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Extending Rank Correlation Coefficients to Relevance Profiles

Andrea Vezzuto

Abstract

Frequently used in modern applications, rankings provide
users with a list of the most relevant items. In information
retrieval research, the 7, 74, and 75, correlation coefficients
are commonly applied to assess the similarity of the un-
derlying systems by comparing the rankings they produce.
Traditionally, these comparisons focus solely on item rank-
ing, but introducing relevance values has enabled systems to
be analysed based on how element utility relates to retrieval
order. In this work, 7, 7,45, and 7, are extended to incorporate
relevance values, presenting several coefficients rooted in
an axiomatic approach. These measures compare the util-
ity of items or indices, enabling a granular relevance-based
ranking comparison. Overall, the results demonstrate that
including relevance judgments leads to significant deviations
from traditional rank correlation metrics, highlighting the
impact of relevance-aware measures in evaluating system
performance and similarity.

CCS Concepts: « Information systems — Similarity mea-
sures; Relevance assessment.

Keywords: Rankings, Ranking profiles, Relevance judgments

1 Introduction

Ranked lists are essential in many modern applications to
present users with the most relevant information, from search
engines to recommender systems [9]. A ranking refers to
an ordered list of items, sorted by a notion of perceived rel-
evance or preference. Therefore, evaluating such systems
depends on the placement of items with respect to a ref-
erence ordering. Traditionally, metrics such as Kendall’s 7
[8] have done so by quantifying the number of pairwise
agreements between two lists. However, comparisons have
evolved to include relevance judgments: a more nuanced,
multi-level representation of item utility. These are often
integer values that indicate the pertinence of an element to a
topic, for example assigning a 4 to item A (highly relevant),
and a 0 to item B (not relevant) on a scale between 0 and 4.

To this end, ranking profiles are defined as ordered lists
of items arranged according to a specific ranking criterion.
Additionally, each element possesses an inherent relevance
judgment that reflects its utility to a user. Therefore, while
the ranking criterion determines the ordering imposed by
the ranker, the relevance judgments represent a system-
independent, ground-truth attribute of the items. To com-
pare two systems using relevance values, there exist several
challenges: traditional Kendall-style measures ignore the
interaction of relevance between the lists, while vector sim-
ilarity coefficients, such as Pearson’s correlation [12] and

the cosine similarity, do not capture the relative ordering
of items, treating each element independently. On the other
hand, most information retrieval (IR) metrics, including the
discounted cumulative gain (DCG) and the normalised DCG
(nDCQG) [7], are measured on singular rankings, offering no
mechanism to assess the underlying ordering relationship
between two profiles. Recent studies have partially bridged
this gap by applying rank-based measures like Kendall’s 7
on transformed metrics such as nDCG [5, 13, 15]. However,
this approach measures aggregated similarity over the entire
ranking, rather than capturing per-item differences.

Furthermore, rank-based weighted variants such as 7,
[19] and 73, [17] have been proposed to give higher impor-
tance to items at the top of a ranking. This reflects the human
behaviour of examining retrieved items top-down, only pro-
ceeding to the next document if what has been observed so
far is considered insufficient [10]. Similarly to 7, they rely
solely on discrete rank positions and do not consider the
relevance of items.

This paper addresses the methodological gap by intro-
ducing a framework for extending Kendall’s 7 and its top-
weighted variants to incorporate relevance judgments. To do
so, several redefinitions of the concordance function, c(i, j),
are proposed, guided by a set of axioms established in this
work. As such, correlation coefficients calculated on graded
lists are introduced, enabling a relevance-based similarity
assessment on the relative ordering between rankings.

The remainder of this paper is laid out as follows: Sec-
tion 2 reviews existing measures, laying the groundwork for
their adaptation to relevance profiles proposed in Section
3. Thereafter, Section 4 presents the empirical testing setup
and highlights crucial results, with Section 5 discussing the
implications of key findings. Finally, Section 6 summarises
the work presented in this paper, highlighting some paths
for future research, and Section 7 describes how the research
process has been ensured to be reproducible.

2 Background

To assess the similarity between two rankings, x and y,
Kendall’s 7 correlation coefficient [8] can be used, as defined
by Vigna [17]:
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The numerator, (x,y),,, denotes a weighted concordance
score given by:
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where w is a weighting function, applied uniformly across
all elements for Kendall’s 7, such that w = 1. The term
c(i, j) represents the concordance function, which evaluates
whether the relative order of items i and j is preserved be-
tween x and y. If both rankings agree on the order of a pair,
the product of signs is positive (concordant); otherwise, it is
negative (discordant). The denominator, on the other hand,
ensures the coefficients remain bounded in [-1, 1], using
[l = /{x, x) to represent the norm of ranking x, with
an analogous definition for ||y||,,. Overall, assuming both
rankings are filtered to contain the same items, 7 reflects the
degree of agreement between the two orderings.

Additionally, a nice probabilistic interpretation for 7 is
based on the following experiment: consider a pair of items
at random; return 1 if the pair is ranked in the same order in
both lists, otherwise return 0. With p being the expected out-
come, 7 is defined as 7 = 2p — 1, and is therefore proportional
to the probability of concordance between the rankings. If
the rankings are independent, p = %, such that the expected
value of the coefficient is 0.

