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Abstract

This report covers all major steps to establish an aviation emission inventory for 2019. This emis-
sion inventory is set up based on four consecutive steps. The first step is to gather all required data
in the information model and this also includes some pre-processing of data to make it as com-
plete as possible. The second step is to estimate the point performance of the aircraft at multiple
waypoints along the trajectory based on the Base of Aircraft Data (BADA). This also allows for fuel
consumption estimation. The third step uses the point performance data to estimate emissions
under the respective flight condition. The last step addresses introduced uncertainties based on
the different models. From a first principle perspective the uncertainty on a fleet wide scale (and
for short and long haul flights) is found concerning the fuel consumption and various emission
species (for example nitrogen oxides and carbon monoxide) using a Monte Carlo simulation.

The trajectory data is obtained from flightradar24 in which gaps were identified where the type
of aircraft, origin airport or destination airport were missing. Complementing of the database is
based around the provided flight numbers and call signs. Based on airline data a variety of as-
sumptions is made relating to payload fraction (69%) and increase in flight distance (8%) compared
to the great circle distance. The trajectory is estimated using the rate of climb and descent pro-
vided in BADA. The emission model then uses constant emission indices, the boeing fuel flow
method 2 (BFFM2) and the DLR method to compute all emissions according to:

+ Constant emission index: carbon dioxide (corrected for emission index of carbon monoxide),

water vapor and sulfur oxide.

* BFFM2: carbon monoxide, unburned hydrocarbons and nitrogen oxides.

* DLR: black carbon emission.

The uncertainty analysis, finally, covers airline operational uncertainty, model uncertainty and
engine aging uncertainty to find an average increase in fuel consumption of 4.2%. Due to the
influence of fuel flow, other emission species are increased with a different fraction.

Due to computational limitations it has been decided to analyze one week, which will be rep-
resentative of the entire year. Based on this analysis an annual fuel consumption of 272 Tg is
simulated with corresponding carbon dioxide emission of 857 T'¢g. In addition, a nitrogen oxide
emission of 5.3 T'g is found. All emission species are mainly emitted on the northern hemisphere
on three geographical locations: north America, Europe and south-east Asia. The strongest rec-
ommendation is to include military flights and non-jet aircraft in the analysis (mainly turboprop
aircraft). In addition, to decrease the dependency on data of a single week, it is advised to obtain
more computational power to allow for analysis of multiple representative weeks preferably in both
ICAO specified seasons.

Finally it is recommended to extend the uncertainty analysis to cover more individual uncertain-
ties such as the uncertainty in cruise altitude (based on airline routing) and to find more research
on the uncertainty of sulfur content in kerosene.
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Introduction

The aviation industry has been one of the fastest growing transportation industries, growing from
109 billion revenue passenger kilometer (RPK) per year in 1960 to 8269 billion RPK per year in
2018 [1]. This growth has been synonymous with an increase in anthropogenic climate impact as
the increases in efficiency do not outweigh the growth of the sector. With other (also non-transport)
sectors starting to become more sustainable, the percentual share of aviation emissions is ex-
pected to increase significantly to 22% in 2050 [2]. To model the emissions of aviation, the concept
of emission inventories has been developed: emission inventories estimate the emission of, in this
case, aviation by means of trajectory estimation and point/trajectory performance estimation. For
aviation in particular the applied methodology is of great importance as the emission altitude and
geographic location significantly affect the climatological impact of the emission species [3]. The
objective of this thesis is therefore to develop a comprehensive model which allows the capture
of three dimensional emission information to allow scientists to draw climatological impact assess-
ment conclusions.

One comprehensive emission inventory for the year 2005 that has been conducted is a study
at MIT by N.W. Simone in 2013 [4]. Simone predicts an annual fuel consumption of 180.6 T'g with
90% confidence between 136.1 — 232.9 T'¢g. This is considered a very large uncertainty and pre-
vents politicians to create effective climate legislation as the scale of emissions is very uncertain.
In addition, this uncertainty in fuel consumption imposes additional uncertainty on all emission
species as they are all strongly dependent on the fuel consumption. It is therefore essential to de-
crease the uncertainty associated with the fuel burn. The resultant fuel burn from Simone 2013’s
study, geographically, is presented in Figure 1.1. The figure shows that most fuel is burned in
three locations: north America, Europe and south-east Asia with routes between these locations
showing significant fuel burn as well.
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Figure 1.1: Global fuel burn from scheduled civil aviation in 2005 (figure obtained from Development of a Rapid Global
Aircraft Emissions Estimation Tool with Uncertainty Quantification [4]).



