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2 1. INTRODUCTION

1.1. BACKGROUND
Problems involving large deformations are of great interest and concern in the geome-
chanics field, such as slope collapses, landslides, and so on. Efforts have been made
in understanding the mechanics, both numerically and experimentally (Cascini et al.,
2009; Locat et al., 2011, 2013), in order to make more reliable predictions of these catas-
trophic events. Unfortunately, traditional numerical methods, e.g. the finite element
method (FEM), often experience mesh distortion problems in cases of large deforma-
tions, which may compel analyses to abort abruptly or give misleading results. Various
numerical methods have therefore been proposed and utilised for solving large defor-
mation problems in soil mechanics, with each having their own pros and cons. A sum-
mary of some available contemporary numerical methods for the purpose of large strain
analyses is made first in the following brief introduction, which leads to the choice of
the implementation of the material point method (MPM) in this thesis. The state of the
art in slope instability analyses is provided later in the section, where it is found that
many theories on failure propagation are based on the back analysis of case histories.
Hence, investigations into slope failure mechanisms by using numerical tools, covering
both failure initiation and propagation, are highlighted.

1.1.1. SUMMARY OF NUMERICAL METHODS FOR LARGE STRAIN ANALYSES

The discrete element method (DEM) has been widely accepted as a useful tool in the
engineering field for analysing granular flows, landslides, etc. An assemblage of rigid
or deformable blocks/particles, together with the contacts between them, are used to
represent soil behaviour in the domain of interest (Jing, 2003). During the deformation
process, the contacts are continuously updated. By reducing the size of the particles, a
grain level description of the material can inform macro-scale variables, which provides
an important connection between micro and macroscopic theories (Soga et al., 2015).
Although there are advantages of DEM in many applications, especially in rock mechan-
ics, it suffers intensive computational costs and scores badly in handling boundary con-
ditions. Moreover, the macroscopic responses of materials are strongly influenced by
different packing assemblies of particles (Wang and Tonon, 2009; Hentz et al., 2004).

The arbitrary Lagrangian-Eulerian (ALE) method combines advantages from two for-
mulations, i.e. Lagrangian and Eulerian. The ALE method has been developed based
on the idea of decoupling the material displacement and mesh displacement to elim-
inate mesh distortions (Nazem et al., 2009), which thereby introduces two sets of un-
known displacements in the global equations. Liu et al. (1986) applied the method to
solid mechanics, in which the path-dependent material displacements are solved si-
multaneously with the mesh displacements, this ALE strategy being referred to as the
“coupled” technique. However, the “decoupled” or “operator-split” technique has been
more widely used due to its reduced computational cost (Benson, 1989). This involves
two steps: an updated Lagrangian (UL) step followed by a convection step. Ghosh and
Kikuchi (1991) presented a coupled ALE formulation for solving problems in metal form-
ing processes. Nazem et al. (2008) generalised the method to consider consolidation
problems accounting for coupled hydromechanical effects. However, because of the La-
grangian boundary condition restraints, mesh distortion is still observed for large defor-
mation problems using this method (Soga et al., 2015).
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The smoothed particle hydrodynamics (SPH) method was initially proposed for as-
trophysical applications (Lucy, 1977), in which a group of particles representing the con-
tinuum carries the field variables, such as mass, density, stress, etc. The equations for the
continuum are converted into equations of motion for the particles, and solved by us-
ing the updated Lagrangian scheme (Bui et al., 2008). The continuous fields are taken
to be interpolated from various particles through a weighted summation, which is de-
scribed by using an assumed kernel function related to the spatial distance, also called
smoothing distance, between the particles. In comparison to traditional grid-based nu-
merical methods, SPH does very well in handling large deformation problems and de-
scribing post-failure mechanisms, and in modeling complex free surfaces, as well as be-
ing amenable to incorporating complicate physics (Bui et al., 2008). The propagation of
catastrophic landslides has been analysed using SPH (Rodriguez-Paz and Bonet, 2005;
McDougall and Hungr, 2004), but without taking hydro-mechanical coupling into con-
sideration. However, Bui et al. (2011) extended the SPH formulation by including the
pore water pressure for discontinuous slope failure simulation, and Pastor et al. (2009,
2014) further developed a depth-integrated, coupled, SPH model to consider flow-like
landslides. However, intensive searching for the neighboring particles after each time
step makes the method very time-consuming and, to ensure consistency among the par-
ticles, sufficient numbers of particles are needed which is hard to determine a priori.
Tensile instability is also found in the code performance, which can cause numerical
fractures in the continuum.

The coupled Eulerian-Lagrangian (CEL) approach also captures the strengths of the
Eulerian and Lagrangian formulations. It shows an advantage in modeling soil-structure
interactions, where the structure can be modeled in the Lagrangian framework, while the
soil is tracked as a Eulerian material as it flows through the Eulerian mesh by computing
its Eulerian volume fraction (EVF) (Qiu et al., 2011). EVF = 1 means that the element is
fully filled with soil, while EVF = 0 is for an empty element. A percentage is designated
for each element, representing the portion of the element filled with the material (soil).
The interface in between the soil and the structure is explicitly accounted for by taking
it to be the boundary of the Lagrangian domain; as the Lagrangian mesh moves together
with the material node, it is able to precisely track and define the interface, which shows
the main advantage of the approach. Pile jacking, ship grounding, and spudcan penetra-
tion have been modeled using this approach (Qiu et al., 2011; Tho et al., 2012), while Dey
et al. (2013, 2015) investigated the progressive failures of sensitive clay slopes leading to
spread. However, due to the Eulerian description of the material, additional advection
terms have to be included for the transfer of the nodal quantities, and greater computa-
tional time is required.

The particle finite element method (PFEM) is an evolution of the work for the solu-
tion of fluid-solid interaction (FSI) problems using Lagrangian finite element and mesh-
less methods (Oñate et al., 2004). To eliminate the convective terms in the fluid equa-
tions and other associated problems, both the fluid and solid are represented using the
Lagrangian formulation. Compared to the particle method (e.g. SPH), the nodes of the
mesh act as the particles instead and these carry all the state variables, such as den-
sity, velocity, stress, etc. An extended Delaunay tessalation (mesh regeneration) tech-
nique (Idelsohn et al., 2004, 2006) is used to move the mesh nodes for large motions of
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the mesh. Both the fluid and solid domains are solved as in the standard updated La-
grangian finite element method (UL-FEM), with each single node being tracked. It pro-
vides an efficient way for solving contact and free-surface problems, highly simplifying
the treatment of FSI (Idelsohn et al., 2006). More recently, Zhang et al. (2015) applied the
method to simulate slope instabilities, covering both failure initiation and propagation.
However, due to the large mesh distortions, remeshing may be a frequent necessity with
time, which can be very time-consuming and thereby limits the scale of the simulation.

The material point method (MPM) makes use of two formulations, i.e. Eulerian and
Lagrangian. It is considered to be a FEM variant (Wang et al., 2016c), which utilises two
discretisations: one represented by the material points, that is, the Lagrangian mesh;
and the other by the background mesh, that is, the Eulerian mesh. The information
associated with the problem is stored at the material points and tracked through the
whole computation. When subjected to loading, the material points can move freely
through the background mesh. The mesh is used only for the computation and can be
reset regularly. Based on the way the governing equations are solved, either explicitly
or implicitly, MPM can be divided into two categories: implicit and explicit MPM. Since
its invention (adaptation) for solid mechanics in 1994 (Sulsky et al., 1994), a wide range
of applications have used the method, including wave breaking on a dyke (Jassim et al.,
2013), snow simulation in the cartoon film “frozen” (Stomakhin et al., 2013), levee failure
propagation (Bandara and Soga, 2015), and 3D analyses of the mechanics of vascularized
scaffolds under tension (Guilkey et al., 2006).

In contrast to the other numerical methods mentioned above, several advantages of
MPM can be summarised: 1. MPM can be easily converted from a FEM code, as it is
basically a FEM variant; 2. there is no need to transfer information between the nodes
(with the information stored on the material points), which improves the solution accu-
racy and is more time-efficient; 3. handling boundary conditions is substantially easier
than in DEM and SPH, as the tractions and displacement boundaries can be applied
to the boundary particles or to the boundary layers (Chen and Brannon, 2002) directly,
without using the information from neighboring particles.

1.1.2. SLOPE FAILURES

Informally, “a movement of a mass of rock, earth or debris down a slope” is defined as
a landslide (Cruden, 1991). Based on the type of material (e.g. rock, soil) and the mode
of the movement (e.g. falls, slides) involved, various types of landslides have been iden-
tified (Cruden and Varnes, 1958; Varnes, 1978; Hungr et al., 2014). The corresponding
failure mechanisms, mostly through the back analysis of case histories, are also diverse
and complicated, due to the interactions of adjacent sliding bodies (Hungr et al., 2014). A
number of related descriptions are summarised (Cruden and Varnes, 1958), such as ad-
vancing, enlarging, progressive or retrogressive. If an initial slide occurs and the material
in the failure flows away, which is usually caused by a high degree of strength loss, a steep
main scarp will usually be formed and, therefore, support from remaining soil will be re-
moved. This can result in another failure, termed a retrogressive failure. This process can
repeat itself in a multiple-retrogressive fashion and can result in a bigger landslide. The
recent Oso landslide in Washington was observed to have multi-rotational retrogressive
failures in parts and large translational slides in the longer slopes (Keaton et al., 2014), as
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(a) Oso landslide, USA, March 22, 2014 (Keaton et al., 2014)

(b) Qianjiaping landslide, China, June 10, 2003 (Wang
et al., 2004)

Figure 1.1: Typical slope failure modes

shown in Fig. 1.1(a). Meanwhile, it should be noted that such strength loss during slope
failures does not occur instantaneously, but is associated with the magnitude of the plas-
tic shear strains. Hence the rupture surface normally propagates through the soil profile
in a progressive way, such as in the reported progressive failures of observed landslides
in Scandinavia and eastern Canada (Locat et al., 2011). Fig. 1.1(b) shows a typical failure
mode for a rock slope, where a large translational slide is shown to happen along the
layered weak bedding fault zones at the rear scarp; this landslide occurred very rapidly
and over 2000×104 m3 of soils slid into the reservoir, resulting in the deaths of 14 people
and over 2000 people homeless (Wang et al., 2004). The occurrence of toe erosion due to
a water level increase is considered as the main triggering agent for this landslide.

In slope (in)stability, thousands of studies have been carried out, but, in most cases,
these have been confined to the initiation of the slope failure. Limit equilibrium meth-
ods (LEMs), such as Fellenius’ method (Fellenius, 1936), Bishop’s method (Bishop, 1955),
etc., are favoured by many engineers, mostly for their simplicity. There are, however,
some deficiencies with regard to LEMs, such as the assumptions relating to the interslice
forces, zero deformation of the soil, and that the location and shape of the failure plane



1

6 1. INTRODUCTION

have to be assumed in advance. FEM combined with the strength reduction technique
(Griffiths and Lane, 1999) has been widely used to analyse slope stability, i.e. to calculate
the slope factor of safety (FOS). Also, for considering the spatial variations of soil material
properties in slope stability analyses, the random finite element method (RFEM), which
combines finite elements and random field theory (Fenton and Vanmarcke, 1990), has
been proposed (Hicks and Samy, 2002; Hicks and Onisiphorou, 2005). In this context,
reliability (or conversely, probability of slope failure) is proposed to more comprehen-
sively quantify slope safety. For example, the mean FOS for a heterogeneous soil slope is
found to be smaller than the deterministic solution based on the mean values of the soil
properties, due to greater relative influence of weaker zones (Hicks and Nuttall, 2012).

Investigations into the conditions triggering landslides have also been initiated (Dai
and Lee, 2001; Tsaparas et al., 2002; Kilburn and Petley, 2003; Lin et al., 2006), in order to
find efficient ways to mitigate landslides along with their significant impacts. Pore wa-
ter pressure elevation was generally accepted to be crucial for the instability of Mt. Toc
(Hendron and Patton, 1987), which catastrophically collapsed into Italy’s Vajont reser-
voir on 9 October 1963, claiming more than 2000 lives (Müller-Salzburg, 1964). Rain-
fall induced slope failures have also happened frequently. During and antecedent to a
rainfall event, with water infiltrating into the soil, slope failures may occur due to a loss
in matric suction due to the increasing degree of saturation. Many attempts (Ng et al.,
2001; Tsaparas et al., 2002; Rahardjo et al., 2007) have been made to investigate the in-
fluences of changing climatic conditions, infiltration characteristics, etc., on associated
slope failures. Earthquakes can also trigger serious coseismic landslides, as well as ex-
tensively disturb surface strata around the epicentral area. Lin et al. (2006) compared the
occurrence of landslides along the Choushui River, during the period from 1996 to 2001
(after the Chi-Chi earthquake) in central Taiwan, and found that the density of rainfall
induced landslides was significantly increased.

To conclude, factors, such as spatial variations of soil properties and rainfall, have
apparent and significant impacts on slope stability. So far, efforts to investigate these
problems have mainly been made using a small deformation analysis framework. How-
ever, by incorporating large deformation theory, the risk posed by potential secondary
failures (e.g. due to support being removed from the initial sliding blocks) of a slope fail-
ure mechanism can be more comprehensively quantified and understood. This helps
to mitigate or minimise the risk of potential damage. As stated above, mesh distortions
due to large deformations render FEM more limited in predicting the slope post-failure
behaviour. Remeshing techniques can be quite time consuming, and the resulting map-
ping of variables between nodes causes inaccuracies in the computation. In contrast,
compared to other contemporary numerical methods, MPM shows certain advantages
in some aspects, and has proven to be a reliable tool in capturing large deformations in
geomechanics (Al-Kafaji, 2013). Hence, MPM has been chosen and further developed in
this thesis, in order to provide a more complete description of slope failure mechanisms,
covering both failure initiation and the continuing development of the failure.

1.2. OBJECTIVES
The objective of this thesis is to provide a more complete and comprehensive under-
standing of slope failure mechanisms, covering both the failure initiation and the failure
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consequences. Factors to be examined include excavations at the slope toe, spatial vari-
ations of soil properties and rainfall.

In detail, three research components are presented in this thesis. Firstly, an implicit
material point method (IMPM) is developed, following standard FEM procedures where
possible, which aims to provide a straightforward framework for adapting an FEM code
into an MPM code. In this thesis, IMPM will be applied to the simulation of retrogressive
and progressive failures of a slope, giving a full description of the slope failure mech-
anism, from the onset of failure, to the failure propagation, until the final equilibrium
state is reached. Secondly, MPM will be extended and combined with random field the-
ory, in order to provide a strategy for studying the influence of spatial variability of soil
properties on the post-failure behaviour of slopes. Finally, for analysing the effects of
rainfall infiltration on the slope failure mechanism, a coupled material point method
(CMPM) will be developed by including the pore water pressure, via a velocity formula-
tion, in which both the solid and fluid phase velocities are the variables.

1.3. OUTLINE OF THE THESIS
Including this introduction, the thesis is arranged in six chapters, in which relevant liter-
ature is introduced in this chapter and given in detail in the following most appropriate
chapters.

An implicit material point method formulation is developed and described in Chap-
ter 2. The formulation refers to a framework in which both quasi-static and dynamic
problems can be solved. The derivation process, based on the finite elment method, is
detailed, in which three computation phases can be identified: i.e. the initiation phase,
the updated Lagrangian (UL) phase, and the convection phase. Examples of implicit
MPM in this chapter include quasi-static applications, in which a cantilever beam prob-
lem gives insight into the influence of the number of material points per element and an
extra background stiffness; and dynamic problems, comprising a vibrating bar and sand
column collapse. Comparisons with explicit MPM are provided at the end of the chapter,
which aim to highlight the advantages of implicit MPM, especially with regard to the size
of the time step.

By utilising the proposed implicit material point method, the retrogressive and pro-
gressive failure mechanisms of two types of slopes, which, for convenience, are called
“short slope” (slope height = 5.0 m) and “long slope” (down-slope length ≈ 25.0 m),
are investigated in Chapter 3. A simple cohesion softening model, coupled with the
Von Mises failure criterion, is presented to characterize the soil constitutive behaviour.
For the short slope, the influence of an excavation at the slope toe is first presented, to
demonstrate the ability of the method to quantify the consequence of a geotechnical in-
stability. A detailed collapse process is then modelled, which explicitly shows the slope
retrogressive failure mechanism. The slope failure initiation, and influences of softening
modulus and residual shear strength, are then investigated. For the long slope, the influ-
ence of slope angle is of primary concern, and shows a close relationship with the slope
failure type.

The random material point method (RMPM), which combines MPM with random
field theory, is presented in Chapter 4, and the basic difference from RFEM is illustrated.
A brief introduction to random field theory, and the local average subdivision (LAS) al-
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gorithm which is used for generating the random field, are first provided. The same two
types of slopes modelled in the previous chapter are investigated. For the short slope,
the sliding distances are recorded to quantify the risk posed by the ongoing failures. For
the long slope, the failure mechanism is mainly investigated by considering the influ-
ences of the horizontal scale of fluctuation, slope angle, and mean shear strength trend
with depth. Comparisons with determinstic analyses are also provided.

The research is extended to investigate a rainfall-induced slope slide using the cou-
pled material point method in Chapter 5. Existing multi-phase MPM theories are re-
viewed first, where the one-particle two-phase formulation proposed by (Al-Kafaji, 2013)
for modeling saturated soils is adopted and implemented in the research. For modeling
unsaturated soils, the formulation is extended by including the degree of saturation, al-
though the gas phase is not considered here for reasons of simplicity. An infiltration
problem is used to verify the extended formulation and then an analysis of a rainfall-
induced slope failure process is presented.

The concluding remarks of the research and outlook to future work are presented in
Chapter 6.



2
MATERIAL POINT METHOD

An implicit version of the material point method (MPM), a variant of the finite element
method (FEM), is presented in this chapter. The key feature of MPM is that the spatial
discretisation uses a set of material points, which are allowed to move freely through the
background mesh. All history-dependent variables are tracked on the material points and
these material points are used as integration points similar to the Gaussian points. A
mapping and re-mapping algorithm is employed, to allow the state variables and other
information to be mapped back and forth between the material points and background
mesh nodes during an analysis. The main purpose of this chapter is to provide a unified
MPM framework, in which both quasi-static and dynamic analyses can be solved, and
to demonstrate the model behaviour. The implementation closely follows standard FEM
approaches, where possible, to allow easy conversion of other FEM codes.

Parts of this chapter have been published in Computers and Geotechnics, 71, 159-167, 2016 (Wang et al.,
2016c).

9
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2.1. INTRODUCTION
In computational problems involving large-strains, such as granular flow or plastic form-
ing, the finite element method (FEM), which is most frequently used nowadays in such
analyses, may exhibit some disadvantages; i.e. the finite element mesh may suffer from
extreme distortions, sometimes causing the Jacobian matrix to be negative, so that the
calculation cannot continue. Given such a situation, other computational techniques
have started to be investigated and used.

Generally, the methods can be classified as either Eulerian or Lagrangian methods,
with each having its own advantages and disadvantages (Zhang and Chen, 2007). In Eu-
lerian methods, the description of motion is with reference to the spatial coordinates.
Attention is given to what is occurring at a fixed point in space as time progresses. This
approach is commonly applied in the study of fluid flow. One common example of a
mesh-based Eulerian method is the finite volume method (FVM). Moreover, as the com-
putational mesh is decoupled from the material, convective terms appear in Eulerian
FEM, introducing numerical difficulties because of the non-symmetrical properties of
the resulting governing equation (Donea et al., 2004).

In contrast, in Lagrangian methods the equations of motion are formed in terms of
the material coordinates. Attention is given to the material as it moves in space as time
progresses, and the results obtained are independent of the choice of initial time and
reference configuration. This method is normally employed in solid mechanics. The nu-
merical representation of a solid is assumed to be tied to the solid, and follows the body
as it moves through space and time. The updated Lagrangian finite element method
(UL-FEM) is a widely used method, in which it is assumed that the computational mesh
deforms together with the considered body, and all static and kinematic variables are
referred to the last calculated configuration in the solution. It performs well in defining
free surfaces and in handling history-dependent material behaviour. However, signifi-
cant mesh distortions can exist in large deformations, and mesh re-zoning and mapping
is usually needed, which is time-consuming and introduces errors.

Meshless methods do not use a mesh, and the material is often described by a cloud
of points. Each individual point represents a sub-region of the considered material. A
main feature of this kind of method is that all state variables are traced at the points, and
hence the problem of mesh distortion inherent in FEM is overcome. However, it has dis-
advantages with some problems yet unsolved, such as boundary treatments, large rota-
tions and interactions between different material phases. Moreover, the computational
efficiency of using meshless methods is very low (Belytschko et al., 1996)

By taking advantage of both Lagrangian and Eulerian methods, Sulsky et al. (1994,
1995) developed the material point method (MPM) for the simulation of the dynamic
deformation processes of solid bodies. Their work is based on the particle-in-cell (PIC)
method, which was proposed by Harlow (1964) in the 1960s for problems in fluid me-
chanics, and the motivation of the development was to simulate problems such as im-
pact/contact, penetration and perforation with history-dependent internal state vari-
ables.

MPM uses two spatial discretisations, as shown in Fig. 2.1. The first, in which state
variables are traced on a set of material points, takes a Lagrangian perspective and repre-
sents the body of the continuum, while the equation of motion is formulated and solved
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on the second, i.e. Eulerian, mesh (the background computational mesh). The com-
putational mesh maintains its original position, or is adjusted in an appropriate way to
avoid mesh distortion after each loading/time step, thereby removing the disadvantage
from FEM of extreme mesh distortion.

O

x

y

background mesh

Figure 2.1: Sketch of computational grid and material elements, in which the superscript “0” represents the
continuum initial state, “1” stands for the deformed state, and the background grid is used for the computation
(after Sulsky et al. (1994)).

Due to its unique features, the advantages obtained from using MPM are as follows
(Shin, 2009):

(a) It can simulate large deformations without mesh entanglement;

(b) It implicitly satisfies the conservation of mass;

(c) It allows the assignment of different constitutive relations to different material
points, which is useful for modelling composite materials;

(d) There are algorithmic similarities between MPM and other numerical methods, so
that existing theories for these methods can be applied to MPM;

(e) It can be adapted for parallel computation in a relatively easy manner.

It has been demonstrated that MPM is a very useful numerical tool in solving prob-
lems involving large deformations, and it has been applied successfully in many fields,
e.g. silo discharge (Wieçkowski et al., 1999), explosion problems exploiting its ability of
representing an arbitrary geometry (Henderson et al., 2000; Hu and Chen, 2006), crack
propagation (Nairn, 2003), large-scale response of cellular constructs in biomechanics
(Guilkey et al., 2006), and snow simulation in computer graphics (Stomakhin et al., 2013).
Applications in geotechnical engineering include retaining wall failures (Wieçkowski,
2004), modeling of anchor pull-out (Coetzee et al., 2005), soil column collapse (Ander-
sen and Andersen, 2009; Kumar et al., 2013), landslides and debris flows (Shin, 2009),
landslide-induced interactions with structures (Mast, 2013) and pile installations (Phuong
et al., 2014).
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Due to the way of solving the governing equations, MPM can be divided into two
categories; explicit and implicit MPM. MPM, so far, has been mostly developed within
the framework of explicit time integration, mainly due to its convenience in implemen-
tation. However, in terms of choosing the time step size and achieving a high accu-
racy in problems, especially those associated with plastic strains, it suffers from some
restrictions. Implicit MPM, employing an implicit time integration scheme, has been
developed more recently. Sulsky and Kaul (2004) adopted the Newton-Krylov technique
coupled with the conjugate gradient (CG) method to solve the governing equations in a
robust, matrix-free fashion. Guilkey and Weiss (2003) explicitly formed the tangent stiff-
ness matrix and used the Newton-Raphson iterative method together with a Newmark
integration scheme to solve the equilibrium equations in time. Wang et al. (2014) inves-
tigated different aspects of the algorithm in terms of accuracies and energy conservation
errors. Beuth et al. (2011) and Wang et al. (2013) presented some geotechnical applica-
tions, e.g. a soil slope stability problem, using a quasi-static MPM.

This chapter starts with a review of the explicit material point method, along with
various contributions through the years, and aims to clarify the basic principles of MPM.
An implicit MPM framework is then presented, in which quasi-static and dynamic prob-
lems can be solved. Details with respect to the formulation and implementation are
described. Numerical examples to verify the framework are provided at the end of the
chapter.

2.2. EXPLICIT MATERIAL POINT METHOD

This section reviews MPM with an explicit time integration scheme. A general compu-
tational cycle is given first, to illustrate the standard mapping and remapping procedure
between the material points and background computational mesh. The formulations
and discretisations of MPM are then provided. As stated in Sulsky et al. (1994, 1995),
three phases constitute a computational cycle, in which the key phase of solving the
governing equations on the background mesh according to the updated Lagrangian for-
mulation is introduced in detail in the following. Stress oscillations are reported to be
one of the main issues inherent in MPM (Bardenhagen and Kober, 2004); as stresses are
calculated directly on the moving material points using the nodal shape function dif-
ferentials of the background mesh, while low-order elements are normally adopted in
MPM for excluding the possible negative terms in the mass matrix forming process, the
discontinuities of the shape function gradients and the stresses between the elements
are thereby resulted. Some work has been carried out to modify the shape functions of
the background mesh in order to improve the accuracy of MPM stress integrations, and
this is presented in the last part of the section.

2.2.1. GENERAL DESCRIPTION

The main MPM algorithm for a single time/loading step is schematically shown in Fig.
2.2, which depicts the roles of both the material points and background computational
mesh. Three phases are identified: mapping phase, UL-FEM phase and convection
phase. In the first phase, Fig. 2.2(a), the state variables (e.g. velocities, accelerations,
etc.) are mapped from the material points to the nodes of the background mesh; in the
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second phase, Fig. 2.2(b), the equation of motion is solved over the background mesh by
utilising the UL-FEM to find the current acceleration, with the element integration being
based on the material points (rather than on the information mapped to Gauss points);
and, in the third phase, Fig. 2.2(c), the state variables on the material points are updated
via remapping from the deformed background mesh, and the mesh is then reset, leaving
the material points at their updated locations. These phases are repeated until the end
of the time/loading steps.

Connectivity can be set up between the material points and grid nodes, and thus
information can be mapped back and forth between them. It is also worth noting that,
due to the different ways that may be adopted for solving the equation in time in the
second phase, the formulation can yield either implicit or explicit MPM approaches.

(a) Mapping phase

(b) UL-FEM phase (c) Convection phase

Figure 2.2: Computational cycle of MPM. (a) A set of material points representing the material, overlaid on
a background computational mesh. Material properties, constitutive models and other state information are
assigned to, and stored only on, the material points. Information is transferred to the nodes of the background
mesh for computational purposes. (b) The equations of motion are solved on the background mesh, utilising
UL-FEM. (c) The state of the material points is updated, and the background mesh reset.

2.2.2. FORMULATIONS OF EXPLICIT MATERIAL POINT METHOD
By applying the mass and momentum conservations, the governing differential equa-
tions at the continuum scale are

dρ

d t
+ρ∇v = 0 (2.1)

ρa =∇σ+ρb (2.2)

which also require a constitutive equation to describe the stress-strain behaviour. In
Eqs. (2.1) and (2.2), ρ is the mass density, v is the velocity, a is the acceleration, σ is a
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symmetric stress tensor and b is the body force due to, for example, gravity. Note that all
these variables are functions of time and the positions of the material points.

Eq. (2.1) is automatically satisfied, as the spatial discretisation of the material leads
to each material point having a mass which is fixed in time. Before each time/loading
step, information is transferred to a background computational mesh from the mate-
rial points. This mesh should be large enough to cover the moving trajectories of all the
material points, and the details of its specification are chosen for computational con-
venience. With regard to the momentum equation, Eq. (2.2), by applying the principle
of virtual displacement, followed by the use of the divergence theorem, the equilibrium
equation expressed in the weak form (Bathe, 1996) is given by∫

Ω
ρωadΩ=−

∫
Ω
ρσ : ∇ωdΩ+

∫
Sc
ρcsωdS +

∫
Ω
ρωbdΩ (2.3)

whereω denotes the test function, which is assumed to be zero where the displacement
boundary conditions are prescribed, σ is the Cauchy stress,Ω represents the configura-
tion of the continuum body, and Sc is the boundary subjected to a prescribed traction
cs .

To solve Eq. (2.3), it must be spatially discretised. MPM discretises a continuum
body in the original configuration into a group of Np material points which move due to
the deformation process. Usually, MPM treats each point as a mass, without a defined
shape but occupying space; for example, the material point mass can be assigned by
integrating the continuum properties over the space, i.e.

mp =
∫
ρ(x, t )δ(x−xp )dVp (2.4)

and

Np∑
p=1

mp =
Np∑

p=1

∫
ρ(x, t )δ(x−xp )dVp =

∫
ρ(x, t )dΩ (2.5)

where mp is the mass associated with the material point p, δ is the Dirac delta function,
Vp is the material point volume, Np is the number of material points, x is the current
position of any point in the continuum and xp denotes the current position of material
point p.

Hence, Eq. (2.3) can be discretised similarly by summing the material properties over
the material points, namely

Np∑
p=1

mp [ω(xt
p )a(xt

p )] =
Np∑

p=1
mp [−σ(xt

p ) : ∇ω|xt
p
+ω(xt

p )cs (xt
p )h−1 +ω(xt

p )b(xt
p )] (2.6)

where h is the thickness of the boundary layer. The interactions between material points
are described by utilising the shape functions from the background computational mesh.
In this case, the shape functions are the same shape functions as used for FEM.
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The spatial coordinates of a material point at time t can then be recovered, by using
the shape functions, as

xt
p =

Nn∑
i=1

Ni (xt
p )xt

i (2.7)

where Ni (xt
p ) are the shape functions associated with spatial nodes i and xt

i are the nodal
coordinates. Kinematic compatibility requires that the shape functions move along with
the material, as in the updated Lagrangian framework; that is, the shape functions must
be independent of time. Therefore, all the kinematic variables can be represented in the
same way as for the coordinates in Eq. (2.7).

