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Abstract
This report covers all major steps to establish an aviation emission inventory for 2019. This emis-
sion inventory is set up based on four consecutive steps. The first step is to gather all required data
in the information model and this also includes some pre-processing of data to make it as com-
plete as possible. The second step is to estimate the point performance of the aircraft at multiple
waypoints along the trajectory based on the Base of Aircraft Data (BADA). This also allows for fuel
consumption estimation. The third step uses the point performance data to estimate emissions
under the respective flight condition. The last step addresses introduced uncertainties based on
the different models. From a first principle perspective the uncertainty on a fleet wide scale (and
for short and long haul flights) is found concerning the fuel consumption and various emission
species (for example nitrogen oxides and carbon monoxide) using a Monte Carlo simulation.

The trajectory data is obtained from flightradar24 in which gaps were identified where the type
of aircraft, origin airport or destination airport were missing. Complementing of the database is
based around the provided flight numbers and call signs. Based on airline data a variety of as-
sumptions is made relating to payload fraction (69%) and increase in flight distance (8%) compared
to the great circle distance. The trajectory is estimated using the rate of climb and descent pro-
vided in BADA. The emission model then uses constant emission indices, the boeing fuel flow
method 2 (BFFM2) and the DLR method to compute all emissions according to:

• Constant emission index: carbon dioxide (corrected for emission index of carbon monoxide),
water vapor and sulfur oxide.

• BFFM2: carbon monoxide, unburned hydrocarbons and nitrogen oxides.
• DLR: black carbon emission.
The uncertainty analysis, finally, covers airline operational uncertainty, model uncertainty and

engine aging uncertainty to find an average increase in fuel consumption of 4.2%. Due to the
influence of fuel flow, other emission species are increased with a different fraction.

Due to computational limitations it has been decided to analyze one week, which will be rep-
resentative of the entire year. Based on this analysis an annual fuel consumption of 272 Tg is
simulated with corresponding carbon dioxide emission of 857 Tg. In addition, a nitrogen oxide
emission of 5.3 Tg is found. All emission species are mainly emitted on the northern hemisphere
on three geographical locations: north America, Europe and south-east Asia. The strongest rec-
ommendation is to include military flights and non-jet aircraft in the analysis (mainly turboprop
aircraft). In addition, to decrease the dependency on data of a single week, it is advised to obtain
more computational power to allow for analysis of multiple representative weeks preferably in both
ICAO specified seasons.

Finally it is recommended to extend the uncertainty analysis to cover more individual uncertain-
ties such as the uncertainty in cruise altitude (based on airline routing) and to find more research
on the uncertainty of sulfur content in kerosene.
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1
Introduction

The aviation industry has been one of the fastest growing transportation industries, growing from
109 billion revenue passenger kilometer (RPK) per year in 1960 to 8269 billion RPK per year in
2018 [1]. This growth has been synonymous with an increase in anthropogenic climate impact as
the increases in efficiency do not outweigh the growth of the sector. With other (also non-transport)
sectors starting to become more sustainable, the percentual share of aviation emissions is ex-
pected to increase significantly to 22% in 2050 [2]. To model the emissions of aviation, the concept
of emission inventories has been developed: emission inventories estimate the emission of, in this
case, aviation by means of trajectory estimation and point/trajectory performance estimation. For
aviation in particular the applied methodology is of great importance as the emission altitude and
geographic location significantly affect the climatological impact of the emission species [3]. The
objective of this thesis is therefore to develop a comprehensive model which allows the capture
of three dimensional emission information to allow scientists to draw climatological impact assess-
ment conclusions.

One comprehensive emission inventory for the year 2005 that has been conducted is a study
at MIT by N.W. Simone in 2013 [4]. Simone predicts an annual fuel consumption of 180.6 Tg with
90% confidence between 136.1 − 232.9 Tg. This is considered a very large uncertainty and pre-
vents politicians to create effective climate legislation as the scale of emissions is very uncertain.
In addition, this uncertainty in fuel consumption imposes additional uncertainty on all emission
species as they are all strongly dependent on the fuel consumption. It is therefore essential to de-
crease the uncertainty associated with the fuel burn. The resultant fuel burn from Simone 2013’s
study, geographically, is presented in Figure 1.1. The figure shows that most fuel is burned in
three locations: north America, Europe and south-east Asia with routes between these locations
showing significant fuel burn as well.

Figure 1.1: Global fuel burn from scheduled civil aviation in 2005 (figure obtained from Development of a Rapid Global
Aircraft Emissions Estimation Tool with Uncertainty Quantification [4]).
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For various emission species the location of emission, both vertical and lateral, affects the cli-
mate/air quality. Various species, such as nitrogen oxides [5], have an ecological/local air quality
impact close to the location of emission. In addition, due to, historically, relative recent increases
in prosperity in Asia, the emission distribution in Figure 1.1 tends to change significantly over time
as prosperity is closely correlated to the number of flight movements [6]. Such change conse-
quently affects the associated local and global impact of emissions. It is therefore important to
keep aviation emission inventories as up-to-date as possible.

The objective of this research is to create an updated emission inventory for climate assess-
ment of aviation using new and updated methods to model aircraft and engine performance. To ful-
fill this objective the following research question is formulated: How can current aviation emission
inventories be improved and, consequentially, what are the updated aviation emission inventories
for different air traffic scenarios taking into account different aircraft categories? To answer this
main question, three research sub-questions are formulated:

• What research can be used off the shelf and be complemented by this research in order to
increase reliability of the data?

• How can the uncertainty analysis be improved and the confidence in the results be increased?
• Taking into account the updated emission inventory model, what are the quantity and distri-
bution of emissions of aviation?

This report is structured as follows. Chapter 2 describes the information required as a starting
point for emission inventory assessment. Chapter 3 presents the applied methodology to estimate
point performance (such as fuel consumption at waypoints along a flight trajectory) and flight tra-
jectory. In addition the fuel flows and ambient conditions estimated by the trajectory calculation
are a starting point for the emission prediction. Then, in Chapter 4, the methodology to estimate
emissions at every way point of the flight is outlined. After that, in Chapter 5, the uncertainty anal-
ysis is performed starting from a simplified physical basis until the overall uncertainty has been
found. This chapter is concluded by showing the result of all individual uncertainties combined.
Following is Chapter 6, which presents the verification and validation of all applied models and
uncertainties. The penultimate chapter, Chapter 7, provides all results of the applied methods and
makes a direct comparison to previous emission inventories and fuel sales. Finally, a conclusion
is drawn and a critical reflection on this research is presented in Chapter 8.



2
Information model

The information model captures the foundation of an emission inventory. For the purpose of this
emission inventory data has been obtained from flightradar241. Amongst others, the most im-
portant data captured are: the departure airport, the arrival airport and the type of aircraft. Un-
fortunately, no four dimensional data points along the route are provided, hence no intermediate
speeds or altitudes can be computed [7].

2.1. Structure of the emission inventory
To fully understand all elements of the emission inventory a short overview is presented in this sec-
tion. This section thus aims to present the underlying structure of Chapter 2, Chapter 3, Chapter 4
and Chapter 5. The emission inventory is composed of four elements (similar to work performed
by Simone et al. [4], C. J. Eyers et al. [7], S.L. Baughcum et al. [8], W. Fan et al. [9], D.K. Wasiuk
et al. [10], J. Li et al. [11] and B. Owen et al. [12]):

• Information model: the information model brings all the information required for the analy-
sis. On a per-flight-basis the bare minimum required elements are the departure point, the
arrival point and the type of aircraft.

• Performance model: the performance model uses the data from the information model
to estimate the point performance at every point of the trajectory. This trajectory, in turn,
is modelled as the great circle distance corrected with the en-route multiplier: the fractual
increase in travelled distance compared to the great circle distance. Based on these point
performances an estimation can bemade on the fuel consumption of the complete flight. The
estimation starts with point performance estimation at the departure point for the landing
and take-off (LTO) segment until climbout has finished at 3000 ft above the elevation of
the departure airport. The actual flight segment then starts which finishes 3000 ft above
the elevation of the arrival airport. Similarly, the LTO segment at the arrival airport is then
computed. The performance model requires many assumptions, such as the payload factor
and the increase in distance compared to the great circle distance.

• Emission model: the emission model uses the estimated flight trajectory and point perfor-
mance to find the associated emissions of all flight phases. Some emission calculations are
easy as they are directly proportional to the fuel burn (such as carbon dioxide and water
vapor), while other emission species are largely dependent on thrust settings and ambient
conditions (such as nitrogen oxides and carbon monoxide). The LTO emissions can be ob-
tained from the ICAO emission databank, however the in-flight emissions require estimation.
Various models are required for this analysis to use sea level emission data and extrapolate
it to the required atmospheric conditions [13].

• Uncertainty analysis: the uncertainty analysis should capture all uncertainties associated
with the used models, the origin of the data and the choices made during this thesis. Intu-
itively, the aim is to minimize the uncertainties. Uncertainty analysis for aviation emission
inventories has been performed before, but the obtained uncertainties were rather large. Fur-

1https://www.flightradar24.com/ (accessed 05-09-2022)
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thermore, this research from 2005 (by Lee et al. [14]) is considered dated.

Note that these models are highly integrated with one another. A simplified schematic of this
process is presented in Figure 2.1. Please note that an elaborate version is presented later as
more insight is provided in the individual elements.

Figure 2.1: Basic flow chart of the various elements of an aviation emission inventory.

2.2. Types of aircraft
Before more information is presented about databases, it is important to understand what type
of aviation can be modelled. In general, four types of aviation are distinguished, which can be
subdivided in other categories as well [7]:

• Military aviation: military helicopters, cargo planes and fighter jets.
• General aviation: piston aircraft with no more than 10 seats.
• Private aviation (private jets): business jets with no more than 20 seats often powered by
turbofan or turbojet engines.

• Commercial aviation:
– Turboprops: aircraft powered by at least two turboprop engines.
– Regional jets: jets powered by turbofan or turbojet engines with no more than 100 seats.
– Large jets: the majority of commercial aviation, these aircraft fly longer distances with
at least 100 seats.

Quantifying military aviation emissions is a difficult process due to the lack of reliable military
aviation trajectory information and the lack of data on emissions of military engines [15]. In the
US the military is responsible for a decreasing fraction of fossil fuel use [15] but, as of 2009, about
20% of jet fuel in the US is consumed by military aircraft [16]. The main reason for the fractional
decrease is the closing of marine/air force bases [15]. Waitz et al. [15], however, argue that the
main impacts of military aviation are noise related, rather than emission related. It is decided to
compute military aviation emissions in the same way as for civil aviation where information is pro-
vided. As there is not enough information available, these flights by military aircraft will not be
taken into account (as many military flights are not recorded by flightradar24 [17]).

Emissions of general aviation are easier to compute as the flights are tracked by flightradar24.
Unfortunately, this will be shown later in the report, the database governing engine emissions does
not cover piston engines. This means that emission estimation for these aircraft is not possible. In
addition, opensky provides a similar database compared to flightradar24 and in this database it is
found that only 6% [18] of the flights are made up of general aviation. Therefore, not taking these
flights into account does not create a significant uncertainty due to the fact that the emissions will
make up a far smaller fraction than the 6% because of the smaller emission impact of these aircraft.

Business jets are often based on commercial aircraft (fromBoeing, Airbus, Bombardier and Em-
braer website), this allows one to use databases of the regular airliners. Furthermore, the family
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of engines used on these aircraft are covered by the required databases as they need to be certi-
fied for civil aviation. Business jets can therefore be covered in a similar way as the rest of the jets.

Lastly, turboprops cannot be modelled using the associated emission database as the ICAO
emission databank is limited to jet engines. These turboprop engines are often smaller aircraft
and do not make up a significant part of emissions in most recent Eurocontrol estimations [19].

2.3. Database
As briefly mentioned previously, the database of flights is obtained from flightradar24. This database
contains roughly 52 million flights per annual which is a too large number for all flights to be ana-
lyzed. For this purpose the concept of representative weeks is introduced: a representative week
is a seven day period for which the characteristics of all flights in this week is representative for
a longer period of time. Logically, increasing the number of representative weeks, thus making
every week responsible for a part of the year, increases the computational time significantly.

2.3.1. Requirements for the representative week
Several requirements are put forward to which the representative week must adhere to:

• The representative week shall not occur in a holiday period (i.e. summer on the northern
hemisphere or holiday period end of December/beginning of January).

• The mean number of flight movements throughout the year shall be as close as possible
(without violating any of the other requirements) to the number of flights in the representative
week.

• The representative week shall not be taken from a week where a switch is made between
summer and winter schedules for airlines (according to IATA2 summer schedule starts last
Sunday of March until the last Saturday of October) as this provides a too large fluctuation
in traffic patterns for the rest of the requirements to uphold.

2.3.2. Daily traffic variation
Commercial daily aviation demand varies widely throughout the year. In order to find a represen-
tative week for the entire year, a good overview of the traffic variation is required. The number of
daily commercial aircraft movements is presented in Figure 2.2. Note that this is the 7-day moving
average. Only commercial flights were used for this analysis. The underlying reason for this de-
cision is that the majority of emissions is caused by commercial aviation according to Eurocontrol
[19].

Figure 2.2: 7-day-moving-average of daily commercial flights worldwide (based on flightradar24 data).

Note that strong variations in traffic can occur in a week within the same month (such as during
2https://www.iata.org/ (accessed 05-09-2022)

https://www.iata.org/
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Christmas, around the beginning of July and the end of August). The variations over the entire year
are not very large, with minimum number of commercial daily movements of 100,000 beginning
of January and maximum of 125,000 halfway July. Preferably, based on the above diagram, the
representative week(s) should not be chosen at minimum or maximum traffic, i.e. not from January,
June, July and August.

2.3.3. Number of flights per month
In order to identify the representative week, an overview of the number of commercial flights per
month is presented in Table 2.1 with their representative share compared to the total number of
commercial flights in the year 2019.

Table 2.1: Number of commercial flights per month in 2019 (based on flightradar24 data).

Month Number of commercial flights 2019 Percentage of total [%]
January 3, 237, 745 7.71
February 2, 971, 193 7.08
March 3, 372, 054 8.03
April 3, 362, 958 8.01
May 3, 553, 438 8.47
June 3, 625, 576 8.64
July 3, 848, 744 9.17
August 3, 842, 034 9.15
September 3, 617, 796 8.62
October 3, 674, 918 8.76
November 3, 386, 662 8.07
December 3, 476, 720 8.28
Total 41, 969, 838 100

From both figures (Figure 2.2 and Table 2.1) a strong demand is observed during June, July
and August. This demand is followed by a small reduction in demand in the months September
and October. The end of the year then shows a peak in demand due to the Christmas/New Year
holiday. The least popular period then follows in February. This trend is roughly similar every year,
although the presented data is limited to the year of 2019 as this is the year under investigation in
this thesis.

2.3.4. Selection of representative week
In order to gain an understanding of the variation of commercial flight movements throughout the
year, Figure 2.3 is presented. Please note that only the weeks which were completely in 2019 are
presented. In other words, none of the weeks contain a day on which New Year’s Eve took place
which is why the total number of occurrences sums up to 51 weeks.

In addition to the data provided in Figure 2.3 the mean and median of all data is presented in
Table 2.2. Based on an analysis of all commercial flights in 2019 per week and on the formulated
requirements, week 21 of 2019 is chosen (Monday May 20 - Sunday May 26) as the only repre-
sentative week for computational purposes. The number of commercial flights in this week is also
presented in the table.

Table 2.2: Statistics on commercial flight weeks in 2019.

Parameter Value
Mean 806, 631
Median 800, 627
Number of commercial flights chosen week 808, 637
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Figure 2.3: Histogram of number of commercial flights in a full week in 2019.

2.4. Incompleteness of database
Visually checking data in the database, it has been found that some information, including abso-
lutely required information such as aircraft type, departure airport and arrival airport, are missing.
A methodology is set up to complement the database. First, a database program is selected to be
able to analyze all flights quickly. The selected program is sqlite33 since it functions well within the
Python environment. Since Python will also be used for the other models this is of predominant
importance. Three elements are required for the analysis of a single flight: departure airport, ar-
rival airport and the aircraft type. Complementation of the database is thus focused on obtaining
these three elements for every single flight. A flowchart of the process is presented in Figure 2.4
after which a thorough explanation of it is provided.

The first step is to convert all files to the required format (.db file). This file is duplicated and
renamed. This duplicated file will function as the file which contains all data for the representative
week. This is hence also the first step, to delete all lines which are not within the bounds of the
representative week.
The next step is to delete all lines where no required data (including flight number) is available.
In other instances, the flight number will be used to complement data from similar flights in the
database but if this is unavailable this is not possible.
Next, the flights where the origin and the destination are the same airport are deleted. For these
flights no estimation can be made about the length of the flight. A visual check also shows that
these flights are mainly general aviation flights for which the emission is not considered substantial
(as mentioned previously in the report of Eurocontrol).
Complementation of the representative week database is then initiated. Based on the three re-
quired elements various scenarios for the data of a single flight are available:

• All data is complete: no action is taken and next flight is selected.
• No required data is available: based on the flight number the first flight where all required
data is available is selected and complemented to the required line.

• Departure and destination airports not available: based on the flight number and the
aircraft type the first instance of the combination is used to complement the original line.

• Aircraft type not available: the flight number is used to find a similar flight from which the
3https://docs.python.org/3/library/sqlite3.html (accessed 11-11-2022)

https://docs.python.org/3/library/sqlite3.html
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aircraft type is deduced.
• Arrival airport not available: the flight number and departure airport are used to find the
arrival airport. The reason the departure airport is also used is that triangle flights often use
the same flight number for the three stretches of flight [20].

• Departure airport not available: the flight number and arrival airport are used to find the
departure airport. The line of reasoning is the same as mentioned in the previous point.

Note that a combination of the above (such as type of aircraft and departure airport missing)
can also occur. This is also taken into account by the program and both are complemented if
possible. If no similar flight is found, the data will remain the same and will not be altered.
The last step is, again, to delete the lines where the origin and destination are the same.

Visually checking the database it can be seen that on the ’borders’, i.e. the switch from one day
to the other, flightradar24 causes some confusion. There is no ’hard’ border meaning that flights
from the previous day and the current day are mixed around for thousands of lines. To reduce the
probability that lines are missed, the representative week obtained before deleting flights starts
roughly on May 13 and lasts until roughly June 2. This makes a total of approximately three
million flights between these two dates. Statistics about altering of the database are presented in
Table 2.3.

Table 2.3: Statistics on altering of the database.

