Access Memory 12
RANS Reynold's Averaged Navier-Stokes (Equations) 11 [14, 15]
SWOT Strenghts, Weaknesses, Opportunities, and Threats 50 [38]
VOF Volume of Fluid (Method) 12 [14, 22]
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Appendix B

Details for Chapter 7

These calculations are run on the same grids as in the keel validation cases. However, since they are at di�erent Reynold's
numbers I report the new wall y+ values. It can be seen that the keel side values are within range. The hull values are
mostly out of range, such that the simulations will not give reliable results for the hull drag.

Table B.1: Di�erent Froude Number - wall y+

Fn µ g Bare Hull K1 Hull K1 Keel
Pa s m s−2 wall y+ wall y+

0.325 0.001142 11.38 39± 16 70± 23 1.15± 0.45
0.3 0.001230 13.35 37± 15 65± 22 1.08± 0.42

Table B.2: Re Scaling Keel 1 - wall y+

µ Re Coarse Grid Medium Grid
Pa s ×1000 wall y+ wall y+

0.001054 394 1.76 1.28
0.001491 279 1.32 0.92
0.002108 197 0.99 0.68
0.002981 139 0.74 0.50
0.004216 098 0.54 0.37
0.005962 070 0.39 0.27

Table B.3: Re Scaling Keel 3 - wall y+

µ Re Coarse Grid Medium Grid
Pa s ×1000 wall y+ wall y+

0.001054 600 4.05 3.97
0.001491 424 2.96 2.99
0.002108 300 2.16 2.17
0.002981 212 1.58 1.58
0.004216 150 1.16 1.16
0.005962 106 0.85 0.86
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Appendix C

FLUENT Settings

This appendix contains detailed information on the settings used in the di�erent simulations. I used FLUENT 6.3.26.
The listed settings are only those di�erent from default.

C.1 Benchmark Problems

Sphere Drag

De�ne → Models → Energy
x Energy Equation

De�ne → Models → Viscous
x k-epsilon
x Realizable
x Enhanced Wall Treatment

De�ne → Models → Solver
x Axisymmetric

De�ne → Boundary Conditions
In�ow

v = 1 m/s
Turbulence Intensity = 0.001 %
Turbulence Length Scale = 0.001 m

Side
x moving wall; v = 1 m/s

De�ne → Materials
Density = 1
Viscosity = change this variable for di�erent Re

Solve → Controls → Solution: 2nd upwind
Solve → Monitors → Residual
Convergence Critirea: Standard (0.001 for all residuals)
Iterate

naca 63-010 and 63-010F Section

De�ne → Models → Energy
x Energy Equation

De�ne → Models → Viscous
x k-epsilon
x Realizable
x Enhanced Wall Treatment

De�ne → Materials
Add water-liquid

De�ne → Boundary Conditions
In�ow

v = change this variable for di�erent Re m/s
Turbulence Intensity = 0.001 %
Turbulence Length Scale = 0.001 m

Side
x moving wall; v = 1 m/s

Fluid
Water - liquid

Solve → Controls → Solution: 2nd upwind
Solve → Monitors → Residual
Convergence Critirea: Standard (0.001 for all residuals)
Iterate

Broken Dam

De�ne → Models → Multiphase
x VOF
x Explicit
x Impl. Body Force
o Open Channel Flow

De�ne → Models → Solver
x Implicit
x Unsteady

De�ne → Models → Energy
o Energy Equation

De�ne → Models → Viscous
x k-epsilon
x Realizable
x Enhanced Wall Treatment

De�ne → Materials
Add water-liquid

De�ne → Phases
Air phase 1
Water phase 2

De�ne → Operating Conditions
Pressure (x, y) = (3, 3)
x Gravity (x, y) = (0, -9.81)

Solve → Controls → Solution: 2nd upwind
Solve → Monitors → Residual
Convergence Critirea: Standard (0.001 for all residuals)
Iterate: 0.02 s

Surface Piercing Hydrofoil

De�ne → Models → Multiphase
x VOF
x Explicit
x Impl. Body Force
o Open Channel Flow

De�ne → Models → Solver
x Implicit
x Unsteady

De�ne → Models → Energy
o Energy Equation

De�ne → Models → Viscous
x Laminar

De�ne → Materials
Add water-liquid

De�ne → Phases
Air phase 1
Water phase 2
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De�ne → Operating Conditions
Pressure (x, y, z) = (-2, 0, 0.2)
x Gravity (x, y, z) = (0, 0, -9.81)

De�ne → Boundary Conditions
- Water In�ow

- mixture
- v = 1.27 m/s

- water
- multiphase VOF=1

- Air In�ow
- mixture

- v = 1.27 m/s
- water

- multiphase VOF=0
- Water Out�ow

- Flow Rate Weighting = 0.3
- Air Out�ow

- Flow Rate Weighting = 0.025
Note: it would have been better to use pressure outlets