By using standard FEM procedures and the MPM equations developed above, the
final discretised governing equations can be written as

Mi at
i = (Ft

i )
ext − (Ft

i )
i nt = Ft

i (2.8)

where Ft
i is the resultant nodal force, and (Ft

i )ext and (Ft
i )i nt , respectively, represent the

external and internal forces acting on the node i . For a detailed derivation of the process
and expressions for the matrices, readers can resort to Sulsky et al. (1994, 1995).

2.2.3. UPDATE OF KINEMATIC VARIABLES
As the information is carried by the material points, while the governing equations are
solved on the background mesh, this makes mapping and remapping between the ma-
terial points and background mesh nodes necessary. Corresponding to the three MPM
phases illustrated in Fig. 2.2, the kinematic variables need to be updated three times
within the MPM computational cycle.

MAPPING PHASE

Since information, such as velocity and acceleration, is initially stored at the material
points and the background mesh is reset regularly after each time step, it is necessary to
map (i.e. transfer) the associated kinematic information from the material points to the
grid nodes at time t utilising the shape functions, i.e.

mt
i =

∑
p Ni (xt

p )mp (2.9)

and

vt
i =

∑
p Ni (xt

p )mp vt
p

mt
i

(2.10)

in which i refers to a grid node, p refers to material points surrounding the grid node,

mi =
(

mi 0
0 mi

)
and vi are the node mass and velocities (2D conditions are assumed

for the mass matrix), respectively, which are assembled from the material points within
the adjacent elements, mp is the material point mass, and vp is the material point veloc-
ity.

Accelerations are updated in the same way, but note that the displacement is initial-
ized to zero at the beginning of each time step, i.e. ut

i = 0 .
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UPDATED LAGRANGIAN PHASE

After the governing equations are solved on the background mesh, the accelerations on
the material points are obtained as follows,

at
p =

Nn∑
i=1

Ft
i

mt
i

Ni (xt
p ) (2.11)

in which ap is the material point acceleration, and Nn is the number of nodes in an
element (local support).

The velocities for the current time step are then updated as

vt+∆t
p = vt

p +at
p∆t (2.12)

where∆t is the incremental time step, which is chosen subject to the Courant-Friedrichs-
Lewy (CFL) condition.

Hence, the new nodal values of velocity are obtained via mapping from the related
material points to the grid nodes,

vt+∆t
i =

∑
p (mv)t+∆t

p Ni (xt
p )

mt
i

(2.13)

The material point strain increment is then updated by evaluating the velocity gradi-
ent terms on the material point positions. The stress increment is subsequently obtained
by using an appropriate constitutive model. Related internal state variables are also as-
signed to and tracked on the material points during the computation process.

CONVECTION PHASE

The momenta on the material points for the new time step t +∆t are updated using,

(mv)t+∆t
i = (mv)t

i +Ft
i∆t (2.14)

and the new nodal velocities are used for updating the positions of the material points.
The velocities of the material points at time t +∆t are expressed as,

v̄t+∆t
p =

Nn∑
i=1

(mv)t+∆t
i

mt
i

Ni (xt
p ) (2.15)

and thereby the new positions are,

xt+∆t
p = xt

p + v̄t+∆t
p ∆t (2.16)

A computational cycle within a time step is completed when all the necessary infor-
mation has been updated on the material points. The background mesh can then be
discarded or reset for the convenience of computation in the new time step. Note that
two particle velocities are obtained, as seen in Eqs. (2.12) and (2.15), which are used to
update the stresses and positions of the material points, respectively. The use of velocity
v̄t+∆t

p instead of the velocity vt+∆t
p to update the material point position is to reduce the

numerical error, as a tiny value of mt
i in the denominator in Eq. (2.11) could be pos-

sible, which may cause an abnormal acceleration on the material point at
p . Due to the
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use of the same set of shape functions for both the mapping (from material points to
background mesh) and re-mapping phase (from background mesh to material points)
at each time step, the interpenetration between material bodies is precluded in MPM,
which enables simulations of impact and penetration problems of MPM without resort-
ing to an extra contact algorithm (Chen and Brannon, 2002).

2.2.4. IMPACT OF TWO BARS
Two classic impact examples (Chen and Brannon, 2002) are provided here to verify the
explicit MPM performance. As shown in Fig. 2.3, two bars of equal length L = 0.5 m
are separated by an initial distance of 0.5 m. Constant velocities of v = 1.0 m/s and
v =−1.0 m/s are assigned to the left and right bars, respectively, and they are allowed to
translate freely. Each bar is modeled using 50 quadrilateral elements, of size 0.01 m × 1.0
m, and each element initially contains one particle. The Young’s modulus is E = 10000
kPa, Poisson’s ratio is υ = 0, and mass density is ρ = 1.0× 103 kg/m3, so that the wave
speed is cv =√

E/ρ = 100 m/s. The time step is chosen as 2.5×10−4 s.

L = 0.5 m L = 0.5 m

v = 1.0 m/s v = - 1.0 m/s

L = 0.5 m

o x

Figure 2.3: Initial conditions for two impacting bars

The two bars start to collide at time t = 0.245 s and remain in contact for a period
of 2L/c, before separating from each other when the reflected tensile waves cancel the
compressive waves and reach the middle points of the respective bars. The stress profiles
along the bars, at different times before and during the impact, are shown in Fig. 2.4. The
contact stress can be obtained analytically asσ= ρ∗cv∗v =−100 kPa (tension is taken as
positive), and the numerical results show good agreement with the analytical solution.

BAR IMPACT WITH PERFECT PLASTICITY

For the following example, all the conditions are the same as in the above example, ex-
cept that an elastio-plastic constitutive equation is applied; that is, a Von Mises failure
criterion is used, with a perfect-plasticity model. The motions and stresses of the two
bars are examined, and compared with the analytical solution.

The bars have a Young’s modulus of 10000.0 kPa, a Poisson’s ratio of 0.0, a density of
ρ = 1.0×103 kg/m3 and a yield stress of 50.0 kPa. The initial velocities of the two bars are
1.0 m/s and -1.0 m/s respectively, as in the previous example.

In order to save computation time, the two bars are initially placed nearer to each
other, compared to the example shown before, with a separation distance of 0.1 m. The
simulation is run to a maximum time of 10.0 s. Figure 2.5 describes the moving trajecto-
ries of four particles with time, located in the middle of the left bar, right end of the left
bar, middle of the right bar and left end of the right bar, respectively. It is interesting to
note that, after the two bars collide, the two bars stick together rather than bounce off
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Figure 2.4: Elastic stress wave propagation along the two bars; time step is chosen as 2.5×10−4 s.

each other as shown in the previous case. This is because no extra elastic energy is gen-
erated, after the bars go to perfectly plastic, which can be transformed back to kinetic
energy to force the bars apart.

The corresponding stress profiles along the two bars are shown in Fig. 2.6. Three dif-
ferent times are chosen, which clearly show the stress wave propagation through the
bars. At the time of 0.0475 s, the compressive waves have propagated to the middle
points of both bars; hence, the parts of the bars where the waves have traveled through
have reached the yield stress, whereas the rest remains at zero. By the time of 0.05 s, the
compressive waves have reached the ends of the two bars and all the particles have gone
into the plastic stage due to the stress reaching the yield stress.
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Figure 2.5: The moving trajectories of four specified particles, located in the middle of the left bar, right end of
the left bar, middle of the right bar and left end of the right bar, respectively.

2.2.5. ADVANCES IN MATERIAL POINT METHOD DEVELOPMENT
Stress oscillations are reported to be one of the main issues inherent in MPM formula-
tions (Bardenhagen and Kober, 2004). As material points cross a cell boundary, with the
low-order shape functions adopted, the gradients of the shape functions result in dis-
continuities in between the elements, which causes discontinuities in the stress calcula-
tion. In severe cases, this can make the analysis collapse abruptly. Therefore, many ef-
forts have been made in order to improve the stress performances, where the key feature
among different MPM versions is the choice of the shape functions (Steffen et al., 2008).
By introducing a particle characteristic function χp , Bardenhagen and Kober (2004) de-
veloped a family of generalized interpolation material point (GIMP) methods, in which
the material points are defined to occupy space. Although the GIMP approach is not
implemented within the thesis, it has proven to be a useful tool in reducing the stress
oscillations (Bardenhagen and Kober, 2004), and will be a future research subject. The
density is modified as

ρ(x, t ) =
Np∑

p=1
ρpχp (2.17)

where the material density is non-zero over a small volume rather on a fixed position
xp as shown in Eq. (2.4). The weighting function and weighting function gradient are
used to weight the nodal contributions from the material points instead of the original
standard shape function, that is

ϕi (xp ) = 1

Vp

∫
Ωχ

χp (x−xp )Ni (x)dx (2.18)

∇ϕi (xp ) = 1

Vp

∫
Ωχ

χp (x−xp )∇Ni (x)dx (2.19)
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Figure 2.6: The stress profiles along the bars at three different times; Von Mises model with perfect plasticity

where χp is the particle characteristic function, Ωχ denotes the integral domain of the
function, and ϕi (xp ) and ∇ϕi (xp ) are the weighting function and weighting function
gradient, respectively, which are intended to smooth out the discontinuity over a finite
domain Vp .

Various selections of characteristic functions can be made, given that the require-
ment of the functions to be a partition of unity is met. Eq. (2.20) gives the simplest form
of the generalisation, which retains the grid shape functions used in the original MPM,
but replaces the particle mass points with particle volumes (Bardenhagen and Kober,
2004).

χp (x) =
{

1 i f x ∈Vp

0 other wi se
(2.20)

where Vp represents the domain occupied by the material point. This work is further
developed by Ma et al. (2006), in which the material point domains are taken to be rect-
angles in 2D and are assumed to evolve with time such that the artificial separation ob-
served, especially in tensile simulations, may be eliminated.

Sadeghirad et al. (2011) reported that the assumption of material point domains as
rectangles (in 2D) is not accurate, due to the domain updates always being aligned with
the grid, which is not suitable for problems involving shear deformations or large rota-
tions. Hence, the material point domain is convected into parallelograms, and an alter-
native shape function field is constructed. This approach has been called the convected
particle domain interpolation (CPDI) technique.

The modified grid shape functions are constructed to be an interpolation of standard
grid shape functions at the corners of the particle domain:

Ni (x) =
N∑
α=1

Np
α(x)Ni (xp

α) onΩp (2.21)
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where Ni (xp
α) is the standard shape function value at a corner of the particle domain, and

Np
α(x) is the shape function associated with the αth corner of the domain of particle p.

By replacing standard shape functions with modified functions in Eqs. (2.18) and (2.19),
the weighting and weighting gradient function can be modified accordingly.

2.3. IMPLICIT MATERIAL POINT METHOD
MPM has so far been mostly formulated in an explicit manner, so that it is restricted by
the Courant–Friedrichs–Lewy (CFL) condition (a necessary condition for stability with
explicit time integration schemes), which causes limitations on the choice of time step
size. Meanwhile, the explicit formulation may suffer the problem of inaccuracies for
some particular problems, such as during plastic behaviour, as, in each loading/time
step, the displacement increment is not strictly determined for a fixed load increment
by using an explicit time integration. Hence, errors may accumulate over the time. In-
creasing the number of the subincrements can of course improve the accuracy, but the
computational cost may then become prohibitive. Therefore, many implicit MPM for-
mulations have then been proposed, such as Guilkey and Weiss (2003), Beuth et al. (2011)
and Lim (2012). In this section, a unified IMPM framework proposed by the author and
his colleagues is provided, within which both quasi-static and dynamic analyses can be
solved. The implementation procedure closely follows standard FEM approaches, where
possible, to allow easy conversion of other FEM codes. This section aims to provide a
clear and straightforward overview of all the necessary techniques for adapting an exist-
ing FEM implementation into one based on implicit MPM.

2.3.1. UPDATED LAGRANGIAN FORMULATION

Three computational phases are also included in the IMPM formulation, i.e. a mapping
phase, UL-FEM phase and convection phase. A detailed introduction of the UL formu-
lation is first introduced as a prequel for the derivation of the IMPM and to identify the
differences, as opposed to using a small strain formulation, in solving large deformation
problems by use of the UL-FEM formulation.

An important consideration in the computational analysis of large deformation prob-
lems is a proper kinematic description. Based on the configuration, all static and kine-
matic variables in the solution are referred to two formulations within Largrangian meth-
ods, these being termed total Lagrangian (TL) and updated Lagrangian (UL). The ini-
tial configuration corresponding to time t = 0 is used in the TL formulation, while the
last calculated configuration is referred to for the UL formulation. Both formulations
include all kinematic nonlinear effects due to large displacements, large rotations and
large strains. The only advantage of using one formulation rather than the other lies in
its greater numerical efficiency (Bathe, 1996).

Assume that the externally applied loads are a function of time, and that the solu-
tions for the static and kinematic variables for all time steps from time 0 to t have been
obtained. Then the solution for the next required equilibrium position corresponding
to time t +∆t , where ∆t is a time increment, is applied repetitively until the complete
solution path has been solved for. Using the principle of virtual displacement, where the
inertial terms are neglected for simplicity, the equilibrium conditions of a system of fi-
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nite elements representing the body under consideration at time t+∆t can be expressed
as, using the UL-FEM formulation,∫

Ωe,t

St+∆t
t δεt+∆t

t dΩe,t = Rt+∆t
ext (2.22)

where the superscript t +∆t refers to the current configuration, the subscript t is the
reference configuration, S is the second Piola-Kirchhoff stress tensor, δε is the Green-
Lagrange strain tensor corresponding to the virtual displacements, Ωe,t is the element
domain at time t , and Rext is the virtual work equaling the external force multiplied by
the virtual displacement.

Assuming an incremental procedure, the stress at time t +∆t can be considered as
an incremental term added to the term at time t :

St+∆t
t = St

t +St (2.23)

where St = ∆σ is the incremental stress for the period of ∆t . Note that, in the UL-FEM
formulation, the stress at the current time step t is basically the Cauchy stress, i.e.

St
t =σt (2.24)

where σt are the known Cauchy stresses at time t .
The strain at time t +∆t with respect to t is actually the incremental strain,

εt+∆t
t =εt (2.25)

Hence, δεt+∆t
t = δεt and the incremental strain can be decomposed into two parts, εt =

∆e+∆η, in which∆e is the linear part as commonly used in small strain analysis and∆η
is the high order term, as expressed respectively by,

∆e = 1

2
(∇ū+ (∇ū)T) (2.26)

and

∆η= 1

2
((∇ū)T ·∇ū) (2.27)

where ū is the incremental displacement.
By taking Eqs. (2.23) and (2.24) for the stress measure and Eqs. (2.26) - (2.27) for the

strain measure, and substituting them into the equilibrium equation (2.22), by neglect-
ing high order terms and linearizing it, the governing equation becomes,∫

Ωe

∆σδ∆edΩe +
∫
Ωe

σtδ∆ηdΩe = Rt+∆t
ext −

∫
Ωe

σtδ∆edΩe (2.28)

A key in the general application of Eq. (2.28) is that an appropriate configuration is
referred to, which is due to the fact that the configuration of the body changes continu-
ously in a large deformation analysis and hence entails some important consequences
for the development of an incremental procedure. Generally, the incremental stress can
be calculated from either the second Piola–Kirchhoff stress and Green–Lagrange strain
tensors (see Bathe (1996)), or, as in this thesis, via a rate dependant formulation using
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the Jaumann stress rate and velocity strain tensors (Bathe, 1996). For consistency, the
stress and strain rates are here shown in incremental form, with the Jaumann stress rate
being given by,

∆σJ = C∆e (2.29)

where∆σJ is the Jaumann stress increment and C is the incremental stress–strain tensor.
Following Bathe (1996), the Cauchy stress increment can then be written as

∆σ=∆σJ −σt ·∆ω+∆ω ·σt (2.30)

where ∆ω is the spin tensor (also called vorticity tensor) increment at time t , in which

∆ω= 1

2
[(∇ū)− (∇ū)T] (2.31)

Substituting Eqs. (2.29) and (2.30) into the equation of motion for small strain, Eq.
(2.28), the final equilibrium equation for large deformation analysis is obtained as

∫
Ωe

C∆e·δ∆edΩe−
∫
Ωe

(σt∆ω−∆ωσt )·δ∆edΩe+
∫
Ωe

σt ·δ∆ηdΩe = Rt+∆t
ext −

∫
Ωe

σt ·δ∆edΩe

(2.32)

2.3.2. SPATIAL DISCRETISATION
By eliminating the virtual displacement terms on both sides of the final governing equa-
tion, i.e. Eq. (2.32), the equation can be simplified as a state equation of force equilib-
rium. Moreover, to solve Eq. (2.32), it must be spatially discretised. MPM discretises
a continuum body in the original configuration into a finite set of material points that
are tracked throughout the deformation process. The points are selected to represent a
material mass and do not have a defined shape. The method solves the equations on
the background mesh; hence, this spatial discretisation is undertaken utilising typical fi-
nite element methodology, with the major difference being that the integration uses the
material points directly.

Taking the first term in Eq. (2.32) as an example, which is basically the linear elastic
stiffness term multiplied by the unknown displacement, and using the same method as
in FEM, the shape functions and nodal values of displacement are used to approximate
the continuum field, i.e. ū. Using the strain–displacement transformation matrix, ∆e =
BLū, and the method of weighted residuals, the stiffness part of the term can be easily
transformed into matrix form, i.e.

Kt
L =

∫
Ωe

BT
L CBLdΩe (2.33)

Note that this is the small strain linear elastic stiffness matrix in a standard FEM proce-
dure, where BL is the linear strain–displacement transformation matrix.

The integrals of the weak form are then converted into the sums of quantities evalu-
ated at the material points, which yields

Kt
L =∑

p
(BT

L(xp )Cp BL(xp ))V t
p (2.34)
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where, for a single element, p is the number of material points within the element, V t
p

refers to the volume of material point p at time t and the shape function differential BL

is a function of the material point positions xp , which are updated after each time step.
Similarly, the second and third terms in Eq. (2.32), referring to the non-linear con-

tributions due to the geometry change and Jaumaan stress, are written as (with the dis-
placement part omitted),

Kt
N L =∑

p
(BT

N L(xp )σ̂p BN L(xp )−BT
L(xp )σ̃p BL(xp ))V t

p (2.35)

where BN L represents the nonlinear strain–displacement transformation matrix, σ̂p is
the Cauchy stress matrix, while the matrix σ̃p , used in the second term of the integrand
of KN L , is due to the Jaumann stress.

The internal force, i.e. the last term in Eq. (2.32), at the reference time t and the
external force in Eq. (2.32) are respectively expressed as,

Ft
i nt =

∑
p

(BT
L(xt

p )σp ) ·V t
p (2.36)

and
Ft+∆t

ext =∑
p

(N(xt
p )bp +N(xt

p )τs ) ·V t
p (2.37)

where N(xt
p ) are the shape functions at location xt

p at time t . Detailed matrix expressions
are addressed as following:

(a) Linear strain-displacement transformation matrix:

BL =
 h1,1 0 h2,1 0 . . . hN ,1 0

0 h1,2 0 h2,2 . . . 0 hN ,2

h1,2 h1,1 h2,2 h2,1 . . . hN ,2 hN ,1


where hk, j = ∂Nk

∂x j
are the shape function differentials with respect to the Cartesian coor-

dinates x j , and N is the number of nodes.
(b) Non-linear strain-displacement transformation matrix:

BN L =


h1,1 0 h2,1 0 . . . hN ,1 0
h1,2 0 h2,2 0 . . . hN ,2 0

0 h1,1 0 h2,1 . . . 0 hN ,1

0 h1,2 0 h2,2 . . . 0 hN ,2


(c) Cauchy stress matrix:

σ̂p =


σ11 σ12 0 0 0
σ21 σ22 0 0 0

0 0 σ11 σ12 0
0 0 σ21 σ22 0
0 0 0 0 σ33


where σ refers to the corresponding Cauchy stress.
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As mentioned before, an objective stress rate such as the Jaumann stress rate is nor-
mally used to include the large rotation effects and, correspondingly, an additional stiff-
ness matrix due to the rotation is then generated.

(d) Rotation matrix:

σ̃p =−


2σ11 0 σ12 0

0 2σ22 σ12 0
σ12 σ12 0.5(σ11 +σ22) 0

0 0 0 σ33


After substituting Eqs. (2.34) – (2.37) into Eq. (2.32), the equilibrium equation in

matrix form can then be formulated as:

Kt ū = Ft+∆t
ext −Ft

i nt (2.38)

where Kt = Kt
L +Kt

N L , and is comprised of both linear and nonlinear terms.

2.3.3. DYNAMIC FORM
A governing dynamic equation is obtained by adding an inertial term in Eq. (2.38), satis-
fying Eq. (2.2). Hence,

Kt ū+Mt at+∆t = Ft+∆t
ext −Ft

i nt (2.39)

where Mt is the mass matrix, which, in lumped form, is given by,

Kt ū+Mt at+∆t = Ft+∆t
ext −Ft

i nt (2.40)

where Mp is the material point mass matrix, of size Ndim×Ndim (where Ndim is the num-
ber of dimensions). Following Newmark’s (1959) time integration scheme,

vt+∆t = vt + [(1−δ)at +δat+∆t ]∆t (2.41)

ut+∆t = ut +vt∆t + [( 1
2 −α)at +αat+∆t ]∆t 2 (2.42)

where∆t is the time step, at+∆t , vt+∆t and ut+∆t are the accelerations, velocities and dis-
placements at time t +∆t , and δ andα are time stepping parameters which influence the
integration accuracy and stability, and are chosen as δ= 0.5 andα= 0.25 in the following
analyses. The incremental displacement is given by ū = ut+∆t −ut . Hence, substituting
Eq. (2.42) into Eq. (2.39) and rearranging, the resulting equation in the form of Eq. (2.38)
leads to,

(Kt + Mt

α∆t 2 )ū = Ft+∆t
ext +Mt (

1

α∆t
vt + (

1

2α
−1)at )−Ft

int (2.43)

Let K̄t represent a modified stiffness matrix, which takes the form K̄t = Kt + Mt

α∆t 2 , and
assume the new external force contains the kinetic terms from the previous time step, i.e.

F̄t+∆t
ext = Ft+∆t

ext +Mt (
1

α∆t
vt + (

1

2α
−1)at ) (2.44)
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Hence the rewritten governing equation takes the form,

K̄t ū = F̄t+∆t
ext −Ft

i nt (2.45)

so that both the dynamic and quasi-static formulations can be solved in the same man-
ner using the Newton–Raphson method.

2.3.4. UPDATE OF KINEMATIC VARIABLES
In a quasi-static analysis, after the incremental displacement is obtained by solving the
equation of motion, Eq. (2.38), the next step is only to move the material point in ac-
cordance with the displacement of the computational grid. However, dynamic analysis
involves the solution of Eq. (2.45); in this case, as well as displacements, it is also nec-
essary to update accelerations and velocities. Details of kinematic variable updating are
therefore presented in this sub-section. As with the MPM introduced in section 2.2, the
kinematic variables need to be updated three times within the IMPM computational cy-
cle.

MAPPING PHASE

Kinematic information from the material points needs to be mapped to the grid nodes
before proceeding to solve the equations of motion. For completeness, Eq. (2.9) is rewrit-
ten here as an illustration of the information transfer between the material points and
the background mesh nodes:

vt
i =

∑
p Ni (xt

p )mp vt
p

mt
i

(2.46)

UPDATED LAGRANGIAN PHASE

For the computation stage, Newton’s method is used to calculate the incremental dis-
placement ūi (Eq. 2.45). Solving for velocities and accelerations using Eqs. (2.41) and
(2.42), with δ= 0.5 and α= 0.25, the two kinematic variables yield,

vt+∆t
i = 2

∆t
ūi −vt

i (2.47)

at+∆t
i = 4

∆t 2 ūi − 4

∆t
vt

i −at
i (2.48)

CONVECTION PHASE

The final stage is to map the information from the grid nodes back to the material points.
Accelerations and displacements are directly mapped from the nodes using the shape
functions, i.e.

at+∆t
p =

Nn∑
i=1

at+∆t
i Ni (xt

p ) (2.49)

ūt+∆t
p =

Nn∑
i=1
∆ūt+∆t

i Ni (xt
p ) (2.50)
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where Nn is the number of grid nodes which provide support to the material point,
which in this case is the number of nodes in an element, while, in cases of utilising gen-
eralized interpolation MPM (Bardenhagen and Kober, 2004), the nodes of surrounding
elements can also be included. The trapezoidal rule is thus used here to update the ve-
locity, i.e.

vt+∆t
p = vt

p + 1

2
(at

p +at+∆t
p )∆t (2.51)

2.3.5. FURTHER FEATURES IN THIS IMPLEMENTATION

In this subsection, the procedures adopted for calculating the damping force and fric-
tional boundary conditions within the IMPM framework are introduced, as well as the
update of the volumes of material points.

DAMPING FORCE

Damping is included in the formulation to avoid non-physical vibration in dynamic
analyses. It is common to assume the damping matrix to be a function of the linear
combination of the mass and stiffness matrices, utilising the so-called “Rayleigh” damp-
ing coefficients (Smith and Griffiths, 2005). However, Rayleigh damping is frequency de-
pendent, and hence prior knowledge about the frequency of the system is needed.The
approach proposed by Cundall (1987), which involves a local non-viscous damping to
overcome the difficulty due to frequency dependence, has been adopted herein. Hence,
the damping force on a node is proportional to the magnitude of the out-of-balance
forces, with a directional function that ensures that vibrational modes are damped, i.e.

Fd amp,i =−cd |Fi | si g n(vi ) (2.52)

where cd is a dimensionless damping factor, fi are the nodal resultant forces and si g n(vi )
is the velocity direction.

The choice of damping factor in the analyses is not necessarily easy to define. The
factor should be large enough to dissipate any unbalanced energy causing unrealisitic
oscillations, but not so large as to cause an overdamped system, which would unrealisti-
cally reduce the speed of the slide in slope instability analyses. To achieve a quasi-static
equilibrium efficiently, the factor was chosen mostly to be 0.75 in Al-Kafaji (2013); how-
ever, for the unsaturated one-point three-phase MPM in Yerro et al. (2015), the factor
was chosen to be only 0.05, as it was stated that the drag force between the solid and
the fluid introduces an implicit damping force; and in the river levee collapse analysis in
Bandara and Soga (2015), the damping force was not considered during the evolution of
the failure mechanism, as the plasticity of the material and the viscous effects of the fluid
were reported to be sufficient to dissipate the unbalanced energy. Hence, the damping
factor is problem/material dependent.

FRICTIONAL BOUNDARY CONDITIONS

The interaction between the soil and a non-deforming material outside the domain has
been modelled using a Coulomb frictional algorithm. This algorithm is basically a sim-
plified version of the contact algorithm introduced in Bardenhagen et al. (2001).
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Initially, a fully fixed boundary condition is applied and the reaction forces on the
boundary, fr eact , are calculated and termed trial forces. The tangential component of
this force is then compared to the maximum allowable tangential force considering fric-
tional behaviour, i.e. µmax(0, f t+∆t ,tr

r eact ,n ), where µ is the friction coefficient between the
soil and material outside the domain, the superscript tr indicates that this refers to the
trial force and the subscript n refers to the normal component. If the trial force exceeds
the allowable force, then a slip condition occurs and the allowable force is used as the
boundary condition and the increment is re-calculated. This can be expressed as,

f t+∆t
r eact ,t =

{
µmax(0, f t+∆t ,tr

r eact ,n ) i f f t+∆t ,tr
r eact ,t >µmax(0, f t+∆t ,tr

r eact ,n ), i .e.sl i p

f t+∆t ,tr
r eact ,t other wi se(st i ck)

(2.53)

where the subscript t refers to the tangential component of the reaction force.
The trial reaction force can be applied to all the background element nodes attached

to the boundary and included in the vector Ft+∆t
r eact . The trial reaction force at each node,

i , is then given by

Ft+∆t ,tr
r eact ,i =−Ft+∆t

ext ,i +Ft
int,i +Mi at

i (2.54)

Further details of the implementation of the frictional algorithm, in particular for slope
problems, can be found in Shin (2009) and Bandara (2013).

UPDATE OF MATERIAL POINT VOLUMES

It is worth noting that material points, though they cannot be defined as explicit, quan-
titative shapes, do implicitly have sizes (volumes). By adding up these sizes (volumes)
together, it approximately equals the continuum size (volume), when numerical errors
are taken into consideration.

In the convection phase within a computation cycle, the deformation gradient is cal-
culated in order to update the material point volume using Eq. (2.55):

Ωt+∆t
p = J t+∆t

t Ωt
p (2.55)

whereΩt
p andΩt+∆t

p are the volumes calculated for times t and t +∆t , respectively, and

J t+∆t
t denotes the Jacobian determinant of the deformation gradient calculated for time

t +∆t and related to the configuration at time t .
For small strain problems, the calculations of the deformation gradient can be ap-

proximated by the trace of the strain tensor, i.e. J = 1+ tr (ε).

2.3.6. FINAL GOVERNING EQUATIONS
Based on the acquired damping force and reaction forces (e.g. from the ground against
the slope bottom), a final governing equation for the implicit MPM can be formulated
as,

K̄t ū = F̄t+∆t
ext −Ft

i nt +Ft+∆t
r eact +Ft+∆t

d amp (2.56)
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2.4. IMPLICIT MPM FOR QUASI-STATIC APPLICATIONS
In the following section, a variety of problems are addressed using the implicit MPM
framework defined by Eq. (2.38).

For the computational elements which are not fully filled by material points, an ill-
conditioned stiffness matrix may be formed, which could lead to numerical instability.
This effect is especially significant when only one material point exists within an ele-
ment, in particular when it is in or near an element corner. Therefore, an additional
material stiffness, of an insignificant magnitude relative to the real material stiffness, is
normally assigned to the background mesh, known as a “soft stiffness”, in order to im-
prove the numerical stability of the solution.

On the other hand, to achieve a spatially converged solution, i.e. not dependent upon
the initial material point positions, a greater number of material points than the Gaus-
sian points is often required. This is due to the changing position of the material points
and the non-uniform distribution throughout the computational grid. The influence of
the number of material points per element on the numerical results is thus discussed.

2.4.1. COLUMN COMPRESSION
A subdivision algorithm is firstly introduced to show the initialisation of the material
point positions. A 1-D column compression is then analysed and, by comparing the
result with an UL–FEM solution, which is considered to be capable of providing accurate
results for large displacement, albeit small strain, problems (Beuth et al., 2011), the good
performance of IMPM in solving large deformation problems is demonstrated.