While 7 has been widely accepted as the standard for
measuring the correlation between two rankings [6, 19],
it is crucially not top-weighted. Generally, this does not
accurately represent real-world human behaviour. Items at
the top of the list are more likely to be considered by the
user [11], so disagreements in these positions should carry
greater importance in the coefficient. To this end, 7,, [19]
has been introduced as a measure that reflects user actions,
maintaining the same structure as Equations 1 and 2, but
with a weighing function defined as:

1
max(y;,y;) =1’
Additionally, the random experiment is now as follows: pick
one item at random from x and another one ranked above
it; return 1 if they are in the same relative order in y, or 0
otherwise. Similarly to 7, the expected value of 7, is 0 if x
and y are independent.

Lastly, 7, [17] extends 7 to integrate a rank-based top-
weighted factor. It can be computed symmetrically by:

w = W(yi> y}) = (3)

T, = Tw(x: y) ; TW(y’ x) , (4)

with the following weighing function:

1

T ey 14 pey ()
where p, , is defined by ordering elements lexicographically
with respect to x. Throughout this paper, it is assumed that
both rankings do not contain ties, thus making the random
experiment a scaled version of the one defined for 7, resulting
in an expected value of 73 that is also 0.

On the other hand, research on relevance judgments for
system comparisons has primarily revolved around the no-
tion of cumulative gain (CG) [7], which sums the total utility

W(Px,y(i)’ px,y(j)) = 5)
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of elements up to a given rank. Its normalised form, nor-
malised discounted CG (nDCG), accounts for the position
of each document in the ranking by applying a logarithmic
discount to lower-ranked items and normalises by an ideal
ranking. Recent work in the field of relevance judgment
generation with large language models makes use of the
nDCG as a metric on which to create a ranking of systems,
thereby computing Kendall’s 7 [5, 13, 15] to measure the
overall agreement compared to a human-made reference
ordering.

This work aims to streamline the comparison of systems
using relevance values, allowing a direct and fine-grained
similarity assessment between ranking profiles by extending
T, Tap, and 7. Given the additional information contained in
the proposed coeflicients, definitions must not only be logi-
cally sound but also present significant empirical deviations
from the metrics on which they are based.

3 Definitions of 7, 7,,, and 7, for ranking
profiles

To extend 7, 7,4, and 75, to ranking profiles, c(i, j), defined in
Equation 2, is modified to incorporate relevance judgements.
This function lies at the heart of the similarity measure: it
determines how item pairs are evaluated. In the original for-
mulations, c(i, j) performs element-wise comparison, adding
a binary value if the items are concordant or discordant. In
doing so, information regarding item relevance is discarded.

To address this limitation, the redefined concordance func-
tion must include the behaviour of the relevance values as-
sociated with the observed items. To this end, the following
subsection introduces a set of axioms that logically follow
from the extension of 7 and its variants to ranking profiles.
Based on these, several variants for c(i, j) are proposed there-
after, each of which can be applied analogously to 7, 7,5, and
7p. It must be noted that while gain functions, highlighted
in Section 2, are frequently used to model the evolution of
utility in a ranking, they are not used in this paper. This
is because Kendall’s 7 and its top-weighted variants inher-
ently perform a pairwise aggregation of item scores based on
their relative rankings. Introducing a separate gain function
would duplicate this aggregation logic. Instead, the influence
of each comparison makes direct use of the relevance values
of the items involved, as detailed in the coefficients proposed
below.

3.1 Desired properties of 7, 7,,, and 7;, for ranking
profiles

Extending 7 and its variants to relevance profiles, it may be
desirable to maintain some of their most essential properties.
In particular, the behaviour of the correlation coefficient at
the bounds of [—1, 1] provides significant insight into how it
can be interpreted. Accordingly, following the Kendall-based
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measures, the extreme values of the revised measures may
be obtained axiomatically as below.

Axiom 1. If the compared rankings are equivalent, the coeffi-
cient is 1.

Specifically, two rankings are equivalent if all items are
placed in the same order. Consider, for instance, a ranking z:

z = (A, B),

with the relevance values A = B = 2. The existing corre-
lation measures satisfy 7(z,z) = 745(2,2) = Th(2,2) = 1. It
is therefore natural to extend this property to ranking pro-
files, ensuring that whenever a list is compared to itself, the
coefficients yield a value of 1, regardless of the relevance
values associated with each element. This logic can be further
applied to reverse lists.

Axiom 2. Ifthe compared rankings are reversed, the coeffi-
cient is —1.

Here, a reversed ranking lists items in the opposite order of
the ranking to which it is compared. Considering once again
z, its reverse, denoted by z’, is:

z' = (B, A).

such that 7(z,2") = 74p(2,2") = 14(z,2") = —1 holds. Once
again, this property can be applied to ranking profiles such
that reversed lists yield a value of —1, regardless of the
relevance values.

However, a subtle point arises when comparing z to z’.
Despite the underlying items being swapped, the ordering
of the relevance values remains unchanged for both lists:

Zrel = Z;el =(2,2).
From this perspective, z,; and z , are equivalent. The shift

from element rankings to ordering of relevance values moti-
vates the following axiom.

Axiom 3. If the ordering of relevance values in the compared
rankings is equivalent, the coefficient is 1.

Based on this property, computing a relevance-based coeffi-
cient between z,.; and z;el yields 1. This can be extended to
reversed rankings.

Axiom 4. If the ordering of relevance in the compared rank-
ings is reversed, and all values are unique in each ranking, the
coefficient is —1.

