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Abstract

Digital Soil Mapping (DSM) of soil types in geotechnical project areas is a top priority. These

maps are often used in decision making and can have significant consequences related to costs

and risks. Usually, these maps are generated by digital soil models that interpolate soil types at

known locations. In practice, conventional spatial interpolation techniques are still often used

for DSM of soil types, such as inverse distance weighting and kriging. However, conventional

models are not well suited for predicting or interpolating soil types because of their inability

to deal with categorical data properly. Besides, the design of the conventional models does

not allow for incorporating the abundance of meaningful covariate information that is available

nowadays. The flexibility of machine learning algorithms vanquish both problems and has be-

come increasingly popular for DSM of soil properties in recent years. The results of machine

learning techniques for DSM of soil properties are promising and generally outperform conven-

tional models. However, few studies have used machine learning for DSM of soil types and is

therefore still a relatively unknown field. Moreover, at the time of writing, there are no studies

that use sequence models for DSM of soil properties or types. Hence, the author proposes to

introduce a new method for DSM of soil types, namely a Long Short-Term Memory (LSTM)

network. The intuition behind this introduction is that the spatial correlation can be captured

in sequences and can improve soil type prediction.

Real project data from a cable burial project is used to evaluate and compare the perfor-

mance of the conventional interpolation methods triangulation and kriging, the machine learning

models random forest and XGBoost, and the newly proposed deep learning model LSTM. The

project data consist of 757 vibro cores (VC), 718 cone penetration test (CPT), bathymetry data

and sub-bottom profilers. The geotechnical data, i.e. VCs and CPTs, is received on separate

PDF pages that require to be digitized first. This thesis describes a simple yet precise manner

to extract this data from the PDFs. The VCs and CPTs are provided with a soil type interpre-

tation and can be used directly for developing the models. The data is split into a training set to

develop/train the models and a test set for evaluation. Ultimately, the best performing model

is used to build a 3D stratigraphic soil model for the project area with associated prediction

accuracies.

All state-of-the-art techniques outperform the conventional models and especially in predict-

ing minority classes. The best performing model is random forest with an overall accuracy of

85.44% and is comparable to the performance of XGBoost of 85.11%. LSTM network achieved

a slightly lower accuracy of 84.27%. The results show that LSTM is suitable for DSM of soil

types and has considerable potential for improvement as only a few possibilities of the model

have been examined.
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Chapter 1

Introduction

1.1 Background Information

For many years people have been trying to map soil. The first known soil maps date from the

18th century for agricultural purposes (Minasny & Mcbratney, 2015). Later on, soil mapping

becomes essential to determine, among other things, the bearing capacity, settlement or strength

of the soil. These soil characteristics can be determined using a soil profile. A soil profile is

a vertical intersection of the soil with the soil layers present and is crucial for all kinds of

projects where soil investigation is required. Based on soil investigation, the soil profile can be

established. Commonly, these soil profiles are used to create a map or a model of an area which

is known as Digital Soil Mapping (DSM).

For many onshore and offshore projects, a thorough soil investigation in combination with

DSM is of great importance. Take, for example, a bottom-founded structure, more certainty

about the soil profile, and thus the bearing capacity can drastically reduce the size of the

foundation. Implicating that there is a trade-off between the thoroughness of the investigation

and the uncertainty of the soil profile model. However, a thorough soil investigation can be

costly and does not necessarily lead to a better or more reliable soil model. For this trade-

off, an optimum is sought depending on the risk taken and costs. The maximum risk is often

predefined by the company’s regulations or law, resulting in optimum only depending on costs.

There will always be interest in an enhanced soil model, as it can significantly reduce the

costs of almost all projects requiring soil investigation. More certainty can reduce the project’s

costs by making less conservative assumptions and calculations. In addition, a less thorough

soil investigation is required to achieve the same certainty in the soil profile model.

1.2 Problem Definition

Offshore wind farm generated electricity is transported to onshore facilities via export cables.

These cables are laid on the seabed, and to protect these cables from external hazards, they can

be covered with rocks, mattresses or trenched into the seabed. In the case of trenching, the burial
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process is usually performed by a trencher, plough or a sledge. The success of trenching/cable

burial depends a lot on the availability of sufficient soil information within the shallow seabed

along the cable route. Oftentimes geotechnical data is collected at a fixed interval along the

cable route. Then, in combination with the geophysical data, a soil profile model is developed

whereby the quality of the model depends on the proper integration of these two datasets. For

the areas between the geotechnical testing locations, interpolation techniques are required.

In practice, conventional spatial interpolation techniques are still often used for DSM of soil

types, such as Inverse Distance Weighting (IDW) and kriging. However, conventional models

are not well suited for DSM of soil types because of their inability to deal with categorical

data properly. This problem is encountered by the subsea cable department of Boskalis. This

department advises which burial tool can be used best for trenching cables into the seabed.

Their advice is based on a soil profile model developed in ArcGIS Pro, among others, where only

conventional methods are available. Hereby, it is common that Boskalis receives the geotechnical

tests (GTs), where the model is based on, in Portable Document Format (PDF). PDFs have

an inconvenient data format to work with, and it takes geotechnical engineers an unnecessary

amount of time to manually convert it to a workable format and analyze it. Automation is

desired where the PDF is directly converted to a workable format.

1.3 Research Goal

The aim of this thesis can be divided into a practical and an academic component. The practical

component is to digitize the geotechnical data from a PDF to a workable format, such as an

Excel or a comma-separated value file. The geotechnical data includes Vibro Cores (VCs),

Cone Penetration Tests (CPTs), both requiring digitization of the soil interpretations and the

CPT graphs. Then, the digitized data is enriched with geophysical data, after which a 3D

stratigraphic soil model is built.

The academic aim of this thesis is to evaluate the performance of conventional models against

state-of-the-art techniques and to a newly proposed model for DSM of soil types. The soil

interpretation provided with the GTs is considered ground truth and can directly be interpolated

to build the soil profile model. Currently, the most popular spatial DSM techniques are kriging

and deterministic interpolation methods, such as IDW and nearest neighbours. However, in

recent years, the popularity of machine learning algorithms for DSM of soil properties has

increased. Algorithms such as random forest and gradient boosting are nowadays often used

(Sekulić et al., 2020). The results of machine learning techniques for DSM of soil properties

are promising and generally outperform conventional models. HHowever, few studies have

used machine learning for DSM of soil types and is therefore still a relatively unknown field.

Moreover, at the time of writing, there are no studies that use sequence models for DSM of

soil properties or types. For this reason, the author proposes to introduce a new method for

DSM of soil types that have been proven in other fields, the Long Short-Term Memory (LSTM)

network (S. Wang & Jiang, 2015; Yao & Guan, 2018; J.-H. Wang et al., 2018; Y. Wang, Zhu,
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& Li, 2019; Zhang et al., 2019). This neural network is known from time series problems but

is used, with success, in different fields as well, such as in natural language processing. The

intuition behind this introduction is that the spatial correlation can be captured in sequences

and can improve soil type prediction.

The implemented techniques that are used for DSM of soil types are the conventional in-

terpolation methods triangulation and kriging, the machine learning models random forest and

XGBoost, and the newly proposed deep learning model LSTM. The DSM models are evaluated

on real project data from a cable burial project. The final product is a more accurate soil map

with probabilities that gives an indication of certainty.

1.4 Relevance to Trenching

An algorithm that is consistently better at generating soil maps is of great value for many

fields, including trenching. For instance, the best burial tool is selected based on the in situ

soil conditions. As a consequence, an accurate soil map is vital for selecting a suitable burial

tool. Mapping the soil conditions more accurately provides certainty for selecting the most

suitable burial tool. In addition, with a more accurate soil model, the performance of a burial

tool can be evaluated more precisely. The performance is continuously monitored and logged

during burial. By assessing the logging data and relating this performance to a more accurate

soil model, it becomes more apparent in which circumstances the burial tool performs well or

poorly. The field experience can then be used to improve burial tool models for future projects.

Furthermore, predicting more accurately critical soil types, in this case, peat, can signifi-

cantly reduce the cost of a trenching project. For instance, if all peat along the cable corridor

has to be excavated, it is plausible that a substantial amount of soil is excavated without peat.

Predicting where peat is located with more certainty means less abundant material has to be

excavated.

Another worth mentioning contribution of this research is the contribution to the innovation

of a rather traditional field. Nowadays, the current hype of becoming more data-driven has

touched many research fields. It is vital that trenching keeps pace with innovations in the field

of data to remain interesting for young engineers and improve the trenching activities.

The field of trenching is ideally suited to become more data-driven due to the amount of

available data. The burial tools are equipped with numerous sensors and cameras which record

a vast amount of data. Resulting in almost a limitless amount of research possibilities.

1.5 Research Questions

To accomplish the research goals stated in Section 1.3, research questions have been formulated.

The main research question is the following:

Are conventional spatial interpolation techniques the best way for digital soil map-
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ping of soil types, or does machine learning offer an opportunity for improvement?

In addition, sub-research questions have been formulated that relate to other relevant parts of

this research. The research can be divided into 1) digitizing the geotechnical data; 2) predicting

the locations to be excavated: 3) evaluating the performance of conventional techniques against

state-of-the-art techniques and 4) analyzing the suitability of an LSTM for DSM of soil types.

The following sub-research questions have been formulated:

1. How accurate is the digitizing tool in digitizing cone penetration test graphs compared to

the measured data, and can this product be used in practice?

2. Can the implemented models assist in determining which sites contain peat and need to

be excavated?

3. How do the machine and deep learning models perform compared to the conventional

models in the digital mapping of soil types?

1.6 Approach

In order to answer the research questions, the approach shown as a flow chart in Figure 1.1 is

used. The first step is digitizing the PDFs to a workable format. Subsequently, the digitized

data is split into a training and a test set. The training set is used to develop and train the

models, whereafter the models are evaluated on the test set. Eventually, the best performing

model is used to develop a complete 3D stratigraphic soil model along the cable corridors.
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Figure 1.1: This flowchart represent the intended approach for answering the research questions.

There is a loop in the diagram where in each loop a different model is trained and evaluated on

the test set.

1.7 Thesis Outline

The structure of the remainder of this research is as follows:

≻ Chapter 2 provides the literature review. This chapter provides geotechnical background

as well as the theory of the models used to generate a digital soil map. Potential ex-

planatory variables and the problematic appearance of an imbalanced dataset are also

addressed. This chapter finalizes with concluding remarks of the literature study.

≻ Chapter 3 provides a description of the used data. It also describes how the explanatory
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variables are derived from the data and their correlation. Completing this chapter with

the interpretation of the present soil types.

≻ Chapter 4 elaborates on the methodology used. First, a section on image processing

describes the technique used to extract the data from the PDFs. This is followed by

the procedure of splitting the data into a training and test set. The next section covers

the data preprocessing steps. Selecting the best model by optimizing and thereupon a

final evaluation is described in the section Model Selection. This chapter ends with the

methodology to develop a 3D soil model.

≻ Chapter 5 discusses the results. The results of hyperparameter optimization are addressed

first. Then, a ranking of the most important features is provided. The following section

presents the results of the final models. Concluding with an analysis of the results.

≻ Chapter 6 finalizes with the conclusions. Starting with the findings, then answering the

research questions and finalizing with recommendations for future research.

Additionally, an appendix supplements the thesis after the references.
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Chapter 2

Literature Review

This chapter elaborates the theory on this subject as well as existing literature. The first

section discusses the geotechnical background related to the problem. Secondly, the theory

of the applied digital soil models is explained and why they were selected. The next section

discusses the problematic appearance of an imbalanced dataset. This is followed by addressing

the potential features and why they could be used as explanatory variables. The literature

review concludes with a discussion of the findings.

2.1 Geotechnical Background

2.1.1 Cable Burial Methods

The selection of the best trencher, plough or sledge for the burial process is based on the soil

conditions along the cable corridor. Different burial tools perform better in different circum-

stances. For instance, the top layers are critical for the stability of a burial tool. In case the

burial tool is too heavy with respect to its contact surface, the possibility exists that the burial

tool sinks into the seabed. Besides, the topsoil layer affects the traction of the trencher as well.

The tracks of a trencher must have sufficient traction to move and should not slip away. This

is only relevant for a trencher because a plough or a sledge is towed by a vessel. The soil layers

in the complete soil profile are decisive for selecting a trenching methodology. Cable burial can

be performed by three main trenching methods:

• Mechanical cutting: Soil is cut away mechanically by a cutting chain or cutting disc

• Ploughing: Soil is cut/opened by a passive tool forming a trench

• Jetting:

1. Soil is fluidized by water released under medium pressure and high flow rates so that

a cable can sink into the soil

2. Soil is cut away by water released under high pressure and low flow rates
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Figure 2.1 shows which trenching method should be considered depending on the soil charac-

teristics.

Figure 2.1: An overview to determine which tools to consider for installation in a range of soil

conditions (Linnane, 2019).

2.1.2 Digital Soil Mapping

Creating a 3D soil model that shows the soil types at each location is a branch of (DSM). The

European Soil Bureau Network (ESBN) defines DSM as follows: “Computer-assisted production

of digital maps of soil type and soil properties. It typically implies the use of mathematical

and statistical models that combine information from soil observations with the information

contained in correlated environmental variables and remote sensing images” (Dobos et al., 2006).

These digital maps are produced by digital soil models or DSM models that aim to predict soil

types or soil properties based on soil observations and auxiliary spatial data. McBratney et al.

(2003) propose a general formulation for these models through the following equation:

S = f(Q) + e (2.1)

where stands S for soil type because this research concerns the prediction of soil types; Q is

the input variables, and e is the prediction error. In other words, the soil type S is predicted

by a function f that is performed on the input variables Q. It is essential that Q contains

pedologically meaningful predictor variables defined at locations [X, Y , Z]. Once the DSM

model is fitted at these locations, the DSM model can be used to predict new data and create

a soil map. According to the ESBN, there are three great ways of building DSM models to

predict soil types.

• Data mining - detecting unknown relationships between the predictor variables Q and

the predicted variable S.

• Geostatistical - interpolation of soil properties from soil observations using spatial cor-

relations between the soil observations.
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• Soil surveyor - based on the experience and knowledge of the soil surveyors in a given

region.

2.1.3 Soil Classification

Before the soil type of a sample can be predicted, the soil needs to be classified first. Soil is

classified on characteristics such as colour, structure, texture, consistency and degree of acidity

or alkalinity (Ritzema, 1994). According to International Standards ISO 14688-1, seven main

types can be distinguished based on particle size fractions, from large to small: 1) Large boulder;

2) Boulder; 3) Cobble; 4) Gravel; 5) Sand; 6) Silt and 7) Clay. The table from ISO 14688-1 is

presented in Table 2.1 including the main types, associated sub-types and their corresponding

particle size fraction. In nature, soils generally have a range of different particle sizes and

cannot be assigned to a single particle size fraction. Mixtures of different particle size fractions

are often classified using the texture triangle of the United States Department of Agriculture

shown in Appendix A. In addition, there are a few organic soil types depending on the organic

content. When the organic content in soil is more than 50% of the volume, it is called peat.

Mud soils have an organic content in the range of 20% to 50%, organic soils in between 15%

and 20% and mineral soils less than 15% (Ritzema, 1994).

After the soil is classified, soil layers can be identified. The vertical section of the soil,

through all its layers, is defined as the soil profile (Ritzema, 1994). However, an soil profile

might not contain distinct boundaries (Phoon et al., 2021). Based on the soil profile, one can

perform geotechnical calculations, such as determining the bearing capacity of the soil, which

is important to determine the dimensions of foundations. Or in this case, one can determine

the best burial tool for cable burial based on the soil conditions.

2.1.4 Site Characterization

Currently, site characterization is based on geotechnical data combined with geophysical data.

Commonly, the geotechnical data consists mainly of CPTs and additionally VCs. Typically, the

CPTs are classified using the Soil Behaviour Type (SBT) index of Robertson 1990 (Phoon et al.,

2021). This classification is based on the normalized tip resistance and the normalized friction

ratio of the CPT. In Figure 2.2 an SBT index can then be read for each measured value and

assigned to a region. These regions correspond to an SBT. The VCs, if collected, are classified

in the laboratory.

The challenge in site characterization is properly integrating geotechnical and geophysical

data. The geotechnical data consist of sparse 1D GTs, and the geophysical data is typically

2D and occasionally 3D seismic imaging from the surveys. The geophysical data is crucial

for interpolating the soil interpretation of the geotechnical data as it is the only type of data

that allows regional interpretation and understanding of site conditions (Sauvin et al., 2019).