2.0

1.0

0.0

displacement (m)

(a) before loading (b) after loading

Figure 2.7: 1-D column compression

SUBDIVISION ALGORITHM

There are many potential ways to initialise the locations of the material points, such as
evenly spaced over the area, using Gauss point positions and so on. Here, the subdivi-
sion algorithm introduced in Lim (2012) is chosen. For example, an 8-node quadrilateral
parent element with 4 Gauss points is adopted initially, and then, for obtaining more ma-
terial points, the parent element is subdivided into smaller cells; e.g. into 2 × 2 cells, and
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then, by placing the material points on the local Gauss point positions of the small cells,
to give a total of 16 material points for the original finite element.

IMPM SOLUTIONS VERSUS UL–FEM SOLUTIONS

A 10m high column is discretised into a computational grid consisting of ten 8-noded
square elements. Within each element 4 material points are initially located at the Gaus-
sian point positions, as shown in Fig. 2.7(a). Both sides of the domain are constrained in
the horizontal direction, and the bottom of the mesh is fully fixed. An increasing stress
is applied at the top, from 0 to 10 MPa in 40 equal load steps. A plane strain condition is
assumed and a linear elastic model employed. The Young’s modulus and Poisson’s ratio
are 10 MPa and 0.3, respectively. After loading, the column is less than half of the original
height, as indicated by the closely grouped material points in Fig. 2.7(b).

The stress-strain curve for the one-dimensional compression problem is plotted in
Fig. 2.8, alongside UL-FEM results for the same problem. As can be seen, the MPM
results correspond well with the FEM solution, although a gradually increasing devia-
tion occurs at larger deformation. This is due to the relatively small number of material
points located within each element. As each material point (which is also one of the inte-
gration points in the calculation of the stiffness matrix) moves, no matter where it is, the
same weighting coefficients are used for the numerical integration which leads to some
inaccuracies in the solution. This problem can be alleviated by increasing the number
of material points within each element, as in section 2.4.2.

axial strain
0 0.1 0.2 0.3 0.4 0.5

st
re
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Figure 2.8: Stress-strain curve for 1-D compression
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2.4.2. CANTILEVER BEAM

A 2-D (i.e. plane strain) linear elastic cantilever beam has been analysed. The beam, as
shown in Fig. 2.9, has a length of 1 m, a depth of 0.3 m, a Young’s modulus of 100 kPa
and a Poisson’s ratio of 0. It is built-in along its left edge and its initial configuration is
shown in grey, representing the originally filled background mesh. The self-weight was
increased from 0 kN/m3 to 4 kN/m3 in 20 loading steps, with each applied increment
being equal to 0.2 kN/m3. The analysis used 8-noded quadrilateral elements, with 16
material points being initially located in each element.

In order to increase the numerical stability, a “soft stiffness”, as described by Lim
(2012), has been assigned to the background mesh, which has been assembled using
conventional Gauss point integration of the mesh (i.e. independently of the material
points). The ratio of the soft stiffness to the actual stiffness is represented by η, where
η= 0.1 is applied in this case.

Figure 2.9: Initial and final deformed configurations

The final configuration of the beam is also shown in Fig. 2.9, with the tip displace-
ment (taken from the tracked material point located in the bottom right corner) being
–0.38 m and –0.61 m, respectively, in the horizontal and vertical directions. Accordingly,
the final activated mesh/elements are shown as a wireframe, which was determined by
tracing the material point positions. The colouration of the material points represents
the longitudinal stress along the beam, with blue representing compression and red rep-
resenting tension, ranging from –40.8 kPa (compression) to 27.6 kPa (tension) on the
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material points located nearest the fixed end. By using extrapolation, the stresses at the
element nodes can be obtained, ranging from –47.5 kPa to 32.0 kPa. UL-FEM solutions
are provided here as a direct comparison, where, for the utilised element mesh, the stress
range of –47.4 kPa to 32.6 kPa at the fixed end is in good agreement with the MPM solu-
tion.

Due to the use of high order elements in the quasi-static code, the potential prob-
lems associated with using linear elements, i.e. locking, cell crossing (Bardenhagen and
Kober, 2004), etc., are avoided. However, by omitting the inertial terms, the code stability
decreases, which leads to the need for more material points and a “soft stiffness” being
used. The influences of the number of material points and “soft stiffness” are investi-
gated in the following.

SOFT STIFFNESS INFLUENCE

The addition of an extra small stiffness across the background mesh is to increase the
numerical stability of the code. For example, as a single material point moves near a
finite element boundary, the shape function (at the material point) corresponding to the
farthest element node may approach zero, while the gradient of the shape function will
not be equal to zero; hence it is very hard to get the resultant force on the farthest node
converging to zero, thereby leading to a non-convergent analysis. For implicit MPM, the
problem normally occurs during the stiffness matrix formation or factorisation, and can
lead to an extremely large/unrealistic solution being output, as illustrated by the near
vertical dotted line in Fig. 2.10. In the second loading step, the analysis stops due to an
extremely large displacement at the beam tip. In contrast, even with a very “soft”/small
background stiffness, the outputs are realistic. The results obtained with four different
stiffness ratios, i.e. ratio of the soft stiffness to the actual stiffness, of 0.1, 0.01, 0.001 and
0.0001, have been included here, in order to gain a picture of the influence of the “soft
stiffness”. 16 material points are initially placed in each element.

For comparison with the UL–FEM solution, the vertical tip displacement of the beam
(which is taken to be the average vertical displacement of the right-most column of ma-
terial points near the beam tip) is shown in Fig. 2.10. It is seen that, the higher the stiff-
ness ratio, the greater the error. When the ratio is increased to 0.1, at the final applied
load the error relative to the UL solution reaches 0.15, although, for ratios equal to or
smaller than 0.01, there is only a small difference in the results. Meanwhile, as the stiff-
ness ratio increases, the code gets more stable. Therefore, for the beam case considered
here, a ratio of 0.01 is adopted for all other simulations.

INFLUENCE OF THE NUMBER OF MATERIAL POINTS PER ELEMENT

By using the subdivision algorithm introduced above, three different numbers of mate-
rial points per element (in the initial mesh) have been considered, i.e. 4, 16 and 36. The
influence of the number of material points has been investigated by comparing the av-
eraged material point displacements across the beam tip with the UL–FEM results. Figs.
2.11 and 2.12 show the relationship between the self-weight and the recorded displace-
ment (horizontal and vertical). It is seen that, with initially 4 material points per element,
there is a large divergence from the UL–FEM result, whereas, as the number increases,
the differences become negligible, i.e. for 16 and 36 material points per element.
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Figure 2.10: Applied load versus tip vertical displacement for different ratios of soft stiffness

By putting more material points within an element, it increases the possibility of ma-
terial points being distributed over the mesh more evenly, and thus it increases the code
stability. However, as the number increases, the computation cost goes up. Hence, a
balance has to be made, and here, initially 16 material points per 8-noded element are
considered appropriate to analyse the beam.

In terms of generalising the results in this section, it is difficult to determine a pri-
ori the appropriate level of discretisation in terms of both the number of elements and
number of material points per element. As with standard finite element analysis, good
numerical modelling practice is recommended to ensure spatial convergence of the re-
sults, i.e. by increasing the level of discretisation and checking the consistency of the
results.

2.5. IMPLICIT MPM FOR DYNAMIC APPLICATIONS
For the examples presented below, the implicit dynamic method is utilised. Two things
are worthy of note: (a) due to the presence of the mass matrix, in which negative terms
may arise for high-order elements, low-order elements are here adopted (i.e. a 4-node
quadrilateral element in this thesis); (b) as the inertial term is included, initially 4 mate-
rial points per element are found to be enough for ensuring accuracy when carrying out
dynamic analyses and an extra “soft stiffness” is not necessary.

As opposed to the explicit integration method, the implicit time integration algo-
rithm can address time step size restriction, especially for problems with a slow rate of
loading, and much computational cost can be saved with little loss in accuracy. The al-
gorithm, which is governed by Eq. (2.45), is tested via two numerical examples within
the following section. By utilising a bar vibration example, the influence of the time step
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Figure 2.11: Influence of particle density on load–displacement response (horizontal displacement curves)

size is discussed. In the second example, a sand column collapse is performed, with the
results being compared to an experiment; this is to further demonstrate the capability of
MPM for modeling extreme deformations.

2.5.1. AXIAL VIBRATION OF A CONTINUUM BAR
For the vibration of a continuous bar, the case considered here is the same as for a single
material point (as in section 2.3.4), but multiple elements have been used. One end
(x = 0) is fixed, and the other (x = L) is free. The bar is found to oscillate in modes, but
here only the first mode is considered. The eigenvalue is thenβ1 = π

2L , and the frequency

of oscillation is related to the eigenvalue ω1 = β1c, where cv =
√

E
ρ is the wave speed, as

before. This gives the analytical solution,

v(x, t ) = v0cos(ω1t )si n(β1x) (2.57)

for velocities and
u(x, t ) = v0

ω1
si n(ω1t )si n(β1x) (2.58)

for displacements, where subscript 1 refers to the first mode. The initial velocities are set
to be v(x,0) = v0si n(β1x) and the displacements are u(x,0) = 0.

The bar is assumed to be of length L = 1 m and composed of 10 elements, each equal
to 0.1m. In each element, a single material point has been located at the centre of the
element. The elastic modulus is E = 104 Pa and the material density is ρ = 103 kg/m3.
The time step size is set as 0.01 s.

Figure 2.13 presents the comparison between stress updating methods for the 10 el-
ement axial vibration analysis. Depending on the order of updating the stress (i.e. at
the beginning or at the end of a time step), two different approaches, USF (update stress
first) and USL (update stress last), can be distinguished (Bardenhagen and Kober, 2004).
It can be seen that, under these conditions, the reduced time step allows for the USL
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Figure 2.12: Influence of particle density on load–displacement response (vertical displacement curves)

method to almost fully conserve velocity, whereas the USF method still shows energy
dissipation.
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Figure 2.13: Comparison of USL with USF, using 10 element mesh with implicit MPM

Figure 2.14 illustrates the influence of time step size on the variation of velocity when
the USF method is utilised, and the analytical solution is provided as a comparison.
Three different time-step sizes are set; 0.1, 0.01 and 0.001s, in which the CFL (Courant-
Friedrichs-Lewy, a necessary condition for stability with explicit time integration schem-
es) limit is near 0.01s. It is shown that a poor approximation of the oscillation period and
amplitude is depicted with the largest time step, while, with a moderate time step of
0.01s, the period can be captured accurately. When the time step decreases to 0.001s,
there are few perceptible differences between the analytical solution and numerical re-
sults.

In other words, the program can remain stable even with a large time step size, but
energy dissipation and poor approximations may occur. Sulsky and Kaul (2004) also
demonstrated that energy dissipation would occur if larger time steps were chosen, but
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Figure 2.14: Influence of time step size on the velocity variation

that reasonable answers could be still obtained. Hence, initial comparisons of time step
sizes based on energy conservation errors are necessary before proceeding with an im-
plicit MPM program.

2.5.2. SAND COLUMN COLLAPSE
The following example aims to reproduce the experimental results of Lube et al. (2007),
to demonstrate that MPM can be a reliable tool to model the extreme deformations seen
in some geotechnical applications.

Figure 2.15: Initial column geometry and background domain

As shown in Figure 2.15, the column height is 630 mm and the width is 90 mm. The
column is discretized using 4-node square elements, of dimensions 0.01 m × 0.01 m.
Four material points are initially placed within each element at the Gauss point posi-
tions, so that the simulation is made up of a total of 2268 material points. The light grey
background represents the computational domain covering the potential moving trajec-
tories of the material points. The whole simulation is divided into two stages: (1) The
lateral boundary conditions are rollers allowing only vertical displacement and the bot-
tom boundary is fully fixed, to allow in-situ stresses due to gravity to be generated; (2)
The right side wall is removed to allow the column to collapse from that side. Moreover,
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Figure 2.16: Comparison between MPM computation and experimental result (shown by solid blank line)
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the bottom boundary condition is changed to a frictional one to model the interaction
between the ground and the column base, as is described in section 2.3.5, and the fric-
tion coefficient is set to 0.3. The time step is chosen to be 5.0×10−4 s.

The sand is modeled as a Mohr-Coulomb material. Material properties are listed in
Table 2.1. Note that no porosity was given for the original experiment, although this
should not make a difference for the adopted model. The stress update algorithm dur-
ing the plastic stage follows the procedure of Clausen et al. (2007) to ensure the stress
remains on or within the yield surface. Fern and Soga (2016) emphasised the role of
constitutive models in modeling column collapses, and concluded that the models can
define the volume of the mobilised mass which spreads along the ground. A damping
factor of 0.15 is used in the analysis to replicate the energy loss of the sand, which can be
attributed to the friction between sand grains during movement.

The material point configurations at three different times are shown in Fig. 2.16.
The material points are coloured relative to their initial positions, and the experiment
results are represented by continuous lines outlining the surface of the collapsing sand
column. It is seen that reasonable agreement is achieved. A discrepancy in time of 0.04
s is shown throughout the simulation, possibly due to the initial release mechanism not
being modeled.

Shear Bulk Cohesion Friction Dilation Density
modulus modulus (kPa) angle angle (kg/m3)

(MPa) (MPa) (deg) (deg)
0.323 0.7 0 31 1 2650

Table 2.1: Material properties for sand (after Sołowski and Sloan (2013))

2.6. COMPARISONS BETWEEN EXPLICIT MPM AND IMPLICIT

MPM
An example of two elastic disks colliding is provided here for a comparison between the
explicit and implicit MPM approaches. Two disks with radii equal to 0.2 m are simulated,
assuming plane strain conditions. Initially, the two disks are located in the lower left
and upper right corners of a square background mesh, as shown in Fig. 2.17(a). The
mesh comprises 400 equal-sized square elements of side length equal to 0.05 m. Initial
velocities (1.0 m/s, 1.0 m/s) and (–1.0 m/s, –1.0 m/s) are assigned to the two disks, so that
they move towards each other along the diagonal of the square. The Young’s modulus
was 100.0 kPa, the Possion’s ratio was 0.3 and the density was 1.0 kg/m3. The simulation
was run to a final time of t = 37.5 s.

Fig. 2.17 shows the collision process of the two disks, in which the colouration rep-
resents the mean stress distribution within the disks. In Fig. 2.17 (a), the initial positions
of the two disks are shown. Before impact, due to the constant velocities assigned to the
material points, no velocity gradient will be experienced during this phase and hence no
stress magnitudes are shown on the disks. Fig. 2.17(b) shows the simulation during the
impact, revealing that the material points near the contact region have higher compres-
sive stresses than would be expected. Finally, Fig. 2.17(c) shows the disks after impact,
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Figure 2.17: Collision process of two elastic disks
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where the velocities are now in the opposite direction to before the impact. Small resid-
ual stresses can be observed on the disks, due to the free vibration of the disks after the
impact.

The energy conservation errors of the system were tracked, as a function of time,
throughout the analysis. At time t +∆t , the total energy of the system can be expressed
as

E t+∆t
tot = E t+∆t

ki n +E t+∆t
str ai n (2.59)

where Eki n is the kinetic energy and Estr ai n is the strain energy stored in the material
points. These are defined as,

E t+∆t
ki n = 1

2

∑
p

mp (vt+∆t
p )

2
(2.60)

E t+∆t
str ai n = E t

str ai n +∑
p

V t+∆t
p

σt
p +σt+∆t

p

2
:∆εp (2.61)

Fig. 2.18 shows the system energy conservation errors with time for different applied
time steps, where the initial velocities were changed to 0.005 m/s in order to simulate a
longer time during which the two disks remain in contact. Fig. 2.18(a) shows the results
using explicit MPM, where the time step was chosen to be ∆t = 0.0025 s by applying the
Courant–Friedrichs–Lewy (CFL) condition. The results obtained with the implicit MPM
are provided in Fig. 2.18(b) – (d), where time steps were chosen to be the same, 10 times
and 100 times that of the explicit code, respectively.

For the cases shown in Fig. 2.18(a) – (c), the energy is preserved well before and
after the impact. Before impact, the material points comprising the disks are moving
with uniform velocities, and no strains or stresses are generated; hence the energy is
purely due to the uniform movement of the disks. During the impact, the kinetic energy
decreases to zero, with the strain energy reaching its maximum value at the point of
maximum deformation. After that, the disks start to bounce back from each other, and,
at the same time, the deformation is recovered, leading to a decrease in the strain energy
and a resurgence of kinetic energy. After the impact, a small amount of strain energy
remains, which is due to the free vibration of the disks after separation.

Fig. 2.18(d) shows the energy conservation errors corresponding to a time step size
of ∆t = 0.25 s, i.e. 100 times the explicit ∆t . It is seen that the energy not conserved
is severe, although the material point trajectories were not much affected. As pointed
out by others (e.g. Smith and Griffiths (2005)), implicit integration schemes such as the
trapezoidal rule are unconditionally stable in linear analyses, which enables the code to
work at extremely large time steps. However, for the problem presented herein, there is
a bound on the implicit time step imposed by the accurate resolution of the collision,
known as the characteristic collision time, i.e. the time that it takes for a wave to traverse
the disk (Sulsky and Kaul, 2004). In this example, the wave speed is about 10.0 m/s, and
the disk diameter is approximately 0.4 m, thus giving the characteristic collision time to
be about 0.04 s, i.e. 16 times the explicit time step size.
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(b) ∆t = 0.0025 s
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Figure 2.18: Energy conservation errors for elastic disk collision

2.7. CONCLUSIONS
An implicit material point method (IMPM) framework has been developed for both quasi-
static and dynamic analyses. The improved characteristics in solving large-deformation
elasto-plastic problems compared to the finite element method (FEM) are highlighted.
The chapter provides a comprehensive overview of the IMPM working procedures and
formulation, following, where possible, standard FEM methods, thereby enabling the
adaptation of an FEM code to an MPM code in a relatively straightforward manner.

Numerical examples of increasing complexity are provided, so as to clarify and il-
lustrate the implementation procedures, performance and behaviour in a step by step
manner. The 1-D column compression introduces the subdivision algorithm adopted
in this implementation for the initialisation of material points for the computational
continuum. The cantilever beam problem represents a quasi-static case and is used to
demonstrate various details of MPM, including the influence of using a “soft stiffness”
for the background mesh and the influence of the number of material points per ele-
ment, and the results are shown to compare favourably with an UL-FEM solution. The
dynamic case is illustrated via the axial vibration of a continuum bar and a sand col-
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umn collapse. Aspects, such as the time step size and the order of updating the stress,
are investigated in the first example. For the sand column collapse problem, the com-
puted solution is compared with an experimental result, which further demonstrates the
capability of MPM in modeling extreme deformations. Finally, a comparison between
implicit and explicit MPM models is provided using a disk collision example, where the
advantage of using IMPM over explicit MPM in terms of the chosen time step size is iden-
tified. Note that if a highly nonlinear constitutive model had been used, then the time
step must be selected to ensure an accurate stress return during each loading step, and
that therefore the differences between the required time step in the explicit and implicit
formulations may be reduced.



3
SLOPE INSTABILITY APPLICATIONS

WITH IMPM

MPM is able to simulate large strain analyses by representing the material as a collection of
points which are able to move through a background mesh. By utilising the material point
method (MPM) coupled with a cohesive strain softening constitutive model, retrogressive
failures within two types of clayey slopes are modelled, which are shown to be in accor-
dance with failure modes observed in reality. Slope geometry is considered to be crucial
in the development of slope failure mechanisms, and retrogressive failures are revealed to
be closely associated with the post-peak strain softening behaviour of soil. Observations
on the collapse process of a long inclined slope reveal that multiple slope slides are occur-
ring simultaneously, and that, based on the slope angle, two types of slope failure can be
categorised. For gentler slopes, a retrogressive failure mode, with individual failure blocks
forming wedge structures, is observed, whereas, for steeper slopes, a large translational
slide is observed, with the soil mass subsequently breaking up.

Parts of this chapter have been published in Computers and Geotechnics, 78, 88-98, 2016, (Wang et al., 2016b).
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3.1. INTRODUCTION
Retrogressive and progressive slope failures are a dynamic process in the sense that they
involve a progressively changing scenario. A slope, which, when subjected to a toe ex-
cavation, becomes unstable, or after an initial failure is steepened, may lead to the ini-
tiation of further failures retrogressing backwards. This process can repeat itself in a
multiple-retrogressive fashion, and can result in a bigger landslide. Cases reported in-
clude the retrogressive failures of cemented sensitive clays in the Ottawa–St. Lawrence
Lowlands (Mitchell and Klugman, 1979); retrogressive landslide complexes in the Boone
valley in the French Alps (Van Asch et al., 1984); and the progressive failures of observed
landslides in Scandinavia and eastern Canada (Locat et al., 2011).

Site investigations on real slope failures provide very valuable information; however,
the intervals between individual failures in a larger slide can sometimes amount to some
tens of years (Brunsden and Jones, 1980). In most cases of real slope failures, instrumen-
tation of the failure and material characterisation are not undertaken. Hence, for helping
to investigate slope failure conditions in a time efficient way, numerical modeling shows
certain advantages. A recent publication (Llano-Serna et al., 2015) compares MPM sim-
ulation with two real cases, although the only comparison is the final situation, without
any observation of the failure and propagation mechanisms.

This chapter presents an investigation of the collapse process of slopes, utilising the
implicit material point method (MPM) introduced in the previous chapter, in order to
provide a view of how the retrogressive failure develops in the slopes. The whole slope
failure process, from initiation, through failure propagation, to the final equilibrium
configuration, is simulated.

For convenience in benchmarking this technique, some idealised assumptions are
made, but these can easily be changed for more site specific analyses. The simplifying
assumptions are: (a) the flow material is a clay idealised by a linear elastic, cohesion
strain softening Von Mises model; (b) the slope is assumed to be initially unstable under
the in-situ stress condition, so that self-weight is the trigger for the slope failure rather
than any other factors; (c) no pore pressure changes are simulated. Hence, a simple total
stress approach is adopted in this chapter, with the aim of giving a clear (albeit simpli-
fied) picture of some of the main features of slope failure mechanisms in cohesive soils;
that is, as a prequel to future investigations involving more realistic material and trigger-
ing scenarios. The emphasis here is to reproduce commonly seen clay-type slope failures
(Mitchell and Klugman, 1979; Van Asch et al., 1984; Locat et al., 2011) (e.g. rotational
and translational slides), and to interpret the failure mechanisms within the proposed
framework; that is, to explain the observed translational and rotational slides through
the concepts of retrogressive and progressive failure. Comparison of simulations with
field cases is beyond the scope of this investigation.

For modeling slope instability, traditional numerical tools such as the finite element
method are often limited in their applicability to problems involving large deformations,
due to potential excessive mesh distortions that can occur in such cases. This can give
an incomplete description of failure, in that the initial slip is considered and the ongo-
ing sliding failure is ignored. That is, continual changes in geometry cannot easily be
simulated without extensive re-meshing. However, by using the implicit material point
method (IMPM) (Wang et al., 2016c) coupled with a cohesive softening (Von Mises type)
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constitutive model, the process of retrogressive failure in an undrained soft clay slope
under self-weight loading is possible, as will be demonstrated herein. For this purpose,
two types of slope are analysed, which, for convenience, are called “short slope” (slope
height = 5.0 m) and “long slope” (down-slope length ≈ 25.0 m). The factors influencing
the post-failure and retrogressive failure behaviours of the two slopes have been inves-
tigated. For the long slope, different slope angles are considered, to investigate the link
between slope geometry and the various failure mechanism categories.

3.2. PROGRESSIVE AND RETROGRESSIVE FAILURES IN CLAYS
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Ground surface
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Figure 3.1: Three types of retrogressive landslide in sensitive clay (after Locat et al. (2011)).

Slope failure is a typical geotechnical problem and receives substantial attention due
to its potential to cause catastrophic damage. It can be triggered by a variety of fac-
tors, such as rainfall infiltration, water level rise, earthquakes and so on. Corresponding
failure mechanisms that have been identified, mostly through the back analysis of case
histories, are complicated and diverse (Quinn et al., 2007; Bernander, 2000). Generally,
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three types of retrogressive landslides in clayey slopes have been summarised (Van Asch
et al., 1984; Locat et al., 2011), i.e. multiple rotational slips, translational progressive
landslides and spreads, as illustrated in Fig. 3.1.

Multiple rotational slips (or slumps) are believed to happen in a successive way (Xu
et al., 2014), following an initial failure which is often due to a long term erosion process.
When a down slope failure moves completely away from the newly formed crater, the
back scarp is exposed and free, which may result in the scarp itself being an unstable
slope and thus another slide occurs. This process can continue until a final stable back
scarp is formed. The mechanism of retrogressive failure can be easily recognized in this
case, because subsequent failures occur after a block has completely moved out of the
sliding area.

(a) shallow sucessive rotational slips

(b) deep seated multiple rotational slips without complete exposure of
the rear scarp

Figure 3.2: Development of rotational slips (after Van Asch et al. (1984)).

There are also examples of slope failure complexes comprising individual failure blo-
cks which have moved very little relative to each other (Van Asch et al., 1984), as shown
in Fig. 3.2. The configuration depicted in Fig. 3.2(a) has not necessarily developed by
the mechanim of retrogressive failure. Based on plastic static theory, Sokolovskii (1966)
has shown that, in long shallow soil slopes, rotational failure planes develop which are
linked tangentially to a failure plane parallel to the slope base. The soil above the fail-
ure plane can fail as a single block while secondary movements along rotational failure
surfaces give the slope a step-like character. Deep seated landslides, as shown in Fig.
3.2(b), are reported to be caused by the mechanism of retrogressive failure (Thomson
and Hayley, 1975), although the rear scarp is not completely exposed. In their view, the
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slight movement of a block is sufficient to cause a reduction of the lateral support to the
upslope soils, hence initiating failure of the next block.

Bjerrum (1955) quantified the danger of successive multiple rotational slumps by
considering the stability of one of the single slips, which implicitly assumes that all the
slumps behave in a consistently uniform way. It was believed that stabilisation of these
slopes could be achieved simply by stabilising the lowest block of the slope (Van Asch
et al., 1984).

Translational failures are often found in shallow soil layers, overlaying stiffer and
stronger soil or rock layers on long slopes, with a failure plane almost parallel to the to-
pographical surface. The resulting landslides are characterized by a marked subsidence
zone at the head of the slope and a heaved passive zone, usually far beyond the toe of the
slope, into more level ground (see Fig. 3.1(b); Locat et al. (2011)). Several distinct phases
can be concluded in the development of a progressive failure (Bernander, 2000):

– the disturbance phase, in which an initial local instability at the upper part of the
slope, such as an earth fill, causes an increase of earth pressure, gradually mobiliz-
ing the remaining shear capacity in the potential failure zone;

– an intermediate, virtually dynamic stage of stress redistribution, when the unbal-
anced shear forces propagate to the more stable, less inclined areas downslope;

– a possible new state of equilibrium, in which, if the maximum earth pressure is
less than the current passive earth pressure resistance, the slide movement stops,
and the outcome may be a minor local active failure or cracking in the upslope
area.

– an actual slide event, in which, if the passive resistance is exceeded over some
distance in the lower part of the slope, the soil mass will then disintegrate in a
state of passive failure, entailing substantial heave of the ground surface.

– the final state of equilibrium.

Varying material properties and changing geometry in the soil mass in different pha-
ses are considered of decisive importance to failure development. A deformation-soft-
ening model, in which the shear strength of soils reduces not only due to plastic shear
straining, but also due to local failures in the soil masses, was assumed in the work of
Bernander (2000) and believed to better describe the extensive failures in a downhill
progressive failure. Andresen and Jostad (2004, 2007) further investigated the influences
of the material properties on slope failures. By analysing the progressive failure in a
long, gently inclined, slope of sensitive clay subjected to undrained loading with a fi-
nite element procedure, two different material behaviours (perfect-plasticity and strain
softening) were compared. It was concluded that the triggering load for a landslide in
strain-softening clay is less than the one for a perfectly-plastic clay with the same shear
strength. Moreover, when perfect-plasticity is assumed, the slope fails via a local failure
in the upslope area, without any of the failure propagations observed in practice.

Spreads have been proposed to result from the disruption and dislocation of a soil
mass above a failure surface (Cruden and Varnes, 1958), beginning at the free surface,
and leading to horst and graben type ribs and ridges within slide debris. Odenstad (1951)
and Carson (1977) indicate that the angle of the slip surfaces forming the ridges would be
at 45◦+φ/2 to the horizontal, whereφ is the friction angle of the soil. In addition, Carson
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(1977) emphasizes the importance of tension crack development between the horsts and
grabens and their effects on the morphology of the debris left in the crater. The spread
is also postulated to be triggered by an initial instability in the downslope areas, such as
toe erosion (Bernander, 2000; Quinn et al., 2007), leading to a loss of lateral support to
the soils upslope. The shear strains are mainly concentrated along the surfaces of the
horsts and grabens, with minimal strains inside the soil blocks (Dey et al., 2015). The
propagation of a horizontal failure surface is considered as another distinct process in
forming the spread (Locat et al., 2011, 2013), which underlies and connects the wedge
failure blocks. Once the failure surfaces have developed, the horsts and grabens displace
almost horizontally along the horizontal shear band, and the failure stops when the sub-
sidence of a graben is not high enough to leave an unstable rear scarp (Carson, 1977).
Spreads are believed to occur very rapidly, due to limited time to dissipate the pore pres-
sures in essentially undrained conditions (Locat et al., 2013), and cover larger areas than
circular slides. It is even reported that over 42% of the landslides that have happened
in Scandinavia can be categorised as spread (Fortin et al., 2008), such as the Sköttorp
landslide in Sweden (Odenstad, 1951), and the 1989 Saint-Liguori landslide (see Fig. 3.3;
Locat et al. (2011)). Conventional limit equilibrium analyses applied to these types of
movements give factors of safety well above unity (Demers et al., 2014). However, the
progressive failure mechanism has been put forward, in recent studies, to explain this
failure mode. Dey et al. (2013, 2015) simulated the whole process of progressive fail-
ure leading to spread by using the coupled Eulerian Lagrangian (CEL) approach, which
explained the displacements of different blocks in the failed soil mass and also the re-
moulding of soil around the shear bands.

