Multi-Meal, Multi-Constraint

Recommender System to Optimize
Grocery Budget and Waste

by

Andrei1 Mereuta

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on 27th June 2025 at 11:00 AM

Project duration: November 2024 — June 2025

Thesis committee:
Dr. Anna L.D. Latour, TU Delft, supervisor
Dr. Neil Yorke-Smith, TU Delft, supervisor
Catalin Stefan Cernat, Picnic, supervisor

Author contact:
student number: 5230527

An electronic version of this thesis is available at
http://repository.tudelft.nl/.

%
TUDelft

Delft University of Technology

http://repository.tudelft.nl/

“Nah, I'd win.”

— Gojo Satoru, Jujutsu Kaisen

Multi-Meal, Multi-Constraint Recommender
System to Optimize Grocery Budget and Waste

Master’s Thesis in Computer Science

Algorithmics group
Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology

Andrei Mereuta

23rd June 2025

Author
Andrei Mereuta

Title
Multi-Meal, Multi-Constraint Recommender System to Optimize Grocery Budget and Waste

MSc presentation
27th June 2025

Graduation Committee
Dr. Anna L.D. LATOUR Delft University of Technology

Dr. Christoph LOFI Delft University of Technology
Dr. Neil YORKE-SMITH Delft University of Technology

Abstract

Grocery delivery company Picnic has identified affordable meal planning, es-
pecially in the context of recipe-based shopping, as an ongoing challenge faced
by its customers. While recipes enhance customer experience and operational ef-
ficiency, Picnic currently lacks an algorithmic system to recommend recipes in a
cost-effective way. This research addresses this gap by proposing a scalable optim-
ization approach that minimizes the total cost of grocery products across a set of
selected and recommended recipes.

To address this challenge, the paper formulates the problem as a Mixed Integer
Linear Program (MILP), chosen for its ability to guarantee a globally optimal solu-
tion. The MILP model selects a combination of recipes and corresponding products
that promote ingredient reuse and bulk purchasing to minimize overall cost. To
complement this, the study implements two meta-heuristic models: a standalone
Genetic Algorithm (GA) and a hybrid GA+MILP model, where GA selects recipes
and MILP optimally assigns products. The optimization process also incorporates
real-world constraints such as minimizing food waste and ensuring cuisine consist-
ency.

Experimental results show that the MILP formulation consistently achieves sub-
stantial cost savings compared to a naive baseline, which selects the same set of
recipes but does not optimize product choices across them. Gurobi outperforms
CPLEX in solve time while maintaining identical solution quality. The standalone
GA yields near-optimal solutions in seconds, while the hybrid GA+MILP model
improves accuracy further, albeit with increased computational cost. When con-
straints such as waste reduction are added, the system remains effective, with one
multi-objective variant reducing waste at minimal cost increase.

The findings confirm that cost-aware recipe recommendation is feasible, effi-
cient, and adaptable. The proposed system offers a foundation for future extensions
toward sustainability, personalization, and real-world deployment at Picnic.

v

Acknowledgements

This thesis marks the final milestone in my journey toward obtaining a Master’s
degree in Computer Science at TU Delft. It has been a challenging, rewarding, and
transformative experience, and I am sincerely grateful to everyone who supported
me along the way.

I would like to express my general gratitude to all those who, in one way or an-
other, contributed to this journey—through advice, encouragement, collaboration,
or simply by being present during both the highs and the lows.

I am especially thankful to my academic supervisors, Professor Anna L.D. La-
tour and Professor Neil Yorke-Smith, for agreeing to supervise this thesis and for
their thoughtful guidance and support throughout the process. I also extend my sin-
cere thanks to Professor Christoph Lofi, the third member of my thesis committee,
for dedicating time and effort to reviewing and evaluating my work.

This project would not have been possible without the support of Picnic, the
company that provided me with the topic and the opportunity to apply my skills to a
real-world problem. I am grateful not only for this project but also for the support I
received from Picnic long before the thesis began. I feel incredibly fortunate to have
met and worked with such inspiring people there. In particular, I would like to thank
Catalin Stefan Cernat, who supported me throughout the thesis with countless ideas
and insights that shaped this project, and Phil Werli, who was always available to
offer help and perspective when needed.

Finally, I would like to thank my friends and family for being my emotional an-
chor. Your encouragement and belief in me have been a constant source of strength
and motivation, and I could not have completed this journey without you.

Andrei Mereuta

the Hague, The Netherlands
23rd June 2025

Vi

Contents

(I__Introduction| 1
1.1 Motivationl. 2

1.2 Research Question| 2
(.3 ThesisOutlinef. L 3

2 Background| 5
[2.1 Mixed Integer Linear Programming| 5
2.1.1 General Formulation| 5

[2.1.2 Handling Logical Implications m MILP| 6

[2.1.3 Practical Applications| 7

[2.1.4 Solving Techniques: Branch-and-Bound| 8

RIS CPLEX . . . o it ee e e e 9

216 Gurobil 9

2.2 Genetic Algorithms| o oo 9
22.1 Key Components| 9

222 Algorithm Dynamics| 10
3__Problem Statement| 13
[3.1 Optimization Objectives| 13

13

14

16

19

4.1 Recipe-Level Optimization| 19
|4.2 Large-Scale Meal Planning and Institutional Settings| 19
|4.3 Comparative Studies of MILPand GA| 20

4.4 Summary| L 21

5 Methods 23
5.1 Mixed Integer Linear Programming Model|. 23
.11 MILP Formulationl 24

[5.1.2 MILP Formulation for Fixed Recipe Set| 27

[5.1.3 MILP Formulation Addressing Waste| 27

vii

. ybri + odell
[5.3.1 Chromosome Representation|.

[5.3.3 Genetic Operators|
[5.3.4 Algorithm Workflow|
535 Summary|

|6 Experimental Setup|
|6.1 Dataset Description| 0oL
|6.2 Baseline Comparison Methodology|
[6.3 GA Comparison Methodology|
6.4 MILP for Cost Optimization (RQL)[.
6.5 Solver Comparison: CPLEX vs. Gurob1 (RQ2)[.
|6.6 Meta-Heuristic Approach: Genetic Algorithm (RQ3)|
|6.7 Integrating Real-World Constraints (RQ4)|
|6.8 Computational Environment|

[7_Results|
[7.1 ~ MILP for Cost Optimization Results (RQ1)]
[7.1.1 Recipe Recommendation and Optimization|
[7.1.2 Fixed Recipe Optimization|
[7.1.3 Cost Savings Compared to Baseline|
. olver Comparison: vs. Gurobi Results (RQ2)|
7.2 Solver C CPLEX vs. Gurobi Results (RQ2)
{7.2.1 Solver Runtime Comparison|
[7.2.2 Scalability with Recipe Pool S1ze]
. euristic Approach: Genetic Algorithm Results (RQ3)[.
7.3 H A h: G Al hm Results (RQ3)

(7.3.2 Hybrid GA+ MILPResults|
[7.4 Integrating Real-World Constraints Results (RQ4)|.

8 Di : I Limitations
[8.1 Effectiveness of MILP-Based Optimization (RQ1)|.
[8.2 Solver Performance Comparison (RQ2)[.

37
37
37
38
38
40
40
41
42

X

Chapter 1

Introduction

Picnic is one of the largest online supermarkets in the Netherlands, operating en-
tirely through a digital infrastructure that supports everything from inventory man-
agement to customer interaction. One feature within its platform is a recipe-based
shopping experience, where customers can choose full meals directly through the
app. While this functionality enhances convenience and personalization, it also in-
troduces a challenging computational problem with practical relevance.

At its core, recipe recommendation in an online grocery setting involves se-
lecting combinations of meals and corresponding products in a way that aligns
with both user preferences and operational efficiency. From a scientific perspect-
ive, this opens up a rich optimization problem. The search space—formed by all
possible recipe combinations and their compatible product selections—is large and
combinatorial. A naive approach that evaluates each combination individually is
computationally infeasible, especially as the number of recipes, ingredients, and
constraints grows. Moreover, the structure of the problem lends itself naturally to
extension: one can incorporate additional objectives (e.g., minimizing food waste)
or constraints (e.g., dietary requirements, cuisine consistency), further increasing
complexity.

This work approaches the problem from an optimization and decision-making
standpoint. It investigates whether modern algorithmic techniques can be used to
efficiently recommend recipes and select associated products in a way that min-
imizes total cost. In particular, we developed a Mixed Integer Linear Program-
ming (MILP) formulation to exploit ingredient reuse and bulk purchasing—both of
which are key levers for reducing grocery expenses. In addition to exact methods,
we implemented a Genetic Algorithm (GA) to explore the space of recipe combin-
ations more flexibly and with lower computational overhead.

Building on the strengths of both approaches, this work also proposes a hybrid
model that combines the exploratory power of GA with the precision of MILP.
In this setup, the GA operates over sets of recipes, while a MILP solver is used
internally to evaluate each candidate solution by computing the optimal product
assignment. This hybrid approach preserves the flexibility and diversity of GA,

while leveraging MILP’s exactness for product-level optimization. It is particularly
well-suited for cases where users want varied recommendations without sacrificing
cost efficiency.

The primary aim is to evaluate the practical feasibility of this optimization ap-
proach under realistic conditions. The model must scale to thousands of recipes
and products, handle real-world constraints, and provide solutions within accept-
able computational time. These requirements offer a meaningful benchmark for
studying the trade-offs between solution quality and performance in large-scale
combinatorial optimization problems.

By addressing this problem, the paper contributes to the broader field of ap-
plied optimization and algorithmic decision-making, demonstrating how theoret-
ical tools can be used to tackle practical challenges in digital commerce environ-
ments.

1.1 Motivation

Recipe-based meal planning promises to add value for both customers and the plat-
form. According to Picnic’s internal analysis, offering customers a way to plan
meals around complete recipes improves shopping convenience, boosts satisfac-
tion, and increases the likelihood of repeat purchases.

However, Picnic currently lacks an algorithmic system for recommending re-
cipes that balance cost, variety, and practicality. Without an optimization layer,
customers must select meals manually, which often leads to duplicated ingredi-
ents, underutilized products, and missed opportunities for savings through shared
items or bulk purchases. This results in unnecessary spending and inefficiencies in
shopping behavior. Furthermore, customers receive no guidance in aligning their
choices with personal preferences such as cuisine type, dietary restrictions, or ex-
isting selections, limiting the potential value of the recipe feature.

From an operational perspective, these inefficiencies also reduce opportunities
to streamline logistics, manage stock more effectively, and reduce food waste. In-
troducing algorithmic support for recipe planning is therefore not only beneficial
to users, but also strategically important for the platform.

1.2 Research Question

The main research question guiding this thesis is:

How can we recommend recipes in a way that minimizes the total cost
of products, while remaining computationally efficient and adaptable
to real-world constraints?

To address this question, we consider the following sub-questions:

1.3

RQ1: To what extent can a Mixed Integer Linear Programming approach
minimize the total cost of recipe recommendations while remaining compu-
tationally feasible?

RQ2: How do different MILP solvers (e.g., CPLEX and Gurobi) compare in
terms of solve time, solution quality, and scalability?

RQ3: Can a Genetic Algorithm, alone or combined with MILP, provide near-
optimal cost-efficient solutions more efficiently than standalone MILP solv-
ers, and under what conditions is it preferable?

RQ4: How can waste be reduced as a secondary objective, and what is the
impact of strategies like multi-objective optimization and cuisine-based se-
lection on cost, waste and performance of the model?

Thesis Outline

This thesis is organized as follows:

Chapter 2 — Background: Describes Mixed Integer Linear Programming
and Genetic Algorithms, and explains the choice of MILP solvers (CPLEX
and Gurobi) used in this research.

Chapter 3 — Problem Statement: Defines the recipe optimization problem
addressed in this research, outlines the practical motivation, formalizes the
optimization goals, and introduces the data models used to structure recipes,
ingredients, and products.

Chapter 4 — Related Work: Reviews prior research on recipe recommend-
ation and meal planning optimization. It highlights existing solutions, their
limitations, and the research gap this work aims to address.

Chapter 5 — Methodology: Describes the design and implementation of the
proposed optimization models. This includes the formulation of the MILP
model, its extension to handle constraints, the development of a Genetic Al-
gorithm as a heuristic alternative, and a hybrid GA+MILP model that com-
bines recipe-level exploration with exact product-level optimization.

Chapter 6 — Experimental Setup: Outlines the experimental configurations
used to evaluate the system. It describes the computational environment,
dataset selection, test scenarios, solver comparisons, and constraint-based
variants.

Chapter 7 — Results: Presents and analyzes the experimental results. It
provides insights into the model’s effectiveness, runtime performance, and
trade-offs between cost, waste, and scalability in relation to the research
questions.

* Chapter 8 — Discussion and Limitations: Critically analyzes the results
and reflects on the limitations of the proposed approach. It discusses the
areas where the system could be improved or extended.

* Chapter 9 — Conclusions and Future Work: Summarizes the key findings
of the research, answers the research questions, and outlines possible direc-
tions for future research and development.

Chapter 2

Background

This chapter introduces the foundational concepts and tools required to understand
the methods and experiments presented in this thesis.

Section [2.1] presents Mixed Integer Linear Programming, including its general
formulation, practical applications, and techniques for handling logical constraints.
It also introduces the solving methods used in this research, with a focus on the
CPLEX and Gurobi solvers.

