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Abstract

Long-term time series forecasting has found many utilities in various domains. Nevertheless, it remains
difficult to perform by many existing methods. One of the most well-known forecasting techniques,
the ARIMA, does not suffice the long-term forecasting task due to the mean convergence problem.
Therefore, this research empirically assesses the alternative solution based on the Gaussian process
(GP) regression. This study presents two approaches of Gaussian process regression for our problem:
the structure modelling and the autoregressive approach. These techniques are evaluated on two
synthetic datasets and two real-world datasets, which are the wind speed and electricity consumption
dataset. From the experiment, it can be concluded that the GP-based forecasting techniques show
more favourable long-term forecasting performance than the ARIMAmodel, particularly in cases where
the data contain apparent trend and season. The experiment also demonstrates that the structure
modelling method slightly outperforms the autoregressive approach for long-term forecast and offers a
benefit that the autoregressive model does not have, which is the interpretability of the model.
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1
Introduction

1.1. Background

Time series is a collection of data points that is ordered in time. There are many examples of time
series data, ranging from naturally generated data such as weather or amount of greenhouse gas in
the atmosphere to human-made data such as stock market and sensors recording. Due to this ubiquity,
studies on time series have become an important field of research over the last few decades. These
studies have found their place in many facets of science, such as social science, engineering, medicine,
economy, and finance.

Most of the study of the time series come in the form of time series modelling, which is the process
of understanding and defining (mathematically) the inherent structure of the time series [1, 18]. Time
series modelling is very useful in several ways, from describing the feature that makes up the time
series, to forecasting the future [6]. The latter part is particularly interesting, because once we have
comprehended themodel of a time series data, we can simulate the generation of data to an unforeseen
future. The ability to forecast the future which often referred as time series forecasting is one of the most
studied applications in time series modelling [17]. This fact is expected since time series forecasting
has found many utilities across many applications.

A typical time series forecasting setting is shown in Figure 1.1. In the unshaded part of the graph,
we have our time series observations. The shaded region signifies the forecasting horizons which are
points in the future that we want to forecast. We often define the forecasting horizon in the ℎ-step-
ahead term. For example, if we want to forecast a point that is a one-time step ahead in the future,
we denote it as one-step-ahead forecast. Similarly, a three-time step forecast is called the three-step-
ahead forecast. Another practice that is common in time series forecasting research is to classify
the forecasting horizons into distinct categories: short-term, medium-term, and long-term. Short-term
denotes horizons that are closed to the observations whereas long-term is horizons that are far ahead
of the last observed data. What is not clear, however, is how the boundary between each category is
determined, since it is data and application specific.

The ability to predict short-term and long-term forecasts are as equally important in many applications.
Hence, it is vital for a time series forecasting technique to be able to excel in all horizons. Long-term
forecasting is a more challenging problem to solve than the short-term forecast due to error accumula-
tion, the lack of information, and the growing uncertainties [6]. The effect of these challenges is more
apparent as the forecasting horizon grows. Thus, one of the primary criteria of a good time series fore-
casting technique the capability of forecasting the future accurately while keeping the error minimum
as the forecasting horizon lengthens.

1
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Figure 1.1: A diagram that shows a typical time series forecasting setting.

1.2. Time Series Forecasting Use Case: Wind Energy Forecast-
ing

One of the prominent use cases of the time series forecasting is in the wind energy forecast. Wind power
sees an increasing utilisation throughout the world. Amidst its fast growth, wind energy generation
always suffers from the intermittent availability of the wind itself. Wind energy strongly depends on the
weather conditions which vary over time. Therefore, the amount of power that can be generated by the
wind turbine always fluctuates [50]. To be able to integrate the wind energy reliably to the power grid,
the wind energy forecasting becomes a vital tool to have. If we can accurately predict the availability
of the wind energy in the distant future, the decision to increase or decrease the load of conventional
energy source to power grid can be planned accordingly. An accurate forecast for a long-term horizon
is as important as a short-term horizon, and each forecast has distinct benefits. Table 1.1 by Soman et
al. highlights the classification of horizons as well as its use case in the wind energy domain [50].

Table 1.1: Classification of time horizon for wind power forecasting, according to Soman et al. [50]

Time Horizon Range Applications

Immediate Few seconds to 30 minutes ahead Electricity market clearing, regulation actions
Short-term 30 minutes to 6 hours ahead Economic load dispatch planning, load incre-

ment/decrement decision
Medium-term 6 hours to 1 day ahead Generator online/offline decisions, operational

security in day-ahead electricity market
Long-term 1 day to 1 week or more ahead Unit commitment decisions, reserve requirement

decisions, maintenance scheduling to obtain op-
timal operating costs

Due to the importance of wind energy forecasting, many research initiatives have been pushed toward
making a better prediction model of the wind power. There are two approaches to wind power forecast-
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ing: the physical method and the statistical method. The former models the physics of the atmosphere
while the latter utilises the statistical time series forecasting technique. Modelling the physics is a highly
expensive computing process. As a result, the statistical method is more attractive due to its relatively
low cost of computing yet still capable of generating a relatively decent forecast using only the his-
torical data. The problem with the statistical method is that it loses its accuracy as the forecasting
horizon grows. Zjavka reports that time series forecasting based technique will become ineffective for
horizons above 6 hours due to the growing uncertainty beyond 6 hours forecast [58]. We could see a
drastic change from calm, windy period into violent gust in six hours, which causes the purely statistical
method to lose its efficiency because of this uncertain dynamic. His judgement is approved by the fact
that most of the current approach for long-term forecasting are dominated by the physical method or
its hybrid, rather than using a purely statistical method [13, 30, 50].

1.3. Time Series
Time series is a sequence of data points ordered in time and is given by

𝐲 = {𝑦ኻ, 𝑦ኼ, … , 𝑦፭} (1.1)

𝑦ኻ is the value of time series taken at the first time point, 𝑦ኼ is the value taken at the second time point,
and so forth. In term of statistics, the series denoted by Equation 1.1 is a realisation of an underlying
stochastic process. While the stochastic process might be continuous in time, in practice observations
of the process are sampled discretely, with time indices 𝑡 = 0,±1,±2,…. In this research, only the case
of discrete-time and uniformly-sampled time series is studied. Such time series, for example, is the
hourly temperature of the city of Delft. The temperature itself is changing continuously over time, but
here the temperature is sampled uniformly every one hour.

The study of time series involves in modelling the underlying stochastic process that generates time
series. A complete description of this stochastic process is the joint probability distribution between
observations

𝑃(𝑌ኻ ≤ 𝑦ኻ, 𝑌ኼ ≤ 𝑦ኼ, … , 𝑌፭ ≤ 𝑦፭) (1.2)

where 𝑌 is a random variable with 𝑦 as its realisation. Although the joint distribution is the most accurate
model of a time series, calculating the joint probability distribution might be too difficult for many appli-
cations. Another way to provide a meaningful description of the series is to calculate the mean

𝜇፭ = 𝐸[𝑦፭] (1.3)

and the autocovariance of the series.

Autocovariance measures the statistical dependence between two observations in a time series. The
term auto is added because autocovariance calculates the covariance between itself, only at different
times. The autocovariance between observation at time 𝑠, 𝑦፬, and time 𝑡, 𝑦፭ is given by

𝛾(𝑠, 𝑡) = cov(𝑦፬ , 𝑦፭) = 𝐸[(𝑦፬ − 𝜇፬)(𝑦፭ − 𝜇፭)] (1.4)

To correctly forecast a time series, we must be able to find and exploit some regularities that exist in
our time series of interest. Stationarity is one example of regularity that is often assumed by many time
series analysis techniques because of several nice properties it has. A stationary time series fulfils a
condition where the joint probability distribution between a set of observations {𝑦፭Ꮃ , 𝑦፭Ꮄ , … , 𝑦፭ᑜ} and a
time-shifted set of observations {𝑦፭ᎳᎼᑝ , 𝑦፭ᎴᎼᑝ , … , 𝑦፭ᑜᎼᑝ} is equal, that is

𝑃(𝑌፭Ꮃ ≤ 𝑦፭Ꮃ , … , 𝑌፭ᑜ ≤ 𝑦፭ᑜ) = 𝑃(𝑌፭ᎳᎼᑝ ≤ 𝑦፭ᎳᎼᑝ , … , 𝑌፭ᑜᎼᑝ ≤ 𝑦፭ᑜᎼᑝ) (1.5)

for all 𝑘, all time points 𝑡, and all time shifts 𝑙 = 0,±1,±2,….
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Figure 1.2: Examples of time series with a trend (first row) and season (second row). First row: Price of dozen eggs in US,
1900–1993, in constant dollars [55]. Second row: Total quarterly beer production in Australia (in megalitres) from 1956: Q1 to
2008: Q3 [28]

This stationary property is too strict for most time series since computing every joint distribution between
all shifts is intractable for many applications. A more loose or weaker definition of stationary is to define
the stationary property based on the mean and the autocovariance of the time series. In many kinds
of literature, this is often named the weak stationary or wide-sense stationary. A weak stationary time
series has the following properties

(i) the mean is constant and independent of time 𝑡

(ii) the autocovariance function 𝛾(𝑠, 𝑡) depends on 𝑠 and 𝑡 only through the difference |𝑠 − 𝑡|

Given that 𝑠 = 𝑡 + 𝑙 where 𝑙 expresses the time shift or lag, the autocovariance function of a weak
stationary time series is equal to

𝛾(𝑡 + 𝑙, 𝑡) = cov(𝑦፭ዄ፥ , 𝑦፭) = cov(𝑦፥ , 𝑦ኺ) = 𝛾(𝑙)

From the above expression, it can be seen that the autocovariance function only depends on the dif-
ference between observations 𝑙 and does not depend on time 𝑡. For the rest of this document, the term
stationary refers to the weak stationary unless it is specified.

A stationary time series is very desirable in time series forecasting because its statistical (up to the sec-
ond order moment) properties do not depend on time. That means if we can estimate those properties
correctly, then those properties should hold for all time points and consequently, we can forecast for
every time point in the future. Unfortunately, for many time series the stationary property does not hold.
There are two structures which are commonly found in time series that render the stationary property
invalid. These structures are trend and season. These structures clearly violate the constant mean
property of a stationary time series. Figure 1.2 shows examples of time series with trend and season.
The time series shown in the first row exhibits downward trend while the second row shows a time
series with a yearly season.
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1.4. Modelling Approach
The previous section discusses how the joint distribution between observations in Equation 1.5 is im-
possible to compute for most of time series applications. The joint distribution can be approximated by
assuming stationarity but still the assumption is limited, therefore an alternative modelling approach is
needed.