Parameter Value
Number of flights deleted because not correct date 2, 004, 667
Number of flights deleted because not enough data 908
Number of flights deleted because departure airport is destination airport 38, 466
No complementation: all data complete 781, 597
Complementation required: all data missing 443
Complementation required: departure and arrival airport missing 22, 082
Complementation required: aircraft type missing 3, 511
Complementation required: departure airport missing 21, 305
Complementation required: arrival airport missing 50, 441
Complementation required: no other flight found 99, 648
Number of lines deleted because departure airport is destination airport 40, 119

Please note that this is the analysis performed purely for complementing of the database. At
a later stage a similar table is provided which will present other flights that need to be left out
because the performance of the aircraft type is unknown, the airports are not recognized or similar
reasons.
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Figure 2.4: Flow chart of complementation of the database.



3
Performance model

The performance model uses inputs from the information model to calculate aircraft performance
and fuel burn at each way point throughout the flight trajectory. More information, compared to
all inputs from the information model, for this model is required such as the performance during
the landing and take-off (LTO) cycles and a database with the locations of airports. Before any
additional information is given it is important to mention that the point performance of an aircraft
is dependent on three elements: aircraft weight, altitude and airspeed [21].

3.1. Additional inputs
Fourmore inputs are required in addition to the data from the informationmodel: point performance
of variety of aircraft, performance during LTO cycles, geographical information of airports and
estimation of aircraft operational parameters. Based on these parameters the trip fuel of a certain
trajectory can be estimated and the output from the performance model can be utilized in the
emission model.

3.1.1. Point performance
To estimate the fuel consumption of a total flight the complete trajectory is divided in several sec-
tions: ground departure, take-off and climbout, climb, cruise, descent, approach and ground ar-
rival. At every section the point performance of the aircraft is estimated based on aircraft mass,
airspeed and altitude, by using an aircraft performance database. Various aircraft performance
databases are available but the most often used database is the Base of Aircraft Data (BADA) [7].
This database is created by Eurocontrol for the purpose of trip fuel estimation and uses .txt files
for aircraft (performance) data. Another well-known tool to estimate aircraft fuel consumption for
an entire trajectory is PianoX1, this tool is also able to provide the fuel flow at various points. It is
a tool which is often used for validation purposes and for performance estimation. Unfortunately,
it is not widely documented what the computational methods are behind the program but its func-
tioning is barely questioned. The last tool that has been found is openAP [22], which is largely
based on empirical/statistical relationships and has been developed by J. Sun [22] (a researcher
at TU Delft). Substantial efforts have been placed in verifying and validating the openAP model
specifically for the Airbus A320 [22]. This program has not been used by a lot of researchers but
it functions very well within the Python environment. The data within this database is also limited
to the fuel flow and emission data. This means that typical air speeds at certain altitudes are not
mentioned whereas these are mentioned in the BADA database. This makes trajectory estimation,
based on BADA, easier.

Unfortunately PianoX does not allow users to incorporate the database into other external pro-
grams, such as matlab, Python or similar programs. Nevertheless a comparison has been made
between the three databases with two random datapoints per aircraft (for ten different aircraft)
varying altitude, airspeed and mass. This comparison is presented in Figure 3.1 and Figure 3.2

1https://www.lissys.uk/PianoX.html (accessed 15-11-2022)
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where BADA is taken as a baseline performance program. Note that the blue line presents a y = x
relationship.

Figure 3.1: Point performance comparison between BADA
and openAP.

Figure 3.2: Point performance comparison between BADA
and PianoX.

From the above figures one is able to conclude that the fuel flow under similar conditions is,
on average, underestimated by BADA compared to openAP or PianoX. This is also illustrated in
Table 3.1 where the average increase in fuel flow is presented for the various performance models.

Table 3.1: Average increase in fuel flow with baseline BADA.

Parameter Fuel flow increase compared to BADA [%]
openAP increase 14.8
PianoX increase 8.8

The numbers presented in the above table are considered a substantial deviation (> 5%). Re-
ferring to the diagrams one can see that there is one outlier in Figure 3.2. Even if this outlier is
discarded, the increase in fuel flow of PianoX with respect to BADA is still 6.3%.

The decision is made to use BADA as the performance model database. The line of reasoning
is that it is often updated, many similar researches use the database and BADA offers more than
just the performance database (more elaboration on this in a later section).

3.1.2. Flight distance increase compared to great circle distance
The information model simply provides the departure and arrival airport, hence no other trajectory
information is known. Furthermore, it is general knowledge that aircraft often do not fly this great
circle distance [14] (i.e. the shortest distance between two points). It is therefore interesting to
see how much farther planes fly compared to their great circle distance.

Access has been provided to various flight plannings of a well-known airline to obtain the trip
fuel, flown air distance and the payload mass. This air distance has been compared to the great
circle distance of the airport combinations from the flight planning database for a variety of flights.
Accordingly, the so-called en-route multiplier was derived: the fractional increase in travelled dis-
tance between two points due to not flying over the great circle distance. This analysis has been
performed for many of the carrier’s aircraft: Embraer E190, Boeing 737-800, Airbus A330-300,
Boeing 777-300ER, Boeing 787-9 and Boeing 787-10. Furthermore, four flights per aircraft type
are provided. The en-route multiplier for all considered fights is presented in Figure 3.3. This
figure clearly presents the distribution of en-route multipliers, clearly all flight distances are close
to the great circle distance.
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Figure 3.3: En-route multiplier for all considered routes and aircraft.

To quantify the real effect of the en-route multiplier it makes more sense to distinguish between
short haul (in this research considered below 1000 nm) and long haul aircraft. The underlying
reason is that the LTO cycles make up a larger fraction of the trajectory for short haul flights com-
pared to long haul flights. Logically these cycles add distance to the trajectory which fractionally
increases short haul flights more than long haul flights. The histograms which distinguish between
short haul and long haul are presented in Figure 3.4 and Figure 3.5.

Figure 3.4: En-route multiplier for short haul flights. Figure 3.5: En-route multiplier for long haul flights.

In the above figures clear distributions can be seen such as a distribution close to a normal
distribution for short haul flights. Furthermore, the explanation concerning the LTO cycle playing
a dominant role for short haul flights is proven numerically as the en-route multipliers for long haul
aircraft are lower than for short haul aircraft. Note that the distinguishment has been specifically
made for the length of a trajectory rather than for an aircraft type as long haul aircraft are occa-
sionally used on short haul stretches. This also occurred in the dataset as the Airbus A330-300
was used on a short haul stretch twice: Dammam - Muscat and Kigali - Entebbe. The averages
of the data are also presented in Table 3.2.

The low standard deviation of the long haul flights is clearly in line with the data presented in
Figure 3.5. The higher standard deviation for short haul flights is a logical result since the impor-
tance of the LTO trajectory increases as the trajectory length decreases. This also means that very
small distance short haul flights have a very large effect on the standard deviation of the en-route
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Table 3.2: Average increase in trajectory length compared to great circle distance.

Type of flight Mean en-route multiplier [-] Associated σ [-]
Short haul 1.130 0.070
Long haul 1.039 0.031
Overall 1.08 0.068

multiplier.

3.1.3. Airport database
Another step to be made in the performance model is the conversion from airport IATA/ICAO code
to the geographical location on Earth in terms of latitude, longitude and elevation. A database has
been found which has previously been used for another aviation emission inventory by Simone et
al. [23]. The mentioned emissions inventory has been performed in 2013 so it is assumed that
no significant changes have been made concerning locations of airports or no major airports have
been added. This will be verified in a later section. By testing, it has been found that the database
is extensive (as about 95% of the flights in the database can be analyzed based on the airport
pairs), but for reference’s sake all airports are presented in Figure 3.6.

Figure 3.6: All considered airports in the corresponding database.

Smaller airports in the Pacific, the Atlantic, Alaska and northern Canada are also considered.
The total number of considered airports is 2, 656. When the emission inventory, from which this
database is obtained, was written, the airports in this database formed 99% of all flights in the
Official Airline Guide (OAG). It is expected that no significant shift to other airports has occurred
in recent years.

3.1.4. Payload mass and empty mass
One significant advantage of BADA is the fact that the data is not limited to point performance data,
but masses, types of engines and other data are also provided. For the purpose of this thesis, the
mass of an aircraftmtot is divided in three categories: empty weightOEM , payload massmpayload

and fuel weight mfuel, i.e.:
mtot = OEM +mpayload +mfuel (3.1)

The fuel mass varies based on the variation of the total weight throughout the flight. An accu-
rate estimation hence needs to be made of the empty mass of an aircraft and the payload mass
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of an aircraft. Please note that the empty mass of an aircraft is a standard value which can easily
be found online. Unfortunately, this value is not specified in the BADA database and hence, for
automation purposes, needs to be deduced from a value which is provided in the database. Var-
ious values have been compared but the best fit is found for a fraction of the maximum take-off
mass, i.e.:

OEM = fempty ·MTOM (3.2)

where fempty is found to be fempty = 0.500 based on an analysis of nine aircraft types (ranging
from small single aisles to very large twin aisles) with a standard deviation σ = 0.025.

Estimation of the payload mass of a specific flight is more difficult as this can fluctuate depend-
ing on the occupancy and the popularity of certain routes. The maximum payload mass of an
aircraft type is a given in BADA and will be used in a similar manner as the operating empty mass
was computed. The validation data from a well-known carrier is used to create a histogram of
obtained payload multipliers. This histogram is presented in Figure 3.7.

Figure 3.7: Payload multiplier for all considered routes and aircraft.

On average the payload factor, the fractional payload compared to the maximum allowable
payload, is fpayload = 0.69. A distinguishment is made, again, between the short haul and the long
haul flights to see what the results are. This is presented in Figure 3.8 and Figure 3.9.

Figure 3.8: Payload multiplier for short haul flights. Figure 3.9: Payload multiplier for long haul flights.

The averages are not significantly different in these figures, as also presented in Table 3.3.
An important remark should be made as the two previously mentioned flights (the Airbus A330-
300 flights) are very short. These two flights have a payload fraction of fpayload = 0.307 and
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fpayload = 0.655 respectively which is considered low. Since twin aisle aircraft are barely used on
these kinds of routes, these two flights are over-represented for their effects in this small database.
The result is presented at the bottom of the table, and it is observed that the payload multiplier
increases significantly while the associated standard deviation is reduced significantly. The total
result is presented in Table 3.3.

Table 3.3: Average payload weight as a fraction of the maximum allowable payload.

Type of flight Mean payload multiplier [-] Associated σ [-]
Short haul 0.689 0.148
Long haul 0.690 0.104
Overall 0.690 0.122
Short haul excluding A330-300 flights 0.741 0.065

There is still uncertainty associated to the empty weight of an aircraft for several reasons. Some
aircraft models have freighter and passenger versions. The passenger versions have a signifi-
cantly higher empty weight due to fittings such as seats, galleys and lavatories. For the payload
weight there is also associated uncertainty. Researchers in a previous project (Aero2k [7]) have
conducted a sensitivity analysis where the payload factor of 60.9% was varied with ±10%. This
showed a sensitivity of less than 3% in terms of fuel burn [24]. The assumptions for nominal
conditions are therefore considered valid.

3.1.5. ICAO emissions database
In addition to the BADA performance software, used above an altitude of 3000 ft, the LTO cycles
need to be taken into account. For the purpose of this, ICAO [25] has produced an overview for
a variety of data, such as fuel flow rate and emission indices, specified per engine for four thrust
settings at mean sea-level. Furthermore, ICAO also specifies the time an aircraft spends within
one of these flight phases. The thrust settings and their associated flight phase and time are
presented in Table 3.4.

Table 3.4: Thrust setting and associated flight phase and flight time.

Flight phase Thrust setting [%] Time [s]
Idle 7 1560
Approach 30 240
Climbout 85 132
Take-off 100 42

Idle time can be divided between taxi-out and taxi-in time where ICAO specifies a taxi-out time
of 1140 s and a taxi-in time of 420 s.

The database contains many jet engines with varying specifications. This also means that
many models of a single engine family are contained in the database. For the purpose of this the-
sis, the first found engine with a corresponding name to the aircraft engine model is selected for
its emissions and fuel flow parameters. If no match is found, the program will continue searching,
reducing the length of the engine name by 1 every iteration. In practical terms, for a Boeing 787-
10, this means that BADA specifies the GEnx-1B76 engine. The program finds GEnx-1B76/P2 as
the best match. Similarly, for the Airbus A321 neo, with engine model Leap-1A32, the selected
engine model from the ICAO databank is the LEAP-1A35A/33/33B2/32/30 as the match is found
when the reduction in engine name length becomes LEAP-1A3.

The emission and fuel flows in the ICAO database are all reference information at sea level.
Therefore, only for the LTO sections of flight, the assumption is made that the airports are located
at sea level. This still means that the climb segment starts 3000 ft above sea level, as will be
discussed later. This assumption is valid as LTO fuel consumption is less than 10% of total fuel
consumption [7]. Furthermore, the 200 busiest airports, according to Aero2k, had an average
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elevation of 654 ft [7] (weighted for the number of departures) and were responsible for about
65% of departures in the mentioned database.

3.2. Functioning of the performance model
This section aims to present the basic flow of the performance model and how all elements are
integrated.

3.2.1. Content of BADA performance table
The BADA performance database provides a variety of data for every phase of the flight. The
following is true and provided for a variety of altitudes:

• For climb, the airspeed is specified and the rate of climb ROC for a variety of aircraft masses
is specified. Furthermore, the fuel flow is specified for the nominal aircraft mass.

• For cruise, the airspeed is specified and the fuel flow for three aircraft masses is specified:
low, nominal and high.

• For descent, the airspeed is mentioned, the rate of descent (ROD) is specified and the fuel
flow is provided, all for nominal aircraft mass.

An example of a performance table is presented in Figure 3.10.

Figure 3.10: Example of a performance table file (PTF) for the Fokker F-28 aircraft (figure obtained from Eurocontrol
[26]).
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Themodel relies on aircraft dynamic modelling equations which, fundamentally, are focused on
elements in the Total Energy Method, also known as the TEM. The TEM relates the time derivative
of the work done by the aircraft’s forces to the time derivative of the aircraft’s kinetic and potential
energy as presented in Equation 3.3:

(Th−D)TAS = mg0
dh

dt
+mTAS

d(TAS)

dt
(3.3)

where Th represents the thrust in [N ], D represents the drag in [N ], g0 is the gravitational
acceleration in [m/s2] and TAS the true airspeed in [m/s]. Based on the TEM, an equation is
formulated to compute the rate of climb/descent, ROCD, as presented in Equation 3.4:

ROCD =
(Th−D)VTAS

mg0

[
1 +

(
VTAS

g0

)(
dVTAS

dh

)]−1

(3.4)

where the term in square brackets is often referred to as the energy share factor (ESF) as it
relates the power of the aircraft during ascent/descent to its acceleration. For more information
related to the BADA model and its underlying physical principles and aerodynamics please refer
to a report by A. Nuic et al. [27].

Relating to the performance table files, some of the data is only provided for nominal aircraft
mass, this means that no interpolation can be made depending on the aircraft mass for these
flight phases. Some aircraft are not directly supported by the BADA software. For most of these
instances a list of representative aircraft are formulated to allow users to still perform aircraft per-
formance investigations for these aircraft.

Interestingly enough the airspeed is provided for all flight levels, instead of it being a variable.
This makes estimation of the trajectory easier as the air speed becomes an output rather than an
input. In real life, airlines determine the air speed on several parameters, most important of which
is the cost index [28] where the time related cost is compared to the fuel cost. This means that
for certain routes a lower/higher air speed is desirable in terms of cost. When aircraft fly at the
air speed which minimizes fuel burn per unit distance (also known as the maximum specific air
range (SAR)) the fuel consumption rate is relatively insensitive to small perturbations in air speed
[7]. The assumption of using the associated air speed referenced in BADA is therefore considered
valid.

3.2.2. Performance model flow
Broadly speaking, the performance model’s flow is as follows:

Initial take-off mass (TOM) estimation
1. From the departure and arrival airport, the great circle distance is found which is corrected

using the en-route multiplier.
2. From the aircraft type, its performance file (the performance table), its OEM , the engine

type and its payload mass are retrieved.
3. From the engine type, the fuel flows for the associated thrust settings are found.
4. Estimation of the cruise altitude is done based on the maximum cruise altitude reduced with

a constant altitude as aircraft do not fly their maximum cruise altitude.
5. The corresponding cruise fuel flow to the associated cruise altitude is found.
6. Using the airspeed from BADA the trip time is estimated from which easily the trip fuel is

estimated.
7. The reserve fuel is calculated as 5% of the trip fuel.
8. The lowest fuel flow from the performance table (i.e. minimum mass and lowest cruise alti-

tude) is found for diversion and holding: for flights longer than 180minutes 200 nm diversion
and 30min holding is considered, for flights shorter 100 nm diversion and 45min holding as
stated per regulations.

9. The takeoff mass is the summation of the empty mass, the payload mass, the trip fuel, the
reserve fuel, the hold fuel and the diversion fuel. This can never exceed the maximum take-
off mass (MTOM ).



3.2. Functioning of the performance model 18

Departure LTO cycle
10. The departure fuel, part idle, takeoff and climbout, is estimated using ICAO data.

Climb phase
11. The climb phase is divided in several segments. The climb phase is initiated when climbout

is completed (3000 ft above departure airport elevation). The rate of climb (ROC), airspeed
(TAS) and fuel flow are calculated using the BADA database.

12. The ROC at the beginning of a segment is used to determine the time spent in this segment.
Furthermore, the fuel flow at the beginning of a segment is used to estimate the fuel mass
required to overcome this segment.

13. A correction is applied to account for acceleration during climb as the BADA data is point
performance data. The fuel due to acceleration of a certain segment is calculated based
on the airspeed at the beginning and the end of the segment and the aircraft’s mass at the
beginning of the segment:

mfuel,acceleration,i =
0.5 ·mi ·

(
TAS2

i+1 − TAS2
i

)
LHVfuel · ηacceleration

(3.5)

where mi and TASi denote the mass in [kg] and airspeed in [m/s] at the beginning of the
segment, TASi+1 represents the airspeed at the end of the segment, LHVfuel is the lower
heating value of the fuel in [MJ/kg] and ηacceleration is the efficiency of accelerating the
aircraft (taking into account, amongst others, efficiency of propulsion). Note that the equation
resembles the change in kinetic energy in terms of fuel mass.

14. At the end of every climb segment the mass of the aircraft, the altitude and the airspeed are
updated.

15. Climb ends when the maximum altitude is reached or the ROC does not exceed 500 fpm to
avoid extremely long segments of climb. This value has been determined based on visually
checking various performance files to find a logical minimum rate of climb.