Section covers Genetic Algorithms, describing their key components, ini-
tialization strategies, termination criteria, and the balance between exploration and
exploitation. The section also discusses parameter sensitivity and provides pseudo-
code for the implemented GA framework.

2.1 Mixed Integer Linear Programming

This introduction to Mixed Integer Linear Programming is loosely based on the tu-
torial by [Smith and Taskin| [2008]], to which we refer the reader for a more details.
MILP is a widely-used mathematical optimization technique that models problems
using linear relationships, where some decision variables are constrained to take in-
teger values. It is a powerful tool for solving a broad range of discrete optimization
problems, including scheduling, routing, and resource allocation.

2.1.1 General Formulation

A general MILP problem is formulated as:

min ¢ 'z (Objective Function)

T

s.t. Az <b (Constraints)
x; €Z Vi€l (Integer Variables)
zj € R Vj¢ 1 (Continuous Variables)

In this formulation, x is the vector of decision variables, c is the coefficient vec-
tor of the objective function, A is the constraint matrix, and b is the constraint
bound vector. The objective function ¢ 'z defines the goal of the optimization; in
this thesis, we focus on the minimization case, where the objective is to minimize
the total cost. The constraints Ax < b represent the linear relationships and limit-
ations imposed by the problem. The decision variables x include both continuous
variables x; € R and integer variables x; € Z, which introduce combinatorial
complexity. MILP extends the classical Linear Programming (LP) model by incor-
porating these integrality constraints, which makes the problem notably harder to
solve.

2.1.2 Handling Logical Implications in MILP

Many real-world optimization problems require the modelling of logical condi-
tions such as “if a product is selected, then at least a minimum quantity must be
assigned,” or “a recipe must be considered only if all its ingredients are fulfilled.”
These types of logical implications cannot be directly expressed in linear program-
ming and must be reformulated using auxiliary variables and constraints. Two com-
mon techniques for expressing such logic in MILP models are the Big-M method
and the use of a small positive constant €.

Big-M Constraints The Big-M method introduces an arbitrarily large constant
M to control the activation or deactivation of continuous variables based on binary
decisions [[Cococcioni and Fiaschi, [2021]]. It is often used to model implications of
the form:

y< Mz y>ez, z€{0,1}, yeRx (2.1)

In this formulation, when z = 0, the constraint enforces y < 0, effectively
deactivating the variable y. When z = 1, the constraint bounds y between ¢ and
M. This construct is commonly used to enforce selection-dependent behavior, such
as allocating nonzero quantities only when a product is chosen or an ingredient is
active.

Choosing an appropriate value for M is critical: if M is too small, feasible solu-
tions may be inadvertently excluded; if M is too large, it can introduce numerical
instability and degrade solver performance [Vielma, 2015, Wolsey and Nemhauser,
1999|.. In practice, M is selected based on known upper bounds of the dependent
variable.

Small-¢ Activation Constraints To enforce that a continuous variable y be-
comes strictly positive when its associated binary variable z is active, a small con-
stant € > 0 is introduced:

Y > ez 2.2)

This is useful to break symmetry or avoid degenerate solutions where z = 1 but
y = 0, which may be theoretically valid but practically undesirable (e.g., selecting
a product but allocating zero quantity). The value of ¢ is typically small (e.g., 1073
or 107°) and must be chosen carefully to avoid infeasibility due to rounding or
precision limits in floating-point solvers [Conforti et al., 2014].

2.1.3 Practical Applications

Mixed Integer Linear Programming has proven to be highly versatile across a wide
range of industrial and academic domains. In supply chain optimization, MILP
models are used to determine optimal production schedules, inventory levels, and
distribution plans while minimizing overall cost [Rodriguez et al., 2014, Gumus
et al.,|2009]. These problems often involve complex trade-offs between production
constraints and storage limitations, and require modeling large-scale systems with
numerous interdependent variables.

In scheduling and timetabling, MILP supports applications such as job-shop
scheduling and university exam planning [Gestrelius et al., 2017, |Andersson et al.,
20135]]. These tasks present challenges related to resource contention, precedence
constraints, and fairness. Techniques such as time-indexed formulations and dis-
junctive constraints are frequently employed to capture these complexities.

Vehicle routing problems, common in logistics and delivery services, use MILP
to determine efficient routes for a fleet of vehicles [Dondo and Cerda, 2006, Madanku-
mar and Rajendran, 2019|]. These problems are often NP-hard and involve addi-
tional constraints like time windows, fuel limitations, or driver regulations, making
solution quality and runtime critical.

In the energy sector, MILP is used for power grid management tasks, including
generation scheduling, load balancing, and maintenance planning [Liu et al., 2022,
Zaree and Vahidinasab, [2016]]. The main challenges involve capturing nonlinear
behaviors using piecewise-linear approximations and balancing multiple compet-
ing objectives such as cost, stability, and reliability.

A domain more directly related to this thesis is diet and meal planning, where
MILP is applied to select food combinations that meet nutritional requirements
while minimizing cost or waste [Buisman et al., 2019, Sklan and Dariel, [1993]].
These models resemble the one developed in this thesis, as they involve a fixed set
of items (recipes or foods), quantitative constraints (nutrient or ingredient weights),
and cost minimization. However, unlike previous work that typically focuses on
individual meals or nutritional adequacy, this thesis also introduces recipe recom-
mendation as part of the optimization process, expanding the decision space and
introducing combinatorial aspects typically handled by heuristics such as Genetic
Algorithms.

Overall, MILP’s adaptability to domain-specific constraints and objectives makes
it a powerful tool. However, challenges such as scalability, solver efficiency, and
solution interpretability remain critical, motivating the hybrid and heuristic ap-
proaches explored in this thesis.

2.1.4 Solving Techniques: Branch-and-Bound

MILP problems are NP-hard, meaning that solving them exactly requires exponen-
tial time in the worst case. However, modern solvers implement advanced tech-
niques that enable solving large MILPs efficiently in practice. The foundational
technique among these is Branch-and-Bound [Clausen, [1999| Huang et al., [2021]].

Overview

Branch-and-Bound (B&B) is an exact algorithm that systematically explores the
solution space of an MILP. It operates by recursively dividing the problem into
subproblems (branching) and eliminating parts of the search space that cannot yield
better solutions (bounding).

Steps in Branch-and-Bound

1. Relaxation: Solve the LP relaxation of the MILP (ignoring integer con-
straints).

2. Branching: If the solution contains fractional values for integer variables,
create two subproblems with tighter bounds (e.g., z; < |v] and z; > [v]).

3. Bounding: Use the solution to prune branches. If the LP relaxation gives a
worse objective than the current best integer solution (incumbent), discard

the subproblem.

4. Termination: Continue until all branches have been explored or pruned.

This method guarantees that the optimal solution will be found, although the
number of branches can grow exponentially. To improve performance, solvers em-
ploy additional enhancements such as:

* Cutting Planes: Adding linear constraints to tighten the LP relaxation.

* Heuristics: Finding good feasible solutions quickly to improve pruning.

* Presolve Techniques: Simplifying the problem before optimization begins.

* Parallelism: Solving multiple subproblems concurrently.
Branch-and-Bound forms the backbone of commercial MILP solvers such as

CPLEX and Gurobi, which incorporate decades of engineering and optimization
theory.

2.1.5 CPLEX

IBM ILOG CPLEX is a commercial optimization solver known for its high per-
formance in solving linear, integer, and quadratic programming problems. CPLEX
uses sophisticated branching strategies, presolve routines, and cutting-plane gener-
ation to accelerate convergence [IBM CPLEX]| 1987]. It supports Python through
the docplex library, which provides an intuitive interface for modelling optimiz-
ation problems.

CPLEX offers fine-grained control over solving parameters such as node selec-
tion strategies, emphasis settings (e.g., feasibility vs. optimality), and parallelism
levels. It also provides detailed logs and solution pools for analyzing alternate op-
tima or near-optimal solutions.

CPLEX’s built-in conflict refiner helps identify infeasibility causes in models,
which can be especially helpful during iterative model design.

2.1.6 Gurobi

Gurobi is another state-of-the-art MILP solver, frequently benchmarked alongside
CPLEX [Meindl and Templ, 2012} Jablonsky et al., 2015]. It offers competitive per-
formance, supports multi-threaded parallelism, and provides detailed diagnostics
during optimization.

Gurobi is known for its strong performance on large-scale problems and offers
various tuning tools for parameter optimization. It supports a wide range of pro-
gramming interfaces including Python, Java, C++, andMATLAB, with a consist-
ent modelling interface.

Gurobi’s Python API is tightly integrated with NumPy and Pandas, making
it especially useful for data-driven optimization workflows, such as recipe-based
product selection.

2.2 Genetic Algorithms

Genetic Algorithms are a class of population-based, stochastic optimization meth-
ods inspired by the principles of natural selection and evolution [Forrest, [1996].
They are especially useful for solving complex combinatorial problems where ex-
act methods like MILP become computationally expensive. GAs search for approx-
imate solutions by evolving a population of candidate solutions over successive
generations.

2.2.1 Key Components

A typical Genetic Algorithm operates over a population of individuals called chro-
mosomes, each representing a potential solution to the problem. The main compon-
ents are as follows:

¢ Chromosome Representation: A chromosome encodes a candidate solu-
tion.

* Selection: Parents are chosen from the current population based on their
fitness. Common selection strategies include tournament selection, roulette
wheel selection, and rank-based selection. Selection promotes fitter individu-
als while maintaining diversity.

* Crossover: Pairs of parents produce offspring by exchanging parts of their
chromosomes. One-point, two-point, and uniform crossover are standard
techniques.

e Mutation: Random changes are introduced into offspring to maintain ge-
netic diversity.

* Fitness Function: Evaluates how well a chromosome performs in solving
the problem.

2.2.2 Algorithm Dynamics

This section discusses key dynamic aspects of Genetic Algorithms, including how
the population is initialized, when the algorithm terminates, how it balances ex-
ploration and exploitation, how sensitive it is to parameter tuning, and its overall
workflow.

The initial population is typically generated randomly, ensuring sufficient di-
versity to explore the solution space. In some cases, heuristic-based or partially
greedy initialization can be used to bias the search toward promising regions.

A Genetic Algorithm can be terminated in several ways, depending on the prob-
lem and performance goals. One common approach is to stop the algorithm after
a fixed number of generations, which ensures a predictable runtime. Alternatively,
the algorithm may terminate early if no improvement in the best fitness score is
observed over a number of consecutive generations, indicating convergence. An-
other strategy involves stopping once a satisfactory or optimal fitness level has been
reached.

GAs must balance exploration (diversity and searching new areas) and exploit-
ation (refining known good solutions). Crossover and selection favor exploitation,
while mutation introduces randomness for exploration. Striking the right balance
is critical to avoiding premature convergence or excessive randomness.

The performance of a Genetic Algorithm is highly dependent on its hyperpara-
meters. These include the population size, which determines the diversity and
search capacity; the mutation rate, which controls the degree of randomness in-
troduced in each generation; and the crossover probability, which influences how
often offspring inherit traits from both parents. Selection pressure also plays a role
in how strongly better-performing individuals are favored. Poorly tuned paramet-
ers can result in premature convergence or inefficient exploration of the solution

10

space. For this reason, parameter tuning is often necessary to balance exploration
and exploitation effectively.

To illustrate the overall structure and flow of a Genetic Algorithm, we provide
the following pseudocode:

Algorithm 1 Basic Genetic Algorithm

1: Initialize population P with /N individuals
2: for each generation do
3: Evaluate fitness for all individuals in P
4: Select parent pairs from P based on fitness
5: Create offspring via crossover
6: Apply mutation to offspring
7. Evaluate fitness of offspring
8: Select individuals for the next generation (e.g., via elitism)
9: P < new population
10: end for
11: return best individual found

11

12

Chapter 3

Problem Statement

This chapter defines the core problem addressed in this research. We clarify the op-
timization objectives, motivate the need for diversity in recipe recommendations,
and explain why solving this problem is non-trivial in an operational context like
Picnic’s. We conclude the chapter with a formal description of the data structures
used in our models, followed by a placeholder for the mathematical problem for-
mulation.

3.1 Optimization Objectives

The goal of this research is to develop a system that recommends a set of recipes in
a way that minimizes the total grocery cost, respects customer preferences such as
cuisine type or dietary restrictions, delivers recommendations quickly, and reduces
unnecessary product waste.

These requirements introduce several challenges: the solution must be cost- op-
timal, adaptable to diverse constraints, scalable to a large recipe and product data-
base, and responsive to real-world customer needs.

3.2 Need for Diverse Recommendations

We address the recipe recommendation task using two complementary optimiza-
tion approaches: Mixed Integer Linear Programming and Genetic Algorithms.

MILP provides globally optimal results and guarantees reproducibility: the same
input always leads to the same output. This property ensures transparency and con-
sistency. However, it becomes a limitation when a customer dislikes the suggested
recipes but does not modify their inputs—MILP will keep returning the same res-
ult.

To overcome this rigidity, we incorporate Genetic Algorithms. GAs introduce
controlled randomness, enabling the generation of multiple high-quality alternat-
ives from the same input. Their probabilistic nature allows us to explore a wider

13

solution space and generate diverse yet cost-effective recommendations. By com-
bining these two methods, we balance optimality with adaptability.

3.3 Picnic Recipe Data Models

The data used in this research originates from the Picnic dataset, which includes
detailed information on recipes, their corresponding ingredients, and the selling
units (products) available for purchase.