Geotechnical engineers rely heavily on local knowledge to interpolate layer boundaries, and
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Table 2.1: Particle size fractions ISO standard 14688-1

Soil group

white

Particles size fractions

(symbol)

Particles size fractions

(mm)

Very coarse soil

Large boulder (lBo) >630

Boulder (Bo) >200 to ≤630

Cobble (Co) >63 to ≤200

Coarse soil

Gravel (Gr) >2.0 to ≤63

Coarse gravel (cGr) >20 to ≤63

Medium gravel (mGr) >6.3 to ≤20

Fine gravel (fGr) >2.0 to ≤6.3

Sand (Sa) >0.063 to ≤2.0

Coarse sand (cSa) >0.63 to ≤2.0

Medium sand (mSa) >0.2 to ≤0.63

Fine sand (fSa) >0.063 to ≤0.2

Fine soil

Silt (Si) >0.002 to >0.063

Coarse silt (cSi) >0.02 to ≤0.063

Medium silt (mSi) >0.0063 to ≤0.02

Fine silt (fSi) >0.002 to ≤0.0063

Clay (Cl) ≤0.002

according to Phoon et al. (2021) of the layer boundaries involves a certain degree of guesswork.

Consequently, the soil models are still qualitative rather than quantitative as the integration of

geophysical and geotechnical data is not yet fully implemented (Sauvin et al., 2019).

This study approaches site characterization from a more data-driven perspective than the

conventional approach. According to Phoon et al. (2021) “data-driven site characterization”

refers to site characterization that relies solely on measured data. In this study, this is not

the case because the soil interpretations of the companies were used. However, using machine

learning with as little human intervention as possible to deliver work more consistently and

efficiently is a more data-driven approach than usual. In current data-driven site character-

ization studies the CPT sounding is the commonly used data source because it is the only

near-continuous record that is commonly available (Phoon et al., 2021). Robertson 1990 is not

suitable for classifying these CPTs as it does not allow for using other data. Recent studies use

more advanced ways the classify the measured data from the CPT, such as machine learning

methods and convolutional neural networks. These models obtained extremely high accuracies,

even up to 99% per cent with a random forest (Rauter & Tschuchnigg, 2021). These results are

promising and show that machine learning can classify soil based on measured data.
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Table 2.2: Soil behaviour type index (Robertson, 1990))

Soil behaviour type index, Ic Zone Soil behaviour type (SBT)

- 9 Very stiff fine-grained

- 8 Very stiff sand to clayey sands

Ic < 1.31 7 Gravelly sand to dense sand

1.31 < Ic < 2.05 6 Sands: clean sand to silty sand

2.05 < Ic < 2.60 5 Sand mixtures: silty sand to sandy silt

2.60 < Ic < 2.95 4 Silt mixtures: clayey silt to silty clay

2.95 < Ic < 3.60 3 Clays: silty clay to clay

Ic > 3.60 2 Organic soils: peats

- 1 Sensitive fine-grained

Figure 2.2: Figure to determine the soil behaviour type of measured CPT values with Robertson

1990 (Cao et al., 2019).

2.1.5 Spatial Variability

Soil properties vary in space, and are rarely uniform or homogeneous with depth. Often it varies

in horizontal direction as well. Homogeneity in soil characteristics is the exception rather than

the rule (Ritzema, 1994). Even within layers of the same soil type, soil properties can show

considerable variation from one location to another. Geology and the conditions during soil

deposition are associated with this variability (Yan & Guo, 2015). Barrette (2011) stated that

the grain size of the soil is a function of water energy. Transporting large grain sizes requires

more energy than finer sediment. Therefore, less coarse material remains longer in suspension.

Moving further offshore, currents, waves, and tides become less powerful. For this reason, the

12



larger grain sizes, gravel and sand, are often found in rivers, sand and silt in delta, and silt and

clay further offshore and in deeper environments.

Phoon & Kulhawy (1999) argues that there are three primary sources of uncertainty ob-

served in soils, i.e., spatial variability, measurement error and transformation of laboratory

measurements into soil properties. Herein, spatial variability is one of the primary sources of

uncertainty in stochastic soil models (Lloret-Cabot et al., 2014). The variability is generally

characterized by the Scale of Fluctuation (SoF). SoF describes the correlation of parameters

of soil in relation to the distance. A large SoF indicates a more homogeneous soil, whereas a

smaller SoF indicates a more heterogeneous soil.

2.1.6 Scale of Fluctuation

Many studies demonstrated the necessity of considering spatial variability in geotechnical appli-

cations (Cami et al., 2020). In particular, SoF plays a key role in describing soil variability at a

site. To obtain more realistic results, it is crucial to estimate accurate values of the vertical and

horizontal scales of fluctuation when using advanced probabilistic approaches (Lloret-Cabot et

al., 2014).

In literature, reported scales of fluctuation generally indicated that the horizontal SoF is

larger than the vertical SoF (Phoon & Kulhawy, 1999). The cause of this difference can be

explained by deposition processes (Gast et al., 2018). One can imagine that soil characteristics

in horizontal direction gradually changes during deposition, while more abrupt changes are

manifested in vertical direction. The ratio between the two scales of fluctuation is known as

anisotropy. When the scales of fluctuation in horizontal and vertical direction are equal, then

the soil is called isotropic. As stated in Section 2.1.5, this is hardly ever the case.

Determining the horizontal SoF based on site-specific investigation data can be very chal-

lenging. Most site investigation methods, such as CPTs, are performed vertically. As a con-

sequence, only the vertical variation of soil is explored. Because a single test can obtain more

than sufficient information in vertical direction, but not in horizontal direction (Ching et al.,

2017).

Estimation based on Tip Resistance

For estimating the SoF, various methods are available. Lloret-Cabot et al. (2014) use the tip

resistance, qc, of CPTs to estimate the horizontal and vertical SoF. The theoretical correlation

model is then best fitted to the available data. The theoretical correlation model is as follows:

ρ(τ) = exp

(
−2|τ |
θ

)
(2.2)

and the estimated correlation function:

ρ̂(τj) =
1

σ̂2(n− j)

n−j+1∑
i=1

(Xi − µ̂)(Xi+j − µ̂) (2.3)
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where µ̂ is the estimated mean; σ̂ is the estimated standard deviation; n is the number of

observations; τj = j∆τ with j = 1, 2, .., n and ∆τ is the lag distance, i.e., the distance separating

two points. Resulting in a correlation function that describes the correlation between points

for a given separation distance. The rule of thumb is to keep lag distance shorter than the

SoF and shorter than
L

4
, where L is the length of the CPT (Cami et al., 2020). In horizontal

direction, this is not practicable because the available CPTs in this study are several hundred

meters apart, which is already way larger than the horizontal SoF. Moreover, the CPTs are not

equidistant from each other. For that reason, ∆τ is not constant.

Estimation based on Detected Soil Layers

Although tip resistance is closely related to soil type, it does not directly imply a change in the

soil layer. Therefore, estimating the SoF based on the tip resistance is not the most obvious

choice. Hence, the detected soil layers by the VCs and the CPTs are used for estimation. Both

companies provided for the VCs and CPTs an interpretation of the soil. The vertical SoF is

estimated by a simple calculation of the average number of detected soil layers of all GTs in the

surroundings. The horizontal SoF is estimated, in the same surroundings, by calculating how

many soil layers are detected at each depth beneath the seafloor. Meaning that there is a single

vertical SoF at location [x, y] for all depths and an estimated horizontal SoF for each depth on

location [x, y].

2.1.7 Geostatistics

Geostatistics originated in the mining industry and was first developed in the early 1950s.

Minerals such as ore are often found in highly concentrated veins and are not evenly distributed

over an area (Ecker, 2021). This implies that the concentration of ore exhibits spatial correlation.

Tobler described this phenomenon in 1970 in his first law of geography, “everything is related to

everything else, but near things are more related than distant things.” (Tobler, 1970). Ignoring

his first law in computations and by using only point statistics of soil parameters, such as the

mean and standard deviation, leads typically to over-estimation and over-conservative design.

Including the spatial correlation, i.e. SoF, a more accurate representation can be achieved (Gast

et al., 2018).

Hence, classical statistics were found unsuitable for estimating data with autocorrelation

or spatial correlation. In fact, many statistical analyses treat the data as an Independent and

Identically Distributed (IID), rather than one spatially correlated dataset of observations (Ecker,

2021). Matheron, one of the founders of geostatistics and kriging, recognized that prediction is

not the only element in geostatistical analysis. He concluded that it consists of two fundamental

elements, namely the correlation structure and prediction of conditions at unsampled locations.

The first step is to explain the clustering mechanism, i.e., develop a model for the correlation

structure. Secondly, the proposed model is used to predict the target variable at unsampled

locations or areal units (Ecker, 2021).
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2.2 Digital Soil Mapping Models

This section describes the applied models to map the soil types. In this study, two conventional

models, two machine learning models and a deep learning model were implemented. Machine

and deep learning models are adaptive and require a training set to optimize. Since deep learning

is a subset of machine learning, the overarching abbreviation ML is used in the remainder of

this report when referring to both groups. Otherwise, the full designation is used. The theory

of the models is explained in the following sections. The following models are used:

1. Triangulated Irregular Network (conventional model)

2. Universal Kriging (conventional model)

3. Random Forest (machine learning model)

4. Extreme Gradient Boosting (machine learning model)

5. Long Short-Term Memory network (deep learning model)

Figure 2.3 shows an overview of the implemented models. The two conventional models

were selected because they were used in this specific project. The objective is to compare these

conventional models to state-of-the-art models. The other three models mentioned have been

selected based on their characteristics that match the provided data and problem. Random

forest is selected based on its hierarchical structure, which is beneficial for class imbalances and

its predictive accuracy (Li et al., 2011). XGBoost has been selected for its high performance

in many different fields (Bentéjac et al., 2019). The last model and most captivating one is the

LSTM network. Originally, this is a time series model, which is translated into a spatial model,

and that is a first. The subsequent subsections also include the pros and cons of the models.

Figure 2.3: An overview of the implemented models used for DSM.

2.2.1 Conventional Models

Classical spatial interpolation techniques can be roughly classified into three categories 1) de-

terministic or non-geostatistical interpolators, such as IDW; 2) stochastic or geostatistical in-

terpolators, such as ordinary kriging and 3) combined methods, such as regression kriging (Li,
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2008). The performance of these methods is often affected by many factors, such as sampling

density, sample spatial distribution, sample clustering, surface type, data variance, data normal-

ity, quality of secondary information, stratification and grid size resolution (Li & Heap, 2011).

On top of that, there may be interaction between different factors, which makes it even more

challenging to select an appropriate model for any given dataset. Relatively simple interpolation

techniques, e.g. IDW, are used frequently because of their simplicity and availability. However,

these models are often associated with significant prediction errors (Li et al., 2011). For this

specific problem, the conventional models differ from the ML models because it interpolates

single values while the ML models predict categorical variables∗, i.e. soil types. Eventually, all

models are tested on the test set, after which the performance is compared.

2.2.1.1 Triangulated Irregular Network

Triangulated Irregular Network (TIN) is a simple interpolation technique that creates a network

formed by triangles of nearest neighbour points. In this case, Delaunay triangulation is used

to interpolate and form the triangles. This method satisfies the Delaunay criterion, which

ensures that in the resulting network, no point lies within the interior of any circumcircles of

the triangles. This maximizes the minimum interior angle of all triangles, which avoids that

long thin triangles being formed as much as possible (ArcGIS, n.d.-b). Subsequently, the points

associated with a circumcircle are connected to each other. This establishes the final network.

Figure 2.4 shows an example of a triangulated network.

Figure 2.4: A triangular network created with TIN (QGIS, 2020). The black dots are the

locations of known samples. Through these locations circumcircles are drawn in a way that

no known location is in the interior of any circumcircle. Subsequently points associated to the

same circumcircle are connected to each other.

∗A categorical variable is based on a qualitative property rather than a quantitative property as is the case

with a continuous variable. A categorical variable assigns each observation to a particular group or nominal

category, in this case, soil types.
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Pros and Cons

The simplicity of TIN is a big advantage. It is easy to explain and has low computational costs.

On the other hand, simplicity is also a disadvantage. In a 1D world, it connects the soil layers

with a linear line which is often not a good approximation as soil layers are often horizontal.

Furthermore, TIN is a spatial interpolation technique for single values and not for categorical

variables such as soil types. Figure 2.5 shows an example where it is not straightforward how

to interpolate the soil types with TIN. This example has two possible ways to interpolate. The

first way is to connect the mud layers. The other option is to connect the sand layers. TIN is

the most simplistic model implemented and therefore deployed as a benchmark.

Figure 2.5: An example where it is not straightforward how to interpolate the soil types.

2.2.1.2 Kriging

One of the most commonly used spatial interpolation techniques is kriging. This method is sim-

ilar to IDW, where closer points have more weight than points farther away. This fundamental

concept is enshrined in Tobler’s first law, mentioned in section 2.1.7, which forms the basis for

IDW and kriging. Kriging obtains the average value at unknown locations by interpolating

known points and uses a weighted average of the covariance function between them. The vari-

able Z is assumed to be equal to the sum of a deterministic component µ(x) and a stochastic

component R(x) as shown in equation 2.4. The expected value of the stochastic component is

0, hence the expected value of variable Z(x) is equal to the deterministic component. The value

z0 at an unknown location x0 is estimated with equation 2.6.

Z(x) = µ(x) +R(x) (2.4)

E(R(x)) = 0 =⇒ E(Z(x)) = µ(x) (2.5)

17



ẑ(x0) =
n∑

i=1

λiz(xi) with
n∑

i=1

λi = 1 (2.6)

where z(xi) are known values at location xi; n is the sample size and λi are the optimized weights

for xi. In 1951 D. Krige described kriging for the first time in his Master’s Thesis. Nowadays,

kriging is a generic name adopted by geostatisticians for a family of generalized least-squares

regression algorithms (Goovaerts, 1997). It is an extended family with many variations such

as ordinary kriging, simple kriging, universal kriging, indicator kriging, probability kriging,

disjunctive kriging, co-kriging, kriging with external drift and even more methods. All flavours

of kriging share the same objective of minimizing the variance σ2(x) under the constraint of

unbiasedness of the estimator (Goovaerts, 1997). The variance is defined by equation 2.7 which

is minimized under the constraint in equation 2.8.

σ2(x) = V ar
[
Ẑ(x)− Z(x)

]
(2.7)

E
[
Ẑ(x)− Z(x)

]
= 0 (2.8)

Accordingly, it has a sound theoretical basis in the form of minimizing the Mean Squared Error

(MSE) and is known as the Best Linear Unbiased Predictor (BLUP) for spatial data (Sekulić

et al., 2020; Cressie, 1990). In other words, the predictor minimizes the MSE over all linear

unbiased predictors. The name predictor is preferably used instead of estimator since it concerns

unknown values.

This research uses a kriging model, which is available in ArcGIS Pro. ArcGIS Pro offers

two options for kriging, namely ordinary kriging and universal kriging. Hereof ordinary kriging

is the most general method. Ordinary kriging assumes that there is a constant mean which is

unknown. On the other hand, universal kriging assumes there is a trend in the data and that

it can be modelled by a deterministic function, defined as:

µ(x) =

k∑
l=1

βlxl(x) (2.9)

where β are the optimized coefficients; k is the number variables and x are the variables. With

three variables, longitude x1, latitude x2 and depth x3, the formula can be rewritten as:

µ(x) = β0 + β1x1(x) + β2x2(x) + β3x3(x) (2.10)

It is a shortcoming that ArcGIS Pro does not have the ability to pass additional variables to

kriging. Consequently, kriging bases its prediction on spatial position only, without any other

explanatory variables available in the data.

The trend from equation 2.10 is subtracted from the original data, and the autocorrelation

is modelled from the random errors, R(x). After fitting the model to the random errors and

before making a prediction, the trend is added back to the predictions to produce the final
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results. It is only useful to use universal kriging when it is known that there is a trend in

the data (ArcGIS, n.d.-a). In this case, it is assumed that there is a trend in the data due to

historical events such as glaciers in the ice age and sediment deposits over time.

Pros and Cons

When kriging was introduced in the 1980s, it was a significant improvement over existing in-

terpolation techniques. The power of kriging arises from using the spatial correlation structure

in the data. Furthermore, kriging minimizes the MSE under the constraint of unbiasedness,

which makes it the BLUP. A wide variety of models makes it applicable to various data config-

urations. On the other hand, kriging also has disadvantages. It makes many assumptions, can

be computationally demanding, and can be challenging to select the best model for the data.

Additionally, kriging is not well designed for incorporating all covariate information which is

available nowadays (Sekulić et al., 2020). On top of that, the available kriging methods in

ArcGIS Pro do not provide this capability at all. Kriging is therefore based on the location

only. Finally, kriging is a regression technique that minimizes the MSE and therefore is not well

designed for a classification problem.

2.2.2 Machine & Deep Learning Models

ML models are adaptive models, which require a training set to ‘train’ the model. This training

set contains input variables and the corresponding output, also known as labels. While training,

the parameters of an adaptive model are tuned on the input variables with respect to their labels

(Bishop, 2006). This process is called learning and optimizes an inferred function y(x). Once

the model is trained, y(x) can take new input value(s) x(i) and generate new predicted label(s).