For various emission species the location of emission, both vertical and lateral, affects the cli-
mate/air quality. Various species, such as nitrogen oxides [5], have an ecological/local air quality
impact close to the location of emission. In addition, due to, historically, relative recent increases
in prosperity in Asia, the emission distribution in Figure 1.1 tends to change significantly over time
as prosperity is closely correlated to the number of flight movements [6]. Such change conse-
quently affects the associated local and global impact of emissions. It is therefore important to
keep aviation emission inventories as up-to-date as possible.

The objective of this research is to create an updated emission inventory for climate assess-
ment of aviation using new and updated methods to model aircraft and engine performance. To ful-
fill this objective the following research question is formulated: How can current aviation emission
inventories be improved and, consequentially, what are the updated aviation emission inventories
for different air traffic scenarios taking into account different aircraft categories? To answer this
main question, three research sub-questions are formulated:

* What research can be used off the shelf and be complemented by this research in order to
increase reliability of the data?
» How can the uncertainty analysis be improved and the confidence in the results be increased?

+ Taking into account the updated emission inventory model, what are the quantity and distri-
bution of emissions of aviation?

This report is structured as follows. Chapter 2 describes the information required as a starting
point for emission inventory assessment. Chapter 3 presents the applied methodology to estimate
point performance (such as fuel consumption at waypoints along a flight trajectory) and flight tra-
jectory. In addition the fuel flows and ambient conditions estimated by the trajectory calculation
are a starting point for the emission prediction. Then, in Chapter 4, the methodology to estimate
emissions at every way point of the flight is outlined. After that, in Chapter 5, the uncertainty anal-
ysis is performed starting from a simplified physical basis until the overall uncertainty has been
found. This chapter is concluded by showing the result of all individual uncertainties combined.
Following is Chapter 6, which presents the verification and validation of all applied models and
uncertainties. The penultimate chapter, Chapter 7, provides all results of the applied methods and
makes a direct comparison to previous emission inventories and fuel sales. Finally, a conclusion
is drawn and a critical reflection on this research is presented in Chapter 8.



Information model

The information model captures the foundation of an emission inventory. For the purpose of this
emission inventory data has been obtained from flightradar24'. Amongst others, the most im-
portant data captured are: the departure airport, the arrival airport and the type of aircraft. Un-
fortunately, no four dimensional data points along the route are provided, hence no intermediate
speeds or altitudes can be computed [7].

2.1. Structure of the emission inventory

To fully understand all elements of the emission inventory a short overview is presented in this sec-
tion. This section thus aims to present the underlying structure of Chapter 2, Chapter 3, Chapter 4
and Chapter 5. The emission inventory is composed of four elements (similar to work performed
by Simone et al. [4], C. J. Eyers et al. [7], S.L. Baughcum et al. [8], W. Fan et al. [9], D.K. Wasiuk
etal. [10], J. Liet al. [11] and B. Owen et al. [12]):

+ Information model: the information model brings all the information required for the analy-
sis. On a per-flight-basis the bare minimum required elements are the departure point, the
arrival point and the type of aircraft.

* Performance model: the performance model uses the data from the information model
to estimate the point performance at every point of the trajectory. This trajectory, in turn,
is modelled as the great circle distance corrected with the en-route multiplier: the fractual
increase in travelled distance compared to the great circle distance. Based on these point
performances an estimation can be made on the fuel consumption of the complete flight. The
estimation starts with point performance estimation at the departure point for the landing
and take-off (LTO) segment until climbout has finished at 3000 ft above the elevation of
the departure airport. The actual flight segment then starts which finishes 3000 ft above
the elevation of the arrival airport. Similarly, the LTO segment at the arrival airport is then
computed. The performance model requires many assumptions, such as the payload factor
and the increase in distance compared to the great circle distance.

+ Emission model: the emission model uses the estimated flight trajectory and point perfor-
mance to find the associated emissions of all flight phases. Some emission calculations are
easy as they are directly proportional to the fuel burn (such as carbon dioxide and water
vapor), while other emission species are largely dependent on thrust settings and ambient
conditions (such as nitrogen oxides and carbon monoxide). The LTO emissions can be ob-
tained from the ICAO emission databank, however the in-flight emissions require estimation.
Various models are required for this analysis to use sea level emission data and extrapolate
it to the required atmospheric conditions [13].

* Uncertainty analysis: the uncertainty analysis should capture all uncertainties associated
with the used models, the origin of the data and the choices made during this thesis. Intu-
itively, the aim is to minimize the uncertainties. Uncertainty analysis for aviation emission
inventories has been performed before, but the obtained uncertainties were rather large. Fur-

"https://www.flightradar24.com/ (accessed 05-09-2022)
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thermore, this research from 2005 (by Lee et al. [14]) is considered dated.