Recipes and Ingredients Each recipe is defined as a collection of ingredients,
where each ingredient has a specified weight requirement—the amount necessary
to prepare the dish. Formally, a recipe r is represented as:

r={(i,wy;) i€} (3.1)
where I, is the set of ingredients required for recipe r, and w, ; is the required

weight of ingredient ¢ in recipe r.

Ingredient-to-Selling Unit Mapping Each ingredient can be fulfilled by one or
more corresponding products, referred to as selling units. A selling unit represents
a specific product available in the Picnic store. These can differ not only in type
(e.g., cow milk, oat milk, almond milk), but also in packaging or quantity (e.g., 0.5
liter, 1 liter, or 1.5 liter). This mapping is formalized as:

S; = {s € § | s can fulfill ingredient i}, Vie I (3.2)

where S; is the set of selling units that can fulfill ingredient ¢, and each selling
unit s, corresponds to a specific product variant listed in the Picnic catalog.

Selling Units (Products) A selling unit s represents an individual product that
can be purchased. Each selling unit has associated properties:

§ = (ws,ps) (3.3)

where w; is the weight (or number of pieces) per unit of the product, and p; is
its price.

14

Ingredients : Selling Units
Oat Milk

Recipe

Almond Milk

Porridge Cow Milk

Corn Flakes

|
|
|
1
|
|
| Oat Flakes
1

Figure 3.1: Simplified Example of Recipe Model

These structured data representations form the foundation of our optimization
models. As shown in Figure [3.1] solid lines between the recipe and its ingredients
denote which ingredients belong to the recipe. Solid lines between ingredients and
selling units indicate which products can potentially fulfill each ingredient require-
ment.

Optimization Goal Illustration Figure visualizes the algorithm’s goal: se-
lecting selling units that minimize total grocery cost across multiple recipes. The
red edges indicate the selling units chosen by the algorithm. In this example, the
system reuses oat flakes to satisfy the needs of both porridge and pancakes, rather
than buying separate products for each dish. By choosing combinations that satisfy
ingredient requirements at the lowest cost—such as bulk or shared items—the op-
timizer reduces the total expenditure. The total price of such a recommendation is
computed as:

TotalCost = priceoat milk + 3 * PTiCCoat flakes T PTECEABC Eggs = 1 +3-0.5+2 = 4.5

where the oat flakes are used in both recipes and require a combined quantity
of 0.5 4+ 0.6 = 1.1 kg. Since the product is sold in units of 0.5 kg, the algorithm
selects 3 units to satisfy the total demand.

15

Oat Milk: 1L | 1€

Cow Milk: 0.5L | 2€

Porridge

Corn Flakes: 0.5KG | 1€

Oat Flakes: 0.5KG | 0.5€

Pancake

ABC Eggs: 6 | 2€

Figure 3.2: Optimal selling unit selection across two recipes. Circular nodes repres-
ent recipes. Blue nodes denote required ingredients with specific quantities. Green
nodes indicate available product options, labeled with packaging size and price.
Black edges show compatible product options for each ingredient. Red edges high-
light the selected products that minimize total cost, promoting reuse across recipes.

3.4 Formal Problem Definition

We formally define four distinct optimization problems addressed in this research.
Each problem assumes access to a set of recipes R, a universe of ingredients Z,
and a set of available selling units (products) S. Each recipe » € R consists of
ingredients ¢« € I, C Z, where each ingredient 7 requires weight w,.;. For every
ingredient ¢, a corresponding set of selling units .S; C S is available, where each
selling unit s € .S; has unit weight w; and price p;.

Let X C R denote a set of recipes pre-selected by the customer, and let Y C
R\ X denote the set of recipes recommended by the model, with |Y'| = k. The goal
in each problem is to jointly select Y (if applicable) and the appropriate quantities
of selling units g5 € Z>(for each s € S, so that the overall objective is minimized
and all ingredient requirements are satisfied.

Problem 1: Cost-Minimizing Recipe and Product Selection

Given a set X of customer-selected recipes, the task is to recommend an addi-
tional set Y of k recipes. The optimizer must also determine the number of units ¢
to purchase for each selling unit s € S, such that the combined ingredient require-
ments of all recipes in X U Y are fulfilled. The objective is to minimize the total
cost, which equals the sum of prices of all purchased selling units.

This problem reflects the core setting of our research: optimizing both the con-

16

tent (recipe selection) and logistics (product selection) of a multi-meal shopping
basket.

Problem 2: Product Assignment for Fixed Recipe Set

In this setting, the customer has already chosen a set X of recipes and does not
want additional recommendations. The task is to determine the quantities g, of
each selling unit needed to fulfill all ingredient requirements across the recipes in
X, in a way that minimizes the total cost. Since the recipe set is fixed, the problem
focuses purely on cost-efficient product assignment and potential product sharing
across ingredients.

Problem 3: Weight-Minimizing Recipe and Product Selection

This variant is structurally similar to Problem 1 but uses a different optimization
criterion. Given a set X of user-selected recipes, the model recommends a set ¥
of k additional recipes. It selects selling units to fulfill the combined ingredient
requirements of X U Y, but instead of minimizing the total price, it minimizes
the total weight of purchased products. This approach indirectly promotes waste
reduction, since it encourages the use of fewer and smaller product packages.

Problem 4: Cost-Minimizing Recommendation with Cuisine Constraints

This variant extends Problem 1 by adding personalization. The model must re-
commend a set Y of k recipes, but each recommended recipe must belong to a
predefined set of target cuisines, denoted Ciarger. As before, the model must select
quantities g, for each selling unit to satisfy all ingredient demands from X UY,
and it must minimize the total cost. This formulation balances cost optimization
with personalized, cuisine-aware recommendations.

17

18

Chapter 4

Related Work

This chapter reviews prior research in recipe optimization and meal planning sys-
tems, focusing on work that employs combinatorial optimization techniques such
as Mixed Integer Linear Programming, Integer Linear Programming (ILP), and
Genetic Algorithms. These studies provide context for the novelty, relevance, and
methodological direction of this thesis. We group the related work into three them-
atic areas: recipe-level meal planning systems, large-scale optimization models for
food services, and comparative analyses of MILP and GA approaches.

4.1 Recipe-Level Optimization

Leung et al.|[1995] introduced one of the earliest ILP-based systems for diet plan-
ning that operates at the recipe level rather than individual food items. Their model
selected weekly meal plans from a predefined set of recipes, minimizing cost or
preparation time while satisfying nutritional constraints. Although their work em-
phasized realistic, palatable outputs, it did not model product-level cost structures,
ingredient reuse, or packaging units. These exclusions reduce the model’s relev-
ance for environments such as online supermarkets, where these factors play a
important role in determining cost.

Kashima et al.|[2009] applied a multidimensional 0/1 Knapsack formulation and
Genetic Algorithms to generate personalized daily meal plans aimed at promot-
ing healthier diets. Their system considered user satisfaction and nutritional goals
but did not account for product costs, ingredient reuse, or packaging constraints.
While their use of GAs for navigating a large search space inspired elements of our
approach, the problem scope in their work remains narrow and health-centric, in
contrast to our economic focus in a retail context.

4.2 Large-Scale Meal Planning and Institutional Settings

Ramos-Pérez et al.[[2021]] proposed a multi-objective model for school lunch plan-
ning that balances cost with dietary diversity. Using Non-dominated Sorting Ge-

19

netic Algorithm II (NSGA-II) [Deb et al., 2002], Strength Pareto Evolutionary
Algorithm (SPEA?2) [Zitzler, [2002], and Indicator-based Evolutionary Algorithm
(IBEA) [Zitzler and Kiinzli, [2004], they minimized both financial costs and the re-
petition of food groups, based on strict pediatric nutritional guidelines. Although
their setting differs from ours, the study illustrates how evolutionary algorithms
can handle multi-objective optimization in large combinatorial spaces.

Padovan et al.|[2023]] formulated a Mixed Integer Programming model to create
monthly menus for institutional foodservice in Brazil, optimizing for cost, nutri-
tional requirements, and variety. Their model also includes practical constraints
like visual appeal and ingredient diversity. However, it does not model product-
level packaging or leverage shared ingredients across recipes, which are central to
our cost-reduction strategy.

Wang et al.|[2022] developed a recipe recommender for diabetic patients using
Integer Programming to minimize cost while meeting macronutrient and micronu-
trient requirements. Their approach integrates food composition, personal prefer-
ences, and exclusion constraints, prioritizing health outcomes over operational ef-
ficiency. Though the system is well-suited for individual-level dietary planning, it
lacks mechanisms for scaling across multiple recipes and optimizing product reuse.

4.3 Comparative Studies of MILP and GA

de Souza Amorim et al.|[2021]] compared MILP and hybrid Genetic Algorithms in
a glass production planning context. While the MILP formulation could solve small
instances optimally, hybrid GAs scaled better and provided near-optimal solutions
for larger instances. This study underscores the complementary strengths of both
approaches and motivates our inclusion of GA as a secondary method for bench-
marking and scalability testing.

Foster et al.| [2013]] conducted an in-depth comparison of MIP and GA meth-
ods in the domain of distributed power generation planning. They analyzed several
problem formulations using different power flow models and showed that GAs of-
fer rapid, flexible solutions, whereas MIP methods yield tighter bounds and global
insights when tractable. Their findings support our hybrid approach, which bal-
ances optimization quality with practical feasibility.

Azamathulla et al.|[2008]] evaluated GA and Linear Programming (LP) models
for real-time reservoir operation in agricultural settings. Their GA-based model
demonstrated better adaptability and performance under dynamic, multi-objective
conditions compared to the LP baseline. This work reinforces the relevance of GAs
in planning scenarios with complex constraints and uncertain inputs, such as our
recipe recommendation problem.

20

4.4 Summary

The reviewed literature demonstrates a strong foundation for applying optimiza-
tion techniques to meal planning and related domains. While prior work has ex-
plored both exact (MILP, ILP) and heuristic (GA) approaches, few studies ad-
dress product-level cost modelling, ingredient reuse, or packaging constraints in
retail-scale settings. Additionally, comparisons between exact and heuristic meth-
ods are often domain-specific and rarely applied to recipe recommendation. This
thesis builds upon these insights by integrating MILP and GA techniques in a hy-
brid framework that emphasizes economic efficiency, real-world constraints, and
scalability in the context of online grocery platforms.

21

22

Chapter 5

Methods

This chapter outlines the development of the recipe recommendation system, fo-
cusing on the modelling decisions and optimization techniques used to minimize
product costs under real-world constraints.

We investigate two solution approaches: Mixed Integer Linear Programming
and a Genetic Algorithm. We selected MILP because it directly optimizes a cost-
minimization objective, making it well-suited for our problem. In contrast, Con-
straint Programming (CP) focuses on finding feasible solutions that satisfy com-
plex constraints, but does not naturally prioritize optimality with respect to an ob-
jective function. Since our goal is not just to find feasible assignments but to minim-
ize total grocery cost, MILP offers a more appropriate modeling framework [Meng
et all 2020]. Likewise, while Machine Learning (ML) is powerful in data-rich
contexts, it is less appropriate for constraint-heavy optimization without labeled
training data [Popescu et al., 2022].

GA complements MILP by offering a flexible, scalable alternative for exploring
near-optimal solutions in large and complex search spaces. It is particularly useful
when exact methods become computationally expensive.

The rest of the chapter details the MILP model and its variations, followed by
the GA design, including representation, fitness function, and genetic operators.

5.1 Mixed Integer Linear Programming Model

We selected MILP as a core optimization method for this research due to its ability
to deliver globally optimal solutions for structured decision problems. The recipe
recommendation task—framed as ingredient-to-product assignment with cost and
selection constraints—naturally fits the MILP paradigm.

MILP supports binary and continuous variables, linear objectives, and diverse
constraint types, making it ideal for modeling rule-based systems like recipe se-
lection. Solvers such as IBM CPLEX and Gurobi efficiently handle large instances
and return exact solutions within reasonable time limits.

23

This approach meets key methodological needs: it offers multi-objective capab-
ility by allowing multiple linear goals in the objective function; ensures scalability
through advanced solver techniques like presolve, branch-and-bound, and paral-
lelization; provides ease of modelling since the problem’s structure (e.g., weight
constraints, cuisine limits) maps naturally to linear constraints; and supports flex-
ibility, enabling domain-specific rules such as cuisine diversity or soft waste pen-
alties with minimal changes.

Overall, MILP delivers exactness, transparency, and serves as a robust baseline
for evaluating heuristic methods like Genetic Algorithms. Overall, MILP delivers
exactness and transparency, making it a robust baseline for evaluating heuristic
methods like Genetic Algorithms. These qualities are especially important in our
context, as customers are expected to add the recommended recipes/products to
their carts — making solution quality and interpretability essential for user satis-
faction

5.1.1 MILP Formulation

The optimization model is formulated as a Mixed Integer Linear Program with
the goal of minimizing the total cost of purchasing ingredients while ensuring that
the selected recipes remain complete. The model optimally assigns selling units
(specific product packages) to ingredients in recipes, allowing for product sharing
across multiple recipes to reduce costs.

Objective Function

The objective function minimizes the total cost of the selected selling units:

min Z CLTE (5.1)

where:

* ¢ € Ny is the price of selling unit k, expressed in cents (e.g., cx, = 1005
represents €10.05).

e 1 € Ny is the total integer quantity of selling unit £ purchased.

» K is the set of all selling units, where each k € K is a unique string identifier.

This optimization is subject to several constraints.