Cruise distance
16. The cruise distance is calculated based on the corrected great circle distance, the horizontal

distance travelled in climb and an estimation of the descent distance [4]:

ddescent =
3 · (hend,cruise − (harrivalairport + 3000))

1000
(3.6)

This descent distance is simply a linear function taking into account a standard descent an-
gle.

Cruise phase
17. The cruise phase is divided in several segments depending on the length of the flight. At the

beginning of every segment it is first checked whether the plane can climb (if the ROC > 500
fpm). If climb is possible, the steps from the climb phase are used until the rate of climb is
deemed insufficient (ROC < 500 fpm).

18. The time of a segment is calculated based on the airspeed and the length of a segment.
19. If climb is not possible the fuel flow is determined at the beginning of the section and based

on this fuel flow the fuel mass of the entire section is computed.
20. At the end of every cruise segment, the mass of the aircraft, the altitude and the airspeed

are updated.

Descent phase
21. The descent phase finishes at 3000 ft above elevation of the arrival airport (as then the

approach phase starts).
22. Descent is divided in several segments. The rate of descent (ROD) at the beginning of every

segment is used to calculate the time of every segment.
23. Based on the fuel flow at the beginning of every section the fuel required for that section is

calculated.
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24. At the end of every descent segment the mass of the aircraft, the altitude and the airspeed
are updated.

Arrival LTO cycle
25. The approach fuel, and taxi-in fuel are calculated based on ICAO data.

Graphically, although in simplified format, the procedure described above is presented in Fig-
ure 3.11.

Figure 3.11: Flowchart of the functioning of the performance model.



4
Emission model

After the performance of the aircraft has been estimated, the next step is to compute the emis-
sions for every flight phase. First the importance of these emissions is discussed, after which the
methodology to compute the emissions is described.

4.1. Importance
Before estimating the quantity of emissions it is fundamental to understand their importance. In this
research seven emission species are considered: carbon dioxide, carbon monoxide, unburned
hydrocarbons, nitrogen oxides, sulphur oxides, water vapor and black carbon. This summarizes
all of the emission species discussed in the reference literature (work performed by Simone et
al. [4], C. J. Eyers et al. [7], S.L. Baughcum et al. [8], W. Fan et al. [9], D.K. Wasiuk et al.
[10], J. Li et al. [11] and B. Owen et al. [12]). For the purpose of understanding the impact
of various emission species, it is also important to understand how global warming takes place.
Global warming occurs because there is a positive difference between the quantity of incoming
and outgoing radiation, called radiative forcing (RF ) [29]. The process of global warming, and its
effects, is presented in Figure 4.1.

Figure 4.1: Causes and effects of global warming (figure inspired by Impact of Uncertainties on the Climate-Optimized
Aircraft Design [29]).

Fundamentally, the process of warming happens as follows. Burning fuel emits various emis-

20
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sion species. Due to the change in atmospheric composition, more outgoing longwave radiation
is captured, i.e. less radiation is scattered back into space. This creates a net positive radiative
forcing. According to the Stefan-Boltzman law, governing the radiation caused by a body of a
certain temperature, global warming occurs which consequentially affects the climate [30]. This
warming effect also impacts biodiversity and entire ecosystems [31].

4.1.1. Emission effects
Emission species have effects both on the climate and on air quality. To understand the impact of
insufficient air quality, according to the World Health Organization approximately 600,000 children
under the age of five die every year because of air pollution [32].

It is well-known that carbon dioxide plays an important role in the greenhouse effect [33], which
is responsible for the current climate change crisis. Carbon dioxide concentrations have increased
from about 300 ppm to 410 ppm [33] due to human influence. Mankind has never been subject to
these large concentrations of carbon dioxide during its evolution. Researchers therefore suggest
that toxicity effects [34] [35] could come into play with the rising levels of carbon dioxide [36] [37].

The effects of carbon monoxide emissions are also well-known. In terms of climate effects,
carbon monoxide is responsible for the phenomenon acid rain [38] which, amongst other effects,
decreases nutrients for plants. It therefore has an important influence on the functioning of ecosys-
tems. Locally, depending on the concentration, carbon monoxide causes carbon monoxide poi-
soning which reduces the quantity of oxygen reaching organs and tissues [39].

Unburned hydrocarbons consist mainly of aldehydes and aromatic hydrocarbon (compounds)
[40]. Depending on the concentration, these emission species can restrict photosynthesis in plants.
Furthermore, if exposed for a longer period of time, mammals can get cancer from these species
[40]. Lastly, if chemical reactions take place in the atmosphere nitrous oxides can be produced
which can affect human organs.

Nitrogen oxides are byproducts of combustion taking place at high temperatures [41]. Its effect
on the environment are ozone layer depletion (depending on the emission altitude) and the species
cause acid rain due to chemical processes taking place in the atmosphere [41]. Furthermore, nitro-
gen oxides trigger plant growth of some plant species, therefore eradicating other species which
might be of great value to the biodiversity [42]. Lastly, in terms of human health, nitrogen oxides
can lengthen viral infections and can cause adverse effects on human lungs [42].

Sulfur oxides have both environmental and health effects. Environmentally, sulfur oxides can
cause acid rain which has a direct effect on ecosystems by lowering the pH. This can result in
mass fish mortality due to large shifts in pH [43]. Health effects associated with sulfur oxides are
respiratory diseases and irritation of nose and throat [43]. Repeated exposure to very high levels
could lead to premature death.

Water vapor is a known greenhouse gas [44], although of lower importance than carbon diox-
ide. Furthermore, water vapor tends to form contrails (depending on the particle emission and the
Schmidt-Appleman criterion [45]), which both have a negative and positive effect on the green-
house effect: due to an increase in albedo area, more light is reflected back into space but on
the other hand more heat is trapped due to the mentioned greenhouse effect [44]. Health is not
significantly impacted by an increase in water vapor emissions.

Black carbon emissions are caused by combustion processes, both natural and anthropogenic.
After emission, black carbon emissions can travel large distances and finally are washed away by
precipitation [46]. Black carbon has both a warming and a cooling effect: due to the formation of
clouds the albedo effect decreases the atmospheric temperature while the absorption of radiation
leads to atmospheric warming [46]. Black carbon is so small it is easily inhaled. Black carbon is
associated with asthma, low birth rates, heart attacks and lung cancer [47].



4.1. Importance 22

4.1.2. Effect of altitude
An element which is significantly different for aviation (compared to ground bound methods of
transportation) is the influence of altitude on the climate impact of emission species. This is illus-
trated in Figure 4.2 which presents the forcing factor, si(h), of various atmospheric species formed
by chemical processes due to emission of nitrogen oxide and the aviation induced contrails. In this
diagram O3s represents the short lived ozone, O3l represents the long lived ozone while AIC is an
abbreviation for the aircraft-induced cloudiness [29]. The forcing factor ”accounts for the variation
in RF per unit emission at a particular altitude, normalized by the fleet-wide average RF ” [48].
Note that the AIC is taken into account with the red line.

Figure 4.2: Effect of altitude on forcing factor for various species (figure obtained from Impact of Uncertainties on the
Climate-Optimized Aircraft Design [29]).

In addition, Figure 4.3 presents the increase/decrease in radiative forcing compared to a refer-
ence case. REACT4C is a project where the baseline emissions and climate impact are calculated
and a shift in flight level (both lower and higher flight level) is used to estimate the change in climate
impact due to a change in altitude.

Figure 4.3: Effect of radiative forcing [mW/m2] due to aviation, on the left the absolute case and on the right a
comparison is made with baseline being the regular flight altitude (figure obtained from Mitigation of Non-CO2 Aviation’s

Climate Impact by Changing Cruise Altitudes [3]).

These two figures amplify the fact that a thorough understanding is required on the altitude at
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which emission occurs. For climate scientists to make accurate predictions, it is therefore essential
that the output of the emission model is a three-dimensional grid of all emission taking place.

4.2. Methodology of emission calculation
To estimate aviation emissions the concept of emission index (EI) is very suitable. An emission
index is the quantity of emission per unit of fuel burned. Various methodologies are available
for emission index estimation. The most common applied methodology is the Boeing Fuel Flow
Method 2 (BFFM2) [49] for nitrogen oxide emission calculation. Another method for nitrogen ox-
ide emission calculations, which is applied more often on an individual flight basis, is the p3-T3
method [50]. A large advantage of the BFFM2 over the p3-T3 method is the fact that the BFFM2
does not utilize proprietary engine information. The information used in the BFFM2 and for p3-T3
methodology is provided by ICAO in their Aircraft Engine Emissions Databank, with the exception
that proprietary engine information is required in addition to the ICAO data for the p3-T3 method.
The decision is therefore made to use the BFFM2 to compute emission indices. Note that the un-
certainty of this model is addressed later. Lastly, it is important to mention that the emission index
of some species is independent of the flight phase (such as sulfur oxides or water vapor). After
obtaining the emission index, the emissions are simply computed using Equation 4.1, discretized
over the entire flight:

mx =

∫ tarrival

tdepart

ṁfuel(t)EI(x, t)dt =

tarrival∑
tdepart

ṁfuel(t)EI(x, t)∆t (4.1)

where x denoted a certain emission species and t denotes the time of a certain flight phase.

4.2.1. Constant emission indices
The chemical formula of kerosene is C12H23 [51] (note that impurities in the fuel are discussed
later). If this fuel is perfectly combusted this gives the following chemical reaction:

4C12H23 + 71O2 −→ 48CO2 + 46H2O (4.2)

From the chemical equilibrium (and the molar masses) the emission index of carbon dioxide
can be found (for perfect combustion):

EI(CO2) =
mCO2

mC12H23

=
48 · 44.0
4 · 167.3

= 3.156kg/kg (4.3)

Due to the fact that kerosene contains some very minor impurities, the emission index is regu-
larly taken as EI(CO2) = 3.155 kg/kg [9]. For water vapor a similar approach is conducted:

EI(H2O) =
mH2O

mC12H23

=
46 · 18.0
4 · 167.3

= 1.237kg/kg (4.4)

This is identical to the normally used emission index of water vapor, EI(H2O) = 1.237 kg/kg
[8].

For sulfur oxides the emission index is dependent on the quality of the fuel in terms of sulfur
content. Regularly the emission index is taken as EI(SOx) = 0.8 g/kg [11] [9] [8].

4.2.2. Non-constant emission indices
Other emission indices change as a function of the thrust setting and the ambient conditions. The
selected method for this is the Boeing Fuel Flow Method 2 for all regular emissions but for black
carbon theDLR fuel flowmethod [52] is selected as the BFFM2 does not providemeans to compute
these emission indices. Underneath, both methodologies are outlined.

Boeing Fuel Flow Method 2
This method is applied to find the unburned hydrocarbon emission, the carbon monoxide emis-
sion and the nitrogen oxides emission. Please note that all equations describing the BFFM2 in
this subsubsection are obtained from research by W. Fan et al. [9], F. Jelinek et al. [13] and M.
Schaefer et al. [53]. The basic functioning of the BFFM2 is presented in Figure 4.4.
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Figure 4.4: Functioning of the Boeing Fuel Flow Method 2 (figure obtained from Analysis of Aircraft Emissions Based on
Flight Trajectory [54]).

First a correction is applied to the fuel flows from the ICAO database to incorporate the effect
of airframe integration as can be seen in Table 4.1.

Table 4.1: Thrust settings and associated airframe integration correction coefficients [53].

Flight phase Thrust setting [%] Correction coefficient [-]
Idle 7 1.1
Approach 30 1.02
Climbout 85 1.013
Take-off 100 1.01

The fuel flow at the considered altitude needs to be converted to sea-level conditions first. This
is presented in Equation 4.5, 4.6 and 4.7:

Wf =
Wff

θ3.8amb exp (0.2M2)
δamb (4.5)

θamb =
(Tamb + 273.15)

288.15
(4.6)

δamb =
Pamb

101325
(4.7)

In the above equations Wf is the fuel flow (in kg/s) at the considered altitude, Wff is the fuel
flow (in kg/s) at sea level, Tamb is the ambient temperature (in ◦C) at the considered altitude, Pamb

is the ambient pressure (in Pa) at the altitude and finally M represents the flown Mach number.

Based on the fuel flow per engine predicted by the BADA software the reference emission in-
dex can be obtained by means of interpolation. Regular interpolation is used for nitrogen oxides
while bilinear interpolation is used for unburned hydrocarbons and carbon monoxide (presented
in Figure 4.5).

The interpolation yields a reference emission index at sea-level which needs to be converted
back to the considered altitude. The required equations for unburned hydrocarbons and carbon
monoxide are presented in Equation 4.8 and Equation 4.9:

EI(HC) = REI(HC)
θ3.3amb

δ1.02amb

(4.8)

EI(CO) = REI(CO)
θ3.3amb

δ1.02amb

(4.9)
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Figure 4.5: Regular interpolation of emission index (left) and bilinear fit (right) (figure obtained from Overview on fuel flow
correlation methods for the calculation of NOx, CO and HC emissions and their implementation into aircraft performance

software [53]).

Carbon monoxide emission only occurs in case of incomplete combustion which has a direct
effect on the emission of carbon dioxide (as the carbon atoms all come from the fuel). Therefore
a correction is made on the emission index of carbon dioxide based on the difference of molar
masses between these two species [7]:

EI(CO2) = EI(CO2,ideal)−
44

28
· EI(CO) (4.10)

with EI(CO2,ideal) = 3.155 kg/kg as mentioned previously.

For nitrogen oxides the process is more difficult as presented in Equation 4.11:

EI(NOx) = REI(NOx) exp (H)

(
θ3.3amb

δ3.02amb

)−0.5

(4.11)

where the value of H is computed using:

H = −19× (ω − 0.0063) (4.12)

where parameter ω, the specific humidity, is computed as follows:

ω =
0.62198(ϕ)Pv

Pamb − (ϕ)Pv
(4.13)

Note that ϕ represents the relative humidity at cruise altitude (taken as a constant in the ICAO
databank: ϕ = 0.6 [50]). The value of Pv, the saturated vapor pressure, is calculated using
Equation 4.14:

Pv = (0.014504)× 10β (4.14)

where β is calculated using Equation 4.15:

β = 7.90298

(
1− 273.16

Tamb + 273.16

)
+ 3.00571 + (5.02808) log

(
273.16

Tamb + 273.16

)
+
(
1.3816× 10−7

) [
1− 10

11.344
(
1−Tamb+273.16

273.16

)]
+
(
8.1328× 10−3

) [
10

3.49149
(
1− 373.16

Tamb+273.16

)
−1
]

(4.15)

Some special cases and exceptions can occur, such as a fuel flow below idle. For these spe-
cial cases please consult research by M. Schaefer et al. [53]. In addition, it is mentioned that the
BFFM2 is not applicable for computation of lean burn technology engines as it often overestimates
the emission index ofNOx [55]. Themethod is more suitable for previous generation engines such
as RQL combustors [55].
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Unfortunately, no other suitable methods are found which utilize non-proprietary engine infor-
mation. Therefore a comparison is made between the GEnx engine’s predicted NOx emission
by p3-T3 methods (Figure 4.6) and the predicted BFFM2 emission index under the same circum-
stances (Figure 4.7). This engine is typically used on the Boeing 787 series, which is the largest
aircraft series at this moment with this kind of lean burn technology engines [56].

Figure 4.6: Emission index of NOx estimated by p3-T3
methodology for GEnx-1B engine (figure obtained from
Development of a Forecast Model for Global Air Traffic

Emissions [57]).

Figure 4.7: Emission index of NOx estimated by BFFM2
methodology for GEnx-1B engine.

The red line in Figure 4.7 is simply the interpolated values from the ICAO databank. These are
measured values and are therefore validation data. For thrust settings above 60% the estimated
emission index of nitrogen oxides obtained using the p3-T3 method is almost double that com-
pared to the BFFM2 for sea level conditions, for cruise conditions the match is significantly better
but a minor overestimation for p3-T3 is still visible. This means that the p3-T3 method, in this
instance, overestimates the emission of nitrogen oxides. This is contrary to the expected result
as an overestimation of emission index of a traditional method was expected for these new tech-
nology combustors. Performing accuracy assessment of aviation emission estimation could be a
large project on its own and therefore, even though this can be considered anecdotal evidence, it
is decided that the BFFM2 can also be used for the lean burn combustor technology engines.

One can easily observe that the two figures do not look similar. This is simply caused by
the prescribed method to be carried out in the BFFM2 where linear interpolation occurs for the
emission index of NOx. Furthermore, only four data points are provided in the ICAO database
whereasmore points would have been beneficial for the accuracy of estimation. Especially the gap
between the 30% and 85% thrust setting is considered very large. The drop in emission index at
±30% thrust in Figure 4.6 is modelled more accurately when the interpolation method is changed
from linear to quadratic as presented in Figure 4.8. This drop, however, is shifted to the right too
much which is caused by the emission index point at 30% thrust setting. As the BFFM2 clearly
defines linear interpolation, this method is uphold, but it is recommended to conduct studies into
BFFM2 alterations such as changing interpolation methods.
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Figure 4.8: Emission index of NOx estimated by BFFM2 methodology for GEnx-1B engine with quadratic and cubic
interpolation.

FOA and DLR method
Petzold et al. [58] discuss that the black carbon emission is largely dependent on the combustor
exit temperature. In 1999, for the global aviation fleet, the average emission index of black carbon,
EI(BC) was found to be EI(BC) = 0.038 g/kg [58]. Estimating black carbon emissions can be
done based on a method similar to the p3-T3 method as performed by Agarwal et al. [59]. Similar
to the regular p3-T3 method, proprietary engine information is required for this and is therefore
not useful for automation in an emission inventory. A method by Peck et al. [60] has been de-
veloped which uses the fuel flows and the smoke numbers from the ICAO databank to estimate
the black carbon emission index. This method is largely based on the DLR method [52] and the
FOA2.0/FOA3.0 (First Order Approximation) method [61] [62]. The simplified process of estima-
tion the black carbon emission index is presented in Figure 4.9.

Figure 4.9: Estimation of the emission index of black carbon (figure adapted from An algorithm to estimate aircraft cruise
black carbon emissions for use in developing a cruise emissions inventory [60]).