The property above introduces the notion of unique values
in each list. This is because, without the underlying identity
of the items at each rank, the differentiation between equiv-
alence and a reversal is only possible when all relevance
values are distinct. That is, elements with the same utility
must either be considered concordant under Axiom 3 or
discordant under Axiom 4. In a ranking with non-unique rel-
evance values, the choice of relative priority between these
is exclusive: one precludes the other from being satisfied.
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In this paper, a pair with the same relevance is considered
concordant if their underlying identity is unknown. This is
motivated by the prior example, in which z,,; and z] , are
intuitively equivalent from the perspective of utility.

While Axioms 1 through 4 define behaviour at the ex-
tremes of concordance and discordance, it is also desirable
to specify the expectation in the absence of any association
between rankings.

Axiom 5. If the compared rankings are independent, the ex-
pected value of the coefficient is 0.

This property ensures that the measure is centred, assigning
a neutral value when there is no systematic agreement or
disagreement between rankings.

Generally, the first two axioms define concordance by
item identity, while 3 and 4 determine it by relevance value
ordering, with Axiom 5 always being applicable. Crucially,
however, these groups are distinct and cannot always be
satisfied with the same coefficient, as shown by z. A formal
proof of this fact is as follows.

Lemma 1. There does not exist a coefficient that satisfies
Axioms 2 and 3 for all relevance profiles.

Proof. Assume, for contradiction, that a coefficient o satis-
fies Axioms 2 and 3 for all relevance profiles. Consider the
ranking z = (A, B) with relevance values A = B = 2, so that
Zrel = (2,2). Let 2/ = (B, A), its reverse, which also yields
z/, =(2,2), and thus z,e = 2] .

By Axiom 3, it follows that a(z, z’) = 1. However, since z’
is the reverse of z, Axiom 2 implies a(z,z’) = —1, yielding
the contradiction 1 = a(z,z’) = —1. Therefore, no coefficient
a can simultaneously satisfy Axioms 2 and 3 in all cases. O

Therefore, only a subset of all properties can hold simulta-
neously for the same coefficient. If the relevance of items is
chosen to determine concordance, Axioms 3, 4, and 5 can be
satisfied. On the other hand, if the identity of elements deter-
mines concordance, with relevance being used as a weighing
factor, Axioms 1, 2, and 5 can hold. In both these cases, mod-
ifications for the concordance function are proposed in the
following sections, allowing the reader to choose the most
suitable option for their work.

3.2 Versions of the concordance function using
relevance as a weighing factor

The following redefinition of c¢(i, j) uses relevance as a weigh-
ing factor, with item identity determining the concordance of
a pair. This revised measure is constructed to satisfy Axioms
1 and 2. Additionally, if the coefficient remains symmetric
and appropriately bounded between [—1, 1], it can directly
replace the concordance function used in 7, 7,5, and 7, sat-
isfying Axiom 5.

3.2.1 Distance-weighted version. The distance-based
similarity coefficient maintains the sign function using the
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element ordering defined by Vigna [17], while weighing the
relative relevance difference between the items as follows:

ireli - relj|

caw(i, j) = sign(x; —x;) - sign(y; — y;) - (6)

max(rel;, rel;)’
where rel; and rel; denote the relevance of items i and j,
respectively. Note that if rel; and rel; are both 0, ¢4, (i, j) is
also set to 0 to avoid undefined behaviour. Generally, Equa-
tion 6 ensures that if both items being compared have the
same relevance (rel; = rel;), the magnitude of the function is
minimised, such that c4,,(i, j) = 0.If, on the other hand, both
items have significantly different relevance relative to each
other (rel; = 3 and rel; = 0, for example), the magnitude of
caw(i, j) is maximised, allowing for a total concordance (1)
or discordance (—1). Overall, this behaviour follows the intu-
ition that the ordering of items with significantly different
relevance values conveys more meaningful information, and
should therefore have a greater impact on the coefficient. Be-
tween its extremes, the Equation 6 linearly decays. Therefore,
cdw(i, j) remains bounded in [—1, 1], ensuring that it can be
used in the standard definitions of 7, 7,,, and 7;,. Addition-
ally, given that the concordance function remains symmetric
around 0, all correlation coefficients retain their expected
value of 0 when comparing two independent orderings, sat-
isfying axiom 5.

It is important to note that if a ranking is compared to
itself, the weighing factor for x and y in the denominator of
Equation 1 simply cancels with the numerator. As such, the
correlation coeflicients yield a value of 1, regardless of the
relevance values of the items. This extends to reverse rank-
ings, which are given a correlation of —1. Such behaviour
is crucial in maintaining the extension of 7 and its deriva-
tives as measures of similarity using element ordering as a
weight, thereby satisfying Axioms 1 and 2. There is, however,
an edge case that must be considered: if the all relevance
values in the conjoint list of items are the same (such that
rel; = rel; for any feasible (i, j)) then cg,,(i, j) would be 0,
regardless of the ordering of the elements. In this instance,
the relevance-based factor may be ignored (set to 1) for all
comparisons, given that the relevance judgments provide no
useful information. Therefore, Axioms 1, 2, and 5 still hold.