1.4.1. General Model
Consider the following general setting. We have a training set 𝒟, where the elements are 𝑇 pairs of 𝑑-
dimensional input vectors and output scalar, 𝒟 = {(𝐱፭ , 𝑦፭)|𝑡 = 1,… , 𝑇}. 𝑦፭ is a time series observation at
time 𝑡. 𝐱፭ is a general input vector, 𝐱፭ = [𝑥ኻ, … , 𝑥፝]ፓ, where the value depends on the forecastingmodel.
All input vectors are often aggregated into a design matrix 𝐗, and the output values are aggregated into
output vector 𝐲

𝐗 =
⎡
⎢
⎢
⎢
⎣

𝐱ፓኻ
𝐱ፓኼ
⋮
𝐱ፓፓ

⎤
⎥
⎥
⎥
⎦

𝐲 =
⎡
⎢
⎢
⎢
⎣

𝑦ኻ
𝑦ኼ
⋮
𝑦ፓ

⎤
⎥
⎥
⎥
⎦

(1.6)

A general time series model is given by

𝑦፭ = 𝑓(𝐱፭; 𝜽) + 𝜖፭ (1.7)

where 𝑓 is a function that maps the input 𝐱 at 𝑡 to the time series observation at time 𝑡 and the func-
tion is parameterised by a parameter vector 𝜽. 𝜖፭ is an I.I.D noise and assumed to be Gaussian dis-
tributed

𝜖፭ ∼ 𝒩(0, 𝜎ኼፍ) (1.8)

if not mentioned otherwise. The ℎ-step-ahead forecast is done by plugging in the test input 𝐱ፓዄ፡ into
the function 𝑓

𝑦ፓዄ፡ = 𝑓(𝐱ፓዄ፡; �̂�) (1.9)

where the parameter �̂� has already been learned from the training data. With this general model,
this section will discuss several specific models for time series forecasting, starting with a very simple
regression model.

1.4.2. Persistence
The persistence or also commonly referred as the naïve method directly forecasts all horizons with the
last observed value in the series

𝑦ፓዄ፡ = 𝑦ፓ for all ℎ (1.10)

Although it is surprisingly simple, the persistence is shown to perform better than more complicated
models in wind power forecasting, especially when forecasting a very-short horizon [13, 50]. So, any
forecastingmodel should be able to at least outperform the persistencemethod, otherwise the existence
of the forecasting model is questionable.
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Figure 1.3: Forecast using a linear regression-in-time. The result is unsatisfactory as the forecasts is equal to the mean of the
time series. Data: Recruitment (number of new fish) for a period of 453 months ranging over the years 1950-1987 (the plot starts
from 1980) [48].

1.4.3. Simple Regression
For the first model, a simple linear regression in time model is proposed, where the input is the time
index 𝑡

𝐱፭ = 𝑡 (1.11)

and the forecasting model is given by

𝑦፭ = 𝛽ኺ + 𝛽ኻ𝑡 + 𝜖፭ (1.12)

Figure 1.3 shows an example of the forecast with the simple regression model. The regression can
only capture the mean of the time series. It can be seen clearly that this linear regression in time is
inadequate to model a complex time series.

1.4.4. Classical Approach: ARIMA
One of the most prominent time series forecasting models is the ARIMA (autoregressive integrated
moving average). This model has a more complex modelling approach than the previous linear re-
gression model. The ARIMA model originates from the ARMA (autoregressive moving average) model
while the ARMA model itself is a combination of an AR (autoregressive) model with an MA (moving
average) model. The concept of both AR and MA is crucial in many time series model, not only limited
to the ARIMA model.
The autoregressivemodel is based on the idea that the current value of a time series is a linear combina-
tion of its past values. The number of previous values is often named as the order of the autoregressive
and symbolised by 𝑝. An autoregressive model of order 𝑝 or 𝐴𝑅(𝑝) is given by

𝑦፭ = 𝑐 + 𝜙ኻ𝑦፭ዅኻ + 𝜙ኼ𝑦፭ዅኼ +…+ 𝜙፩𝑦፭ዅ፩ + 𝜖፭ (1.13)
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where𝜙ኻ, … , 𝜙፩ are parameters of themodel, 𝑐 is a constant, and 𝜖 is a white noise, 𝜖፭ ∼ 𝒩(0, 𝜎ኼፍ).
Moving average (MA) provides an alternative model to the autoregressive representation where it mod-
els the current value of a time series as a linear combination of several past errors. The moving average
model of order 𝑞, or MA(𝑞), is equal to

𝑦፭ = 𝑐 + 𝜖፭ + 𝜃ኻ𝜖፭ዅኻ + 𝜃ኼ𝜖፭ዅኼ +…+ 𝜃፪𝜖፭ዅ፪ (1.14)

where 𝜃ኻ, … , 𝜃፪ are parameters of the moving average.
The combination of an AR(𝑝) and MA(𝑞) model is the ARMA(𝑝, 𝑞) model, and is given by

𝑦፭ = 𝑐 + 𝜖፭ +
፩

∑
።዆ኻ
𝜙።𝑦፭ዅ። +

፪

∑
፣዆ኻ
𝜃፣𝜖፭ዅ፣ (1.15)

To make it consistent with the general model that has been outlined in the Section 1.4.1, for ARMA
model we have

𝐱፭ = [𝑦፭ዅኻ, 𝑦፭ዅኼ, … , 𝑦፭ዅ፩, 𝜖፭ዅኻ, 𝜖፭ዅኼ, … , 𝜖፭ዅ፪]ፓ (1.16)

𝑓(𝐱፭) = 𝑐 +
፩

∑
።዆ኻ
𝜙።𝑦፭ዅ። +

፪

∑
፣዆ኻ
𝜃፣𝜖፭ዅ፣ (1.17)

𝜽 = [𝜙ኻ, … , 𝜙፩, 𝜃ኻ, … , 𝜃፪]ፓ (1.18)

The ARMA model is a powerful time series model. First reason is because the ARMA model is an ac-
tualisation of the Wold’s Decomposition Theorem. The theorem states that any covariance stationary
process can be decomposed into two mutually uncorrelated component processes, a linear combina-
tion of lags of a white noise process and future values of which can be predicted exactly by some linear
function of past observations [7]. In addition to that, the ARMA model requires only two hyperparam-
eters, the 𝑝 and 𝑞. These reasons mean that an ARMA model is capable of modelling any stationary
time series with a minimum set of user-defined parameters.

The ARMA model works under the assumption that the time series is stationary. This assumption is
limiting for many time series applications due to the presence of trend and season that is common in
many real world data. To handle this limitation, the non-stationary time series must be made stationary
first before modelling the time series with the ARMAmodel. The process of removing trend and season
is called de-trending and de-seasonalising respectively.

One way to perform de-trending is by differencing. Differencing compute the difference between con-
secutive observations

𝑦ᖣ፭ = 𝑦፭ − 𝑦፭ዅኻ (1.19)

The above equation calculates the first-order difference. It is sometimes necessary to compute a higher
order differencing like a second-order differencing if a lower order differencing still cannot remove the
trend. The second order differencing is equal to

𝑦ᖥ፭ = 𝑦ᖣ፭ − 𝑦ᖣ፭ዅኻ (1.20)
= (𝑦፭ − 𝑦፭ዅኻ) − (𝑦፭ዅኻ − 𝑦፭ዅኼ) (1.21)

ARIMA model is simply an ARMA model with a 𝑑th order of differencing. The ’integrated’ term comes
from this differencing procedure, where integration is the opposite of differencing. An ARIMA model is
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Figure 1.4: A 24-step-ahead forecast using ARIMA(1, 0, 1). It is shown that the forecast converges to the mean of the function
after several horizons. Data: Recruitment (number of new fish) for a period of 453 months ranging from the years 1950-1987
(the plot starts from 1980) [48].

often notated as ARIMA(𝑝, 𝑑, 𝑞) where 𝑝 is the order of the AR, 𝑞 is the order of the MA, and 𝑑 is the
order of differencing. An ARIMA(1, 0, 2) is equal to an ARMA(1, 2).
Similar to the de-trending, de-seasonalising can be performed through what is called the seasonal dif-
ferencing. Seasonal differencing computes the difference between an observation and the observation
at the same period from the previous season. For example, if we know that a time series has a season
that is repeating every 12 time-unit, then the seasonal difference is equal to 𝑦፭−𝑦፭ዅኻኼ. Seasonal ARIMA
or SARIMA is a more general ARIMA implementation that incorporates both non-seasonal differencing
to remove the trend and seasonal differencing to remove the season.

Even though the ARIMA has been around for quite some time, this technique is still being used in a
significant number of application domains that require forecasts, such as tourism [20, 52], transportation
[3, 32], medicine [38, 46], engineering [14, 53] and many more. The popularity of the ARIMA model is
contributed from the fact that ARIMA is well-studied, theoretically mature, and backed up by ubiquitous
software implementations. The last aspect is crucial to the widespread adoption of the ARIMA model
outside the statistics community. Social scientists, for example, could easily incorporate forecasting
using ARIMA from their statistical software of choice.

Behind its prevalence, we must be aware that ARIMA model is only effective for short-term forecasting.
The forecasting power of an ARIMA model decreases as the forecasting horizon increases because
the ARIMA forecast converges to the mean of the observations as the forecast horizon grows [48].
Figure 1.4 displays the example of a mean convergence. In this example, 24-step-ahead forecasts
on a time series are done using ARIMA(1, 0, 1). After several horizons, it is evident that the forecast
converges to mean of the time series. Appendix A shows the mean convergence of an ARIMA(1, 0, 1)
model analytically.

1.4.5. Gaussian Process Regression
Previously we have discussed two forecasting models, the simple regression in time and ARIMAmodel.
The first model is too simple, unable to model complex pattern in time series, while the second model
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is better but suffers from long-term forecasting issue. The shortcomings of these two techniques are
caused by their limited assumptions over the underlying function 𝑓. The simple regression assumes that
𝑦፭ linear in time whereas the ARIMA model assumes that 𝑦፭ is linear in the 𝑝 number of past data and
𝑞 number of past errors. Figure 1.3 and Figure 1.4 prove that these linear assumptions are inadequate
to model a long-term forecasting problem and thus a more powerful model is needed.

The Gaussian process (GP) regression provides a solution to the problem as mentioned earlier. This
model has a much less restrictive assumption over the function 𝑓. A GP regression only assumes that
the function 𝑓 is sufficiently smooth. This smoothness of the function can be defined by tuning the
parameters of a Gaussian process regression. Technically, a GP regression technique states that the
function 𝑓 is random and drawn from a multivariate Gaussian distribution

⎡
⎢
⎢
⎢
⎣

𝑓(𝐱።)
𝑓(𝐱፣)
𝑓(𝐱፤)
⋮

⎤
⎥
⎥
⎥
⎦

∼ 𝒩⎛
⎜

⎝

⎡
⎢
⎢
⎢
⎣

𝑚(𝐱።)
𝑚(𝐱፣)
𝑚(𝐱፤)
⋮

⎤
⎥
⎥
⎥
⎦

,
⎡
⎢
⎢
⎢
⎣

𝑘(𝐱። , 𝐱።) 𝑘(𝐱። , 𝐱፣) 𝑘(𝐱። , 𝐱፤) ⋯
𝑘(𝐱፣ , 𝐱።) 𝑘(𝐱፣ , 𝐱፣) 𝑘(𝐱፣ , 𝐱፤) ⋯
𝑘(𝐱፤ , 𝐱።) 𝑘(𝐱፤ , 𝐱፣) 𝑘(𝐱፤ , 𝐱፤) ⋯

⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎦

⎞
⎟

⎠

where𝑚 and 𝑘 denote the mean and covariance function, respectively. Since the function 𝑓 is random,
the optimum 𝑓 will be inferred via the Bayesian inference. Through this GP regression technique,
various kinds of function can be modelled, not only a linear function but also a complex non-linear
function, by modifying the mean and covariance function of this normal distribution. This property
highlights the flexibility of a GP regression model. More details about GP regression will be discussed
in Chapter 2.