Please note that the following equations are all obtained from research by J. Peck et al. [60].
The first step is to find the pressure and temperature at the considered cruise altitude (according
to the ISA) and find the total temperature (see Equation 4.16) and pressure (see Equation 4.17):

Tt,cruise = Tcruise

(
1 +

γ − 1

2
M2

)
(4.16)

pt,cruise = pcruise

(
1 +

γ − 1

2
M2

)γ/(γ−1)

(4.17)

The article’s next step is to assume a cruise thrust setting [F/F00]cruise of typically 65%, as-
sumed constant during the entire cruise flight. This is considered too arbitrary for the purpose of
the emission inventory and therefore an alternative method is developed. Equation 4.5 is used to
convert the fuel flow from the cruise altitude to reference sea-level conditions. This reference fuel
flow is then used to interpolate the thrust setting based on the four ICAO thrust settings and fuel
flows. This method hence provides the value of [F/F00]cruise. This allows one to find the value of
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p3, the compressor pressure, as the value of π00 is obtained from the ICAO emissions databank:

p3
pt,cruise

= 1 +

[
F

F00

]
cruise

(π00 − 1) (4.18)

After that, the combustor inlet temperature, T3, is estimated:

T3

Tt,cruise
= 1 +

1

ηcomp

{(
p3

pt,cruise

) γ−1
γ

− 1

}
(4.19)

An average compressor efficiency of ηcomp = 0.85 is used. The reference compressor pressure
is then computed as follows:

p3,ref
pground

=

{
1 + ηcomp

(
T3,ref

Tground
− 1

)} γ
γ−1

(4.20)

The ground reference thrust setting is estimated by using Equation 4.21:[
F

F00

]
ref

=

p3,ref

pground
− 1

π00 − 1
(4.21)

The next step is another deviation from the article. More recent versions of the ICAO databank
contain an emission index databank of black carbon emissions. Therefore it is first checked to see
whether the engine model is available in this sheet. If the engine model is available the emission
indices are taken from the sheet. If these are not available, the line of the article is followed to obtain
the smoke numbers at the four thrust settings of the engine model. Interpolation is performed to
find the smoke number SNref at the reference thrust setting. This is then converted to the mass
emission index by using Equation 4.22:

EI(BCref ) = 14.8× SNref (4.22)

The next step is to convert the emission index to the black carbon concentration CBC,ref by
dividing the volumetric flow rate per unit mass of fuel burn following Equation 4.23:

CBC,ref =
EI(BCref )

Q̇ref

(4.23)

where the volumetric flow rate per unit mass of fuel burned at a certain thrust setting (Q̇) is
calculated using Equation 4.24:

Q̇ = 86.37exp
(
−0.9136

[
F

F00

])
(1 + β) + 0.877 (4.24)

Note that in Equation 4.24 β = 0 for unmixed turbofan engines and β is the bypass ratio for
mixed turbofan engines.

The reference black carbon concentration CBC,ref can then be converted to the cruise black
carbon concentration using the DLR correlation [58]:

CBC = CBC,ref

(
ϕ

ϕref

)2.5(
p3

p3,ref

)1.35
(

exp(− 20,000
Tfl

)

exp (− 20,000
Tfl,ref

)

)
(4.25)

where Tfl is the flame temperature, and estimated using Equation 4.26 [63]:

Tfl = 2281
(
p0.0093753 + 0.000178p0.0553 (T3 − 298)

)
(4.26)

It is mentioned that the equivalence ratio, under both cruise and reference conditions, can be
assumed as 1, i.e. ϕ = ϕref = 1 as the primary combustion zone is operated at near-stochiometric
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conditions. The last step is to convert the black carbon concentration at the cruise altitude to the
mass emission index at that cruise altitude:

EI(BC) = CBCQ̇ (4.27)

The mass of black carbon at every altitude and flight condition is known but the number of
black carbon particles is not. The number of particles per gram of black carbon emission is very
much dependent on the flight altitude [7]. This is presented in Figure 4.10.

Figure 4.10: Number of soot particles per gram of black carbon emission (figure obtained from AERO2k Global Aviation
Emissions Inventories for 2002 and 2025 [7]).

Based on the figure, the following equation is deduced describing the number of black carbon
particles per gram of black carbon emission as a function of altitude:

nparticles = −0.00000026h5 + 0.02735h4 − 679h3 + 0.093 · 108h2 + 0.91 · 1011h+ 5 · 1015 (4.28)

where nparticles represents the number of particles in a gram of black carbon emission and h
represents the altitude in ft.

4.3. Flow chart
The flow chart of the performance model in Figure 3.11 is altered based on the additions in the
emission model. For simplification purposes the preparation and simplified take-off-mass calcula-
tions are taken out of the flow diagram. The updated flow chart is presented in Figure 4.11.
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Figure 4.11: Flowchart of the functioning of the performance and the emission model.



5
Uncertainty Analysis

The goal of the uncertainty analysis is to use uncertainties associated to individual parameters to
find the uncertainty on a fleet wide level.

5.1. Mathematics of distributions
Before individual parameters and their respective distributions are discussed, the mathematics of
these distributions needs to be understood. As will be shown later in this chapter, the probability
density functions (PDFs) which are used are: uniform, triangular and normal. The mathematical
equations of these probability density functions are presented in Table 5.1. Note that if the domain
is specified it can be assumed that the probability density function is 0 outside the domain.

Table 5.1: Probability density functions for three different types of distributions [64].

Type of distribution Probability density function Domain

Uniform 1
b−a x ∈ [a, b]

Triangular
2(x−a)

(b−a)(c−a) x ∈ [a, c]

2(b−x)
(b−a)(c−a) x ∈ (c, b]

Normal 1

σ
√
2πe

− 1
2 (

x−µ
σ )

2 x ∈ (−∞,∞)

In the next sections the PDF distributions will be presented as follows. For a normal distribution
it will be shown as [µ; σ] with µ as average and σ as standard deviation, for a triangular distribution
it will be shown as [l; m; r] with l being the left boundary of the domain, m being the mode and
r being the right border of the domain. Finally, a uniform distribution is presented as [l; r] with
definitions the same as mentioned previously.

5.2. Information model uncertainties
The information model in Chapter 2 mainly captures the required information. Some data is added
as it was missing based on flights numbers, aircraft types, used, departure airport and arrival
airport. For the purpose of this emission inventory, no uncertainty is associated to this.

5.3. Performance model uncertainties
The performance model introduces several uncertainties which are discussed in more detail in the
subsections underneath.

31
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5.3.1. En-route multiplier
As mentioned earlier, 4D (latitude, longitude, altitude and time) trajectory information is not avail-
able. This means that the flight distance which is used is estimated using the great circle distance.
Using the validation data from a renowned airline the uncertainty is quantified by means of Fig-
ure 3.4 and Figure 3.5 for short and long haul flights, respectively.

Based on Figure 3.4, it is decided that the probability density function (PDF) that resembles
short haul flights’ en-route multiplier the best, is a triangular distribution [64] for which the associ-
ated values are presented in Table 5.2.

For long haul flights the probability density function is determined based on Figure 3.5. A
uniform probability density function [64] is used to resemble the uncertainty of this parameter. Its
associated values are shown in Table 5.2.

Table 5.2: Uncertainties associated to the increase in distance with respect to the great circle distance.

Type of flight Type of distribution Associated PDF values
Short haul multiplier Triangular [1.01; 1.13; 1.25]
Long haul multiplier Uniform [1.02; 1.05]

5.3.2. Payload multiplier
Uncertainty is also associated to the payload multiplier, i.e. the fraction of maximum payload from
BADA. The uncertainty associated to this parameter is divided between short haul flights and long
haul flights.

For short haul flights the distribution is based on Figure 3.8. Based on the figure and the asso-
ciated explanation in Section 3.1.4 the chosen PDF is a triangular distribution [64] with bounds as
presented in Table 5.3.

For long haul flights the same approach is used, but based on Figure 3.9. The chosen PDF is
a normal distribution with bounds presented in Table 5.3.

Table 5.3: Uncertainties associated to the payload fraction with respect to the maximum allowable payload.

Type of flight Type of distribution Associated PDF values
Short haul Triangular [0.65; 0.74; 0.83]
Long haul Normal [0.69; 0.06]

5.3.3. Engine aging
Another aspect which is taken into account is the increase in thrust specific fuel consumption due
to engine aging. The performance of various engine components degrade [65] after use of an
aircraft for years.

The functioning of engine components tend to degrade over time [66]. Research has provided
the limits of this degradation of components. The limits of degradation of components is provided
in Table 5.4. Surge is the process of aerodynamic instability due to air flow oscillatory motion
in axial compressor direction [67]. The high turbine temperature is caused by in increase of the
exhaust gas temperature from the combustion chamber [67], as also shown by the increase in
combustor exit temperature.

The above mentioned uncertainties are limited to operational parameters due to engine aging.
Moreover, uncertainty is also associated to the ambient conditions as the ambient conditions are
estimated using a model called the International Standard Atmosphere (ISA). Although this is a
widely used model, some uncertainty is still associated to it [14]. Summarized, the uncertainties
of the different components and the temperature of the ISA are presented in Table 5.5. Note
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Table 5.4: Degradation of component performance due to engine aging [66] [67].

Component Limit Reason
Fan mass flow −5% LPC surge
LPC mass flow −8% High turbine temperature
Fan efficiency −5% High turbine temperature
HPC efficiency −4.5% High turbine temperature
HPT efficiency −5% High turbine temperature
Combustor exit temperature 2.5% Turbine life

that triangular distributions are chosen for component degradation as this maximum degradation
only occurs at the end of life, hence very few aircraft/engines have to deal with those maximum
degradations.

Table 5.5: Uncertainties associated to engine aging and atmospheric conditions [14] [66] [67].

Component/reason Type of distribution Associated PDF values
Fan mass flow multiplier Triangular [0.95; 1; 1]
LPC mass flow multiplier Triangular [0.92; 1; 1]
Fan efficiency multiplier Triangular [0.95; 1; 1]
HPC efficiency multiplier Triangular [0.955; 1; 1]
HPT efficiency multiplier Triangular [0.95; 1; 1]
Combustor exit temperature multiplier Triangular [1; 1; 1.025]
Ambient temperature correction One-sided normal [0, 3.3K]

Based on the uncertainties of individual sources, the governing uncertainty concerning thrust
specific fuel consumption is estimated. This is based on fundamental equations provided by K. Hü-
necke [68] and T. Young [68]. The distributions presented in Table 5.5 are applied to four different
engine models: CFM56 (used on Airbus A320 family and Boeing 737 family), Leap 1A (used on
Airbus A320neo family), GE90-94B (used on Boeing 777 family) and GEnx-1B64 (used on Boeing
747-8 and Boeing 787 family). The performance of the CFM56 engine is obtained from research
by D.A.R. Martins [69]. The rest of the engine information is obtained from simulations conducted
using GasTurb1.

The following figures show a Monte Carlo simulation (2000 simulations) of the four different en-
gine models where the obtained TSFC is normalized for the TSFC of the components’ nominal
performance. Furthermore, the convergence of both the average TSFC and the associated stan-
dard deviation is presented in the other graphs for all four engine models (Figure 5.1 - Figure 5.4)
in Appendix A. Both parameters are calculated as follows [64]:

TSFCmean,j =
1

n

n∑
i=1

TSFCi (5.1)

σTSFC,j =

√√√√ 1

n

(
n∑

i=1

TSFCi − TSFCmean,j

)2

(5.2)

1https://www.gasturb.de/ (accessed 16-11-2022)

https://www.gasturb.de/
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Figure 5.1: Histogram of normalized TSFC for the CFM56
engine.

Figure 5.2: Histogram of normalized TSFC for the Leap 1A
engine.

Figure 5.3: Histogram of normalized TSFC for the
GE90-94B engine.

Figure 5.4: Histogram of normalized TSFC for the
GEnx-1B64 engine.

The results of all four engine models is presented numerically in Table 5.6.

Table 5.6: Results of TSFC distribution by the monte carlo simulation due to engine component degradation.

Engine model Mean TSFC multiplier Standard deviation TSFC multiplier
CFM56 1.001 0.011
Leap 1A 1.009 0.012
GE90-94B 1.001 0.012
GEnx-1B64 1.005 0.011

The result is logical as it is clearly shown that engine aging increases the TSFC on average.
All four histograms (Figure 5.1, Figure 5.2, Figure 5.3, Figure 5.4) represent normal distributions.
First, given random variable X, the linearity of expectation [70] provides:

E[aX + b] = aE[X] + b (5.3)

where a and b are constants. Furthermore, the variance of random variables provides [70]:

V ar(aX + b) = a2V ar(X) (5.4)

Lastly, the new expectation is simply the mean of the four averages. Using this, the properties
of the TSFC multiplier due to engine aging is provided in Table 5.7.

5.3.4. Operating empty weight
The uncertainty associated to the operating empty weight is directly taken from the analysis per-
formed in Section 3.1.4, with σOEM = 0.025. To convert this to a multiplier distribution, the value of
the standard deviation needs to be normalized with respect to the empty weight factor. This hence
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Table 5.7: Uncertainty associated to engine aging.

Reason Type of distribution Associated PDF values
Engine aging TSFC multiplier Normal [1.004, 0.006]

means a multiplier standard deviation σf,OEM = 0.025
0.500 = 0.05. This uncertainty takes into account

the uncertainty due to the operating empty weight factor, different aircraft seating/galley/lavatories
configurations and weight changes due to repairs and maintenance.

5.3.5. Fuel flow model uncertainty
The BADA database also introduces uncertainty. Extensive research by the FAA [71] has been
conducted, using a Monte Carlo simulation, into the parametric uncertainty of elements within the
BADA database. Ultimately, the uncertainty multiplier with respect to the fuel flow is required. In-
stead, the consulted research uses two sample route lengths (stage length 1 and stage length 4)
for which the fuel consumption and nitrogen oxide emission are determined including all uncertain-
ties. This uncertainty in itself cannot be used to determine confidence intervals as these intervals
are not known for the other emitted species. Therefore, the distributions found in the paper [71]
need to be converted to a fuel flow uncertainty due to the direct link between fuel flow and emission
index discussed in Section 4.2. Two stage lengths, called stage length 1 and stage length 4, are
used which are 350 nm and 2200 nm respectively classified according to Table 5.8.

Table 5.8: Discussed aircraft classes (data obtained from Aviation Environmental Design Tool Version 2b Uncertainty
Quantification Report [71]).

Vehicle class Maximum stage length Representative stage length
Regional jet 3 (1350 nm) 1 (350 nm)
Large single aisle 5 (3200 nm) 1 (350 nm)
Small twin aisle 7 (5200 nm) 4 (2200 nm)
Large twin aisle 7 (5200 nm) 6 (4200 nm)

Based on the uncertainty in the parameters within the BADA computation, the uncertainty as-
sociated with representative stage lengths 1 and 4 is presented in Figure 5.5 and Figure 5.6, for
large single aisles and Figure 5.7 and Figure 5.8 for small twin aisles, respectively, with number
fuel consumption on the horizontal axis and number of simulation occurrences on the vertical axis.
From these figures, one can conclude that the BADA database is relatively uncertain. Furthermore,
since the distributions are skewed towards the left, on average, a flight uses more fuel compared
to the observed mode from the distributions.

Figure 5.5: Uncertainty in fuel consumption for stage length
1 large single aisle aircraft (figure obtained from Aviation

Environmental Design Tool Version 2b Uncertainty
Quantification Report [71]).

Figure 5.6: Uncertainty in fuel consumption for stage length
4 large single aisle aircraft (figure obtained from Aviation

Environmental Design Tool Version 2b Uncertainty
Quantification Report [71]).
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Figure 5.7: Uncertainty in fuel consumption for stage length
1 small twin aisle aircraft (figure obtained from Aviation
Environmental Design Tool Version 2b Uncertainty

Quantification Report [71]).

Figure 5.8: Uncertainty in fuel consumption for stage length
4 small twin aisle aircraft (figure obtained from Aviation
Environmental Design Tool Version 2b Uncertainty

Quantification Report [71]).

It is decided that the Airbus A320 and the Boeing 737-800 represent large single aisle aircraft
(as mentioned in the research [71]) while the Airbus A330-200 and Boeing 767-300ER represent
small twin aisle aircraft. The fuel flow multiplier distribution is presented in Table 5.9.

Table 5.9: Uncertainty associated with the BADA fuel flow model.

Type of uncertainty Type of distribution Associated PDF values
BADA multiplier fuel flow Triangular [0.92; 0.98; 1.2]

For brevity’s sake, the distributions of only the Airbus aircraft are presented underneath, the
Boeing distributions can be found in Appendix B.

Figure 5.9: Uncertainty in fuel consumption for stage length
1 Airbus A320.

Figure 5.10: Uncertainty in fuel consumption for stage
length 4 Airbus A320.

Figure 5.11: Uncertainty in fuel consumption for stage
length 1 Airbus A330-200.

Figure 5.12: Uncertainty in fuel consumption for stage
length 4 Airbus A330-200.
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Note that the distributions show some dissimilarities due to the fact that the actual aircraft type
used for the analysis is not provided in the research [71]. Still the distributions follow roughly the
same lines. In addition, the mean and standard deviation of all discussed distributions is provided
in Table 5.10.

Table 5.10: Mean and standard deviation for various aircraft for stage length 1 and stage length 4 (data for large single
aisle and small twin aisle obtained from Aviation Environmental Design Tool Version 2b Uncertainty Quantification Report

[71]).

Aircraft and stage length Mean fuel use [kg] σ [kg]
Airbus A320 stage length 1 2, 788 158
Airbus A320 stage length 4 12, 323 775
Airbus A330-200 stage length 1 6, 986 376
Airbus A330-200 stage length 4 26, 774 1696
Boeing 737-800 stage length 1 2, 968 164
Boeing 737-800 stage length 4 12, 795 842
Boeing 767-300ER stage length 1 5, 891 332
Boeing 767-300ER stage length 4 24, 147 1544
Reference large single aisle aircraft stage length 1 2, 568 143
Reference large single aisle aircraft stage length 4 13, 248 950
Reference small twin aisle aircraft stage length 1 5, 372 366
Reference small twin aisle aircraft stage length 4 28, 470 2, 352

Note that there is some difference in the mean fuel consumption on the different trajectories
but the standard deviations are not very different. This shows that the uncertainty placed on the
fuel flow is quantitatively logical. Furthermore, the different mean fuel consumption can simply
be explained by the non-mentioned aircraft types in the report and hence specific large single
aisle/small twin aisle modelling is poor in this analysis.

In addition, the conclusion that can be drawn from the model fuel flow uncertainty distribution
is in line with the analysis from Section 3.1.1 stating that, in general, the fuel flow estimated by
BADA is lower compared to PianoX and openAP.