Figure 3.3: 1989 landslide at Saint-Liguori, Quebec (Locat et al., 2011)

Many slope collapses can be more complicated, and combine more than one or two
of the failure modes listed above. Mitchell and Klugman (1979) described retrogressive
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landslide development as a compound failure mode, comprising (a) an initial slip, (b) a
retrogressive flow slide owing to the soil strength in the current back scarp being over-
come by the gravitational force, and (c) a plastic extrusion process. Quinn et al. (2007)
suggested that retrogressive landslides are not in fact retrogressive, but rather the result
of translation, subsidence and disruption of a monolithic slide mass over a developing
liquefied zone. The Rissa slide, Norway, was reported to be initiated by a retrogressive
landslide caused by human activity, characterized by consecutive circular slip surfaces
and followed by a big progressive downhill landslide (Gregersen, 1981). The recent Oso
landslide in Washington was observed to have multi-rotational retrogressive failures in
parts and large translational slides in the longer slopes (Keaton et al., 2014).

For simplicity, this thesis considers an idealized sensitive clayey slope in the follow-
ing study, where a sharp strength loss is observed once the soil enters the plastic stage,
i.e. a simplified strain-softening constitutive model. Andresen and Jostad (2004, 2007)
compared the effects of using a strain-softening model with using a perfectly-plastic
model in analysing progressive failures in long natural slopes. It was reported that the
mechanism for the perfectly-plastic model is local, which highlights the importance of
accounting for strain-softening behaviour in slope post-failure assessments.

3.3. CONSTITUTIVE MODEL
This section presents a review of a simple cohesion softening model (after Yap and Hicks
(2001)), which is used throughout the thesis. By using different failure criteria, the model
is considered to be able to simulate different types of soils, e.g. frictional or clayey soils.
For simplicity, Mohr-Coulomb and Von Mises criteria are used in the context of the fol-
lowing analyses. Moreover, the cohesion is considered as a linear function of the ac-
cumulated plastic shear strain invariant. Before proceeding to the description of the
model, the functions for the two failure criteria are briefly reviewed.

3.3.1. FAILURE CRITERIA
Many failure criteria have been proposed for representing the strength of soils. Among
them, the Von Mises and Mohr-Coulomb criteria are often used to describe cohesive
(clay) and cohesive-frictional (sand, sandy clay) soil behaviours, respectively, due to
their simplicity and the fact that they permit finite element solutions to be compared
with a variety of classical plasticity solutions.

To avoid calculating the principal stresses explicitly, which may become complicated
for axisymmetric and three-dimensional deformation, the yield fuctions below are ex-
pressed in terms of stress invariants. Furthermore, due to the gradient discontinuities
which occur at both the edges and apex of the Mohr-Coulomb surface, a smooth hyper-
bolic approximation (Abbo and Sloan, 1995) is adopted in this work.

VON MISES

For undrained clays which behave in a frictionless manner, the Von Mises criterion is
appropriate and gives equal weighting to all three principal stresses. Under plane strain
conditions, assuming no plastic volume change, the Von Mises criterion is given by,

Fvm =p
3σ̄−p

3cu (3.1)
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where cu is the undrained shear strength of the soil, and σ̄ is a stress invariant, equaling
the square root of the second devitoric stress invariant, that is,

σ̄=
√

1

2
(s2

x + s2
y + s2

z )+τ2
x y +τ2

y z +τ2
zx (3.2)

MOHR-COULOMB

For soils possessing both frictional and cohesive components of shear strength, conical
failure criteria are appropriate, the best known of which is the Mohr-Coulomb criterion.
In invariant form, the criterion can be written as,

Fmc =σm sinφ+ σ̄kθ− c cosφ (3.3)

with

kθ =
(
cosθ− sinθ sinφp

3

)
(3.4)

where c and φ are the cohesion and the friction angle of the soil, σm is the mean stress
and θ, called the Lode angle, is a measure of the angular position of the stress point in
the π-plane (Nayak and Zienkiewicz, 1972). These are defined as,

σm = 1

3
(σx +σy +σz ) (3.5)

θ = 1

3
arcsin(−3

p
3

2

J3

σ̄3 ),−30
◦ ≤ θ ≤ 30

◦
(3.6)

where σ= (σx ,σy ,σz ,τx y ,τy z ,τzx )T is the Cauchy stress vector, x, y and z are the Carte-
sian coordinates, and s = (sx , sy , sz ,τx y ,τy z ,τzx )T is the deviator stress vector, with each
component being defined as

sx =σx −σm , sy =σy −σm , sz =σz −σm (3.7)

J3 is the third stress invariant,

J3 = sx sy sz +2τx yτy zτzx − sxτ
2
y z − syτ

2
zx − szτ

2
x y (3.8)

To eliminate the singularities at the apex and edges, the yield surface is rounded by
introducing two extra parameters, which govern the accuracy of the approximation; de-
tails can be found in Abbo and Sloan (1995). Specifically, the yield function is modified
as

Fmc =σm sinφ+
√
σ̄2kθ

2 +a2si nφ2 − c cosφ (3.9)

in which parameter a can be adjusted to model the Mohr-Coulomb yield function as
closely as desired, as shown in Fig. 3.4, although, in practice, a = 0.05ccotφ has been
found to give results which are almost identical to those obtained from the Mohr-Coulo-
mb model. If a is set to zero, the traditional Mohr-Coulomb yield function is recovered.
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Figure 3.4: Hyperbolic approximation to Mohr-Coulomb meridional section (after Abbo and Sloan (1995))

In Eq. (3.9), kθ is similar to the original Mohr-Coulomb definition in Eq. (3.4), except
that it is rounded in the vicinity of the singularities, yielding

kθ =
{

(A1 −B1 sin3θ), |θ| > θT

(cosθ− 1p
3

sinφsinθ), |θ| ≤ θT
(3.10)

where

A1 = 1

3
cosθT (3+ tanθT tan3θT + 1p

3
si g n(θ)(tan3θT −3tanθT )sinφ) (3.11)

B1 = 1

3cos3θT
(si g n(θ)sinθT + 1p

3
sinφcosθT ) (3.12)

si g n(θ) =
{+1, f or θ > 0

◦

−1, f or θ ≤ 0
◦ (3.13)

where θT is a specified transition angle, in which a typical value of 25
◦

is used in practice
(Abbo and Sloan, 1995).

3.3.2. FORMULATION OF THE SOFTENING MODEL
During plastic flow, the current stress coincides with the current yield stress and the
value of the yield function remains constant, i.e.

F (σ,κ) = 0 (3.14)

where the scalar yield function is a function of the stress tensor,σ, and the internal hard-
ening/softening parameter, κ.

As the consistency condition applies, the rate of F vanishes whenever plastic yielding
occurs (both hardening and softening), and can be described as
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dF =
{
∂F

∂σ

}T

dσ+ ∂F

∂κ
dκ= 0 (3.15)

Defining the modulus A as

A =− 1

dλ

{
∂F

∂κ
dκ

}
(3.16)

where dλ is a scalar defining the magnitude of the plastic strain increment, the yield
function rate can alternatively be written as

dF =
{
∂F

∂σ

}T

dσ− Adλ= 0 (3.17)

Note that A is defined in such a way that it is positive when the soil is hardening and
negative when the soil is softening.

Rearranging in terms of dλ leads to

dλ=
{
∂F
∂σ

}T
De dε

A+
{
∂F
∂σ

}T
De

{
∂Q
∂σ

} (3.18)

where De is the elastic stiffness matrix, dε is the incremental strain, Q is the plastic po-
tential function, which is regarded the same as the failure function in expressions for an
associated flow rule, ∂F /∂σ is the vector normal to the yield surface and ∂Q/∂σ is the
vector normal to the plastic potential surface.

The elasto-plasticity is described by introducing the elasto-plastic stress-strain ma-
trix, i.e.

dσ= Dep dε (3.19)

where the elasto-plastic stiffness matrix can be obtained from,

Dep = De −Dp (3.20)

in which Dp is the plastic stress-strain matrix, given by

Dp =
De

{
∂Q
∂σ

}{
∂F
∂σ

}T
De

A+
{
∂F
∂σ

}T
De

{
∂Q
∂σ

} (3.21)

The equivalent accumulated plastic strain, in its incremental form, is

d ε̄p =
√

2

3
dεp : dεp =

√
2

3

∥∥dεp∥∥ (3.22)

in which dεp is the plastic strain increment, which is normal to the plastic potential
surface, i.e.
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dεp = dλ

{
∂Q

∂σ

}
(3.23)

Substituting Eq. (3.23) into Eq. (3.22) leads to

d ε̄p = 2

3
dλ

√
dQ (3.24)

where,

dQ = 1

2
((
∂Q

∂σx
− ∂Q

∂σy
)

2

+ (
∂Q

∂σy
− ∂Q

∂σz
)

2

+ (
∂Q

∂σz
− ∂Q

∂σx
)

2

+ 3

4

∂Q

∂τx y

2

) (3.25)

Hence, dλ is given by

dλ= 3d ε̄p

2
√

dQ
(3.26)

As the cohesion varies with plastic strain, it can be taken as an internal variable in
the yield function as shown in Eq. (3.14), i.e. dc = dκ. In the model, the stress-strain
relationship in the softening stage is assumed to be linear and given by,

c(ε̄p ) = c0 +H · ε̄p ; ε̄p < ε̄pr (3.27)

c(ε̄p ) = cr ; ε̄p > ε̄pr (3.28)

where c0 is the initial cohesion, cr is the residual cohesion, ε̄pr is the plastic deviatoric
strain invariant at the onset of the residual strength and H is the softening modulus
(which is taken to be negative). A sketch of the model is shown in Fig. 3.5. Note that
hardening behaviour can easily be included by taking H to be positive.

H

plastic strain invariant

co
he

si
on

 /k
P

a

c
0

cr

Figure 3.5: Sketch of cohesion softening model

Thus, the change in internal variables can be expresses as,

dκ= dc = H ·d ε̄p (3.29)
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By substituting Eqs. (3.26) and (3.29) into Eq. (3.16), modulus A is then given as,

A =−2

3

√
dQ ·H · ∂F

∂κ
(3.30)

The partial derivative of the yield function with respect to the internal variable κ can
be calculated directly using the Eqs. (3.1) and (3.3); for the Von Mises criterion,

∂F

∂κ
= ∂F

∂c
=−p3 (3.31)

and for the Mohr-Coulomb criterion,

∂F

∂κ
= ∂F

∂c
=−cosφ (3.32)

Therefore, the final expression for A can be explicitly expressed as a simple function
of the input softening parameter; for the Von Mises criterion,

A = 2

3
·
√

dQ ·p3H (3.33)

and for the Mohr-Coulomb criterion,

A = 2

3
·
√

dQ ·H ·cosφ (3.34)

3.3.3. NUMERICAL EXAMPLE

To validate the above softening model, the axisymmetric loading of a single 8-noded
quadrilateral element is provided here as an example, as shown in Fig. 3.6. The specimen
is 1m high and 1m wide. Both the left and bottom boundaries are on rollers, while the
bottom left corner is fixed. It is subjected to vertical displacement-controlled compres-
sion on top of the specimen. A total of 110 equal displacement loading-steps are applied,
with every step being −5.0×10−5m. The material properties are listed in Table 3.1 and
the Von Mises failure criterion is used. For the stress integration, an elasto-plastic algo-
rithm has been used, following the approach used by Smith and Griffiths (2005) in which
the constitutive equation, Eq. (3.19), is first solved with an initial elastic trial. The stress
states at the material points are then checked to determine whether the stress state is
allowable, or yield has occurred. A sub-stepping algorithm (Sloan et al., 2001, 2002) has
been used to re-distribute stresses and ensure that all stress states are within, or on, the
yield surface.

The model results are shown in Fig. 3.7. Four different stages are shown; i.e. linear
elastic, linear plastic hardening, linear plastic softening and residual stages. For com-
parison, models with a perfectly plastic failure criterion are also shown. The results cor-
respond to the analytical solutions.

By combining the proposed strain-softening model with various failure criteria, the
studies in this thesis aim to give a clear picture of some of the main geometric features
of slope failures. For simplicity, the hardening stage has been omitted in these analyses.



3.4. SLOPE COLLAPSE DUE TO AN EXCAVATION AT THE SLOPE TOE

3

55

displaced vertically

Figure 3.6: Diagram of the numerical example

Parameters Values
Young’s modulus (kPa) 2.5 ×104

Poisson’s ratio 0.25
Initial cohesion (kPa) 16.0
Peak cohesion (kPa) 20.0

Residual cohesion (kPa) 15.0
Hardening modulus (kPa) 5.0×103

Softening modulus (kPa) -2.5×103

Table 3.1: Parameters for an undrained triaxial compression test

3.4. SLOPE COLLAPSE DUE TO AN EXCAVATION AT THE SLOPE

TOE
A slope collapse triggered by an excavation in the slope toe area is performed in this
section, which provides a preliminary insight into retrogressive and progressive slope
failures.

Excavations at the toe of a slope can trigger the collapse of the slope. As well as chang-
ing the slope geometry, it may also expose significant geologic features such as shear
zones, faults and folds in some circumstances, thereby causing slope instability.

To investigate the effect of excavation on a slope, a naturally stable slope was first
considered, as shown in Fig. 3.8, and then a vertical cut of height 0.2 m was excavated
at the slope toe, as indicated. The problem is assumed to be plane strain, and the com-
putational grid is made up of 4-noded square elements, of 0.05 m side length, with each
element initially containing 4 material points. The height of the slope is 1 m and the
slope angle is 45

◦
. Roller boundaries are prescribed at the left side of the domain, to al-

low only vertical displacements. The interaction between the slope base and the ground
is modelled using the frictional boundary condition (Eq. 2.53), which allows the slope
base to move horizontally when friction is overcome.

The linear elastic, cohesion softening Von Mises model, as shown in Fig. 3.5, was
used to describe the soil behaviour. c0 is the initial cohesion, cr is the residual cohe-
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Figure 3.8: Sketch of an excavation undertaken at the toe of a slope

sion, ε̄pr is the plastic deviatoric strain invariant at the onset of the residual strength and
H is the softening modulus (which is taken to be negative for softening). The material
properties are shown in Table 3.2. Since a local softening model is used here for demon-
strating the proposed solution procedure, the numerical results are mesh dependent.
However, as the proposed method is based on a FEM formulation, the same regularisa-
tion techniques as used in FEM (Sluys et al., 1993) are likely to be able to address this
issue. Note that some regularisation techniques often used in FEM, for example, the
addition of higher order gradients, can be more difficult to implement within the MPM
framework. Hence, particular attention is needed during the implementation.

The dynamic implicit MPM was utilised in this case. The time step was set as 5.0×
10−3 s, and the computation was divided into two stages. Initially, the self-weight of
γz = 20 kN/m3 is applied to the slope in one step to generate the initial total stresses.
Quasi-static equilibrium is detected by using the criterion based on the energy and force
ratio (Al-Kafaji, 2013), with the out of balance force ratio expressed as,
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Parameters Values
Young’s modulus (kPa) 200.0

Poisson’s ratio 0.33
Self weight (kN/m3) 20.0
Peak cohesion (kPa) 5.0

Residual cohesion (kPa) 1.0
Softening modulus (kPa) -50.0

Table 3.2: Parameters for the excavation case

δ1 =
∥∥F ext −F i nt

∥∥∥∥F ext
∥∥ (3.35)

and a dimensionless energy ratio as,

δ2 = Eki n

W ext (3.36)

where Eki n denotes the kinetic energy of the system, W ext is the work induced by the
external force, and a tolerance of 0.01 was used for both criteria. To achieve the quasi-
static equilibrium state, a damping force needs to be introduced to model the energy
loss that occurs in reality (Eq. 2.52). For this case, the factor is chosen as cd = 0.75 to
obtain faster convergence in the quasi-static equilibrium stage. Secondly, the triangular
soil block was “excavated” instantly to trigger the slope collapse. The collapse process is
illustrated in Fig. 3.9, with the colouration representing the accumulated plastic strain
invariant ε̄p .

Due to the toe excavation, the slope becomes unstable and a slope slide was trig-
gered. In Fig. 3.9(a), a complete shear band, starting from the new slope toe was formed.
Fig. 3.9(b) shows that the soil above the shear band moves as a block along the failure
surface, and the final quasi-static configuration is displayed.

This analysis illustrates the ability of the proposed method to simulate geotechnical
behaviour at large strains, which generally occur in arbitrary directions, i.e. not aligned
with the mesh. The consequence of a geotechnical instability can then be better quan-
tified, as can further potential unstable situations, as may be observed, for example, in
retrogressive and progressive failures, which will be investigated in the next two sections.

3.5. RETROGRESSIVE FAILURE OF A SHORT SLOPE UNDER SELF-
WEIGHT LOADING

A relatively short cohesive soil slope has first been analysed using IMPM, combined with
the cohesive softening constitutive model. Parametric studies based on the softening
modulus and residual strength are provided at the end of the section.

3.5.1. RETROGRESSIVE FAILURES WITHIN A SHORT SLOPE
Fig. 3.10 shows the initial geometry of the slope. It has a height of 5 m and a slope
angle of 45°, and the distance from the crest to the left-hand boundary is 10.0 m. The
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(a) shear band formed due to toe excavation

(b) final configuration of the collapsed slope

Figure 3.9: Evolution of slope failure due to excavation at the toe

material properties are shown in Table 3.3. These values are hypothetical and do not
represent a real case, although they are representative of a soft clay material. The cho-
sen elastic parameters do not cause significant deformation, with the majority of the
deformation due to plastic yielding. The problem is assumed to be plane strain. The
boundary conditions are rollers on the left-hand edge allowing only vertical movement,
and the interaction between the slope base and the underlying ground is modelled us-
ing the Coulomb frictional algorithm from Section 2.3.5, with the friction coefficient set
to 0.3. The computational grid is made up of 4-node quadrilateral elements, with each
element initially having 4 material points located at the Gauss point positions. The back-
ground computational mesh is shown as light grey squares in Fig. 3.10, and consists of
20 elements vertically and 80 horizontally. There are 4040 material points. The time step
is set as 5.0×10−3 s. The simulation was run until a final quasi-static equilibrium state
was reached. Using an Intel Xeon E5-1620 processor, the analyses take approximately
3-4 hours to execute on a single core.

Fig. 3.11 illustrates the collapse process and development of retrogressive failures
within the slope, with the locations of the material points indicating the displaced soil
and the coloured contours representing the accumulated plastic shear strain invariant.
The static factor of safety (FOS) of the slope is 0.96, as determined using the strength
reduction method (Smith and Griffiths, 2005). Gravity loads are applied as body loads on
the material points in a single increment and kept constant. To determine the FOS, the
strength reduction method has been used to gradually reduce the shear strength until
plastic strains are indeterminate and the algorithm fails to converge, at which point the
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Figure 3.10: Initial conditions of the slope

Parameters Values
Young’s modulus (kPa) 1000

Poisson’s ratio 0.33
Self weight (kN/m3) 20.0
Peak cohesion (kPa) 20.0

Residual cohesion (kPa) 4.0
Softening modulus (kPa) -50.0

Table 3.3: Material properties for the short slope analysis

strength reduction factor is interpreted as the FOS. For simplicity, an initially unstable
slope is considered; hence, self-weight loading is here considered to initialise the slope
failure.

An initial band of plastic shear strains can be seen initiating from the slope toe in Fig.
3.11(a). The band then propagates backwards and upwards, so that a complete slip sur-
face is formed soon afterwards, as shown in Fig. 3.11(b). It is observed that the body of
soil above the critical slip surface starts to slide along the surface, and that a second slip
plane, also originating from the slope base, forms the second failure block. The remain-
ing part of the slope remains largely intact, i.e. elastic. Fig. 3.11(c) clearly shows that
plastic strains (and therefore strain softening) are concentrated along the slip surfaces,
and that the sliding soil moves as discrete blocks. Formations of soil wedges with shapes
of graben and horst are shown in Fig. 3.11(d), where, apart from the two distinct fail-
ure planes, the failure propagates in the horizontal direction as well, forming the wedge
base. This is in accordance with the previous conceptual model of Odenstad (1951) in
explaining the retrogressive failure mechanism, where a horizontal weak plane/layer is
assumed. However, in this case it is the strain softening that causes the “weak layer”. As
time progresses, the retrogression continues to move backwards and upwards and, after
approximately 40 s, the exposed back behind the second slide has become large enough
so that, due to the removal of down-slope support, it becomes unstable and the third
slide is triggered, as shown in Fig. 3.11(e). Unlike the second slide, the block of almost
intact clay displaces laterally on the horizontal plane. The final stable configuration is
displayed in Fig. 3.11(f), once the three failure blocks have formed. By observing and
comparing the successive slides, it can be noticed that, as the failure propagates back-
wards, the time interval between successive slides becomes larger.
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Figure 3.11: Collapse process of a short soft clayey slope

Fig. 3.12 depicts the stages of the constitutive model governing the behaviour of the
material points within the slope. Hence, blue, light blue, grey and red colours indicate
elastic, elastic unloading, softening and residual stages of the model, respectively. By
identifying the stage that each material point is associated with at different times, these
plots provide a clear view of the retrogressive failure phenomenon. It can be seen that
the strength loss does not occur simultaneously throughout the slope, but according to
the stress state and the accumulated plastic strain. When forming a distinct slip surface,
material points within the shear band are seen to lose their strength very quickly, after
which their response is governed by the residual cohesion. Material points in the imme-
diate vicinity of the shear band are mostly softening, which decreases the soil strength
and thereby perpetuates the retrogression of the failure mechanism back into the slope.
Large changes in the plastic strain invariant are also seen at the slope base, which experi-
ences the formation of a horizontal weak plane governed by the residual soil strength. In
contrast, the soil that is remote from the shear band (mostly near the left-hand boundary
or above the critical surface) remains intact. During the failure evolution process, there
are two observations worthy of note: firstly, when a block of soil moves out of the sliding
area, the exposed soil at the back scarp experiences elastic unloading; secondly, as a new
shear band is formed, the soils within the previous shear band(s) remain at the residual
state or elastically unload. No special technique is used here to avoid mesh dependency
problems due to the inclusion of strain softening, although these could be included via
similar treatments as for FEM. The mesh was shown via a sensitivity study to be con-
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Figure 3.12: Evolution of stress regions during the slope failure process

verged, i.e. giving the same results for a finer mesh, although some mesh dependency
was observed. The level of mesh dependency was found to be a function of the shear
(softening) behaviour, the mesh size, the number of material points and the frictional
boundary condition.

Fig. 3.13 shows the shear stresses at the material points at time t = 40.5 s. It is
seen that the stress states coincide with the deformations in a reasonable way, i.e. shear
stresses are largest either side of shear bands of failing or recently failed segments (the
most left hand side in Fig. 3.13). Although stress oscillations are seen to exist spatially
(as observed most clearly on either side of the shear band furthest to the left), these can
be reduced by using Gaussian integration techniques, GIMP, etc. (Beuth et al., 2011; Bar-
denhagen and Kober, 2004).

To conclude, this type of slope failure is attributed to the slope geometry change
during the retrogression. As the previous slide moves far, rendering the exposure of a
steepened scarp behind it, the force imbalance will be transferred backwards and trigger
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Figure 3.13: Shear stress at material points during the slope failure process at t = 40.5 s

other slides. When a stable slope geometry is eventually formed, i.e. the incremental
strain energy and kinetic energy become zero due to plastic deformation, friction, etc.,
the retrogression stops.

3.5.2. INVESTIGATION OF SLOPE RETROGRESSION BEHAVIOUR

INFLUENCE OF THE SOFTENING MODULUS

To further investigate the possible failure modes of the clayey slope, the softening mod-
ulus is discussed in this sub-section. Three cases have been analysed, corresponding to
softening moduli of -25.0 kPa, -50.0 kPa and -75.0 kPa (whereas the softening modulus
used in the previous section was -50 kPa). Other material properties are the same as for
the base case. The simulations have again been run until quasi-static equilibrium states
have been reached.

Fig. 3.14 shows the failure process of the slope for a softening modulus of -25.0 kPa.
Three things should be noted. Firstly, the interval between the first slide and the second
slide is much longer than for the slope with a softening modulus of -50.0 kPa. Secondly,
the failure is seen to originate from the middle part of the previous slip circle, not from
the slope base, thereby making the failed soil volume smaller. Thirdly, the final depo-
sition of the slope is apparently different, with a smaller sliding distance; or, in other
words, it poses a smaller risk to the surrounding area if the failure consequence is con-
sidered.

Fig. 3.15 shows the final displacement configurations and contours of accumulated
shear strain invariant for the slope with a softening modulus of -75.0 kPa. The failure
process was found to be similar to that of the slope with a softening modulus of -50.0 kPa,
and is therefore not presented. As seen in the figure, the formation of the last “strange”
vertical failure block is due to the boundary condition, which implies a larger sliding
distance than the prescribed computational domain.

To conclude, the softening modulus has a strong impact on the slope post-failure
behaviour, e.g. the extent of retrogression, sliding distance and number of failure blocks,
as illustrated in this case. As the retrogression moves backwards, the released system
energy will be gradually counteracted by the soil plasticity (where energy is lost) and
friction on the bottom boundary.
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(a) formation of the first slip plane at t = 6.0 s
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(b) formation of the second slip plane at t = 23.25 s
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(c) final quasi-static state at t = 38.25 s

Figure 3.14: Collapse process of a short soft clayey slope with a softening modulus = -25.0 kPa

INFLUENCE OF THE RESIDUAL SHEAR STRENGTH

In this sub-section, different residual shear strengths were considered, but with the same
softening modulus, -50 kPa, to test how the post-failure slope behaviour is governed by
the weakest soil strength. The coefficient η is defined as the ratio of the residual strength
over the peak strength. Apart from the original ratio, i.e. 0.2, used in the analysis pre-
sented in Section 3.5.1, two other ratios have been chosen, i.e. 0.4 and 0.6, corresponding
to residual strengths of 8.0 kPa and 12.0 kPa, respectively. All other material properties
and boundary conditions are the same as in Section 3.5.1, and the simulations were run
until quasi-static equilibrium was reached.

The final slope geometries are shown in Fig. 3.16. Fig. 3.16(a) shows that, when the
residual strength is 8.0 kPa (i.e. η = 0.4), two sliding soil blocks are formed, leaving a
shallow headscarp exposed when the whole system is in equilibrium. Compared to the
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Figure 3.15: Final slope configurations corresponding to softening modulus = -75.0 kPa at t = 82.5 s

initial slide, the second slide does not propagate to the slope base and is smaller in size.
The maximum plastic shear strain invariant is observed at the slope base boundary. In
Fig. 3.16(b), where the residual strength is 12.0 kPa (i.e. η = 0.6), only one slide occurs,
and the accumulated plastic strains are significantly lower than in the other two cases.
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(a) final quasi-static state reached at t = 48.75 s for the case of η = 0.4
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(b) final quasi-static state reached at t = 8.25 s for the case of η = 0.6

Figure 3.16: Final slope configurations corresponding to different residual shear strengths; η refers to the ratio
of the residual to peak shear strengths.

INFLUENCE OF FRICTION AT THE BOTTOM BOUNDARY

The friction angle imposed at the bottom boundary has an influential effect on the prop-
agation of the slope failures, which can alter the failure behaviour. Here two friction co-
efficients (µ f ) have been considered, equal to 0.1 and 1.0. The softening modulus was
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(a) final state at t = 45.0 s for case of µ f = 0.1

(b) final state at t = 19.0 s for case of µ f = 1.0

Figure 3.17: Final slope configurations corresponding to different friction coefficients

set to -25.0 kPa, and the other parameters and geometry are the same as above. The final
slope configurations are shown in Fig. 3.17. The results can also be compared with the
results presented in Fig. 3.14(c), where the friction coefficient is 0.3. It can be observed
that, as the friction becomes larger, the number of failure blocks reduces, giving a shorter
run-out distance. By comparing Fig. 3.14(c) with Fig. 3.17(a), although two blocks are
formed in both cases, the failure is deeper into the soil when the friction at the boundary
is smaller, as the soil runs out more quickly so a deeper second failure is caused. The
times taken for the slope to reach equilibrium are also seen to increase when the friction
is reduced.

3.6. RETROGRESSIVE FAILURE OF A LONG SLOPE UNDER SELF-
WEIGHT LOADING

This section analyses a long inclined slope, comprising a 5 m thick layer of soft clay de-
posited on top of a sloping bedrock. A cutting has been made at the toe of the long slope
which makes the slope unstable. The development of the failure mechanisms is investi-
gated and discussed.

H1=5.0m

fixed boundary
fixed boundary

rollers

s1=15.0m s2=26.25m

1:1 slope cut

rollers

H2=1.25m

s3=12.5m

Figure 3.18: Initial configuration of a long inclined slope (not to scale)
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(a) first critical (rotational) slip surface formed at t = 1.75 s
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(b) translational failure surface formed at t = 2.75 s
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(c) retrogression backwards at t = 4.0 s
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(d) configuration of the collapsed slope at t = 6.0 s, giving a step-like character

Figure 3.19: Collapse process of a long inclined slope
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3.6.1. COLLAPSE PROCESS OF A LONG INCLINED SLOPE

The main slope is inclined at 10° and, to avoid boundary effects, a horizontal section is
included at the top of the slope, as shown in Fig. 3.18. Towards the bottom of the slope,
a smaller second slope has been cut to a depth of 3.75 m; this slope is inclined at an
angle of 45° to the main slope surface (i.e. 55° to the horizontal). The horizontal section
is 15 m long, whereas the inclined slope is over 40 m long (along the line of the slope),
with the main section (5m deep) being over 26 m long. Parameters for the analysis are
shown in Table 3.4. The boundary conditions include rollers at both ends of the domain,
preventing horizontal displacement, and a fully fixed bottom boundary which simulates
the rough interaction with the bedrock below. As in the previous numerical example, the
slope fails under its own self weight. A total of 14980 material points and 4600 4-node
background mesh elements are generated initially. Since the focus of the analysis is on
the failure modes of the long inclined part of the slope, to reduce the computational cost
the simulation is only run for 6.0 s, by which time the failure is fully developed in the
inclined part, but not fully developed in the horizontal part. The time step is 5.0×10−3

s. Once again, an Intel Xeon E5-1620 processor has been used, with the analysis taking
approximately 1 hour to execute on a single core.