A test set is usually withheld of the data to assess the model’s performance. Then, in the

evaluation phase, the generated labels are compared to the ‘groundtruth’ labels.

Conventional interpolation techniques such as kriging, IDW and triangulation presumes that

the predictions are a linear combination of the available data (Schloeder et al., 2001). One of

the strengths of ML is that it is very flexible and not restricted to linear relations (Sekulić et

al., 2020).

2.2.2.1 Random Forest

Decision Tree

A random forest is an extension of the decision tree classifier. It is a so-called “ensemble”

learning technique, where multiple learning algorithms are combined to obtain a better perfor-

mance. It grows a fixed number of decision trees on bootstrapped samples∗. A positive aspect

of a decision tree is its high interpretability. Thus, the structure of a decision tree consists of

∗Bootstrapping is random sampling with replacement. Normally, the size is equal to the size of the original

dataset.
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internal nodes and leaves (James et al., 2017). The leaves are end nodes of the tree, representing

a label. Prior to arriving at a leaf, decisions are made at internal nodes. Figure 2.6 presents an

example of the structure of a decision tree.

An important characteristic of a decision tree is that it maximizes the “quality” of a split at

every decision node. The quality is measured by a function which is either the information gain

or the Gini Index. Information gain is based on entropy and information theory. The model

considers every possible split and selects only the one with the highest quality. This is a greedy

algorithm that is prone to local optima. It is greedy because it maximizes the quality at every

split without taking into account future splits. Starting with the entire training set, a threshold

is made for the most powerful feature, splitting the training set into two subsets. A subsequent

threshold is made for both subsets, which maximizes the quality of a split for the associated

subset. This process is repeated until each observation ends up in a different leaf or the process

is early stopped by a regularizer†. A visualization of this process is presented in Appendix B.

In case the tree is not regularized, the tree will very likely overfit‡ the training set due to a tree

that is too complex for new data or a test set. Using a regularizer prevents the model from

developing a fully grown tree, forcing it to be more general. An example of a regularizer is a

maximum number of decisions or a minimum number of samples on a node to split further.

Which soil type is this?

Distance to coast > 1km

Water depth > 10m

Yes

Peat

No

Seabed variance < 0.5m^2

Yes

Sand

No

Clay

No

Sand

Yes

Figure 2.6: An example of the structure of a decision tree. At the top, the classification task is.

The decisions are made in the squares which are the nodes of the tree. The leaves of the tree

are the end nodes of the tree which represent a soil type.

†Regularization is a process that helps to prevent overfitting, which is performed by a regularizer.
‡Overfitting is training a model that is too specified on the training data and therefore too specific for new

data.
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Randomness

The word random in the classifiers name comes from the random feature selection at each

decision node. This tweak helps the trees to decorrelate (James et al., 2017). This is very

effective when there are one or more dominant features. For instance, when every tree is allowed

to choose from all available features to minimize the objective function, most or all trees will use

the strong predictor in the first split depending on the bootstrapped training sample. Resulting

in very similar trees and highly correlated predictions. Averaging highly correlated predictions

does not lead to a considerable variance reduction. Using random feature selection gives other

features more chance, and therefore more diverse trees will be grown. Resulting in a more stable

and reliable random forest. In classification, it is standard that
√
p features are available at

each node when the total number of features is p.

Bagging

A random forest grows a multitude of these trees, a forest. Each tree is built on a different boot-

strapped training sample. As a consequence, diverse trees are constructed, which are averaged

in the end. This procedure is called Bagging (Bagging=Bootstrap Aggregating). Bagging re-

duces the variance of a statistical learning method like a random forest (van Giersbergen, 2018).

For each tree, a bootstrapped sample is drawn from the entire training set. Each sample is con-

structed by drawing with replacement from the entire training set. Therefore the probability

that an observation is not in the bootstrapped sample is equal to
(
1− 1

n

)n
≈ e−1 ≈ 1

2.72
≈ 37%.

This also implies that each bagged tree is trained on approximately
2

3
of the observations. The

remaining are out-of-bag (OOB) observations which can be used as test observations.

When a random forest predicts a new input sample, the model follows for every tree the

corresponding path. Ending with the same number of predictions as the number of trees con-

structed. The final prediction is the majority vote of all trees. Figure 2.7 shows the architecture

of a random forest. Due to the random nature of each bootstrapped sample, it can be seen as

an independent set. Hence, each prediction of a tree is independent too. Averaging a set of

independent predictions reduces the variance. Given a set of n independent predictions z1, ..., zn

each with variance σ2, the variance of the mean z̄ of the predictions is given by
σ2

n
. Meaning

that the predictions of a random forest converges with an increasing number of trees and does

not overfit. Due to averaging independent predictions, there is no need to do cross-validation

for a random forest.

Pros and Cons

In general, random forests are robust against overfitting and are not sensitive to excessively

noisy data (Wyk et al., 2018). Due to the hierarchical structure of decision trees, a random

forest is less prone to data imbalance. Another benefit of a random forest is that it is capable

of providing an estimate of the feature importances because each split is based on one feature,
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Figure 2.7: An example of an architecture of a trained random forest with B trees (Verikas et

al., 2016). If the sample x is predicted, it follows for each tree the corresponding path resulting

in a prediction ki for treei. The final prediction k is the majority vote of all trees.

which maximizes the quality of a split. Averaging the quality per feature gives an indication

of which feature has the most predictive power. Furthermore, a random forest is a non-linear

algorithm that is not restricted to linear relations like kriging. Kirkwood et al. (2016) concluded

that a random forest was capable of entirely capturing the spatial autocorrelation of the target

variable. The random forest in their article also obtained more accurate results than ordinary

kriging. The downsides of a random forest are low interpretability and high computationally

cost, especially when many trees with large depth§ are grown. Both do not influence the results,

and therefore it is expected to outperform kriging.

2.2.2.2 XGBoost

EXtreme Gradient Boosting (XGBoost) is another ensemble machine learning technique and

somewhat similar to a random forest. In contrast to a random forest, XGBoost grows trees

sequentially instead of independent. Each subsequent grown tree attempts to minimize the

classification error of the previously constructed trees. Incorrect predicted samples are given a

higher weight and force the new trees to focus on those hard-to-learn samples (Taghizadeh et

al., 2020). Figure 2.8 presents the architecture of XGBoost. The objective function that the

algorithm minimizes is expressed as:

§The depth of a decision tree is equal to the number of layers. For example, the decision tree in Figure 2.6

has a depth of three.
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obj(t) =
n∑

i=1

L(yi, ŷi
t) + Ω(ft) (2.11)

where L is the loss function; Ω is the regularization term for quantifying the model

complexity; t is the tth iteration for generating the tth tree; n is the total number of

observations; fi is the tree structure of ith tree. The model complexity is modelled as follows:

Ω(f) = γT +
1

2
λ

T∑
j=1

w2
j (2.12)

where γ and λ are penalty terms for regularization to avoid overfitting; T is the total number

of leaves in each tree and w is the output of a leaf. When tth tree is created to fit the residual

error of the former tree, the prediction of the new tree can be expressed as:

ŷi
t = ŷi

t−1 + ft(xi) (2.13)

Substituting this into the objective function:

obj(t) =
n∑

i=1

L(yi, ŷi
t−1 + ft(xi)) + Ω(ft) (2.14)

Expanding ft with Taylor polynomial, the approximation of objective function with

second-order accuracy can be expressed as:

obj(t) =
n∑

i=1

[
L(yi, ŷi

t−1) + gift(xi) +
1

2
hif

2
t (xi)

]
+Ω(ft) (2.15)

in which gi denotes the first derivative:

gi =
∂L(yi, ŷi

t−1)

∂ŷi
t−1 (2.16)

and hi denotes the second-order derivative as:

hi =
∂2L(yi, ŷi

t−1)

∂
(
ŷi

t−1
)2 (2.17)

The value of the objective function depends only on gi and hi, allowing for a customized loss

function based on the residual errors of former trees. Appendix C shows an example how

XGBoost minimizes MSE as a loss function. The MSE has a friendly derivative with a first

and second-order term and does not need a Taylor polynomial. Finally, the derivative of the

loss function can be set equal to zero to find the minimum.
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Figure 2.8: An example of an architecture of a trained XGBoost model with n trees (Y. Wang,

Pan, et al., 2019). The algorithm starts with growing the 1st tree which passes its tree structure

f1 on to the next tree. Then, the algorithm constructs the 2nd tree on the classification error of

1st tree. The 2nd tree passes its tree structure on to the next tree which is constructed on the

classification error of 2nd tree. This process is repeated until n trees are grown. A sample x is

predicted by following the paths for all trees and adding up all predictions.

Pros and Cons

XGBoost is a high-performance model, and its impact is widely recognized in machine learning.

For example, Kaggle is an online community of data scientists and machine learning practition-

ers. Kaggle hosts machine learning competitions in which thousands of people participate. In

2019, XGBoost won 17 out of 29 Kaggle competitions.

Not surprisingly, XGBoost has some similar characteristics as a random forest due to their

related structure. That is why it is also less sensitive to data imbalance and can provide an

estimate of feature importance. XGBoost can handle imbalanced data even better as it gives

more weight to misclassified samples, thereby increasing its ability to predict the minority class.

Logically, there are also elements that are different, such as that XGBoost can overfit the

training data by growing too many trees. Another characteristic is that XGBoost has much

fewer hyperparameters to tune, which can be an advantage and a disadvantage.

2.2.2.3 Long Short-Term Memory Network

Originally, LSTM network is a time series model, but today it is used in, among other things,

sequence prediction problems such as natural language processing. In the latter case, which is an

emerging field of research, it is often used to predict the next word in a sentence. Although, most
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of its fame it acquired with predicting time series. This research is about spatial dependence

instead of temporal dependence. In both cases, there is a correlation between (near) data

points. In the same way that Tobler’s first law applies to spatial correlation, it also applies

to time series. This means that closer timestamps are more related than timestamps that are

further apart, which seems intuitively plausible. For the reason that the problems are related

in this way, the author proposes LSTM network for the first time in a spatial context. The next

paragraphs provide an introduction to the LSTM network.

Recurrent Neural Network

LSTM network introduced by Sepp Hochreiter and Jürgen Schmidhuber in 1997 is a special kind

of a Recurrent Neural Network (RNN). And a RNN is on its turn a special kind of an Artificial

Neural Network (ANN). RNNs are capable of storing previous inputs in a “memory” to persist

in the network internal state. This is accomplished by a loop in the cell. While an ordinary

ANN neuron performs a transformation on the input xt and passes the result ht on to the next

neuron. Does a RNN neuron make a loop where it passes the result on to itself, “remembering”

while considering the next observation (xt+1). Figure 2.9 shows a schematic representation of a

loop in a LSTM cell. The three green blocks indicate the same cell that passes information on

to itself by the horizontal black lines while considering the next observation. With this ability,

a RNN is capable of computing output based on the entire history of preceding inputs (Graves,

2012). Theoretically, a RNN can learn an entire sequence, but in practice, this is rather limited.

Given that the input either increases or decreases, the output leads to a vanishing or exploding

gradient when it cycles around the recurring network connections. This is addressed in literature

as the “vanishing gradient problem” by Hochreiter et al. (2001). RRNs embodies “short-term

memory”, characterized by fast changing weights and cannot deal with slowly changing weights.

“Long-term memory”, characterized by slowly changing weights, is potentially essential in many

applications, such as in time series and spatial data.

LSTM Cell

The remedy for this problem is a “long short-term memory” network. This recurrent network

is efficient in remembering over 1000 steps without loss of short-term capabilities (Hochreiter

& Schmidhuber, 1997). Four interacting layers in the structure of a LSTM cell makes it very

efficient in long-term problems. The essence of LSTM is the ability to add and/or remove

information to/from the cell state. This “updating” or “forgetting” is regularized by gates.

Each LSTM cell contains in total three gates, namely a forget gate ft, an update gate it and

an output gate ot. These gates can take values between 0 and 1. Based on the new input

xt and the previous output ht−1 a sigmoid layer decides whether the cell state Ct−1 is totally

“forgotten” (ft = 0), totally “remembered” (ft = 1) or anything in between (0 < ft < 1). This

can be written as:
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ft = σ(Wfxt + Ufht−1 + bf ) (2.18)

where σ is a sigmoid layer, which can be seen as a logistic regression function that outputs a

value between 0 and 1. The input arguments are the new input xt, the previous output ht−1,

the weight matrices Wf and Uf and a bias vector bf . The weight matrices and the bias vector

are learned during training. Next, another sigmoid layer decides what to update as well based

on xt and ht−1 and outputs a value between 0 and 1.

it = σ(Wixt + Uiht−1 + bi) (2.19)

Then a hyperbolic tangent (tanh) layer constructs potential new values, C̃t, that could be added

to Ct−1.

C̃t = tanh(Wcxt + Ucht−1 + bc) (2.20)

C̃t is multiplied with the output of the update gate, it, what is added to Ct−1 after multiplication

with ft. The updated cell state is the cell state Ct for the next iteration. This is captured in

the following formula:

Ct = ft ⊗ Ct−1 + it ⊗ C̃t (2.21)

where ⊗ is the Hadamard product, which means element-wise multiplication. The last and

third sigmoid layer, again based on xt and ht−1, decides which parts of the cell state is going

to be the output, ot.

ot = σ(Woxt + Uoht−1 + bo) (2.22)

Then Ct is put into a tanh function to push the values between 0 and 1 and multiplied by ot to

output only the particular parts that was decided in the previous step. The output becomes ht

what is considered in the next iteration together with the new input xt+1, starting the whole

procedure from the beginning.

ht = ot ⊗ tanh(Ct) (2.23)

For each time step the entire process is completed and iteration stops when all time steps have

been processed. Figure 2.9 offers an overview of a LSTM cell with three iterations.

LSTM Network

Now that the theory of an LSTM cell has been explained, an LSTM network can be clarified.

The architecture of an LSTM network consists of layers and a certain number of neurons per

layer. This study only uses LSTM layers without any combination with other layers except a

dropout layer and a fully-connected layer. The fully-connected layer is used for classification
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to push the output between 0 and 1. For regularization, a dropout layer is used. This reduces

overfitting by ignoring neurons in a layer and forces the network to use other connections every

epoch. An ordinary LSTM layer works only in forward direction and can therefore only learn

from the past. A bidirectional LSTM layer has the advantage that it also can learn from the

current information.

Pros and Cons

An LSTM network is very flexible and has the big advantage of remembering historical data.

Only, it needs a lot of data to train. Combined with the high class imbalance, this can lead to

problems as there is a shortage of minority classes. Besides, the computational costs are very

high and the interpretability very low. It is a so-called “black box” model where it is almost

impossible to determine how the output is generated.

Figure 2.9: Schematic representation of one LSTM cell (Palagi et al., 2018). Three green blocks

that each indicates an iteration of the loop in a LSTM cell. The left block considers the previous

input, the middle block the current input and the right block the next input, i.e., Xt−1, Xt and

Xt+1 respectively. After Xt−1 has been treated, the cell passes its output, ht−1, onto itself,

i.e. the middle block. The middle block shows the applied transformations to the previous

output plus the current input, i.e. ht−1 and Xt respectively. Information is transferred by the

black lines, the yellow blocks represent a neural network layer and the light pink circles indicate

operations between the intersecting information.

2.3 Class Imbalance

An imbalanced dataset is characterized by a disproportionate ratio between classes. When

machine learning algorithms encounter an imbalanced dataset, they tend to have a bias towards

the majority class. Because all data is treated equally and therefore the misclassifications too.

False accuracy estimates, misclassification, or complete ignoring minority classes are often the

consequence. In machine learning, this is known as the class imbalance problem (Taghizadeh et
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al., 2020). In soil classification problems, this phenomenon can cause some minority soil types

to get omitted in the results. This is undesired when the minority soil types are crucial and can

lead to unreliable soil maps (Sharififar et al., 2019). In this study, peat is a minority class that

is of great importance because of its low thermal conductivity. For that reason, all peat had to

be excavated from the seabed.

Imbalanced datasets are a known issue in soil classification where often a highly skewed class

distribution is faced (Taghizadeh et al., 2020). While imbalanced classification is a recognized

problem in the machine learning discipline for categorical data modelling, this issue has not

been well addressed in soil mapping (Sharififar et al., 2019).

Machine learning literature offers many methods to overcome this challenge, from oversam-

pling and undersampling techniques to class weights to specially designed metrics and deep

learning sample generators. Oversampling tackles the imbalance by generating new samples

of the minority classes and undersampling does this by removing samples from the majority

classes. To compensate for an imbalance that is present in the data, both oversampling and

undersampling involve introducing a bias to select more samples from one class than from an-

other. The introduction of a bias is inevitable, and this is at the expense of the performance of

the majority classes.