5.4. Emission model uncertainties
The use of fuel flow models creates uncertainty as these models cannot model the emissions
perfectly. Furthermore, the constant emission indices contain parametric uncertainties. This sec-
tions aims to provide some understanding on the emission uncertainties associated to constant
emission indices, the BFFM2 and the DLR/FOA fuel flow method.

5.4.1. Constant emission index uncertainty
The constant emission indices are limited to sulphur oxides and water vapor as the carbon dioxide
emission index is corrected for the emission index of carbon monoxide. The uncertainties on the
emission index of these two species are specified in Table 5.11 [29].

Table 5.11: Uncertainty associated with the constant emission index [29].

Type of uncertainty Type of distribution Associated PDF values
Emission index multiplier of sulphur oxides Uniform [0.33; 2.33]
Emission index multiplier of water vapor Uniform [0.98; 1.02]

5.4.2. BFFM2 emission index uncertainty
Analysing the uncertainty associated with the BFFM2 requires more insight into validation data
and data obtained using the BFFM2. D. DuBois [50] has performed an extensive analysis on com-
paring the BFFM2, using the four ICAO data points, and the p3-T3 method. A comparison of the
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calculated emission index of nitrogen oxides of the p3-T3 and BFFM2 methods is presented in
Figure 5.13 for a variety of engines (including PW4090, Trent892, JT9D-7R4E and CFM56-7B).

Figure 5.13: Comparison of emission index of NOx obtained using BFFM2 and p3-T3 methods (figure obtained from
”Fuel Flow Method2” for Estimating Aircraft Emissions [50]).

Note that all the datapoints in the graph represent different engines, operating conditions and
thrust settings. In general, it can be concluded that the prediction by the BFFM2 compared to
p3-T3 methods of the emission index of nitrogen oxides is good. The same graph has been
created for the emission index of unburned hydrocarbons and carbon monoxide in Figure 5.14
and Figure 5.15 respectively.

Figure 5.14: Comparison of emission index of HC obtained
using BFFM2 and p3-T3 methods (figure obtained from

”Fuel Flow Method2” for Estimating Aircraft Emissions [50]).

Figure 5.15: Comparison of emission index of CO obtained
using BFFM2 and p3-T3 methods (figure obtained from

”Fuel Flow Method2” for Estimating Aircraft Emissions [50]).

The figure describing the emission index of unburned hydrocarbons shows great deviation from
the BFFM2, a significant underestimation occurs compared to the p3-T3 method. Based on the
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above figures, the following distributions (Table 5.12) have been formulated as being suitable to
describe the uncertainty associated with using the BFFM2.

Table 5.12: Uncertainty associated with the BFFM2.

Type of uncertainty Type of distribution Associated PDF values
Emission index multiplier of nitrogen oxides Triangular [0.9; 1; 1.1]
Emission index multiplier of unburned hydrocarbons Triangular [0.9; 1; 1.8]
Emission index multiplier of carbon monoxide Triangular [0.8; 1; 1.2]

Note that the uncertainty provided in the table also takes into account the uncertainty associ-
ated with the emission index of carbon dioxide as they are related by Equation 4.10.

5.4.3. DLR/FOA emission index uncertainty
No studies have yet been performed into estimating the uncertainty of the DLR/FOA black carbon
model. However, the ICAO database can be used to estimate the uncertainty due to measure-
ments. The database, for some engines, provides the standard deviation for smoke number. It
has been decided to convert this standard deviation to a multiplication factor of the take-off emis-
sion index smoke number to derive the standard deviation distribution. The underlying reason is
simple: due to the large differences in engine sizes in the database the standard deviations are
very different, this is less the case looking at this multiplication factor fBC,i. Hence, the first step
is to normalize the standard deviation as described in Equation 5.5:

fBC,i =
σSN,i

SNT/O,i
(5.5)

When all these factors are averaged from the entire database, the normalized standard de-
viation for black carbon is found. One condition is used, which is the fact that the multiplication
factor fBC,i cannot exceed 1. A value of 1 would mean that a negative smoke number could be
obtained in approximately 15% of the cases if a normal distributions is assumed. With this pro-
vided, the used distribution is shown in Table 5.13 based on the standard deviations in the ICAO
database. Lastly, the standard deviation is only provided for the smoke number and not in the
updated ICAO databank (explained in Section 4.2.2) where the actual soot emission indices are
provided. This subsubsection also shows that the emission index/black carbon concentration at
sea level is linearly related to the emission index/black carbon concentration at the considered
altitude. This means that it does not matter whether the uncertainty found at sea level is taken into
account before or after the extrapolation to the required altitude.

Table 5.13: Uncertainty associated with using the ICAO database for black carbon emission index.

Type of uncertainty Type of distribution Associated PDF values
Emission index multiplier of black carbon Normal [1; 0.275]

5.5. Monte Carlo Simulation
Based on all the discussed uncertainties a Monte Carlo simulation is conducted with 100 simula-
tions, covering the first 2000 flights (with aircraft and airports available in the respective databases)
in order to ensure convergence within each simulation. First, the simulation is conducted with all
nominal variables as a baseline. Then, the uncertainties discussed in the rest of this chapter are
applied for that simulation (thus the same uncertainty used for those 2000 flights). After every flight
the respective parameters (either being the fuel consumption or one of the emission species) is
converted to a multiplier by normalizing with the sum of fuel consumption/emissions until the ap-
plicable flight. Finally, after 2000 simulations a multiplier is obtained which has converged. These
100 multipliers are then presented in a histogram. Furthermore, the average of the final multipli-
ers and their respective standard deviation is presented graphically to show that convergence has
been achieved after 100 simulations. Lastly, all of the above is performed on a fleet wide basis as
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well as for short haul flights (< 1000 nm) and long haul flights separately. For brevity’s sake this
section only presents the graphs on a fleet wide basis while the short haul and long haul graphs
are presented in Appendix D and Appendix E respectively.

5.5.1. Fuel consumption
Figure 5.16 shows the convergence of the mean fuel multiplier for the 2000 flights and 100 sim-
ulations. Even though it a diagram which is difficult to comprehend, clear convergence in every
simulation is observed as the mean fuel consumption multiplier does not change significantly after
approximately 500 flights. This result was observed by moving a three dimensional graph and
hence the convergence is difficult to see in this two dimensional figure.

Figure 5.16: Convergence of mean fuel multiplier for all 2000 flights in all 100 simulations.

As convergence within each simulation is obtained the results of each simulation are presented.
Figure 5.17 shows a histogram with the fuel consumption multipliers, while the convergence of the
simulation is attached in Appendix C. Note that the quantitative results are presented at the end
of this section.

Figure 5.17: Histogram representing the fuel consumption multipliers of the 100 simulations.
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5.5.2. Emissions
With similar reasoning the previous figures are constructed for the various emission species: car-
bon dioxide, carbon monoxide, unburned hydrocarbons, nitrogen oxides, sulfur oxides, water va-
por and black carbon. This requires no substantial explanations and therefore the emission uncer-
tainty multiplier graphs are simply presented underneath. Note that the convergence graphs are
provided in Appendix C for brevity’s sake.

Figure 5.18: Histogram representing the carbon dioxide
emission multipliers of the 100 simulations.

Figure 5.19: Histogram representing the carbon monoxide
emission multipliers of the 100 simulations.

Figure 5.20: Histogram representing the unburned
hydrocarbon emission multipliers of the 100 simulations.

Figure 5.21: Histogram representing the nitrogen oxide
emission multipliers of the 100 simulations.
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Figure 5.22: Histogram representing the sulfur oxide
emission multipliers of the 100 simulations.

Figure 5.23: Histogram representing the water vapor
emission multipliers of the 100 simulations.

Figure 5.24: Histogram representing the black carbon emission multipliers of the 100 simulations.

5.5.3. Summary
Based on the obtainedmultipliers an increase or decrease in fuel consumption/emission compared
to the model is obtained. This multiplier is used directly in the model to make a correction based on
this uncertainty analysis. Furthermore, to account for the uncertainty, the concept of confidence
intervals is used. The boundaries of this confidence interval are determined using Equation 5.6
[64]:

X = x± zcritvalue
σ√
n

(5.6)

where x represents the mean multiplier, zcritvalue is a value dependent on the chosen confidence,
σ represents the standard deviation and n represents the number of simulations. Four confidence
intervals are used in this analysis:

• 50%
• 90%
• 95%
• 99%
The results of all species, mean multipliers and the four different confidence intervals are pre-

sented in Table 5.14 where the confidence intervals (CIs) are denoted as [left boundary; right
boundary].

Note the similarities between CIs and mean multiplier of fuel, carbon dioxide and water vapor.
Logically this is caused by the fact that the uncertainty of the emission index of water vapor is very
low. In addition, the influence of the emission index of carbon monoxide to the emission index of
carbon dioxide, as presented in Equation 4.10, is not substantial. Lastly, the sulfur oxide multiplier
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Table 5.14: Mean multiplier and confidence intervals of total aviation fleet.

Species Mean 50% CI 90% CI 95% CI 99% CI
Fuel consumption 1.042 [1.038; 1.047] [1.032; 1.053] [1.030; 1.055] [1.026; 1.059]
CO2 emission 1.042 [1.038; 1.047] [1.032; 1.053] [1.030; 1.055] [1.026; 1.059]
CO emission 1.023 [1.019; 1.026] [1.015; 1.030] [1.013; 1.032] [1.011; 1.035]
HC emission 1.158 [1.150; 1.166] [1.140; 1.176] [1.136; 1.180] [1.129; 1.187]
NOx emission 1.081 [1.073; 1.089] [1.060; 1.101] [1.057; 1.105] [1.049; 1.113]
SOx emission 1.424 [1.384; 1.464] [1.326; 1.522] [1.307; 1.542] [1.269; 1.580]
H2O emission 1.042 [1.038; 1.046] [1.031; 1.053] [1.029; 1.055] [1.025; 1.059]
BC emission 1.063 [1.057; 1.069] [1.048; 1.077] [1.045; 1.080] [1.039; 1.086]

is very high, this is directly caused by the very large uncertainty specified in Chapter 4. Due to
these large multipliers very limited confidence is placed in the source of this uncertainty [29]. This
is explained and verified in more detail in Chapter 6.



6
Verification & Validation

This chapter aims to verify and validate the performance and emission model. This will be done
based on unit tests as system tests are barely possible since the emission inventories of 2019 have
not yet been published. Note that in Chapter 7 a comparison will be made to previous emission
inventory results. Furthermore, the overall mean uncertainties from Chapter 5 are used in this
chapter rather than the individual uncertainties for short and long haul flights.

6.1. Verification
To find out whether the model makes sense a variety of verification tests are performed, which are
all discussed extensively in the next subsections.

6.1.1. Payload-range diagrams
A simple method to evaluate whether the results from the performance model are logical is to
verify the payload-range diagram from manuals with data from the code. This process has been
performed for four aircraft models: Airbus A320, Airbus A340-600, Boeing 737-800 and Boeing
787-9. The reason behind these aircraft being that large variety was required between size, aircraft
generation and number of engines. For brevity’s sake, the payload-range diagrams, both from the
model calculation and from the aircraft manual, of the Airbus A320 and the Boeing 787-9 are
presented in Appendix F, the rest of the comparison will be discussed later in this chapter. The
data required for the payload-range diagrams, maximum take-off mass (MTOM ), maximum zero-
fuel-mass (MZFM ), operating empty mass (OEM ), maximum fuel and maximum payload, is
presented in Table 6.1.

Table 6.1: Payload-range parameters required for the analysis (all parameters obtained from their respective manuals).

Parameter Airbus A320 Airbus A340-600 Boeing 737-800 Boeing 787-9
MTOM [kg] 78, 000 365, 000 79, 000 254, 000
MZFM [kg] 64, 300 242, 000 62, 732 181, 436
OEM [kg] 42, 600 177, 000 41, 413 128, 850
Max fuel [kg] 18, 729 153, 082 23, 817 101, 444
Max payload [kg] 21, 700 65, 000 21, 319 52, 586

The performance model has been re-constructed in such a way that the range and payload
mass are both used as an input and the boundaries of the payload-range diagram are checked. If
these are not violated, this point can be used and the range is increased by 10 nm. If a violation
occurs, the range will be kept constant but the payload mass will be reduced by 100 kg. Logically,
the starting point is the maximum payload and 10 nm of range.

In addition it is important to distinguish between the methodology used for the emission code
and the normal methodology for a payload-range diagram code. For a payload-range diagram

44
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code it is not yet known what the limits of the aircraft performance are, in other words, the maxi-
mum range is not known. For an emission inventory code it is known that all the trajectories have
been flown and are hence possible within the payload-range diagram boundaries.

As can be seen in Figure 3.11 an initial estimation is made of the take-off weight before a de-
tailed analysis is performed of the flight. A condition is placed on this initial estimation that the
initially calculated take-off mass cannot exceed the MTOM (obtained from BADA) of the aircraft.
Furthermore, the emission inventory code focuses on obtaining the trip fuel, for which contingency
fuel is taken into account in the initially calculated take-off mass. To evaluate the maximum take-off
mass limit, the empty mass, payload mass and trip fuel are summed because the original take-off
mass is known to be too high due to the relatively high fuel flow assumed in the initial calculation.
The effect of this on fuel flows during the flight (and hence emissions) has been considered low [4]
but this has a substantial effect on the payload-range diagram. Similarly, to evaluate the maximum
fuel capacity boundary, the trip fuel is compared to the maximum fuel capacity hence not taking
into account the contingency fuel.

Please note that all the parameters from Table 6.1 can also be estimated using data from BADA.
The only variable which is not specified in BADA is the maximum fuel capacity of an aircraft. This
does not pose a problem as it is known that all flights in the flightradar24 database have been
flown and hence the maximum fuel capacity has not been a limiting factor.

To observe the effect of all the above reasoning, the payload-range diagrams obtained from
Python provide four lines:

• Only trip fuel is considered, no reserves are taken into account. The masses used are from
Table 6.1 to verify as accurately as possible the uncertainty associated with the fuel flow
model and hence not have to deal with uncertainties presented in Section 3.1.4.

• To account for contingency fuels, 10% fuel is added as contingency fuel, the masses used
are from Table 6.1.

• Only trip fuel is considered, all the masses are from BADA.
• The statement concerning no exceeding of the maximum take-off mass is deleted. This
results in the kink being removed between the maximum take-off mass boundary and the
maximum fuel capacity boundary.

Four payload-range diagrams, for the Boeing 737-800 and Airbus A340-600 both from the
aircraft manual and obtained from the Python code, are presented in Figure 6.1a, Figure 6.1b, Fig-
ure 6.2a and Figure 6.2b respectively. The obtained payload-range diagrams from Python show
some clear discrepancies from normal payload-range diagrams. A kink can be observed between
the maximum take-off weight and maximum fuel capacity lines. This is caused by the maximum
take-off weight statement in the code mentioned earlier. This is clearly visible as the green line
does not show this effect. Fundamentally, this kink also represents a maximum take-off weight
limit as two different definitions are used of take-off weight as mentioned earlier. Furthermore,
please note that Figure 6.1a provides limits for various maximum take-off masses and various
maximum fuel capacities. For the below analysis the values as presented in Table 6.1 are used.

For the Boeing 737-800 the maximum payloadmass coming from themaximum zero-fuel mass
is matched well for BADA data. The maximum take-off mass boundary is not strict enough, mean-
ing that, according to Python, higher payload-range combinations are deemed possible. For all
cases the maximum fuel capacity boundary predicted by Python is too far to the right. This makes
sense if no reserves are taken into account, the case where 10% extra fuel (based on 5% extra
during flight, holding and diversion fuel) is used is considered a relatively good match. In general,
for the Boeing 737-800, it can be concluded that the performance is marginally overestimated by
Python compared to the aircraft operating manual [72]. This conclusion is in line with statements
formulated in Table 5.9, Figure 3.1 and Figure 3.2 but is limited due to the factor obtained from the
uncertainty analysis.

For the Airbus A340-600 the maximum structural payload is modelled well by BADA. After that,
the maximum take-off mass boundary is also modelled good by the red line. Unfortunately, due
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(a) Payload-range diagram of Boeing 737-800 from manual (figure obtained from
737 Airplane Characteristics for Airport Planning [72]). (b) Payload-range diagram of Boeing 737-800 obtained using Python.

Figure 6.1: Payload range diagrams of the Boeing 737-800.

to the different take-off masses definitions, the maximum fuel capacity boundary is not modelled
very accurately. In general, especially for the non-ultra-long flights, the modelling of this aircraft
type is considered excellent.

(a) Payload-range diagram of Airbus A340-600 from manual (figure obtained from
A340-500/-600 Aircraft Characteristics Airport and Maintenance Planning [73]). (b) Payload-range diagram of Airbus A340-600 obtained using Python.

Figure 6.2: Payload range diagrams of the Airbus A340-600.
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The other two considered aircraft payload-range diagrams are presented in Appendix F but are
discussed here. For the Airbus A320, the green line in the manual diagram should be consulted
as the parameters used are associated to those conditions. Under all conditions, the maximum
payload mass is marginally overestimated by Python. The maximum take-off mass boundary is
matched well by the red line predicted by Python. This is similar to the maximum fuel capacity
boundary for which the modelling is also excellent. In general, the A320 modelling, is considered
very good.

The last considered aircraft is the Boeing 787-9. The maximum payload specified in BADA
is too large compared to the aircraft manual. The transition from maximum payload boundary to
maximum take-off boundary occurs too far to the right in Python. The transition to maximum fuel
capacity also occurs slightly more to the right than required. Unfortunately, by reasons mentioned
previously associated with the double definition of the maximum take-off mass, the maximum fuel
capacity boundary is not modelled very well. In general, the modelling is good, but an underesti-
mation of the fuel flow during flight is observed. This is in line with conclusions that can be drawn
from Table 5.9, Figure 3.1 and Figure 3.2.

The modelling of Airbus aircraft is better compared to the Boeing aircraft. It is expected that this
is associated with the age of the aircraft. The two Boeing aircraft are the youngest of the aircraft
discussed in this section (especially the Boeing 787-9). BADA updates their database routinely
and occasionally fuel flows are adapted based on new insights and customers’ feedback [7].

6.1.2. Trip fuel burn comparison
To verify the calculated fuel burn from the current model, PianoX is used. For a large variety of
aircraft and different ranges the fuel consumption is plotted for the PianoX data (including +10%
and −0% deviation) and the Python model. This comparison is presented in Figure 6.3.

Figure 6.3: Verification of model results compared with PianoX data.

In general the trend is considered good but some discrepancies are found at higher fuel con-
sumption. The model clearly predicts higher fuel consumption compared to the data obtained
from PianoX, note that the baseline is different compared to previous comparisons as the mean
uncertainty factor is applied. A conclusion about the validity will be drawn later, also consulting
the validation with airline fuel consumption.