In addition to its flexibility, the benefit of using GP regression is summarised below:

• Flexible. We should see that the GP regression has a flexible modelling capability through kernel
modification. Hence, it can model a time series with a broad range of complexity.

• Probabilistic model. Prediction from aGP regressionmodel is a distribution instead of a point fore-
cast. Therefore, we will have a point forecast (the average of the distribution) and its uncertainty
(the variance of the distribution).

• More robust to overfitting. GP is a special class of Bayesian probabilistic modelling, where we
can benefit from the Bayesian regularisation in a closed-form solution.

There are two main approaches for GP regression in time series forecasting. First is the autoregressive
approach, where the input to the function is the autoregressive values up to order 𝑝, which is similar to
the AR process of the ARIMA model

𝐱፭ = [𝑦፭ዅኻ, … , 𝑦፭ዅ፩]ፓ (1.22)

The different is that the function 𝑓 is not limited to a linear function like ARIMA. Frigola refers this
technique as the non-linear autoregressive (NAR) [18].

The second approach is similar to the regression in time model, where the input is the time index

𝐱፭ = 𝑡 (1.23)

To extend the model beyond a linear function of time, a complex covariance function is used, where
this covariance function is a combination of several covariance functions

𝑘(𝑡, 𝑡ᖣ) = 𝑘ኻ(𝑡, 𝑡ᖣ) + 𝑘ኼ(𝑡, 𝑡ᖣ) × 𝑘ኽ(𝑡, 𝑡ᖣ) + … (1.24)

Each covariance function is responsible for modelling a certain structure in the time series. For exam-
ple, the first covariance function in the above equation corresponds to a linear trend while the second
and third covariance functions correspond to a medium-term season. This technique is popularised by
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Duvenaud et al., where they named this technique the structure modelling. Both of these approaches
will be described in more details in Chapter 3 and 4.

The autoregressive approach is first proposed by Brahim-Belhouari and Belmak [8]. Their research re-
ports that the GP forecasting method outperforms the Radial Basis Function (RBF) neural network on
a non-linear time series data. Since then, this autoregressive technique becomes widespread as sev-
eral similar autoregressive methods are proposed. Girard et al. extend this autoregressive approach
to perform a multiple-step-ahead forecasting [19]. Hachino and Kadirkamanathan aim to improve the
existing autoregressive GP method by employing a genetic algorithm during the training process [23].
They argue that the standard training method is susceptible to local minima, so they propose a genetic
algorithm as an alternative. More advanced scenarios involving multivariate time series forecasting
are also studied. Chapados and Bengio incorporate several exogenous variables in addition to the au-
toregressive vector for forecasting commodity demands [11]. Osborne et al. augment the information
gathered from various neighbouring sensors to forecast the weather by exploiting the correlation be-
tween sensors through GP kernels [39]. Mori and Kurata apply autoregressive GP for forecasting wind
speed and report that GP has better forecasting performance than the RBF and feedforward neural
network [35].

The idea of structure modelling is first proposed by Rasmussen and Williams [44, p.118]. They perform
a regression in time and modelling the covariance function by hand, where each covariance function
corresponds to a certain pattern that exists in the time series. Duvenaud et al. improve the solution
of Rasmussen and Williams by proposing an algorithm to construct the complex covariance function
automatically.

1.4.6. Other Methods

Unfortunately, due to the limited amount of time during this research, comparison with another time se-
ries forecasting, possibly a more complicated state-of-the-art models, is not possible. A neural network
(NN) based technique is probably an ideal candidate for comparison if time permit. In the early 2000’s,
many types of research aim to push neural network as an alternative to the more classical ARIMA,
with feedforward neural network as the most dominant architecture [27, 57]. After the resurgence of
deep learning, interests in neural network time series forecasting get renewed. This time, the architec-
ture based on Recurrent Neural Network (RNN) is prominent. The feedback loop structure in the RNN
is deemed more suitable for learning from time series than the feedforward architecture [22]. RNN
has shown promising results in several sequential data such as speech recognition [26] and language
modelling [34].

1.5. Problem Statement
With time series forecasting problem in mind, the ARIMA model remains a popular forecasting model
that is still being used in the recent years. However, the choice of ARIMA has to be reconsidered
for long-term forecasting model. The last paragraph of Section 1.4.4 outlines the problem of mean
convergence that ARIMA suffers for long-term forecasting. Wemight argue that this convergence is still
acceptable, because in long-term forecasting the uncertainty grows larger, thus the mean convergence
is the best compromise that we can get. Nevertheless, having a more powerful model that can forecast
ahead in the future with greater confidence is highly desirable. In wind energy forecasting, for example,
an accurate long-term forecast can help with the maintenance decision of wind turbines.

In Section 1.4.5, the GP regression is discussed as a potential alternative to ARIMA due to its flexi-
bility. Two approaches of GP-based time series forecasting are explored, the autoregressive and the
structure modelling. Both of these approaches have merits and show promising forecasting results in
their respective research. Still, most of the research works mentioned above focus on short-term, not
on long-term forecasting. Yan et al. [56] provide a long-term forecasting study but more focused on
the autoregressive approach, and no comparison is made with another time series forecasting tech-
nique.
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1.6. Research Objective
The previous section underlines the problem of ARIMA for long-term forecasting and how two ap-
proaches of GP regression for time series forecasting, the autoregressive and the structure modelling
are potential for a better long-term time series forecasting performance. Unfortunately, previous works
on these two approaches focus on short-term forecasting. Moreover, to the best of our knowledge,
there is no empirical study ever done to compare the performance of these GP regression techniques
with the ARIMA model. These propositions underline the importance of this research.
This research aims to provide an empirical study to compare the long-term forecasting performance
between the ARIMA and Gaussian process regression techniques. The objective of this research is
expanded into these following research questions.
1. Between the two Gaussian process regression approaches, the autoregressive and the structure

modelling, how do their long-term forecasting performances compare with the ARIMA model?
2. Between the two Gaussian process regression approaches, the autoregressive and the structure

modelling, which has better long-term forecasting performance?

1.7. Outline
This research report will be structured as follows. Chapter 2 will elaborate the theory behind Gaussian
process. The next two chapters, Chapter 3 and Chapter 4, will discuss in detail about the structure
modelling and the autoregressive approach, respectively. In Chapter 5, the experiment methodology
will be outlined, and then the results of the experiment will also be reported. Lastly, this report will
be closed with some conclusions about the research, as well as future discussion points in Chapter
6.





2
Gaussian Process

This chapter discusses what a Gaussian process is and how it can be used for regression.

2.1. Bayesian Linear Regression
Let us consider a general linear regression model that follows the notation from Section 1.4.1. The
input vector 𝐱, function 𝑓 and parameters 𝜽 are given by

𝐱፭ = [𝑥ኻ, … , 𝑥፝]ፓ
𝑓(𝐱፭) = 𝛽ኺ + 𝛽ኻ𝑥ኻ +…+ 𝛽 𝑥፝

𝜽 = [𝛽ኺ, 𝛽ኻ, … , 𝛽 ]ፓ

Inferring the parameter 𝜽 from data is through the Bayes’ rule

𝑝(𝜽|𝐗, 𝐲) = 𝑝(𝐲|𝐗, 𝜽)𝑝(𝜽)
𝑝(𝐲|𝐗) (2.1)

where the denominator can be calculated as

𝑝(𝐲|𝐗) = ∫𝑝(𝐲|𝐗, 𝜽)𝑝(𝜽)𝑑𝜽 (2.2)

Each component of the Equation 2.1 is usually referred as

posterior = likelihood × prior
evidence or marginal likelihood (2.3)

If we disregard the normalising factor of the evidence, we can explain the Bayes’ rule by

𝑝(𝜽|𝐗, 𝐲) ∝ 𝑝(𝐲|𝐗, 𝜽)𝑝(𝜽) (2.4)

This equation actually summaries all the intuition of the Bayesian inference. We start with the prior
belief of the parameter without seeing the data. Once we have seen the data, our belief about the
parameter is updated into a posterior belief through the likelihood.

In the Bayesian linear regression, the prior function over the parameter is Gaussian distributed, 𝑝(𝜽) ∼
𝒩(0, 𝚺፩) where here it is assumed that the covariance of the prior 𝚺፩ is given. Assuming that the

13
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observations are I.I.D, the likelihood function 𝑝(𝐲|𝐗, 𝜽) is another Gaussian distribution and is given
by

𝑝(𝐲|𝐗, 𝜽) =
ፓ

∏
፭዆ኻ

𝑝(𝑦፭|𝐱፭ , 𝜽) =
ፓ

∏
፭዆ኻ

1
√2𝜋𝜎ፍ

exp (−(𝑦። − 𝐱
ፓ
። 𝜽)ኼ

2𝜎ኼፍ
)

= 1
(2𝜋𝜎ኼፍ)ፓ/ኼ

exp (−‖𝐲 − 𝐗𝜽‖
ኼ
ኼ

2𝜎ኼፍ
)

𝑝(𝐲|𝐗, 𝜽) ∼ 𝒩(𝐲|𝐗𝜽, 𝜎ኼፍ𝐈) (2.5)

where ‖⋅‖ኼ denotes the Euclidean norm.
Since both the prior and likelihood are Gaussian, the parameter posterior 𝑝(𝜽|𝐗, 𝐲) is also Gaussian
distributed

𝑝(𝜽|𝐗, 𝐲) ∼ 𝒩(𝜽|�̄�, �̄�) (2.6)

�̄� = 1
𝜎ኼፍ
𝐀ዅኻ𝐗ፓ𝐲

�̄� = 𝐀ዅኻ

where 𝐀ዅኻ = ( ኻ᎟Ꮄᑅ𝐗
ፓ𝐗 + 𝚺ዅኻ፩ )ዅኻ.

With the parameter posterior, we can predict the unseen data by computing the predictive poste-
rior

𝑝(𝑦∗|𝐱∗, 𝐗, 𝐲) = ∫𝑝(𝑦∗|𝜽, 𝐱∗)𝑝(𝜽|𝐗, 𝐲)𝑑𝜽 (2.7)

This probability distribution is called the predictive posterior or predictive distribution. Broadly speaking,
a predictive posterior is a result of predicting over all possible parameters (the left side of the integral)
weighted by the parameter posterior (the right side of the integral). The parameter posterior is again
Gaussian distributed

𝑝(𝑦∗|𝐱∗, 𝐗, 𝐲) ∼ 𝒩(𝑦∗|𝜇∗, 𝜎ኼ∗ ) (2.8)

𝜇∗ = 𝐱ፓ∗ �̄�
𝜎ኼ∗ = 𝐱ፓ∗ �̄�𝐱∗

If we inspect the left term of the integral in Equation 2.7, we can see that the prediction does not
rely on our training data. Equation 2.8 similarly indicates that the predictive posterior makes use the
information from the test data and the parameter posterior. In a parametric model such as the linear
regression that has been discussed previously, all the information that the model get from training data
are compressed into the parameter vector 𝜽 and predictions are made through these parameters only.
This situation is limiting, because no matter how large our training set is, our prediction is determined
solely by this finite set of parameters. Frigola considers the parameters as an information bottleneck
for prediction [18].

Discussion in the previous paragraph highlights the inflexibility of a parametric model, which encour-
ages the utilisation of the non-parametric model. In the non-parametric model, the training data is not
condensed into a finite set of parameter. Instead, it requires the full dataset to make a prediction on
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the new data. Because of that, we can consider the non-parametric model has an infinite size of pa-
rameters since the ’parameters’ of a non-parametric model grows with the scale of the training data.
The next section will discuss one class of a non-parametric regression model which is the Gaussian
process regression.