Oversampling can be done by randomly duplicating existing samples of the minority class or

by a more popular method Synthetic Minority Oversampling Technique (SMOTE). Randomly

duplicating the majority class does not contribute to improve the classifier’s performance, while

SMOTE does (Chawla et al., 2002). Randomly undersampling, randomly deletes samples of the

majority class, which unavoidably lead to loss of information. Despite the loss of information,

randomly undersampling leads to a better discriminating ability of the minority classes according

to Chawla et al. (2002). Furthermore, SMOTE was shown superior to other oversampling

methods in classifying soil types by Taghizadeh et al. (2020). For these reasons, a combination

of SMOTE and randomly undersampling was adopted in this thesis. The next paragraph

elaborates on the theory of SMOTE.

Synthetic Minority Oversamplig Technique

SMOTE generates synthetic minority observations between existing observations by differing

one or more features of the existing observations. The method considers the five nearest neigh-

bours of each minority sample and selects randomly n samples from the nearest neighbours,

depending on the amount of oversampling. When the amount of oversampling is 100%, 200% or

300%, n is 1, 2 or 3, respectively. Subsequently, a random number between 0 and 1 is generated

for each selected nearest neighbour, which is multiplied with the difference in feature vector,

i.e. the distance between the samples, and added to feature values of the sample under consid-

eration. This results in a synthetic minority sample at a random point along the line segment

between two minority samples. The decision region of the minority classes is effectively forced

to become more general (Chawla et al., 2002). Figure 2.10 visualizes an example of SMOTE
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with two features and an oversampling rate of 100%. Therefore only one nearest neighbour is

selected.

Figure 2.10: A visualization of SMOTE. A randomly selected minority sample (red outer circle)

selects random a neighbor (green outercircle and red innercircle) from the 5 nearest neighbors

(green outercircle). Then at a random distance between the two selected samples a synthetic

minority sample is created (blue cross) (Kunert, 2020).

2.4 Potential Features

Machine learning algorithms can have a very good performance on specific problems based on

a lot of data, but without good data quality, performance is also poor. The data quality for

a model is and remains the most critical part. This still applies to state-of-the-art models.

This means that the quality of the features for a machine learning model is of utmost impor-

tance. These features comprise all the information the model gets to “know”. Based on this

information, it tries to learn specific patterns and make predictions on new information. When

the features do not contain valuable information, the algorithms will also be useless. Therefore

it is essential to thoroughly investigate which features are available and which features have

predictive power.

For example, for soil type prediction, the genesis of the soil is relevant. Geological events,

such as sediment deposits, earthquakes and glacial periods, can contain a lot of valuable infor-

mation about the current soil composition. McBratney et al. (2003) identified 7 factors for soil

spatial prediction:

S: Soil, other properties at location of prediction;

C: Climate, climate properties at location of prediction;

O: Organisms, vegetation, fauna or human activity;

R: Relief or topography, landscape attributes;
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P: Parent material, lithology;

A: Age, time factor;

N: Space, spatial position.

These are the so-called SCORPAN factors. The features that are used in this study are based

on these factors. By substituting the SCORPAN factors into the general equation 2.1 results in

equation 2.24. This formula can be seen as a general function used by the implemented models.

The ML models base their predictions on the input variables but use a different function f for

the prediction.

S = f(s, c, o, r, p, a, n) + e (2.24)

Soil, other properties at location of prediction

For the first variable, soil or other properties at location, the soil types and other soil properties

of the nearest VCs and CPTs are included. The soil type at the location of prediction is, of

course, not known, but some soil properties at this location are known and identified by the

geophysical survey. The soil layers that reflect the signals from the equipment and are then

captured reveal certain soil properties of these layers.

Climate, climate properties at location of prediction

Climate properties at the location of prediction are not included. Obviously, in this case, it

is about the climate subsea. The available data do not provide information about the climate

subsea. Although it is plausible that there are differences in the area, such as current velocity.

Organisms, vegetation, fauna or human activity

Organisms, vegetation, fauna or human activity, are not present in the data and therefore not

included. Nevertheless, it is known that dredging, which is part of human activities, is done

close to the fairway. However, the exact locations of the dredging, when it took place, and the

amount is unknown.

Relief or topography, landscape attributes

Relief or topography, landscape attributes are included. The variance of the seafloor height and

the relative height of the seafloor to the surroundings have been added to the features.

Parent material, lithology

Parent material, lithology, are included through the beginning and the end of the layers of the

nearest GTs at equal vertical positions beneath the seafloor. In addition, the detected soil

layering by the geophysical survey at the location of prediction is included.
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Age, time factor

Age, time factor is not included. McBratney et al. (2003) indicates, as an example, that an

estimate of the age of the soil surface may be useful. This is unknown and will probably not

differ much in this project area. It is essential that a feature varies between the locations in the

area, otherwise no distinction can be made and the feature is useless.

Space, spatial position

Space, spatial position is included. Intuitively, the location of a sample contains valuable

information about its soil type. Therefore easting, northing and the depth beneath the seafloor

of the sample are included as features. Besides, water depth and the distance to coast also give

an indication of the spatial position and are included too. According to Li et al. (2011) it is

likely that distance to coast has some influence on the transportation of sediment from onshore

sources and can therefore also be related to climate properties.

Derived Features

The derived features are listed in Table 2.3. The first column indicates from which dataset

the feature is derived. Herein, the spatial position is unique as these features can be relocated

anywhere in the area. This is essential because predictions have to be made everywhere in

the area to develop a 3D model. After determining the spatial position, all other features are

computed for this position. For training and testing, it is required that the output is known.

Therefore, during training and testing, the spatial position is bounded to the locations of the

GTs because at these locations, the output, i.e. soil type, is known. The second column lists

the derived features, and the third the associated unit. The features are scaled before training,

therefore the units do not actually matter.

2.5 Literature Review Conclusion

DSM is a challenging task that involves a lot of uncertainty (Phoon et al., 2021; H. Wang et

al., 2020; Samui & Thallak, 2010). Unfortunately, not much literature has been written about

predicting or interpolating soil types, making it a relatively undiscovered field of research. The

vast majority of current literature deals with predicting soil properties rather than soil types.

However, this is a much simpler task since one value has to be predicted for each location

instead of a soil type. Simply put, a soil property can be measured for each sample in the area

and therefore can be directly interpolated even if the soil does not have this property, i.e. with

zero values. In soil type prediction, a model has to deal with a classification task of categorical

variables. The conventional modes, TIN and kriging, are designed to deal with single values

and not with categorical variables.
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Table 2.3: Derived Features

Source data Feature Unit

Spatial position Easting m

Northing m

Depth beneath seafloor m

Distance to coast m

Nearest VCs Distance to VC m

Primary soil type at equal vertical position -

Secondary soil type at equal vertical position -

Start of that layer below seabed m

End of that layer below seabed m

Water depth m

Nearest CPTs Distance to CPT m

Primary soil type at equal vertical position -

Tip resistance at equal vertical position MPa

Sleeve friction at equal vertical position MPa

Pore water pressure at equal vertical position MPa

Water depth m

Nearest VCs & CPTs Vertical SoF -

Horizontal SoF -

Sub-bottom profilers Detected soil type at equal vertical position -

Start of that layer below seabed m

End of that layer below seabed m

Detected soil type above that layer -

Detected soil type beneath that layer -

Bathymetry Water depth m

Water depth variance m2

Quantile of water depth -

Concluding that the conventional models are not well suited for classifying soil types. There-

fore, the broad applicability of machine learning offers potential for improvement in this field.

The articles of Sekulić et al. (2020); Kirkwood et al. (2016); Taghizadeh et al. (2020) have tested

this hypothesis and show a good performance of machine learning in predicting soil properties.

This confirms that machine learning can be used for spatial problems and makes it promising

for soil type classification. Machine learning models are ideally suited for predicting categorical

variables due to their ability to predict probabilities for each soil type. These probabilities add

up to 1, and the final prediction is simply the type with the highest probability. Another major

benefit is that the probability also gives an indication of how confident the model is. This can

be very useful in practice if the model can indicate where the uncertainties are. In this way,
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measures can then be taken to determine whether or not to obtain more certainty about this

area.

Despite the differences between soil property and soil type prediction, both problems have

many similarities. For example, spatial correlation plays a crucial role in both problems, which

can be exploited by the field of geostatistics. Moreover, with both problems, it is fundamental

to acquire as much information about the area as possible. Therefore, the literature on soil

property prediction has been involved in determining which features can be used and how to

include the spatial correlation.

One of the main topics of this study is the introduction of the LSTM network in DSM, which

has not been used before in this field. Based on the theory of the LSTM network, the model

suits the problem well. Especially because of its capability to process sequential data and the

presence of spatial correlation in the problem.

Another shortcoming of the applied conventional models is that they do not utilize all

available information present in the data. The results are only based on how soil layers develop in

space. Meanwhile, the applied state-of-the-art models utilize all available information provided.

The challenging task here is that the implementer extracts as much information as possible

from the data, preprocesses it as well as possible, and presents it to the model in the best way.

If these steps are done properly, it is credible that the ML models outperform the conventional

models. Since Kirkwood et al. (2016) stated that a random forest can fully capture the spatial

correlation, it can at least be assumed that ML with more information performs at least as well

as the conventional models.
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Chapter 3

Data Description

This chapter provides a decription of the used data. The first section describes the available

data. The next section discusses which features are used and how they are extracted. This is

followed by the correlation between these features. This chapter finalizes with a section about

soil interpretation.

3.1 Available Data

The data made available for this study consists of geotechnical and geophysical data. The

geotechnical part is conducted by two companies and consists of CPTs and VCs. In total,

757 VCs were collected along the cable corridor and 718 CPTs. The total length of all GTs

together is 5,435.31 meters. The soil type distribution of the GTs is presented in Figure 3.1.

Additionally, on some of these VCs, laboratory tests were performed to acquire more knowledge

about the soil behaviour and its characteristics. In Appendix D two PDFs are presented that

Boskalis received from one of the companies. The location and other sensitive data have been

made unrecognizable for confidentiality reasons. The data is received in PDF format and is

therefore not immediately ready for use.

The geophysical data was provided by a third company and acquired using bathymetric

scans, side-scan sonar, magnetometer scans and sub-bottom profilers, and contains every 2

meters along each cable corridors a record. A total of 131,513 depth measurements and 110,935

records of the sub-bottom profilers are provided. Finally, the received data is enriched with

public data including coordinates of the German coastline. The data is provided by European

Environment Agency (EEA coastline for analysis, 2015).
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Figure 3.1: Soil types in percentages in training data.

Vibro Core

A VC is a soil sample of a few meters in length and a diameter of approximately 10 centimeters.

The sample is collected at the vessel and sent to the laboratory for detailed logging and testing.

On some of the VCs, additional tests were performed 1) Grain Size Distribution; 2) Natural

Moisture Content; 3) Organic Content; 4) Atterberg-Limits; 5) Undrained Shear Strength; 5)

Chemical Analysis and 6) Thermal Resistivity. Figure A.3 shows a typical PDF page of available

VC data.

Cone Penetration Tests

A CPT is a well-known method to determine the geotechnical properties of soils. When per-

forming a test, an instrumented cone is hydraulically pushed into the soil at a constant speed, in

this case, 2 cm/s. While pushing the cone into the soil, several geotechnical soil properties are

measured. The most important one is the total cone resistance (qt) which is measured in MPa.

The sleeve friction (fs) and pore water pressure (u2) are also measured in MPa. The friction

ratio and the pore water pressure ratio are computed by dividing fs and u2 by qt, respectively.

Figure A.4 shows a typical PDF page of the available CPT data. It contains graphs of the five

properties discussed above with a resolution of 2 centimeters.
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Geophysical Survey

The geophysical survey is performed using bathymetric scans, side-scan sonar, magnetometer

scans and sub-bottom profilers. On the basis of these surveys, the seabed profile along the three

cable corridors is determined. These techniques can also penetrate the seafloor and detect soil

layers beneath it. Although, soil layers were not detected everywhere.

3.2 Feature Engineering

This study aims to develop a 3D soil model along the export cable corridors of the wind farms.

The ML models require features for predictions and building a soil model. The next paragraphs

clarify how the features from Table 2.3 are derived.

Spatial Position

For the final 3D model, the locations are selected by taking an adequate distance between the

predicted locations based on the soil variability. The locations along the cable corridors can be

obtained from the bathymetry data. For training and testing, the locations are restricted to the

locations of the GTs because a known output is required. These locations are obtained from the

test itself, but the water depth is retrieved from the nearest bathymetry datapoint. Obviously,

the locations along the corridor do not have water depth available from a GT. Therefore, the

water depth for a VC and CPT is also retrieved from the bathymetry data. In this way, the

spatial position is determined consistently because easting and northing are the exact∗ locations

from the data and water depth from the geophysical survey. Subsequently, at each easting and

northing position, every centimeter below the seafloor to a depth of six meters is predicted.

Resulting in 600 samples at each easting and northing location. Finally, the distance from the

coast is calculated as the geodesic distance, i.e. the shortest path between two points on a

curved surface.

Vibro Core Features

A soil sample is expected to be correlated with nearby VCs. Therefore characteristics from the

four nearest VCs are included as input variables. The distance to each of those VCs is computed

as the geodesic distance. Additionally, the primary and secondary soil type at equal depth, the

start of that layer and the end of that layer are all retrieved from the VC PDF. Finally, the

water depth is retrieved from the bathymetry data as stated in the previous paragraph.

Cone Penetration Test Features

For consistency, the features of the CPTs have also been determined for the four nearest CPTs.

Similar to the distance of the VCs, the distance to each of those CPTs is computed as the

∗Exact here means that it is the exact coordinates from the data. The water depth of the GTs is not exact

as they are retrieved from the bathymetry data.
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geodesic distance. The companies that conducted the soil investigation also provided a soil

type interpretation of the CPTs. This interpretation is used for the primary soil type at equal

vertical position of the sample. Additionally, the tip resistance, sleeve friction and pore water

pressure are included too. These three values are calculated as the statistical medians from

10cm above to 10cm below the depth of the sample. In this case, the median is preferred

because the mean is sensitive to outliers∗, especially with only a few observations in this range.

Again, the water depth is retrieved from the bathymetry data.

Nearest VCs and CPTs Features

The SoFs are determined based on both VCs and CPTs in a radius of 500 meters of the sample.

The vertical SoF is calculated by taking the average number of detected layers of all GTs in

this radius. The horizontal SoF is calculated by determining how many different primary soil

types are detected at the same vertical position beneath the seafloor in this radius.

Sub-bottom Profilers Features

Sub-bottom profilers transmit signals and capture reflections from soil layers. In this way, they

are able to reveal soil properties at the location of the sample. A great benefit of a geophysical

survey is that it collects data on every location along the corridor. The company that conducted

the survey also provided a soil type interpretation. This is used to include the soil type at equal

vertical position, the soil type above and beneath this layer. Additionally, the boundaries of

the layer in which the sample is located are also included.

Bathymetry

The water depth variance of a location is calculated over all geophysical records within a radius

of 50 meters. Each cable corridor has every 2 meters a data record of the depth, but not all

GTs are performed perfectly on the route of the cable corridor. Fo this reason, is opted for a

radius of 50 meters because then there are at least 20 records for each sample. When a larger

area is chosen, it contains less information about the location in question. In addition, the

values will differ less from each other, reducing the power of discrimination for this feature. For

instance, if the water depth variance is taken for the entire area, there will be one value for

all samples, which is useless as the model cannot distinguish between different samples. The

water depth variance in a specific area contains information about whether or not the seabed

is even or uneven. It is expected that this is correlated to the soil types or the variance of the

soil types. For instance, one could think of sand dunes where the water depth variance would

be high. Subsequently, the quantile of the water depth is calculated. This gives an indication

of whether the seabed is low or high with respect to the surrounding area. For consistency, a

∗An outlier is an observation that does not seem to fit with the rest of the data. This often occurs in CPTs

due to measurement errors, resulting in 0 values.

38



radius of 50 meters has also been used here. A quantile value of 1 corresponds to the deepest

point in the area, while a value of 0 corresponds to the most elevated point.

3.3 Feature Correlation

It is vital that the explanatory variables are correlated with the variable in question. If this is

not the case, the model has to guess randomly, or it finds patterns that happen to be there,

which in all probability will not be present in new data. On the contrary, it is favourable that

the explanatory variables do not correlate with each other. It is evident that highly correlated

features contain largely the same information. This directly means that the variables together

do not have much more predictive power than just one of the variables. Therefore, it is desirable

that the correlation between variables is close to zero.

Appendix E presents the correlation between the features and the actual soil type (y (nom))

in a heatmap†. All continuous features have (con) after their names, and all categorical features

have (nom), from nominal, after their names. Since the continuous features are not Gaussian

distributed, Spearman’s correlation is used for the correlation between continuous variables. For

the correlation between categorical variables and continuous variables, the correlation ratio is

used, and the correlation between two categorical variables is computed with Cramer’s V. The

hue of the squares indicates the magnitude of the correlation, and the colour indicates whether

the correlation is negative (blue) or positive (red). Not surprisingly, the features that define

the position, i.e. Easting, Northing, Water depth, exhibit high correlation with each other and

with inferred features from the position, such as Distance to coast. It can be noticed that the

water depth features also show a high correlation.