Note that these models are highly integrated with one another. A simplified schematic of this
process is presented in Figure 2.1. Please note that an elaborate version is presented later as
more insight is provided in the individual elements.

Aircraft performance _ Mathematical | |Mathematical model
data aircraft performance —
model [ )Combination of models

—I— Database
Performance model Final result
for variety of aircraft

Data on aircraft
routing/types of —»{ Statistical relations }7
aircraft used
— Performance of all
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Aircraft emission
data

Awiation emission
inventory

Figure 2.1: Basic flow chart of the various elements of an aviation emission inventory.

2.2. Types of aircraft

Before more information is presented about databases, it is important to understand what type
of aviation can be modelled. In general, four types of aviation are distinguished, which can be
subdivided in other categories as well [7]:

 Military aviation: military helicopters, cargo planes and fighter jets.

» General aviation: piston aircraft with no more than 10 seats.

+ Private aviation (private jets): business jets with no more than 20 seats often powered by

turbofan or turbojet engines.

« Commercial aviation:

— Turboprops: aircraft powered by at least two turboprop engines.

— Regional jets: jets powered by turbofan or turbojet engines with no more than 100 seats.

— Large jets: the majority of commercial aviation, these aircraft fly longer distances with
at least 100 seats.

Quantifying military aviation emissions is a difficult process due to the lack of reliable military
aviation trajectory information and the lack of data on emissions of military engines [15]. In the
US the military is responsible for a decreasing fraction of fossil fuel use [15] but, as of 2009, about
20% of jet fuel in the US is consumed by military aircraft [16]. The main reason for the fractional
decrease is the closing of marine/air force bases [15]. Waitz et al. [15], however, argue that the
main impacts of military aviation are noise related, rather than emission related. It is decided to
compute military aviation emissions in the same way as for civil aviation where information is pro-
vided. As there is not enough information available, these flights by military aircraft will not be
taken into account (as many military flights are not recorded by flightradar24 [17]).

Emissions of general aviation are easier to compute as the flights are tracked by flightradar24.
Unfortunately, this will be shown later in the report, the database governing engine emissions does
not cover piston engines. This means that emission estimation for these aircraft is not possible. In
addition, opensky provides a similar database compared to flightradar24 and in this database it is
found that only 6% [18] of the flights are made up of general aviation. Therefore, not taking these
flights into account does not create a significant uncertainty due to the fact that the emissions will
make up a far smaller fraction than the 6% because of the smaller emission impact of these aircraft.

Business jets are often based on commercial aircraft (from Boeing, Airbus, Bombardier and Em-
braer website), this allows one to use databases of the regular airliners. Furthermore, the family
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of engines used on these aircraft are covered by the required databases as they need to be certi-
fied for civil aviation. Business jets can therefore be covered in a similar way as the rest of the jets.

Lastly, turboprops cannot be modelled using the associated emission database as the ICAO
emission databank is limited to jet engines. These turboprop engines are often smaller aircraft
and do not make up a significant part of emissions in most recent Eurocontrol estimations [19].

2.3. Database

As briefly mentioned previously, the database of flights is obtained from flightradar24. This database
contains roughly 52 million flights per annual which is a too large number for all flights to be ana-
lyzed. For this purpose the concept of representative weeks is introduced: a representative week

is a seven day period for which the characteristics of all flights in this week is representative for

a longer period of time. Logically, increasing the number of representative weeks, thus making

every week responsible for a part of the year, increases the computational time significantly.

2.3.1. Requirements for the representative week
Several requirements are put forward to which the representative week must adhere to:

* The representative week shall not occur in a holiday period (i.e. summer on the northern
hemisphere or holiday period end of December/beginning of January).

* The mean number of flight movements throughout the year shall be as close as possible
(without violating any of the other requirements) to the number of flights in the representative
week.

» The representative week shall not be taken from a week where a switch is made between
summer and winter schedules for airlines (according to IATA? summer schedule starts last
Sunday of March until the last Saturday of October) as this provides a too large fluctuation
in traffic patterns for the rest of the requirements to uphold.

2.3.2. Daily traffic variation

Commercial daily aviation demand varies widely throughout the year. In order to find a represen-
tative week for the entire year, a good overview of the traffic variation is required. The number of
daily commercial aircraft movements is presented in Figure 2.2. Note that this is the 7-day moving
average. Only commercial flights were used for this analysis. The underlying reason for this de-
cision is that the majority of emissions is caused by commercial aviation according to Eurocontrol
[19].