3.3 Versions of the concordance function using
relevance to determine concordance

In contrast to the previous formulation, where item identity
defines concordance, the following definitions use relevance
values directly to determine the sign of c(i, j) to satisfy Ax-
ioms 3 and 4. That is, concordance is assessed based on how
relevance is ordered across the two rankings. To do so, a
slight shift in notation is required: while the base versions of
Kendall-style measures use x; to indicate the rank of element
i in x, the coefficients below use it to indicate the relevance
at index i in list x. This enables index-based relevance com-
parisons. This change is necessary because comparing the
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relevance of the same item across both lists provides no mean-
ingful information: if i and j denote items, then rel,, = rel,,
and relx]. = relyj. Instead, to capture differences in relevance
ordering between the rankings, the relevance values of the
items at particular indices must be compared.

Additionally, as mentioned in Section 3.1, a reversed rank-
ing of relevance judgments is only defined when the lists
contain unique values. As such, this limits the length for
perfectly inverse rankings to max_rel + 1 or less. Such be-
haviour is similar to 7, [18], which extends 7 for rankings
containing tied elements (two items are given the same rank)
by assigning a concordance score of 0. Therefore, if the rank-
ings include tied items, the lower bound of the coefficient,
—1, cannot be obtained. In the case of the following coeffi-
cients, if two elements have the same relevance score, they
will always be considered concordant according to Axiom 3,
preventing a correlation of —1.

3.3.1 Sign-based version. This version introduces a sim-
ple sign-based criterion for concordance, cs.(i, j), relying
only on whether the direction of change in relevance is con-
sistent across the rankings. The general form is derived from
the definition of Kendall’s 7, with some modifications to
more accurately reflect the interaction of ordered relevance
values. As such, cs.(i, j) is defined as:

1 ifsign(rely; — rely;) = sign(rely; — rely,)

a ifsign(rely; —rely;) =0

cse(i, j) = (7)

a ifsign(rely; —rely) =0

—1 otherwise,

where rel,, refers to the relevance of the item at index j in
list x. Therefore, the measure directly checks whether rele-
vance ordering between rankings x and y is preserved. To
satisfy Axiom 3, equivalent pairs in Equation 7 are assigned
scores of 1. Furthermore, a is a variable representing a par-
tial discordance in orderings, whose value must be set to
ensure the expectation of the coefficient is 0 for independent
rankings, according to Axiom 5. This property is carried
over from 7 and guarantees the measure is unbiased. To this
end, the interaction between the two sign functions can be
modelled as follows:

List x
+1 (0| -1
+1| 1 |a|-1
Listy | 0 | a |1 a
-1|-1|a| 1
Table 1. Values for ¢ (i, j) according to the values of the
sign functions for x and y, as presented in Equation 7.

Since both rankings are defined on the same relevance
scale with n = max _rel +1, their sign value probabilities are
symmetric: each has probability (}) = @ for +1,and n
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for 0. Furthermore, x and y are independent, such that the
joint probability of each cell in Table 1 is:

P;; = P[sign(x) = j] - P[sign(y) = i]. ®)

Therefore, the expected value of ¢, (i, j) is:

Eleseu )] = Y, Pij-ceeli, ). )
i,je{+1,0,-1}
Plugging in the values from Equation 7 and simplifying, a
can be expressed as a function of n by setting E[cs. (i, j)] to
0: .
a= 2 oD (10)
The complete working between Equations 9 and 10 can be
found in Appendix A.1.

Therefore, for a relevance scale between 0 and 3, the for-
mulation above yields a = —%. Intuitively, this aligns with
the piecewise definition in Equation 7: when one of the sign
functions is zero and the other is non-zero, the pair is neither
in full agreement nor full disagreement. In these cases, the
contribution is treated as a scaled discordance, reflecting a
partial misalignment.

Lastly, note that Axiom 4 is not satisfied by this concor-
dance coefficient. Given the total length of the rankings,
denoted by N, reversals in the global ordering must not only
consider the indices i and j, but also N — i and N — j. This
can be illustrated by the following example:

Xrel = <4’ 0,3, 1)!

Yrel = (3,1,4,0),

where y,.; is the reverse of x,.;. By only observing the first
two indices in both lists, it is impossible to establish that
the rankings are reversed. In fact, according to Equation 7,
their sign is concordant, thereby assigning it a 1. As such,
csc(ij) functions as a sign-based pairwise comparator that
captures local ordering agreement but lacks sensitivity to
full reversals. Nevertheless, this coefficient is valuable as a
foundational component: it provides an intuitive translation
of the concordance function used in Kendall’s 7, making it
a useful starting point for constructing more refined coef-
ficients. In particular, it can be incorporated into measures
with broader structural information, as shown in the follow-
ing subsection.

3.3.2 Augmented additive version. Extending the sign-
based approach, the additive concordance coefficient, de-
noted by ¢, (i, j), directly handles reversed rankings, as well
as introducing a linearly-decaying structure to differentiate
between partial and complete agreements.

0 if rely, = rely, = rely,_,
and relx, = VBlyJ = relwi/
and (rely, , # rely, , orrely, , #rely, )
Cac(i, J) = Y ese(i, jyN =i, N = j) - (i, j,N =i, N = j) if (rely, # rely, or rely, # rely;)
and ((rely, = relyy , and rely, = rely, )

or (rely, = rely,_, and rely, = relc, )

(11)

se(i, i j) - (i, ji i, ) otherwise
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As mentioned in Section 3.3.1, the reversal of a pair requires
the comparison of indices i and j to N —i and N — j. To this
end, c,c (i, j) can be redefined as a function of four variables:

1 ifsign(rely, —rely,) = sign(rely, —rely,)
el kD) = %f s?gn(relxj —rely,) =0
if sign(rely, —rely,) =0
—1 otherwise.