2.2. Gaussian Process Regression
If we look at the general model from Equation 1.7, the primary goal of the forecasting model is to
compute the underlying function 𝑓 from the noisy observation 𝑦. In a parametric model such as the
Bayesian linear regression from Section 2.1, we obtain the function 𝑓 through the parameter 𝜽. We
are often more interested in the predictive accuracy of the model and less about the parameter of the
function 1. So, instead of inferring the parameters to get the latent function of interests, an alternative
is to infer the function 𝑓 directly, as if the function 𝑓 is the ’parameters’ of our model. We shall infer the
function 𝑓 from the data through the Bayesian inference.
The function 𝑓 is random and we need to assign a probability distribution over 𝑓. Rasmussen and
Williams suggest the Gaussian processes (GP) to describe the probability distribution over function 𝑓
[44]. A formal definition of a Gaussian process according to Rasmussen and Williams [44] is

A Gaussian process is a collection of random variables, any finite number of which have a
joint Gaussian distribution.

By this definition, a value of a function 𝑓 evaluated at a point 𝐱 is distributed according to a multivariate
Gaussian distribution
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(2.9)

where 𝑚 and 𝑘 denote the mean and covariance functions respectively. As an alternative notation to
Equation 2.9, we define a function that is distributed according to a Gaussian process as

𝑓(𝐱) ∼ 𝒢𝒫(𝑚(𝐱), 𝑘(𝐱, 𝐱ᖣ)) (2.10)

By assuming that the function is generated according to a GP, we inherit some properties of the Gaus-
sian distribution that will help the computation during the inference. Moreover, we have a more flexible
definition of our function. The only assumption made by GP is that the function is sufficiently smooth.
Intuitively, if two points, 𝐱 and 𝐱ᖣ, are similar, then 𝑓(𝐱) and 𝑓(𝐱ᖣ) should also be similar, which explains
why the function generated by a GP is smooth. Our assumption of this similarity or smoothness is en-
coded by the covariance function 𝑘. We can define a broad range of functions just by defining different
covariance functions. Figure 2.1 shows three random functions sampled from four different kinds of
covariance functions. It can be seen that the functions can have varying characteristics, ranging from a
linear to a noisy non-linear function. This trait demonstrates how a GP regression can be very flexible
in modelling a function. Different types of covariance functions will be discussed in Section 2.3.
We follow a similar inference steps from Section 2.1 to make a prediction using a Gaussian process
regression. It has the same two-step inference processes, computing the posterior over function, then
making predictions by computing the predictive posterior. The posterior over function is given by

𝑝(𝐟|𝐗, 𝐲) ∝ 𝑝(𝐲|𝐟)𝑝(𝐟|𝐗) (2.11)

which is proportional to the likelihood of the observation 𝐲 given a random function 𝐟 times the prior
over function.
1unless we are interested in making an interpretable model, which has gained interested in the machine learning community
recently [45]



16 2. Gaussian Process
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Figure 2.1: This figure displays three random functions that are sampled from Gaussian processes with different kinds of covari-
ance functions. First row: Linear. Second row: RBF. Third row: Periodic. Fourth row: Rational Quadratic.

As it has been discussed earlier in this section, the prior over function is distributed according to a
Gaussian process which follows Equation 2.9

𝑝(𝐟|𝐗) ∼ 𝒩(𝐟|𝝁(𝐗), 𝐊(𝐗, 𝐗)) (2.12)

where 𝐟 is a vector containing all function values evaluated at our training input, 𝐟 = [𝑓(𝐱ኻ, … , 𝑓(𝐱ፓ)]ፓ.
𝝁(𝐗) is amean vector containing themean function evaluated at training input, 𝝁(𝐗) = [𝑚(𝐱ኻ), … ,𝑚(𝐱ፓ)]ፓ.
Similarly, 𝐊(𝐗, 𝐗) is a covariance matrix in which the elements are covariance functions between all
training inputs, 𝐊(𝐗, 𝐗)።፣ = 𝑘(𝐱። , 𝐱፣). Most of the time, the mean of the prior is set to zero, because the
GP is flexible enough the model the mean arbitrary well just from the covariance function

𝑝(𝐟|𝐗) ∼ 𝒩(𝐟|𝟎, 𝐊(𝐗, 𝐗)) (2.13)

where 𝟎 is a vector with zero as elements.
The likelihood function is similar to the likelihood function in Equation 2.5, where now the mean of the
likelihood function is centred on an arbitrary 𝐟

𝑝(𝐲|𝐟) ∼ 𝒩(𝐲|𝐟, 𝜎ኼፍ𝐈) (2.14)

Both the likelihood and prior are Gaussians, so the posterior over function is another Gaussian distri-
bution

𝑝(𝐟|𝐗, 𝐲) ∼ 𝒩(𝐟|�̄�, �̄�) (2.15)
�̄� = 𝐊(𝐗, 𝐗)[𝐊(𝐗, 𝐗) + 𝜎ኼፍ𝐈]ዅኻ𝐲
�̄� = 𝐊(𝐗, 𝐗)[𝐊(𝐗, 𝐗) + 𝜎ኼፍ𝐈]ዅኻ𝜎ኼፍ𝐈
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Once we have the posterior over function, we can predict new unseen data by computing the predictive
posterior, similar to the predictive posterior found on Equation 2.7

𝑝(𝐲∗|𝐗∗, 𝐗, 𝐲) = ∫𝑝(𝐲∗|𝐗∗, 𝐟, 𝐗)𝑝(𝐟|𝐗, 𝐲)𝑑𝐟 (2.16)

Here we assume that the new unseen data is a vector 𝐲∗ with input matrix 𝐗∗. The term on the right side
of the integral is the posterior over function that is found in Equation 2.15. The term on the left is the
likelihood of new data given a function 𝐟. This likelihood can be computed analytically by calculating the
conditional distribution the 𝐲∗ given the function 𝐟 which is another Gaussian distribution. The reader
can refer to Rasmussen and Williams [44, p.16] for more detail about the calculation of this likelihood.
The likelihood can be calculated as

𝑝(𝐲∗|𝐗∗, 𝐟, 𝐗) ∼ 𝒩(𝐲∗|�̃�, �̃�) (2.17)
�̃� = 𝐊(𝐗∗, 𝐗)𝐊(𝐗, 𝐗)ዅኻ𝐟
�̃� = 𝐊(𝐗∗, 𝐗∗) − 𝐊(𝐗∗, 𝐗)𝐊(𝐗, 𝐗)ዅኻ𝐊(𝐗, 𝐗∗)

where𝐊(𝐗, 𝐗∗) is the covariancematrix between training and test points, and𝐊(𝐗∗, 𝐗∗) is the covariance
matrix between test points. 𝐊(𝐗, 𝐗∗) = 𝐊(𝐗∗, 𝐗)ፓ.
With both terms are Gaussians, the predictive posterior is another Gaussian and is given by

𝑝(𝐲∗|𝐗∗, 𝐗, 𝐲) ∼ 𝒩(𝐲∗|𝝁∗, 𝚺∗) (2.18)
𝝁∗ = 𝐊(𝐗∗, 𝐗)[𝐊(𝐗, 𝐗) + 𝜎ኼፍ𝐈]ዅኻ𝐲
𝚺∗ = 𝐊(𝐗∗, 𝐗∗) − 𝐊(𝐗∗, 𝐗)[𝐊(𝐗, 𝐗) + 𝜎ኼፍ𝐈]ዅኻ𝐊(𝐗, 𝐗∗)

or in the case of a single test point 𝑦∗

𝑝(𝑦∗|𝐱∗, 𝐗, 𝐲) ∼ 𝒩(𝑦∗|𝜇∗, 𝜎ኼ∗ ) (2.19)
𝜇∗ = 𝐤(𝐱∗, 𝐗)[𝐊(𝐗, 𝐗) + 𝜎ኼፍ𝐈]ዅኻ𝐲
𝜎ኼ∗ = 𝑘(𝐱∗, 𝐱∗) − 𝐤(𝐱∗, 𝐗)[𝐊(𝐗, 𝐗) + 𝜎ኼፍ𝐈]ዅኻ𝐤(𝐗, 𝐱∗)

𝐤(𝐗, 𝐱∗) denotes a 𝑇 × 1 covariance vector between training points 𝐗 and a single test point 𝐱∗ with
𝐤(𝐗, 𝐱∗) = 𝐤(𝐱∗, 𝐗)ፓ.
Equation 2.18 is the necessary equation for making predictions using Gaussian process regression.
At this stage, it should be clear why a Gaussian process regression is considered a non-parametric
regression model and how it differs from the earlier linear regression. In GP regression, we infer the
function as the ’parameters’ of the model. It can be seen from Equation 2.15 that the function depends
on the training input 𝐗, hence what we have is parameters that grow with the size of the training data.
This characteristic is a contrast to the linear regression where the parameter size is fixed. If we exam-
ine Equation 2.18, then we can see that the GP regression also needs all the training data to make
predictions of future data. Because of this, we can utilise the full information that is available in the
training data to predict new data without having to be restricted by the finite set of parameter like in
the parametric model. This shows that the GP regression can be a more capable regression model
than the parametric one. In this section, we also have a glimpse on how the GP regression can model
diverse functions by just defining a covariance function. More detail about covariance function and
several kinds of covariance functions will be discussed in the next section.
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Figure 2.2: Random samples from several covariance functions. First row: RBF, second row: RQ, third row: Periodic, fourth
row: Linear. Each column denotes different variation of parameters.

2.3. Covariance Function (Kernel)
Covariance function measures the nearness or similarity between two points. A covariance function
states that if two points 𝑥 and 𝑥ᖣ are similar, then 𝑓(𝑥) and 𝑓(𝑥ᖣ) should also be similar. Covariance
function encodes our initial belief over the function that we want to regress. This initial belief could be
how smooth our function is or whether the function is periodic. The covariance function is also known
as the kernel since it measures a degree of similarity between points in the dataset. This report will
write both covariance function and kernel interchangeably. Any function could be a covariance function
as long as the resulting covariance matrix is positive semi-definite.

2.3.1. Common Covariance Functions
Four standard covariance functions will be discussed in this section. Those are the radial basis function
(RBF), rational quadratic (RQ), periodic, and linear kernel. For the discussion of the kernel in this
section, it is assumed that the input is a scalar instead of a vector.

Radial Basis Function (RBF)

A radial basis function (RBF) kernel, also commonly known as the squared exponential kernel, is given
by

𝑘RBF(𝑥, 𝑥ᖣ) = 𝜎ኼ exp (−
(𝑥 − 𝑥ᖣ)ኼ
2𝜆ኼ ) (2.20)

An RBF kernel has two parameters, 𝜆 and 𝜎ኼ. The former is known as the lengthscale parameter, which
controls the horizontal scale over which the function changes and the latter is the noise variance, which
controls the vertical scale changes [36]. One prominent characteristic of an RBF kernel is the smooth-
ness assumption. RBF assumes that the underlying function is smooth and infinitely differentiable. We
should be aware of this because the assumption might not hold for our data. If our function is rough,
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the Rational Quadratic (RQ) kernel can be chosen instead [56]. The RQ kernel will be discussed after
this section.