Ingredient Weight Satisfaction

Each ingredient has a required weight, specified either in grams, or milliliters, or
pieces (e.g., avocado), depending on product’s type. All weights refer strictly to
the usable content and explicitly exclude packaging. Ingredients are modeled as

24

abstract entities that can be satisfied by a variety of selling units. For example, the
ingredient “milk” may be fulfilled by selling units such as cow milk, almond milk,
or oat milk. The constraint ensures that weight requirement is satisfied:

> Wik = Wiz, VreRViel, (5.2)
k)EK,-,i

where:

* K, ; C K is the set of selling units that can be used for ingredient 7 in recipe
r.Bach k € K,.; is a unique string identifier.

* [, is the set of ingredients required for recipe r, where each ingredient ¢ € I,
is a unique string identifier.

* R is the set of all recipes, with each » € R represented by a unique string
identifier.

* yrik € R>q is the non-negative decimal quantity of selling unit k allocated
for ingredient ¢ in recipe 7.

* wy, € Ny is the content weight or number of pieces in a single unit of selling
unit &, excluding packaging.

* W,; € Ny is the required weight or number of pieces for ingredient ¢ in
recipe r, also excluding packaging.

* 2z € {0,1} is a binary variable indicating whether recipe r is selected.

Single Selling Unit per Ingredient

As mentioned in the previous constraint, there are multiple selling units, which can
be used to fulfill ingredient requirement. But, only one can be chosen. This con-
straint is imposed because in multiple cases selling units cannot be combined. For
example, cooking porridge with almond milk and cow milk would be inconvenient.
Therefore, each ingredient in a recipe must be assigned exactly one selling unit:

S prik=2z, VreRViel (5.3)
kEKT',i

where:

* prikr € {0,1} is a binary variable indicating whether the selling unit % is
selected for ingredient ¢ in recipe 7.

25

Quantity Consistency

The total quantity of a selling unit must be sufficient to cover all its assigned uses
across selected recipes:

T > Z Z Yrik, VEkEK (54

reRi€l,

Pre-Selected Recipes

The model simulates a real-world scenario, where a customer selects some recipes,
but cannot choose other recipes, hence Picnic attempts to help customers by pro-
posing several more recipes. Recipes selected by a customer are called pre-selected
and must always be included in the recommendation:

zr=1, Vre Rpreselected (5.5

Number of Recommended Recipes

The system must recommend in total 7" recipes, including the pre-selected ones:

ZZT =T (5.6)

reR

Domain Constraints

All quantity variables must be non-negative, and binary variables must be properly
constrained:

g 20, Yrik >0, 2 €{0,1}, prx € {0,1} (5.7

Additionally, auxiliary constraints enforce logical relationships between vari-
ables:

Tk 2 Priks Yrik = Priks Yrik < Mprik, Yrik < Mz (5.8
where:

* ¢ is a small decimal positive constant ensuring that y;.; » is nonzero when
Dr,ik 18 active (i.e., if a selling unit is selected, its assigned ingredient weight
must be greater than zero), see Section [2.1.2

* M is a sufficiently large constant used for enforcing big-M constraints (i.e.,
if a recipe or its corresponding selling unit is not selected, the associated
ingredient weight must be zero), see Section[2.1.2]

26

5.1.2 MILP Formulation for Fixed Recipe Set

In addition to recommending recipes, the system should also support customers
who have already selected their preferred set of recipes. In such cases, there is no
need to generate new recipe suggestions; instead, the task becomes finding the most
cost-efficient way to fulfill the ingredient requirements of the fixed recipe set. This
can be achieved by optimizing the selection and sharing of products (selling units)
across the given recipes.

This problem is modeled as a special case of the main MILP formulation, where
the set of recipes is fixed and fully known. Therefore, the binary recipe selection
variables z, are no longer decision variables but are treated as fixed values equal to
1 for all recipes in the user-defined set. The objective remains minimizing the total
cost:

min Z CLTE 5.9)

keK

The same structure of constraints is preserved:

Ingredient weight satisfaction to ensure all ingredients are sufficiently ful-
filled.

Single selling unit per ingredient to enforce consistency.
* Quantity consistency to properly aggregate total product usage.
* Domain constraints and auxiliary logic to maintain model feasibility.

This variant of the model transforms the system into a “shopping assistant”,
optimizing cost and product reuse for a fixed list of recipes. Additional constraints,
such as budget limits or waste minimization, can be easily added to this formulation
to further tailor it to user needs.

5.1.3 MILP Formulation Addressing Waste

We observed that a significant challenge during the development of the optimiza-
tion system was the issue of ingredient waste. Waste arises when purchased selling
units exceed the required amount needed across all selected recipes, resulting in
leftover products. While the primary goal of this work is to minimize the total cost
of ingredients, it is also desirable to minimize waste as a secondary objective. Ex-
cessive waste not only undermines cost efficiency but also reduces the practical
usefulness of the recommendations.

To address this issue, we explored three modelling strategies within the MILP
framework:

* Weight Minimization: Use total ingredient weight as a proxy for waste.

27

* Cuisine-Based Selection: Restrict recipe choices to a small number of cuisines
to promote ingredient reuse.

e Multi-Objective Optimization: Combine cost and weight minimization into
a single objective.

Each of these approaches required adjustments to the optimization model, as
described below.

Weight Minimization

The simplest approach to indirectly reduce waste is to minimize the total quant-
ity (weight) of purchased products. In this formulation, the objective function be-
comes:

min Z WETE (5.10)

where wy, is the weight or volume of a single unit of selling unit %, and xj, is the
total quantity purchased. To ensure consistency, all selling units are assigned an
equivalent weight in either grams or milliliters, even if they are typically measured
in pieces (e.g., avocados or eggs). This allows the model to compare and penalize
excess quantity in a uniform manner. While this objective ignores prices, it dis-
courages purchasing unnecessary weight or volume and thus indirectly addresses
waste.

Cuisine-Based Selection

A more targeted way to reduce waste is to recommend recipes from the same or
similar cuisines, since these often share overlapping ingredients. To achieve this,
we added the following constraints to the model:

Z zr = Cluisine; Veuisines (5.11)
7€ Reuisine
2zr =0, Vr € Rynselected_cuisine (5.12)

Here, z, is a binary variable indicating whether recipe r is selected, Rcyisine 1S
the set of available recipes for a given cuisine, Ceyisine is @ randomly assigned count
that imitates customer behavior by specifying how many recipes to select from that
cuisine, and Rypselected_cuisine 1S the set of all recipes whose cuisine was not selected.

Multi-Objective Optimization: Cost and Weight

To explicitly model the trade-off between cost and weight, we introduced a joint
objective function that minimizes both total price and total weight:

28

min (Z TR+ Y wk:ck> (5.13)

keK keK

where cg, is the cost of selling unit k. This formulation penalizes both expensive
and excessive purchases, encouraging efficient solutions that balance both cost and
waste considerations.

These three formulations provide distinct modelling strategies for incorporating
waste reduction into the MILP-based recipe optimization framework.

5.2 Genetic Algorithms Model

While Mixed Integer Linear Programming approach guarantees optimal solutions,
it can become computationally expensive when dealing with large-scale optimiz-
ation problems. Given the complexity of the recipe optimization problem, where
the search space grows exponentially with the number of recipes, ingredients, and
selling units, we explored metaheuristic approaches that trade off optimality for
computational efficiency.

A Genetic Algorithm is a nature-inspired optimization technique based on the
principles of natural selection and evolution. Unlike exact solvers, GA does not
guarantee an optimal solution but can efficiently explore large search spaces and
converge to near-optimal solutions within reasonable time constraints. The motiv-
ation for using GA in this study is as follows:

1. Scalability: GA is well-suited for high-dimensional combinatorial problems
and is less affected by increasing the number of constraints.

2. Flexibility: Unlike MILP, GA can easily incorporate additional constraints
without significantly impacting performance.

3. Computational Efficiency: GA provides a balance between solution quality
and solve time, making it ideal for cases where near-optimal solutions are
sufficient.

The following sections describe the chromosome representation, genetic operat-
ors, and the overall GA workflow used in this research.
5.2.1 Chromosome Representation

In Genetic Algorithms , a chromosome represents a potential solution to the optim-
ization problem. For the recipe optimization problem, each chromosome is struc-
tured as:

C=(R,S,Q) (5.14)

where:

29

* R ={ry,ry,...,r7} is a set of selected recipes, including a fixed subset of
pre-selected recipes.

¢ S represents the map of selected selling unit ids for each ingredient ¢ in
recipe r.

* Q = {qx} is the mapping from each selected selling unit % to its quantity.

Each chromosome encodes a valid set of recipes and associated ingredient al-
locations, ensuring that all selected recipes are feasible while minimizing cost. The
subset of pre-selected recipes within R is fixed and remains unchanged through-
out the evolutionary process. However, the corresponding selling units for their
ingredients (S) may still be modified to explore cost-effective alternatives.

5.2.2 Fitness Function

The primary objective of the optimization remains to minimize the total cost while
ensuring all selected recipes have the required ingredients. The fitness function is
defined as:

fitness(C') = > _ cxgr (5.15)
keK

where:

* ¢, € Ny is the price of selling unit k, expressed in cents (e.g., ¢, = 1005
represents €10.05).

* g1 € Ny is the integer quantity of selling unit k£ purchased.
Lower fitness values correspond to cheaper solutions, making cost minimization
the driving force behind the selection process.
5.2.3 Genetic Operators

Genetic Algorithms evolve populations over multiple generations using selection,
crossover, and mutation.

Selection: Probabilistic Tournament Selection

To choose parent solutions for crossover, a probabilistic tournament selection mech-
anism is used:

1. Randomly select & individuals from the population.
2. Sort them based on fitness (cost).
3. Select the best individual with probability p and a weaker individual with

probability 1 — p.

30

This method balances exploration and exploitation, ensuring that better solutions
have a higher chance of survival while avoiding premature convergence.

Crossover: Uniform Crossover

The crossover operator combines two parent solutions to generate offspring. A
uniform crossover mechanism is used, where recipes are swapped between parents
with a 50% probability:

Cehild = CI’OSSOVCI‘(Cpareml) CparemZ) (5.16)

where:
* Each recipe in R has a 50% probability of being inherited from either parent.

¢ Selling unit selections S are updated to ensure ingredient compatibility across
the offspring.

Crossover introduces diversity in the population while preserving high-quality
partial solutions.

Mutation: Recipe and Selling Unit Mutation

Mutation introduces randomness to prevent stagnation in local optima. We imple-
ment two mutation operators:

Recipe Mutation A randomly selected recipe is replaced with another from the
dataset:

Tnew = Random(Rpoor \ R) (5.17)

This mutation encourages exploration of new recipe combinations.

Selling Unit Mutation The selling unit for a randomly chosen ingredient is re-
placed by a different selling unit corresponding to the chosen ingredient:

Snew = Random(savailable) (5.18)

This allows for better ingredient price optimization. Mutation occurs with a pre-
defined mutation probability p,,.

31

5.2.4 Algorithm Workflow

The genetic algorithm starts by generating an initial population of chromosomes,
each representing a potential recipe combination that includes the fixed set of
pre-selected recipes. The population evolves over a fixed number of generations
through selection, crossover, and mutation.

In each generation, tournament selection is used to choose parent chromosomes
based on their fitness. These parents undergo uniform crossover to produce off-
spring, which are then mutated to introduce variability and explore the search
space. The algorithm adds offspring to the pool, and selects a new generation from
the combined set of parents and children using a survivor selection strategy.

This process repeats for a fixed number of generations. Finally, the algorithm
returns the best chromosome found, that is, the one with the lowest fitness value,
representing the most cost-efficient and constraint-satisfying recipe recommenda-
tion.

Algorithm 2 Genetic Algorithm for Recipe Optimization

Require: Set of pre-selected recipe IDs R, number of generations G, population
size N
: Initialize population P <— CREATEPOPULATION (NN, Ryp)
: for generation g = 1 to G do
O+ 0 // Offspring pool
fori =1to N/2do
p1 < TOURNAMENTSELECTION(P)
p2 < TOURNAMENTSELECTION(P)
(c1,¢2) < UNIFORMCROSSOVER(p1, p2)
¢1 < MUTATE(c1)
¢y < MUTATE(c2)
10: O(—OU{Cl,CQ}
11: end for
12: P < NEXTGENERATION(P, O)
13: end for
14: return arg mingc p FITNESS(z)

D A A s

5.2.5 Final Notes

This GA implementation provides an alternative to MILP, offering a scalable and
flexible approach to recipe optimization. While GA does not guarantee exact op-
timality, it is capable of exploring large search spaces and producing high-quality
solutions within practical time limits.

The next chapters compare the performance of GA and MILP, analyzing trade-
offs between solution quality and computational cost.

32

5.3 Hybrid MILP + GA Model

To combine the strengths of both exact and heuristic methods, we introduce a hy-
brid model that integrates a Genetic Algorithm with a Mixed Integer Linear Pro-
gramming solver. This approach aims to retain the scalability and flexibility of
GA while leveraging MILP’s ability to compute globally optimal product-level de-
cisions.

In this model, the GA is responsible for exploring the space of possible recipe
combinations, while the MILP solver determines the most cost-efficient product
assignments for any given recipe set. Each GA chromosome encodes only the set
of selected recipes—no selling units or quantities are stored or manipulated by
the GA directly. Instead, the MILP model evaluates each candidate solution by
optimizing the associated selling units and quantities to minimize total cost.