Solve → Controls → Solution
- Pressure = PRESTO!
- Momentum = 1st Upwind
- Volume Fraction = Geo-Reconstruct

Solve → Initialize → Initialize
From Water In�ow

Solve → Initialize → Patch
Water VOF = 0 for Air

Solve → Monitors → Residual
Convergence Critirea: Standard (0.001 for all residuals)
Iterate: 0.02 s, 50 steps
De�ne → Models → Viscous

x k-epsilon
x Realizable
x Standard Wall Function

De�ne → Boundary Conditions
Water In�ow

Turbulence Intensity = 0.001 %
Turbulence Length Scale = 0.001 m

Air In�ow
Turbulence Intensity = 0.001 %
Turbulence Length Scale = 0.001 m

Solve → Initialize → Patch
Turbulent Kinetic Energy = 2.4E-10

Iterate: 0.02 s, 150 steps

De�ne → Models → Energy
x Energy Equation

Iterate: 0.02 s, 50 steps

Solve → Controls → Solution
1st order upwind -→ 2nd order upwind

Iterate: 0.02 s, 150 steps

File → Interpolate → Write . . . �lename
File → Read → Case: Fine Mesh
Check all settings, many will have changed
File → Interpolate → Read . . . �lename
Set to Laminar 1st upwind
Iterate: 0.02 s, 10 steps

Set to k-epsilon 1st upwind
Iterate: 0.02 s, 10 steps

Set to k-epsilon 2nd upwind
Iterate: 0.02 s, 750 steps

C.2 Validation for the Bare Hull

These are the settings for the �ne grid (94 cells over
LWL). The settings for the other grids are similar.

Bare Hull

De�ne → Models → Solver: x Unsteady
De�ne → Models → Multiphase:

x vof
x explicit
x implicit body force

De�ne → Models → Viscous:
x k-epsilon
x Realizable
x Standard Wall Function

De�ne → Materials: add water-liq
De�ne → Phases: 1 air / 2 water
De�ne → Op. Conditions:

op. press. = 0
x,y,z = -3,0.5,0.1
gravity = 0,0,-9.81
x spec. op. dens.

De�ne → Boundary Conditions:
airin

v = 1.8 m/s
Turb. Int. = 0.001%
Turb. Length Sc. = 0.001 m

waterin
v = 1.8 m/s
Turb. Int. = 0.001%
Turb. Length Sc. = 0.001 m
vof = 1 (under water)

waterout: udf static-pressure
tankside: moving wall 1.8 m/s

Iteration sequence was: 1st upwind, default urf's, 0.01
s 50 steps. Then 2nd upwind, half urf's, continue 0.01 s
steps.

This is the udf �le. Actually, for the bare hull I used
water density of 998.2 kg m−3, for the keel hull combina-
tion I used 999 kg m−3.

#include "udf.h"

DEFINE_PROFILE(static_pressure,thread,position)

{

real x[ND_ND];

real zcoor;

face_t f;

begin_f_loop(f,thread)

{

F_CENTROID(x,f,thread);

zcoor = x[2];

F_PROFILE(f, thread, position) =

-9.81*999*zcoor;

}

end_f_loop(f,thread)

}
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C.3 Validation for the Keel Hull Combination

These are the settings for the coarse grid (16 cells over
keel chord). The settings for the other grids are similar.

Keel 1

De�ne → Models → Solver: x Unsteady
De�ne → Models → Multiphase:

x vof
x explicit
x implicit body force

De�ne → Models → Viscous:
x k-epsilon
x Realizable
x Enhanced Wall Treatment

De�ne → Materials:
add water-liq
water density = 999 kg m−3

water viscosity = 0.001054 kg/m/s
De�ne → Phases: 1 air / 2 water
De�ne → Op. Conditions:

op. press. = 0
x,y,z = -3,0.5,0.1
gravity = 0,0,-9.81
x spec. op. dens.

De�ne → Boundary Conditions:
airin

v = 1.8 m/s

Turb. Int. = 0.001%
Turb. Length Sc. = 0.001 m

waterin
v = 1.8 m/s
Turb. Int. = 0.001%
Turb. Length Sc. = 0.001 m
vof = 1 (under water)

waterout: udf static-pressure
tankside: moving wall 1.8 m/s

Solve → Controls → Solution: all urf's 0.1
Solve → Initialize → Initialize: from waterin
Adapt → Region → Mark: z positive
Solve → Initialize → Patch: water vof = 0 to marked reg-
ister

The iteration sequence was: Set air viscosity to
0.0017894 kg/m/s, 1st upwind, iterate 0.02 s 50 steps.
Reset air viscosity to default 1.7894e-5 kg/m/s, iterate 0.02
s 25 steps. Change to 2nd upwind, iterate 0.02 s for number
of steps.

The Keel 3 iteration sequence was di�erent. After re-
setting the air viscosity I iterated 1st upwind untill the hull
drag had converged, at �owtime roughly 8 seconds. Only
then I changed to 2nd upwind.
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Appendix D

What did not work ...