The first row of Figure 2.2 shows how the lengthscale parameter 𝜆 affects the sampled function from
an RBF kernel. An RBF covariance function value falls within 0 and 1, 𝑘RBF(𝑥, 𝑥ᖣ) = [0, 1]. RBF
defines similarity as closeness, where the closer the point 𝑥 with 𝑥ᖣ, 𝑘(𝑥, 𝑥ᖣ) → 1. In contrast, when the
difference |𝑥 − 𝑥ᖣ| becomes higher, the value decays to zero. The rate of decay is controlled by the 𝜆
parameter.

A small lengthscale causes amore rapidly changing, ’wiggly’ looking function. Small lengthscale makes
the covariance decays to zero very fast as the distance between points goes higher, which explains the
rapid variation changes. Conversely, a large lengthscale causes a slow change, which in effect creates
a very smooth function. The lengthscale parameter plays an important role on our assumption about
the function would be. To model a rapidly changing function, small lengthscale RBF kernel should be
used. In contrast, to extrapolate a value that is far from the training data, a large lengthscale should be
chosen instead.

Rational Quadratic (RQ)

A rational quadratic (RQ) kernel is given by

𝑘RQ(𝑥, 𝑥ᖣ) = 𝜎ኼ exp (1 +
(𝑥 − 𝑥ᖣ)ኼ
2𝛼𝜆ኼ )

ዅᎎ
(2.21)

An RQ kernel can be seen as an infinite sum of RBF kernels with multiple lengthscales [44]. An RQ
kernel does not assume that the function 𝑓 is smooth, unlike the RBF kernel. Because of that, the
RQ kernel is more appropriate to model a non-smooth, rough function. In addition to the 𝜆 and 𝜎
parameter, an RQ kernel has another parameter, the power parameter 𝛼, which defines how quick the
local variation is.

The second row of Figure 2.2 shows randomly sampled function from RQ kernels with different 𝛼. It
can be noted from the Figure 2.2 in the first column of the second row that even with the same 𝜆 and 𝜎,
the function shows local variations inside a larger variation. This effect can be seen as a combination
of multiple RBF kernels with different lengthscales interacting with each other. The local variation is
controlled by the 𝛼, while the long-term variation is by 𝜆. The larger the 𝛼, the more rapid the local
variation is.

Periodic

A periodic covariance function is defined as follows

𝑘Per(𝑥, 𝑥ᖣ) = 𝜎ኼ exp (−
sinኼ(𝜋(𝑥 − 𝑥ᖣ)/𝑝)

2𝜆ኼ ) (2.22)

A periodic kernel gives a repeating structure over the function which is controlled by the period param-
eter 𝑝. The lengthscale 𝜆 and variance 𝜎ኼ have the same effect that is found in an RBF kernel. Larger
𝑝 causes a slower oscillation while smaller 𝑝 causes a higher oscillation. The second row of Figure 2.2
illustrates the effect of 𝑝 on the function. It can also be seen from the figures that a periodic kernel
cause an exact repeating pattern. This aspect is important to note since repeating patterns that occur
in real world data usually do not have precise oscillations.

Linear

The linear covariance function is defined as follows

𝑘Lin(𝑥, 𝑥ᖣ) = 𝜎ኼ𝑥𝑥ᖣ (2.23)
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Figure 2.3: The plot of ፱ ዅ ፱ᖤ against the covariance function ፤. It can be seen that both RBF and RQ kernel are local kernels.

It is a very simple kernel, where the only parameter is the noise variance 𝜎ኼ which controls the vertical
lengthscale of the function. Different 𝜎 affects the scale on the output axis, where the larger the 𝜎, the
larger vertical scale will be.

2.3.2. Kernel Composition
It is possible to combine several covariance functions together to model a more complex function.
The only thing to remember is that the resulting covariance matrix must be a positive semi-definite
matrix. The two operations below, addition and multiplication, are two ways to combine covariance
functions together while keeping the positive semi-definite property intact. These operations are critical
in Chapter 3.

𝑘(𝑥, 𝑥ᖣ) = 𝑘ኻ(𝑥, 𝑥ᖣ) + 𝑘ኼ(𝑥, 𝑥ᖣ) (2.24)

𝑘(𝑥, 𝑥ᖣ) = 𝑘ኻ(𝑥, 𝑥ᖣ)𝑘ኼ(𝑥, 𝑥ᖣ) (2.25)

2.3.3. Stationary and Local Kernel
One important characteristic that RBF, RQ, and periodic kernels share in common is stationarity. Sta-
tionary means that a kernel has a translation invariant property, where the function value only depends
on the difference between data points, not the data points themselves. A pair of 𝑥 = 1, 𝑥ᖣ = 2 has the
same covariance value as a pair of 𝑥 = 100, 𝑥ᖣ = 101, for example. In contrast, a linear kernel does
not have translation invariant property, and thus it can be classified as a non-stationary kernel.

Another important aspect of the kernel that needs to be understood is the locality of the kernel. Fig-
ure 2.3 shows the plot of 𝑘(𝑥, 0) for various covariance kernels. These plots show how the similarity or
covariance between data points are computed by the kernel. The RBF and RQ kernel exhibit strong
covariance between similar data points (|𝑥 − 𝑥ᖣ| → 0) but as the difference goes larger, the covariance
decays to zero. This is an indicator of a local kernel, where it shows high similarity only to nearby
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points. In contrast to the RBF and RQ kernel, both linear and periodic kernel do not display a locality
characteristic. Locality characteristic of a kernel is important when we want to extrapolate because we
regress to a region where no data point is available when we extrapolate. Therefore, we want to have
a GP model with a non-local kernel. Otherwise, all the extrapolated data points will have zero similar-
ities with other data points and consequently, our GP model will be dominated by the mean function
only.

2.4. Training a GP Regression Model
Training or learning a GP regression model means finding the optimum parameter of the covariance
functions. Choosing the parameter can be done manually if we have a sufficient domain knowledge
about our problem and our covariance function. For example, we can refer to Figure 2.2 to understand
the effect of the parameter 𝜆 on the RBF kernel. This manual approach will not work for most cases.
Therefore, we need a systematic approach to parameter selection. In GP, this systematic approach is
done by maximising the evidence or the marginal likelihood of a GP model [44]. The explanation for
this is available in detail in Appendix B. In short, given that the parameters of a kernel are stored in the
parameter vector 𝚯, the optimum parameter 𝚯∗ is given by maximising the log-marginal likelihood w.r.t
to 𝚯

𝚯∗ = arg max
𝚯

− 12𝐲
ፓ[𝐊(𝐗, 𝐗; 𝚯) + 𝜎ኼ፧𝐈]ዅኻ𝐲 −

1
2 log det[𝐊(𝐗, 𝐗; 𝚯) + 𝜎

ኼ
፧𝐈] −

𝑛
2 log 2𝜋 (2.26)

Here we make the covariance matrix 𝐊 explicitly depends on the kernel parameter 𝚯.

−10 −5 0 5 10

0.0

0.5

1.0

1.5

2.0

2.5

true

λ = 3 (optimised); LL=17.9

λ = 0.2 (too short); LL=-101.7

λ = 10 (too long); LL=-154.9

Figure 2.4: A GP regression model is fitted on the noisy data (shown by dots) to model the true function which is shown by the
blue curve. The marginal likelihood favours the model with the orange curve, which closely resembles the true function. The
parameter of this model is given by an RBF kernel with ᎘ ዆ ኽ, ᎟ ዆ ኻ. If we shorten the ᎘ (green curve), the model overfits the
data while the model with long ᎘ (red curve) underfits the data. Both models are assigned with lower marginal likelihood values
(LL).

Maximising the marginal likelihood provides a way to choose the right model GP regression while
protecting against overfitting [44]. Figure 2.4 depicts an example of how the marginal likelihood selects
the right model. This example illustrates a regression problem which is fitted using a Gaussian Process



22 2. Gaussian Process

regression with an RBF kernel, 𝚯 = [𝜆, 𝜎]ፓ. The true function is depicted by the blue curve. We
wish to fit a GP regression on the noisy data which are shown by the dots such that the regression
approximate the true function. The best approximating fit is given by an RBF kernel with 𝜆 = 3, 𝜎 = 1,
which is demonstrated by the orange curve. The marginal likelihood favours this model, as it gets the
highest marginal likelihood value. Now, if we keep the 𝜎 fixed, but shorten the 𝜆 to 0.2, we obtain the
fit that is shown by the green curve. This model overfits the data, as it models the noise as opposed to
the true function. This model gets a lower marginal likelihood value. Similarly, the model with longer
lengthscale, which is shown by the red curve, is set with a low marginal likelihood, as it underfits. This
example indicates that marginal likelihood maximisation is robust to overfitting. This phenomenon is
explained in Appendix B.

The first term of the marginal likelihood is the main computation bottleneck because it involves an inver-
sion of a matrix. To simplify the notation, let 𝐂 = 𝐊(𝐗, 𝐗; 𝚯)+𝜎ኼ፧𝐈. In practice, Cholesky decomposition
is performed instead of directly inverting the 𝐂matrix, because 𝐂 is a positive semi-definite matrix

𝐂 = 𝐋𝐋ፓ
𝐂ዅኻ = (𝐋ዅኻ)ፓ𝐋ዅኻ

and the first term of the log-likelihood equation can be simplified to

1
2𝐲

ፓ𝐂ዅኻ𝐲 = 1
2𝐲

ፓ(𝐋ዅኻ)ፓ𝐋ዅኻ𝑦

= 1
2𝐲

ፓ(𝐋ፓ)ዅኻ(𝐋ዅኻ𝐲)

where we can solve the (𝐋ፓ)ዅኻ(𝐋ዅኻ𝐲) using the forward substitution instead of inverse because 𝐋 is a
lower triangular matrix

1
2𝐲

ፓ𝐂ዅኻ𝐲 = 1
2𝐲

ፓ𝐋ፓ ⧵ (𝐋 ⧵ 𝐲)

The second term of the log-likelihood equation can also be simplified knowing the fact that the deter-
minant of a triangular matrix is a product of its diagonal elements, so

1
2 log det 𝐂 = log det 𝐋𝐋

ፓ

= log det 𝐋 det 𝐋ፓ

= log
፧

∏
።዆ኻ

𝐋ኼ።።

The log-likelihood function now becomes

log 𝑝(𝐲|𝐗) = −12𝐲
ፓ𝐋ፓ ⧵ (𝐋 ⧵ 𝐲) − 12 log

፧

∏
።዆ኻ

𝐋ኼ።። −
𝑛
2 log 2𝜋 (2.27)

The cost of computing the log-marginal likelihood is 𝒪(𝑛ኽ) because of the Cholesky decomposition
operation, therefore training a Gaussian process regression has the complexity of 𝒪(𝑛ኽ).
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Figure 2.5: COᎴ concentration (in ppm) recorded at the Mauna Loa observatory, USA, from March 1958 until December 2001

2.5. Forecasting the CO2 Data
In this section, we perform a time series forecasting using a simple Gaussian Process regressionmodel.
The time series data that is utilised for this purpose is the Mauna Loa atmospheric COኼ data, which
is the COኼ concentration (in ppm) recorded at the Mauna Loa Observatory, USA, from March 1958
until December 2001. The first 80% of the data will be used for training and last 20% of the data will
be utilised for testing, which is 109 horizons ahead in the future. Figure 2.5 shows the plot of the
dataset.
We take advantage of the similar regression-in-time setting that is found on Section 1.4.3, but using
the GP regression instead