5.3.1 Chromosome Representation

Each chromosome represents a set of recipes and is formally structured as:

C = (R) (5.19)

where R = {ry,r9,...,7r7} is a set of selected recipes, including a fixed subset of
pre-selected recipes.

In this hybrid approach, the GA only evolves the non-fixed subset of selected
recipes. The MILP model computes corresponding selling units and their quantities
on demand.

5.3.2 Fitness Evaluation via MILP

The fitness of each chromosome is computed by passing the full recipe set into a
MILP model, which selects selling units and their quantities to minimize the total
price. This MILP model is identical to the one described in Section [5.1.2] for the
fixed-recipe case.

5.3.3 Genetic Operators

All genetic operations in the hybrid model act exclusively on the mutable subset of
selected recipes. The set of pre-selected recipes remains unchanged.

Crossover: Uniform Crossover We use uniform crossover on the mutable re-

cipes as in the Section

Mutation: Recipe Level A mutation operator randomly replaces one recipe in
the mutable recipe set with another from the available recipe pool, excluding du-
plicates and pre-selected ones. The same approach was described by Equation

33

Selling units and their quantities are never encoded in the chromosome. They
are always computed by MILP during fitness evaluation.

5.3.4 Algorithm Workflow

The hybrid algorithm starts by generating an initial population of chromosomes.
Each chromosome encodes a full recipe plan R, which includes a fixed set of pre-
selected recipes and a mutable subset of recommended recipes. The GA evolves
only the mutable subset. Selling units and their quantities are never stored in the
chromosome, they are computed on demand by a MILP solver.

In each generation, tournament selection identifies parent chromosomes based
on their fitness, which is the total cost returned by the MILP for the full recipe
set. Uniform crossover combines parent recipes to create offspring, and mutation
replaces one recipe in the mutable set. After applying these operators, MILP eval-
uates the new chromosomes by optimizing selling units and their quantities. The
new generation is formed using a survivor selection strategy.

This process continues for a fixed number of generations. At the end, the al-
gorithm returns the chromosome with the lowest MILP-evaluated cost, represent-
ing the most cost-efficient recipe combination.

Algorithm 3 Hybrid Genetic Algorithm with MILP Evaluation

Require: Set of fixed pre-selected recipe IDs Ry, number of generations G, pop-
ulation size IV
1: Initialize population P <— CREATEPOPULATION(N, Rpyc)
2: for generation ¢ = 1 to G do
3 0«0 // Offspring pool
4: fori=1to N/2do
5: p1 < TOURNAMENTSELECTION(P)
6
7
8
9

p2 < TOURNAMENTSELECTION(P)
(c1,c2) < UNIFORMCROSSOVER(p1, p2)
¢1 < MUTATE(c1)
: ¢y < MUTATE(c2)

10: // c1 and cg are always evaluated using MILP

11: O(—OU{Cl,CQ}

12: end for

13: P < NEXTGENERATION(P, O)

14: end for

15: return arg min,cp FITNESS(z)

5.3.5 Summary

This hybrid model delegates strategic decision-making (recipe selection) to GA
while outsourcing tactical optimization (product choice and quantity) to MILP. It

34

benefits from the exploratory power of GA and the exactness of MILP, producing
high-quality solutions even in large search spaces.

35

36

Chapter 6

Experimental Setup

This chapter describes the experimental setup used to evaluate the optimization
models developed in this study. It includes a detailed overview of the dataset, ana-
lysis methodologies, and the evaluation procedures for each of the research ques-
tions. For each research question, a dedicated section outlines the corresponding
experimental configuration, key assumptions, and metrics used to assess perform-
ance. Additionally, we include a description of the computational environment to
ensure reproducibility.

6.1 Dataset Description

All experiments are based on the complete set of recipes retrievable from the Picnic
platform, comprising a total of 1 529 unique recipes. These recipes collectively
reference 7 914 distinct selling units (products). Below are some statistical insights
that illustrate the scale and structure of the data:

» Average number of selling units per ingredient: 9.74
* Average number of ingredients per recipe: 6.00

Given that each ingredient can be represented by approximately 9.74 selling
units on average, and each recipe contains around 6 ingredients, the number of
possible product combinations to represent a single recipe is estimated as

9.745% ~ 839 000

combinations. This highlights the combinatorial complexity of the recommend-
ation problem, even at the level of a single recipe.

6.2 Baseline Comparison Methodology

To quantify the benefit of optimization, we define a naive cost that estimates the
total price without accounting for shared products. For a set of selected recipes

37

Rrec, Where each recipe » € Ry uses a set of selling units S,, and each unit
s € S, has a price ¢, and quantity ¢, ¢, the naive cost is computed as:

NaiveCost = Z Z Cs * Qr,s

TE€Rrec SESr

This assumes each recipe is fulfilled independently, with no reuse of products.
Let OptimizedCost denote the cost returned by the MILP model, which considers
shared product usage across recipes. The resulting price difference is defined as:

Aprice = NaiveCost — OptimizedCost

A positive value indicates savings achieved through optimization.

6.3 GA Comparison Methodology

To evaluate the GA’s solution quality, we compare its performance against the op-
timal prices produced by the CPLEX solver. For each of the 100 test cases, we
record the final total price obtained by the GA and compute the difference from the
CPLEX solution. The price difference is defined as:

Aga = GA_Total_Price — CPLEX _Total_Price

A smaller value of Agya indicates that the GA is approaching the optimal solu-
tion. This difference is analyzed across nine different configurations, based on com-
binations of three population sizes (100, 200, 400) and three generation counts
(100, 200, 400).

6.4 MILP for Cost Optimization (RQ1)

RQ1: To what extent can a Mixed Integer Linear Programming approach minimize
the total cost of recipe recommendations while remaining computationally feas-
ible?

We implement a baseline MILP model using CPLEX to determine the
lowest-cost combination of recipes and products. The model uses no additional
constraints and serves as a reference point for assessing solution quality, computa-
tional feasibility, and runtime.

The choice of CPLEX was motivated by its robust MILP-solving capabilities,
industry-wide adoption, and its convenient Python interface via the docplex lib-
rary. Python was chosen for its flexibility, rich ecosystem of scientific libraries,
and ease of prototyping. Additionally, Python is one of the most widely used pro-
gramming languages in both academia and industry, and is also commonly used at
Picnic, which aligns with the broader technological context of this research.

38

The experimental setup for this study consists of 100 unique test cases per con-
figuration. In each case, we simulate a realistic scenario in which a user has selec-
ted a number of recipes, and the system either recommends additional recipes or
optimizes product selection to minimize the total cost of required items.

To evaluate both optimization quality and scalability, we test the following con-
figurations:

* Recipe recommendation with optimization (based on model [5.1.1):

— 3 pre-selected recipes with 4 recommended recipes (7-day plan)
— 2 pre-selected recipes with 5 recommended recipes (7-day plan)

— 2 pre-selected recipes with 3 recommended recipes (5-day plan)
* Product selection only (based on model [5.1.2)):

— 3 fixed recipes
- 5 fixed recipes

— 7 fixed recipes

In all setups, the system’s objective is to minimize the total price of all required
products. The configurations involving recipe recommendation simulate typical
meal planning scenarios, while the product-only setups assess the efficiency of
product selection in the absence of recipe flexibility.

The following assumptions apply uniformly across all experiments:

» Users select only recipes—not specific selling units.
* The algorithm must select exactly one selling unit per ingredient.
» All selling units are assumed to be in stock and available.
This design enables us to benchmark how well MILP can solve cost minimiz-
ation tasks under both flexible and constrained input conditions. To illustrate the
scale of the problem, consider the most complex case: selecting four additional

recipes from the remaining 1,526, given three pre-selected ones. The number of
possible combinations is:

C(1526,4) = (15426) ~ 2.25 x 101

This combinatorial explosion underscores the importance of using efficient solv-
ers for recipe recommendation and grocery optimization.

39

6.5 Solver Comparison: CPLEX vs. Gurobi (RQ2)

RQ2: How do different MILP solvers (CPLEX and Gurobi) compare in terms of
solve time, solution quality, and scalability?

CPLEX and Gurobi were selected for this study due to their status as industry-
standard solvers for MILP. Both offer state-of-the-art optimization capabilities and
are widely used in academic and commercial settings for solving large-scale, com-
plex problems. CPLEX is known for its strong support in IBM’s ecosystem and
integration with Python via docplex, while Gurobi is often recognized for its
speed, scalability, and robust performance across a range of MILP formulations.
Including both solvers allows for a meaningful comparison of solution quality and
computational efficiency, particularly in applications with significant combinator-
ial complexity [Jablonsky et al., 2015]].

The experiment setup follows the same base configuration as in RQ1 [6.4] using
100 randomly generated test cases where three recipes are pre-selected and four
are recommended. This allows for direct comparison of solver performance under
fixed input conditions. To assess performance under varying problem sizes, two
alternative configurations were also evaluated:

* Two pre-selected recipes with three recommended ones, simulating a five-
day (work week) meal plan.

* Two pre-selected recipes with five recommended ones, aligning with a full
week plan.

In addition to recipe-based variation, a dedicated scalability experiment was per-
formed to analyze solver behavior as the number of available candidate recipes
increases. For this experiment, both solvers were run using the 3 pre-selected, 4
recommended configuration, while systematically increasing the size of the recipe
pool. The following candidate recipe set sizes were tested: 300 (4125 selling units),
600 (5235), 900 (6055), 1200 (6857), and approximately 1500 (the full dataset
with 7914 selling units). For each size, the solve time was recorded across a set
of randomly sampled instances. This setup isolates the effect of input scale on
solver performance, highlighting the relative ability of each solver to handle grow-
ing combinatorial search spaces.

Together, these experiments provide a comprehensive view of how CPLEX and
Gurobi compare across both fixed and scaling problem dimensions.

6.6 Meta-Heuristic Approach: Genetic Algorithm (RQ3)

RQ3: Can a Genetic Algorithm, alone or combined with MILP, provide near-
optimal cost-efficient solutions more efficiently than standalone MILP solvers, and
under what conditions is it preferable?

Two meta-heuristic models are evaluated to address this question: the standalone
Genetic Algorithm (section [5.2) and the Hybrid MILP + GA model (section [5.3).

40

Both are implemented from scratch in Python and solve the same optimization
problem posed in RQ1, where the goal is to recommend seven recipes (three pre-
selected and four recommended) while minimizing the total grocery cost.

The experimental setup mirrors that of RQ1 section using 100 randomized
test cases to ensure consistency in evaluation. For each test case, the algorithms
search for cost-minimizing recipe combinations, taking into account ingredient-to-
product mappings and quantity requirements.

For all MILP evaluations in the hybrid model, we use the Gurobi solver. This
choice is based on the findings from RQ2, which show that Gurobi consistently
outperforms CPLEX in runtime across various configurations while maintaining
solution quality. Its superior computational efficiency makes it the preferred solver
for MILP-based components in the hybrid approach.

To explore how algorithm parameters influence performance, we evaluate the
following configurations:

» Standalone GA: Population sizes of 100, 200, 400 crossed with generation
counts of 100, 200, 400 (nine total settings).

* Hybrid GA + MILP: Three configurations: 100x 100, 200x200, and 400 x400
(population x generations).

For each configuration and test case, we measure the total solution cost and
runtime. These metrics help evaluate the trade-offs between computational effi-
ciency and solution quality across both heuristic models.

6.7 Integrating Real-World Constraints (RQ4)

RQ4: How can waste be reduced as a secondary objective, and what is the impact
of strategies like multi-objective optimization and cuisine-based selection on cost,
waste and performance of the model?

We explore three variants of the MILP model, all solved using CPLEX and under
the same setup as in RQ1 section [6.4}

* A multi-objective version that minimizes both price and total weight of the
selected products.

* A model constrained to recommend recipes from a single cuisine.

* A model that minimizes total weight as a primary objective, regardless of
cost.

In this context, weight serves as a proxy for waste: by minimizing the total
weight of purchased products, the model implicitly aims to reduce potential food
waste. This design choice reflects a realistic trade-off between cost efficiency and
sustainable consumption.

41

In the cuisine-constrained variant, one cuisine is randomly selected from the
three pre-selected recipes, and the four recommended recipes are restricted to be-
long to this same cuisine. This setup aims to simulate a user preference or cultural
consistency constraint in weekly planning.

Each model is tested under the same experimental conditions, and we observe
how each constraint impacts price, waste, and solver performance.

6.8 Computational Environment

To ensure reproducibility and consistency, all experiments were conducted on a
MacBook Pro (2023) equipped with an Apple M2 Pro chip and 16GB of RAM.
The implementation was developed using Python 3.10. Depending on the op-
timization approach, we used different libraries:

* CPLEX: Implemented using docplex from IBM.
¢ Gurobi: Implemented using gurobipy.

* Genetic Algorithm: Implemented independently of third-party optimization
libraries.

We executed all models on the same dataset, ensuring a fair comparison across
different optimization approaches. The datasets used in these experiments were
not preprocessed in any way, preserving their original structure as retrieved from
Picnic.

The full implementation, including all experiment scripts and dataset files, is
available on GitHubﬂ This repository contains the complete source code, configur-
ation settings, and raw output data, enabling full reproducibility of the conducted
experiments.

"https://github.com/Andrew—Mereuta/Thesis

42

https://github.com/Andrew-Mereuta/Thesis

Chapter 7

Results

This chapter presents the results corresponding to each of the research questions
posed in the study. The structure of this chapter mirrors that of the experimental
setup: for each research question, we summarize the key findings based on the
experiments described previously. The aim is to present relevant observations from
each configuration. Where appropriate, we also refer back to the hypotheses and
experimental conditions introduced earlier.