6.1.3. Emissions
It is very difficult to verify emissions from the model. The European Environment Agency (EEA)
[74] provides a model which calculates the fuel consumption and various species of emissions of
most aircraft as only a function of CCD (climb, cruise, descent) length. For a large variety of aircraft
and mission lengths the fuel consumption and emission quantities are calculated. This subsection



6.1. Verification 48

aims to present all the results (including+10%and−0%deviation) and critically evaluate the found
discrepancies. The used aircraft for this analysis are:

• Boeing 737-800, Boeing 747-400, Boeing 757-300, Boeing 767-400, Boeing 777-300ER and
Boeing 787-9.

• Airbus A320, Airbus A330-200, Airbus A340-600, Airbus A350-900 and Airbus A380-800.
• Embraer E170 and Embraer E190.

Similar to this analysis, the EEA aims to predict the fuel consumption of a mission and the
quantity of emissions of seven species: carbon dioxide, nitrogen oxides, sulphur oxides, water
vapor, carbon monoxide, unburned hydrocarbons and black carbon.

The fuel consumption and carbon dioxide emissions of the discussed aircraft for various mis-
sions is presented in Figure 6.4 and Figure 6.5 respectively.

Figure 6.4: Comparison of fuel consumption prediction by
the Python model and the EEA model.

Figure 6.5: Comparison of carbon dioxide emission
prediction by the Python model and the EEA model.

In the above figures there is a large similarity, this is due to the fact that the carbon monoxide
emission index from Equation 4.10 is a very small number and hence the relation between the fuel
consumption and the carbon dioxide emission is almost perfectly linear. Based on the comparison
in Figure 6.4 and Figure 6.5 both parameters of the Python model are considered verified.

The next comparison is made between the nitrogen oxide emission predicted by Python and
the EEA model and for sulphur oxide emissions predicted by both models. This comparison is
presented in Figure 6.6 and Figure 6.7 respectively.

Figure 6.6: Comparison of nitrogen oxide emission
prediction by the Python model and the EEA model.

Figure 6.7: Comparison of sulphur oxide emission
prediction by the Python model and the EEA model.

The nitrogen oxide emission in the Python model is computed using the BFFM2. Figure 6.6



6.1. Verification 49

Figure 6.8: Sulphur oxide emission using constant emission index without mean uncertainty applied.

shows that the similarity is good (11% overestimation on average) compared to the EEA model.
For sulphur oxides the shape of the graph is identical to Figure 6.4 as a constant emission index
and constant uncertainty multiplication factor is used. For sulphur oxide emission the match is
considered poor. This is caused by the large uncertainty probability distribution function as spec-
ified in Table 5.11. If this uncertainty is not taken into account, the result is presented in Figure 6.8.

Based on Figure 6.8 the match for sulphur oxides is considered excellent. Based on this rea-
soning it has been decided to neglect the very large uncertainty as specified in Chapter 5 and in
stead use the uncertainty associated with the fuel consumption, hence maintaining the proportion-
ality with the fuel consumption.

The next emission species which will be compared to the EEA model are water vapor and
carbon monoxide. This comparison is presented in Figure 6.9 and Figure 6.10 respectively.

Figure 6.9: Comparison of water vapor emission prediction
by the Python model and the EEA model.

Figure 6.10: Comparison of carbon monoxide emission
prediction by the Python model and the EEA model.

The verification of water vapor emission is relatively simple due to the fact that a constant
emission index is used combined with low uncertainty. Therefore a similar line of reasoning ap-
plies as for sulphur oxides. The carbon monoxide emission shows a very large deviation from the
values provided by the EEA. The datapoints which show the strong discrepancy all belong to the
points associated with the Boeing 737-800. BADA states that the most often used engine model
for this aircraft is the CFM56-7B26/27 while the EEA is more specific stating that the 8CM051 is
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used which belongs to the same family. Due to the line of reasoning provided in Section 3.1.5
about limiting the length of the name of an engine, the engine that the Python program selects is
the CFM56-7B26/2. This engine has significantly different emission indices belonging to carbon
monoxide emission. Specifically for this case, the figure has been reconstructed and is shown in
Figure 6.11 where the exact same engine is used as the EEA uses.

Figure 6.11: Comparison of carbon monoxide emission for the corrected Boeing 737-800 datapoints.

In the diagram the match is considered very good. The easiest method to correct this in the
code is to adapt the BADA file and specify the engine model specifically as the CFM56-7B26 which
corresponds to the 8CM051 model used by the EEA. This is therefore not considered a shortcom-
ing in methodology. Logically, the previous results for the Boeing 737-800 make no sense as
they are higher than the highest carbon monoxide emission of the biggest airplanes (by a factor
of approximately 10). The result, however, could be significant as the Boeing 737-800 is a very
popular aircraft worldwide.

The last comparison to be made is for unburned hydrocarbons and black carbon. This com-
parison is presented in Figure 6.12 and Figure 6.13 respectively.

Figure 6.12: Comparison of unburned hydrocarbons
emission prediction by the Python model and the EEA

model.

Figure 6.13: Comparison of black carbon emission
prediction by the Python model and the EEA model.

In the above figures large inconsistency is visible, especially for the unburned hydrocarbons.
This discrepancy is caused by the fact that the wrong engine is selected in the Python code for
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three aircraft types: Boeing 747-400, Boeing 757-300 and Airbus A330-200. Strangely, various
engine models are available more than once in the ICAO emission database. The EEA model
uses the model which is lowest in the list while the Python program selects the model which is
found earliest, starting its search at the beginning of the list. If this is changed, and the same en-
gine model as specified by the EEA is used in the Python program, the results change significantly.
The corrected results are presented in Figure 6.14.

Figure 6.14: Comparison of unburned hydrocarbon emission for the corrected Boeing 747-400, Boeing 757-300 and
Airbus A330-200 datapoints.

Based on the above figure, the match is considered very good. Furthermore, it has been de-
cided to change the Python code permanently to start the search for the correct engine model at
the bottom of the list moving up, rather than vice versa.

For the black carbon emissions, the process is different. The EEA provides the non-volatile
particulate matter emission while the Python program predicts the black carbon emission. Black
carbon belongs to the family of non-volatile particulate matter and makes up a large part of it [75].
This thus means that, in principle, the emission of black carbon should always be lower than the
emission of non-volatile particulate matter. It is clearly visible, from Figure 6.13, that this is true in
most cases. No explanation has been found for the cases where the model predicts a higher black
carbon emission than the EEA model’s predicted non-volatile particulate matter emission (this is
the case for the Boeing 747-400 datapoints).

6.2. Validation
For the purpose of validating the program the data mentioned previously from the renowned air-
line is compared to the model. This comparison is presented in Figure 6.15 and Figure 6.16. Fig-
ure 6.15 presents a comparison of the validation data and data from the Python program. Rather
than using the multipliers for payload mass and increase in great circle distance as specified in
Chapter 3, the actual payload mass and ground distance of the validation flights were used. The
difference between the program fuel and model fuel is thus defined as:

• Program fuel: using the actual flown distance and actual payload from airline validation data,
the fuel consumption is obtained.

• Model fuel: using the assumptions from this report on payload fraction and en-route distance
multiplier, the fuel consumption is obtained.

With this provided, the actual program can be validated. Figure 6.16 presents a comparison
of the validation data and the model data (thus using all multipliers provided in Chapter 3). This
figure is thus more representative in order to validate the entire model, including all assumptions.
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Figure 6.15: Fuel consumption of the program with the
same travelled ground distance and payload weight as the

validation data.

Figure 6.16: Fuel consumption of the model compared to
validation data.

In both figures the match is considered good. To provide more understanding of this, some
statistics are provided in Table 6.2. Note the difference between the word program and model:
program is only the Python program which uses the same payload mass and ground distance as
the validation data while model means that all assumptions mentioned in this report are included
in the analysis.

Table 6.2: Validation of program and model.

Type of flight Program fuel compared to validation [%] Model fuel compared to validation [%]
Short haul −1.1 −0.8
Long haul 2.3 2.7
Overall 0.8 1.2

The values from Table 6.2 are considered good and the program is therefore considered vali-
dated.



7
Results

As the model has been verified and validated it is ready to find the results of the total year. These
results are obtained by analyzing a complete week and multiplying the results of this week with
two factors: a factor to account for only analyzing one week (365/7) and one factor to account for
not having the exact mean number of flights in this week (808, 637/806, 631).

7.1. Considered flight information
As the simulation has been conducted some information about all flights is provided. As mentioned
earlier, not all aircraft models are known by the ICAO databases and not all airports are provided
in the flightradar24 databases. Only jet aircraft are considered for this analysis, due to the inabil-
ity of the BFFM2 to model emission indices of non-jet aircraft. In addition, the flightradar24 data
also covers helicopter data. The aircraft/helicopters which are not analyzed but were provided in
the flightradar24 data are listed in Appendix G. Furthermore, the location of some airports is not
provided in the consulted database. Some information concerning these inabilities is provided in
Table 7.1. Note that some flights both have an aircraft and airport which are unavailable.

Table 7.1: Number of (unavailable) flights in representative week.

Number of flights
In representative week 928,840
Aircraft not available 275,925
Departure/Arrival airport not available 139,719
Actual analyzed flights 555,209

7.2. Geographical emissions
As explained in Chapter 3 and Chapter 4 the point performance of the aircraft is used to estimate
the trajectory performance along the flight trajectory. The emission on this small trajectory is at-
tributed to the beginning point of the small trajectory in such a way that the emissions are stored in
a 3D grid. The limit on cruise ceiling altitude was set at 50, 000 ft. All emission that occurs above
this altitude is attributed to the upper slice of the 3D grid. By visual inspection in the code it was
found that this did not occur more than 500 times and is therefore considered insignificant. The
resolution for all figures is 1◦ × 1◦ × 1000 ft.

7.2.1. Fuel consumption
The global fuel consumption is presented in Figure 7.1 (enlarged in Appendix H) and the summa-
tion per flight level is presented in Figure 7.2. A darker color reflects higher fuel consumption.

53
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Figure 7.1: Fuel consumption on a worldwide map also depicting the summation per
longitude and latitude.

Figure 7.2: Fuel consumption
as a function of flight level.

From Figure 7.1 it is very clear that most emission occurs in roughly three geographical areas:
North-America, Europe and South-East Asia. In addition, significantly less fuel burn takes place
on the southern hemisphere compared to the northern hemisphere which is a logical result of the
size of economies and prosperity of the respective continents. Finally, from Figure 7.2, it becomes
clear that most of the fuel is burned at relatively high altitudes. This is a logical result as most of
the flights have a significantly longer cruise segment compared to their climb/descent segment.
This is presented in more detail in Section 7.4.

7.2.2. Carbon dioxide emission
The global map and summations per latitude/longitude are presented in Figure 7.3 while the sum-
mations per flight level are presented in Figure 7.4.

Figure 7.3: Carbon dioxide emission on a worldwide map also depicting the summation
per longitude and latitude.

Figure 7.4: Carbon dioxide
emission as a function of flight

level.

The figure closely resembles the fuel consumption figure as the influence of emission index of
carbon monoxide in Equation 4.10 is very limited. The three main regions for air traffic are, again,
clearly distinguished by the large peaks of carbon dioxide emission.
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7.2.3. Carbon monoxide
The carbon monoxide emission on a global scale is presented in Figure 7.5 and the summation of
emissions per flight level is presented in Figure 7.6.

Figure 7.5: Carbon monoxide emission on a worldwide map also depicting the summation
per longitude and latitude.

Figure 7.6: Carbon monoxide
emission as a function of flight

level.

These figures are significantly different compared to the fuel consumption and carbon dioxide
figures. As clearly seen in Figure 7.6 most of the carbon monoxide emission occurs at very low
altitudes. This is hence attributed to the LTO cycles and is mostly emitted in the vicinity of airports.
From Figure 7.5 clear peaks are visible rather than a relatively rounded distribution. These large
peaks resemble the main airport hubs located at those longitudes.

7.2.4. Unburned hydrocarbons
The unburned hydrocarbon emission on a global scale is presented in Figure 7.7 and the summa-
tion per flight level is presented in Figure 7.8.

Figure 7.7: Unburned hydrocarbon emission on a worldwide map also depicting the
summation per longitude and latitude.

Figure 7.8: Unburned
hydrocarbon emission as a

function of flight level.

From Figure 7.8 one can conclude that most HC emission occurs in the vicinity of airports
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during the LTO cycle. The clear peaks in Figure 7.7 resemble the main airport hubs such as
London, Amsterdam, Paris and Frankfurt close to 0◦ longitude.

7.2.5. Nitrogen oxides
The emission of nitrogen oxides on a global scale is presented in Figure 7.9 and the summation
of nitrogen oxide emission per flight level is presented Figure 7.10.

Figure 7.9: Nitrogen oxide emission on a worldwide map also depicting the summation per
longitude and latitude.

Figure 7.10: Nitrogen oxide
emission as a function of flight

level.

Interestingly, most nitrogen oxide emission occurs at cruise altitude. The emissions occurring
on the north-Atlantic corridor are significant but most emission still occurs in North-America, Eu-
rope and South-East Asia. This is due to the relatively large influence of regional, short, and
medium haul flights which do not cover very large distances.

7.2.6. Sulfur oxides
The global emission of sulfur oxides and the summation of sulfur oxide emission per flight altitude
is presented in Figure 7.11 and Figure 7.12 respectively.

Figure 7.11: Sulfur oxide emission on a worldwide map also depicting the summation per
longitude and latitude.

Figure 7.12: Sulfur oxide
emission as a function of flight

level.
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The shape of the above diagrams closely resembles the shape of the fuel consumption and
carbon dioxide figures. This is a logical result due to the constant emission index caused by the
assumed constant sulfur content in kerosene.

7.2.7. Water vapor
The emissions of water vapor on a global scale are presented in Figure 7.13 with the summation
per flight level presented in Figure 7.14.

Figure 7.13: Water vapor emission on a worldwide map also depicting the summation per
longitude and latitude.

Figure 7.14: Water vapor
emission as a function of flight

level.

The figure closely resembles the fuel consumption figures due to the constant emission index
of water vapor.

7.2.8. Black carbon
The emission of black carbon geographically is presented in Figure 7.15 with the summation per
flight level presented in Figure 7.16.

Figure 7.15: Black carbon emission on a worldwide map also depicting the summation per
longitude and latitude.

Figure 7.16: Black carbon
emission as a function of flight

level.

Most black carbon emission occurs at lower flight levels (below 10, 000 ft). This is especially
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important for local air quality as black carbon emission and concentration is strongly correlated
with heart disease and lung conditions [47]. The black carbon emission occurring at cruise alti-
tude, which is a significant amount concluding from Figure 7.16, is important for cloud formation
combined with the emission of water vapor [45].

7.3. Confidence
Based on the uncertainty analysis certain confidence is placed in the results. A distinguishment
was made between four different confidences but for brevity’s sake only 90% confidence is used in
this section. The conversion to different confidences can easily bemade using the factors provided
in Table 5.14. The nominal fuel consumption and emissions with the lower and upper boundary of
the 90% confidence interval are presented in Table 7.2.

Table 7.2: Quantity of fuel consumption and emissions with 90% confidence for the year 2019.

Species Nominal Lower boundary Upper boundary
Fuel [Tg] 272.0 269.4 274.9
CO2 [Tg] 857.1 848.9 866.1
CO [Gg] 634.2 629.2 638.5
HC [Gg] 45.6 44.9 46.3
NOx [Tg] 5.3 5.2 5.4
SOx [Gg] 217.6 215.5 219.9
H2O [Tg] 336.3 332.7 339.9
BC [Gg] 6.8 6.7 6.9

Please note that certain uncertainties are not addressed in this analysis as listed below:
• Uncertainty due to not having all aircraft in the database analyzed.
• Uncertainty due to missing out on analysis of some flights from unknown airports.
• Uncertainty associated to deleting the flights where departure and arrival airport is the same.
• Uncertainty of flightradar24 possibly missing some flights.
• Uncertainty associated with complementing the database as presented in Figure 2.4.
• Uncertainty due to the use of representative aircraft when BADA performance file is unavail-
able.

• Uncertainty due to engine modelling using the engine model provided by BADA and not the
actual aircraft model on the aircraft.

• Uncertainty in different kind of flights (more short/long haul flights) outside the representative
week.

7.4. Aircraft categories
In addition to the total fuel consumption and emissions the program provides the fuel consumption
and emissions for five categories of aircraft: regional, short haul, medium haul, long haul and very
long haul. Note that these are not the same as the categories of aircraft distinguished by ICAO
which distinguishes mainly based on aircraft speed. The aircraft categories in this research are
distinguished as follows:

• Regional: less than 300 nm.
• Short haul: between 300 nm and 1, 000 nm.
• Medium haul: between 1, 000 nm and 2, 000 nm.
• Long haul: between 2, 000 nm and 4, 000 nm.
• Very long haul: more than 4, 000 nm.

The confidence intervals can also be used for this data, however the short haul confidence
intervals should be used for regional and short haul flights while the long haul confidence intervals
should be used for the other data. The nominal fuel consumption and emissions of the five cate-
gories of aircraft (and the total) is presented in Table 7.3.

Interestingly enough, short haul flights make up a considerable portion of the carbon monoxide
and black carbon emission. This is caused by the relatively high emission index of these species
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Table 7.3: Quantity of fuel consumption and emissions per aircraft category.

Fuel [Tg] CO2 [Tg] CO [Gg] HC [Gg] NOx [Tg] SOx [Gg] H2O [Tg] BC [Gg]
Regional 15.8 49.6 88.7 5.8 0.3 12.6 19.5 0.8
Short 79.9 251.5 290.3 17.7 1.4 63.9 98.7 2.8
Medium 53.3 168.0 131.7 9.6 0.9 42.6 65.9 1.3
Long 57.3 180.6 69.4 6.6 1.2 45.8 70.8 0.9
Very long 65.8 207.6 53.9 5.3 1.5 52.7 81.4 1.0
Total 272.0 857.1 634.2 45.6 5.3 217.6 336.3 6.8

during the LTO cycle. Even though the fuel consumption might not be very high compared to the
total, the emissions of some species are very significant due to the relatively large number of LTO
cycles of these aircraft compared to longer haul aircraft.
Another very interesting fact is the emission of nitrogen oxides of very long haul aircraft compared
to short haul aircraft. Even though very long haul flights consume less fuel globally compared to
short haul flights, the emission of nitrogen oxides is higher. This is directly caused by the relatively
high emission index at cruise altitude.