Number of commercial flights throughout the year
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Figure 2.2: 7-day-moving-average of daily commercial flights worldwide (based on flightradar24 data).

Note that strong variations in traffic can occur in a week within the same month (such as during

2https://www.iata.org/ (accessed 05-09-2022)
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Christmas, around the beginning of July and the end of August). The variations over the entire year
are not very large, with minimum number of commercial daily movements of 100,000 beginning
of January and maximum of 125,000 halfway July. Preferably, based on the above diagram, the
representative week(s) should not be chosen at minimum or maximum traffic, i.e. not from January,
June, July and August.

2.3.3. Number of flights per month

In order to identify the representative week, an overview of the number of commercial flights per
month is presented in Table 2.1 with their representative share compared to the total number of
commercial flights in the year 2019.

Table 2.1: Number of commercial flights per month in 2019 (based on flightradar24 data).

Month Number of commercial flights 2019 Percentage of total [%]
January 3,237,745 7.71
February 2,971,193 7.08
March 3,372,054 8.03
April 3,362,958 8.01
May 3,553,438 8.47
June 3,625,576 8.64
July 3,848,744 9.17
August 3,842,034 9.15
September 3,617,796 8.62
October 3,674,918 8.76
November 3,386,662 8.07
December 3,476,720 8.28
Total 41, 969, 838 100

From both figures (Figure 2.2 and Table 2.1) a strong demand is observed during June, July
and August. This demand is followed by a small reduction in demand in the months September
and October. The end of the year then shows a peak in demand due to the Christmas/New Year
holiday. The least popular period then follows in February. This trend is roughly similar every year,
although the presented data is limited to the year of 2019 as this is the year under investigation in
this thesis.

2.3.4. Selection of representative week

In order to gain an understanding of the variation of commercial flight movements throughout the
year, Figure 2.3 is presented. Please note that only the weeks which were completely in 2019 are
presented. In other words, none of the weeks contain a day on which New Year’s Eve took place
which is why the total number of occurrences sums up to 51 weeks.

In addition to the data provided in Figure 2.3 the mean and median of all data is presented in
Table 2.2. Based on an analysis of all commercial flights in 2019 per week and on the formulated
requirements, week 21 of 2019 is chosen (Monday May 20 - Sunday May 26) as the only repre-
sentative week for computational purposes. The number of commercial flights in this week is also
presented in the table.

Table 2.2: Statistics on commercial flight weeks in 2019.

Parameter Value
Mean 806,631
Median 800, 627

Number of commercial flights chosen week 808,637
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Figure 2.3: Histogram of number of commercial flights in a full week in 2019.

2.4. Incompleteness of database

Visually checking data in the database, it has been found that some information, including abso-
lutely required information such as aircraft type, departure airport and arrival airport, are missing.
A methodology is set up to complement the database. First, a database program is selected to be
able to analyze all flights quickly. The selected program is sqlite3® since it functions well within the
Python environment. Since Python will also be used for the other models this is of predominant
importance. Three elements are required for the analysis of a single flight: departure airport, ar-
rival airport and the aircraft type. Complementation of the database is thus focused on obtaining
these three elements for every single flight. A flowchart of the process is presented in Figure 2.4
after which a thorough explanation of it is provided.

The first step is to convert all files to the required format (.db file). This file is duplicated and
renamed. This duplicated file will function as the file which contains all data for the representative
week. This is hence also the first step, to delete all lines which are not within the bounds of the
representative week.

The next step is to delete all lines where no required data (including flight number) is available.
In other instances, the flight number will be used to complement data from similar flights in the
database but if this is unavailable this is not possible.

Next, the flights where the origin and the destination are the same airport are deleted. For these
flights no estimation can be made about the length of the flight. A visual check also shows that
these flights are mainly general aviation flights for which the emission is not considered substantial
(as mentioned previously in the report of Eurocontrol).

Complementation of the representative week database is then initiated. Based on the three re-
quired elements various scenarios for the data of a single flight are available:

+ All data is complete: no action is taken and next flight is selected.

* No required data is available: based on the flight number the first flight where all required

data is available is selected and complemented to the required line.

» Departure and destination airports not available: based on the flight number and the

aircraft type the first instance of the combination is used to complement the original line.

+ Aircraft type not available: the flight number is used to find a similar flight from which the

Shttps://docs.python.org/3/library/sqlite3.html (accessed 11-11-2022)
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aircraft type is deduced.

+ Arrival airport not available: the flight number and departure airport are used to find the
arrival airport. The reason the departure airport is also used is that triangle flights often use
the same flight number for the three stretches of flight [20].

+ Departure airport not available: the flight number and arrival airport are used to find the
departure airport. The line of reasoning is the same as mentioned in the previous point.