𝐱፭ = 𝑡
𝑓(𝐱፭) ∼ 𝒢𝒫(0, 𝑘RBF(𝐱፭ , 𝐱ᖣ፭))

Forecasts up to horizon ℎ, 𝐲∗ = [𝑦ፓዄኻ, 𝑦ፓዄኼ, … , 𝑦ፓዄ፡]ፓ, are calculated using Equation 2.18, where the
test input is a vector of time index 𝐗∗ = [𝑇 + 1, 𝑇 + 2,… , 𝑇 + ℎ]ፓ. The kernel parameter is learned by
maximising the marginal likelihood from Section 2.4.
The result is presented in Figure 2.6. It can be seen that the GP regression model is only able to
forecast correctly up to the tenth horizon. After that, the forecast starts to converge to the mean of
the function which is zero. The reason for this finding is caused by the local kernel, which has been
discussed in Section 2.3. As we have already known, the RBF kernel is a local kernel, where strong
covariance is assigned to the nearby points. As a result, the covariance starts to vanish until it becomes
zero as the point goes farther apart. In this problem, we utilise the time index as input, so as |𝑡ፓ−𝑡ፓዄ፡|
goes larger, 𝑘RBF → 0. That is the reason why the forecast result converge to the mean for greater
horizons, because when the covariance becomes insignificant, the mean function will dominate the
prediction.
This result clearly shows that the simple GP model is only acceptable for short-term forecasting, just
like the ARIMA model that is discussed earlier in Section 1.4.4. For forecasting to higher horizons,
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Figure 2.6: The result demonstrates that the forecasts only fairly accurate up to the tenth horizon, after that the forecasts start
to converge to the mean of the GP which is zero

a better forecasting method is needed to utilise GP as a long-term time series forecasting technique.
In Section 1.4.5, two approaches are discussed, first is the autoregressive approach and second is
the structure modelling approach. The first approach involves the composition of a complex kernel
from several base kernels through addition and multiplication. The second approach engineers the
time series into a multi-dimensional input where those inputs are the autoregressive values of the time
series. The next two chapters will discuss each of these techniques in details.



3
Structure Modelling

Chapter 2 has briefly outlined the theory behind Gaussian processes (GP) and how the GP can be
used for regression. The last section of Chapter 2 indicates that a simple GP regression model with
a single RBF kernel is not sufficient for long-term time series forecasting problem. The reason is the
locality property of the RBF kernel causes the forecasting model to suffer the same mean convergence
problem of the ARIMA model.

The same regression-in-time setting from Section 2.5 is employed for this approach. To enhance the
model, a more complex covariance function �̂�(𝑡, 𝑡′) is utilised

𝐱፭ = 𝑡
𝑓(𝑡) ∼ 𝒢𝒫(0, �̂�(𝑡, 𝑡′))

where the covariance function �̂�(𝑡, 𝑡′) is a combination of kernels by adding and multiplying them to-
gether. For example, the covariance function could have the form of

�̂�(𝑡, 𝑡′) = 𝑘ኻ(𝑡, 𝑡′) + 𝑘ኼ(𝑡, 𝑡′) × 𝑘ኽ(𝑡, 𝑡′) + … (3.1)

where 𝑘።(𝑡, 𝑡′), 𝑖 = 1, 2, … is either a radial basis function (RBF), linear, and periodic covariance function
which have been discussed in Section 2.3. These three kernels are the base kernels that make up
our complex kernel �̂�. In this report, these kernels are sometimes abbreviated as RBF, Lin, and Per
kernel, respectively.

The idea behind this complex kernel composition is that each covariance function is responsible for
modelling a certain structure or pattern that exists in the time series. Hyndman and Athanasopoulos
state that the key to a successful forecast is to model and extrapolate the underlying pattern that exists
in the past data and ignore the random fluctuation that occurs [28]. By recovering those core structures
from our noisy time series observations, we can extrapolate those patterns far ahead into the future to
make a long-term forecast.

So the question now is what patterns that we should be interested in. The additive model states that a
time series can be assembled from trend, season, and residual components through addition

𝑦፭ = 𝑡፭ + 𝑠፭ + 𝑒፭ (3.2)

with 𝑡፭, 𝑠፭, and 𝑒፭ denote the trend, season, and residual components respectively. A time series
contains a trend when it exhibits a downward or upward movement over time. The trend does not have
to be linear; it can be quadratic or another non-linear trend. A seasonal pattern is a repeating wave-like

25
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pattern, where the frequency of the oscillation is exact. The residual is the component of the time series
that cannot be explained by the trend and season.

A Gaussian process regression is an excellent choice to implement the additive model because we can
model the trend and season using the covariance function. A linear trend can be modelled exactly with
the linear kernel while the season can be modelled with the periodic kernel. In this case, a time series
with a linear trend and a seasonal pattern can be modelled with a GP regression using the following
kernels

�̂�(𝑡, 𝑡′) = 𝑘Lin(𝑡, 𝑡′) + 𝑘Per(𝑡, 𝑡′) (3.3)

The above example is very basic, and we can do a more elaborate modelling by taking advantage of a
more sophisticated combination of kernels to model various kind of patterns. By multiplying two linear
covariance functions, for example, we canmodel a quadratic trend. If we have a seasonal pattern which
does not have an exact repetition, then adding an RBF kernel should model this pattern sufficiently.
The covariance function of the GP regression grows into

�̂�(𝑡, 𝑡′) = 𝑘Lin(𝑡, 𝑡′) × 𝑘Lin(𝑡, 𝑡′) + 𝑘Per(𝑡, 𝑡′) + 𝑘RBF(𝑡, 𝑡′) (3.4)

As we will see in Section 3.1, the base kernels can be added and multiplied to model a complex pattern
of time series, and the possible combinations are limitless as we can keep adding and multiplying the
kernels. This idea drives the first proposed approach for long-term time series forecasting, which is
called the structure modelling. The idea of combining covariance functions to model complex struc-
tures in a time series is suggested by Rasmussen and Williams [44, p.118]. They do it by visually
inspecting the time series, then model the kernel by hand based on the pattern that they find. Clearly,
the problem with their approach is that the procedure is tedious which causes Duvenaud et al. to pro-
pose an automated mechanism to search the best combination of kernels [16]. The next two sections
will discuss two main components that are central to the structure modelling approach. One, what kind
of kernel combinations are possible to model various structures that exist in a time series. Two, how
can we automate the kernel modelling without having to do it manually.

3.1. Expressing Structure Through Kernels

local variation

RBF (short λ)

long-term variation

RBF (long λ)

periodic

Periodic

linear trend

Linear

Figure 3.1: How the RBF, periodic, and linear kernel model several basic structures of time series. These three core covariance
functions serve as a building block of a more complex kernel
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Earlier in this chapter, it was mentioned that the RBF, periodic, and linear kernel are used as the base
kernels. The rational quadratic kernel is not used as one of the base kernels because it can be regarded
as a combination of multiple RBF kernels, hence redundant. Figure 3.1 shows how RBF, periodic, and
linear kernels can model several basic structures of time series. An RBF kernel with a short lengthscale
is capable of modelling a short-lived variation while an RBF with long lengthscale is suitable for longer-
term variation. A periodic and a linear kernel have a straightforward effect, with the former models a
periodic structure with an exact frequency and the latter models a linear trend.

The base covariance functions from Figure 3.1 are useful on their own, but as Duvenaud et al. show in
their research, we could model a more detailed structure of time series by combining several kernels
together through addition and multiplication [16]. Combining covariance functions can be understood
intuitively, as addition and multiplication create a distinct effect. In the addition process, the character-
istic of two added kernels is retained, and both characteristics are strongly apparent in the combined
structure. In other words, the combined structure shows an independent work of each base kernel. In
the multiplication process, each base kernel characteristic is fused instead of working independently.
Unlike additive, the two base kernels merge their traits instead of showing off their strong influence on
the combined effect.
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Figure 3.2: Combined kernel through addition and multiplication creates different structures. First row 1: additive. Second row:
multiplicative.

Figure 3.2 displays how several different structures can be modelled by combining two base kernels
through multiplication and addition. Notice the difference between the effect of addition (row 1) and
multiplication (row 2), where the former gives an independent effect while the latter gives a fused
effect of the base kernel structure. Let us consider the first column of Figure 3.2, which shows the
difference between adding and multiplying a linear and periodic kernel. On the one hand, the Lin+Per
kernel exhibits both trend and periodic structures, which in effect creates a periodic structure which is
increasing or decreasing. We could see that the linear trend and the periodic are evident and working
independently. The linear does not affect the periodicity and vice versa. On the other hand, the Lin×Per
fuses an increasing or decreasing effect to a periodic structure, which creates a growing amplitude. It
can be seen from the figure that the periodic effect is affected by the linear growth of the linear kernel,
and thus we have a periodic signal which amplitude is growing.

With many possible combinations of kernels, we can express the different complex structure of time
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Figure 3.3: Decomposition of the COᎴ data reveals two dominant structures: a non-linear increasing trend and periodic with
varying amplitude. The bottom row is the residual, which is much smaller in value in comparison with the other signal.

series. If we go back to our COኼ dataset that has been introduced in Section 2.5, we can manually
design a complex kernel based on our inspection of the underlying structure that is illustrated in Fig-
ure 3.3. We see that the additive decomposition of the COኼ time series consists of an increasing trend,
varying-amplitude periodic signal, and random variation as residual. Based on this decomposition, we
could model the kernel as follows

RBF × Lin⎵⎵⎵⎵⎵⎵⎵⎵
increasing trend

+ RBF × Per⎵⎵⎵⎵⎵⎵⎵⎵
varying-amplitude periodic

+ RBF⎵
residual

Designing kernel by hand might work if you only have a handful of time series to work on. But if you
have several datasets or if you do an online forecasting where the data are updated gradually over
time, then the manual method will be tedious and will not scale so well. It will be more fitting if there is
a technique to search for all combination of kernel efficiently without having to enumerate all possible
combinations in the search space. This search method will be the main discussion point of the next
section.

3.2. Searching for the Optimum Kernel Combination
Automating the kernel composition is equal to a search problem. We want to get the best kernel
combination out of all possible combinations by some metrics. Now the first question that we want to
answer is how large is the search space of possible kernels. One way to build the space of possible
covariance functions combinations is to devise a search tree. Figure 3.4 shows how the kernel space
is represented as a tree structure.

3.2.1. Building the Search Tree
We start with the base kernel for the top level structure of the tree, which is the RBF, Per, and Lin
kernel. Then for the second level of the tree, we start adding or multiplying the base kernel with another
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RBF Per Lin
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Figure 3.4: The kernel search space which is represented by a tree structure

base kernel to create a kernel combination consists of two kernels. So, from the Per parent, we have
Per+RBF,Per+Per,Per+Lin,Per×RBF,Per×Per,Per×Lin branches. Similar branches are found
for the RBF and Lin kernel as parents. The process is followed by adding or multiplying a base kernel
to the already established kernel combinations from the previous level. From the RBF + RBF branch
for example, we find branches of RBF+ RBF+ RBF, RBF+ RBF+ Per and so on.