Parameters Values
Young’s modulus (kPa) 1000

Poisson’s ratio 0.33
Self weight (kN/m3) 20.0
Peak cohesion (kPa) 20.0

Residual cohesion (kPa) 5.0
Softening modulus (kPa) -75.0

Table 3.4: Material properties for the long slope analysis

Fig. 3.19 shows the accumulated shear strains at four times during the slope failure
evolution, in order to provide a comprehensive explanation of the failure mechanism
development. Fig. 3.19(a) shows that an initial rotational failure develops at the bottom
of the slope. This slide increases the shear stresses at the bottom of the soil layer, leading
to the propagation of a shear band back up along the base of the layer, to form the basal
failure plane of a large translational slide, as shown in Fig. 3.19(b). At the top of the
main slope, a curved slip plane develops, which is linked tangentially to the basal plane
to form one large failure block. At the time, a secondary curved failure plane initiates
from the middle part of the basal plane. Fig. 3.19(c) illustrates the step-like character
of the slope due to the soil movement along the secondary planes. The development of
the basal failure plane continues, as seen by the increasing plastic strain invariant along
the bottom line. Also, more secondary failure planes are shown in Fig. 3.19(d), for the
prescribed final time of t = 6.0 s. It is also seen that the soil mass dislocates due to active
failures in the downslope area behind the initial circular slide; that is, soil wedges with
shapes of sharp horst and graben are exhibited.
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(a) slope angle = 5° (t = 25.0 s)
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(c) slope angle = 20° (t = 3.0 s)

Figure 3.20: Failure of the long slope for different slope angles

3.6.2. INFLUENCE OF SLOPE ANGLE

For the above slope, a parametric study involving the slope angle is now presented. All
properties and domain details are the same, except that slope angles of 5°, 15° and 20°
are now considered. The corresponding failure configurations are illustrated in Fig. 3.20.
Note that, in each case, the analysis has been terminated before the onset of the retro-
gressive failure at the headscarp.

With reference to Figs. 3.19(d) and 3.20, all slopes exhibit a translational failure, as
well as a rotational failure at the slope toe. At a gentle slope angle (i.e. 5°, 10°), the ro-
tational failure at the toe occurs prior to the occurrence of the translation; hence the
rotational failure can be regarded as the trigger for the whole slope collapse, due to the
removal of lateral restraint on, and subsequent increase of shear stress in, the soil be-
hind. Specifically, for the case of 5°, after the initial rotational failure, there are a series of
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retrogressive slides moving back up the slope from the toe, which is not seen in the case
of 10°, before the formation of the entire translational failure of the main slope. There is
also secondary movement within the moving mass, resulting in the appearance of horst
and graben.

For a steeper angle (i.e. 15° as illustrated in Fig. 3.20(b)), the initial rotational and
translational failure planes occur almost simultaneously. Moreover, the moving block
in the translational failure is bigger than those in cases with shallower slope angles (in
terms of failing volumes). For the steepest slope considered (i.e. 20°, Fig. 3.20(c)), there
are three main differences in the failure mechanism development: firstly, slope failure is
triggered by the translational slide; secondly, the toe rotational slide does not trigger ret-
rogressive failures, although further slides occur within the moving soil mass due to the
global translational failure; thirdly, there are a greater number of secondary slip planes,
making individual failure blocks smaller, and all secondary movements are in the form
of a series of rotational failures.

3.7. CONCLUSIONS
Retrogressive failures within a clayey soil slope have been analysed using the material
point method (MPM) in conjunction with a simple elasto-plastic (Von Mises) softening
constitutive model. The results show that MPM is a promising method to simulate slope
failures, especially in capturing the post-failure behaviour of slopes. The evolution of
the collapse process in a natural short slope, triggered by the soil self-weight, is pro-
vided first. Geometry changes during slope failure are thought to be a main reason for
the retrogressive failure mechanism, with the removal of down slope support account-
ing for the successive slope failures, see Fig. 3.1(a). As the failure moves backwards up
the slope, the time interval between successive failures becomes larger, and the failing
area/volume can get smaller when a low softening modulus or a high residual stress is
defined, see Figs. 3.14 and 3.16(a). By means of observing the range of final slope con-
figurations for the short slope, it has been shown that multiple retrogressive failures in
slope collapse processes are associated closely with the softening modulus and residual
shear strength. Frictions at the slope bottom are also shown to have a significant influ-
ence on the slope failure development.

A long inclined slope has also been investigated. It has been seen that, as the slope
angle increases, the failure mode changes. For a shallow slope, an initial rotational slide
seems to trigger the whole slope collapse; then, as the retrogression moves back up the
slope, the appearance of horst and graben (wedge) structures occurs, as was observed for
the short slope, see Fig. 3.1(a). As the slope gets steeper, successive secondary rotational
slides are usually observed, although the sliding distances of individual failure blocks
with respect to each other are small compared to the shallower slopes in which the rear
scarps of the slides are usually completely free. The failure mode can be generalised as
a primary large translational failure, which propagates down to the base of the soil layer,
giving a common basal slide plane, while, at the same time, secondary failure surfaces
give the failed slope a step-like character, as shown in Fig. 3.1(b) and 3.2(a).





4
SLOPE FAILURE ANALYSIS WITH

RMPM

The random material point method (RMPM), which combines random field theory and
the material point method (MPM), is proposed. It differs from the random finite element
method (RFEM), by assigning random field (cell) values to material points that are free to
move relative to the computational grid, rather than to Gauss points as in a conventional
finite element mesh. The importance of considering the effects of both large deformations
and the spatial variability of soil strength properties in slope stability analyses is high-
lighted. The risks posed by potential slides are quantified by the extent of retrogressive
failure; i.e. due to the tendency for secondary failures to be triggered by the removal of
support from the remaining soil mass caused by the initial failure. The results show that
RMPM provides a much wider range of possible solutions, in general increasing the vol-
ume of material in the failure compared to the RFEM solutions, which are usually limited
to the initial slide. Moreover, the anisotropic nature of soil heterogeneity is shown to have
a significant influence on the nature and extent of the failure.

Parts of this chapter have been published in Géotechnique letters, 6(2), 113-118, 2016 (Wang et al., 2016a).

71



4

72 4. SLOPE FAILURE ANALYSIS WITH RMPM

4.1. INTRODUCTION

Soils exhibit spatial variability of material properties due to variations in density, particle
size distribution, minerology and stress history. A variety of failure mechanisms may be
possible due to the spatial distribution of weaker soil zones. Hence, the influence of soil
heterogeneity on slope failure initiation and post-failure behaviour is investigated in this
chapter.

In traditional analysis methods, soil structures are often treated by subdividing the
domain into layers (zones) comprising uniform soil types. However, it is well-known that
the formation/deposition of soil layers is a complicated process involving geological, en-
vironmental, physio-chemical processes, and so on. Hence, even in so-called "uniform"
deposits, spatial variation (i.e. heterogeneity) in material properties exist (Hicks and
Samy, 2002). In deterministic designs, each material property is generally represented
by its mean or some other characteristic value; this generally leads to a single factor of
safety that reveals nothing about the probability of failure. However, by accounting for
the natural variability of soils, a more realistic and comprehensive understanding of soil
structure response can be obtained.

This chapter starts with a brief introduction on random field generation. This is fol-
lowed by a series of investigations, using slope geometries similar to those already inves-
tigated in the previous chapter; however, this time accounting for the spatial variability
of the undrained shear strength. For the shorter slope, the influence zone of the failure
(i.e. the distance retrogressed) is mainly investigated. For the long slope, different fac-
tors, such as the scale of fluctuation, slope geometry, and mean undrained shear strength
varying with depth, are investigated.

4.2. DEVELOPMENT OF RANDOM MATERIAL POINT METHOD

The precise determination of slope stability can be quite challenging, partly due to the
spatial variability of soil properties. However, in conventional designs the ground is of-
ten assumed to be homogeneous, or subdivided into different homogeneous soil layers.
Hence, slope stability tends to be represented by a single number, i.e. by a factor of safety
(FOS), which is often obtained by using the strength reduction technique (Griffiths and
Lane, 1999). However, it has been shown that the results can over or under predict the
true FOS of a heterogeneous soil slope (Cho, 2007).

Probabilistic methods, which take account of the soil variabilities, can better de-
scribe slope stability than traditional deterministic methods. Since the first order sec-
ond moment (FOSM) method (one of the simpler reliability methods) was proposed in
the 1970s, many related methods have been developed and, among them, the random fi-
nite element method (RFEM) (Griffiths and Fenton, 1993) has shown good performance.
However, as stated before, finite element analyses are often limited to small deformation
problems, due to excessive mesh distortions during large deformations. Hence, for the
purpose of tackling this problem, the random material point method (RMPM) is here
proposed.



4.2. DEVELOPMENT OF RANDOM MATERIAL POINT METHOD

4

73

4.2.1. CHARACTERISATION OF SOIL VARIABILITY
Fig. 4.1 shows statistical measures of undrained shear strength cu of a clay soil. In con-
ventional design, the mean undrained shear strength, which is constant with depth for
the example in Fig. 4.1(a), or some other characteristic value, is normally used; while, in
stochastic analysis, all the data are utilised, by use of, for example, a probability density
function (pdf) as shown in Fig. 4.1(b).

de
pt
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u

(a) variation of cu with depth

pd
f

c
u

(b) probability density function of cu

Figure 4.1: Statistical measures of cu variability

Hicks and Samy (2002) showed that the normal distribution can reasonably describe
the variability of undrained shear strength for low and immediate values of the coeffi-
cient of variation (e.g. 0.1-0.3), as is often observed in practice. Although, in practice,
other distributions, such as lognormal, exponential and beta may be used, the spatial
variability of soil in this study is approximated by a normal distribution, due to its sim-
plicity.

To define the variability of a soil parameter, the most basic statistical properties are
the mean, µ, standard deviation, σ, and the coefficient of variation, V , given by

V = σ

µ
(4.1)

Furthermore, to consider the depth-dependent trends in the point statistics (i.e. in
the mean and standard deviation), the definitions of the mean and standard deviation
can be extended so that they are functions of depth, zd (Lumb, 1966), e.g.

cu =µ+σu (4.2)

in which

µ=µ(zd ) =µ(zd = 0)+α1zd (4.3)

σ=σ(zd ) =σ(zd = 0)+α2zd (4.4)
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where u is a standardized random variable of zero mean and unit standard deviation,
and α1 and α2 are fitting parameters.

The scale of fluctuation, θ, is also needed to describe the spatial characteristics of soil
variability. Fig. 4.1(a) shows that θv , the vertical scale of fluctuation, defines the degree
of spatial correlation with depth. Mathematically, θ is defined as the area under the cor-
relation function (Vanmarcke, 2010). However, loosely speaking, it can be interpreted as
the distance beyond which the correlation of property values becomes negligible (Van-
marcke, 2010; Griffiths et al., 2011).

The anisotropy of the heterogeneity, ξ, is the ratio of the horizontal and vertical scales
of fluctuation, i.e.

ξ= θh

θv
(4.5)

where θh is the horizontal scale of fluctuation. Although anisotropy is often referred to in
the literature, it is sometimes not implemented in analyses due to the difficultly in quan-
tifying it to a sufficient degree of accuracy (Spencer, 2007). However, available evidence
strongly points to a much larger correlation in the horizontal plane θh than in the ver-
tical direction θv , due to the process of deposition (Fenton and Griffiths, 2003; Griffiths
and Fenton, 2004; Hicks and Onisiphorou, 2005). Once the statistics (µ, σ, θv , θh) for a
material are known, a numerical simulation of the material property distribution (i.e. a
random field) can then be generated.

4.2.2. RANDOM FIELD GENERATION

Random fields are numerically generated property distributions, which are intended to
mimic the spatial variability found in nature. Numerous methods have been presented
for the generation of random fields, such as the moving average (MA) technique (Ger-
sch and Yonemoto, 1977), turning bands method (TBM) (Matheron, 1973), fast Fourier
transform (FFT) method (Cooley and Tukey, 1965) and local average subdivision (LAS)
method (Fenton and Vanmarcke, 1990), amongst which LAS is chosen for this study. In
contrast to some other methods, LAS is computationally efficient in achieving accurate
realisations of discrete local averages, which are especially convenient for directly map-
ping to the finite element meshes in RFEM or material points in RMPM. A 2-D imple-
mentation of LAS (Hicks and Samy, 2002) is used in the current investigation and, for
completeness, local averaging theory and LAS in 2D are here briefly reviewed.

Assume the generated local averages are based on the field X (t1, t2) over an area A =
T1T2. Mathematically, it is given by

X A(t1, t2) = 1

A

∫ t1+ T1
2

t1− T1
2

∫ t2+ T2
2

t2− T2
2

X (t1, t2)d t1d t2 (4.6)

in which area A has dimensions of T1 ×T2, with each side parallel to the axes t1 and t2,
respectively. The variance of the local averages is expressed as

σ2
A =σ2γ(T1,T2) (4.7)

in which γ(T1,T2) is the variance function, given by (Vanmarcke, 2010),
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γ(T1,T2) = 1

T1T2

+T1∫
−T1

T2∫
−T2

(1− |τ1|
T1

)(1− |τ2|
T2

)ρ(τ1,τ2)dτ1 dτ2 (4.8)

in which ρ(τ1,τ2) is the correlation function, and τ1 and τ2 are the lag distances in the
two directions.

The governing covariance function can take various forms, but the one used in the
present implementation is the Gauss-Markov process with an exponential covariance
function. The correlation function is given by

ρ(τ1,τ2) = exp

−
√(

2τ1

θ1

)2

+
(

2τ2

θ2

)2
 (4.9)

where θ1 and θ2 denote the scales of fluctuations in two directions.
Averaging the random field X (t1, t2) over the rectangular area A can be carried out in

two stages:
(1) Integrate X (t1, t2) over the distance T1 along the t1 axis, which gives a 1-D ran-

dom function XT1 (t2), defined as the local average of X (t1, t2) within a band of length T2

parallel to the t2 axis:

XT1 (t2) = 1

T1

∫ t1+ T1
2

t1− T1
2

X (t1, t2)d t1 (4.10)

The variance of XT1 (t2) is,

σ2
T1

=σ2γ(T1) (4.11)

(2) Integrate XT1 (t2) over the distance T2 along the t2 axis, leading to a further reduc-
tion in the variance, such that

σ2
A =σ2γ(T1)γ(T1|T2) (4.12)

where γ(T1|T2) is the conditional variance function of X (t1, t2), provided averaging over
distance T1 has been performed.

By combing Eqs. 4.7 and 4.12, the variance function can be expressed as the product
of the ’marginal’ and ’conditional’ variance functions, i.e.

γ(T1,T2) = γ(T1)γ(T1|T2) (4.13)

For further details on the formulation, readers can refer to Samy (2003). The local
average subdivision method is summarised as follows:

(1) Define a square domain, with an initial global mean based on a standard normal
distribution and a reduced variance due to the domain size relative to the scale of
fluctuation;

(2) Split the field into four cells;
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(3) Generate three cell values by random process, and the fourth cell value by upwards
averaging so as to preserve the initial mean;

(4) Repeat the above three stages until the desired field resolution is reached.

After the standard normal random field values have been generated appropriately, the
last stage is to transform these values into soil parameter values X , as input for the FEM
or MPM program, using a probability density function such as the normal distribution
as has been used for this study. Hence, this involves the following transformation:

cu =µ+σZ (4.14)

where µ is the mean property value, for example, deduced from from in-situ tests, σ is
the standard deviation from that mean, and Z is the local average for a random field cell.
Note that, for the LAS implementation used here, anisotropic random fields have been
generated by post-processing isotropic random fields (Samy, 2003).

4.2.3. RANDOM FINITE ELEMENT METHOD
For slope stability analysis, probabilistic modelling started mainly through the use of
limit equilibrium methods linked to various statistical approaches (e.g. El-Ramly et al.
(2002)), and continued steadily (e.g. Li and Lumb (1987), Christian et al. (1994), Dun-
can (2000)). More recently, numerical methods have been seen as a viable alternative to
the limit equilibrium method. For example, Fenton and Griffiths (2002, 2003) and Hicks
and Samy (2002) combined random field theory (Vanmarcke, 1977a), for modelling the
spatial variability of soil properties, with the finite element method (FEM), for modelling
slope failure mechanims, within a Monte Carlo simulation process; this approach is of-
ten referred to as the random finite element method (RFEM) (Griffiths and Fenton, 2004).

RFEM involves multiple realisations of the problem to be solved, in which each re-
alisation involves generating a random field of the material property, mapping cell val-
ues from the random field onto the FEM mesh at the Gauss point level, and analysing
the problem deterministically by FEM (Hicks and Spencer, 2010). Through using the
random finite element method (RFEM), it has been shown that the most critical slope
failure mechanisms seek out the path of least resistance (Hicks and Samy, 2002; Fen-
ton and Griffiths, 2002, 2003). Moreover, RFEM fully accounts for spatial correlation and
averaging, so that it offers many advantages over traditional probabilistic slope stabil-
ity techniques (Griffiths and Fenton, 2004). It has also been shown that the mean FOS
for a heterogeneous slope is weaker than the deterministic response based on the mean
property value, due to the apparent reduction in the property mean along the failure
path (Hicks and Nuttall, 2012).

A correlation function refers to a statistical correlation between random variables at
two different points in time or space. An isotropic correlation structure has often been
used in modelling spatial variability. Paice et al. (1996) studied the effect of a random and
spatially correlated soil stiffness on the total settlement under a uniformly loaded strip
footing. Griffiths and Fenton (2004) investigated the probability of failure of a cohesive
slope and pointed out that, by assuming perfect correlation in which the spatial variabil-
ity is ignored, simplified probabilistic analysis can lead to unconservative estimates of
the probability of failure, thereby highlighting the importance of incorporating spatial
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variability into slope stability analyses. Griffiths et al. (2011), through using random field
analyses, discussed the influence of spatial variability on infinite slope failures. The loca-
tion of the critical failure planes were shown to very likely occur above the bottom of the
slope, which explains how “first order” methods may underestimate the probability of
slope failures, in that the failure planes are always assumed to occur at the base of such
slopes. This further demonstrates the importance of utilising random field analyses in
slope stability problems, as they allow for the “seeking out” effect.

There is also the issue of anisotropic spatial correlation, in that the spatial corre-
lation length in the horizontal plane is likely to be greater than in the vertical direction
(Griffiths et al., 2011). Hicks and Samy (2002) reported that anisotropy of the heterogene-
ity can have a significant influence on the computed reliability. Hicks and Onisiphorou
(2005) focused on the static liquefaction of heterogeneous soil layers in an underwater
sandfill berm, and revealed that the spatial correlation length has a significant influence
on failure mechanism development and the potential for global instability. Cho (2007,
2009) presented a probabilistic slope stability analysis, in which the importance of the
spatial correlation structure was highlighted. Zhu et al. (2013) considered the effect of
variation of the permeability function, which relates the coefficient of permeability of
the soil to the matric suction, on slope stability and reported that the correlation length
of the saturated permeability influences the range of calculated factor of safety values
significantly, but does not influence the mean factor of safety substantially. The mini-
mum mean factor of safety was shown to occur at nearly the same critical correlation
length that causes the maximum change in the groundwater table.

Note that some reduction of the distribution width of the randomized material prop-
erties may be possible, by constraining the spatial variability using site specific data (e.g.
cone penetration tests (CPTs) and piezometers) to condition the random fields (Lloret-
Cabot et al., 2014). However, many measurements cannot be directly incorporated into
conditional random fields, as they measure system responses rather than soil properties,
thereby requiring the use of inverse analysis. Chen and Zhang (2006) back-calculated
the hydraulic conductivity by use of the measured pore pressure head, whereas Hom-
mels and Molenkamp (2006) reduced the uncertainties in soil stiffness through the use
of measured settlements. To make better use of limited site information, material pa-
rameters may be modelled as cross-correlated. Vardon et al. (2016) correlated hydraulic
conductivity with the shear strength properties (i.e. cohesion and friction angle) of soils
using the Kozeny-Carman equation, and applied the results to reduce uncertainties in
slope stability analyses. Arnold and Hicks (2011) evaluated the stability of an unsatu-
rated slope during a rainfall event, by spatially varying five influential parameters which
were pointwise cross-correlated.

Another consideration is that the strength parameters of soil often vary with depth,
due to the process of soil deposition. Gibson and Morgenstern (1962) presented stability
numbers for clay slopes in which the shear strength, cu , is directly proportional to depth,
and concluded that: “The interesting result emerges that the factor of safety is indepen-
dent of the height of the slope.” Hicks and Samy (2002), by considering the mean trend
of the undrained shear strength increasing with depth in a clayey slope, further demon-
strated this fact and showed that the reliability can reduce greatly due to a greater range
of possible rupture surfaces. Li et al. (2014) studied the influence of the shear strength
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parameters (cohesion and friction angle) linearly increasing with depth within infinite
slopes, under which circumstances the possibility of critical slip surfaces occurring at
the slope bottom decreases considerably.

The investigations have been extended to 3D in recent years. Hicks et al. (2008),
Hicks and Spencer (2010) and Hicks et al. (2014) conducted a series of 3D RFEM anal-
yses and found that, based on the horizontal scale of fluctuation relative to the slope ge-
ometry, three categories of failure mode were identified for slopes that were long in the
third dimension; moreover, the risk posed by potential slides was quantified in terms of
slide volumes and slide lengths, which are closely related to the category of failure mode
(Hicks et al., 2008, 2014). Griffiths et al. (2009) compared the probability of slope failure
using 2D and 3D RFEM probabilistic analyses, and concluded that 2D probability anal-
ysis may underestimate the probability of slope failure. Li and Hicks (2014) and Li et al.
(2015) compared 3D RFEM solutions with Vanmarcke’s (1977b) analytical solution, and
showed that significantly different results may be calculated, depending on the scale of
fluctuation (SOF) of undrained shear strength in the horizontal direction relative to the
slope dimensions. The difference is greatest for small SOFs, due to differences in the
predicted failure length and the exaggerated contribution to sliding resistance due to
end-effects in the analytical model. In contrast, for large horizontal SOFs relative to the
slope length, the two methods generally agree.

4.2.4. RANDOM MATERIAL POINT METHOD

As stated above, the spatial variability of soil properties can have a significant effect on
soil structure response. However, research so far has been limited to small deforma-
tions; hence, the ongoing failure development has been ignored, thereby leading to an
incomplete description of the failure mechanism in some cases. Hence, to quantify the
risk posed by progressive and retrogressive failures, and to analyse the influence of spa-
tial variability of soil properties on slope post-failure behaviour, an alternative to RFEM
(which has generally been based on small strain theory) is investigated here.

By combining random field theory and MPM, this chapter proposes a new technique
to investigate the influence of heterogeneity on slope failure mechanisms involving large
deformations, including secondary failure mechanisms and failure consequences. This
technique is called the “Random Material Point Method” (RMPM). In contrast to RFEM,
the random field is mapped onto the problem domain at the material point level in
RMPM, rather than to Gauss points. Multiple random field realisations are obtained,
and Monte Carlo simulations, involving multiple material point method analyses, are
performed in order to obtain a distribution of possible responses. Note that, during the
computational cycle, the values are transferred to the nodes, and therefore there will be
averaging if there are many material points per cell. However, each material point is
dealt with separately in the plasticity algorithm.

4.3. INFLUENCE OF HETEROGENEITY ON THE FAILURE OF A SHORT

SLOPE
By utilising the proposed RMPM, the influence of soil heterogeneity on an idealised
strain-softening clay slope, similar to that in section 3.5, is investigated. For simplicity,
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random fields are only used to model the spatial variability of the (peak) undrained shear
strength, with the residual strength being modelled as proportional to the peak strength
during the analysis. By equating the risk posed by the slope post-failure to the sliding
distance, i.e. how far the slope failure retrogresses backwards from the slope crest, the
differences with deterministic and RFEM solutions are highlighted.

4.3.1. PROBLEM DESCRIPTION
An idealised boundary value problem has been analysed to provide a simple illustra-
tion of RMPM, although the same methodology can (and will in the future) be applied
to coupled effective stress analyses. Compared to the previous short slope analysis, the
left boundary is now extended a greater distance from the slope crest, that is, 20 m, to
provide enough space for the development of retrogressive failures. Fig. 4.2 shows a
45◦, 5 m high, clay slope, resting on a firm foundation layer. The initial slope geometry
has been discretized using 1810, 4-node, quadrilateral elements, with 4 material points
per element located at the Gauss point positions (i.e. initially, before the slope starts to
deform). The 3000 grey squares in Fig. 4.2 represent the computational domain cov-
ering the potential moving trajectories of material points. A frictional contact between
the slope base and supporting firm ground is assumed, while rollers are prescribed at
the left-hand boundary allowing only vertical movement. The Young’s modulus and
Possion’s ratio are E = 1000 kPa and ν = 0.33, respectively. While an undrained failure
implies a Poisson’s ratio of 0·5, the adopted smaller value aids numerical convergence
and promotes a more realistic in-situ stress field, whereas the plastic model component
dominates the failure mechanism. The mean peak undrained shear strength is 20 kPa,
the residual strength is 4 kPa, and the softening modulus is -50 kPa. For simplicity, the
slope is unstable under its own weight; hence, the slope failure is triggered by applying
gravitational loading to generate the in-situ stresses. The scales of fluctuation and de-
grees of anisotropy of the heterogeneity are investigated to quantify the risk posed, as
quantified by the distance the failure retrogresses back from the slope crest. The time
step is set as 2.5×10−3 s.

s1=20.0m s2=5.0m

H
=

5
.0

m
ro
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er

s

frictional boundary

Figure 4.2: Boundary conditions, background mesh and initial geometry of the clay slope. A cruder mesh than
used in the analysis is shown for reasons of clarity

4.3.2. DETERMINISTIC ANALYSIS
Fig. 4.3(a) shows the final slope configuration computed using a deterministic MPM
analysis; that is, once a quasi-static equilibrium state is reached, based on a criterion
taking account of the kinetic energy and unbalanced force of the system (Al-Kafaji, 2013).
Three failure blocks, as a consequence of three failure planes, are seen to have formed
during the failure process. For a straight-forward quantification of the potential failure
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consequence, the sliding distance r , as shown in Fig. 4.3, is used to define how far the
failure retrogresses backwards from the crest.

The remaining subfigures in Fig. 4.3 illustrate the spatially converged result pre-
sented in Fig. 4.3(a) via use of additionally discretised analyses. Fig. 4.3(b) presents
an analysis utilising 1.5 times more elements in each direction, again with initially 4 ma-
terial points per element, and Fig. 4.3(c) presents an analysis with the same number of
elements and initially 16 material points per element. Although, as expected, some mesh
dependency is observed, the overall behaviour, number of failures and sliding distance
are consistent enough to ensure the veracity of the following numerical study (which is
based on the discretisation in Fig. 4.3(a)). Hence, for considering both the computa-
tional accuracy and cost, a discretisation of 1810 elements, with 4 material points per
element is chosen for the following analyses.

5.0

 0.0

4.0 

2.0 

plastic strain invariant
sliding distance, = 9.0 mr

(a) most coarse converged mesh (1810 elements, 4 material points per
element)

5.0

 0.0

4.0 

2.0 

plastic strain invariant
sliding distance, = 9.2 mr

(b) refined elements (3840 elements, 4 material points per element)

5.0

 0.0

4.0 

2.0 

plastic strain invariant
sliding distance, = 9.6 mr

(c) refined material points (1810 elements, 16 material points per
element)

Figure 4.3: Initial and final slope configurations, with contours of plastic shear strain invariant, including spa-
tial convergence analysis

4.3.3. FAILURE PROCESS OF HETEROGENEOUS SLOPES
The influence of spatial variability of undrained shear strength on the slope response has
been assessed by assuming a coefficient of variation of 0.25 for both the peak and resid-
ual shear strengths (with all other parameters the same as for the deterministic analy-
sis). Fig. 4.4 shows the failure process for a typical realisation in which θv = 1.0 m and
θh = 48.0 m. The process is divided into three stages, these being initial failure, the first
failure block formed, and the final configuration. Fig. 4.4(a) shows the random field of
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undrained shear strength for the soil in the slope, with blue representing weak zones and
red representing strong zones. The strong soils are, in this case, near the base and top
of the soil layer, with the weaker zones in between. As the self-weight is applied, to gen-
erate the in situ stresses, the stresses start to build up near the slope toe, which is often
where failure initiates if the slope becomes unstable. However, due to the strong soil at
the base of the layer, the failure initiates slightly above the toe where the slope stability
number (cu/γz zd ) is lower. Hence the failure mechanism avoids the stronger area and
seeks out the “path of least resistance”, failing at the base of the weaker soil as seen in the
final slope configuration.

The “stress regions”, shear stresses, and contours of plastic shear strain invariant
within the slope are shown in Fig. 4.4(b), (c) and (d), respectively. Fig. 4.4(b) depicts the
stages of the constitutive model; that is, the “stress region” governing the behaviour of
the material points within the slope. Hence, blue, light blue, orange and red colours in-
dicate elastic, elastic unloading, softening and residual stages of the model, respectively.
It is seen that the material points within a developing shear band are mostly governed by
the residual cohesion, whereas the soils within previous shear bands mostly experience
elastic unloading as a new shear band is being formed. Fig. 4.4(c) shows that the shear
stresses at the material points, during the slope collapse process, reasonably coincide
with the slope deformations. Fig. 4.4(d) shows that the largest plastic shear strain invari-
ant contours propagate mainly horizontally, forming the basal line of the global failure.
Due to the removal of support from the soil at the back-scarp of the first slide, the failure
of the back-scarp is triggered and the second failure block is formed, with deformation
continuing until the final equilibrium state.

4.3.4. INFLUENCE OF HORIZONTAL ANISOTROPY
The influence of horizontal anisotropy (of the heterogeneity) on the slope failure modes
is shown in Fig. 4.5, where the final slope configurations for θh = 1.0 m and 6.0 m, with θv

= 1.0 m, are depicted. Figs. 4.5(a) and (c) show the random field of the peak cohesion for
the soil; and (b) and (d) reveal the final slope deformed states in terms of plastic shear
strain invariant contours.