Note that a combination of the above (such as type of aircraft and departure airport missing)
can also occur. This is also taken into account by the program and both are complemented if
possible. If no similar flight is found, the data will remain the same and will not be altered.

The last step is, again, to delete the lines where the origin and destination are the same.

Visually checking the database it can be seen that on the 'borders’, i.e. the switch from one day
to the other, flightradar24 causes some confusion. There is no ’hard’ border meaning that flights
from the previous day and the current day are mixed around for thousands of lines. To reduce the
probability that lines are missed, the representative week obtained before deleting flights starts
roughly on May 13 and lasts until roughly June 2. This makes a total of approximately three
million flights between these two dates. Statistics about altering of the database are presented in
Table 2.3.

Table 2.3: Statistics on altering of the database.

Parameter Value
Number of flights deleted because not correct date 2,004,667
Number of flights deleted because not enough data 908
Number of flights deleted because departure airport is destination airport 38, 466
No complementation: all data complete 781,597
Complementation required: all data missing 443
Complementation required: departure and arrival airport missing 22,082
Complementation required: aircraft type missing 3,511
Complementation required: departure airport missing 21, 305
Complementation required: arrival airport missing 50, 441
Complementation required: no other flight found 99, 648

Number of lines deleted because departure airport is destination airport 40,119

Please note that this is the analysis performed purely for complementing of the database. At
a later stage a similar table is provided which will present other flights that need to be left out
because the performance of the aircraft type is unknown, the airports are not recognized or similar
reasons.
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Performance model

The performance model uses inputs from the information model to calculate aircraft performance
and fuel burn at each way point throughout the flight trajectory. More information, compared to
all inputs from the information model, for this model is required such as the performance during
the landing and take-off (LTO) cycles and a database with the locations of airports. Before any
additional information is given it is important to mention that the point performance of an aircraft
is dependent on three elements: aircraft weight, altitude and airspeed [21].

3.1. Additional inputs

Four more inputs are required in addition to the data from the information model: point performance
of variety of aircraft, performance during LTO cycles, geographical information of airports and
estimation of aircraft operational parameters. Based on these parameters the trip fuel of a certain
trajectory can be estimated and the output from the performance model can be utilized in the
emission model.

3.1.1. Point performance

To estimate the fuel consumption of a total flight the complete trajectory is divided in several sec-
tions: ground departure, take-off and climbout, climb, cruise, descent, approach and ground ar-
rival. At every section the point performance of the aircraft is estimated based on aircraft mass,
airspeed and altitude, by using an aircraft performance database. Various aircraft performance
databases are available but the most often used database is the Base of Aircraft Data (BADA) [7].
This database is created by Eurocontrol for the purpose of trip fuel estimation and uses .txt files
for aircraft (performance) data. Another well-known tool to estimate aircraft fuel consumption for
an entire trajectory is PianoX', this tool is also able to provide the fuel flow at various points. It is
a tool which is often used for validation purposes and for performance estimation. Unfortunately,
it is not widely documented what the computational methods are behind the program but its func-
tioning is barely questioned. The last tool that has been found is openAP [22], which is largely
based on empirical/statistical relationships and has been developed by J. Sun [22] (a researcher
at TU Delft). Substantial efforts have been placed in verifying and validating the openAP model
specifically for the Airbus A320 [22]. This program has not been used by a lot of researchers but
it functions very well within the Python environment. The data within this database is also limited
to the fuel flow and emission data. This means that typical air speeds at certain altitudes are not
mentioned whereas these are mentioned in the BADA database. This makes trajectory estimation,
based on BADA, easier.

Unfortunately PianoX does not allow users to incorporate the database into other external pro-
grams, such as matlab, Python or similar programs. Nevertheless a comparison has been made
between the three databases with two random datapoints per aircraft (for ten different aircraft)
varying altitude, airspeed and mass. This comparison is presented in Figure 3.1 and Figure 3.2

"https://www.lissys.uk/PianoX.html (accessed 15-11-2022)
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where BADA is taken as a baseline performance program. Note that the blue line presentsay = «
relationship.
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Figure 3.1: Point performance comparison between BADA Figure 3.2: Point performance comparison between BADA
and openAP. and PianoX.

From the above figures one is able to conclude that the fuel flow under similar conditions is,
on average, underestimated by BADA compared to openAP or PianoX. This is also illustrated in
Table 3.1 where the average increase in fuel flow is presented for the various performance models.

Table 3.1: Average increase in fuel flow with baseline BADA.