A comparison to research by EASA and the EEA [76] is made for carbon dioxide and nitrogen
oxide share of emissions. Note that this research distinguishes between five different kinds of
flight lengths (and that their definition is marginally different), while EASA and the EEA distinguish
four kinds of flight lengths. This comparison is made in Figure 7.17 with data from this research
and Figure 7.18 with data from EASA and the EEA.

Figure 7.17: Stacked bar chart of carbon dioxide emission
and nitrogen oxide emission per flight category.

Figure 7.18: Fuel consumption and nitrogen oxide emission
per aircraft category according to the EEA/EASA (figure

obtained from EASA [76]).

Please note the different aircraft categories based on flight distance. The definitions used
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in this research and in the EASA/EEA research are very similar with the exception that this re-
search distinguishes long haul and very long haul flights while these are the same category in
the EASA/EEA research. Both figures are almost the same and the observed differences are ex-
pected to be caused by the marginal different boundaries on flight distance. The nitrogen oxide
emission can also be compared to the values from Table 7.3 where the percentual values are
almost identical to Figure 7.18.

7.5. Comparison
Asmentioned in Chapter 6 the total emissions and fuel consumption require verification and valida-
tion. No emission inventories have been created for 2019 yet and therefore a variety of research is
considered including predictions for the future based on those inventories. Unfortunately, no emis-
sion inventories have been found where the emission of black carbon is estimated and therefore
the verification and validation of the complete results is limited to all species except black carbon.
This comparison is presented in Table 7.4 also with the quantity of fuel sold based on results of
the U.S. Energy Information Administration1 (EIA) (assuming 159 l/barrel and kerosene density
of 780 kg/m3). Lastly, all the other researches state that NOx is regarded as NO2 and SOx is
regarded as SO2 and n/a means no available data.

In general the results are close to research which has already been conducted. For the fuel
consumption, the estimation in this research is relatively close to the validation fuel sold according
to the EIA. The difference is attributed to several factors: smaller aviation is not included in this
research (such as turboprop aircraft), the fuel policy of airlines is not included in the uncertainty
analysis and hence elements like fuel tankering are not corrected for. The result, however, is con-
sistent with the increase in fuel consumption as seen from the years previous 2019.

The differences in carbon dioxide can directly be attributed to the difference in fuel consump-
tion due to the low influence of carbon monoxide emission index.

The emission of carbon monoxide seems relatively low at first. However, when compared to
results from 2005 and 2008, respectively 203 Tg of fuel and 0.55 Tg of carbon monoxide and 229
Tg of fuel and 0.69 Tg of carbon monoxide, the difference is relatively small normalizing for the
fuel consumption. Using the fleet wide emission index of carbon monoxide of 2005 would yield
a carbon monoxide emission of 0.74 Tg in 2019 and for the fleet wide emission index of carbon
monoxide in 2008 this would mean a carbon monoxide emission of 0.82 Tg. The carbon monoxide
emission in this research is, however, still lower compared to other research.

The emission of hydrocarbon found in this research is relatively high thus showing a relatively
low combustion efficiency on a fleet wide basis. Comparing the results with data from 2005, 2006
and 2007 with emissions of 0.28 Tg, 0.24 Tg and 0.23 Tg of unburned hydrocarbons and normal-
izing with respect to the fuel consumption, the result is quite good. However, one would expect
considerable progress on combustion efficiency on a fleet wide scale.

The estimation of emission of nitrogen oxides is considered good using the historical trend.
Especially based on relatively new results from 2010 and 2011, again normalizing with respect
to the fuel consumption, the match is almost identical. However, for next generation combustors
new methods should be developed to account for these new technologies. This is especially true
for lean burn engines such as the GEnx engines used on the Boeing 787 and the Boeing 737 Max.

The emission of sulfur oxides and water vapor is modelled well. This is also logical as the
emission indices for these two species are widely used by researchers. Furthermore, the sulfur
content in kerosene has not changed significantly in recent years according to the IPCC [86] which
is also clear from the results.

1https://www.eia.gov/ (accessed 21-10-2022)

https://www.eia.gov/
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Table 7.4: Comparison to previous emission inventories.

Year Fuel [Tg] CO2 [Tg] CO [Tg] HC [Tg] NOx [Tg] SOx [Tg] H2O [Tg] Research
1990 92.8 293.0 0.53 0.14 1.2 0.074 115.0 [77]
1992 110.0 347.0 n/a n/a n/a 0.13 135.0 [78]
1992 94.9 423.0 0.50 0.195 1.2 n/a 165.0 [8]
1999 128.0 n/a 0.69 0.19 1.7 n/a n/a [79]
1999 136.0 430.0 0.67 0.23 1.4 0.16 167.0 [78]
2000 181.0 572.0 0.54 0.08 2.5 0.15 224.0 [80]
2000 214.0 677.0 n/a n/a 2.9 n/a n/a [12]
2000 152.0 480.0 n/a n/a 2.0 0.18 187.0 [78]
2001 170.0 536.0 0.46 0.06 2.4 0.14 210.0 [80]
2002 171.0 539.0 0.48 0.06 2.4 0.14 211.0 [80]
2002 156.0 492.0 0.51 0.06 2.1 n/a 193.0 [7]
2002 154.0 486.0 n/a n/a n/a 0.18 190.0 [78]
2003 176.0 557.0 0.49 0.06 2.5 0.14 218.0 [80]
2004 188.0 595.0 0.51 0.06 2.7 0.15 233.0 [80]
2004 174.1 549.7 0.63 0.09 2.5 0.20 215.3 [81]
2005 203.0 641.0 0.55 0.07 2.9 0.16 251.0 [82]
2005 180.6 570.5 0.75 0.2 2.7 0.22 n/a [23]
2005 147.6 464.7 0.78 0.28 3.4 0.12 181.5 [10]
2006 188.2 594.3 0.68 0.10 2.7 0.22 232.8 [78], [81]
2006 152.2 479.3 0.74 0.24 3.5 0.13 187.2 [10]
2007 160.9 506.8 0.75 0.23 3.7 0.14 198.0 [10]
2008 229.0 725.0 0.69 0.09 3.2 0.18 282.0 [83]
2008 163.0 513.4 0.74 0.21 3.8 0.14 200.5 [10]
2009 158.1 498.0 0.69 0.18 3.7 0.13 194.5 [10]
2010 240.0 n/a 1.92 0.3 3.02 n/a n/a [84]
2010 163.9 516.0 0.69 0.17 3.9 0.14 201.5 [10]
2011 173.2 545.3 0.70 0.16 4.1 0.15 213.0 [10]
2015 255.0 803.0 1.14 0.10 2.3 0.10 315.0 [77]
2015 282.0 n/a 1.44 0.23 3.9 n/a n/a [85]
2019 272.0 857.1 0.63 0.45 5.3 0.22 336.3 This study
2019 322.3 n/a n/a n/a n/a n/a n/a U.S. EIA
2020 336.0 n/a 1.39 0.23 4.9 n/a n/a [85]
2025 327.0 1029.0 1.15 0.15 3.3 n/a 404.0 [7]
2030 440.0 n/a 2.33 0.29 4.95 n/a n/a [84]
2050 770.0 n/a 2.64 0.25 7.5 n/a n/a [84]
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Conclusions & Discussion

The main accomplishments and conclusions drawn from this thesis are:
• Emission inventories contain many assumptions which change significantly over time due
to new routing possibilities and changes in demand. It is therefore essential to keep these
assumptions updated by collaborating with airlines.

• The uncertainties used in previous emission inventories are very large and have mainly been
taken from relatively old research. New research should be performed, in addition to the
uncertainty analysis from this report, which cover all aspects of the uncertainty analysis.

• Modelling of engine performance is a difficult process largely dependent on the available
information. The BFFM2 is still valid for the current world fleet even using new combustion
technology.

• Predictions on global kerosene consumption based on the expected increase in traffic and
the increase in (global) fleet efficiency have yielded results which are in line with conclusions
drawn in this report.

8.1. Conclusions
The objective of this research was to create an updated emission inventory for climate assessment
of aviation using new or updatedmethods tomodel aircraft and engine performance. This objective
was successfully executed by means of answering the main research questions and its respective
sub-questions. These are formulated again and answered underneath.

• What research can be used off the shelf and be complemented by this research in order to
increase reliability of the data?

No previous research has been used off the shelf but this research has been strongly influenced
by research that has been performed previously. Increasing the reliability of data mainly means
decreasing the uncertainty associated with that same data. The most comprehensive uncertainty
analysis associated with emission inventories has been conducted by Lee et al. [14] in 2005.
This research by Lee et al., although of great importance, was conducted in a time where the
uncertainty on individual aircraft operating parameters was relatively large. This means that the
overall uncertainty on the outcome of an emission inventory is also significant, hence reducing the
confidence in the results. This report and research, however, have been strongly influenced by
the work of N.W. Simone [4], mainly concerning the performance model and the emission model.
In addition, the airport database was taken off-the-shelf from this research.

• How can the uncertainty analysis be improved and the confidence in the results be increased?

This research has been aimed at reducing the uncertainty on the analysis of a large number
of flights. This has been conducted in a bottom up approach, meaning that flight patterns were
analyzed rather than fuel sales. The applied methodology is not completely new, nevertheless the
uncertainty on individual parameters has been quantified and based on these uncertainties, the
overall confidence in the results is established. Since the uncertainty on an individual parameter
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basis is lower, the overall confidence in the results is increased. In addition, Lee et al. [14] only
provides the uncertainty on fuel consumption while the uncertainty analysis in this research covers
all elements of an emission inventory, hence including all the emission species too. This provides
a significant advantage for policy makers and other researchers as they are provided with more
accurate results taking into account uncertainty of emission index estimation methodologies.

• Taking into account the updated emission inventory model, what are the emissions of avia-
tion?

The result of an emission inventory seems relatively simple, although the comprehensiveness
of the data establishes its importance. The outcome of this emission inventory is a three dimen-
sional grid which includes all major emission species, the quantity of emission and their geograph-
ical location. This provides other researchers with a starting point for climate impact assessment.
As the altitude and geographical location are included, the climate impact assessment can be
modelled more accurately compared to a situation where only the total emission is known. In ad-
dition, these three dimensional grids are also obtained for five categories of aircraft, categorized
according to the flown distances. This also allows researchers to accurately model climate impact
assessment of engine improvements limited to certain aircraft categories. The example could be
including certain technological improvements to regional aircraft, such as electrifying this fleet or
using sustainable aviation fuel (SAF) for very long haul aircraft. Summarized, the total emission
of all major emission species is provided in Table 8.1 including the 90% confidence interval. Note
that this is a simple copy of Table 7.2.

Table 8.1: Quantity of fuel consumption and emissions with 90% confidence.

Species Nominal Lower boundary Upper boundary
Fuel [Tg] 272.0 269.4 274.9
CO2 [Tg] 857.1 848.9 866.1
CO [Gg] 634.2 629.2 638.5
HC [Gg] 45.6 44.9 46.3
NOx [Tg] 5.3 5.2 5.4
SOx [Gg] 217.6 215.5 219.9
H2O [Tg] 336.3 332.7 339.9
BC [Gg] 6.8 6.7 6.9

8.2. Discussion
Logically, this research allows for some significant improvements to be made. Similarly to the rest
of this research and its methodology, the points of improvement are provided per discussed model
as used in this research.

8.2.1. Information model
The information model is the starting point of the emission inventory, and associated with it are
some improvements that can be made.

Use of a representative week
As mentioned extensively in this report, one representative week is used to compute the fuel con-
sumption and emissions for the entire year. This method has its drawbacks as it reduces the
accuracy of the results. Logically fluctuations occur relating to supply/demand and the types of
routes flown throughout the entire year. This decision is still considered justified due to limitations
placed on computing power, however as a recommendation it is advised to use multiple represen-
tative weeks throughout the year to account for demand variations and routing variations.

Complementing of flightradar24 database
Ideally, one does not need to complement the provided database. In this research, a thorough
analysis of the database of flights in the representative week was performed and limitations con-
cerning availability of data were found. Complementing of this data was performed mainly based
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on flight numbers. It is strongly advised to perform the analysis again, using the same week with
data from a different source to find whether significant differences are found.

The same departure and arrival airports
Based on a visual analysis it was found that certain flights had the same departure and arrival
airport. This concerned mainly general aviation flights. It was decided to delete those flights as no
estimation could be made on the covered flight distance. Flightradar24, however, also provides
the take-off time and landing time (many gaps in the database also occur for this information). One
could argue that this information provides some degree of knowledge on the covered distance and
a rough estimation on the covered distance could be made based on the airborne time.

Airport database
The airport database used in this research has been duplicated from the MIT Aviation Emission
Inventory Code [23] which was developed in 2013. Although some very limited research has been
conducted to find major airport developments opening in the 2013-2019 time frame, none have
been found. It is, nevertheless, possible that a major airport is missing from the database which
could have an impact on the outcome of the emission inventory.

Military flights
The flightradar24 barely contains any military flights (in january 2019 only ten General Dynamics
F-16 flights were found). This severely limits the computation of military fuel consumption and
emissions. It is therefore recommended for future emission inventories to make an estimation on
military fuel consumption and emissions based on historical trends. However, it will remain very
difficult to estimate the location and altitude of the fuel consumption and emissions. As mentioned
in Chapter 2 the quantity of fuel consumption and emission might not be negligible.

8.2.2. Performance model
The performance model uses data from the information model to compute the point performance
and fuel consumption at various points of the trajectory.

Jet aircraft
This emission inventory is mainly limited to civil commercial aviation, which, in turn, mostly utilize
jet aircraft. For this reason, the methodology is based around jet aircraft. This means that all
piston and turboprop flights are discarded. Although these flights surely do not make up a majority
of flights they could have some minor impact and explain the difference in fuel consumption found
in this research and the quantity of fuel sold according to the U.S. EIA.

ICAO engine models
As became clear from Chapter 6 some problems were found relating to engine models provided
in BADA and in the ICAO database. Sometimes a wrong engine model was selected in the ICAO
database due to some engine models occuring more than once. Although this was checked for
the discussed aircraft in Chapter 6, this has not been checked for all aircraft provided in BADA.
This could mean that for some flights/aircraft types, the wrong engine is selected from the ICAO
database.

Additionally, aircraft manufacturers often provide an aircraft with various options for engines
of different manufacturers. These engines are comparable in performance but do have different
fuel consumption and emission characteristics. It is recommended, in future research, to use
the registration to find the exact engine model from an aircraft database. It is expected that the
differences are very minor but the confidence in the results will be increased.

Fuel policy
Some uncertainty is also introduced by political/board influences. A clear example of this is the
fuel policy of airlines. Some airlines use the concept of fuel tankering [87] to tank fuel for the return
trip already at the point of departure. As this departure point is often their hub significant discounts
can be negotiated if large quantities of fuel are to be supplied. This, however, does increase the
fuel burn due to the increase in aircraft weight. This is, hence, an economical opportunity at the
expense of increased climate impact.
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Influence of weather
No weather information was used in the analysis of this emission inventory. Particularly wind is of
significant interest as this increases the flight time (if head wind is encountered). Wind always has
a negative effect on a round trip as the disadvantages of head wind are encountered for a longer
time than the benefits of tail wind. It is therefore recommended to use the uncertainty associated
to this in the uncertainty analysis.

8.2.3. Emission model
The last step to obtain the emissions is to apply the emission model to the results of the perfor-
mance model.

Interpolation methods
As discussed in Chapter 4 different interpolation methods provide different emission index results.
It was concluded that for one instance of comparison to a p3-T3 method, other interpolation meth-
ods than described by the BFFM2 provided a more representative result. It is therefore recom-
mended to conduct research to improve the BFFM2 by changing the interpolation method.

Lean burn engines
The BFFM2 places a limitation on the combustion technology and states that lean burn engines,
such as the GEnx engine family, are not suitable to be modelled by the BFFM2. This research
has compared the BFFM2 to p3-T3 methods to show the differences for one specific instance. It
is strongly recommended to use a different method for lean burn combustion engine modelling or
adapt the BFFM2 for these engines. This is especially important in future works as many ’regular’
aircraft will be phased out in coming years and replaced by Boeing 787s or Boeing 737 MAXs
which utilize this combustion technology. It is therefore expected that the influence of the decision
to model these engines using the BFFM2 in this research is very limited but it could become
significant when this subfleet increases.

DLR/FOA method
The DLR/FOA method has been specially developed to work in a similar way compared to the
BFFM2: use non-proprietary engine information to model black carbon emission. The conducted
research is from 2001 and black carbon emission is one of the focus points of engine manufac-
turers. Logically this affects the datapoints in the ICAO database, but this could also affect the
emission at cruise altitude. It is therefore recommended to compare the method to other propri-
etary methods for various flight instances to make a direct comparison and find how suitable this
model is for current generation engine black carbon emission modelling.

8.2.4. Uncertainty analysis
A significant element in this report is the uncertainty analysis. Some improvements can also be
made relating to this element.

DLR/FOA method uncertainty
No information has been found relating to the uncertainties attributed to use of the DLR/FOA
method. It is therefore recommended to compare this method to proprietary engine methods to
find the uncertainty related to this emission index estimation method.

Cruise altitude uncertainty
For the purpose of this emission inventory it has been decided not to include the uncertainty as-
sociated with cruise altitude. The underlying reason was that it is very difficult to quantify this
uncertainty and no pluralistic information was available to compute this uncertainty. It is therefore
strongly recommended to use data from a variety of airlines to quantify the uncertainty related to
cruise altitude. In addition, one could also conduct a variety of simulations to find the minimum
fuel consumption for various trajectories. Logically, this is the preferable case for airlines as well.
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Sulfur oxide emission index uncertainty
The uncertainty associated to the emission index of sulfur oxides is very large and it was therefore
decided to use the fuel consumption uncertainties to account for the variations in sulfur oxide
emission. To account for this individual uncertainty it is recommended to compare fuel samples
from distributors around the world to validate the sulfur content. Large scientific consensus exists
around the constant sulfur emission index but the uncertainty associated to this is not unanimous.

Compressor efficiency and black carbon emission index
The degradation of engine components taken into account for the engine aging thrust specific fuel
consumption increase is limited to only this part of the uncertainty analysis. The black carbon
emission index calculation also utilizes the component efficiency of the compressor. It is recom-
mended to find the probability density function associated with black carbon emission index due
to compressor degradation using the probability density function of component degradation as
prescribed in Chapter 5.



A
Convergence engine aging simulation

Figure A.1: Convergence of the mean TSFC for the
CFM56 engine. Figure A.2: Convergence of the standard deviation of

TSFC for the CFM56 engine.