With reference to Figs. 4.4 and 4.5, one common conclusion is that the slopes seek
to fail through the weakest zones, which can be seen by the shear bands forming across
these areas for each discrete failure block. Meanwhile, it is observed that, for the smaller
degree of anisotropy, there is a tendency for multiple failure blocks to form, due to it
being easier to “seek out” a failure path through the weaker zones (while avoiding the
strong ones). Hence, there are many more zones of deformations within the slope, as
shown in Fig. 4.5 (a) and (c). For the larger degree of anisotropy shown in Fig. 4.5 (b)
and (d), as the failure retrogresses, bigger blocks are generally formed, as the failure path
tries to propagate through the weak zones as much as possible. By also considering the
case of θh = 48.0 m (see Fig. 4.4) it may be inferred that, as the horizontal correlation
length increases, the slope failures tend to involve larger and fewer intact failure blocks.
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Figure 4.4: Collapse process of a heterogeneous slope with θh = 48.0 m, θv = 1.0 m: (a) peak cohesion distribution within the slope (kPa); (b) stress regions correspond-
ing to the four stages of the implemented material model; (c) shear stress (kPa); (d) accumulated plastic shear strain invariant
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Figure 4.5: Typical final slope configurations for θh = 1.0 m and 6.0 m

4.3.5. INFLUENCE OF SCALE OF FLUCTUATION

Two typical isotropic random fields, corresponding to scales of fluctuation of θh = θv =
1.0 m and 2.5 m are analysed in this section. Fig. 4.6 shows the random fields of peak
cohesion, and corresponding final slope configurations due to self-weight loading. The
failure is seen to retrogress backwards, stopping at distances of 9.32 m and 16.30 m for θ
= 1.0 m and θ = 2.5 m, respectively.

In Fig. 4.6, three things may be highlighted. Firstly, the influence zone is larger than
in the deterministic analysis, especially in case of a lager scale of fluctuation. Secondly,
the failed soil block shapes are more diverse. The deterministic analysis reveals failing
blocks that are mostly circular wedges, whereas, in heterogeneous slopes, due to the
characteristic of seeking out the paths of least resistance automatically during the fail-
ure formation, various block shapes and failure mechanisms are observed. Thirdly, the
failure process can be different. In the deterministic analysis, the failures occurring at
the slope front necessarily happen prior to the ones away from the slope face. However,
in the presence of heterogeneity, the soil can fail as a big block first, due to the presence
of the weaker soils along the failure path, and subsequently, the within soils can be dis-
located into a number of smaller blocks, which is rather like the failure mechanism seen
for some long inclined slopes.
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Figure 4.6: Typical final configurations for different scales of fluctuation

4.3.6. RMPM VS DETERMINISTIC ANALYSIS

A series of RMPM analyses, each comprising 100 Monte Carlo realisations, have been
conducted, for θv = 1.0 m and θh = 1.0, 6.0 and 48.0 m. Results have been compared to
the deterministic analysis, in order to give a more comprehensive and quantitative view
of the risk of slope failures.

Figs. 4.7(a) – (c) show the probability density histograms of the computed sliding
distance, as well as the fitted normal probability density functions. The normal distribu-
tion fits the computed results of the Monte Carlo simulation reasonably well for smaller
values of θh , as in Figs. 4.7(a) and 4.7(b). Although Fig. 4.7(c) shows a less good fit
due to the higher number of realisations needed for convergence with higher θh (Hicks
and Samy, 2002), the number of realisations is sufficient to enable proper evaluation of
trends. Moreover, the peak in the number of realisations showing a sliding distance of
20 m is an indication that the mesh does not extend far enough from the slope crest in
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Figure 4.7: Probability density functions of the realised sliding distance for the slope

some cases. The mean sliding distances for θh = 1.0, 6.0 and 48.0 m are r = 9.43, 9.75
and 10.07 m, respectively, compared with r = 9.0 m for the deterministic MPM analysis
based on the mean undrained strength. However, of greater practical significance is that
the standard deviation of (i.e. the uncertainty in) r increases significantly with θh , by
a factor of around 2 for the range of θh considered. Hence, the deterministic analysis
may seriously underestimate the sliding distance, giving an unconservative estimate of
the risk. For the case in which θh = 48.0 m, the spatial variability takes on a layered ap-
pearance. A possible consequence is that the slope remains stable (i.e. r = 0 m) due to
the presence of high strength soil layers along the potential failure path, espically near
the slope toe; conversely, the slope can slide a large distance (e.g. r > 20 m) due to the
presence of weak layers.

Note that some reduction of the distribution width may be possible, by constrain-
ing the spatial variability using site-specific data to condition the random fields (Lloret-
Cabot et al., 2014).

4.3.7. RMPM VS RFEM
RFEM solutions have been obtained and compared with results of RMPM (for the same
ensemble of random fields), as shown in Fig. 4.8 for θh = 1.0 m. Due to the assump-
tion of small deformations in the RFEM simulation carried out in this thesis, secondary
slides were generally not computed, thereby significantly reducing the sliding distance
and range of solutions relative to the RMPM simulation. With RMPM, the failure is able
to retrogress backwards during the slope collapse, due to the removal of support pro-
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vided by soil involved in the initial failure.
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Figure 4.8: RMPM versus RFEM for θh = 1.0 m, θv = 1.0 m

4.3.8. CONCLUSION

To conclude, this section has given a straight-forward insight into the influence of het-
erogeneity on the slope failure mechanism and propagation. The potential of RMPM in
geotechnical analysis has been simply demonstrated for an idealised slope in a strain-
softening soil. Large deformations and heterogeneity were both shown to have a signif-
icant effect on the initiation and evolution of the slope failure mechanism. By equating
the potential failure consequence to the sliding distance (i.e. extent), the deterministic
analysis may yield an unconservative result (i.e. it may underestimate the possible risk).
RFEM solutions based on small deformations are mainly restricted to initial slope fail-
ures, thereby neglecting the effects of possible retrogressive and progressive failures. The
influences of the horizontal anisotropy (of the heterogeneity) and scales of fluctuation
can cause noticeable changes in the slope failure modes.

4.4. INFLUENCE OF HETEROGENEITY ON THE FAILURE OF A LONG

SLOPE

This section focuses on the influence of heterogeneity on a long inclined slope. It is
commonly reported (e.g. Andresen and Jostad (2004, 2007)) that failure propagates along
the slope base in deterministic analyses of this type of gently inclined slope (see also
section 3.6 for the failure mechanism of a long inclined slope). But, by incorporating
different horizontal scales of fluctuations, various results can be obtained. Three factors
are mainly discussed in this section; i.e. the degree of anisotropy of the heterogeneity,
slope geometry and coefficient of variation.
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Figure 4.9: Problem geometry (not to scale)

4.4.1. PROBLEM DESCRIPTION
A long inclined slope, in a dog-leg shape, as investigated previously in section 3.6, is
analysed in this section by incorporating random fields to investigate the influence of
heterogeneity on the failure mechanisms of long inclined slopes. For completeness, the
slope geometry is again shown, in Fig. 4.9. The main slope is inclined at an angle of
20◦ to the horizontal; towards the bottom of the slope, a smaller second slope has been
cut to a depth of 3.75 m, with an inclination of 45◦ to the main slope surface (i.e. at 65◦
to the horizontal). The upper horizontal section is 15 m long, and 5 m high, whereas
the inclined slope is over 45 m long. A total of 4600 elements are used and, within each
element, 4 material points are placed initially. An idealised strain-softening model is
assumed for the soil. The mean peak cohesion is 20.0 kPa, the softening modulus is -
50.0 kPa, and the mean residual cohesion is 4.0 kPa. A coefficient of variation of 0.25 is
assumed for both the peak and residual cohesions in the following first two cases consid-
ered; in other words, the residual cohesion is considered to be proportional to the peak
cohesion throughout the simulation. The Young’s modulus and Possion’s ratio are E = 1.0
×104 kPa and ν = 0.33, respectively. The soil self-weight is 20.0 kN/m3 and, for simplicity,
is considered as the triggering agent for the slope failure. The time step is 2.5×10−3 s.

4.4.2. INFLUENCE OF SCALE OF FLUCTUATION
Fig. 4.10 shows typical random fields of the peak undrained shear strength, cu , for the
problem geometry. The details of obtaining random fields of cu for a complex geometry
and material anisotropy can be found in Wong (2004). The scale of fluctuation in the
vertical direction, θv , is set to 0.5 m, and the degrees of anisotropy considered are 1, 12
and 48, respectively (i.e. the horizontal scale of fluctuation θh is taken as 0.5, 6.0 and 24.0
m, respectively, in which θh here represents the horizontal component of a larger value
of θ acting parallel to the slope surface). A total time of 25 s is used for the three cases.

A deterministic analysis has also been carried out for comparison, as shown in Fig.
4.11, where successive rotational failure planes occur within a big sliding block, believed
to be caused by a translational failure as demonstrated in section 3.6.

Fig. 4.12 shows the influence of soil heterogeneity on the slope post-failure behaviou-
rs (based on the random fields shown in Fig. 4.10). The slope with isotropic heterogene-
ity and a small scale of fluctuation, in Fig. 4.12(a), shows few differences in failure re-
sponse compared to the homogeneous slope, shown in 4.11. The plastic strain invariant
accumulates first along the base of the soil layer, to form the basal failure plane consis-
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Figure 4.10: Typical random fields for long inclined slopes with different degrees of anisotropy

tent with a large translational failure, while secondary failure surfaces form to break up
the sliding mass, giving it a step-like character. Minor differences, such as the occur-
rence of a shear plane above the slope base, is due to the failure mechanism “seeking
out” the least resistant path.

In Fig. 4.12(b), where the degree of anisotropy is 12, the failure of the main part of
the slope can be divided into two parts. One part originates from the toe of the small cut
slope and propagates, parallel to the base of the soil layer, upwards. The other part starts
from the middle part of the soil layer base, where a relatively weaker zone is found, and
propagates backwards to the crest between the horizontal and inclined sections. The
first rotational failure and other secondary failure blocks are triggered after the initiation
of the two translational sliding surfaces.

For the anisotropy of 48, the slope can be considered as layered, as demonstrated
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Figure 4.11: Plastic shear strain invariant contours for a deterministic analysis

by the cohesion distribution shown in Fig. 4.10(c). Three main features of the failure
mechanism are worth noting. Firstly, it is clear that the critical translational slope fail-
ure forms without propagating along the base of the soil layer. Griffiths et al. (2011) and
Li et al. (2014) also demonstrated that there is a possibility that the critical mechanism
will occur above the base when the factor of safety is lower, although their investigations
were restricted to 1-D analyses and the analyses were stopped at the onset of failure. Sec-
ondly, there are few secondary failure planes seen in the deformed slope body; the entire
inclined part moves as a rigid body and there is no initial rotational failure, as commonly
seen in the previous analyses. Thirdly, the start of a rotation failure in the horizontal sec-
tion of the slope suggests that, even though a large horizontal scale of fluctuation has
been applied, the failure mechanism is still related closely to the slope geometry, as also
demonstrated by the translational failure that happens in the inclined part.

4.4.3. INFLUENCE OF SLOPE ANGLE

As shown in chapter 3, as the slope angle increases the failure modes can change signif-
icantly, from successive rotational failures for a shallower slope, to a large translational
failure coupled with small secondary failures for a steeper slope. The slope geometry is
proven to have a significant influence on the slope failure modes. This subsection con-
tinues to examine the slope failure mechanism under the influence of slope geometry,
but for the case when a degree of anisotropy of ξ = 48 is applied. Four different slope
angles, i.e. 5◦, 10◦, 15◦ and 20◦ are considered, and the vertical scale fluctuation is again
set to 0.5 m. A total time of 25 s is set for the four analyses.

An example peak cohesion distribution within the slope for 20◦ is shown in Fig. 4.10(c).
The same distribution has been applied to the other three slope angles, and the final fail-
ure configurations at t = 25 s for the different slope angles are shown in Fig. 4.13. Note
that the failure mode for all 4 cases is primarily a big translational failure of the entire
inclined part, followed by a subsequent breaking up within the entire moving soil body.
Another thing in common is that the failures do not propagate along the base of the soil
layer. The shear plane occurring at the lower part of the slope, through the weaker zones
shown in the Fig. 4.10(c), forms the basal surface of the big translational failure.

For the shallower slopes shown in Fig. 4.13(a) and (b), i.e. 5◦ and 10◦, the initial rota-
tional slides at the toe area are still considered as the trigger for the following big trans-
lational slide. However, the rotational failures are very shallow, and do not propagate
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Figure 4.12: Typical failure mechanisms for long inclined slopes with different degrees of anisotropy

to the slope base. The basal line of the subsequent translational failure starts from the
slope toe, and develops parallel to the soil layer base, through the weak soil layer towards
the upper part of the slope. Subsequent break-ups within the translationally moving soil
body show no big difference from the deterministic solutions.

For the steeper slopes, i.e. 15◦ in Fig. 4.13(c) and 20◦ in Fig. 4.12(c), the big trans-
lational failure is considered to trigger the whole slope failure, as well as the secondary
failure planes including the rotational failure occurring at the slope toe area. For the
case of the 20◦ slope, a shear plane parallel to the basal line of the transaltional failure
is developed at the rear part of the inclined slope, above which small failure zones are
then formed, while the rest of the soil remains intact, which further indicates that the
translational failure is the primary failure mode for the steeper slopes.

To conclude, the 4 cases yield quite similar failure patterns, although deterministic
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Figure 4.13: Failure configurations of long inclined slopes with different slope angles and ξ = 48

analyses for the same slope geometries, shown in Fig. 3.20, show quite different failure
mechanisms. The sequence of the translational failure planes can vary with the slope
angle, but undoubtedly, the influence of heterogeneity on the slope failure mechanism
development is clear. However, no strong conclusions are made here, due to the problem
being realisation-based.

4.4.4. INFLUENCE OF COEFFICIENT OF VARIATION

An interesting result is found by assuming that the mean and standard deviation of the
undrained strength are directly proportional to the depth below the slope surface; that
is, because failure is known to be independent of the slope depth for a homogeneous
deposit, so that a greater range of failure surfaces are possible in a heterogeneous de-
posit (Hicks and Samy, 2002). In contrast to the layered slope presented in the previous
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section, the cohesion distribution modelled in this section is more zone-based, i.e. a
small degree of anisotropy. The scale of fluctuation in the vertical direction is 2.0 m and
in the horizontal direction it is 3.0 m. Moreover, the mean undrained shear strength is
assumed to increase linearly with the depth, starting at 5.0 kPa at the slope surface and
reaching 25.0 kPa at the slope base. Two coefficients of variation (V ), 0.2 and 0.4, are
considered, while other parameters are the same as used above. The slope angle is set
as 5◦. The result obtained with a deterministic analysis is shown as a comparison, where
the undrained shear strength is equal to the depth-dependent mean undrained shear
strength from the heterogeneous slope. The running time is set as 100 s.
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Figure 4.14: Failure configurations for long inclined slopes with different coefficients of variation and ξ = 1.5

The deterministic solution is shown in Fig. 4.14(a), where the initial slide is revealed
to propagate through to the base of the soil layer and, after that, the soil mass behind it
fails en masse. Fig. 4.14(b) and (c) show the results with heterogeneity incorporated. In
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4.14(b), for V = 0.2, there are two key differences with respect to the deterministic case.
Firstly, the failure is found to happen at a certain depth, rather than at the soil layer base,
which is consistent with conclusion that slope failure is less dependent on soil depth for
cases in which the soil properties vary with the depth (Hicks and Samy, 2002). Secondly,
the failure is seen to be travelling backwards, with the plastic strain invariant contours
explicitly showing separate failure blocks. At the far end of the failure, a portion of the
soil layer is also shown to fail en masse. This is because, with the small anisotropy of the
heterogeneity applied, the strength distribution within the soil layer is zone-based. Due
to the failure mechanism “seeking out” the path of least resistance, the strong zones may
be avoided in the failure evolution process, hence giving separate failure blocks, while, if
the differences between the strong and weak zones are very limited, the soils tend to fail
en-masse. The situation becomes clearer as V is increased to 0.4, as in this case the weak
zones are weaker and the stronger zones are stronger. Hence, the failure is able to travel
backwards (as a sequence of blocks) more, as shown in 4.14(c) where a shallow step-like
failure mode is apparent and bigger influential zones are observed. This demonstrates
that, even in soil deposits containing very loose materials, retrogressive failure mecha-
nisms may still be possible.

4.5. CONCLUSIONS
By incorporating random field theory, the random material point method (RMPM) is
proposed, where, in contrast to RFEM, the random field cell values are assigned to the
material points directly, rather than to Gauss points. Usually, RFEM has been restricted
in its applicability to small deformation analyses, without considering very time con-
suming techniques for solving large strains; hence, the potential slope failure develop-
ment cannot be described. In contrast, RMPM provides a good insight into slope post-
failure behaviour.

Two types of slopes have been investigated in this chapter, i.e. a short slope and a
long slope. For the short slope, heterogeneity is shown to have a strong effect on the
slope failure mechanism, in particular regarding secondary failures and the extent of
failure retrogression. Factors such as the scale of fluctuation and degree of anisotropy
are mainly investigated, where a much larger influence zone is revealed by considering
the soil heterogeneity compared to traditional deterministic analyses. The wedge for-
mations in the failure development are well explained by considering the heterogeneity,
as the failure path automatically seeks out the path of least resistance in avoiding the
stronger zones. By equating the potential failure consequence to the sliding distance
(i.e. extent), the deterministic analysis may yield an unconservative result (i.e. it may un-
derestimate the possible risk). Moreover, RFEM solutions based on small deformations
are mainly restricted to initial slope failures, thereby neglecting the effects of possible
retrogressive and progressive failures.

For the long inclined slope, the influence of the heterogeneity on the slope failure
mechanism is further highlighted. More specifically, the layered and zoned slopes are
respectively modelled by assigning a large degree of anisotropy and a small one. The de-
gree of anisotropy and slope geometry are investigated for slopes with depth-independe-
nt statistics, where it is shown that failure can occur without propagating down to the
base of the soil layer; moreover, with a large degree of anisotropy, the failure modes,
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regardless of slope angle, all yield big translational failures indicating a greater impact
from the heterogeneity than the slope geometry. For the zoned slope based on depth-
dependent statistics, the coefficients of variation are examined, reflecting differences in
the relative influences of weak and strong property zones. The results are compared to
deterministic analyses and, apart from further emphasising of the importance of the het-
erogeneity, it is demonstrated that retrogressive failure can also happen even within soil
deposits containing very loose materials, when a big coefficient of variation is present.



5
RAINFALL-INDUCED SLOPE

FAILURES WITH COUPLED MPM

Rainfall-induced slope failures are a major cause of slope failure, with incidents likely to
increase with the predicted escalation of extreme rainfall events. Traditional numerical
methods such as the finite element method (FEM) are often restricted in their applicability
to small deformation analyses. Therefore, an incomplete description of the failure mecha-
nism is given, in which the failure consequences, or evolving deformations and progressive
failures, are ignored. A one-point, two-phase material point method (MPM) formulation
is proposed to consider the influence of rainfall on slope failure. Due to the characteristics
of MPM in capturing the large deformations, a complete failure process, from initiation
to failure, of a slope subjected to rainfall infiltration is presented. The soil behaviour is
described by a Mohr–Coulomb strain softening model based on Bishop’s stress. The two-
phase analysis shows that the rainfall-affected slope is initially stable, until the suction
stresses are reduced leading to a superficial failure mode, which in turn leads to a com-
plete slope failure.
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5.1. INTRODUCTION
Rainfall induced slope failure is widely studied, due to its importance in the geotechni-
cal engineering field, although, as discussed already, most analyses have been restricted
to the stage of small deformations, i.e. initial failure. To take account of the influence
of water for such applications, the MPM formulation of previous chapters has been ex-
tended to a simplified one-point two-phase formulation. To describe the soil behaviour,
the consitutive model is formulated within a Bishop’s stress framework.

This chapter starts with an introduction to the MPM formulation for solving coupled
dynamic, two-phase problems. The research continues the formulation proposed by Jas-
sim et al. (2013) for fully saturated soils, and moreover, by considering the degree of sat-
uration as a variable within the governing equations, a simplified one-point, two-phase
unsaturated formulation for dynamic MPM is derived. For simplicity, the gas phase is
omitted. A B-bar shape function is included to stabilise the pore pressure. Simple nu-
merical examples are analysed to verify the formulation by comparing with analytical
solutions. The same two slopes as in previous chapters, but now subjected to rainfall,
are investigated and, once again, the slope failure mechanism is studied, from the fail-
ure initiation to the final quasi-static configuration. The importance of different param-
eters, such as boundary friction and capillary cohesion, are investigated: firstly, to show
the robustness of the method with regard to large deformations; and secondly, to further
understand their impacts on the potential slope failure consequences.

5.2. LITERATURE REVIEW

5.2.1. MECHANISM OF RAINFALL-INDUCED SLIDES

It is recognized that rainfall infiltration results in a rise of the groundwater table and an
increase of the pore water pressure, or, in the decrease of matric suction in unsaturated
soils (Cai and Ugai, 2004), which in turn causes a reduction in effective normal stress
and thereby soil strength along the potential failure path (Brand, 1981; Fredlund and
Rahardjo, 1993).

Numerous analyses have been conducted to investigate the effects of rainfall infil-
tration on slope stability. Results from Tsaparas et al. (2002) showed that, for the same
rainfall, the higher the value of the saturated coefficient of permeability, the smaller the
safety factor of the slope becomes due to a deeper wetting front. Chen et al. (2009)
analysed a failed slope caused by heavy rainfall, near Taipei, using the limit equilib-
rium method, and showed that the rainfall intensity-time history is of great importance.
Pradel and Raad (1993) proposed a method based on the Green-Ampt model, in which
the critical rainfall intensity and duration for a rainfall induced slope failure could be ap-
proximated. Rahardjo et al. (2007) compared the relationship between rainfall intensity
and minimum factor of safety for a homogeneous slope subjected to rainfall for 24h, and
suggested that the ratio of intensity over saturated coefficient of permeability should be
used, instead of using either of them alone. Xue and Gavin (2008) extended the Horton
Equation and discussed the influence of rainfall intensity and pattern of rainfall (varia-
tion of rainfall intensity) on the infiltration response of a soil. By using three dimensional
(3D) numerical analyses, Ng et al. (2001) investigated the groundwater responses due to
various rainfall patterns, in which it was shown that the rainfall pattern has a signifi-
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cant influence on pore-water pressures near the ground surface and that the influence
gradually diminishes with depth. At a given depth, the influence of rainfall patterns on
pore-water pressures depends on the initial groundwater conditions. Among the com-
parisons of different storm patterns, an advanced storm of 24 h duration was found to
be the most critical. Rahardjo et al. (2001) analysed one of the failed slopes caused by
a storm in February, 1995, on the Nanyang Technological University Campus, which
demonstrated that antecedent rainfall plays an important role in slope stability, as the
negative pore pressure can be reduced during rainfall, so that the slope may become
marginally safe before the main storm.

Cascini et al. (2009) modelled a shallow landslide of the flow-type in Southern Italy,
in which the landslide was divided into two stages; failure and post-failure. The fail-
ure stage is characterized by the formation of a continuous shear band through the soil
mass (Leroueil, 2001). The post-failure stage is described by the rapid generation of plas-
tic strains and the consequent sudden acceleration of the failed soil mass (Hungr, 2003).
Relatively little research has been done so far to describe the post-failure stage (an excep-
tion being Pastor et al. (2004)), but such analyses can be considered particularly useful,
as they contribute to the assessment of the landsliding volumes and their potential for
traveling long distances (Cascini et al., 2009).

5.2.2. MULTI-PHASE MPM MODELING

The MPM modeling of coupled two-phase hydro-mechanical behaviour is still in its in-
fancy. Following the FEM procedure, two main formulations (considering dynamic anal-
ysis only) can be identified, based on whether or not to include the inertial terms of the
fluid phase. The full set of governing equations used in describing the dynamic motion
is the v −w formulation, where the velocities or displacements of the solid phase, and
the fluid phase, e.g. water, are used as the primary variables. It can be used to represent
the most general soil behaviour and is convenient for the finite element formulation,
although it results in a large number of nodal unknowns (Zienkiewicz et al., 1980). An
alternative simplification is also possible, where the primary variables are changed to
the solid phase velocities, or displacements, and pore pressures, i.e. v −p formulation.
Van Esch et al. (2011) compared the two formulations, concluding that the time step size
is more restrictive and that the second compression wave cannot be accurately captured
when the v−p formulation is applied. So far, most of the current MPM implementations
have used v−w formulations (Zhang et al., 2007; Abe et al., 2013; Jassim et al., 2013; Ban-
dara and Soga, 2015) .

Zhang et al. (2007), to the author’s knowledge, were the first to apply MPM for analy-
sing porous media, where two sets of material points are invoked to represent the solid
skeleton deformation and the pore fluid flow separately, and an equivalent v −w formu-
lation (displacement, to be more precise, as variables) was adopted. However, due to the
same interpolation function being assumed for the solid and fluid material points, while
including the solid-water interactive damping force, the formulation was restricted to
small deformation analysis.

Jassim et al. (2013) also adopted the v − w formulation, while the solid and fluid
phases were represented by the same material point, with each taking a fraction of the
material point domain. In contrast to Zhang et al. (2007), the linear momentum conser-
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vations were made on the solid phase and the mixture. Following the procedure outlined
by Verruijt (2009), the velocities for the fluid and solid phases were solved one after an-
other. The material point positions were updated based on the velocities of the solid
phase, while the water velocities were simply used for the pore pressure calculation. The
enhancement of volumetric strains was used to mitigate spurious pressure fields and
locking problems which may arise when using low-order elements. Stress integration
was performed on the Gauss points, if at least 90% of the element area/volume was filled
with material points; otherwise it was performed on the material points, so that a smooth
stress variation could be achieved. This led to a violation of the mass conservation, due
to the true material point volumes not being represented.

Abe et al. (2013) modeled a river levee experiment investigating seepage induced fail-
ure, with a proposed formulation involving two sets of material points, within which the
relative accelerations of the fluid phase were neglected. The fluid velocities were calcu-
lated during each time step based on Darcy’s law, and the simulation results matched
the experiment data well.

Bandara and Soga (2015) derived their v −w formulation based on mixture theory,
with the key aspect of the formulation being that it considered two sets of material points.
Pore pressure is calculated incrementally, and explicitly shown as a function of the vol-
umetric strain of the two phases. Water table changes can be modeled via a straight-
forward calculation of the positions of the fluid material points. Progressive failures of
an initially unstable river levee were simulated and, in particular, it included the first
attempt to consider unsaturated soil behaviour using MPM.

Yerro et al. (2015) and Yerro (2015) continued the research by Jassim et al. (2013), and
proposed a one-point, three-phase (solid, liquid, gas) formulation. The velocities of the
gas, fluid and solid phases were calculated successively, based on the momentum bal-
ance equations on the gas phase, fluid phase and mixture. Due to the possibility of mass
exchange between the fluid phases, the mass balance equation was formulated on each
component (solid, water, air) rather than on each phase (solid, liquid, gas). A rainfall-
induced slope instability was analysed, with the soil constitutive relationship described
by a suction-dependent Mohr-Coulomb model. The evolution process of the slide was
shown, providing an insight into the coupled flow-stress-strain mechanisms developing
in the slope.

v−p formulations (Zhang et al., 2009; Zabala and Alonso, 2011; Yerro, 2011; Lim et al.,
2014) within the MPM framework were mainly developed during earlier periods. Zhang
et al. (2009) proposed a coupled MPM formulation based on the v − p form. Zabala
and Alonso (2011) applied the method, coupled with a strain-softening Mohr-Coulomb
elasto-plastic model, to simulate the construction and failure of the Aznalcollar dam,
where the rupture process was captured and well matched to the actual field observa-
tions. However, due to the pore pressure integration in the element centre and the low-
order element used, spurious pore pressures were possible during large deformations.
To mitigate the volumetric locking encountered when using linear elements, Lim et al.
(2014) implemented an alternative form of the Hu-Washizu weak form. An example of a
spudcan foundation penetrating into a fully saturated soil was modelled.
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5.3. FORMULATIONS FOR SATURATED SOILS
This section presents a brief introduction of the coupled MPM formulation for solving
saturated soils, as a prerequisite for solving the partially saturated soils presented in the
next section. Formulations, corresponding assumptions and numerical procedures are
briefly listed below, and more details can be found in Van Esch et al. (2011) and Jassim
et al. (2013).

5.3.1. BALANCE EQUATIONS
This section presents the mass and momentum balance equations for the liquid (water)
and solid phases, with the mass balance equation for the solid skeleton initially, as

∂(1−n)ρs

∂t
+∇(1−n)ρs vs = 0 (5.1)

where ρs is the density of the solid grains, n is the porosity, t is time, and vs denotes the
velocity of the solid particles.

By assuming the incompressibility of the solid grains, the material time derivative of
the porosity can be simplified as,

∂n

∂t
= (1−n)∇·vs (5.2)

The mass balance equation for the fluid phase is given by

∂nρw

∂t
+∇nρw vw = 0 (5.3)

where ρw and vw are the density and velocity of the fluid, respectively. Eq. (5.3) may be
expanded using the chain rule, yielding

ρw
∂n

∂t
+n

∂ρw

∂t
+nρw∇vw +vw∇nρw = 0 (5.4)

Substituting Eq. (5.2) into Eq. (5.4) to eliminate the material time derivative of the
porosity, neglecting the spatial water density gradient, and dividing the whole equation
by the water density ρw , the mass balance equation for the fluid reduces to,

n

ρw

∂ρw

∂t
+n∇vw + (1−n)∇vs = 0 (5.5)

The momentum balance for the fluid is

nρw aw = n∇pw +nρw b− n2ρw g

K
· (vw −vs ) (5.6)

where aw refers to the fluid acceleration, pw is the water pressure, b is the body force,
and K is the soil hydraulic conductivity. The last term in Eq. (5.6) refers to the fluid-solid
interaction term, which is proportional to the fluid velocity relative to the solid velocity.

Using Biot’s mixture theory, the momentum balance equation for the solid skeleton
can be written as

(1−n)ρs as =∇·σ′′′
s + (1−n)∇pw + (1−n)ρs b+ n2ρw g

k
· (vw −vs ) (5.7)
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where as is the solid acceleration and σ′′′
s represents the effective stress.