(12)
This coefficient is modulated in the second and third cases
by a relevance-based agreement factor, differentiating exact
matching and partial agreement:

(relxi + relxj) - (relyk + relyl)‘
r(i,j,k,1)=1-

rely, + rely, +rely +rel, (13)
where r(i, j,k,I) € [0,1]. As such, r(i, j, k, ) measures the
strength of relevance-based concordance at the given in-
dices, with values of 1 indicating total agreement. Therefore,
the multiplication of c;. by r considers the worst possible
ordering to be the reversal of two elements, while greater
distances are assigned lower magnitudes of the coefficient.
In terms of similarity, the former is a complete disagreement,
while the latter suggests weaker comparability.

Taking note of the conditions in Equation 11, each case
serves to classify a pair (i, j) as contributing to an equivalent
ranking, a reversed ranking, or neither, thereby satisfying
Axioms 3 and 4.

The third case of the piecewise function is the default: it
applies when none of the more specific conditions are met.
In this case, if rel,, = rel,, and relxj = relyj, then the items
at positions i and j in list x agree with those at the same
positions in list y, and thus c,. (i, j) = 1, representing full
concordance.

The second case handles reversed rankings. This occurs
when rely, = rely, , and rel,; = rely, ., indicating that the
items at i and j in x match those at N —iand N — j in y,
suggesting a reversed ordering. Additionally, to avoid con-
sidering elements in ranking y twice, the constraint (rel,, =
rely, , and relyj =rel, _J.) checks whether indices i and j
are part of a reversed pair. If this is satisfied, ¢ - r is once
again computed using (i, j, N — i, N — j). This case also in-
cludes a negation: it applies only if at least one of the items
differs between the two lists at the same index: rely, # rely,
or rely; # rely;. This, in conjunction with the condition de-
scribed in the following paragraph, prevents overlap with
the third case when the lists are potentially equivalent.

The first case further resolves ambiguity when both agree-
ment and reversal conditions appear to be satisfied. Specif-
ically, if rely, = rel,, = rely,_, and rel,, = rel,, = rely,_,,
the pair may satisfy both concordance and reversal. A ter-
tiary check is then used to determine if the lists are truly
equivalent: the values at N — i and N — j must also match in

both lists, such that rel,,_, = rel,,_, and relfoj = relnyj.
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If this is not the case, the pair is considered ambiguous and
is assigned a neutral score of 0. This is illustrated by the
following example:

Xrel = <3, 2,0,3, 2>» Yrel = <3, 2,0,2, 3>-

Considering indices i = 0 and j = 1 rely, = 3 = rely, = rel,,,
and rel,, = 2 = rel,, = rel,,, suggesting both agreement
and reversal. However, the tertiary check reveals:

rely, =2 #rely, =3, rel,, =3 #rel,, =2.

Since the corresponding elements at N—i=4and N—j =3
do not match, the rankings are neither truly equivalent nor
fully reversed. As a result, the first case applies, and the pair
is assigned a neutral score of 0.

Lastly, it is important to note that, due to the conditions im-
posed on the piecewise function, the choice of a = —m
does not ensure that cs(i, j, k,[) is unbiased for indepen-
dent rankings. Since the function depends on conditionals
for both x and y, the probabilities of each cell in Table 1
can no longer be calculated separately for each list. This is
further exacerbated in ¢, (i, j) by the agreement factor, r,
whose scaling also depends on the values of both rankings.
Therefore, mathematically deriving the value of a such that
Equation 11 maintains an expectation of 0 for independent
rankings is outside the scope of this research project, and
is left as future work. However, using the independently
simulated rankings described in Section 4.2, a is empirically
set to —0.7 for n = 4 and —0.58 for n = 5. These values are
chosen to ensure that the average correlation value across
all 7 variants for this dataset is approximately equal to that
of ¢sc (i, j), which is unbiased by construction. By extension,
therefore, ¢, (i, j) is approximately unbiased for relevance
scales of lengths 4 and 5.

4 Experimental Setup and Results
4.1 Real-world data

The TREC (Text REtrieval Conference) Web Track data from
2010 to 2014 [3] consists of benchmark datasets and evalua-
tion resources designed to support research in information
retrieval. Using collections of crawled web pages, the ad hoc
retrieval task involves finding documents relevant to a query
without knowledge of their ground-truth utility. Participants
submit retrieval runs, which are evaluated against relevance
judgments provided by the National Institute of Standards
and Technology (NIST). Over the 5-year span, approximately
150 systems containing rankings of the top 1000 items for
50 topics have been made available. Therefore, the rankings
and item-relevance value mapping are used to validate the
extended correlation coefficients against a real-world bench-
mark. Note that max_rel is 3 for the 2010 and 2011 datasets,
whereas it is 4 for the remaining 2012 to 2014 period. Fur-
thermore, any ties in a ranking, corresponding to items with
the same score, are randomly broken using a seed set to 42,
ensuring reproducibility. Lastly, 7 and its derivatives require
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that the lists are conjoint. By preprocessing every pair of
rankings to satisfy this constraint, each list often contains
significantly fewer than 1000 items.