7.1 MILP for Cost Optimization Results (RQ1)

This section presents the results related to RQ1 section [6.4] which investigates the
effectiveness of a MILP-based approach for minimizing the total cost of a set of
recipes. We evaluate performance using solve time and cost savings relative to a na-
ive baseline. In the baseline, recipes are priced independently, without considering
overlapping ingredient use. In contrast, the MILP model identifies shared selling
units across recipes to reduce total cost.

7.1.1 Recipe Recommendation and Optimization

Figure[7.1] presents solve time distributions for configurations where the algorithm
recommends and optimizes recipes simultaneously: 3 pre-selected with 4 recom-
mended (3x4), 2 pre-selected with 5 recommended (2x5), and 2 pre-selected with
3 recommended (2x3). All three models complete within practical time bounds.
The 2x3 configuration is the fastest on average, while the 2x5 setup shows slightly
higher variance. Outliers beyond 60 seconds appear in more complex cases but
remain rare.

7.1.2 Fixed Recipe Optimization

Figure shows solve times for configurations with only pre-selected recipes (no
recommendations): 3, 5, or 7 total. These runs are significantly faster than the runs
from section with median times under 0.06 seconds. Even with 7 recipes,

43

Distribution of Time by Problem Setting

o]
80 A
70 4
60 -
o]
Y 50 A o] o
K o)
Q |
E 40 - é
=
30 4 | A
A
20 A
1 L
10 -
o]
T T T
b % %
A AF Ar

Problem Setting

Figure 7.1: Distribution of solve times (in seconds) for three problem settings
solved using the CPLEX MILP model: 3 pre-selected and 4 recommended recipes
(3x4), 2 pre-selected and 5 recommended (2x5), and 2 pre-selected and 3 recom-
mended (2x3). Each box represents the interquartile range, the orange line indic-
ates the median, the green triangle marks the mean, and circles denote outliers. The
results highlight variation in computational effort depending on the recipe combin-
ation configuration.

the MILP formulation remains highly tractable, demonstrating strong suitability
for real-time grocery cost optimization when recipe choices are fixed.

7.1.3 Cost Savings Compared to Baseline

Figure summarizes the price differences between MILP-optimized solutions
and the naive baseline across all configurations using methodology from section[6.2]
In all scenarios, the optimization model achieves lower costs. The largest median
savings occur in the 3x4 shared model, with values around 6 euros. Even in fixed-
recipe configurations with fewer optimization opportunities, the MILP model still
occasionally achieves significant reductions—especially when ingredient overlap
is high. These results highlight the model’s consistent ability to leverage product
sharing for cost minimization.

44

Distribution of Time by Problem Setting

o]
0.14 -
o]
0.12 |
0.10 A —_
g o
2 0.08 o
Q
E
F 0.06 -
0.04 A
0.02 T
0.00 . . .
é“b é“b é“b
2 2 2
P P P
& & &
K & Y

Problem Setting

Figure 7.2: Distribution of solve times (in seconds) for three product-only optimiz-
ation settings using the CPLEX MILP model. Each setting corresponds to a fixed
number of pre-selected recipes: 3, 5, or 7. The orange line represents the median
solve time, the green triangle denotes the mean, and circles indicate outliers. The
results demonstrate how computational time increases with the number of recipes,
reflecting greater problem complexity.

7.2 Solver Comparison: CPLEX vs. Gurobi Results (RQ2)

This section presents results related to RQ2 section [6.5] which investigates how
two state-of-the-art MILP solvers, CPLEX and Gurobi, compare in terms of solve
time and scalability. Both solvers were applied to the same optimization problem
and dataset under identical conditions, allowing for a controlled and fair evaluation.

Three configurations were tested to observe the solvers’ behavior across dif-
ferent problem sizes: 2 pre-selected with 3 recommended recipes, 2 pre-selected
with 5 recommended recipes, and 3 pre-selected with 4 recommended recipes. The
primary metric analyzed in this section is solve time, as both solvers produced
identical solutions in terms of cost, given sufficient time.

The results highlight how runtime varies with problem complexity and solver
choice, helping determine which approach is more efficient and scalable in real-
world applications.

7.2.1 Solver Runtime Comparison

Figure [/.4| summarizes the distribution of solve times for both CPLEX and Gurobi
across three test configurations. Across all cases, Gurobi consistently outperforms

45

Price Difference Compared to Naive Baseline by Model

o
35 -
30 A o)
= o
S 25+ o
=]
g 20
& é o
1]
?E]_5, o Q
e 8 o 0
u 5]
£ 10 - e
Q A
5 4 - .
- ; T
o N
T T
> >
& &

Figure 7.3: Price difference (in euros) between the naive baseline and the optim-
ized solution across various problem settings solved by the CPLEX MILP model
section[6.2] The first three groups represent configurations with recipe recommend-
ation (e.g., 3x4 = 3 pre-selected and 4 recommended recipes), while the last three
involve fixed sets of 3, 5, or 7 pre-selected recipes. The orange line shows the
median savings, the green triangle represents the mean, and outliers are indicated
by circles. Larger price differences reflect greater cost savings achieved through
product optimization.

CPLEX in terms of runtime. The differences are particularly visible in the 2x3
and 2x5 configurations, where Gurobi’s median solve time is roughly half that
of CPLEX. In the 3x4 configuration, the performance gap is still present but less
dramatic.

For each setting:

e 2x3 configuration: CPLEX solve times vary widely, with some instances
exceeding 80 seconds, while Gurobi consistently solves all instances under
25 seconds. Gurobi’s median is notably lower, with tighter variance.

* 2x5 configuration: CPLEX again shows higher variability and longer tail
values, with solve times reaching up to 50 seconds. Gurobi maintains a nar-
rower distribution with a lower median solve time.

* 3x4 configuration: Both solvers perform more similarly here, though Gur-
obi still maintains a speed advantage. The variance for CPLEX is visibly
higher with several outliers.

46

Comparison of CPLEX and Gurobi Solve Times Across Problem Settings

o CPLEX
80 1 Gurobi

70

60 4

(o]
(o]

| TEE Tmm .

T T T
2X3 2X5 3X4
Problem Setting

Time (sec)

amp O

Figure 7.4: Solve time distribution (in seconds) for three recipe recommendation
configurations—2x3, 2x5, and 3x4—comparing performance of the CPLEX and
Gurobi MILP solvers. The orange line represents the median, the green triangle
denotes the mean, and circles indicate outliers. Across all settings, Gurobi consist-
ently achieves lower median and average solve times than CPLEX, demonstrating
superior computational efficiency.

7.2.2 Scalability with Recipe Pool Size

To further evaluate solver scalability, both CPLEX and Gurobi were tested using
the same 3x4 configuration while systematically increasing the total number of
available candidate recipes. The tested recipe pool sizes include 300, 600, 900,
1200, and approximately 1500 recipes. For each pool size, solve times were recor-
ded over a set of randomized instances.

Figure presents the distribution of solve times for both solvers across the
different recipe pool sizes. Gurobi consistently solves instances faster than CPLEX,
with the performance gap widening as the recipe pool grows. For small recipe
pools (300-600), Gurobi completes most runs in under 2 seconds. In particular,
for the 300-recipe configuration, Gurobi achieves a mean solve time of just 0.72
seconds, with all runs completing in under a second. In contrast, CPLEX shows
higher variability and longer tails even at smaller scales.

As the pool increases to 1200 and 1500 recipes, both solvers experience in-
creased runtimes, but Gurobi maintains lower medians and tighter distributions
than CPLEX. These results confirm Gurobi’s superior scalability, especially in
large-scale applications where the number of candidate recipes significantly af-
fects the search space. CPLEX remains competitive at moderate sizes but becomes
notably slower on larger instances.

These results demonstrate that Gurobi is the more efficient solver in this con-

47

Solver Scalability: Solve Time Distribution by Recipe Pool Size

60 -
o CPLEX
o Gurobi
50 o
o
o
40 o g
o o _
o
@
2 3p 4 o
@
£ ° ° o
= e 8 ° A
3 8
20 8
O
'y
10 __
A
'y o
04 =
! ' ! !
o o o) o
kX & EY &P &

Recipe Pool Size

Figure 7.5: Solve time distribution (in seconds) for CPLEX and Gurobi MILP solv-
ers across five recipe pool sizes: 300, 600, 900, 1200, and 1500 recipes. Each con-
figuration involves selecting 3 pre-selected and 4 recommended recipes from the
available pool. As the problem size increases, both solvers show rising computation
times, but Gurobi consistently achieves lower median and average solve times, es-
pecially for larger datasets. Circles indicate outliers, and the orange line and green
triangle represent the median and mean, respectively.

text, especially when runtime is a critical factor. The consistency of its perform-
ance makes it a strong candidate for real-time or near-real-time recommendation
systems.

7.3 Heuristic Approach: Genetic Algorithm Results (RQ3)

This section presents results related to RQ3 section [6.6] which explores whether a
Genetic Algorithm, alone or combined with MILP, can offer cost-efficient solutions
more efficiently than standalone MILP solvers, and under what conditions these
heuristic approaches become preferable.

7.3.1 Plain GA Results

Figure illustrates how solution quality evolves across configurations, accord-
ing to methodology from section For each generation count, increasing the
population size improves the quality of the solution. Larger populations explore a
broader search space and are therefore more likely to find lower-cost combinations.
For example, at 100 generations, the median price difference drops significantly as
the population increases from 100 to 400. The same pattern holds for 200 and 400

48

generations.

However, improved solution quality comes at the cost of increased runtime, as
shown in Figure [7.7} As expected, higher populations and longer generation runs
both contribute to longer execution times. The combination of 400 generations and
population size 400 leads to solve times exceeding 10 seconds on average, while
the leanest configuration (100x100) consistently completes in under 2 seconds.

These results highlight a clear trade-off between runtime and solution quality. In
time-sensitive scenarios, smaller configurations may offer acceptable performance
with modest price differences. On the other hand, when optimality is prioritized and
time constraints are relaxed, larger configurations yield solutions closer to MILP-
optimal results.

Impact of Population Size and Generations on GA-MILP Price Difference

—— Population Size: 100
Population Size: 200
—— Population Size: 400

35

30 A

25

oo

20 A —

15 4

) o
10 - I: o

Price Difference Distribution

T
100 200 400
Generation

Figure 7.6: Distribution of price differences between the GA and the optimal MILP
solution across different generation counts (100, 200, 400), with colors represent-
ing population sizes (100 = blue, 200 = orange, 400 = green). The y-axis shows
how far each GA configuration deviates from the MILP benchmark in terms of
total solution cost, see section[6.3] Results indicate that increasing either the popu-
lation size or the number of generations leads to improved convergence toward the
MILP-optimal solution. Circles indicate outliers.

7.3.2 Hybrid GA + MILP Results

To further explore RQ3, we evaluate a hybrid GA model that integrates exact
MILP-based product selection into the evolutionary loop. In this setup, the GA
operates only on the space of recipe combinations, while the MILP model com-
putes the optimal product selection and total cost for each candidate. This hybrid
approach combines the flexibility of GA with the precision of MILP.

49

6 Runtime Analysis of GA by Population Size and Generations

—— Population Size: 100
Population Size: 200
—— Population Size: 400

14 4

12 4

10 4

Time Distribution (sec)
(=] =]
))

1 e+ &

24 = o

T
100 200 400
Generation

Figure 7.7: Solve time distribution (in seconds) for the GA across different gener-
ation counts (100, 200, 400) and population sizes (100 = blue, 200 = orange, 400
= green). Each box shows the variation in runtime for a given configuration, with
the orange line indicating the median and circles denoting outliers. Results show
that runtime increases non-linearly with both population size and number of gener-
ations, highlighting the trade-off between solution quality and computational cost
in GA-based optimization.

As with the plain GA, we test three configurations: 100x100, 200x200, and
400x400 (population size x generations), using the same 100 test cases from RQ1.
We compare the performance of the hybrid method to that of the plain GA along
two dimensions: solution quality and runtime.

Figure shows the price difference between the GA-derived solutions and
Gurobi-optimal baselines. The hybrid GA consistently achieves lower price differ-
ences across all configurations. At the 100x100 setting, the median price difference
drops from approximately 17 euros (plain GA) to under 5 euros in the hybrid. The
400x400 configuration closes the gap even further, with some instances achieving
near-zero deviation from the optimal price.

However, this accuracy comes at a computational cost. Figure shows that
each fitness evaluation in the hybrid model runs a full MILP solver, significantly
increasing total solve time. For the largest configuration (400x400), runtimes reach
over 200 seconds on average, compared to under 15 seconds for plain GA.

These results confirm the hybrid model’s ability to produce high-quality, near-
optimal solutions. When runtime is not a critical concern, it offers a practical
middle ground, providing much better prices than plain GA while retaining flexib-
ility in recipe selection. However, in high-throughput or real-time scenarios, plain
GA remains preferable because of its substantially lower runtime.

50

Price Gap to MILP: GA vs. Hybrid GA+MILP

_ Method
35 — MILP + GA
GA

30 4

Price Difference (Euro)

(oo

T T T
100x100 200x200 400x400
Generation x Population Size

Figure 7.8: Distribution of price differences (in euros) between the MILP-
optimal solution and two alternative approaches—standalone GA and Hybrid
GA+MILP—across three configurations (100x100, 200x200, 400x400) represent-
ing population size X number of generations. The GA method (orange) shows lar-
ger and more variable deviations from the MILP optimum, while the hybrid ap-
proach (blue) consistently yields solutions closer to optimal, especially in higher
configurations. This demonstrates the benefit of combining GA with exact optim-
ization to improve cost efficiency. Circles denote outliers.