By adding Eqs. (5.6) and (5.7), the momentum balance equation for the entire mix-
ture is

(1−n)ρs as +nρw aw =∇·σ+ (1−n)ρs b+nρw b (5.8)

where σ is the total stress of the mixture, which can be defined as

σ=σ′′′+mk pw (5.9)

in which mk is the Kronecker delta vector (for plane strain [1 1 0 1]T).

5.3.2. CONSTITUTIVE RELATIONS
The proposed constitutive relation for the density of the liquid is

1

ρw

∂ρw

∂t
=− 1

Kw

d pw

d t
(5.10)

where Kw is the bulk modulus of the water and is assumed to be constant. Substitution
of Eq. (5.10) into Eq. (5.5) then leads to the rate of change of the water pressure,

d pw

d t
= Kw

n
(n∇vw + (1−n)∇vs ) (5.11)

5.3.3. WEAK FORM OF THE GOVERNING EQUATIONS
The numerical procedures developed by Jassim et al. (2013) are used in this analysis. The
momentum balance equations for the mixture and the fluid phase are considered, which
includes all the acceleration terms. As in the single phase formulation, the weak form of
the momentum balance equations can be obtained by multiplying Eqs. (5.6) and (5.8)
with a test function wh and integrating over the current configuration Ω surrounded by
the boundary Γ.

The Cauchy boundary conditions for the solid and liquid phases are

σ ·n =τ (5.12)

pw ·n = p̄w (5.13)

where τ and p̄w are the prescribed stresses and pore pressures on the boundary. The
term involving the stress is integrated by parts and the divergence theorem is also ap-
plied. The momentum balance equation for the fluid phase gives∫

Ω
wh ·ρw aw dΩ=∫
Γ

wh · p̄w dΓ−
∫
Ω
∇wh : pw dΩ+

∫
Ω

wh ·ρw bdΩ−
∫
Ω

wh · nρw g

k
· (vw −vs )dΩ (5.14)

and the momentum balance equation for the mixture is obtained in a similar way as∫
Ω

wh ·nρw aw dΩ+
∫
Ω

wh · (1−n)ρs as dΩ=∫
Γ

wh ·τdΓ−
∫
Ω
∇wh :σdΩ+

∫
Ω

wh ·nρw bdΩ+
∫
Ω

wh · (1−n)ρs bdΩ (5.15)
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5.3.4. MPM DISCRETISATIONS
The material point method (MPM) discretises a continuum body into a finite set of mate-
rial points that are tracked throughout the deformation process, rather than using Gauss
points within an FEM framework. As reported in the previous section, the shape func-
tions are utilized to link the properties on the background mesh nodes with those on the
material points. Eqs. (5.14) and (5.15) can then be discretised in matrix form as

Mw aw = Ftr ac,w +Fg r av,w −Fi nt ,w −Fdr ag ,w (5.16)

and

Ms as =−M̄w aw +Ftr ac +Fg r av −Fi nt (5.17)

where the construction of such matrices in the above equations is detailed as follows.
In practice, the lumped mass matrices Mw , Ms and M̄w are normally used for sim-

plicity, which are assembled element-wise as

Mα =
nel s∑

i el=1
Mα,e (5.18)

where α represents w , s; with

Mα,e =



Mα,1 0 · · · 0 · · · 0
0 Mα,2 · · · 0 · · · 0
...

...
. . .

...
...

...
0 0 · · · Mα,i · · · 0
...

...
...

...
. . .

...
0 0 · · · 0 · · · Mα,ne


(5.19)

In the above matrix, each diagonal term corresponds to a node i , ne is the number of
nodes per element and the matrix 0 is a null matrix. In plane strain problems, the mass
matrix is defined as

Mα,i =
[

mα,i 0
0 mα,i

]
(5.20)

in which mα,i is the projected nodal mass from the corresponding material points, and
m̄w,i is a mass matrix factored by the solid porosity for convenience of the computation,

mw,i =
Np∑

p=1
mw,p Ni (xp ) (5.21)

m̄w,i =
Np∑

p=1
np mw,p Ni (xp ) (5.22)

ms,i =
Np∑

p=1
(1−np )ms,p Ni (xp ) (5.23)
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where np represents the porosity of the solid skeleton at a material point p, mw,p and
ms,p are the masses for water and solid particles, respectively, Np is the number of ma-
terial points within an element, and Ni (xp ) is the shape function on the i th node with
respect to the material point located at position xp .

For simplicity, the remaining terms are described from the element point of view.
The body forces (i.e. gravity) are integrated as

Fg r av,w =
Np∑

p=1
NT(xp )fg r av

w,p (5.24)

and

Fg r av =
Np∑

p=1
NT(xp )fg r av

p (5.25)

where Fg r av,w is the vector of gravity forces acting on the water, and Fg r av is the total
gravity force accounting for both the water and solid skeleton. fg r av

w,p and fg r av
p are calcu-

lated using fg r av
w,p = mw,p ·g and fg r av

p = mp ·g , where g is the gravitational acceleration

vector which can be expressed as g = (0.0,−10.0)T.
The traction on the boundary nodes can normally be applied in two ways: (1) the

tractions are applied onto the particles located near the boundary first and then, by us-
ing the shape functions, the mapped tractions on the nodes can be obtained; (2) the trac-
tions can be enforced on the boundary nodes, where the boundary is assumed to move
along with the deformation. The first way is adopted in this study. Ftr ac and Ftr ac,w ,
corresponding to the total nodal force and water force applied on the boundary, are as-
sembled as

Ftr ac =
Nbl p∑
p=1

NT(xp )ftr ac
p (5.26)

and

Ftr ac,w =
Nbl p∑
p=1

NT(xp )pw,p (5.27)

where Nbl p is the number of material points within the vicinity of the boundary.
The internal force Fi nt , and the internal force due to the water pressure Fi nt ,w , are

expressed as

Fi nt =
Np∑

p=1
(BT

L(xp )σp ) ·Vp (5.28)

and

Fi nt
w =

Np∑
p=1

(BT
L(xp )pw,p ) ·Vp (5.29)

where pw,p andσp are, respectively, the water pressure and total stress calculated on the
material points directly.

The drag force describes the interaction between the soil skeleton and water parti-
cles, and is defined as,

Fdr ag ,w = Q(vw −vs ) (5.30)
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with Q being a lumped matrix, and the sub-entry associated with each node i on the
diagonal line being given by

qi =
Np∑

p=1

mw,p np g

k
Ni (xt

p ) (5.31)

5.3.5. NUMERICAL PROCEDURES WITHIN A COMPUTATIONAL CYCLE
For solving the momentum balance equations, i.e. Eqs. (5.15) and (5.16), a discretisation
in time is necessary. An explicit time integration is chosen in this formulation for ob-
taining the numerical solution at each discrete time. Compared to the more widely used
v −p form in FEM analyses, the choice of time step size is reported to be less restrictive
(Van Esch et al., 2011) when using the v − w form, and moreover, the implementation
itself is more straight-forward. The two-phase coupled MPM algorithm is summarised
as follows:

(1) Initialization of all the variables on the nodes.
(2) Acceleration of the water phase is solved using Eq. (5.16).
(3) Acceleration of the solid phase is obtained thereafter using Eq. (5.17).
(4) The velocities of the two phases on the nodes are updated using the explicit for-

ward Euler method.
(5) The velocities of the two phases on the material points are updated, and then the

positions of the material points based on the calculated velocities are updated.
(6) The velocities on the nodes are updated by mapping back from the material points,

and then the stresses and water pressures on the material points are calculated.
(7) The background mesh is reset, and the next computation cycle is initiated.

5.3.6. NUMERICAL EXAMPLE
A consolidation example is presented here, with the result validated against Terzaghi’s
one dimensional consolidation theory (Terzaghi, 1943) to demonstrate the applicability
of the coupled MPM code for a saturated problem.

Fig. 5.1(a) shows the details of the numerical model, where a 1.0 m high and 0.1 m
wide soil column, fully saturated with water is considered. A 10 kPa traction is applied
on the column surface (at the boundary nodes due to the small deformation). The two
sides and bottom are assumed to be impermeable, while the water is allowed to drain out
from the top surface. The column is discretized using 10 4-node quadrilateral elements,
of dimension 0.1 m × 0.1 m. Soil behaviour is modeled using an isotropic linear elastic
material and the following material properties are considered: Young’s modulus, E =
1.0× 104 kPa; Poisson’s ratio, ν = 0.0; solid grain density, ρs = 2.65× 103 kg/m3; initial
solid porosity, n0 = 0.3; initial hydraulic conductivity, K = 1.0×10−3 m/s; water density,
ρw = 1.0× 103 kg/m3; bulk modulus of water, Kw = 2.2 GPa. The simulation is carried
out using a time step size of ∆t = 1.0×10−7s for a total duration of 1.0 s.

Fig. 5.1(b) compares the computed MPM results with Terzaghi’s solution. The isochr-
ones in the figure are plotted for various values of the time factor Tv , which is defined as

Tv = cw t

h2
v

(5.32)
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where hv is the thickness of the soil layer and cw is the consolidation coefficient, given
by

cw = k

ρw g ( 1
E + n

Kw
)

(5.33)

Although the applied low-order elements make the pore pressure constant within an
element, resulting in a step-like character to the pore pressure profiles, overall there is a
reasonable agreement between the two solutions.
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Figure 5.1: One-dimensional consolidation test

5.4. MODELLING UNSATURATED SOILS
The formulation is further developed in this section for being able to simulate the be-
haviour of unsaturated soils. For simplicity, the gas phase is neglected. By introducing
the degree of saturation to characterize the soil-water relationship, a simplified one-
point, two-phase (solid, liquid) formulation is constructed. Formulations and corre-
sponding assumptions are briefly described first, and an infiltration example is shown
to validate the unsaturated formulation.

5.4.1. CONSERVATION OF SOIL MASS
As for saturated soils, the soil mass conservation is described as

∂(1−n)ρs

∂t
+∇(1−n)ρs vs = 0 (5.34)

By neglecting the gradient of porosity, and assuming the solid skeleton as incompress-
ible, Eq. (5.34) can be simplified as,

∂n

∂t
= (1−n)∇vs (5.35)
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5.4.2. CONSERVATION OF FLUID MASS
The conservation of the fluid (water) is expressed as

∂nSwρw

∂t
+∇nSwρw vw = 0 (5.36)

where Sw is the degree of saturation of the soil. By using the chain rule, the above equa-
tion is expanded as

Swρw
∂n

∂t
+nρw

∂Sw

∂t
+nSw

∂ρw

∂t
+nSwρw∇vw + vm∇nSwρw = 0 (5.37)

Substituting Eq. (5.35) into Eq. (5.37) to eliminate the material time derivative of the
porosity, neglecting the spatial water density gradient, and dividing the whole equation
by the water density ρw , the mass balance equation for water reduces to,

n
∂Sw

∂t
+ nSw

ρw

∂ρw

∂t
+nSw∇vw + (1−n)Sw∇vs = 0 (5.38)

Assuming a barotropic behaviour for the fluid, its intrinsic density variation is given
by

1

ρw

∂ρw

∂t
=− 1

Kw

d pw

d t
(5.39)

Experimental evidence indicates that the degree of saturation of the soil with respect
to the liquid phase, Sw , is a function of the suction s and the hydraulic history of the soil,
which can be represented by the so-called soil water retention curve (SWRC). A simple
reversible law proposed by Van Genuchten (1980) is adopted here to relate the so-called
effective degree of saturation Se to the suction s, i.e.

Se (s) =
{

(1+ (αs s)ns )−(1−1/ns ) if pw ≤ 0
Ssat if pw > 0

(5.40)

in which αs and ns are fitting parameters, and the effective degree of saturation is de-
fined as

Se = Sw −Sr es

Ssat −Sr es
(5.41)

where Sr es and Ssat are the residual degree of saturation in dry conditions and the degree
of saturation at full saturation (which is taken to be 1.0 for most cases).

Hence, the time derivative of the degree of saturation can be written as

∂Sw

∂t
= ∂Sw

∂s

∂s

∂t
=−∂Sw

∂s

d pw

d t
=−λd pw

d t
(5.42)

whereλ equals ∂Sw
∂s . Substituting Eqs. (5.35), (5.39) and (5.42) into Eq. (5.38), after simple

algebraic manipulation the water pressure can be obtained as,

d pw

d t
=

(
nλ−n

Sw

Kw

)−1

(nSw∇vw + (1−n)Sw∇vs ) (5.43)
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5.4.3. MOMENTUM CONSERVATION FOR WATER
The momentum equations for unsaturated soils are virtually the same as the saturated
ones:

ρw aw =∇pw +ρw b− nSwµw

k
· (vw −vs ) (5.44)

where k stands for the soil permeability and µw is the water viscosity. The SWRC can be
used to describe the relation between soil permeability and its degree of saturation. It is
common in literature to express the actual permeability value at a certain suction level
as a fraction of its value at full saturation, i.e.

k(Sw ) = ksat ·kr el (5.45)

where kr el is the relative permeability, which is the ratio between the actual perme-
ability and the permeability at full saturation, and can be calculated according to the
Van Genuchten (1980) formula,

kr el =
√

Se

[
1− (

1−Se
ns /(ns−1))1−1/ns

]2
(5.46)

5.4.4. MOMENTUM CONSERVATION FOR THE MIXTURE
As in Eq. 5.8, the momentum conservation for the mixture is

(1−n)ρs as +nSwρw aw =∇·σ+ (1−n)ρs b+nSwρw b (5.47)

in which, apart from the water body force being multiplied by the degree of saturation,
Bishop’s effective stress is also utilised in the calculation of the total stress σ, i.e.

σ′ =σ−m(χpw ) (5.48)

where χ is an effective stress parameter called the matric suction coefficient and varies
from 0 to 1 covering the range from dry to fully saturated conditions. For convenience, χ
is simplified to equal to the degree of saturation, Sw , in the following calculations. m is
the vector [1101]T for 2D plane strain analysis.

5.4.5. COMPUTING THE SOLID SKELETON’S POROSITY
The porosity of the soil is updated after each time step based on the deformation gradi-
ent as follows:

n(xp , t +∆t ) = 1− (1−n(xp , t ))

J (xp , t +∆t )
(5.49)

where J is the Jacobian of the deformation gradient tensor, and can be approximated by
the trace of the strain tensor, i.e. J = 1+ tr (ε), when small deformation is ensured within
each time step.

The degree of saturation and permeability are updated according to the specific soil-
water retention curve.

Using the same discretization techniques and numerical procedures outlined for sat-
urated soils in section 5.3.5, the same final governing equation forms can be obtained,
except for the coupling terms which need to include the degree of saturation.
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5.4.6. INFILTRATION EXAMPLE
For validating the coupled MPM code for unsaturated soils, the laboratory test by Li-
akopoulos (1964) is analysed. The experiment was performed on a column of Del Monte
sand, which was initially fully saturated by adding water from the top continuously. The
water supply ceased at the start of the experiment. The two side walls were impermeable
to water, while the water was able to freely drain from the bottom. The tensiometers in-
strumented along the column height were used to measure the moisture tension during
the desaturation due to gravity. The schematic diagram of Liakopoulos’ test is shown in
Fig. 5.2, where the initial and boundary conditions are defined. For simplicity, the gas
pressure is assumed to equal atmospheric pressure in the unsaturated zone.

1.0 m

0.1 m

impervious and constrained 
boundary

For t > 0, free water outflow, 
constrained boundary

For t = 0, capillary pressure Pc = 0, 
(fully saturated)

Figure 5.2: The Liakopoulos (1964) test problem

The material properties are given in Table 5.1. The relationships for saturation-capill-
ary pressure and relative permeability-saturation, valid for saturation Sw ≥ 0.91, take the
following forms (Lewis and Schrefler, 1998):

Sw = 1−1.9722×1011p2.4279
c (5.50)

kr l = 1−2.207(1.0−Sw )1.0121 (5.51)

For the numerical calculations, the column of sand was divided into 10 4-node quadri-
lateral elements of size 0.1 m × 0.1 m. The time step size was set to 5.0× 10−6s. The
results of the simulation at different times, i.e. the water saturation, vertical displace-
ment and capillary pressure, are shown and compared in Fig. 5.3. Small strain analysis is
utilised in the calculation due to the small vertical displacement observed. A gradually
decreasing outflow rate is expected, which corresponds to the smaller changing rate of
the degree of saturation at the top of the specimen. The reasonable agreement between
the computed and experimental results demonstrates the applicability of the model for
unsaturated soils.
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Figure 5.3: Comparisons between MPM and experimental results
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Parameters Values
Young’s modulus (kPa) 1.3 ×103

Possion’s ratio 0.4
Solid grain density (kg/m3) 2.0 ×103

Liquid density (kg/m3) 1.0 ×103

Porosity 0.2975
Intrinsic permeability (m2) 1.0 ×10−13

Water viscosity (Pa · s) 1.0 ×10−3

Gravitional acceleration (m/s2) 9.806

Table 5.1: Material properties for the analysis of Liakopoulos’ test (Lewis and Schrefler, 1998).

5.5. A RAINFALL-INDUCED SHORT SLOPE FAILURE
A rainfall-induced short slope failure is first analysed to give a straight-forward view of
the development of retrogressive failure as water infiltrates into the slope. The charac-
teristics of the example soil slope are reviewed first, including the slope geometry, mate-
rial model and soil-water retention curve. The collapse process of the soil slope is given
thereafter.

5.5.1. CHARACTERISTICS OF THE EXAMPLE SOIL SLOPE

Figure 5.4: Initial geometry of the short slope

Fig. 5.4 shows the slope geometry, with the slope height being 10 m and the slope
angle being 45◦. The distance from the slope crest to the left-side boundary is 10.0 m.
For modelling the contact in between the slope base and the ground, the rough contact,
inherent in the material point method, is used due to its simplicity. Hence, a layer of
material points is set at the bottom of the domain to model the contact. The material
points are initialised on the Gauss points positions. After that, the original mesh is dis-
carded and a new computational (background) mesh, shown in light grey, is defined by
discretizing the background into squares of size 1.0 m × 1.0 m. A total of 440 4-node
quadrilateral elements is used for the background mesh. Rollers allowing only vertical
displacement are prescribed for both lateral boundaries of the domain, and the bottom
boundary is fully fixed.

A suction-dependent Mohr-Coulomb model, i.e. using Bishop’s stress, is adopted to



5

110 5. RAINFALL-INDUCED SLOPE FAILURES WITH COUPLED MPM

describe the soil response, in which the cohesion is assumed to decrease proportion-
ally with the equivalent plastic strain invariant, until reaching the residual value, as illus-
trated in section 3.4. The friction angle and dilation angle remain constant. The material
properties are summarised in Table 5.2. As seen from the table, the intrinsic permeabil-
ity in this example is 4.5 ×10−9 m2, which is nearly 4000 times the permeability used
for the analysis in Fig. 5.1; hence, the ratio of permeability over water viscosity is much
larger, which is proportional to the time step size. Therefore, the time step size for the
simulation is selected as 1.0×10−4 s.

Parameters Values
Young’s modulus (kPa) 1.0 ×103

Possion’s ratio 0.33
Solid grain density (kg/m3) 2.7 ×103

Liquid density (kg/m3) 1.0 ×103

Porosity 0.3
Intrinsic permeability (m2) 4.5 ×10−9

Water bulk modulus (kPa) 1.0 ×106

Water viscosity (Pa · s) 1.0 ×10−3

Peak cohesion (kPa) 20.0
Residual cohesion (kPa) 0.1

Friction angle (°) 20.0
Dilation angle (°) 0.1

Table 5.2: Material properties for the slope analysis

The van Genuchten law, as given in Eqs. (5.40) and (5.46), is utilised to describe the
relations between the degree of saturation, Sw , the permeability of the soil with respect
to the fluid phase, k, and the pore water pressure. Ssat and Sr es are taken to be 1.0 and
0.23 for the following analysis. The two fitting parameters, αs and ns , are 0.44 and 3.04,
respectively, which are typical values for a sandy silt (Abed, 2008). The corresponding
van Genuchten curve is shown in Fig. 5.5.

5.5.2. RAINFALL-INDUCED SLOPE FAILURE
The numerical simulation has two steps: (1) gravity loading to generate the in-situ stress-
es and the application of an initial prescribed suction of 50.0 kPa, where the pore pres-
sures are allowed to equalise until an in-situ hydrostatic condition is achieved; and (2)
a zero pore water pressure applied to the slope surface to model continuous water infil-
tration into the slope, until either a slope failure occurs or an equilibrium condition is
reached.

For simplicity, the suction was initially assumed to be constant throughout the slope;
and, for modelling the fully saturated soil at the boundary, zero pore pressure is applied
to the material points located in the surface elements and maintained throughout the
simulation. The disadvantage of dealing with the boundary in this way is that it may
cause some unrealistic outcomes, as material points may move a long distance and end
up as non-boundary material points. This aspect will be the subject of a future investi-
gation.
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Figure 5.5: Soil-water retention curve considered for the analysis

Figure 5.6: Stress distribution within the slope at the end of step 1

The stress distribution within the slope at the end of step 1, i.e. when an equilib-
rium state was reached under the applied gravity and prescribed suction on the slope, is
shown in Fig. 5.6. This serves as a starting stress state for step 2. As the water infiltrates
into the slope continuously, the failure is initiated.

Fig. 5.7(a) - (c) shows the slope failure process due to rainfall infiltration from the
slope surface, up to a time of 16.0 s from when the rainfall starts. Due to the rainfall infil-
tration at the slope surface, three successive failures are observed during the evolution
process, shown in Fig. 5.7(a), (b) and (c), corresponding to t = 8.0 s, 12.0 s, and 16.0 s, re-
spectively, with plastic shear strain invariant contours shown on the material points. Two
things may be noted: (1) the failure is retrogressive; (2) the last two failures are mainly
occurring in the previous deposited soils from the initial slide, as the maximum strain in-
variants are seen on the top parts and base of the disturbed slope. The remaining soil is
only slightly affected during the process, as was also previously observed in the column
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collapse example presented in section 2.2.4 (see Fig. 2.16), which is mainly attributed to
the soil properties, but also partly due to the proximity of the left-hand boundary in this
example. However, the sliding distance is seen to be mainly caused by the initial slide by
comparing the Figs. 5.7(a) and (c).

(a) t = 8.0 s

(b) t = 12.0 s

(c) t = 16.0 s

Figure 5.7: Collapse process of a short slope

As a comparison, Fig. 5.8 presents the final configuration, (when a quasi-static equi-
librium state is reached), of the slope under gravity loading using a total stress analysis.
There is only one failure block occurring, without the retrogressive failures shown in the
previous figure. Although the adopted computational mesh is very crude, the differences
in the solutions when using different numerical tools are apparent. The retrogressive
failures occurring in the rainfall-induced slope collapse may be better described using
the coupled MPM.
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Figure 5.8: Short slope collapse with a total stress analysis

5.6. INFLUENCE OF RAINFALL ON A LONG INCLINED SLOPE FAIL-
URE

The failure process of a rainfall-induced long slope is shown in this section. The retro-
gressive failure process, as often seen in reality, occurring with time as water infiltrates
into the slope is provided. The general characteristics of the slope are described first,
including the slope geometry. Comparisons with a total stress analysis (without consid-
ering pore pressure) are shown to emphasize the important role of rainfall in the slope
failure initiation, as well as the failure propagation. The influence of soil friction angle
and residual cohesion on the slope failure mechanism are discussed last.

5.6.1. PROBLEM DESCRIPTION

Fig. 5.9 shows the slope geometry, as described in previous chapters. The slope angle
is set as 30°. The model is discretised by using 842 4-node quadrilateral elements, with
4 material points per element initially, resulting in a total of 3368 material points repre-
senting the slope. The simulation stops when failure is fully developed in the inclined
part.

The soil properties and material model are as stated above. The simulation proce-
dure also follows the previous example, where an initial −50 kPa pore pressure is pre-
scribed to the slope body to maintain the equilibrium under gravity loading, and then a
constant zero pore pressure is assigned to the surface material points for modelling the
rainfall infiltration, to trigger the slope collapse.

H1=5.0m

fixed boundary
fixed boundary

rollers

s1=15.0m s2=25.0m

1:1 slope cut

rollers

H2=1.0m

s3=17.5m

Figure 5.9: Initial geometry of the slope (not to scale)
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5.6.2. COLLAPSE PROCESS

Fig. 5.10 shows the collapse process of the slope when subjected to rainfall infiltration,
where the plastic shear strain invariant contours are shown on the right-hand-side of the
figure, and the pore pressure contours are shown on the left-hand-side, at five different
times. The analysis used a time step size of 5.0× 10−5 s to avoid non-convergence in
the large deformation phase and a high permeability has been chosen for illustrative
purposes. Using an Intel Xeon E5-1620 processor, the analyses take approximately 3-4
hours to execute on a single core.

In Fig. 5.10(a,b), i.e. t = 8.75 s, an initial failure occurs at the slope surface as this
part of the slope becomes fully saturated, which implies an increase of the pore pressure
and hence a decrease in the soil strength. As this small body of soil moves downslope,
lateral support is removed from the soil upslope and the soil continues to saturate, and
a wedge-shaped soil block forms through both the saturated and unsaturated parts (Fig.
5.10(c, d)). At t = 16.25 s (Fig. 5.10(e, f)), the soils within the saturated zone in the upper
part of the slope are seen to fail, giving an impression of superficial slope failures leading
to larger slope failures. Due to the change in the slope geometry, retrogression within the
slope cross-section is able to continue, as seen with a further failure initiating at t = 18.75
s (Fig. 5.10(g, h)). Fig. 5.10(i, j) shows the situation at t = 25.0 s, when a slope failure has
developed throughout the full length of the slope, although initially made up of a series
of individual failures. Note that the material ‘piles up’ against the right-hand boundary,
due to the prescribed size of the background mesh and the roller boundary condition,
which have been included in the analysis to reduce the computation time.

The shear stress distributions within the slope at four distinct times are shown in Fig.
5.11. It is seen that the stress remains relatively unaffected in zones far from the failure
planes. Moreover, the stresses are seen to be largest either side of the shear plane. The
shear stresses within previous sliding soil blocks, when a new failure plane is forming,
are shown to decrease. This may correspond to the observations made for the single-
phase slope failure process in section 3.5; i.e. these parts of soil experience stress un-
loading, and are governed by the residual shear strength thereafter. Stress oscillations
exist, which are mostly seen near the right hand boundary, as in Fig. 5.11 (c) and (d), and
are thought to be mainly affected by the prescribed roller boundary, although integration
at sub-optimal (non-Gaussian) points and the imcompressibility of the soil in saturated
conditions are also likely to have contributed to the oscillations seen in Fig. 5.11 (a) and
(b). This could be the subject of future research, in order to improve the robustness of
the method for a better description of the failure.

During the analysis, most of the failures are seen to initiate in the saturated zone,
with other failures being partly through the unsaturated zone. As the infiltration depth
of the water becomes deeper, e.g. via an intense rainfall event, the failure depth of the
soil is also seen to increase.

In this example, rainfall-induced progressive failure occurs partly due to the progres-
sive loss of strength, but also due to changing geometry, which, for example, may remove
lateral support from the soil behind. Moreover, the rainfall-induced slope collapse was
shown to be more superficial than that in total stress analyses.
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Figure 5.10: Rainfall induced slope collapse process in terms of pore pressure and plastic shear strain invariant
contours
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Figure 5.11: Shear stress states at material points at different times

5.6.3. COMPARISON WITH A TOTAL STRESS ANALYSIS

A total stress analysis has been undertaken for comparative purposes based on the same
material parameters as above. Without any suction, the slope is initially unstable and
the failure is triggered by gravity.

The progression of the slope failure at two different times is shown in Fig. 5.12. At
t = 0.5 s, Fig. 5.12(a) shows two complete shear bands forming inside the slope; that is,
a rotational slip in the down-slope part, and a translational slide over the whole slope
length. The two shear bands are formed almost simultaneously and both failures reach
the base of the soil layer. In contrast to the retrogressive failure caused by the slope ge-
ometry change, as seen in the rainfall-induced slope collapse, the slope failure here is
mainly a translational failure of almost the entire slope. Fig. 5.12(b) shows the configu-
ration of the deformed slope at time t = 2.0 s, where it is seen that the soil body is mainly
moving along the two shear bands.

Two things can be concluded, based on Fig. 5.12. Firstly, it shows that the slope
experiences mainly a translational failure; this differs from the rainfall-induced slope
failure shown in Fig. 5.10, where the retrogression occurs inside the slope. Secondly, the
initial failure volume/area is much larger than for the rainfall-induced slope failure.

5.6.4. INFLUENCE OF THE FRICTION ANGLE

In this section, the influence of the friction angle on the slope failure mechanism is dis-
cussed. Apart from the 20° case described above, friction angles of 15° and 30° have also
been considered, with all other material properties kept the same as in Table 5.2.

Fig. 5.13 shows the slope failure process when the friction angle equals 30°. As above,
the plastic shear strain invariant contours are shown on the right-hand-side, and the
pore pressure contours are shown on the left-hand-side. The failure initiates on the slope
surface, as shown in Fig. 5.13(a, b), when the surface soils become fully saturated. Due to
the lateral support removed from the soils upslope, and the continuing saturation of the
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Figure 5.12: Plastic shear strain invariant contours showing slope collapse using a total stress analysis

soil, a series of retrogressive failures is seen to occur in the superficial zones of the slope.
In contrast to the 20° case, the failure only occurs inside the saturated zones, without
propagating through the unsaturated zones, as shown in Fig. 5.13(c, d), which could
be due to the higher resistance from a higher friction angle. The retrogression is seen
to stop at a certain point, while a big translational slide is shown to form, covering the
whole inclined part, when the slope is shown to be fully saturated, as illustrated in Fig.
5.13(e, f). Secondary failures are then seen to be forming within the moving mass, which
resembles the failure modes under undrained conditions as shown in Fig. 5.12.

For a friction angle of 15°, a different failure mode may be obtained as shown in Fig.
5.14. In Fig. 5.14(a, b), as the water starts to infiltrate into the soil, in contrast to the
superficial failures in the saturated zones exhibited for the two larger friction angles, an
initial circular failure plane is seen to form in the downslope area. Strength loss is also
expected along the failure surface, represented by the large plastic shear strain invariant.
As part of soils slide downslope, the whole inclined slope failure is triggered, which is
shown by a failure plane propagating down to the slope base through the whole inclined
area. The soil mass then dislocates into smaller volumes/areas, which results in the slope
appearance having a step-like character, as shown in Fig. 5.14(c, d). Water is, however,
only accumulated in very shallow areas due to the shorter time required for full failure to
develop. Note that the slope was initially stable under gravity and the prescribed suction
force.