4.2 Stochastic simulation of ranking profiles

To further test the behaviour of the proposed coefficients
over a range of diverse systems, stochastically simulated
rankings can be generated using an adaptation of the NSGA-
IT evolutionary algorithm [4] as presented by Roitero et. al
[14], using the jMetalPy framework [1]. In contrast with real-
world data, each parameter in the simulation can be tuned,
allowing a controlled experimentation environment. For the
results obtained in the following section, each relevance
profile is represented by an integer array of length 50, with
elements bound to the interval [0, max_rel]. As is common
practice, max_rel = 3 for the stochastic data.

The initial population consists of a set of profiles charac-
terised by an array R = [Ry, Ry, . . ., Rmax_rei], where each R;
denotes the maximum number of documents with relevance
value i. This constraint is further enforced throughout the
evolutionary process. Initially, each rank is given a value
based on the following probability:

(rel+1) (rank—0.1-N)

P(rel,rank) = e~ 2N | (19)
defined for each possible relevance judgment, rel, where
rank is the index of the current item, and N is the length
of the list. This formulation, along with the population rep-
resentation and the anDCG fitness function, are original
contributions of this work. On the other hand, the genetic
mutations of rankings are adapted from the work of Roitero
et al., allowing different profiles to be generated. Specifically,
crossovers add or multiply elements from two parent arrays,
and mutations randomly swap two elements or add a ran-
dom value to an item. Lastly, different systems are simulated
by randomly generating a target average nDCG (anDCG)
value [7] in the range [0.1, 0.9], which is defined as the mean
of the nDCG scores over all possible depths in the ranking.

Specifically, the nDCG at rank p is given by nDCG,, = %,
where IDCG,, is the maximum possible DCG (ideal DCG) at
p, computed by sorting the relevance scores in decreasing or-
der. Additionally, the DCG at rank p is DCG,, = 3F_, log;e%l)’
where rel; is the relevance score of the item at rank i.
Using the simulated profiles obtained as described above,
a semi-random ranking is achieved via a correspondence
between random hashes and relevance values. As such, each
item in a profile is given a unique hash selected from a pool
associated with its relevance level, preserving the relevance
distributions. This mapping allows lists to be compared and

evaluated as rankings of distinct, relevance-labelled items.

4.3 Results

Although the reasoning behind the coefficients proposed in
Section 3 is described in detail, it is crucial to understand
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(a) dw variant (Equation 6) using item-based concordance, with
relevance as a weighing factor.

(b) ac variant (Equation 11) using relevance-based concordance.

Figure 1. Comparison of 7, 74y, and 7, (left to right) to the
proposed coefficients for the 2010 - 2014 TREC data.

their behaviour using the collected ranking data. To this end,
the concordance functions form two new similarity measures
for each variant of 7. Namely, dw denotes the distance-based
version of c(i, j) that uses relevance as a weighing function
(Equation 6), while ac refers to the augmented additive ver-
sion of ¢(i, j) that uses relevance to determine concordance
(Equation 11). As such, a comparison to 7, 7,5, and 73 is
made to grasp the impact of relevance-based measures on
the similarity evaluation. Specifically, a significant differ-
ence between the base and relevance-aware coeflicients is
expected, given that relevance values capture information
regarding utility, rather than a strict item ordering.

Figure 1 illustrates the transparency scatter plots compar-
ing the proposed coeflicients to the Kendall-type variants,
aggregated over all system comparisons for the 2010 to 2014
TREC data. Specifically, Figures 1a and 1b demonstrate the
scatter plots comparing the dw and ac variants, respectively,
to 7, 74p, and 7, from left to right. As such, the points in
a given plot represent the paired values of a base metric
and its relevance-aware counterpart for two systems over a
particular topic, with lower transparency indicating higher
frequency. Additionally, the diagonal red line represents the
identity line, such that points deviating from it reflect the
extent to which incorporating relevance affects rank correla-
tion.

Comparing the behaviour of the dw and ac variants in Fig-
ure 1, the former generally shows higher agreement with the
baseline metrics. This indicates that maintaining the item-
based concordance and introducing a distance-based weight-
ing causes a relatively modest shift in correlation. Notably,
however, the dw variant produces a significant quantity of
+1 outcomes. This can be attributed to the fact that pairs
with the same relevance value are not considered: given that
their utility is the same, their ordering does not matter in
evaluating relevance similarity between lists. In contrast, the
ac variant, which uses relevance to determine the sign of
the concordance coefficient, differs substantially from the
Kendall-style measures. Given that item-identity, the core
of 7 and its variants, is discarded, c,.(i, j) is expected to
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(a) dw variant (Equation 6) using item-based concordance, with
relevance as a weighing factor.

(b) ac variant (Equation 11) using relevance-based concordance.

Figure 2. Comparison of 7, 74y, and 75, (left to right) to the
proposed coefficients for simulated data.

produce significantly different interpretations of similarity.
These trends can be confirmed numerically by comparing
the absolute differences between the base and relevance-
aware variants, as shown in Table 2 of Appendix A.2. For
instance, considering Kendall’s 7, the average difference in-
creases from 0.14 for |t — 74| to 0.39 for |7 — 74|. This
pattern is further observed for all variants of 7, as well as in
the proportion of large differences (in (0.1, 2]).