7.4 Integrating Real-World Constraints Results (RQ4)

This section presents results related to RQ4 section[6.7] which examines the impact

of incorporating real-world constraints—such as minimizing food waste or enfor-

cing cuisine consistency—on the model’s price, waste, and runtime performance.
We compare four MILP-based model variants:

* Price Min (Baseline): Minimizes only the total cost of selected products, as
described in the core MILP formulation section 3. 1.1

* Weight+Price Min: A multi-objective model that minimizes the sum of total
cost and total weight section[5.1.3]

* Cuisine Price Min: Minimizes cost while requiring all recommended re-
cipes to belong to the same cuisine section[5.1.3]

* Weight Min: Minimizes total product weight without considering price sec-

tion

Price Impact. Figure [7.10f shows the distribution of price differences between
each model and the Price Min baseline. As expected, Weight Min leads to the

51

Runtime Comparison: Hybrid GA+MILP vs. GA

o Method
o —— MILP + GA

300 1 GA

250 4

1 -

150

100 -
50 4

o

Time (sec)

— e —
————

T T T
100x100 200x200 400x400
Generation x Population Size

Figure 7.9: Runtime distribution (in seconds) for the Hybrid GA+MILP model
(blue) and GA (orange) across three configurations: 100x100, 200x200, and
400x400 (population size x number of generations). While the hybrid model
achieves better solution quality (see previous figure), it incurs significantly higher
computational costs, especially at larger scales. In contrast, the standalone GA
maintains consistent and low runtime across all settings. This highlights a clear
trade-off between accuracy and efficiency when combining meta-heuristics with
exact optimization.

highest price increase, with a median difference of over 30 euros and outliers sur-
passing 45 euros. Cuisine Price Min performs relatively close to the baseline, while
Weight+Price Min consistently maintains low price differences—typically within
5 euros—indicating that it achieves meaningful waste reductions at minimal finan-
cial cost.

Waste Reduction. As shown in Figure [/.11] models that incorporate weight
minimization (Weight Min and Weight+Price Min) achieve the lowest levels of
waste. Median waste drops by 5-8 percents compared to the baseline. In contrast,
the Cuisine Price Min model does not significantly reduce waste, suggesting that
cuisine-level consistency alone is not a strong proxy for ingredient reuse.

Runtime. Figure displays the distribution of solve times. The addition of
constraints increases solver complexity: both Weight+Price Min and Cuisine Price
Min exhibit higher average runtimes compared to the baseline. Nonetheless, most
instances complete within a practical window, confirming the feasibility of apply-
ing these models in semi-real-time applications.

In conclusion, Weight+ Price Min offers the best trade-off between sustainability
and cost, achieving substantial waste reductions with only minor increases in total

52

price and runtime. It presents a balanced and realistic approach for incorporating
environmental goals into recipe recommendation systems.

Price Difference (Euro)

Price Difference to Cost-Minimizing MILP Across Waste-Aware Models

40

30 A

20 A

10 4

Model

Figure 7.10: Distribution of price differences (in euros) between three waste-aware
MILP formulations and the baseline MILP model that minimizes cost. The models
compared are: multi-objective optimization of both price and weight (Weight+Price
Min), price minimization with a cuisine constraint (Cuisine Price Min), and weight-
only minimization (Weight Min). The Weight+Price Min model stays closest to the
cost-optimal solution, while the Weight Min model shows the highest deviation, in-
dicating a stronger trade-off between reducing waste and maintaining low grocery
costs. Medians are marked by orange lines, means by green triangles, and outliers

by circles.

53

Waste Percentage by Optimization Model

o
50 o

40

30 A

F
20 A

10 4

Waste (%)
»
>

o & & &
) &vé‘ @ o ' &v‘ ‘\&\"
& &+ & &
X) &
& @
& S
KO C
Model

Figure 7.11: Distribution of waste percentages across four MILP formulations.
Waste is defined as the proportion of purchased product quantity that exceeds the
total required amount across all selected recipes. The models include: price-only
minimization (Price Min), joint minimization of price and weight (Weight+Price
Min), cuisine-constrained price minimization (Cuisine Price Min), and weight-only
minimization (Weight Min). Models that explicitly account for weight—either as
a primary or secondary objective—exhibit lower median waste levels compared to
the price-only baseline. Medians are shown by orange lines, means by green tri-
angles, and outliers as circles.

54

Solver Runtime by MILP Model Variant

120 1 o 0

o 8

100 4

o o]

__ 80+ o

P 8
= o 8
g 60 o 8

E o
40 g
20 | %]

o

o [+]
0 T T T T

& & & &
-(.?‘\!\ (,Q‘@ -CZ'Q\ &\o‘\
<€ &8 <& &
& *
\‘\@Q C;',\
Model

Figure 7.12: Distribution of solve times (in seconds) for four MILP model
variants: cost-only minimization (Price Min), joint cost and weight minimiza-
tion (Weight+Price Min), cuisine-constrained cost minimization (Cuisine Price
Min), and weight-only minimization (Weight Min). While all models solve the
same underlying problem structure, those with additional constraints or object-
ives—particularly the multi-objective and cuisine-based models—generally re-
quire longer solve times. Outliers are marked as circles, with medians shown as
orange lines and means as green triangles.

55

56

Chapter 8

Discussion and Limitations

This chapter interprets and critically analyzes the results presented in Chapter
The focus is on deriving meaningful insights from the experimental findings and
understanding the limitations inherent in the proposed approaches. Each section
below addresses one of the core research questions and reflects on both the practical
implications and caveats of the findings.

8.1 Effectiveness of MILP-Based Optimization (RQ1)

The MILP-based formulation consistently achieved significant cost reductions across
all configurations compared to the naive baseline. This validates the central hypo-
thesis that sharing selling units across recipes results in a more cost-effective gro-
cery plan. In the largest setup (3 pre-selected, 4 recommended), median savings
exceeded 6 euros, with some extreme cases approaching 27 euros. Even in small
configurations (e.g., 2 pre-selected, 3 recommended), the MILP model produced
consistent savings, emphasizing the robustness of the formulation.

The solve time analysis shows that while the setups require more computation
(median 20-23 seconds), the system remains usable in real-world applications, es-
pecially in scenarios where real-time feedback is not strictly required. For fixed-
recipe plans, the model demonstrates sub-second runtimes, further confirming its
practical viability.

Key takeaway. The results demonstrate that even small degrees of flexibility in
recipe selection can yield substantial cost savings. The MILP model is particularly
powerful when recipe redundancy and ingredient overlap exist. Additionally, as the
number of pre-selected recipes increases, the opportunity for ingredient sharing
also grows, resulting in greater absolute savings.

Limitations. A key limitation of the MILP-based approach is its runtime, al-
though acceptable for offline use, the model is not yet suitable for real-time inter-
action in its current form. However, many practical concerns such as product avail-

57

ability, dietary restrictions, or user preferences are not fundamental limitations of
the method. On the contrary, the MILP formulation is inherently flexible and can
be extended with additional constraints to incorporate such requirements. This ex-
tensibility makes it well-suited for adapting to real-world deployment scenarios,
even though these aspects were not explicitly addressed in the current experiments.

8.2 Solver Performance Comparison (RQ2)

Comparing CPLEX and Gurobi highlighted significant differences in runtime ef-
ficiency. Gurobi consistently solved the same MILP formulations faster and with
lower variance, particularly in configurations with a higher number of recipes. This
finding is critical for practical deployments, where solver speed can be a bottleneck.

Key takeaway. Gurobi appears to be the preferable choice when optimizing for
runtime, especially in larger problem instances. It provides faster and more stable
performance, making it more suitable for near real-time applications.

Limitations. This comparison is based solely on runtime under controlled con-
ditions. Licensing constraints, integration complexity, and hardware-specific per-
formance variations were not explored and could influence solver choice in prac-
tice. Also, solver performance might vary for other MILP formulations or datasets.

8.3 Heuristic Optimization using Genetic Algorithm (RQ3)

The Genetic Algorithm approach produced near-optimal solutions, with perform-
ance improving significantly as population size and generation count increased.
Larger configurations (e.g., 400 generations, 400 individuals) produced median
results within a few euros of the MILP optimum. However, these improvements
came at a cost: solve time grew to over 10 seconds on average.

Key takeaway. The GA approach offers a tunable trade-off between quality and
runtime. For interactive settings where an exact optimum is not necessary, the GA
can yield sufficiently good solutions in under 2 seconds using lighter configurations
(e.g., 100x100). This flexibility makes it a practical complement to MILP methods,
especially when compute resources are limited.

To improve solution quality while preserving GA’s flexibility, a hybrid model
was introduced that uses GA to select recipes and MILP to compute the optimal
product assignments. This model consistently outperformed the standalone GA,
with smaller configurations (e.g., 100x100) yielding price differences—defined as
the model’s price minus the MILP optimal price—of less than €2. The hybrid setup
combines GA’s exploratory power with MILP’s exact cost minimization, offering a
practical solution for batch-processing scenarios where high accuracy is important.

58

Limitations. The GA implementation was developed from scratch and is not
heavily optimized, which limits its runtime efficiency and scalability. While the
method shows promise, its effectiveness is highly sensitive to parameter choices
such as population size, mutation rate, and number of generations. Poor tuning
may lead to suboptimal solutions, and the stochastic nature of GA introduces vari-
ability between runs. Moreover, GA provides no theoretical guarantee of optimality
and can converge prematurely to suboptimal regions of the search space [Mitchell,
1998 De Jong, [2017]). These limitations are not specific to this implementation but
are inherent to genetic algorithms more broadly. For structured, cost-driven prob-
lems like recipe optimization, GA may require careful calibration and performance
benchmarking to ensure consistent quality across use cases.

The main drawback of the hybrid approach is runtime: since each chromosome
requires solving a MILP instance, the approach becomes significantly more ex-
pensive as population size and generation count grow. For example, the 400x400
configuration averaged over 200 seconds per test case, making it unsuitable for
real-time applications. Additionally, the method does not benefit from intermediate
feedback (e.g., gradients or constraint violations), which limits the GA’s ability to
efficiently learn better patterns over time. Despite these issues, the hybrid strategy
offers a strong balance of accuracy and adaptability when runtime constraints are
relaxed.

8.4 Impact of Real-World Constraints (RQ4)

Incorporating real-world constraints revealed trade-offs between price, waste, and
computational complexity. Notably, the Weight+Price Min (section [5.1.3)) model
achieved a compelling balance—delivering notable waste reductions with minimal
cost increases and acceptable runtimes. In contrast, Weight Min (section re-
duced waste most effectively but incurred a significant cost penalty. The Cuisine
Price Min (section model preserved affordability but had minimal effect on
waste.

Key takeaway. Multi-objective optimization that includes sustainability goals
is both feasible and effective. Specifically, the Weight+Price Min variant demon-
strates that grocery recommendations can be aligned with environmental objectives
without substantially increasing total cost or runtime.

Limitations. Real-world constraints introduce complexity that may not general-
ize across datasets or regions. The model assumes perfect product matching and
ignores edge cases such as product discontinuity or inventory shortages.

In addition, some user-relevant constraints are not yet incorporated. These in-
clude dietary restrictions (e.g., vegetarian, vegan, low-carb), allergen avoidance
(e.g., gluten, nuts), and perishability-aware planning (e.g., avoiding recipes that

59

lead to spoilage of rare ingredients). While these constraints are conceptually com-
patible with the MILP framework, they would require careful modelling and user
interface design to be effective in practice.

8.5 Summary

Overall, the experiments show that cost-aware meal planning benefits substantially
from joint optimization approaches. The MILP model offers high-quality results at
acceptable computational cost, particularly when powered by efficient solvers like
Gurobi. The GA provides a valuable heuristic alternative for real-time applications,
offering fast and flexible solutions with tunable quality.

The introduction of a hybrid GA + MILP model further improves performance
by combining the exploration power of GA with the accuracy of MILP. This ap-
proach consistently narrows the gap to optimal solutions, though at the expense of
longer runtimes. It proves particularly useful for offline or batch-processing scen-
arios where accuracy is more important than speed.

Sustainability constraints can be incorporated with modest compromises, mak-
ing the system adaptable to both economic and environmental goals. Nonetheless,
generalization and integration with live systems would require addressing personal-
ization, preference modelling, data uncertainty, and runtime scaling. These present
valuable directions for future research and real-world deployment.

60

Chapter 9

Conclusions and Future Work

9.1 Conclusions

In the research we investigated whether recipe recommendations can be optimized
to minimize total grocery costs while remaining computationally efficient and ad-
aptable to real-world constraints. The motivation stemmed from a gap in Picnic’s
current system—despite the importance of recipes to both customers and opera-
tions, no algorithmic method was in place to make cost-effective recommendations.
By exploring a range of optimization techniques, this research aimed to determine
the feasibility of implementing such a system in a production environment.

The results demonstrate that the proposed approach is indeed feasible. Using
a Mixed Integer Linear Programming formulation, we were able to produce op-
timized weekly meal plans that significantly reduce total costs compared to a na-
ive baseline. Even in small-scale configurations, consistent savings were achieved,
while larger configurations showed even greater potential. Thus, we conclude that
MILP is highly effective at minimizing total recipe costs, answering RQ1.