In general, there will be 𝑛×(2𝑛)፝ዅኻ number of nodes, where 𝑛 is the number of base kernel and 𝑑 is the
maximum level or depth of the tree. By this calculation, a three-level, four-level, and five-level tree will
have 108, 648, and 3888 number of nodes. We can see that the number of nodes grows exponentially
with the number of search level. The level or depth of the tree depends on the complexity of the time
series.

Each node of the tree represents one possible kernel combination. Alternatively, a node in the search
tree corresponds to a singlemodel𝑀. In this case, our problem of finding the best kernel combination is
equal to amodel selection problem, and that is finding the best𝑀 from a set of modelsℳ = {𝑀ኻ, … ,𝑀፤}.
To properly search the tree, three essential elements must be considered; those are the search strat-
egy, the search metric, and the stopping criterion. Search strategy defines method or algorithm to
select the nodes of the tree that qualify as the candidate model. In other words, the search strategy
determines the element of the model setℳ. Search metric is needed to quantitatively evaluate every
model 𝑀 and select the best one in the set of modelsℳ. The stopping criterion decides whether the
search should continue to next search level or stop.

3.2.2. Search Strategy
To search for the candidate model, we consider three search strategies: the exhaustive, random, and
greedy search strategy. The exhaustive search finds all nodes of the search tree as a candidate model.
As a consequence, the size ofℳ can become enormous, especially when the tree level is deep. If we
train a GP regression in every evaluation of the model, then the search will be very expensive. As it
was mentioned in Section 2.4, training a GP regression requires an 𝒪(𝑛ኽ) computing complexity, and
thus the model selection will be costly for a large tree. A better strategy is indeed required.
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Figure 3.5: A diagram depicting the greedy search tree. The greedy search selects a local optimum kernel in every level, which
is denoted by the blue rectangle. All other non-local optimum branches are pruned.

As the complete opposite of the exhaustive search, we have the random search strategy. Instead of
enumerating all the nodes in the tree, this method samples 𝑛 nodes randomly, so we are given only 𝑛
models that are needed to be evaluated. Clearly, this approach does not have any optimality guarantee.
As the search depth increases, the reliability of this solution will significantly decrease, since the size
of ℳ increases, thus the probability of getting the optimum model from the model set, if any, will be
much lower.

We have discussed two different approaches for searching, those are the exhaustive search and the
random search, where the exhaustive search is expensive to compute while the random search is
unreliable. It is more sensible if we aim to find a middle ground over these two contradictory strategies.
This approach should explore a large number of combinations with a reasonable computing resource,
even if not all nodes are explored. This proposal becomes the motivation of the greedy search strategy,
which is proposed by Duvenaud et al. [16].

The idea of greedy search is straightforward: it does not search for everything. Instead, it finds a
sensible heuristic to select some candidate models. This approach is suboptimal because there is no
guarantee that the chosen candidates will lead to the optimum solution. In the feature selection problem,
for example, we might be familiar with the forward search heuristic. The forward search greedily adds
a single feature at a time to the feature vector, then evaluates according to an evaluation metric and
whichever feature gives the best result will be kept in the feature vector. This similar concept is adopted
to the kernel search problem.

The method starts with evaluating a single kernel out of all base kernels. The base kernel that returns
the best score will be chosen. In the next step, the method starts adding and multiplying another base
kernel to the previously selected kernel only. Notice the important difference with the exhaustive search
that was discussed before. The greedy search evaluates local optimum choice in every iteration. In
the search tree context, the greedy search selects only a single branch to continue the search iteration
and disregards every other branch. This heuristic effectively reduces the number of candidates to
evaluate as opposed to the exhaustive search, hence reduces the needed computation time. The
number of candidates from a greedy search is now 𝑛× (2𝑛) instead of 𝑛× (2𝑛)፝ዅኻ from an exhaustive
search.
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Figure 3.5 shows how the search tree of greedy search is modified from the exhaustive search. Here,
it can be seen that the greedy search selects a local optimum node for every iteration, which is denoted
by blue rectangles. All non-local optimum branches are pruned and will be ignored for the subsequence
iterations. This mechanism makes the greedy search much more efficient than the exhaustive search.
One drawback of the greedy search, which also applies to other suboptimal heuristics, is that there is
no guarantee that the search will give rise to the optimum result because it might be that the optimum
solution lies within the pruned branches. Even so, the computational complexity of the greedy technique
is much lower than the exhaustive search. Because of that, the trade-off could be worth it, especially
considering the cubic complexity of training a Gaussian Process model.

3.2.3. Search Metric
Model 𝑀። is chosen over 𝑀፣ if 𝑀። is better than 𝑀፣ according to a search metric, or 𝑔(𝑀።) > 𝑔(𝑀፣),
where 𝑔 is a search metric function. In this section, two search metrics are discussed, the Bayesian
information criterion (BIC) and cross-validation.

Bayesian Information Criterion

A Bayesian solution to model selection is to compute the posterior probability of a model given our
training data

𝑔(𝑀።) = 𝑝(𝑀።|𝒟) (3.5)

where 𝒟 = (𝐗, 𝐲). We might want to approximate the 𝑝(𝑀።|𝒟) with the marginal likelihood that can be
calculated efficiently using Equation 2.27 from Section 2.4, but it is not recommended to do so. The
reason is that themarginal likelihood favours a complexmodel than a simpler one. A detailed discussion
of this is explained in Appendix B Section B.2. The following example supports this statement. A greedy
search is run on the 2-kernel dataset from Section 5.2. This dataset is a random function generated
from a Gaussian process with a known combination of two kernels, RBF + Per. Figure 3.6a displays
the negative log-marginal likelihood values. We can clearly see that the log-marginal likelihood favours
a model with four kernel combinations even though the true generating Gaussian process uses two
kernels.

An asymptotic approximation to 𝑝(𝑀።|𝒟) is the Bayesian information criterion (BIC) [47]. The BIC is
given by

BIC = −2LL+𝑚 log 𝑛 (3.6)

The LL is the log-marginal likelihood of the model parameter, 𝑚 is the complexity controlling number,
and 𝑛 is the number of data points. In our problem, 𝑚 is equal to the number of parameters that
the covariance function �̂� has. The lower the BIC, the better the model is. The right-hand term can be
understood as a penalty term to the log-marginal likelihood for preferring a complex model. Figure 3.6b
shows that the BIC is capable of selecting the true number of the kernel (2) while it penalises the model
with 3 and 4 kernels. Duvenaud et al. suggest using this criterion due to its simplicity [16]. Since training
a GP model corresponds to maximising the marginal likelihood of the model parameter which is the
parameter of the covariance function, computing a BIC is simply done by adding the right-hand term of
the Equation 3.6 with the already calculated maximum likelihood from the training step (Section 2.4).
Moreover, the benefit of using the BIC search metric is that all training data can be utilised for model
selection. This is the opposite of the cross-validation metric, which will be discussed later, where a
portion of the training data cannot be used.

Behind its simplicity, BIC comes with several attributes that deserve some attentions. BIC is an asymp-
totic approximation to the Bayesian posterior 𝑝(𝑀።|𝒟). This posterior computes the plausibility of the
model 𝑀። given the data at hand. By computing this posterior, we are interested in finding the true
generative model of the data. The model 𝑀 from the set ℳ with the highest posterior corresponds
to the model that best approximate the true generative model. Now the problem with this approach is
two-fold. First, the asymptotic assumption of BIC might be too strict for our problem as we would need a
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large sample 𝑛 ≫ 𝑚. Second, having a sensible generative model does not automatically translate to a
good predictive model. It can be the case that the model is wrong yet can predict decently. Wasserman
[54] and also Neath and Cavenaugh [37] recommend the BIC for an explanation problem, for example,
to analyse prominent features that affect the data. Since this research is focused on forecasting, it is
better to shift the focus to find the best predictive instead of a generative model. Because of this, we
propose a cross-validation search metric, which will be discussed next.
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Figure 3.6: A comparison between the log-likelihood and BIC as search metric. A greedy search is performed on a dataset
which is generated by a Gaussian process with two covariance functions. The graph displays the score of the best model in
each search depth where the lower the value, the better. It is clear that BIC penalises the model with kernel more than two.

Cross-Validation

(a) 1-step-ahead cross validation (b) 3-step-ahead cross validation

Figure 3.7: The cross-validation scheme. Here, the data training data is split into five folds. Blue dots denote the data that is
used to train the model in each fold. The model is then evaluated on the test point indicated by the red dot. The evaluations are
averaged over the number of the folds, and this score is utilised for model comparison. The grey dots signify the portion of the
data that is not employed by the cross-validation.

We turn to the pragmatic approach of cross-validation
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𝑔(𝑀።) =
1
𝑘

፤

∑
።
𝑒።(𝑀።) (3.7)

where the model score is the average of forecasting error computed with the error function 𝑒 across 𝑘
folds. Some error measurements are discussed in Section 5.1.2. The training data is split into several
folds, and for each fold, a training and test set is made. The model is trained on a training set of each
fold, and then the predictive accuracy is evaluated on the test set of the fold.

The fold structure is different from the standard k-fold cross-validation that is commonly found in ma-
chine learning evaluation. Cross-validation in time series forecasting should be treated differently due
to serial dependencies between observations [2]. Bergmeir and Benitez recommend several folds for
time series embedding scenarios [5]. We settle for a hold-out-sample scheme, which is shown in Fig-
ure 3.7. In the example, we split the data into five folds. Every blue dots in the fold are the data that
is used to train the model. The red dot signifies the test point for evaluating the model. The computed
performance is averaged by the number of the folds. This number is used to compare the predictive
performance of the model 𝑀።. The grey dots are points that are not used for training the model. Al-
though simple, this scheme has a computational advantage. The training set in each fold differs only
by the addition of a new data point at the end and the subtraction of a single data point at the start
of the training set. We do not have to recompute from scratch the Cholesky decomposition for every
fold. What we need is to recycle the Cholesky factor matrix from subsequent fold through the Cholesky
factor update and downdate operation. More detail about this procedure can be found in Osborne et
al. [40]. The computation burden of the first fold is 𝒪(𝑛ኽ) and 𝒪(𝑛ኼ) for the rest of the fold.
There are two benefits of using the cross-validation as opposed to the BIC. One, it forces the model
selection to focus on the forecasting performance. Furthermore, the cross-validation gives the model
the ability to consider the ’urgency’ between horizons. As it is shown in Figure 3.7, we have different
cross-validation settings for different horizons. Because of that, the model selection can choose a
separate model for independent forecasting horizon. As an illustration, a model for a 1-step-ahead
forecast should be different from a model for 20-step-ahead. The former should model wiggles and
short-term variation while the latter should focus on modelling the long-term interaction. The BIC does
not provide the mechanism to embed the horizon information.

Just like with any cross-validation, the downside of using a cross-validation metric is that it is more
expensive, even with the computation shortcut that is given previously, to compute than the BIC be-
cause we have to train the model 𝑘 times. Moreover, we have to perform separate cross-validation for
the different horizon ℎ. This becomes a problem if we want to forecast for more than one horizon. In
addition to that, another drawback of using the cross-validation metric is that portion of the training data
cannot be used for training the model because of the fold structure. This can be seen in Figure 3.7,
where the data in grey denotes the portion that cannot be used for training.