Figure A.3: Convergence of the mean TSFC for the Leap
1A engine. Figure A.4: Convergence of the standard deviation of

TSFC for the Leap 1A engine.
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Figure A.5: Convergence of the mean TSFC for the
GE90-94B engine.

Figure A.6: Convergence of the standard deviation of
TSFC for the GE90-94B engine.

Figure A.7: Convergence of the mean TSFC for the
GEnx-1B64 engine.

Figure A.8: Convergence of the standard deviation of
TSFC for the GEnx-1B64 engine.



B
BADA fuel flow uncertainty

Figure B.1: Uncertainty in fuel consumption for stage length
1 Boeing 737-800.

Figure B.2: Uncertainty in fuel consumption for stage length
4 Boeing 737-800.

Figure B.3: Uncertainty in fuel consumption for stage length
1 Boeing 767-300ER.

Figure B.4: Uncertainty in fuel consumption for stage length
4 Boeing 767-300ER.
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C
Convergence total fleet

Figure C.1: Convergence of the mean fuel consumption
multiplier until every simulation.

Figure C.2: Convergence of the fuel consumption standard
deviation until every simulation.

Figure C.3: Convergence of the mean carbon dioxide
emission multiplier until every simulation.

Figure C.4: Convergence of the carbon dioxide emission
standard deviation until every simulation.
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Figure C.5: Convergence of the mean carbon monoxide
emission multiplier until every simulation.

Figure C.6: Convergence of the carbon monoxide emission
standard deviation until every simulation.

Figure C.7: Convergence of the mean unburned
hydrocarbon emission multiplier until every simulation.

Figure C.8: Convergence of the unburned hydrocarbon
emission standard deviation until every simulation.

Figure C.9: Convergence of the mean nitrogen oxide
emission multiplier until every simulation.

Figure C.10: Convergence of the nitrogen oxide emission
standard deviation until every simulation.
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Figure C.11: Convergence of the mean sulfur oxide
emission multiplier until every simulation.

Figure C.12: Convergence of the sulfur oxide emission
standard deviation until every simulation.

Figure C.13: Convergence of the mean water vapor
emission multiplier until every simulation.

Figure C.14: Convergence of the water vapor emission
standard deviation until every simulation.

Figure C.15: Convergence of the mean black carbon
emission multiplier until every simulation.

Figure C.16: Convergence of the black carbon emission
standard deviation until every simulation.



D
Uncertainty short haul

Figure D.1: Convergence of
mean fuel multiplier for all
2000 flights in all 100

simulations.

Figure D.2: Histogram
representing the fuel

consumption multipliers of
the 100 simulations.

Figure D.3: Convergence of
the mean fuel consumption

multiplier until every
simulation.

Figure D.4: Convergence of
the fuel consumption

standard deviation until every
simulation.

Figure D.5: Histogram
representing the carbon

dioxide emission multipliers
of the 100 simulations.

Figure D.6: Histogram
representing the carbon

dioxide emission multipliers
of the 100 simulations.

Figure D.7: Convergence of
the mean carbon dioxide

emission multiplier until every
simulation.

Figure D.8: Convergence of
the carbon dioxide emission
standard deviation until every

simulation.

Figure D.9: Histogram
representing the carbon
monoxide emission
multipliers of the 100

simulations.

Figure D.10: Histogram
representing the carbon
monoxide emission
multipliers of the 100

simulations.

Figure D.11: Convergence
of the mean carbon

monoxide emission multiplier
until every simulation.

Figure D.12: Convergence
of the carbon monoxide

emission standard deviation
until every simulation.

73



74

Figure D.13: Histogram
representing the unburned
hydrocarbon emission
multipliers of the 100

simulations.

Figure D.14: Histogram
representing the unburned
hydrocarbon emission
multipliers of the 100

simulations.

Figure D.15: Convergence
of the mean unburned
hydrocarbon emission
multiplier until every

simulation.

Figure D.16: Convergence
of the unburned hydrocarbon
emission standard deviation

until every simulation.

Figure D.17: Histogram
representing the nitrogen

oxide emission multipliers of
the 100 simulations.

Figure D.18: Histogram
representing the nitrogen

oxide emission multipliers of
the 100 simulations.

Figure D.19: Convergence
of the mean nitrogen oxide

emission multiplier until every
simulation.

Figure D.20: Convergence
of the nitrogen oxide

emission standard deviation
until every simulation.

Figure D.21: Histogram
representing the sulfur oxide
emission multipliers of the

100 simulations.

Figure D.22: Histogram
representing the sulfur oxide
emission multipliers of the

100 simulations.

Figure D.23: Convergence
of the mean sulfur oxide

emission multiplier until every
simulation.

Figure D.24: Convergence
of the sulfur oxide emission
standard deviation until every

simulation.

Figure D.25: Histogram
representing the water vapor
emission multipliers of the

100 simulations.

Figure D.26: Histogram
representing the water vapor
emission multipliers of the

100 simulations.

Figure D.27: Convergence
of the mean water vapor

emission multiplier until every
simulation.

Figure D.28: Convergence
of the water vapor emission
standard deviation until every

simulation.

Figure D.29: Histogram
representing the black

carbon emission multipliers
of the 100 simulations.

Figure D.30: Histogram
representing the black

carbon emission multipliers
of the 100 simulations.

Figure D.31: Convergence
of the mean black carbon

emission multiplier until every
simulation.

Figure D.32: Convergence
of the black carbon emission
standard deviation until every

simulation.



75

Table D.1: Mean multiplier and confidence intervals of short haul flights.

Species Mean 50% CI 90% CI 95% CI 99% CI
Fuel consumption 1.044 [1.039; 1.049] [1.033; 1.055] [1.030; 1.058] [1.026; 1.062]
CO2 emission 1.044 [1.039; 1.049] [1.033; 1.055] [1.030; 1.058] [1.026; 1.062]
CO emission 1.022 [1.019; 1.025] [1.015; 1.029] [1.014; 1.030] [1.011; 1.033]
HC emission 1.120 [1.114; 1.126] [1.106; 1.135] [1.103; 1.137] [1.097; 1.143]
NOx emission 1.077 [1.069; 1.085] [1.057; 1.096] [1.054; 1.100] [1.046; 1.107]
SOx emission 1.424 [1.384; 1.464] [1.327; 1.521] [1.308; 1.540] [1.270; 1.578]
H2O emission 1.044 [1.039; 1.048] [1.032; 1.055] [1.030; 1.057] [1.026; 1.062]
BC emission 1.061 [1.055; 1.067] [1.047; 1.075] [1.044; 1.078] [1.038; 1.083]



E
Uncertainty long haul

Figure E.1: Convergence of
mean fuel multiplier for all
2000 flights in all 100

simulations.

Figure E.2: Histogram
representing the fuel

consumption multipliers of
the 100 simulations.

Figure E.3: Convergence of
the mean fuel consumption

multiplier until every
simulation.

Figure E.4: Convergence of
the fuel consumption

standard deviation until every
simulation.

Figure E.5: Histogram
representing the carbon

dioxide emission multipliers
of the 100 simulations.

Figure E.6: Histogram
representing the carbon

dioxide emission multipliers
of the 100 simulations.

Figure E.7: Convergence of
the mean carbon dioxide

emission multiplier until every
simulation.

Figure E.8: Convergence of
the carbon dioxide emission
standard deviation until every

simulation.

Figure E.9: Histogram
representing the carbon
monoxide emission
multipliers of the 100

simulations.

Figure E.10: Histogram
representing the carbon
monoxide emission
multipliers of the 100

simulations.

Figure E.11: Convergence of
the mean carbon monoxide
emission multiplier until every

simulation.

Figure E.12: Convergence
of the carbon monoxide

emission standard deviation
until every simulation.
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Figure E.13: Histogram
representing the unburned
hydrocarbon emission
multipliers of the 100

simulations.

Figure E.14: Histogram
representing the unburned
hydrocarbon emission
multipliers of the 100

simulations.

Figure E.15: Convergence
of the mean unburned
hydrocarbon emission
multiplier until every

simulation.

Figure E.16: Convergence
of the unburned hydrocarbon
emission standard deviation

until every simulation.

Figure E.17: Histogram
representing the nitrogen

oxide emission multipliers of
the 100 simulations.

Figure E.18: Histogram
representing the nitrogen

oxide emission multipliers of
the 100 simulations.

Figure E.19: Convergence
of the mean nitrogen oxide

emission multiplier until every
simulation.

Figure E.20: Convergence
of the nitrogen oxide

emission standard deviation
until every simulation.

Figure E.21: Histogram
representing the sulfur oxide
emission multipliers of the

100 simulations.

Figure E.22: Histogram
representing the sulfur oxide
emission multipliers of the

100 simulations.

Figure E.23: Convergence
of the mean sulfur oxide

emission multiplier until every
simulation.

Figure E.24: Convergence
of the sulfur oxide emission
standard deviation until every

simulation.

Figure E.25: Histogram
representing the water vapor
emission multipliers of the

100 simulations.

Figure E.26: Histogram
representing the water vapor
emission multipliers of the

100 simulations.

Figure E.27: Convergence
of the mean water vapor

emission multiplier until every
simulation.

Figure E.28: Convergence
of the water vapor emission
standard deviation until every

simulation.

Figure E.29: Histogram
representing the black

carbon emission multipliers
of the 100 simulations.

Figure E.30: Histogram
representing the black

carbon emission multipliers
of the 100 simulations.

Figure E.31: Convergence
of the mean black carbon

emission multiplier until every
simulation.

Figure E.32: Convergence
of the black carbon emission
standard deviation until every

simulation.
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Table E.1: Mean multiplier and confidence intervals of long haul flights.

Species Mean 50% CI 90% CI 95% CI 99% CI
Fuel consumption 1.042 [1.038; 1.046] [1.031; 1.053] [1.029; 1.055] [1.025; 1.059]
CO2 emission 1.042 [1.038; 1.046] [1.031; 1.053] [1.029; 1.055] [1.025; 1.059]
CO emission 1.022 [1.019; 1.026] [1.014; 1.030] [1.013; 1.032] [1.010; 1.035]
HC emission 1.168 [1.160; 1.176] [1.149; 1.188] [1.145; 1.192] [1.137; 1.199]
NOx emission 1.082 [1.073; 1.090] [1.061; 1.102] [1.057; 1.106] [1.049; 1.114]
SOx emission 1.424 [1.384; 1.464] [1.326; 1.523] [1.307; 1.542] [1.269; 1.580]
H2O emission 1.042 [1.037; 1.046] [1.031; 1.052] [1.029; 1.054] [1.025; 1.058]
BC emission 1.064 [1.058; 1.070] [1.049; 1.079] [1.046; 1.082] [1.040; 1.088]



F
Payload-range diagrams

79



80

(a) Payload-range diagram of Airbus A320 from manual (figure obtained from A320
Aircraft Characteristics Airport and Maintenance Planning [88]). (b) Payload-range diagram of Airbus A320 obtained using Python.

Figure F.1: Payload range diagrams of the Airbus A320.

(a) Payload-range diagram of Boeing 787-9 from manual (figure obtained from 787
Airplane Characteristics for Airport Planning [89]). (b) Payload-range diagram of Boeing 787-9 obtained using Python.

Figure F.2: Payload range diagrams of the Boeing 787-9.



G
Non-available aircraft

Table G.1: List of aircraft/helicopters not used in the analysis.

0 AS32 BEAR CH30 DHC1 G200 LA25 P32R RS18 T34
146 AS50 BEH CH60 DHC2 G21 LA4 P32T RS20 T34P
320 AS55 BES CH65 DHC3 G2CA LAE1 P337 RV10 T34T
321 AS65 BET CH7 DHC4 G2T1 LAKR P3C RV12 T6
330 ASTO BK17 CH70 DHC6 G3 LARK P46T RV14 TAGO
333 AT3T BKUT CH75 DHC7 G44 LEG2 P51 RV3 TAIL
717 AT4 BL07 CH7A DHT G6 LEGD P68 RV4 TAMP
732 AT42 BL17 CH7B DIMO G70 LESP P750 RV6 TARR
734 AT43 BL8 CH80 DISC G73 LGEZ PA11 RV7 TAYD
735 AT44 BN2P CJ6 DR10 G73T LJ3 PA12 RV8 TB20
737 AT45 BN2T CJL DR22 GA7 LJ36 PA14 RV9 TB21
738 AT46 BOLT CL2P DR30 GA8 LNC2 PA16 S108 TB30
773 AT5T BPAT CL2T DR40 GAZL LNC4 PA17 S10S TBM7
32S AT6 BRAV CLON DRON GC1 LNCE PA18 S11 TBM8
73E AT6T BREZ CN35 DUOD GLAC LNP4 PA20 S12S TBM9
73G AT72 BT36 CN7 DV1 GLAS LS8 PA22 S20 TEST
73H AT73 BU31 CNA DV20 GLID LS9 PA23 S205 TEX2
73S AT75 BUSH CNC E110 GLST LYNX PA24 S208 TEXA
76W AT76 BX2 COL E120 GOLF M10 PA25 S22T TFUN
A109 AT8T C06T COL3 E200 GP4 M108 PA27 S25 TL20
A119 ATP C10T COL4 E300 GRND M200 PA30 S2P TL30
A139 ATR C120 COUG E314 GROU M20P PA31 S2T TLEG
A140 AUS5 C130 COUR E390 GUEP M20T PA32 S32M TNDR
A169 AUS6 C140 COY2 E400 GX M28 PA34 S330 TOBA
A189 AVID C150 COZY E500 GY20 M346 PA38 S450 TOUR
A210 AVTR C152 CP10 EA30 GY80 M4 PA44 S58T TRAL
A211 B06 C162 CP23 EAGL GYRO M5 PA46 S61 TRF1
A26 B06T C170 CR10 EB29 H160 M6 PAG S64 TRIM
A4 B105 C172 CRER EC20 H25 M600 PAR1 S76 TRIN
A5 B14A C175 CRUZ EC25 H25X M7 PAT S76B TRIS
A500 B17 C177 CT EC30 H269 M82 PAT4 S92 TS1J
A748 B18T C180 CT4 EC35 H40 MA5 PAY1 SAPH TUCA
AA1 B190 C182 CTAH EC45 H47 MA60 PAY2 SASP TWEN
AA5 B209 C185 CVLP EC55 H4AT MAVR PAY3 SAVG TWST
AAT3 B212 C188 CVLT EC75 H500 MC01 PAY4 SB20 U15
AAT4 B214 C190 D11 ECHO H60 MC10 PC12 SB91 U21
AB18 B222 C195 D140 EDGE HIGH MCR1 PC21 SC01 UCLA
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AB6 B23 C205 D150 EFOX HN70 MCR4 PC6T SC7 UF13
AC11 B24 C206 D18 EH10 HR10 MCRR PC7 SCOU UH1
AC4 B25 C207 D228 EL10 HR20 MD3R PC9 SD4 UHEL
AC50 B26 C208 D250 EN28 HROC MD60 PELI SF25 UL45
AC68 B29 C210 D253 EN48 HUML MESS PETR SF34 ULAC
AC6L B300 C212 D28D EPIC HUSK MF17 PIAE SF36 V10
AC90 B350 C240 D28G ER4 HYPR MI8 PIAT SF50 V22
AC95 B36T C25A D28T ERCO IL78 MIRA PISI SG92 VALI
ACAM B407 C25B D2SL ERJ IR23 MM16 PITA SH09 VELO
ACR2 B412 C25C D31 ESCP ISPT MM24 PIVI SH33 VENT
AEST B427 C25M D328 EUPA J2 MOR2 PK20 SH36 VEZE
AFOX B429 C27J D4 EV97 J3 MP02 PL2 SHIP VIX
AG5B B430 C28 D40 EVOT J300 MR25 PNR2 SHRK VL3
AKRO B505 C295 D4SL EVSS J4 MS23 PNR3 SIRA VNTR
ALGR B58T C303 D6CR EXEC J5 MSQ2 PNR4 SKAR VR7
ALIG B609 C30J D6F EXPL JAB2 MT PP2 SKRA VTOR
ALO2 BALL C310 D6SL EXPR JAB4 MU2 PP3 SLG2 VTRA
ALO3 BD4 C320 D9F F15 JABI MUS2 PRIM SLG4 VTUR
ALSL BDOG C335 DA40 F16 JANU MX1T PRM1 SO5R W3
ALTO BE1 C336 DA42 F18H JFOX MX2 PTMS SONX WA40
AN12 BE10 C337 DA62 F22 JK05 NAVI PTS1 SPIT WA41
AN2 BE17 C340 DAL4 F260 JS31 NG4 PTS2 SR20 WA50
AN24 BE18 C402 DC3 F406 JS32 NG5 PULR SR22 WACF
AN26 BE19 C404 DC6 F50 JS41 NH90 PULS SREY WILT
AN32 BE20 C411 DEFI F8L JUNR NIMB PUMA SS2T WT9
AP20 BE23 C414 DG15 FA04 KA27 NIPR PUP ST75 XA41
AP22 BE24 C42 DG1T FA24 KFIR NNJA PZ4M STAL XA42
AP32 BE30 C421 DG40 FAET KIS4 None R100 STAR XL2
APM2 BE33 C425 DG50 FALM KL07 O1 R200 STCH XNON
AR11 BE35 C441 DG80 FB5 KMAX ONEX R22 SUBA Y12
AR15 BE36 C525 DH1 FBA2 KODI OSCR R300 SV4 Y18T
ARCP BE50 C72R DH2T FDCT KP2 P06T R44 SVNH YK11
ARV1 BE55 C77R DH3 FK14 KP5 P149 R66 SW2 YK3
AS02 BE58 C82R DH3T FK9 KR30 P180 R90R SW3 YK50
AS16 BE60 C82S DH60 FM25 KT1 P208 RAF2 SW4 YK52
AS21 BE65 C82T DH8 FOX KZ7 P210 RALL SWM Z26
AS22 BE76 CA41 DH82 FURY L10 P212 RANG SX30 Z37P
AS25 BE77 CB1 DH87 G1 L188 P28A RBEL SYMP Z42
AS26 BE80 CC19 DH89 G103 L200 P28B RELI T18 Z43
AS28 BE95 CCJ DH8A G109 L40 P28R RF4 T206 ZEPH
AS29 BE99 CDUS DH8B G115 L410 P28S RF5 T210 ZZZX
AS30 BE9L CE43 DH8C G120 L5 P28T RF6 T214 ZZZZ
AS31 BE9T CH2T DH8D G12T L8 P28U RODS T28



H
Global fuel consumption
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