Figure 3.2 shows the 25 most correlated features with the soil type. The categorical features

(nom) and continuous features (con) cannot be compared one to one because they are calculated

with a different association measure. Nevertheless, continuous and categorical variables can be

mutually compared. Therefore, this graph gives an indication of which characteristic is most

correlated with the soil type. Since soil type is a categorical variable, all correlations are positive.

The features that determine the spatial position and the water depths are highly correlated and

correlated to the soil type as well. It is expected that the features that are correlated most to

the soil type are also the most important features in the tree-based models.

3.4 Soil Type Interpretation

Although there are quantitative, measurable characteristics to classify soil, as described in

Subsection 2.1.3, there is still room for interpretation. Because not every soil sample is brought

to the laboratory for examination and GTs do not provide all information to classify the soil

samples. Due to the room for interpretation and the fact that the data is provided by two

different companies, it occasionally occurs that there is a discrepancy in soil type interpretation

†A heatmap is a graphical representation of data that uses colour-coding to represent different values.
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Figure 3.2: The correlation of the features with the soil type of the sample.

in the same area. Figure 3.3 shows a section of one of these areas along a cable corridor. Here, it

is apparent that the GTs of company 1 are largely classified as mud while the GTs of company

2 contain multiple different layers. Besides, a difference in soil interpretations can also occur

between different test types, which is shown in Figure 3.4. In this part of the corridor, the VCs

are interpreted as mud and the CPTs as clay.
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Figure 3.3: This figure visualizes a section of a cable corridor where the soil type interpretation

between the companies differs. All GTs of company 1 are largely mud while the GTs of company

2 show a completely different soil layering

Figure 3.4: This figure visualizes a section of a cable corridor where the soil type interpretation

between the test types differs. All VCs are interpreted as mud while all CPTs are interpreted

as clay.
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Chapter 4

Methodology

This chapter describes the methodology. The first section addresses the data extraction from

PDF files through image processing. Secondly, after the data is extracted, it is split into a

training and a test set. The conventional models can use this data directly to develop a model

without any pre-processing steps. On the other hand, the ML models require pre-processing of

the data before training and prediction, covered in the third section. The last section, model

selection, clarifies how the best model is selected for the final 3D stratigraphic soil model. A

schematic representation of the complete approach for the cable burial assessment is shown in

Figure 1.1.

4.1 The Peat Classifier

Since peat is critical in this project, it is essential to predict the occurrence of peat samples

optimally. For instance, if many peat samples are not predicted by the model, these locations

will not be excavated and will impact the performance and life of the cable. On the other

hand, if a lot of peat is predicted, then an unnecessary amount of soil has to be excavated.

On beforehand, the criterion for excavation is known, and that is, if there are more than 20

centimeters of peat in the top 3 meters of soil, the soil has to be excavated.

In terms of DSM, the correct prediction of peat is not more important than the correct

prediction of other soil types. Achieving as many correctly predicted samples as possible has

priority. Accordingly, it is especially important to correctly predict the locations to be excavated

and, secondly, the soil types. Due to this difference in priority, a separate peat classifier is

designed for the first problem. The only task of this classifier is to predict the locations to be

excavated as good as possible. To accomplish this, the peat classifier uses resampling techniques

and extra weights for peat samples, as described in 4.4.4. After classifying the peat separately

with the peat classifier, a normal classification is performed for all soil types without resampling

or extra weights for minority classes. Meaning that the soil types are treated equally. For the

peat classifier, a random forest is used, and therefore it was decided to use it only in combination

with ML models. In order to retain separation between the conventional models and the ML
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models. In Appendix G, a flowchart is presented with the peat classifier.

4.2 Train-Test Split

All available data is split into a training and a test set for developing and evaluating the

models. ML models require a training set for training the model. Based on this training set,

the algorithm can learn patterns in the features with respect to the outcomes. Therefore the

outcomes of the training set must be known. The test set is used to estimate the model’s

performance on new data that also requires known outcomes. Otherwise, it is impossible to

validate the results of the model. Obviously, conventional models also require data to develop

a model, but it is less common to withhold a test set. For comparison between the models, all

models are developed/trained on the same training set and tested on the same test set. Since

the outcomes have to be known, only locations can be used where the soil profile is known, i.e.

locations of the GTs. Both VCs and CPTs are used to train and test the models.

Usually, the train-test split is done randomly in machine learning. In this case, this is not

intuitive since clusters can then arise with many or few observations. This has as a consequence

that there are GTs in the test set where nearby GTs are also in the test set. This reduces the

available information of the surroundings in the training set. It is more intuitive to take every

nth GT of each export cable as a test set. In practice, it is also more intuitive that the GT

density will be less across the entire cable corridor than that there are no observations at all

on certain spots. It is common to use 80% of the data for training and 20% for testing, which

is also used here. This means that every 5th GT in each cable corridor is in the test set and

the remaining tests in the training set. The test set for each corridor is shifted to optimise the

information coverage for the test set. The training set comprises 1180 unique GTs, and the

test set 294. Because it is known when peat has to be excavated, the amount of GTs to be

excavated can be determined in both sets. In the training and test set are 35 and 13 GTs to be

excavated, respectively. Figure 4.1 visualizes the train-test split and Table 4.1 shows amount of

GTs related to the train-test split. It can be noted that the total number of CPTs is smaller

than stated in Section 3.1. This is because there is one CPT whose location is unknown and

therefore unusable.

Table 4.1: Train-test split

Training set Test set Total

VCs 604 153 757

CPTs 576 141 717

Total 1180 294 1474

Excavated 35 13 48
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Figure 4.1: Training & test set distribution along the cable corridors. Every fifth GT is in

the test set and the test set is shifted for each cable corridor to achieve optimal information

coverage.

4.3 Data Structure

The training data consist of 1180 unique GTs with a total length of 4,349.27 meters. Since

every centimeter is predicted, this results in 434,927 observations in the training set. The test

set consists of 294 unique tests with a total length of 1,086.04 meters, resulting in a test set of

108,604 observations. Each observation has a unique 3D spatial position. The spatial position

is the only data provided to the conventional models. The dimensions of the training set are

therefore 434,927 x 3. The rows represent unique observations, and the columns represent the

features easting, northing and depth. The data provided to the machine learning models have

a separate column for each feature in Table 2.3. For both VCs and CPTs, the four nearest tests

are included, making 62 columns. This results in a training set with dimensions 434,927 x 62.

On the other hand, the data structure provided to the LSTM is different because it has

a third dimension. Usually, this dimension represents the time but, in this case, the vertical

position. The same features as the machine learning models are extracted for the LSTM.

However, the features of the LSTM data is based on only the two nearest VCs and CPTs

instead of four. This is because additional columns are added with sequences, and otherwise,

the dimensionality will be too large for the model. The added sequences contain the primary

soil types of the nearest GTs from seafloor to a depth of 6 meters. The sequence has a length of

12, and therefore the majority soil type every 50 centimeters is included. Additionally, from the

nearest CPTs, the median and variance of tip resistance, sleeve friction and pore water pressure

of every 50 centimeters are included. The data provided to the LSTM has for each observation

a 2D matrix with a size 12 x 54 instead of a vector.

4.4 Data Processing

The applied data pre-processing steps consist of data cleaning, scaling, handling missing data,

and resampling. Then, a final post-processing step is applied after training which is data

aggregation.
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4.4.1 Data Cleaning

Data cleansing is a vital process in modelling and even more so when using machine learning

models, as these models rely more on data quality. Many data cleaning is already being done by

the companies that provided the data. This includes noise filtering of the sub-bottom profilers,

bathymetry and CPT data. The steps taken in this study is removing a single CPT without a

spatial position. Additionally, parts of some VCs were lost, leading to missing values. These

missing values were also removed so that the ML models do not learn and predict these core

losses.

4.4.2 Data Scaling

The two most common types of data scaling are standardisation and normalisation. With

standardisation, a Gaussian distribution is assumed for the scaled variable. Since the data is

not Gaussian distributed, normalisation is used to scale the data. Normalisation is done by

the MinMax scaler, which is defined in equation 4.1. Each feature is separately scaled by the

minimum and maximum values of the training set. After scaling all the values will be in the

range of [0,1]. It is possible that new data, for example, the test set, contains values outside

the bounds of the minimum and maximum. Resulting in a scaled value that is not in the range

of [0,1]. To handle these out-of-bounds values, they can be removed from the dataset or can be

limited to a predefined minimum and maximum values. In this research, the values are limited

to 0 and 1.

Xscaled =
X −Xmin

Xmax −Xmin
(4.1)

4.4.3 Missing Data

The next pre-processing step is handling missing data. Except for the location variables and

the distances to nearby GTs, all features have missing data for some samples. For instance,

the nearest VC for a sample at 3 meters depth can have a length of 2 meters. Therefore the

soil type at an equal vertical position is not known and missing in the data. These missing

values need to be handled because most ML models cannot deal with missing data. XGBoost

is an exception to this, as it has an algorithm that finds the best split at each decision node

for missing data. The loss is calculated twice for each decision node, one for each direction the

missing values can take. Naturally, the direction with the lowest loss is chosen. However, the

other models need a different way of dealing with missing values. The missing soil types are

assigned to a new and unique category so that they are not added to another soil type. Missing

values of continuous variables have been replaced by 0, which is a common approach.
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4.4.4 Data Resampling

Data resampling is only performed for the peat classifier and is performed after handling missing

values. SMOTE is used to oversample the peat samples, and random undersampling is used

to undersample sand, clay, mud and marl. The oversampling and undersampling factors are

optimized because it is not known in advance to what extent oversampling and undersampling

are required.

4.4.5 Data Aggregation

The last step is post-processing the data by aggregating the predictions. Figure 3.1 shows the

proportions of the soil types in percentages in the training data. It can be noticed that the data

is highly imbalanced. Over 50% of the soil types is sand, while dy, gravel and peat together

make up less than 1% of the types. With these ratios, it is extremely difficult for an ML model

to learn the minority classes. For this reason, dy and gravel are aggregated to other soil types.

Dy is added to peat because of its high organic content, and gravel is added to sand. Since peat

plays a crucial role, it is not aggregated to another soil type.

Besides, clay and mud are also aggregated together because of the difference in soil type

interpretation between test types as shown in Figure 3.4. The aggregation is done after predic-

tion to preserve the variation in the data. For instance, if aggregation is done before training,

the feature soil type at equal vertical position of the nearest VC will contain less variation and

information because three soil types are already aggregated.

4.5 Model Selection

This section clarifies the strategy to select the best model. First, the classification metrics to

measure the performance of the models are explained. Then a section cross-validation describing

the method to optimize the hyperparameters of the ML models, which is naturally the next

section. Finalizing with a subsection about the model evaluation.

4.5.1 Classification Metrics

Classification metrics are used to measure and compare the performance of models. Numerous

metrics are available, all (partly) based on the four possible outcomes in classification: 1) True

Positives (TP); 2) True Negatives (TN); 3) False Positives (FP) and 4) False Negatives (FN). An

overview of the possible outcomes is given in a so-called confusion matrix in Table 4.2. Typically,

the performance of machine learning models is evaluated by a confusion matrix (Chawla et al.,

2002). This study is confronted with a multi-class classification problem. Therefore, each class

has its own confusion matrix. For instance, in the case of sand, TP: the model predicts sand,

and the soil actually is sand; TN: the model predicts not sand, and it is not sand; FP: the model

predicts sand, and it is not sand; FN: the model predicts not sand, and it is sand. In medical

applications, the latter is known as a type II error which is a very bad outcome. A person who
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is actually sick is then labelled as non-sick with all its consequences. On the other hand, a FP,

type I error, is much less dramatic. In this case, a type II error can be associated with the

misclassification of peat because the consequences of a misclassification of peat are significantly

worse than the misclassification of sand.

Accordingly, metrics with equally weighted errors, such as accuracy, do not suit the problem

of the peat classifier. On the other hand, peat is only important when excavation is necessary.

Accordingly, the peat classifier is optimized on how many of the GTs should be excavated

according to the model and how many of these correspond to the number of GTs that should

actually be excavated. One can think of this in the following manner. Obviously, the peat

classifier predicts the entire test set. Then, it can be determined in how many predicted GTs

more than 20 centimeters of peat in the top 3 meters is predicted. For evaluation, these predicted

GTs to be excavated can be compared to the actual GTs to be excavated.

Table 4.2: Confusion matrix

Predicted negative Predicted positive

Actual negative True negative (TN) False positive (FP)

Actual positive False negative (FN) True positive (TP)

accuracy =
TP + TN

TP + FN + TN + FP
(4.2)

4.5.2 k-Fold Cross-Validation

Cross-validation (CV) is a renowned method that is used to find the optimal hyperparameters∗

of a model. At first, multiple hyperparameter combinations are defined. Subsequently, CV is

performed on the training set for each combination. The parameter k determines the number

of folds into which the training set is divided. A fold is simply
1

kth
part of the training set, and

each fold is used once as a validation set. The other k-1 folds are then used for training, after

which the model is tested on the validation set. This procedure results in k CV results for each

hyperparameter combination.

The value k value should be chosen carefully because when the value is poorly chosen, it can

result in not representative results of the CV. With a possible consequence that non-optimal

hyperparameters are selected. It is essential that each training and validation group is large

enough to be statistically representative for the entire dataset. This means that the value of k

should not be too large because increasing the value of k decreases the fold size.

There is a bias-variance trade-off associated with the value of k. Typically, one performs

k-fold CV with k=5 or k=10. These values have been shown empirically to yield test error rate

∗A hyperparameter is a parameter which controls the learning process of a machine learning model. The

hyperparameters are set by the user before training the model and are therefore not optimized during training.

Consequently, hyperparameters should be optimized by the user.
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estimates that suffer neither from excessively high bias nor from very high variance (James et

al., 2017). In this study is opted for k=5. Normally, after the choice of k is made, the training

data is shuffled randomly and split into k groups of equal size. Then one group is taken as a

validation set and the remaining groups as a training set. As with the train-test split, this is

not intuitive, and therefore the folds are created in the same way as the train-test split. The

first fold contains GT 1, 6, etcetera and the second fold 2, 7, etcetera. The formula is shown

below.

foldi = {i+ j · k} (4.3)

where j = 1, 2, ...,
n

k
and n is the total number of GTs in the training set. Each iteration in

the CV, the validation set shifts to the consecutive GTs. After five iterations, all GTs in the

training set have been included once in the validation set.

Data pre-processing procedures are performed only on the training set to avoid data leakage.

For example, if scaling is performed on all folds, the model already has information of the

validation set, which can lead to overestimation of the performance of the model. After data

pre-processing, the model is fit on the training set and evaluated on the validation set. This

procedure is done for each fold resulting in 5 evaluation scores for the model. Figure 4.2 shows

a schematization of 5-fold CV.

CV is then performed on each parameter set in the parameter grid. The best average score

can be seen as the optimal hyperparameter set. When the two best scores are close to each

other, but the best model has a higher variance, one could opt for the second-best score due to

more stable results.

Figure 4.2: Schematization of 5-fold CV (scikit learn, n.d.). First, the training set is divided

into 5 equal sized folds. Then, each fold is used once in the validation while training the model

on the other four folds. This results in five CV results which can be used to determine the best

hyperparameters.
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4.5.3 Hyperparameter Optimization

Hyperparameter optimization is essential in ML because it controls the learning process. When

the model’s hyperparameters are not adjusted to the data, then the model will probably per-

form very poorly. The hyperparameters are set performing a grid search with CV as described

in Section 4.5.2. A preliminary random grid search is performed to pre-select and find good

combinations of hyperparameters. This approach is preferred because many different hyper-

parameter combinations can be efficiently explored. It is often a challenge to come up with

well-founded arguments to use specific hyperparameters as it is often trial and error to find the

optimal hyperparameters. Figure 4.3 visualizes how random grid search effectively explores the

hyperparameter space with respect to exhaustive grid search. Selecting good combinations with

random grid search reduces the hyperparameter space, after which an exhaustive grid search is

performed to find the optimal performing combination. The best combinations from the random

grid search are included in the following sections, which is the final hyperparameter grid for an

exhaustive grid search. The complete optimization procedure is visualized in Appendix H.

All models are implemented in python 3.8.8. Random forest and XGBoost uses scikit-learn

0.24.1, and the LSTM-network is implemented using keras 2.7.0.