Parameter Fuel flow increase compared to BADA [%]

openAP increase 14.8
PianoX increase 8.8

The numbers presented in the above table are considered a substantial deviation (> 5%). Re-
ferring to the diagrams one can see that there is one outlier in Figure 3.2. Even if this outlier is
discarded, the increase in fuel flow of PianoX with respect to BADA is still 6.3%.

The decision is made to use BADA as the performance model database. The line of reasoning
is that it is often updated, many similar researches use the database and BADA offers more than
just the performance database (more elaboration on this in a later section).

3.1.2. Flight distance increase compared to great circle distance

The information model simply provides the departure and arrival airport, hence no other trajectory
information is known. Furthermore, it is general knowledge that aircraft often do not fly this great
circle distance [14] (i.e. the shortest distance between two points). It is therefore interesting to
see how much farther planes fly compared to their great circle distance.

Access has been provided to various flight plannings of a well-known airline to obtain the trip
fuel, flown air distance and the payload mass. This air distance has been compared to the great
circle distance of the airport combinations from the flight planning database for a variety of flights.
Accordingly, the so-called en-route multiplier was derived: the fractional increase in travelled dis-
tance between two points due to not flying over the great circle distance. This analysis has been
performed for many of the carrier’s aircraft: Embraer E190, Boeing 737-800, Airbus A330-300,
Boeing 777-300ER, Boeing 787-9 and Boeing 787-10. Furthermore, four flights per aircraft type
are provided. The en-route multiplier for all considered fights is presented in Figure 3.3. This
figure clearly presents the distribution of en-route multipliers, clearly all flight distances are close
to the great circle distance.
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Histogram of increase compared to great circle distance for all flights
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Figure 3.3: En-route multiplier for all considered routes and aircraft.

To quantify the real effect of the en-route multiplier it makes more sense to distinguish between
short haul (in this research considered below 1000 nm) and long haul aircraft. The underlying
reason is that the LTO cycles make up a larger fraction of the trajectory for short haul flights com-
pared to long haul flights. Logically these cycles add distance to the trajectory which fractionally
increases short haul flights more than long haul flights. The histograms which distinguish between
short haul and long haul are presented in Figure 3.4 and Figure 3.5.

Histogram of increase compared to great circle distance for short haul flights Histogram of increase compared to great circle distance for long haul flights
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Figure 3.4: En-route multiplier for short haul flights. Figure 3.5: En-route multiplier for long haul flights.

In the above figures clear distributions can be seen such as a distribution close to a normal
distribution for short haul flights. Furthermore, the explanation concerning the LTO cycle playing
a dominant role for short haul flights is proven numerically as the en-route multipliers for long haul
aircraft are lower than for short haul aircraft. Note that the distinguishment has been specifically
made for the length of a trajectory rather than for an aircraft type as long haul aircraft are occa-
sionally used on short haul stretches. This also occurred in the dataset as the Airbus A330-300
was used on a short haul stretch twice: Dammam - Muscat and Kigali - Entebbe. The averages
of the data are also presented in Table 3.2.

The low standard deviation of the long haul flights is clearly in line with the data presented in
Figure 3.5. The higher standard deviation for short haul flights is a logical result since the impor-
tance of the LTO trajectory increases as the trajectory length decreases. This also means that very
small distance short haul flights have a very large effect on the standard deviation of the en-route
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Table 3.2: Average increase in trajectory length compared to great circle distance.

Type of flight Mean en-route multiplier [-] Associated o [-]

Short haul 1.130 0.070
Long haul 1.039 0.031
Overall 1.08 0.068

multiplier.

3.1.3. Airport database

Another step to be made in the performance model is the conversion from airport IATA/ICAO code
to the geographical location on Earth in terms of latitude, longitude and elevation. A database has
been found which has previously been used for another aviation emission inventory by Simone et
al. [23]. The mentioned emissions inventory has been performed in 2013 so it is assumed that
no significant changes have been made concerning locations of airports or no major airports have
been added. This will be verified in a later section. By testing, it has been found that the database
is extensive (as about 95% of the flights in the database can be analyzed based on the airport
pairs), but for reference’s sake all airports are presented in Figure 3.6.
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Figure 3.6: All considered airports in the corresponding database.

Smaller airports in the Pacific, the Atlantic, Alaska and northern Canada are also considered.
The total number of considered airports is 2,656. When the emission inventory, from which this
database is obtained, was written, the airports in this database formed 99% of all flights in the
Official Airline Guide (OAG). It is expected that no significant shift to other airports has occurred
in recent years.