To conclude, the soil friction angle is shown to have a significant impact on the slope
failure mechanism. Most of the failures are seen to initiate and then retrogress back-
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Figure 5.13: Rainfall induced slope collapse for friction angle equal to 30°

wards and upwards within the saturated zones during the infiltration process. As the
friction angle increases, i.e. giving a higher soil resistance, the slope is more likely to ex-
perience a superficial failure, which is constrained within the saturated zones. However,
as the infiltration process continues, a whole slope collapse could be possible in a very
similar manner to the undrained condition, leading to a big translational slide followed
by a series of secondary failures. The retrogressive failures reported in clayey-type soils
are seen to be possible as the friction angle decreases. This could be partly due to the
sudden soil weight increase as the surface soils become saturated.

5.6.5. INFLUENCE OF RESIDUAL COHESION

Fig. 5.15 shows the final configurations of the slope collapse, when the failure is devel-
oped fully in the inclined part of the slope, for the residual cohesion set to 0.01 kPa and
5.0 kPa. Other material properties are the same as for the base case.

Fig. 5.15(a, b) provides the slope final configuration for the case of a residual cohe-
sion of 0.01 kPa, which shows very little difference in response to the base case, i.e. a
steep rear scarp is normally completely exposed prior to the development of the next
slide. As some soil slides away, the lateral support to the soils upslope is reduced suffi-
ciently, hence initiating the next failures in the sequence. Fig. 5.15(c, d) shows the failure
mechanism for the slope with a residual cohesion of 5.0 kPa. It is worth noting that the
shallow slips are occurring successively in a retrogressive way, even though the rear scarp
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Figure 5.14: Rainfall induced slope collapse for friction angle equal to 15°

is not completely exposed. It is different from the case illustrated in Fig. 5.13(f), when
a big translational slide is shown first, followed by secondary failures that form within
the moving mass. As stated in Thomson and Hayley (1975) and Van Asch et al. (1984), a
slight movement of soil blocks can cause sufficient reductions of the lateral support and
hence lead to retrogressive failures.
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Figure 5.15: Influence of residual cohesion on slope failure mechanism

The soil strength can be decomposed into the cohesive strength (i.e. bonding forces
in between the soil grains) and the frictional strength (Hajiabdolmajid and Kaiser, 2003).
With a smaller residual cohesion, the cohesive strength can be almost completely re-
moved, and the strength is then almost proportional to stress. In this case a diffuse fail-
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ure occurs and no distinct back-scarp remains. With a higher residual cohesion, a steep
rear scarp is left and the soils behind may become unstable and hence the next failure
is initiated. As the cohesion increases, the cohesive strength of the soil lessens the slid-
ing distance during the slope failures. This gives a similar failure pattern as normally
observed in clayey-type soils, as reported in Van Asch et al. (1984).

5.7. CONCLUSIONS
The formulation of the coupled material point method is presented and further devel-
oped in order to describe the response under loading of unsaturated soils. A 1-D consol-
idation test and an infiltration problem have been presented to validate the formulation.
With the method, an initial investigation of rainfall-induced slope failures has been pre-
sented. The method has been able to simulate slope failure from initiation through to
the post-failure processes. Two slope geometries are discussed. For the smaller slope,
the emphasis was to show the differences between using a total stress analysis and cou-
pled MPM. The retrogressive failures of the slope during the rainfall infiltration process
are observed when using coupled MPM, while only a single shear failure plane is shown
in the slope final configuration when the total stress analysis is utilised.

For the long inclined slope, the rainfall-induced failure is shown to be formed by a
series of mainly superficial failures, as are often observed in practice. This retrogressive
failure mode is very different from that obtained in a total stress analysis, where a large
translational slide is obtained for the slope geometry considered. Parametric studies re-
garding friction angles and residual cohesion have been conducted. With a higher fric-
tion angle, the slope may fail due to a large translational slide during an intensive rainfall
event (making the slope saturated within a short time), without showing retrogression
during the infiltration process. As the friction angle decreases, the retrogression is more
obviously seen, through both saturated and unsaturated zones. As for the influence of
the residual cohesion, it is shown that when a higher residual cohesion is assigned, shal-
low successive slips are exhibited without the complete exposure of the rear scarp during
the failure process. In contrast, a smaller cohesion may lead to steeper rear scarps being
exposed. It is thought that the coupled MPM, with further development, can be utilised
to investigate a wide range of slopes at risk of rainfall-induced failure, including multiple
and progressive failures.
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6.1. CONCLUDING REMARKS
This thesis presents a number of theoretical and numerical developments, as well as a
series of numerical analyses, to investigate the behaviour of slopes during failure. The
work has concentrated on the development and implementation of the material point
method and its application to slope failures.

The consequence of slope failures comes not only from the failure initiation, but in
many cases from the development of the failure and flow of the failed material. From
past studies of slope failures and landslides, a number of types of failure have been
described, including translational failures, rotational failures, retrogressive failures and
progressive failures. The behaviour of these failures after initiation depends strongly on
the material behaviour and geometric changes during the failure.

To tackle the numerical simulation of slope failures, the material point method has
been further developed and implemented. Three main developments have been pre-
sented: (a) the implicit material point method (IMPM) has been developed, in order to
potentially save computation time and allow advantages in the accuracy of the material
model; (b) the random material point method (RMPM) has been proposed and imple-
mented, to enable the analysis of both heterogeneity and large deformations in slope
failure analysis; and (c) the coupled material point method (CMPM) has been devel-
oped, with the aim to model the slope failure and its consequence due to the triggering
of pore water pressure changes within soils, such as due to rainfall, etc.

The research has focused on the reproduction of commonly seen failure modes of
clayey-type slopes, and in analyses of the underlying failure mechanisms, although sim-
ple slope geometries are included to facilitate the interpretation. A series of simple geo-
metric analyses have been undertaken, utilising simple material models which are able
to reproduce a range of different failures observed in reality.

Specifically, the main achievements of the research are summarised as follows:
Initially, the thesis presents the development and implementation of an IMPM for-

mulation. A unified implicit MPM framework, in which both quasi-static and dynamic
analyses can be solved, was proposed. The majority of other versions of MPM reported
in literature have utilised an explicit time integration scheme, which requires strict time
step control and thereby increases the computational cost and time. It has been found
that, by utilising the implicit integration scheme, an improved algorithm accuracy can
be found, which is important for some constitutive behaviours such as elasto-plasticity.

Various aspects of the IMPM implementation were tested and reported, including
the numerical stability of elements which are not full (i.e. of material points), the num-
ber of material points per element and the energy conservation in the system. However,
as is often the case in the finite element method, the conditions for a satisfactory solution
are dependent on the problem considered and cannot be determined a priori. Particular
attention should be paid to some parameters chosen in the simulations, e.g. the damp-
ing parameter. The analysis of a soil column collapse revealed that a parameter of 0.15
gives a reasonable fit to experimental results.

The developed and implemented IMPM was applied to slope instability analyses.
To enable the simulation of post-failure behaviour, a constitutive model including post-
failure behaviour was required, and so a simple idealized cohesion-softening model was
introduced. Two main scenarios are presented and used throughout the thesis: (a) a
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relatively small slope, similar to a cutting, and (b) a long slope, similar to a natural slope.
Regarding the small slope, the slope geometry change is seen to have a big influence
in the slope failure mechanism. As the previous slide moves far away from the initial
conditions, rendering the exposure of a steepened scarp behind it, the force imbalance
can be transferred backwards and trigger other slides. The constitutive model stages
governing the behaviour of material points can be observed during the slope collapse
process. It can be seen that the strength loss does not occur simultaneously throughout
the slope, but according to the stress state and the accumulated plastic strain. There
are two observations worthy of note: firstly, when a block of soil moves out of the sliding
area, the exposed soil at the back scarp experiences elastic unloading; secondly, as a new
shear band is formed, the soils within the previous shear band(s) remain at the residual
state or elastically unload. Observations on the collapse process of a long inclined slope
reveal that multiple slides can occur simultaneously, and that, based on the slope angle,
two types of slope failure can be categorised. For gentler slopes, a retrogressive failure
mode, with individual failure blocks forming wedge structures, is observed, whereas, for
steeper slopes, a large translational slide is observed, with the soil mass subsequently
breaking up.

For considering the effects of spatial variability of soil strength properties on slope
failure mechanisms, including secondary failure mechanisms and the consequences of
failure, a variant of the random finite element method (RFEM) has been proposed, called
the random material point method (RMPM). RMPM combines random field theory, for
modelling spatial variability, with the material point method (MPM) for modelling geote-
chnical response, within a Monte Carlo simulation process. It differs from RFEM by as-
signing random field (cell) values to material points, rather than to Gauss points. Com-
parisons with RFEM, through the analysis of an idealised small slope, showed that RMPM
provides a much wider range of solutions, in general increasing the volume of material
in the failure, while a comparison with the deterministic MPM solution showed that the
deterministic analysis may yield unconservative results and underestimate the possible
risk, based on equating the potential failure consequence to the sliding distance (i.e.
extent). For a long inclined slope and a large degree of anisotropy, the failure surface
was found to propagate above the slope base due to the soil heterogeneity. Coefficients
of variation were examined to demonstrate that retrogressive failure could also happen
within soil deposits containing very loose materials. Note that mesh dependency as ex-
pected (i.e. FEM variant) is observed in the code performance, and hence a study con-
cerning the problem should be carried out before proceeding to Monte-Carlo simula-
tions, in order to ensure that results are consistent.

Coupled MPM was implemented in order to consider the influence of pore water
pressure change in the slope failure mechanism under saturated loading conditions.
By introducing the degree of saturation to characterize the soil-water relationship, the
model has been extended to include unsaturated soil behaviour. The developed model
uses a single material point representing the material mass and the water moves through
the points. The rainfall-induced slope collapse process was shown to be progressive and
retrogressive using the coupled MPM approach, thereby resembling reality; in contrast,
total stress analyses yielded unrealistic results that were independent of water flow with
time in the soil, further highlighting the importance of utilising the coupled MPM in
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solving related topics in the future. Rainfall induced slope failures are observed in the
form of a series of mainly superficial failures.

6.2. RECOMMENDATIONS FOR FUTURE WORK
The material point method has been shown to be a reliable and useful numerical tool in
geotechnical analyses and designs. However, the development of MPM is still at an early
stage. A few recommendations for future research within the scope of this thesis are as
follows:

• Implicit MPM shows a certain superiority in solving quasi-static large deforma-
tion problems, with the high-order element being integrated to reduce the stress
oscillations. However, without the inertial terms included, the stability of the code
is reduced. A soft-stiffness across the background mesh and a higher number of
material points are needed to improve the code performance. A simple cantilever
beam problem was considered within the thesis, which gives a case-dependent re-
sult. In the future, a more generalised result could be obtained by including more
benchmark problems, although an absolute generalised solution would be very
difficult to obtain due to the limitations and characteristics of each problem.

• Stress oscillations are problems inherent in MPM formulations, due to the inte-
grations on the moving material points, cell crossing errors, etc., which may bring
potential bad influences to the program performance. Many ways to combat this
problem have been proposed, such as GIMP, integrations on the Gauss points and
so on. However, GIMP has been limited to solving problems involving structured
background meshes, while integrations on the Gauss points may bring in some in-
termediate mapping errors. Hence, using high-order elements or splines could be
a future research topic, improving both the algorithmic accuracy and code robust-
ness.

• The random MPM has been proposed in this thesis, which is able to assess the po-
tential risks in terms of reliability as in RFEM, giving a more comprehensive esti-
mate of the failure consequence (e.g. failure extent). However, analysing the whole
failure process may result in a much longer CPU time compared to an RFEM anal-
ysis focusing only on the failure initiation. Hence, parallel computing techniques
can be incorporated in the future to enable more realisations for the Monte-Carlo
simulation, giving more robust solutions.

• A reduction of the uncertainties relating to soil property distributions is possible,
by constraining the spatial variability using site specific data to condition the ran-
dom fields. Results can be combined with RMPM analyses to provide more accu-
rate and realisitic evaluations of slope system responses. Comparisons with real
slope failures should also be undertaken in the future.

• Boundary condition treatment regarding the water phase could be useful in fur-
ther research. For example, zero pore pressure prescribed boundary material poin-
ts could change positions during successive retrogressive failures, for example in
the long inclined slope collapse case, and could end up within the slope body. A
better technique should be found to better interpret the boundary material points.
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The rainfall infiltration boundary was simply represented by nulling pore pres-
sures on the boundary material points in the current MPM formulation, with-
out the capability of modelling the rainfall intensity and patterns. Velocity-based
boundaries can be considered, and a better representation of the movement of the
water phase should be taken into account as well.

• A simple frictional algorithm is provided in this thesis to model the contact in be-
tween the slope base and the fixed ground boundary. It can be extended to a more
generalised contact, including both frictional and adhesive components, in which
the boundary nodes can be detected automatically; hence, problems such as im-
pact and penetrations can be better captured. Moreover, in cases of soil-fluid in-
teractions, extra work may be needed to reduce the oscillations that exist at the
soil-fuid interface.

• The heterogeneity of the soil undoubtedly has a significant influence on the slope
failure initiation, as demonstrated by RFEM, and the failure consequence, as shown
by RMPM. In reality, the spatial distribution of soil permeability could also lead
to preferential flow paths within the soil when subjected to the rainfall flow, and
hence influence the slope failure mechanism and modes. Random field theory
could be combined with coupled MPM in future research, to investigate a wide
range of slopes at risk of rainfall-induced failure.

• MPM codes may suffer excessive mesh dependency problems when strain-softeni-
ng models are used, as has previously been found for FEM. Localisation of defor-
mation has a detrimental effect on the integrity of the structure, and often acts as a
direct precursor to structural failure. Hence, it is important to properly capture the
localisation phenomenon in analysing structure (in)stabilities. The implementa-
tion of a suitable regularisation technique to address the issue, as is done in FEM,
should be a subject of future research.
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NOTATION

Acronyms

ALE arbitrary Lagrangian-Eulerian

CEL coupled Eulerian-Lagrangian

CFL Courant-Friedrichs-Lewy

CG conjugate gradient

CMPM coupled material point method

CPDI convected particle domain interpolation

CPT cone penetration test

DEM discrete element method

EVF Eulerian volume fraction

FEM finite element method

FFT fast Fourier transform

FOS factor of safety

FOSM first order second moment

FSI fluid-solid interaction

FVM finite volume method

GIMP generalized interpolation material point

IMPM implicit material point method

LAS local average subdivision

LEM limit equilibrium method

MA moving average

MPM material point method

PFEM particle finite element method

PIC particle-in-cell
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pdf probability density function

RFEM random finite element method

RMPM random material point method

SPH smoothed particle hydrodynamics

SWRC soil water retention curve

TBM turning bands method

UL updated Lagrangian

UL-FEM updated Lagrangian finite element method

USF update stress first

USL update stress last

Latin Symbols

A hardening modulus (Chapter 3); averaging area (Chapter 4)

A1 intermediate modulus in modified Mohr-Coulomb function

a smoothing parameter in modified Mohr-Coulomb function

a acceleration

as acceleration of solid skeleton

aw acceleration of water

B1 intermediate modulus in modified Mohr-Coulomb function

b body force

BL linear strain–displacement transformation matrix

BN L nonlinear strain–displacement transformation matrix

c cohesion

cd damping factor

ci initial cohesion

cp peak cohesion

cr residual cohesion

cu undrained shear strength
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cv wave speed

cw consolidation coefficient

cs traction vector

De elastic stress-strain matrix

Dep elasto-plastic stress-strain matrix

E Young’s modulus

Eki n kinetic energy

Estr ai n strain energy

F yield function

Fd amp damping force

Fdr ag ,w drag force due to the soil-water interaction

Fext external force

F̄ext modified external force

Fg r av gravity force

Fg r av,w water gravity force

Fi resultant nodal force

Fi nt internal force

Fi nt ,w water internal force

Fr eact reaction force

Ftr ac traction force

Ftr ac,w traction water force

g gravitational acceleration vector

H hardening/softening modulus

h thickness of the boundary layer

hv thickness of the soil layer in the consolidation test

i node numbering

J determinant of Jacobian matrix

J3 the third stress invariant
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K hydraulic conductivity

Kw bulk modulus of water

k soil permeability

kr el relative permeability

ksat permeability at full saturation

kθ smoothing parameter in modified Mohr-Coulomb function

K stiffness matrix

K̄ modified stiffness matrix in the final governing equation of the implicit material
point method

KL linear terms of the stiffness matrix

KN L nonlinear terms of the stiffness matrix

L length of bar

mw fluid mass

m̄w fluid mass in a material point per unit of volumetric fraction

ms solid mass

M mass matrix

Mw fluid mass matrix

M̄w fluid mass matrix fraction

Ms solid mass matrix

m nodal mass matrix of size dimension × dimension

mk Kronecker delta vector [1 1 0 1]T

Nbl p number of material points within the vicinity of the boundary

Ndim number of dimensions for the problem considered

Nn number of grid nodes around a material point

Np number of material points

n porosity

n0 initial solid porosity

ne number of nodes per element
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ns fitting parameters in SWRC curve

N shape function

n normal vector

p material point numbering

pw water pressure

p̄w prescribed boundary pore pressures

pw prescribed boundary pore pressures

Q water dragging matrix

Q plastic potential function

Rext virtual external work

r sliding distance

Sc traction boundary

Se effective degree of saturation

Sw degree of saturation

Sr es residual degree of saturation

Ssat full degree of saturation

s suction

S second Piola-Kirchhoff stress

s deviator stress tensor

T1, T2 finite domain length

Tv time factor in the consolidation test

t time

t1, t2 point at the end of sampling length T

u standardized random variable

u displacement

ū incremental displacement

V coefficient of variation

Vp material point domain
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v velocity

v̄ velocity used to update the displacement in explicit MPM formulation

vs velocity of the solid skeleton

vw velocity of liquid

W ext external work

wh test function

X spatially varying property

x Cartesian coordinate

x location

y Cartesian coordinate

Z local average for a random field cell

z Cartesian coordinate

zd depth

Greek Symbols

α time stepping parameter used in the Newmark time integration

α1,α2 fitting parameters to consider the depth-dependent trends in the point statistics

αs fitting parameters in SWRC curve

β1 eigenvalue

Γ boundary of the domain

γ variance function

γz self weight

∆e linear part of the incremental strain

∆η high-order terms of the incremental strain

∆ω spin tensor increment

δ time stepping parameter used in the Newmark time integration

δ1 force ratio

δ2 energy ratio
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ε Green-Lagrange strain tensor

εp plastic strain

ε̄p plastic shear strain invariant

ε̄pr plastic shear strain invariant at the onset of residual strength

η ratio of residual strength over peak strength

θ Lode angle

θh horizontal scale of fluctuation

θT transition angle

θv vertical scale of fluctuation

κ internal hardening/softening parameter

λ magnitude of plastic strain

µ mean

µ f friction coefficient

µw water viscosity

υ Poisson’s ratio

ξ anisotropy of heterogeneity

ρ mass density; correlation function (Chapter 4)

ρs density of solid grains

ρw liquid density

σ standard deviation

σ̄ square root of second stress invariant

σm mean stress

σ total(Cauchy) stress tensor

σ̂ Cauchy stress matrix

σ̃ Jaumann stress matrix

σJ Jaumann stress tensor

σ′′′
s (Bishop) effective stress tensor

τ1, τ2 lag distance
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τ shear stress component

τ prescribed boundary stress

φ friction angle

ϕi weighting function

Ωp material point volume

χ matric suction coefficient

χp characteristic function

ψ dilation angle

Ω configuration of the continuum

Ωe element domain

Ωχ integral domain of the characteristic function

ω1 frequency of oscillation

ω test function

∇∇∇ vector differential operator

∂F /∂σ vector normal to the yield surface

∂Q/∂σ vector normal to the plastic potential surface



SUMMARY

Slope failure is a typical geotechnical problem, receiving substantial attention due to its
potential to cause catastrophic damage. A complete description of slope failure should
not be limited to only the description of the failure initiation, but should also include
the slope failure propagation and final configuration. Such analyses can be considered
particularly useful, as they contribute to the assessment of landslide volumes and their
potential for traveling long distances. The widely-used finite element method (FEM) suf-
fers from the disadvantage of mesh distortion during the initial stages of slope failure,
which often results in analyses not being able to complete further steps. In contrast, the
material point method (MPM) has been shown to be able to reliably capture large defor-
mations, and is now being applied in the geotechnical field. Indeed, since its adaptation
to solid mechanics in 1994, increasing attention has been given to it for a wide range of
applications, including wave attacks on sea dykes, the progressive failure of river levees,
and so on.

In this thesis, MPM has been further developed and implemented for applications to
slope failure under different scenarios, and a number of the challenges associated with
the simulation of observed slope failures have been tackled. These challenges include:
(i) soil behaviour, including a material model that allows for the softening behaviour
often observed post-failure, (ii) soil variability, (iii) unsaturated soil conditions and rain-
fall induced changes, and (iv) the very small timestep associated with explicit numerical
methods, often used elsewhere in MPM. A series of simple slope simulations are pre-
sented, demonstrating the ability of the developed methods to simulate observed failure
modes, from progressive failures to retrogressive failures and superficial failures.

The implicit material point method (IMPM) has been developed and implemented
with the aim to provide an efficient computational procedure and to increase algorith-
mic accuracy. The alternative method, the explicit time integration scheme more often
used in other MPM implementations, reduces the critical time step size required for the
numerical stability of the analysis, and may make the computational effort prohibitive.
Moreover, for problems involving plastic straining, in each loading/time step the dis-
placement increment is not strictly determined for a fixed load increment by using an
explicit time integration scheme. Hence, errors may accumulate over time.

Failure development and propagation in slopes require a representation of post-failure
material behaviour, as well as a numerical method to simulate the large deformations. A
simple strain softening material model has been implemented here to represent post-
failure material behaviour. A series of slope failure simulations have shown that the
method can simulate the range of post-failure modes observed in practice, such as ret-
rogressive and progressive slope failures.

Spatial variation (i.e. heterogeneity) in soil properties exist, due to the geological,
environmental, and physio-chemical processes during soil deposition. Accounting for
the natural variability of soils, via the use of random fields of material properties, the
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random material point method (RMPM) has been proposed in the thesis, which com-
bines random field theory with MPM. In contrast to the random finite element method
(RFEM), cell values from random fields are assigned to material points directly, rather
than to the Gauss points of a finite element mesh. Multiple random field realisations
can then be obtained and Monte Carlo simulations, involving multiple MPM analyses,
can be performed in order to obtain a distribution of possible responses. The risks posed
by potential slides have been quantified by the extent of retrogressive failure; i.e. due to
the tendency for secondary failures to be triggered by the removal of support from the
remaining soil mass caused by the initial failure. The results show that RMPM provides
a much wider range of possible solutions, compared to RFEM in which solutions are
limited to the initial slide. The importance of considering the effects of both large defor-
mations and the spatial variability of soil strength properties in slope stability analyses
has been highlighted.

Soil is a two phase material, and its behaviour is governed by the interaction between
the solid and water phases. Changes in the water content of the soil have an important
impact on the slope failure process of an unsaturated soil, by increasing the soil unit
weight and reducing the soil effective stresses. A one-point, two-phase coupled mate-
rial point method (coupled MPM) has been proposed to consider the influence of water
on the slope failure process. Rainfall-induced slope failures are thereby considered and
shown to be formed by a series of more superficial failures as are often observed in prac-
tice.

Through the developments and analyses presented in this thesis, it is shown that the
majority of observed slope failures can be simulated, from spreads, to progressive and
retrogressive failures, to earthflows. The ability to simulate the failure progression, from
initiation through to final position, can allow a better assessment of the hazard posed by
natural and man-made slopes.



SAMENVATTING

Het bezwijken van een talud is een geotechnisch fenomeen bij uitstek, dat vanwege zijn
potentieel catastrofale gevolgen veel aandacht krijgt. Een volledige analyse van het be-
zwijken van een talud zou niet beperkt moeten blijven tot het eerste moment van be-
zwijken, maar zou ook de verdere ontwikkeling van het bezwijkproces moeten omvat-
ten. Een dergelijke analyse kan extra waardevol zijn wanneer toegepastinde analyse
van bezwijkingsvolumes en bijbehorend verplaatsingsbereik. De veelgebruikte eindige
elementen methode (FEM) heeft slechts beperkte toepasbaarheid en grote vervormin-
gen leiden vaak tot verwrongen elementen, wat verdere analyse onmogelijk maakt. De
material point method (MPM) daarentegen heeft bewezen grote vervormingen op be-
trouwbare manier te kunnen beschrijven en wordt nu gebruikt in de geotechniek. Sinds
de introductie in de vaste stof mechanica in 1994 geniet deze methode meer en meer
aandacht vanwege zijn brede toepasbaarheid, onder meer op het gebied van golfslag op
zeeweringen en voortschrijdend bezwijken van rivieroevers.

In deze dissertatie is MPM verder ontwikkeld en geïmplementeerd voor toepassing
op taludbezwijking onder verschillende scenario’s en een aantal problemen rond het si-
muleren van waargenomen talud bezwijking zijn opgelost. Deze problemen omvatten:
(i) grondgedrag, waaronder een materiaalmodel voorsofteninggedrag zoals vaak voor-
komt na bezwijken, (ii) variabiliteit van de grond, (iii) onverzadigde condities en veran-
deringen daarin als gevolg van regenval en (iv) de zeer kleine tijdstap gerelateerd aan
de expliciete formulering van de numerieke methodes, zoals vaak elders gebruikt voor
MPM. Het vermogen van de ontwikkelde methode tot het simuleren van waargenomen
bezwijkingsmechanismen, van progressieve bezwijking tot retrogressieve bezwijking en
ondiepe bezwijking, wordt gedemonstreerd aan de hand van een reeks eenvoudige si-
mulaties van taluds.

De impliciete material point method (IMPM) is ontwikkeld en geïmplementeerd met
het doel een rekenkundigefficiëntemethode op te leveren en algoritmische nauwkeu-
righeid te vergroten. De expliciete tijdsintegratie als alternatieve methode, zoals ge-
woonlijk gebruikt wordt in MPM, verkleint de kritieke grootte van de tijdstap die nodig
is om numerieke stabiliteit te garanderen en kan leiden tot onhaalbaar grote rekenbe-
lasting. Daarbij komt nog dat in het geval van plastische vervorming, wanneer expli-
ciete integratie over de tijd wordt gebruikt, een toename in verplaatsingmogelijk niet-
deterministisch is voor een gegeven toename in belasting. Als gevolg kunnen onnauw-
keurigheden opbouwen over de tijd.

De totstandkoming en ontwikkeling van bezwijkingsmechanismen in taluds vereist
een beschrijving van post-bezwijkingsgedrag van het materiaal alsmede een numerieke
methode die in staat is grote vervormingen in rekening te brengen. Een eenvoudig mate-
riaalmodel voor softening is geïmplementeerd om post-bezwijkingsgedrag van het ma-
teriaal te beschrijven. Een reeks simulaties van taludbezwijking hebben aangetoond dat
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de methode in staat is een scala aan post-bezwijkingsgedrag te simuleren, zoals waarge-
nomen kan worden in de praktijk, waaronder retrogressieve en progressieve bezwijking.

Grondeigenschappen kunnen ruimtelijke variaties (heterogeniteit) tonen als gevolg
van geologische, milieukundige of fysisch-chemische processen gedurende de afzetting.
Voor het in rekening brengen van natuurlijke variabiliteit van grond door middel van ase-
lecte weergave van ruimtelijke variaties in grondeigenschappen is de random material
point method (RMPM) geïntroduceerd in deze dissertatie. Deze methode combineert
theorie van aselecte veldenmet MPM. In tegenstelling tot de random eindige elementen
methode(RFEM) worden cel waarden van aselecte velden hier direct aan materiaal pun-
ten toegeschreven en niet aan Gauss punten zoals in FEM. Zo kunnen meerdere aselecte
velden gerealiseerd worden en Monte Carlo simulaties, met meerdere MPM analyses,
kunnen worden gemaakt teneinde een verdeling van mogelijk gedrag te genereren. De
risico’s die voortkomen uit mogelijke afschuivingen zijn gekwantificeerd aan de hand
van het bereik van retrogressieve bezwijking, vanwege de neiging naar secundaire be-
zwijkingen als gevolg van het wegvallen van de ondersteuning van de massa van de ini-
tiële afschuiving . De resultaten tonen aan dat RMPM een veel breder bereik aan moge-
lijke uitkomsten heeft in vergelijking met RFEM, waarin uitkomsten beperkt blijven tot
de initiële afschuiving. Het belang van het in acht nemen van zowel grote vervormin-
gen en ruimtelijke variabiliteit van de sterkteparameters in analyses van taludstabiliteit
wordt hiermee onderstreept.

Grond bestaat uit twee fasen en grondgedrag wordt bepaald door de interactie tussen
de vaste fase en de waterfase. Veranderingen in het watergehalte van de grond hebben
een grote invloed op het bezwijkingsproces van een talud bestaand uit onverzadigde
grond, door het verhogen van de dichtheid en het verlagen van de effectieve spanning.
Een enkel-punts, twee-fasen, gekoppeldematerial point method (coupled MPM) is ge-
formuleerd om de invloed van water op het bezwijkingsproces in rekening te kunnen
brengen. Hiermee wordt taludbezwijking als gevolg van neerslag bestudeerd. Totale be-
zwijking wordt hier gedemonstreerd te ontstaan als gevolg van een reeks meer opper-
vlakkige bezwijking, zoals vaak waargenomen wordt in de praktijk.

Aan de hand van de ontwikkelingen en analyses in deze dissertatie is inzichtelijk ge-
maakt dat de meerderheid van waargenomen bezwijkingsmechanismen kunnen wor-
den gesimuleerd, zowel met betrekking op bereik als mechanismen van progressieve
totretrogressieve bezwijking. Het vermogen de ontwikkeling van bezwijking te kunnen
modelleren, van initiatie tot de uiteindelijke evenwichtssituatie, kan een betere beoor-
delingmogelijk maken van het gevaar dat uit gaat van natuurlijke- en door de mens ge-
maakte taluds.
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