Figure 4.3: A visualization of exhaustive grid search (left) compared to random grid search

(right) (Pilario et al., 2020). The square represents the hyperparameter space of two hyeperpa-

rameters. The performance of these hyperparameters are shown as graphs at the side (yellow

graph) and at the top (green graph). The right figure shows, by cross-validating 9 hyperparam-

eter combinations (black dots), that a lot more values are explored with random grid search

than with exhaustive grid search. Therefore, random grid search is preferred when it is unknown

which hyperparameters perform well.

Moving probability threshold

Since machine learning models can compute probabilities for the classes, it is possible to deviate

from the usual threshold. Usually, the class with the largest probability is classified as 1, which

is the predicted soil type, and others as 0. To achieve the highest score, it is imperative that

the model can distinguish the classes as much as possible. When the model minimizes the loss

function, it is highly likely that a different threshold can provide a higher score. Consequently,
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performing a grid search with the usual largest probability, potentially good models can be

overlooked. For instance, due to the low number of peat samples in the data and the crucial

role it plays, it can be decided to classify a sample as peat if the probability is greater than

20%, while it does not have the largest probability. Figure 4.4 shows the real profile of a VC,

the predicted profile and the probability profile. In this example, the soil type with the largest

probability is the predicted soil type.

Figure 4.4: An example of a predicted probability profile for a GT. On the right the real

profile is shown, in the middle the predicted profile and on the left the probability profile. The

probability profile should be read from left to right for each depth. It visualizes the probability

assigned to each soil type for the corresponding depth.

Peat Classifier

For the peat classifier, a random forest is used. The hyperparameters optimized for this classifier

are the oversampling and undersampling factors for resampling the training data. The movable

probability threshold is used too to accomplish the task it is designed for, i.e. classifying the

locations of soil to be excavated as well as possible. This works in the following way, the

peat classifier is trained on the resampled training data and computes the probabilities for the

classes. Shifting the probability threshold makes it possible to determine how many samples are

classified as peat and, therefore, the number of tests to be excavated. It is known beforehand

how many GTs need to be excavated in each validation set. Then, the user can set how many

of the actual excavated GTs in the validation set should be correctly predicted. Logically, the

more GTs that need to be correctly predicted come at the expense of accuracy. For instance, if

the threshold is zero, all samples will be classified as peat, and all GTs that have to be excavated

are correctly classified, but the accuracy will be very low. The most difficult to learn samples

have the lowest probability and come at the cost of more accuracy than easier to learn samples.

Therefore it is not desired to correctly predict 100% of the excavated GTs in the validation sets

and is opted for at least 80%. This criterion is used while optimizing the model and gives an

indication of the percentage of correctly classified GTs to be excavated in new data.
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By following this procedure, a probability threshold is obtained. Only the samples with a

probability higher than the threshold and were at least 20 samples in the GT have a higher

probability than the threshold are classified as peat. Samples in a GT with less than 20 sam-

ples with a higher probability than the threshold are normally classified whether or not their

probability is higher than the threshold. In this way, the classifier focuses only on the GTs to

be excavated and not on all peat samples, which improves the accuracy. Five thresholds are ob-

tained after 5-fold CV, where the minimum threshold is used for the final model. Additionally,

predicted peat samples farther than 500 meters from the nearest peat sample in the training set

are ignored. By analyzing the five validation sets, it became clear that the maximum distance

of a peat sample in the validation set was no farther than 500 meters from the nearest peat

sample in the training set.

SMOTE is used to oversample the peat samples, and random undersampling is used for

sand, mud, clay and marl. The oversampling factor is multiplied by the original amount of

samples. Thus, a training set with 100 samples and an oversampling factor of 3 means that the

resampled training set contains 300 peat samples, of which 100 real samples and 200 synthetic

samples. An oversampling factor of 1 means that no synthetic samples are generated. The

undersampling factor works the other way around, but this factor is used in the formulas below

for different soil types. The presence of sand is much higher than the other soil types. Therefore,

a larger undersampling factor is desired.

1. SMOTE oversampling factor (1, 3, 5, 10, 15, 20)

2. Random undersampling factor (0, 3, 5, 7)

The formulas for the undersampling factors are shown below. The actual undersampling factors

can be computed by filling in the four undersampling factors shown in the formulas below.

Additionally, it is possible to use class weights to give certain classes more attention than others.

The hyperparameters are optimized with class weights that restore the class imbalance. This

means that if sand has twice as many samples after resampling as peat, the misclassifications

of peat weigh twice as much as those of sand.

• sand: (undersamplingfactor ∗ 3) + 1 (1, 10, 16, 22)

• clay: (undersamplingfactor ∗ 2) + 1 (1, 7, 11, 15)

• mud & marl: undersamplingfactor + 1 (1, 4, 6, 8)

Random forest

Random forest has many hyperparameters that can be tuned. The four below followed by their

selected values will be tested to find the optimal combination:

1. Maximum depth of a tree (5, 10, 20, 40)
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2. Minimum number of observations for a node to split (2, 6, 10, 20)

3. Minimum number of observations at a leaf (1, 2, 5, 10)

4. which criterion to use for a split (Gini Index, entropy)

The number of trees grown by a random forest does not need to be optimized because the

results converge with an increasing number of trees. Increasing the number of trees will not

overfit the data because each tree can be considered independent due to the random nature of

the model.

The first three hyperparameters are regularizers and determine when the trees stop grow-

ing. Accordingly, these three hyperparameters, and also the fourth, are simultaneously set.

By tuning multiple hyperparameters simultaneously, the chance to get stuck in local optima

decreases.

The maximum depth of a tree determines how many decisions can be made sequentially.

After the first split, there are two leaves corresponding to a depth of one and two different

groups. The second layer also divides both subsets into two groups, making a total of 4 groups.

This means that there are 2depth of the tree groups. For a depth of 20, there are already 1,048,576

possible groups, but this will probably be regularized by one of the other regularizers.

The second hyperparameter, the minimum number of observations for a node to split, is also

a regulator for the complexity of the trees. When a node contains fewer observations than the

threshold, the node is not split. This also affects the maximum depth of a branch. A tree with a

depth of 20 whereby at each split, one subset stops splitting has a total number of groups of 21,

which is considerably less than the maximum mentioned above. Figure 2.6 shows an example

for a tree with a depth of three whereby each split one subset stops splitting and has a total

of four groups. Accordingly, the minimum number of groups is the depth of the tree plus one.

The third hyperparameter prevents a node from splitting if at least one subset is less than the

minimum number of observations at a node.

XGBoost

XGBoost knows a lot less hyperparameters compared to a random forest. The four hyperpa-

rameters below followed by their selected values will be tested to find the optimal combination:

1. Number of trees that will be grown (5, 10, 15, 20, 30, 50)

2. Maximum depth of a tree (4, 6, 8, 12, 20)

3. Learning rate (0.01, 0.05, 0.2, 0.6)

4. Minimum loss reduction for a split (0, 0.3, 0.8)

Unlike random forest, XGBoost grows trees sequentially and can therefore overfit the data

by increasing the number of trees. Thus, this hyperparameter needs to be optimized. The
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maximum depth of a tree is similar to the hyperparameter in a random forest. The learning

rate is an essential hyperparameter for ML models and determines how fast weights in the

model change, i.e. how fast it adapts to new data. Finding an appropriate learning rate for

the model is crucial because high learning rates pass by global optima due to its large steps.

Besides, too low learning rates do not reach the global optima. Figure 4.5 shows the effect

of different learning rates. Finally, the last hyperparameter is comparable to the number of

observations at a leaf because it considers a split and only makes the split if it meets at least

the minimum loss reduction. At first glance, it might seem more similar to the minimum number

of observations for a node to split, but this hyperparameter does not consider a split if there

are too few observations.

Figure 4.5: An example what the effect of the learning rate is (Hammel, 2019). The upper

graphs shows the loss function with a obvious minimum. When the learning rate is to small the

minimum is not reached (left figure). On the other hand, if the learning rate is too large it will

pass by the minimum (two most right figures).

Long short-term memory network

The degrees of freedom for an ANN reaches infinity when the architecture also is taken into

account. The architecture is formed by the layers in a model and the number of units, i.e. the

dimension of the layer(s). To limit the number of options, 4 architectures were designed. It

concerns the following four:

• Model 1: 1 layer LSTM unidirectional

• Model 2: 1 layer LSTM bidirectional

• Model 3: 2 layer LSTM unidirectional

• Model 4: 2 layer LSTM bidirectional
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An ANN with a single hidden layer is referred to as “vanilla”, and a double layer is referred to

as “stacked”. All architectures end with a dropout layer followed by a fully-connected layer to

map the output between 0 and 1. Further, dropout is used between both LSTM layers for the

latter two models. For dropout a value of 0.4 is used. This means that in each epoch 40% of

the neurons are excluded from training the model, which generalizes the model. The number

of neurons in the layers and the batch size is optimized. The following values are used:

1. Number of neurons in each layer (5, 10, 25, 50, 100)

2. Batch size (32, 64, 128, 256, 512)

Now that the architectures of the models are defined, the remaining specifications can be

determined. First, the fully-connected end layer requires an activation function. Here the

softmax function is chosen, widely used as the final layer of neural networks for classification,

because it ensures that the output sums up to 1. Therefore the result can be interpreted as

probabilities for the classes. Also, a loss function is required, which will be minimized by the

model. An intuitive choice for the loss function is the categorical cross entropy (CCE). CCE

penalizes the difference between the true value and the predicted probability of the class. The

penalty increases exponentially for higher differences. It also allows adding weights to particular

classes. When class weights are provided, CCE can be written as:

CCE = −
N∑
i=1

Wiyi · log Pi (4.4)

where N is the number of classes; Wi represents the class weight of the ith class; yi is the true

value ∈ {0, 1}† and Pi is the computed probability ∈ [0,1]‡. To minimize the loss function, an

optimizer is required to update the weights of the model. Nowadays, the most used optimizer in

neural networks is Adaptive Moment Estimation (Adam). Adam is also used in the performed

LSTM networks.

4.5.4 Model Evaluation

After hyperparameter optimization, the machine and deep learning models are trained on the

entire training set with the optimal hyperparameters. Then, all models are evaluated on the

test set and compared with the classification metrics from Section 4.5.1. Appendix I provides

an overview of the final model evaluation.

4.6 3D Soil Model

The best performing model is used to develop a 3D stratigraphic soil model along the cable

corridors. Since the distance between the GTs is large, the mean distance is approximately 500

†Braces are a mathematical expression of a set. Meaning that yi is either 0 or 1.
‡Brackets are a mathematical expression of a range. Meaning that Pi is a value in the closed interval from 0

to 1.
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meters. It is insufficient only to use these locations to develop a model for the entire length of the

cable corridor. This does not hold for triangulation because this technique interpolates between

the GTs and instantly creates a model for the entire corridor. However, machine learning models

do not interpolate but predict the soil profile at designated locations instead. Based on a given

location and engineered features, a machine learning model can make a prediction of the soil

profile. As a consequence certain locations along the corridor need to be selected for prediction.

The space between these locations must be so small that there is hardly any soil profile variation

between them. Otherwise, there is a risk of missing important soil layers. After selecting an

appropriate separation distance, the predicted soil profiles at the designated locations can be

placed side by side to form a near-continuous soil model, which is constrained at the locations

of the GTs.
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Chapter 5

Results

The chapter discusses the obtained results. The first section describes the results of the proposed

methodology from section 4.5.3 for optimizing the hyperparameters. The following section

discusses the estimated feature importances. Then, the results of the final models with the best

hyperparameters are discussed in section 5.3. Finally, the obtained results are analyzed.

5.1 Hyperparameter Optimization

This section provides the complete optimization procedure where only the ML models are

optimized. The sections follows the same order as in the report starting with the peat classifier,

then random forest and XGBoost and finally the LSTM. It should be noted that the peat

predictions of random forest, XGBoost and LSTM have already been corrected by the peat

classifier. This applies to the optimization procedure but also to the results of the final models.

Peat Classifier

For the peat classifier, the oversampling and undersampling factors were optimized. These

results are shown in a heatmap in Figure 5.1, on the x-axis the oversampling factor and the

y-axis the undersampling factor. Each resampling combination has a square mentioning the

total number of predicted GTs to be excavated in all five validation sets. Several values are not

a whole number because it is the average number of three times CV. The CV results were quite

unstable, and therefore was decided to perform CV multiple times. The unstable behaviour

is due to the large undersampling factors up to 22 for sand. Undersampling is done randomly

and depends on which samples are removed and which are not. An undersampling factor of 22

means that only
1

22nd
of the sand samples persist and that each round of undersampling most

likely has an entirely different set of samples.

The results satisfy the criterion of predicting at least 80% of the GTs that should actually

be excavated correctly in each validation set. The validation sets from 1 to 5 contain 5, 6,

8, 10 and 6 GTs to be excavated, respectively. This means that at least 29 GTs∗ from the

∗At least 29 as the GTs to be excavated in each validation set must be rounded up.
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mentioned number are correct. The second number in the squares is the standard deviation of

the residuals†. The colour of the squares indicate the number of GTs to be excavated. The

lower, the better. As can be seen, there is not a clear optimum. This is also reflected in

the graphs of Figure 5.2 when the results are averaged per factor. Here, it can be noticed

that the oversampling factor does not have much influence on the number of predicted GTs

to be excavated. It is plausible that oversampling has almost no effect due to the use of class

weights‡. Appendix J presents the effect of the oversampling factor without class weights. These

results clearly show an effect and optimum of the oversampling factor, although the results are

considerably worse than with class weights. Of course, class weights are used in the final model.

On the other hand, the undersampling appears to have an effect. Thus, the optimum depends

only on the undersampling factor regardless of the oversampling factor. This can also be noticed

in the colour-coded map where the columns’ optima are concentrated around the undersampling

factor of 5. However, an undersampling factor of 7 in combination with an oversampling factor

of 1 has the best performance. This combination also has the smallest standard deviation and

is therefore used in the final model. Figure 5.3 shows the change in soil type ratios due to

resampling. The original training set contains 434,927 samples, and the resampled set contains

48,940, which is just over 10% of the original set.

Figure 5.1: CV results of peat classifier. The average number of predicted GTs to be excavated

and its standard deviation is shown for each resampling combination. The results satisfy the

criterion of at least 80% of the GTs to be excavated in the validation set are correctly predicted.

This means that for all results at least 28 GTs are correct.

†Number of predicted GTs to be excavated minus the actual number of GTs to be excavated in the validation

set.
‡explained in Section 4.5.3 under the heading Peat Classifier.
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Figure 5.2: The left figure shows the effect of the oversampling factor and on the right figure

the effect of the undersampling factor. The red dots are the predicted number of GTs to be

excavated in all validation sets, where the actual number is 35. The bars represent the standard

deviation of the residual at each validation set.

Figure 5.3: On the left the soil types in percentages of the original data (only training set)

and on the right the percentages after resampling without oversampling and an undersampling

factor of 7. It can be observed that peat ratio is increased.

It is evident that resampling the training set can improve the model’s discriminating ability

of peat, as all combinations with undersampling perform better than without resampling. This

can also be seen in Figure 5.4. The left figure shows the probabilities of peat for all peat

samples in a validation set before and after resampling. Nearly all probabilities are higher after

resampling, which implicates that the model becomes more confident about peat. The complete

60



probability profile can be found in Appendix K. In addition, it is also informative whether the

probability of peat increases for all other soil types. This is not the case, as can be seen in

the right figure. This figure shows the mean probability of peat in each soil type before and

after resampling. The mean probability of peat increases significantly for peat and dy, and in

all other soil types, it remains approximately the same. Meaning that resampling improves the

discriminating ability of peat and does not affect the discriminating ability of other soil types.

Ultimately, dy is aggregated to peat due to its high organic content, and therefore the increase

for dy is not alarming. The high organic content explains why the probability of peat also

increases with dy.

It can be observed that not a One versus Rest (OvR) method is used because all soil types

are presented in Figure 5.4. An OvR method was also implemented, but the results were

considerably worse. The best performing OvR method with an undersampling factor of 20 and

without oversampling resulted in 79 GTs to be excavated. The reason for this difference is the

variation in the output. Oftentimes peat is found next to silt and clay in the project area.

When using an OvR method, all other soil types are aggregated, therefore it is not clear to the

model next to which soil types peat often occurs.

Figure 5.4: The left figure is sorted from low to high probability before resampling. The peat

classifier assigns to nearly all peat samples a higher probability of peat after resampling. The

right figure shows that the probability of peat for the other soil types do not increase.