3.1.4. Payload mass and empty mass
One significant advantage of BADA is the fact that the data is not limited to point performance data,
but masses, types of engines and other data are also provided. For the purpose of this thesis, the
mass of an aircraft m... is divided in three categories: empty weight OE M, payload mass myqyioad
and fuel weight m ., i.e.:

Mtot = OEM + Mpayload + mfuel (31)

The fuel mass varies based on the variation of the total weight throughout the flight. An accu-
rate estimation hence needs to be made of the empty mass of an aircraft and the payload mass
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of an aircraft. Please note that the empty mass of an aircraft is a standard value which can easily
be found online. Unfortunately, this value is not specified in the BADA database and hence, for
automation purposes, needs to be deduced from a value which is provided in the database. Var-
ious values have been compared but the best fit is found for a fraction of the maximum take-off
mass, i.e.:

OEM = fempty - MTOM (3.2)

where fe.pty is found to be fe,,pr, = 0.500 based on an analysis of nine aircraft types (ranging
from small single aisles to very large twin aisles) with a standard deviation o = 0.025.

Estimation of the payload mass of a specific flight is more difficult as this can fluctuate depend-
ing on the occupancy and the popularity of certain routes. The maximum payload mass of an
aircraft type is a given in BADA and will be used in a similar manner as the operating empty mass
was computed. The validation data from a well-known carrier is used to create a histogram of
obtained payload multipliers. This histogram is presented in Figure 3.7.

Histogram of payload fraction for all flights
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Figure 3.7: Payload multiplier for all considered routes and aircraft.
On average the payload factor, the fractional payload compared to the maximum allowable

payload, is fpayi0aa = 0.69. A distinguishment is made, again, between the short haul and the long
haul flights to see what the results are. This is presented in Figure 3.8 and Figure 3.9.
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Figure 3.8: Payload multiplier for short haul flights. Figure 3.9: Payload multiplier for long haul flights.

The averages are not significantly different in these figures, as also presented in Table 3.3.
An important remark should be made as the two previously mentioned flights (the Airbus A330-
300 flights) are very short. These two flights have a payload fraction of f,qyi0aa = 0.307 and
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frayioad = 0.655 respectively which is considered low. Since twin aisle aircraft are barely used on
these kinds of routes, these two flights are over-represented for their effects in this small database.
The result is presented at the bottom of the table, and it is observed that the payload multiplier
increases significantly while the associated standard deviation is reduced significantly. The total
result is presented in Table 3.3.

Table 3.3: Average payload weight as a fraction of the maximum allowable payload.

Type of flight Mean payload multiplier [[] Associated o [-]
Short haul 0.689 0.148
Long haul 0.690 0.104
Overall 0.690 0.122
Short haul excluding A330-300 flights  0.741 0.065

There is still uncertainty associated to the empty weight of an aircraft for several reasons. Some
aircraft models have freighter and passenger versions. The passenger versions have a signifi-
cantly higher empty weight due to fittings such as seats, galleys and lavatories. For the payload
weight there is also associated uncertainty. Researchers in a previous project (Aero2k [7]) have
conducted a sensitivity analysis where the payload factor of 60.9% was varied with +10%. This
showed a sensitivity of less than 3% in terms of fuel burn [24]. The assumptions for nominal
conditions are therefore considered valid.

3.1.5. ICAO emissions database

In addition to the BADA performance software, used above an altitude of 3000 f¢, the LTO cycles
need to be taken into account. For the purpose of this, ICAO [25] has produced an overview for
a variety of data, such as fuel flow rate and emission indices, specified per engine for four thrust
settings at mean sea-level. Furthermore, ICAO also specifies the time an aircraft spends within
one of these flight phases. The thrust settings and their associated flight phase and time are
presented in Table 3.4.

Table 3.4: Thrust setting and associated flight phase and flight time.

Flight phase Thrust setting [%] Time [s]

Idle 7 1560
Approach 30 240
Climbout 85 132
Take-off 100 42

Idle time can be divided between taxi-out and taxi-in time where ICAO specifies a taxi-out time
of 1140 s and a taxi-in time of 420 s.

The database contains many jet engines with varying specifications. This also means that
many models of a single engine family are contained in the database. For the purpose of this the-
sis, the first found engine with a corresponding name to the aircraft engine model is selected for
its emissions and fuel flow parameters. If no match is found, the program will continue searching,
reducing the length of the engine name by 1 every iteration. In practical terms, for a Boeing 787-
10, this means that BADA specifies the GEnx-1B76 engine. The program finds GEnx-1B76/P2 as
the best match. Similarly, for the Airbus A321 neo, with engine model Leap-1A32, the selected
engine model from the ICAO databank is the LEAP-1A35A/33/33B2/32/30 as the match is found
when the reduction in engine name length becomes LEAP-1A3.