To ensure scalability, we evaluated two leading MILP solvers—CPLEX and
Gurobi. Gurobi consistently delivered faster and more stable solve times, particu-
larly in more complex configurations, while maintaining the same solution quality.
This supports the conclusion that solver choice has a notable impact on runtime
performance, and Gurobi is preferable in time-sensitive applications (RQ?2).

Recognizing the trade-offs between accuracy and runtime, we also implemented
a Genetic Algorithm as a heuristic alternative. The GA was able to approximate op-
timal solutions within seconds, with performance improving significantly as popu-
lation size and generation count increased. To further improve cost accuracy while
maintaining flexibility, we introduced a hybrid approach that combines GA-based
recipe selection with MILP-based product optimization. This hybrid model con-
sistently outperformed standalone GA in terms of solution quality, although at the
cost of significantly higher runtimes. It is therefore best suited for offline or batch-
mode use cases where optimality is important and execution time is less critical

(RQ3).

61

Finally, we explored the impact of integrating real-world constraints, such as
minimizing food waste and enforcing cuisine consistency. The results show that
waste-aware optimization is possible with only minor increases in price and solve
time, especially when using a combined objective function. This confirms that the
approach is adaptable and can be extended to support sustainability and user pref-
erence goals without compromising practicality (RQ4).

In conclusion, this research confirms that cost-efficient recipe recommendation
is both computationally and operationally viable. The optimization pipeline de-
veloped in this thesis provides a foundation for real-world systems that help cus-
tomers save money while enabling more efficient grocery operations. Furthermore,
the approach is flexible and extendable, offering a promising direction for future
personalization and sustainability efforts in online grocery platforms like Picnic.

9.2 Future Work

This work lays the foundation for cost-efficient recipe recommendation, but several
promising directions remain open for further exploration.

First, while the current MILP formulation yielded strong results, there is room
for improving both the efficiency and scalability of the model. Future work could
explore alternative MILP formulations or decomposition techniques that reduce
problem size or solve time. Additionally, integrating heuristics directly into the
MILP solving process—such as warm-starting with near-optimal solutions—may
further accelerate runtime, especially in dynamic or personalized settings.

Second, the Genetic Algorithm implementation shows that heuristic methods
can approximate optimal solutions with significantly lower computational costs.
However, the current version was developed from scratch and remains relatively
unoptimized. Future efforts could benefit from using dedicated evolutionary com-
putation libraries or implementing the algorithm in a more performance-oriented
language. Additional GA strategies—such as elitism, adaptive mutation rates, or
hybrid methods—may improve convergence speed and solution quality, making
the GA more viable for real-time applications.

In the case of the hybrid GA+MILP model, parallelizing MILP evaluations across
the population is a particularly promising direction, as it could significantly re-
duce the total runtime without altering the optimization logic. Other performance-
enhancing techniques include memoization of MILP results for previously evalu-
ated recipe sets, which would avoid redundant computation in later generations,
and warm-starting the MILP solver using solutions from earlier iterations to re-
duce solve time. Additionally, the incorporation of convergence detection and early
stopping criteria could help eliminate unnecessary MILP evaluations in late-stage
generations, thereby improving runtime efficiency without sacrificing quality. To-
gether, these extensions would increase the scalability and practicality of the hybrid
model for batch and production scenarios.

Third, the experiments involving waste minimization revealed that modelling

62

and optimizing for waste is inherently complex. One direction for future research
is to develop a dedicated model that estimates and explicitly minimizes expec-
ted product waste, either as a primary objective or through better proxy functions.
Alternatively, a novel approach would be to shift focus from recipe selection to
packaging recommendations—helping analysts identify alternative product sizes
or bundling strategies that minimize leftover ingredients across commonly chosen
recipes. Such a system could complement recipe recommendation by informing
upstream decisions in product assortment and packaging design.

In all cases, extending the system to support user personalization, dietary con-
straints, and preference learning represents a rich area for future work. While the
current system focuses primarily on cost and waste, practical deployments would
benefit from a multi-objective formulation that also accounts for user satisfaction
and engagement.

63

64

Bibliography

E. Andersson, A. Peterson, and J. Tornquist Krasemann. Improved railway
timetable robustness for reduced traffic delays—a milp approach. In 6th inter-
national conference on railway operations modelling and analysis-RailTokyo,
2015.

H. M. Azamathulla, F.-C. Wu, A. Ab Ghani, S. M. Narulkar, N. A. Zakaria, and
C. K. Chang. Comparison between genetic algorithm and linear programming

approach for real time operation. Journal of Hydro-environment Research, 2(3):
172-181, 2008.

M. E. Buisman, R. Haijema, R. Akkerman, and J. M. Bloemhof. Donation man-
agement for menu planning at soup kitchens. European Journal of Operational
Research, 272(1):324-338, 2019.

J. Clausen. Branch and bound algorithms-principles and examples. Department of
computer science, University of Copenhagen, pages 1-30, 1999.

M. Cococcioni and L. Fiaschi. The big-m method with the numerical in-
finite m. Optimization Letters, 15(8):2455-2468, 2021. doi: 10.1007/
s11590-020-01644-6.

M. Conforti, G. Cornuéjols, G. Zambelli, M. Conforti, G. Cornuéjols, and G. Zam-
belli. Integer programming models. Springer, 2014.

K. De Jong. Evolutionary computation: a unified approach. In Proceedings of
the Genetic and Evolutionary Computation Conference Companion, pages 373—
388, 2017.

F. M. de Souza Amorim, M. da Silva Arantes, M. P. de Souza Ferreira, and C. F. M.
Toledo. Milp formulation and hybrid evolutionary algorithms for the glass con-

tainer industry problem with multiple furnaces. Computers & Industrial Engin-
eering, 158:107398, 2021.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6
(2):182-197, 2002.

65

R. Dondo and J. Cerd4. An milp framework for dynamic vehicle routing problems
with time windows. Latin American applied research, 36(4):255-261, 2006.

S. Forrest. Genetic algorithms. ACM computing surveys (CSUR), 28(1):77-80,
1996.

J. D. Foster, A. M. Berry, N. Boland, and H. Waterer. Comparison of mixed-
integer programming and genetic algorithm methods for distributed generation
planning. IEEE transactions on power systems, 29(2):833-843, 2013.

S. Gestrelius, M. Aronsson, and A. Peterson. A milp-based heuristic for a commer-
cial train timetabling problem. Transportation Research Procedia, 27:569-576,
2017.

A. T. Gumus, A. F. Guneri, and S. Keles. Supply chain network design using an
integrated neuro-fuzzy and milp approach: A comparative design study. Expert
Systems with Applications, 36(10):12570-12577, 2009.

L. Huang, X. Chen, W. Huo, J. Wang, F. Zhang, B. Bai, and L. Shi. Branch and
bound in mixed integer linear programming problems: A survey of techniques
and trends. arXiv preprint arXiv:2111.06257, 2021.

C. U. IBM CPLEX. Ibm ilog cplex optimization studio. Version, 12(1987-2018):
1, 1987.

J. Jablonsky et al. Benchmarks for current linear and mixed integer optimization
solvers. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis,
63(6):1923-1928, 2015.

T. Kashima, S. Matsumoto, and H. Ishii. Evaluation of menu planning capability
based on multi-dimensional 0/1 knapsack problem of nutritional management
system. IAENG International Journal of Applied Mathematics, 39(3):163-170,
2009.

P. Leung, K. Wanitprapha, and L. A. Quinn. A recipe-based, diet-planning model-
ling system. British Journal of Nutrition, 74(2):151-162, 1995.

G. Liu, M. F. Ferrari, T. B. Ollis, and K. Tomsovic. An milp-based distributed
energy management for coordination of networked microgrids. Energies, 15
(19):6971, 2022.

S. Madankumar and C. Rajendran. A mixed integer linear programming model for
the vehicle routing problem with simultaneous delivery and pickup by hetero-
geneous vehicles, and constrained by time windows. Sadhana, 44:1-14, 2019.

B. Meindl and M. Templ. Analysis of commercial and free and open source solvers
for linear optimization problems. Eurostat and Statistics Netherlands within the
project ESSnet on common tools and harmonised methodology for SDC in the
ESS, 20:64, 2012.

66

L. Meng, C. Zhang, Y. Ren, B. Zhang, and C. Lv. Mixed-integer linear pro-
gramming and constraint programming formulations for solving distributed flex-
ible job shop scheduling problem. Computers & Industrial Engineering, 142:
106347, 2020. ISSN 0360-8352. doi: https://doi.org/10.1016/j.cie.2020.106347.

M. Mitchell. An introduction to genetic algorithms. MIT press, 1998.

M. Padovan, F. R. de Senna, J. K. Kimura, S. T. Nascimento, A. C. Moretti, and
C. D. Capitani. Optimized menu formulation to enhance nutritional goals: design
of a mixed integer programming model for the workers’ food program in brazil.
BMC nutrition, 9(1):51, 2023.

A. Popescu, S. Polat-Erdeniz, A. Felfernig, M. Uta, M. Atas, V.-M. Le, K. Pilsl,
M. Enzelsberger, and T. N. T. Tran. An overview of machine learning techniques

in constraint solving. Journal of Intelligent Information Systems, 58(1):91-118,
2022.

J.-M. Ramos-Pérez, G. Miranda, E. Segredo, C. Ledn, and C. Rodriguez-Ledn.
Application of multi-objective evolutionary algorithms for planning healthy and
balanced school lunches. Mathematics, 9(1), 2021. ISSN 2227-7390. doi:
10.3390/math9010080.

M. A. Rodriguez, A. R. Vecchietti, I. Harjunkoski, and I. E. Grossmann. Optimal
supply chain design and management over a multi-period horizon under demand
uncertainty. part i: Minlp and milp models. Computers & Chemical Engineering,
62:194-210, 2014. ISSN 0098-1354.

D. Sklan and I. Dariel. Diet planning for humans using mixed-integer linear pro-
gramming. British Journal of Nutrition, 70(1):27-35, 1993.

J. C. Smith and Z. C. Taskin. A tutorial guide to mixed-integer programming
models and solution techniques. Optimization in medicine and biology, pages
521-548, 2008.

J. P. Vielma. Mixed integer linear programming formulation techniques. Siam
Review, 57(1):3-57, 2015.

S. Wang, K. Xia, Y. Yang, R. Qiu, Y. Qi, Q. Miao, W. Xie, and T. Liu. A re-
commender system for healthy food choices based on integer programming. In
Applied Mathematics, Modeling and Computer Simulation, pages 469-475. 10S
Press, 2022.

L. A. Wolsey and G. L. Nemhauser. Integer and combinatorial optimization. John
Wiley & Sons, 1999.

N. Zaree and V. Vahidinasab. An milp formulation for centralized energy manage-
ment strategy of microgrids. In 2016 smart grids conference (SGC), pages 1-8.
IEEE, 2016.

67

E. Zitzler. Evolutionary algorithms for multiobjective optimization. Evolutionary
Methods for Design, Optimisation, and Control, CIMNE, pages 19-26, 2002.

E. Zitzler and S. Kiinzli. Indicator-based selection in multiobjective search. In
International conference on parallel problem solving from nature, pages 832—

842. Springer, 2004.

68

	Introduction
	Motivation
	Research Question
	Thesis Outline

	Background
	Mixed Integer Linear Programming
	General Formulation
	Handling Logical Implications in MILP
	Practical Applications
	Solving Techniques: Branch-and-Bound
	CPLEX
	Gurobi

	Genetic Algorithms
	Key Components
	Algorithm Dynamics

	Problem Statement
	Optimization Objectives
	Need for Diverse Recommendations
	Picnic Recipe Data Models
	Formal Problem Definition

	Related Work
	Recipe-Level Optimization
	Large-Scale Meal Planning and Institutional Settings
	Comparative Studies of MILP and GA
	Summary

	Methods
	Mixed Integer Linear Programming Model
	MILP Formulation
	MILP Formulation for Fixed Recipe Set
	MILP Formulation Addressing Waste

	Genetic Algorithms Model
	Chromosome Representation
	Fitness Function
	Genetic Operators
	Algorithm Workflow
	Final Notes

	Hybrid MILP + GA Model
	Chromosome Representation
	Fitness Evaluation via MILP
	Genetic Operators
	Algorithm Workflow
	Summary

	Experimental Setup
	Dataset Description
	Baseline Comparison Methodology
	GA Comparison Methodology
	MILP for Cost Optimization (RQ1)
	Solver Comparison: CPLEX vs. Gurobi (RQ2)
	Meta-Heuristic Approach: Genetic Algorithm (RQ3)
	Integrating Real-World Constraints (RQ4)
	Computational Environment

	Results
	MILP for Cost Optimization Results (RQ1)
	Recipe Recommendation and Optimization
	Fixed Recipe Optimization
	Cost Savings Compared to Baseline

	Solver Comparison: CPLEX vs. Gurobi Results (RQ2)
	Solver Runtime Comparison
	Scalability with Recipe Pool Size

	Heuristic Approach: Genetic Algorithm Results (RQ3)
	Plain GA Results
	Hybrid GA + MILP Results

	Integrating Real-World Constraints Results (RQ4)

	Discussion and Limitations
	Effectiveness of MILP-Based Optimization (RQ1)
	Solver Performance Comparison (RQ2)
	Heuristic Optimization using Genetic Algorithm (RQ3)
	Impact of Real-World Constraints (RQ4)
	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