Random Forest

The best CV results of the random forest optimization with entropy as the criterion and a

maximum tree depth of 20 are shown in Figure 5.5. The other two optimized hyperparameters

are on the x-axis and the y-axis. Each hyperparameter set has a square mentioning its average

CV accuracy at the top and its standard deviation underneath. The colour of the squares

indicates the level of accuracy. The rows represent the minimum number of samples for a node

to split and the columns represent the minimum number of samples at a leaf. The impact of

those two hyperparameters is minor compared to the maximum depth of a tree or the criterion

used. The results for the Gini Index are largely worse than those of entropy and are presented

in Appendix L.1 together with all entropy results. The best CV score of 84.32% is obtained by
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the hyperparameter set with entropy as the criterion, a maximum tree depth of 40, a minimum

of 6 samples at a node to split and a minimum of 1 sample at a leaf. However, this is 0.01%

better than the accuracy’s in the last column of Figure 5.5. On the other hand, the standard

deviation of these accuracy’s is 0.13 lower. Therefore, are these hyperparameter combinations

preferred. Four combinations have exactly the same results. Since the computational costs for

this model are in the order of a few minutes, it is not of interest to Boskalis. Therefore the

hyperparameters that are closest to the default settings are used in the final model. The final

hyperparameter set is the following: entropy as the criterion, a maximum tree depth of 20, a

minimum of 2 samples at a node to split and a minimum of 10 samples at a leaf.

Figure 5.5: Best CV results of random forest with entropy and a maximum tree depth of 20.

The top value represent the average accuracy obtained during CV and is accompanied with its

standard deviation.

XGBoost

The hyperparameter optimization results of XGBoost with gamma is 0.8 are shown in Figure

5.6. The complete optimization results are presented in Appendix L.2. It can be observed

that gamma and the learning rate have a minor impact on the results. Cause of this, there

are multiple hyperparameter sets with the highest accuracy. All are obtained by 20 trees, a

maximum depth of 8, a gamma of 0.8, and multiple learning rates. Again, the computational

cost is in the order of a few minutes. Consequently, 0.2 is selected for the learning rate because

this is closest to the learning rate of 0.3, which is the default learning rate of XGBoost. This

results in the best hyperparameter set with 20 trees, maximum depth of 8, a learning rate of

0.2 and a gamma 0.8. The best accuracy is 84.62%.
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Figure 5.6: CV results of XGBoost. The top value represent the average accuracy obtained

during CV and is accompanied with its standard deviation.

Long Short-Term Memory Network

Figure 5.7 presents the optimization results of the bidirectional stacked LSTM. The complete

optimization results are presented in Appendix L.3. It can be observed that the best results

for all architectures are concentrated in the lower-left corner, i.e., a high number of neurons

and a small batch size. The results between different architectures are quite similar. However,

bidirectional stacked, the most complex architecture, in combination with 100 neurons and a

batch size of 32, obtained the highest accuracy of 83.57%. The combination of 100 neurons and

a batch size of 32 is the best performing combination for each architecture, except for vanilla.
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Figure 5.7: CV results of LSTM. The top value represent the average accuracy obtained during

CV and is accompanied with its standard deviation.

5.2 Feature Importance

Figure 5.8 shows the 15 most important features in both tree-based models. The x-axis quantifies

the information gain, adding op to 100% for all variables. To illustrate how the information

gain is determined is in Appendix M the tree structure of the first tree of the final random forest

presented. Only the first three layers of the tree are shown in two different visualizations. In the

first figure, the data distribution is shown for the feature selected to split the data. The second

figure provides more information, including the information gain of the split. The information

gain is reported as entropy and can be summed for each feature. These values can be divided

by the information gain of the entire tree, resulting in the percentages presented in Figure 5.8.

It can be observed that XGBoost uses more the same powerful features than random forest.

Logically, because a random forest does not have all variables available at each split and can

therefore not always use the most powerful features. That both models give more importance to

more or less the same features, endorses that these features contain the most predictive power.

Twelve of the top fifteen are the same for both models. As expected, the most correlated

features to the soil type from Figure 3.2 are the most powerful features too.
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Figure 5.8: Feature importances of both tree-based models. Only the top 15 most important

features are depicted.

5.3 Final Models

A test set has been withheld at the beginning of the research to test the robustness of the final

selected models. Testing the models on this test set gives an indication of how well the models

will perform on new data. If all preprocessing steps have been performed correctly, the results

are expected to be approximately the same as the CV results. After all, the ML models have

already been tested five times on unseen data with CV.

Triangulated Irregular Network

After creating the network of triangles between the GT locations of the training set, a soil model

can be developed by interpolating the soil types between the locations. A section of the network

is shown in Figure 5.9. Herein, the red dots represent the test set, and the green dots represent

the training set. The network is created on the basis of the training set, and it can be observed

that most of the red dots are mainly on the borders of the triangles. Hence, a GT from the

test set can be interpolated by the two endpoints of the associated line. The left-hand side of

Figure 5.10 shows an example of how triangulation is performed, i.e., the soil types are linearly

connected. The right-hand side shows another example where it is not straightforward how

to interpolate the soil types with TIN. There are two possible ways to interpolate 1) connect

the mud layers and 2) connect the sand layers. In this case, an imaginary line is drawn in the

middle, and everything left of the line is set equal to the left VC, and everything right of the

line is set equal to the right VC. In other words, a GT from the test set is set equal to the
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closest VC.

Figure 5.9: Triangulated network based on training. After the network is created the test set

is plotted on the figure. It can be observed that the test set is mainly on the borders of the

triangles. This simplifies interpolation because only the two endpoints of the line have to be

considered instead of all three points of the triangle.

Figure 5.10: Interpolation examples of triangulation. The left-hand side shows a simple ex-

ample where the soil layers can easily be connected. The right-hand side, however, it is not

straightforward how to interpolate. In this case, everything left of the center is set equal to the

left VC and everything right of the center is set equal to the right VC.

The results of triangulation are shown in a confusion matrix in Figure 5.11. The rows repre-

sent the actual samples and the columns the predicted samples. Consequently, all values on the

diagonal are correctly classified, and the predictions that are off the diagonal are misclassified.
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The top values indicate the number of samples, and the number below is the percentage of

total actual samples, i.e. the rows. Naturally, the percentages in the rows add up to 100%

with an occasional rounding error. The overall accuracy is calculated with equation 4.2 where

the samples on the diagonal are divided by the total number of samples, which results in an

accuracy of 66.63%

It seems that the model suffers from a difference in soil type interpretation between VCs

and CPTs and between the two companies. Especially between mud and clay, a lot of misclas-

sifications are made. There are 6,255 mud samples classified as clay and 6,680 clay samples

classified as mud. The cause of this has all to do with the section of the cable corridors where

the interpretation of the consecutive GTs is alternate from mud to clay, as was shown in Figure

3.4. In the CPTs, the soil is classified as clay and in the VCs as mud. Triangulation cannot

take into account differences in interpretations, meaning that the model will perform poorly in

areas where this becomes apparent.

As stated in Section 4.4.5, the soil types sand and gravel; mud and clay; and peat and dy

can be aggregated. This means that misclassifications between those types can be considered

as correctly classified. The concerning misclassifications are indicated by the red squares in

the confusion matrix. Aggregation of these soil types improves the accuracy substantially to

78.73%, which is the benchmark for the more complex models. The new confusion matrix is

shown in Figure 5.12. Despite the fairly high accuracy, only four GTs are predicted to be

excavated, of which only two are correct. A rather poor performance in classifying peat. TIN is

a deterministic model with no (hyper)parameters that can be tuned. Therefore it is not possible

to predict more peat.
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Figure 5.11: Confusion matrix of triangulation before aggregation. The top values indicate

the number of samples. The number below is the percentage of total actual samples, i.e. the

rows. It can be observed that the model suffers from a difference in interpretation between

the test types. The red squares indicate the misclassifications that are correctly classified after

aggregation of the soil types.

Figure 5.12: Confusion matrix of triangulation after soil type aggregation. The top value repre-

sent the average accuracy obtained during CV and is accompanied with its standard deviation.

Kriging

Since kriging cannot handle categorical variables well, the output must be transformed so that

kriging can do a regression. For each soil type, a separate regression is performed. For example,

68



if a regression is performed for sand, the input is the location [x, y, z], and if there is sand on

that location, the output is 1 and otherwise 0. In that way, a regression is performed for each

soil type. When predicting the test set, it results in eight predictions for each location. These

predictions are not bounded to 0 and 1 and can also exceed those values. The largest value is

taken as the final prediction, which can be thought of as a type of indicator kriging.

The confusion matrix of kriging is presented in Figure 5.13 with an accuracy of 81.71%. The

minority classes are barely predicted. This can be explained by the applied approach because

a lot of majority classes often surrounds the minority classes. For example, when predicting

an actual peat sample where a majority class is much more dominant in that area, a higher

prediction value is assigned to that majority class. Correspondingly, kriging performs poorly at

locating peat and even predicts no peat at all.

Figure 5.13: Confusion matrix of kriging. The top values indicate the number of samples. The

number below is the percentage of total actual samples, i.e. the rows.

Peat Classifier

The peat classifier predicted 17 GTs to be excavated, of which 10 actually need to be excavated.

The 7 GTs that are predicted to be excavated and should not be excavated are shown in Figure

5.14. The actual profiles are shown on the left, and on the right are the predicted profiles. It

can be noticed that 4 out of 7 incorrect predicted GTs contain peat. However, this peat is

lower than 3 meters or too little to excavate. The third and fourth GT contain very organic

clay, and the last GT does not contain organic content. Moreover, the 10 out of 13 correctly

predicted GTs to be excavated is approximately the 80% which was used as criterion during

CV. In Appendix N the correctly and missed soil profiles to be excavated are presented.
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Figure 5.14: Seven incorrect predicted soil profiles to be excavated. The left figures shows the

actual soil profiles and the right figure the predicted soil profiles. Four of those GTs contain

peat below 3 meter or too little to excavate. The third and fourth GT contain very organic

clay.

Random Forest

The final prediction is shown in the confusion matrix of Figure 5.15 with a total score of 85.44%.

It can be noticed that the model has a bias towards the majority classes because these are

predicted the best with a correct classification of 93% and 90% for sand and clay, respectively.

Figure 5.15: Confusion matrix random forest. The top values indicate the number of samples.

The number below is the percentage of total actual samples, i.e. the rows.

XGBoost

The final prediction of XGBoost is shown in the confusion matrix of Figure 5.16, where the

final score is 85.11%. Comparing the confusion matrix with random forest, it can be seen

70



that random forest only has a higher accuracy for sand and marl, two of the majority classes.

Recalling the theory of the models, it can be explained that XGBoost gives more weight to

the samples that are difficult to learn. Consequently, it can better predict these classes, which

comes at the expense of the majority class.

Figure 5.16: Confusion matrix XGBoost. The top values indicate the number of samples. The

number below is the percentage of total actual samples, i.e. the rows.

Long Short-Term Memory Network

Figure 5.17 shows the training history of the final model. It can be noticed that accuracy did

not improve much after one epoch. Due to “early stopping”, the model stopped after six epochs

because the loss did not decrease in the last five epochs. It is common to use the loss for early

stopping because the loss quantifies how confident the model is about its predictions. The final

predictions are presented in the confusion matrix of Figure 5.18. LSTM needs a lot of data and

is therefore very sensitive to data imbalance. However, the results show the opposite because

the model predicts silt, peat and marl the best. It should be noted that peat has already been

corrected by the peat classifier.
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Figure 5.17: Training history LSTM. It can be observed that the model directly starts overfitting

after the first epoch. The training is early stopped due to an increasing loss in the last five

epochs.

Figure 5.18: Confusion matrix LSTM. The top values indicate the number of samples. The

number below is the percentage of total actual samples, i.e. the rows.

Final Results

The results of the final models on the test set are presented in Table 5.1. All complex models

have a better overall performance as triangulation which was used as a benchmark. Although

XGBoost has the best CV performance, random forest has the best result on the test set. The

difference is small, and if tested again, it could be the other way around due to the randomness.

Obviously, a seed can be used to generate the same output, but the essence is how the model

performs on new data, which could be the other way around. It can also be observed that the

performance for all three ML models is better on the test set than during CV. This can be

explained by the fact that during CV, the models are trained on only four folds and with the

final evaluation on all training data. Implying that there is a better information coverage. To
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verify whether this assumption is correct, the best model is trained on 90% of the data and

evaluated on the remaining 10%. The train-test split is made in the same way as in Section

4.2 but then with every 10th GT in the test set instead of every 5th. The result endorses the

assumption because the accuracy increased to 87.10%. The peat classifier is used for all ML

models, and therefore they have the same results in the last three columns.

3D Stratigraphic Soil Model

The best performance on the test set is obtained by random forest. This model is therefore used

for the 3D stratigraphic soil model. Appendix P presents a section of the 3D model. Because it

is difficult to display a 3D model in a report, the model is shown as 3 separate cable corridors.

This is convenient because the cables are parallel. On purpose, a section with high variability

is displayed. The model predicted every 5 meters along each cable a soil profile up to 4 meters

depth. The real soil profiles show VC or CPT at the top, and the other soil profiles are predicted

by the model. The real profiles also stand out because they have different lengths. The entire

profile is rather smooth and has a realistic appearance. The difference in interpretation between

the companies is also visible here, i.e. the mud VCs.

A remarkable part in cable-3, around 240 to 260 meters, shows marl as soil type. However,

there is no marl at all in cable-3 nor detected by the sub-bottom profilers. The prediction of

marl is most likely related to the VC in cable-2, which is 100 meters north of cable-3. The

probabilities of these samples are approximately 30%, which is low and almost equal to the

probability of sand. This indicates that the model is not confident about this area.

Table 5.1: Final results

CV results

(%)

Accuracy

(%)

Predicted GTs

to be excavated

Correct GTs

to be excavated

Missed GTs

to be excavated

Triangulation - 78.73 4 2 11

Kriging - 81.71 0 0 13

Random Forest 84.31 85.44 17 10 3

XGBoost 84.62 85.11 17 10 3

LSTM 83.57 84.27 17 10 3

5.4 Result Analysis

This section analyzes the results of the best model. The best performing model is random

forest, although the differences between the models are quite small. In Table 5.1 is the accuracy

calculated over all data, but for this project, only the top 3 meters are of interest. In Figure

5.19, the accuracy of the model against the cumulative depth is plotted. Cumulative depth
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means that everything is included up to a certain depth, i.e. at 3 meters, the top 3 meters are

included, and at 4 meters, the top 4 meters are included. Here it is visible that the accuracy

decreases with depth. Given that only the first 3 meters are of interest, the accuracy increases

to 87.26%. The GTs to be excavated can also be excluded from the evaluation, as the peat

classifier edits them and, moreover, are not important for accuracy because they are excavated

and backfilled with clean sand. By excluding these tests, the accuracy increases to 88.47%.

Figure 5.19: Accuracy vs. cumulative depth.This figure shows the accuracy in predicting to a

certain depth. So is the prediction accuracy for the top 3 meter 87.10%.

The dependency of accuracy on different variables is presented in Figure 5.20. As mentioned

above, the accuracy decreases with depth, but it sharply increases in the range of 5 meters to

6 meters. The reason for that, only 12 GTs are reaching this depth and have a low variability

at large depth. Figure A.22 in Appendix O shows the low variability of these GTs at large

depth, including the predicted profiles. Figure 5.20b shows that the accuracy increases with an

increasing mean distance to nearby GTs. This may seem counter-intuitive, but it is not because

few GTs have been performed in areas with low variability, i.e. high degree of certainty, thus

achieving a high degree of accuracy. The reverse also applies, many GTs have been performed

in areas with high variability and high uncertainty, resulting in a lower accuracy. Figure 5.20c

shows a similar pattern as Figure 5.20a, a decreasing accuracy with an increasing vertical SoF

whereafter it increases again. The reason is also quite similar as there are only a few GTs, and

therefore the results fluctuate and can increase. There are only 5 GTs with a vertical SoF greater

than or equal to 6. These GTs are largely well predicted due to a dominant soil type in the GTs.

This is shown in Figure A.23 in Appendix O. Figure 5.20d exhibits not this pattern because the

horizontal SoF can change with depth in a GT and the vertical SoF not. Consequently, there

is no dominant soil type with a high horizontal SoF, which negatively affects accuracy.
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(a) (b)

(c) (d)

Figure 5.20: These graphs show how the accuracy is related to the features.

Certainty

A major advantage of machine learning over conventional models is that it assigns probabilities

to its predictions. These probabilities give an indication of how confident the model is about its

prediction. In practice, this can be very useful when a certain level of risk has to be met. For

instance, geotechnical testing can be performed on locations where the model has little certainty

to ensure a constant certainty. In Figure 5.21, the accuracy is plotted against the probability of

the outcomes of the model. Here it can be observed that when the model assigns a probability

greater than 50% to a single class, the prediction is correct 9 times out of 10. The graph also

tells that it is always correct when the model assigns a probability of 100% to a class. However,

this does not always have to be the case on new data.
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Figure 5.21: The left figure shows the accuracy if only the predictions above a certain probability

are included. A prediction need at least a probability of 12.5% to be the final prediction if there

are 8 soil types. Therefore the graph starts at a probability of 12.5%. The right figure shows

the accuracy versus the percentage of the total data. Here can be read which percentage of the

data can be predicted with which accuracy.