Furthermore, as discussed in Section 3.3, never ac attains a
score of —1. This is because the maximum relevance score in
the TREC datasets is 3 or 4, depending on the year, while the
length of common items is greater. Thus, many documents
share the same score, preventing complete discordance. On
the other hand, a significant number of rankings in Figure
1b return 1, while the base coefficients do not. These indicate
that many rankings are fundamentally the same, regard-
less of the underlying ordering of the elements. This can be
partially attributed to the fact that, on average, more than
half of the available documents in the TREC dataset have
a relevance of 0. As a result, ranking pairs with few non-
zero relevance scores and many zeros are likely to contain a
large number of concordant items based solely on relevance
ordering.

In addition, Figure 2 illustrates the transparency scatter
plots for the simulated data. Generally, similar trends are
observed as with the TREC data, with the dw variant ex-
hibiting the least variation. In contrast, the relevance-based
concordance variant shows larger deviations, differing by
more than 0.1 in over 65% of comparisons to all Kendall-
style measures (the full numerical results can be found in
Table 3 of Appendix A.3). Notably, however, the ac variant
tends to produce more positive correlation values. While
dw averages approximately 0.0 across all 7 types for this
dataset, ac has a higher mean of 0.09. This difference can be
attributed to the fact that, although the underlying items are
randomised for each ranking, the distribution used to gener-
ate each relevance value remains unchanged. As a result, the
relevance-based concordance function is more likely to pro-
duce concordant pairs on average. Furthermore, given that
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tau: sc vs ac

Figure 3. Comparison of the sc and ac variants using simu-
lated data.

the simulations generate independent rankings, the range of
7 similarity is limited to approximately [-0.6,0.6], centred
around 0.

Lastly, an interesting comparison can be made between
the sign-based concordance (sc, Equation 7) and augmented
additive concordance (ac) coefficients, given that they both
solely rely on relevance values. To this end, Figure 3 com-
pares these variants, using the simulated data to compute the
relevance-aware measures of 7. Generally, the plot demon-
strates a high agreement for correlation values close to 1,
with gradually increasing spread for rankings with more
discordant pairs. This effect can be explained by the inclu-
sion of the agreement factor in the ac coefficient, r, which
generates a range of values in [—1, 1] rather being limited
to —1,1, or a. Furthermore, the points in Figure 3 seem to
be slightly skewed upwards compared to the identity line.
This is supported by the average coefficient values: the con-
cordance measure cg (i, j) yields an average of 0.08, while
cac(i, j) gives a slightly higher mean of 0.09. This highlights
the limitation of empirically setting the value of a for the
additive variant, as the measure still demonstrates a small
degree of bias for n = 4.

5 Discussion

The empirical analysis conducted using real-world and sim-
ulated data shows that integrating relevance values into
rank correlation measures yields significantly different co-
efficients compared to traditional Kendall-style measures.
From a practical standpoint, this result underscores a limi-
tation of traditional rank correlation metrics when applied
in information retrieval settings: they fail to capture how
systems rank items based on their utility. In contrast, the
proposed relevance-aware coefficients provide a more nu-
anced measure, distinguishing orderings that agree not only
in rank positions but also in how similarly they identify
element relevance.

Furthermore, the choice of concordance function has a
measurable impact on sensitivity. Notably, the additive vari-
ant (ac) produces the greatest deviation from traditional met-
rics by fully decoupling rank similarity from document iden-
tity. In contrast, the distance-weighted variant (dw) main-
tains a partial connection to item order. As such, correlation
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measures can be selected based on the specific research ob-
jective, using either item identity or utility to determine the
sign of the concordance function.

Additionally, an adaptation of the stochastic simulation
algorithm to relevance profiles has been presented to comple-
ment real-world data. Using tunable parameters, realistic sys-
tems can be generated with specific rank-based distributions.
However, a significant limitation of the implementation re-
mains: each system is simulated independently, limiting the
range of correlation values to around 0. To partially compen-
sate for this, shorter list lengths were used to obtain more
distinct rankings, although, as previously mentioned, the full
[—1, 1] range could not be achieved.

It is important to note that the correlation coefficients pro-
posed in this work may not be suitable for all use cases. In
particular, the relevance-based concordance measures have
been designed to satisfy Axioms 3 and 4. While these provide
a principled approach, they may not align with scenarios
where greater emphasis should be placed on highly relevant
documents, for instance. Moreover, the reversal property
described in Axiom 4 introduces significant complexity: it re-
quires the coefficient to account for positional changes across
different indices in the rankings, resulting in a piecewise for-
mulation with several conditions as shown in Equation 11.
This not only reduces interpretability but also introduces in-
terdependencies between rankings, making it more difficult
to define an unbiased measure. Despite these limitations, it
is hoped that the proposed coefficients can still serve as a
framework for other relevance-based extensions of correla-
tion.

6 Conclusion and Future Work

In conclusion, this study has extended Kendall’s 7 and its top-
weighted variants to account for graded relevance judgments
in ranking profiles. By introducing alternative definitions
of the concordance function, the proposed coefficients in-
corporate the ordering of item utility following two distinct
approaches.

Generally, the results obtained across TREC and simu-
lated datasets confirm that relevance-aware measures di-
verge meaningfully from their traditional counterparts, par-
ticularly when relevance is used to determine concordance.
These findings emphasise the need for relevance-sensitive
evaluation in IR research, enabling a more complete and
fine-grained similarity analysis based on the item utility.