This appendix contains some information on what did not work, when setting up the simulations.

D.1 Benchmark Problems

Somehow, when going from a laminar to k-ε viscous model during computation of the problem, the turbulent kinetic
energy can diverge within several iterations. This does not happen when, after changing to k-ε and before continuing
iterations, a small turbulent kinetic energy (corresponding to the in�ow settings for turbulence intensity and dissipation
rate) is patched to the complete domain.

Going directly from coarse 2nd upwind k-ε to �ne 2nd upwind k-ε (re�nement in FLUENT), the solution would
diverge. With some 10 iterations with laminar and then 1st upwind k-ε the solution would behave as expected.

The FLUENT User's Guide recommends 'open channel �ow' for problems like the surface piercing hydrofoil. However
I had di�culties with setting the correct boundary conditions (presumably for the mass �ow inlet) and could thus could
not run the problem under 'open channel �ow' settings.

D.2 Validation for the Bare Hull

Since the simulation is unsteady and results in an oscillating drag coe�cient, calculations times a very long. They can
be reduced by decreasing the grid size, which is only tolerable if one applies a proper grid convergence study and/or
Richardson Extrapolation.

Interpolating coarse grid results for initialization of �ner grids did not work. This is mainly due to distortion of the
free-surface. This might have been solved by interpolation followed by patching of a level free-surface; or by �rst sim-
ulating laminar a couple of steps. However I did not realize this at this point, and initialized every simulation from scratch.

Because I'm interested in the �nal steady solution, it would be possible to run an implicit vof scheme. However, this
does not provide Geometric Reconstruction and therefore leads to a smudged free-surface.

D.3 Validation for the Keel Hull Combination

It should be stressed that the keel hull combination is much more complicated than the bare hull. I started out with
simulating the bare hull, which took 3 weeks. With this experience, and also part of the geometry ready to go, it took
me almost 3 months to complete the keel hull combination simulations.

This kind of simulation is likely to run into several di�culties. The main challenges are to limit the amount of grid
cell size increase or decrease, even more so than in the cases stated above. The problem of having a structured grid for a
foil, is that a structured grid �ll not represent an in�nitely thin trailing edge. Fortunately, such a trailing edge would lead
to vibrations in practical use. This is the reason that the foils studied here all have �attened trailing edges, with a width
in the order of 1 - 2 mm. This e�ectively means that the grid cell size near the trailing edge would be in the order of 0.2
mm. This being said, the grid e�ectively contains areas with a large increase or decrease of grid cell size. If this increase or
decrease is to large, this will result in very high turbulence and in distortion of the free-surface. Also, a repeating challenge
is the proper initialization. I have tried an array of di�erent 'smart' initial conditions, and expected to be able to use the
coarse solution as initial condition for the �ner grid. However, how much I tried, this would not work in any way. Even in-
terpolation with successive patching of low turbulence combined with a level free surface would diverge within several time
steps. Also, ramping the in�ow speed from 0.0 m/s to 1.8 m/s over a �ow time of 1.0 s did not result in a stable simulation.

Another problem is the di�erence in Reynold's number of the air and the water. Where the water behaves quite
nicely, the air is at a much higher Reynold's number and is likely to cause unexpected high amounts of turbulence. This
can be frustrating, since in this stage the behavior of the air is likely to be of minor importance in the actual problem.
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My approach was to initially increase the air viscosity by a factor of 100 or 1000, and restore it to it's actual value after
typically 1 s of �ow time.

Contrary to common sense, it is not very easy to create a �ner grid from a coarser one. In my experience, the coarse
grid might converge nicely. A simply re�ned grid might then however not converge at all. Especially the grid cells near
the keel's trailing edge need a lot of attention. This is quite di�erent from the bare hull case, where grid re�nement was
completely straightforward. Needless to say, all three grids should have proper wall cell sizes to reach a tolerated wall
y+.

All in all the most important problems do not appear to arise from the solver but from the grid itself. Creating a
well behaving 38 block-structured-grid capable of 3d free-surface simulation is, in my opinion, close to the limits of the
practical possibilities of the grid generator GAMBIT.

D.4 General Suggestions

- When GAMBIT freezes it is often possible to press the close window 'X' button, then select 'cancel' at prompt. This
will usually revive GAMBIT.
- Sometimes GAMBIT mesh faces are distorted. To solve this, localize the problem edge and make a new NURBS edge
close to it, with the same endpoints. Then, for example, split the surface and glue the little part to another surface.
- When GAMBIT reports "identi�er open" delete the associated .lok �le
- To save all currently-de�ned boundary conditions to a �le, select the write-bc text command and specify a name for
the �le. Use �le > write-bc and �le > read-bc
- For high resolution images from FLUENT: Make a �le → hardcopy: EPS vector 500 dpi �le, and specify line width
under display → options
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