The right figure presents the accuracy versus the percentage of all test observations. This

graph shows that 67.44% of the data can be predicted with an accuracy of 95% and 86.15%

with an accuracy of 90%. These values are also shown in Table 5.2. This table shows what

percentage of the data can be correctly predicted if a certain accuracy is met. This is shown for

all data, data without the excavated GTs, data for the top 3 meters and for the top 3 meters

without excavated GTs.

Table 5.2: Percentage of data vs. accuracy

Percentage of total with

predicted accuracy >= 90%

Percentage of total with

predicted accuracy >= 95%

All data 86.15 67.44

Without excavated GTs 89.63 74.97

Top 3 meter 89.94 70.98

Top 3 meter &

without excavated GTs
95.17 79.12
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Chapter 6

Discussion & Conclusion

This final chapter discusses the results, answers the research questions and gives recommenda-

tions for future research.

6.1 Discussion

In this section the interpretation of the results is given, with extra attention to the introduced

model. Additionally, the implications and limitations of this study are addressed.

Interpretations

The academic aim of this thesis was to evaluate the performance of conventional models against

state-of-the-art techniques and to a newly proposed model in DSM of soil types. Considering

the results of the models, it can be concluded that all ML models outperform the conventional

models. The overall performance of the ML models is significantly better than that of the

conventional models, but the difference is even more apparent in the classification of peat.

The conventional models performed poorly in the classification of peat, and kriging did not

predict peat at all. The peat classifier, with a random forest as the underlying model, correctly

predicted 77% of the GTs to be excavated, which is close to the 80% for which it was optimized.

Regarding the overall performance, it can be debated whether the final accuracy of the

models are the same as the accuracy of the final 3D model. This is because the GTs are

performed at a planned distance from the each other. Therefore, it is likely that the GTs in

the test set are the furthest locations from the GTs in the training set, which decreases the

available information and certainty on those locations. Presumably, the locations close to the

GTs in the training set can be predicted better than the locations further away. However, this

cannot be quantified and remains a conjecture.

On the other hand, what can be assumed is that the model performs better with more

data, which explains the better result on the test set compared to the CV results. This was

verified by training the model on 90% of the data and testing it on 10%, whereby the accuracy

increased to 87.26%. For typical machine learning problems, this is not necessarily the case.
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However, for this problem, it makes sense because it is a closed area, and by training on more

GTs, the model has 100% knowledge on the locations of the GTs, and more importantly, better

information coverage over the entire area as the distances to uncertain areas decreases. Where

in the limit a GT has been performed at each location in the area, and the model has 100%

knowledge on each location when trained on this. The random forest that produced the final

3D digital soil map presented in Appendix P was trained on the training and test set. Thus,

on reasonable grounds, the overall accuracy is believed to be greater than 87.26%. One way to

find out the accuracy of the final model is to calibrate the models. This procedure ensures that

all predictions with 90% probability also have an accuracy of 90% and that all predictions with

80% probability have an accuracy of 80%. After calibration, the accuracy of the final model

can be estimated by calculating the mean probability of the predictions, which can be related

to the accuracy. Calibrating the model comes at the expense of the model’s performance, hence

the model was not calibrated.

LSTM interpretation

LSTM, the introduced model, shows a good performance in relation to the other methods.

Although it is not the best performing model, there are still plenty of opportunities for this

model to improve its performance. Even for this project, there is expected to be quite some room

for improvement. Especially how the data is presented to the model. First, the data provided to

the LSTM is based on only the two nearest VCs and CPTs, while the machine learning models

base their features on the nearest four. Finding a way to present the information to the model

without increasing the dimensionality too much could improve the results. Low dimensionality

is vital for the model to recognize patterns in the data. Another option that might substantially

affect the performance is the sequence length. This study used a sequence length of 12, meaning

averaging every 50 centimeters. This can be modified to any length. Longer sequences, i.e.

smaller averaging distances, contain more information than shorter sequences. It is expected

that there is an optimal sequence length for this problem as a longer sequence will also contain

more noise.

Secondly, the current model directly overfits the training data, shown in Figure 5.17. Reg-

ularizing this in a better way could improve the performance significantly. Furthermore, the

architecture of the LSTM can be modified in multiple ways. For instance, the number of neurons

can be increased and additional layers can be added such as a dense, convolutional or LSTM

layer. Since there is little literature about when which architecture works well, it requires a lot

of experience from the implementer to arrive at a good architecture.

Besides, it is also possible to modify the method of the LSTM by defining the sequences

in a horizontal direction instead of vertical. However, this is a challenging task and similar to

determining the horizontal SoF. Therefore the same problem arises that the GTs provide enough

data in the vertical direction but not in the horizontal direction. A way to implement this is

to perform predictions along a single cable corridor so that the GTs are organized in a line.
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Then, at each depth, the soil properties of the GTs can be used as a sequence. Additionally,

the distance between the GTs should be included because it is not equidistant as the model

assumes.

Finally, the design of LSTM can be modified to predict entire sequences instead of a single

value. These sequences can then represent an entire soil profile in the vertical direction or a soil

layer in the horizontal direction. Considering the accuracy already obtained, which is slightly

lower than the best model, and the potential for improvements, it can be concluded that LSTM

is suitable for DSM and has potential to improving DSM of soil types.

Limitations

The presented results show that the ML models outperform the conventional models. This does

not imply that the conventional models are from now on superfluous as this has only been tested

on a single project. Besides, triangulation is implemented without knowledge of the area and

uses only two GTs for interpolation following specified rules. The triangulation method applied

by Boskalis was performed by a geotechnical expert who did not adhere to these rules but used

experience and knowledge of the area for interpolation. Therefore, the presented triangulation

methodology cannot be compared one to one with the triangulation methodology used in the

project. The same applies to kriging, where the geotechnical expert first identified the soil layers

before interpolation.

Furthermore, different approaches could have been used for kriging. Naturally, kriging is not

a classification model but a regression model. This study uses a combination of universal kriging

and indicator kriging, whereby the largest outcome is used as end prediction. A better option

might be to do a regression on the soil behaviour type index from Robertson (1990) shown in

Table 2.2. Then a single value can be regressed, which is more convenient for kriging. Another

option is to interpolate the depths of the soil layers. Then, a single value can also be regressed in

space. Although, this option encounters the same problem as with triangulation, where it might

occur that it is not straightforward how to interpolate as in Figure 5.10. Applying this option

means that the geotechnical engineer must first determine the soil layers before interpolation.

Lastly, other types of kriging can be used that might perform better. It is unfortunate that

not more kriging methods are available in ArcGIS Pro, such as regression kriging, which is

capable of using additional features besides the spatial position. The prediction is now based

only on the spatial position, which is expected to be the main shortcoming of the used kriging

method.

Implications

As indicated in Limitations, the conventional models are not exactly the same as the models

applied by Boskalis. The models applied by Boskalis were developed with the interference of

a geotechnical expert, while the models in this study were not. Nevertheless, this comparison

indicates the basic performance of the models without a geotechnical expert. This can be used
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to determine the value of the models with a geotechnical expert’s interference. The value of

a model should not only depend on its accuracy, but its interpretability and the possibility of

interference should also be taken into account.

Besides, the best model can assist the geotechnical engineer in determining the soil stratifi-

cation in the project area. Generally, in a cable burial project, DSM of soil types takes a lot of

time by cleaning the data, identifying the soil layers and then interpolating these layers. The

presented approach can facilitate this process because the steps taken are easy to automate,

and the developed model provides certainty indications. Possible applications of the model are

to verify the existing models, assist in identifying soil layers, locating peat or identify locations

in the project area with high uncertainty. In addition, the ML models can be used to satisfy a

certain degree of risk by using only predictions with a probability corresponding to the degree

of risk or indicating where additional soil investigation∗ is needed to increase the certainty.

Currently, the GTs are performed at a fixed interval along the cable route. This is obviously

not optimal, as it is desirable to perform more GTs in areas with a high variability than in

areas with low variability. Adapting the ML models to optimally predict where to perform the

GTs, given a maximum uncertainty in the model, can reduce the total number of GTs. As it

can be predicted where the variable areas are and what the certainty of the model is with the

GTs already performed.

It is accurate to say that with the current data developments, machine learning will become

increasingly important in this field and might eventually take over this work entirely without

human intervention. Thereby, it is important to make more use of machine learning to deliver

more consistent work and make it more efficient. So is human intervention susceptible to

subjectivity and human error, which is not the case with machines.

6.2 Answer to Research Questions

This section provides answers to the formulated research questions in Section 1.5.

How do the machine and deep learning models perform compared to the conven-

tional models in the digital mapping of soil types?

This question has already been mainly answered in Interpretations and can therefore be an-

swered briefly. All state-of-the-art models outperform the conventional methods. The main

reason is that the conventional models are not suitable for predicting categorical variables and

cannot incorporate additional features for prediction besides the spatial position.

∗Soil investigation does not necessarily mean collecting additional data in the field, but can also be a desk

study.

81



Can the implemented models assist in determining which sites contain peat and

need to be excavated?

A shortcoming of conventional models is that they are deterministic and cannot give more

weight to minority classes. The flexibility of ML models can provide a solution to predict the

peat samples more accurate. A separate peat classifier was designed for this task. The peat

classifier is optimized with the criterion of correctly predicting at least 80% of the GTs that

should be excavated. The final outcome of the model correctly predicted 10 out of 13 GTs that

should be excavated, resulting in a score of 77%, which is close to the 80% for which it was

optimized. The model predicted seven other GTs to be excavated that, in reality, should not

have been excavated. Four of those seven contained peat but too little or too deep so that it

did not have to be excavated. Two other GTs contained very organic clay, and the last one did

not contain organic material. This result underscores that the peat classifier performs well at

locating organic soil but still has it difficult to distinguish when to excavate or not.

The difference with the conventional models is significant. The conventional models per-

formed poorly in the classification of peat, and kriging did not predict peat at all. Triangulation

predicted 4 GTs to be excavated, of which 2 were correct. It can be stated that the peat classi-

fier performed properly by being close to the criterion where it was optimized for. Whether the

model also performs well with a different criterion should be checked. For example, at least 90%

or perhaps even higher, but in practice, this percentage should be determined by the industry.

Even if the desired percentage is not achieved, the peat classifier can assist in determining which

locations contain peat and need to be excavated.

Are conventional spatial interpolation techniques the best way for digital soil

mapping of soil types, or does machine learning offer an opportunity for im-

provement

The ML models performed well in this study and better than the conventional models. Es-

pecially, predicting the locations to be excavated is difficult for the conventional models. The

flexibility of machine learning by using resampling techniques and designing a separate classifier

for this task resulted in a good performance.

The main reason is that the conventional models are not suitable for predicting categorical

variables and cannot incorporate additional features for prediction besides the spatial position.

On the other hand, the models are interpreted here without an expert, which is the case in prac-

tice for the conventional models. Therefore it cannot be compared one to one. Nevertheless, the

difference between the conventional and the ML models is significant, highlighting the potential

of ML in DSM. Herein, the true power of the ML models is that they predict probabilities.

These probabilities also showed to be crucial in peat classification and can be used for practical

purposes as described in Implications.
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6.3 Future Research

The performance of the ML models mainly depends on how the data is presented to the model.

It is up to the engineer to extract, pre-process and structure the data in the best way. The

expectation is that there are still many opportunities for improvement. For instance, not all

available information is included due to the abundance of data, meaning there is potential for

improvement when providing more information to the model. So were the laboratory tests

not included yet, which contain a lot more detailed information. However, incorporating this

can be challenging because it is not performed on every VC. What presumably contains even

more predictive power is the text describing the soil type interpretations of the GTs. This

research included only the primary and secondary soil types in the features, but it contains a

lot more information. The description includes information such as colour, stiffness, if the soil

is calciferous and loose or dense bedded and many more characteristics.

The approach used in this study really defines the soil types as distinct classes. While the

reality is that it is more gradual. Here, sandy clay is entirely different from clay while it can

have practically almost the same soil composition according to texture triangle in Appendix A.

Obviously, a classification has to be made, but now it is one soil type or the other. By defining

soil types as data points with two numerical values or more, it can be indicated that some soil

types have more in common than others. A way to implement this is by means of an embedding

layer in a neural network. This layer can transform categorical variables into vectors or latent

variables. These vectors can be very similar or different from each other, which should reflect

the similarity between soil types.

That soil types are not completely different from each other brings up the next topic, soil

type interpretation. As was shown in Figures 3.3 and 3.4, the same soil layer is interpreted

differently, which is difficult for the model. Therefore it is expected that the performance can

be improved by data cleaning, handling soil type interpretation by different companies and

different tests, and providing more information to the model. Also, different projects can be

beneficial to allow the model to get a better understanding of the problem.

83





References

ArcGIS. (n.d.-a). How kriging works. Retrieved from https://pro.arcgis.com/en/pro-app/

latest/tool-reference/3d-analyst/how-kriging-works.htm

ArcGIS. (n.d.-b). What is a tin surface? Retrieved from https://desktop.arcgis.com/en/

arcmap/10.3/manage-data/tin/fundamentals-of-tin-surfaces.htm

Barrette, P. (2011, 10). Offshore pipeline protection against seabed gouging by ice: An overview.

Cold Regions Science and Technology - COLD REG SCI TECHNOL, 69 . doi: 10.1016/

j.coldregions.2011.06.007
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A Texture Triangle

Figure A.1: Soil types by clay, silt and sand composition as used by the United States Depart-
ment of Agriculture (USDA, n.d.)
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B Decision Tree Split

Figure A.2: This figure visualizes the splitting mechanism of a decision tree with a depth of two
(Ferrat et al., 2018). A is the starting position without any split, B is the first split and C &
D each split a subset from the first split. Without regularizing the tree will grow further until
each datapoint is in a seperate leaf. In other words, until each datapoint is isolated.
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C Loss Function XGBoost

An example how XGBoost minimizes MSE as a loss function. Equation A.2 can be solved for

solved for the tree structure ft.

obj(t) =

n∑
i=1

(yi − (ŷi
t−1 + ft(xi)))

2 +

t∑
i=1

Ω(fi) (A.1)

∂obj(t)

∂ŷi
t−1 =

n∑
i=1

[
2(ŷi

t−1 − yi)ft(xi) + ft(xi)
2
]
+Ω(ft) + c = 0 (A.2)
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D Raw Data

Figure A.3: A typical PDF page of the provided VC data.
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Figure A.4: A typical PDF page of the provided CPT data.
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E Feature Correlation

Figure A.5: Feature correlation matrix. The hue of indicates the magnitude of correlation and
the colour indicates whether the correlation is negative (blue) or positive (red).
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F Digitized Data

Figure A.6: An enlarged CPT graph with the digitized graph. The digitized graph matches
with the real data.
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G Classification Models

Figure A.7: Overview of the implemented models with the peat classifier.
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H Hyperparameter Optimization Approach

Figure A.8: A flow chart of the complete hyperparameter optimization procedure.
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I Model Evaluation Approach

Figure A.9: Flow chart of the model evaluation.
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J Oversampling Effect without Class Weights

Figure A.10: Effect of oversampling factor without the use of class weights. In contrast to the
use of class weights, the oversampling factor here has a clear optimum.
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K Impact of Resampling on Probability of Peat

Figure A.11: Effect of resampling on the probability profiles of peat samples. It can be observed
that nearly all peat samples have an higher probability of peat after resampling.
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L Hyperparameter Optimization Results

L.1 Random Forest

(a) (b)

(c) (d)

Figure A.12: CV results of random forest with entropy. The top value represent the average
accuracy obtained during CV and is accompanied with its standard deviation.

104



(a) (b)

(c) (d)

Figure A.13: CV results of random forest with entropy. The top value represent the average
accuracy obtained during CV and is accompanied with its standard deviation.
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L.2 XGBoost

(a) (b)

(c) (d)

Figure A.14: CV results of XGBoost with a gamma of 0. The top value represent the average
accuracy obtained during CV and is accompanied with its standard deviation.
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(a) (b)

(c) (d)

Figure A.15: CV results of XGBoost with a gamma of 0.3. The top value represent the average
accuracy obtained during CV and is accompanied with its standard deviation.
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(a) (b)

(c) (d)

Figure A.16: CV results of XGBoost with a gamma of 1. The top value represent the average
accuracy obtained during CV and is accompanied with its standard deviation.
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L.3 LSTM

(a) (b)

(c) (d)

Figure A.17: CV results of LSTM. The top value represent the average accuracy obtained during
CV and is accompanied with its standard deviation.
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N Final Model Results

Figure A.20: Correctly predicted soil profiles to be excavated

Figure A.21: Missed soil profiles to be excavated

112



O Analysis Results

Figure A.22: Soil profiles with a low variability at large depth generated with final model, i.e.
random forest.

Figure A.23: Soil profiles with an high vertical SoF generated with final model, i.e. random
forest.
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P 3D Stratigraphic Model

Figure A.24: Locations of the predictions in the 3D stratigraphic model.
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