Future work can proceed along several directions. First,
a mathematically derived unbiased variation of the c,. (i, j)
concordance coefficient may be investigated. Furthermore,
an analysis of the stability of the proposed measures, as in the
work by Buckley and Voorhees [2], may indicate how well
relevance scores can discriminate between different systems.
Lastly, exploring the integration of these coefficients into IR
evaluation libraries, such as ircor [16], may facilitate their
practical adoption.
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7 Responsible Research

Given that this work solely involved redefining and test-
ing correlation coefficients, there were few ethical concerns
throughout the research process. Of note, however, is the
reproducibility of all aspects of the paper, such that a fellow
researcher can independently recreate what is described. To
facilitate this, the stochastic simulations and computation
of the results in Section 4 were performed using code that
has been made publicly available on GitHub!. A ReadMe
file detailing the structure of the codebase used to compute
the coefficients has been added, ensuring that all findings
can be reproduced with relatively little effort. Furthermore,
the simulation algorithm is an adaptation of the work par-
tially presented by Julian Urbano, a supervisor of this paper.
Therefore, given their expertise, there was a bias towards
choosing that particular algorithm, and other alternatives
were not thoroughly considered. In addition, as the stochas-
tic ranking generation is also a contribution of this paper,
the codebase contains significant documentation, allowing
the reader to gain a full understanding of the simulation’s
inner workings.
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A Appendix A
A.1 Working between Equations 9 and 10

Starting from equation 9:

E[Cij,sc] = Z

i,je{+1,0,—1}

Pij - cijse-

Using the values from Table 1, we can organize the terms as
follows:

E[cij,sc] = Py+Dx+ - 1+Py+px0 ca+PyiPx- - (_1)
——— —————— S —————
(+1,41) (+1,0) (+1,-1)

+ PyoPx+ * A+ Pyopxo - 1+ pyopx— - a
—_— — — —,  —
(0.+1) (0,0) (0,-1)

+py-Pxv - (=) +py-pxo - a+py-px—-1.
— — )
(—1,+41) (-1,0) (-1,-1)

Grouping the coefficients of 1, a, and —1 terms:

E[cijsc] = (Py+Px+ + PyoPxo + Py-px-) -+ 1
+ (PysPx0 + PyoPx+ + PyoPx— + Py-Pxo) - @
+ (PysPx— + Py-px+) - (=1).
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Substituting the expressions for the probabilities:

n(n-1)
Px+ = Px— = Py+ = Py- = Y

Pxo = pyO =n
Computing each group of terms:

e Terms with coefficient 1:

n(n2— 1) )2 2

n(n—1) 2
(5

=n2+2.(M)2

Py+Px+ +Py0px0 +Py—px— = (

2

e Terms with coefficient a:

n(n-1)
Py+Px0 + PyoPx+ + Pyopx— + Py-px0 =2 | ——/— - n

2
+2- n_—n(n—l)
2
:4.@
2

e Terms with coefficient —1:

2 2

B n(n—1) 2
—2'(7)

Py+Px-+P p+_2.(—n(n—l).—n(n—l))
y+Px— y—Px+ =

Summing these:

2
Elcijse] = (n2 +2- (@) ) 1

+(4M)a
2

n(n-1) 2
{2

Cancelling out the positive and negative contributions from
the squared terms:

2.(@)2_2.(@)2:0

We are left with:

n*(n—-1)
el S

E[Cij,sc] =n’+4- 5

Simplifying to:
Elcijsc] = n?+2n%(n-1)-a.

To ensure the coefficient is unbiased for independent rank-
ings, the expected value must be zero:

n+2n’(n—1)-a=0
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Lastly, solving for a:
2n’(n—-1)-a=-n?
1
T 2n-1)
Which is the final result in Equation 10.

A.2 Absolute difference metrics between the base
and relevance-aware coefficients for 2010 - 2014

TREC data
Target | Variant Avg. | Max. M L
17— gl 0.14 | 1.58 | 27.90% | 49.11%
T
T = Tac] 039 | 2 |11.34% | 77.71%
. Tap = Tapawl | 012 | 1.59 | 34.09% | 42.73%
P |tap — Tapacl | 037 | 2 | 13.76% | 75.35%
. [T — Thawl | 0.18 | 1.62 | 22.33% | 55.35%
b o~ el 040 | 2 | 11.82% | 77.57%

Table 2. Summary of differences for 7, 7,,, and 73, for 2010 -
2014 TREC data. M represents medium absolute differences
in (0.01,0.1], and L represents large differences in (0.1, 2].

A.3 Absolute difference metrics between the base
and relevance-aware coeflicients for simulated

data
Target | Variant Avg. | Max. M L

. I = 74wl 0.09 | 1.08 | 62.41% | 26.05%
|7 — 7qcl 0.21 | 1.23 | 30.25% | 66.27%
. Tap = Tap.awl | 010 | 0.94 | 59.02% | 31.61%
P | |tap — Tapacl | 021 | 1.25 | 30.56% | 65.89%
N 1Ty — Th.dwl 0.10 | 1.21 | 60.85% | 28.69%
ITh — Thacl 0.24 | 1.28 | 24.38% | 72.66%

Table 3. Summary of differences for 7, 7,5, and 7, for sim-
ulated data. M represents medium absolute differences in
(0.01,0.1], and L represents large differences in (0.1, 2].
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