The emission and fuel flows in the ICAO database are all reference information at sea level.
Therefore, only for the LTO sections of flight, the assumption is made that the airports are located
at sea level. This still means that the climb segment starts 3000 ft above sea level, as will be
discussed later. This assumption is valid as LTO fuel consumption is less than 10% of total fuel
consumption [7]. Furthermore, the 200 busiest airports, according to Aero2k, had an average
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elevation of 654 ft [7] (weighted for the number of departures) and were responsible for about
65% of departures in the mentioned database.

3.2. Functioning of the performance model

This section aims to present the basic flow of the performance model and how all elements are

integrated.

3.2.1. Content of BADA performance table
The BADA performance database provides a variety of data for every phase of the flight. The
following is true and provided for a variety of altitudes:
« For climb, the airspeed is specified and the rate of climb ROC for a variety of aircraft masses
is specified. Furthermore, the fuel flow is specified for the nominal aircraft mass.
 For cruise, the airspeed is specified and the fuel flow for three aircraft masses is specified:
low, nominal and high.
» For descent, the airspeed is mentioned, the rate of descent (ROD) is specified and the fuel

flow is provided, all for nominal aircraft mass.

An example of a performance table is presented in Figure 3.10.
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Figure 3.10: Example of a performance table file (PTF) for the Fokker F-28 aircraft (figure obtained from Eurocontrol
[26]).
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The model relies on aircraft dynamic modelling equations which, fundamentally, are focused on
elements in the Total Energy Method, also known as the TEM. The TEM relates the time derivative
of the work done by the aircraft’'s forces to the time derivative of the aircraft’s kinetic and potential
energy as presented in Equation 3.3:

d(TAS)
dt

where Th represents the thrust in [V], D represents the drag in [N], g is the gravitational
acceleration in [m/s%] and T AS the true airspeed in [m/s]. Based on the TEM, an equation is
formulated to compute the rate of climb/descent, ROC D, as presented in Equation 3.4:

-1
rocp = Th=D)Vras [1 + <VTAS> (dVT“ﬂ (3.4)
mgo 90 dh

(3.3)

(Th — D)TAS = mgo% +mTAS

where the term in square brackets is often referred to as the energy share factor (ESF) as it
relates the power of the aircraft during ascent/descent to its acceleration. For more information
related to the BADA model and its underlying physical principles and aerodynamics please refer
to a report by A. Nuic et al. [27].

Relating to the performance table files, some of the data is only provided for nominal aircraft
mass, this means that no interpolation can be made depending on the aircraft mass for these
flight phases. Some aircraft are not directly supported by the BADA software. For most of these
instances a list of representative aircraft are formulated to allow users to still perform aircraft per-
formance investigations for these aircraft.

Interestingly enough the airspeed is provided for all flight levels, instead of it being a variable.
This makes estimation of the trajectory easier as the air speed becomes an output rather than an
input. In real life, airlines determine the air speed on several parameters, most important of which
is the cost index [28] where the time related cost is compared to the fuel cost. This means that
for certain routes a lower/higher air speed is desirable in terms of cost. When aircraft fly at the
air speed which minimizes fuel burn per unit distance (also known as the maximum specific air
range (S AR)) the fuel consumption rate is relatively insensitive to small perturbations in air speed
[7]. The assumption of using the associated air speed referenced in BADA is therefore considered
valid.

3.2.2. Performance model flow
Broadly speaking, the performance model’s flow is as follows:
Initial take-off mass (TOM) estimation

1. From the departure and arrival airport, the great circle distance is found which is corrected
using the en-route multiplier.

2. From the aircraft type, its performance file (the performance table), its OEM, the engine
type and its payload mass are retrieved.

3. From the engine type, the fuel flows for the associated thrust settings are found.

4. Estimation of the cruise altitude is done based on the maximum cruise altitude reduced with
a constant altitude as aircraft do not fly their maximum cruise altitude.

5. The corresponding cruise fuel flow to the associated cruise altitude is found.

6. Using the airspeed from BADA the trip time is estimated from which easily the trip fuel is
estimated.

7. The reserve fuel is calculated as 5% of the trip fuel.

8. The lowest fuel flow from the performance table (i.e. minimum mass and lowest cruise alti-
tude) is found for diversion and holding: for flights longer than 180 minutes 200 nm diversion
and 30 min holding is considered, for flights shorter 100 nm diversion and 45 min holding as
stated per regulations.

9. The takeoff mass is the summation of the empty mass, the payload mass, the trip fuel, the
reserve fuel, the hold fuel and the diversion fuel. This can never exceed the maximum take-
off mass (MTOM).
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