3.2.4. Stopping Criterion

Table 3.1: The strength of the model against the model with higher BIC values [31]

ΔBIC Strength against current BIC

0 - 2 Not worth more than a bare mention
2 - 6 Positive
6 - 10 Strong
>10 Very Strong

We implement a simple stopping criterion based on the difference between the best score of the current
search level with the best score of the previous search level. Given the best search metric of the current
search level 𝑙, 𝑔፥, and the best search metric of the last search level, 𝑔፥ዅኻ, the search will stop if the
improvement of the model is below a certain threshold, 𝑔፥ − 𝑔፥ዅኻ < 𝜏. The threshold depends on the
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search metric that is used. For BIC, we can refer to the Table 3.1 that is proposed by Kass and Raftery
[31, p.777]. Two model with ΔBIC between 0 and 2 are statistically not different, and thus we can use
the values between 0 and 2 as our threshold for the stopping criterion. As for the cross-validation, there
is no definitive rule that we can utilise for the threshold, so it should be determined by the user.

3.3. Forecasting the CO2 Data: Structure Modelling Approach
We apply the structure modelling approach to the COኼ data that was found in Section 2.5. The final
covariance function that is returned by the greedy search with BIC as search metric is as follows

�̂�(𝑡, 𝑡′) = 𝑘RBF(𝑡, 𝑡′) × 𝑘Lin(𝑡, 𝑡′) + 𝑘RBF(𝑡, 𝑡′) × 𝑘Per(𝑡, 𝑡′) + 𝑘RBF(𝑡, 𝑡′) (3.8)

The result is displayed in Figure 3.8. We can see that the long-term forecasts are much better than the
simple model found in Section 2.5. The forecast can follow the general trend and periodic structure of
the dataset. The forecasts become inaccurate as the horizons go further, which is expected because
as the horizon goes far, the change in the patterns become difficult to forecast. Nevertheless, the model
still does a good forecasting job up to ℎ = 35. The performance of the structure modelling approach
will be thoroughly tested in Chapter 5.

Figure 3.8: The forecasting result on the COᎴ dataset using the structure modelling approach. The long-term forecasts are much
better than the simple model found in Section 2.5



4
Non-Linear Autoregressive with

Gaussian Processes

We have seen how the structure modelling approach from the last chapter improves the simple GP
model that is found in Section 2.5 by compositing a complex covariance function. This model provides
a satisfactory forecasting result, as it has already been shown in Section 3.3. Still, the delicatemodelling
capability of the structuremodelling approach comes at a high cost. In Section 3.2 it has been discussed
that the structure modelling must evaluate a lot of candidate covariance functions which consumes
a large computing resource. Due to this reason, an alternative GP regression model is proposed.
This time, the complexity of the model is encoded in the feature, while the covariance function is kept
simple. This alternative model is named the non-linear autoregressive (NAR) with Gaussian processes
model.

A non-linear autoregressive (NAR) with Gaussian processes model is a GP regression model in which
the inputs are its past observations

𝐱፭ = [𝑦፭ዅኻ, … , 𝑦፭ዅ፩]ፓ

𝑓(𝐱፭) ∼ 𝒢𝒫(0, �̂�(𝐱፭ , 𝐱፭′))

Since a GP can model both a linear and non-linear function, Frigola refers this model as a non-linear
AR process [18]. For naming purposes and to avoid confusion with similar NAR models with other
regression techniques, a NAR with GP regression will be named as the GP-NAR. This model is rel-
atively straightforward. Once we have transformed a time series into an autoregressive representa-
tion through a procedure called the time series embedding, we can use a GP regression like a stan-
dard multivariate regression. A one-step-ahead forecast can be computed using Equation 2.19 where
𝐱∗ = [𝑦ፓዅ፩, 𝑦ፓዅ፩ዄኻ, … , 𝑦ፓ]ፓ.

This model has three important design decisions. Firstly, how the multiple-step-ahead forecast is done.
The two-step-ahead forecast cannot be computed directly because we need to know the actual value
of the 𝑦ፓዄኻ as input. A similar situation happens for a ℎ = 3 forecast since we need to know 𝑦ፓዄኻ and
𝑦ፓዄኼ and this will happen for all ℎ > 1. Strategies to handle a ℎ-step-ahead forecast for ℎ > 1 will be
discussed in Section 4.2. Secondly, how to choose the appropriate covariance function and this will
be discussed in Section 4.3. Lastly, how the proper order of the autoregressive 𝑝 is selected. This is
important because when 𝑝 is too small, the forecasting accuracy will be undermined because of the
lack of predictive information. In contrast, when 𝑝 is too large, the model will become too complicated.
Section 4.4 will discuss methods to determine the correct order 𝑝.

35
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4.1. Time Series Embedding
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Figure 4.1: Time series embedding of an ፀፑ(ኾ) process with a two-step-ahead forecast

Transforming a time series into a 𝑝-th order of autoregressive representation is often referred as em-
bedding. Figure 4.1 shows how the embedding is done. A window of length 𝑝 is shifted on the time
series, and values that fall within the window are used as a row of the input matrix 𝐗. In Figure 4.1, it
can be seen that the coloured rectangle represents the window of past values. In this example, 𝑝 = 4,
so the window covers four-time steps. The shaded circle represents the output value. Our case aims
to forecast two-step-ahead. Hence there are two time step jumps for each of the output value. The last
window from the time series becomes the test set.

In general, the training inputs and outputs of a time series embedding with 𝑝-lagged value and ℎ-step-
ahead forecast will have a dimension of (𝑇 − ℎ − 𝑝 + 1) × 𝑝 and (𝑇 − ℎ − 𝑝 + 1) × 1, respectively and
are given by

𝐗 =
⎡
⎢
⎢
⎢
⎣

𝑦ኻ 𝑦ኼ ⋯ 𝑦፩
𝑦ኼ 𝑦ኽ ⋯ 𝑦፩ዄኻ
⋮ ⋮ ⋱ ⋮

𝑦ፓዅ፡ዅ፩ዄኻ 𝑦ፓዅ፡ዅ፩ዄኼ ⋯ 𝑦ፓዅ፡

⎤
⎥
⎥
⎥
⎦

𝐲 =
⎡
⎢
⎢
⎢
⎣

𝑦፩ዄ፡
𝑦(፩ዄ፡)ዄኻ

⋮
𝑦ፓ

⎤
⎥
⎥
⎥
⎦

(4.1)

while the test input and output are

𝐗∗ = [𝑦ፓዅ፩ዄኻ 𝑦ፓዅ፩ዄኼ ⋯ 𝑦ፓ] 𝐲∗ = [𝑦ፓዄ፡] (4.2)

4.2. Forecasting Strategies
As it was mentioned earlier, a two-step-ahead forecast or more cannot be computed directly using this
GP-NAR approach. To calculate 𝑦ፓዄኼ, we need the input from 𝑦ፓዄኻ which is not available since it is in
the future. A similar situation happens for all forecasts where ℎ > 1. In this NAR setting, there are two
strategies to perform a multiple-step-ahead forecasting, the recursive and direct.
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Figure 4.2: Illustrations that show the difference between the recursive and direct strategy. The former trains a single one-step-
ahead model while the latter trains separate model for every ፡-step-ahead forecast.

Recursive approach trains a single one-step-ahead forecasting model to make a multiple-step-ahead
prediction. The illustration is shown in Figure 4.2a. First, we train a one-step-ahead forecasting model
and predict 𝑦ፓዄኻ

𝑦ፓዄኻ ∼ 𝒩(𝑦ፓዄኻ|𝜇ኻ, 𝜎ኼኻ) (4.3)

using Equation 2.19, where 𝐱∗ = [𝑦ፓዅ፩, 𝑦ፓዅ፩ዄኻ, … , 𝑦ፓ]ፓ. Then we compute a two-step-ahead forecast
using the similarly trained one-step-ahead model from the previous forecast

𝑦ፓዄኼ ∼ 𝒩(𝑦ፓዄኼ|𝜇ኼ, 𝜎ኼኼ) (4.4)

but now our test input is 𝐱∗ = [𝑦ፓዅ፩ዄኻ, 𝑦ፓዅ፩ዄኼ, … , 𝜇ኻ]ፓ. We use the mean value of 𝜇ኻ to estimate the
real value of the 𝑦ፓዄኻ. This calculation is repeated ℎ times to get the ℎ-step-ahead forecast.
On the one hand, the recursive strategy is simple, because it requires a single one-step-ahead model,
and takes advantage of the model to forecast repeatedly up to the horizon of interest. On the other
hand, this model suffers from error propagation, because the forecast value is computed from the
previously predicted value, not the actual one. As a consequence, if the ℎ − 1-step-ahead prediction
has a large error, it will be accumulated in the ℎ-step-ahead.
Another disadvantage of the recursive strategy is that the uncertainty does not get properly passed on
to further forecast horizon. Here, we only use the predictive posterior mean of previous forecasts and
disregards the variances completely. Consequently, every new forecast has the uncertainty of a new
one-step-ahead forecast. So, even a ℎ = 24 forecasts will have a small one-step-ahead uncertainty
even though logically a ℎ = 24 should have a much larger uncertainty than the ℎ = 1 forecast. Girard
et al. propose to include both the mean and variance of the predictive posterior from the previous
forecasts to calculate the current forecast [19]. They solved the problem of uncertainty propagation but
the downside of their method is that the predictive posterior integral becomes analytically intractable
thus an approximation is needed. Even so, their method still does not solve the problem of the error
propagation. Everything depends on the accuracy of the one-step-ahead forecast so if the model
forecast poorly, then the error for further forecasts gets inflated very quickly.
Direct strategy is the complete opposite of the recursive one. Here, instead of using a single one-step-
ahead repeatedly, we create different model for each ℎ-step-ahead forecast. Figure 4.2b shows the
illustration. This approach is generally more expensive than the recursive one, because we are required
to train different models for different forecasting horizons. But unlike the recursive, the direct strategy
does not suffer from error propagation, which becomes its favourable justification against the recursive
approach. The drawback of this method is that we have to assume that the forecast for every different
horizon is independent [4]. This of course is not true, because the forecast of �̂�ፓዄኻ most likely will
influence the forecast of �̂�ፓዄኼ. Nonetheless, it is reported that the direct strategy shows better empirical
time series forecasting performance with neural network [51] and also GP-NAR. Yan et al. perform an
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extensive experiment with 111 time series datasets to compare the performance of GP-NAR with the
recursive and direct strategy [56]. Their result suggests that direct strategy is significantly better than
the recursive approach, in term of forecasting performance for short to medium-term forecasts.

Choosing the forecasting strategy will ultimately depend on the forecasters. But, seeing the empirical
evidence that the direct strategy performs better due to no error propagation, the trade-off is worth it.
For this reason, the direct strategy will be chosen as the forecasting strategy for the GP-NAR.

4.3. Kernels
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Figure 4.3: An example of a 5-step-ahead forecasting problem which is solved using GP-NAR(10) with RBF covariance func-
tion. The test input vector is denoted by the orange line while the test output is the orange dot. Since there are many similar
autoregressive vectors on the training data (denoted in blue), the RBF kernel can pick up the similarity and forecast accurately.

Modelling a GP-NAR can be well approached by local kernels such as the RBF and RQ which have
been discussed in Section 2.3. Remember that the local kernels assign high similarities to the inputs
that are close. In the GP-NAR case, similar inputs are assigned to the similar autoregressive vectors.
Consequently, if there are autoregressive vectors found in the training set which are akin to the autore-
gressive vector of the test set, then the forecast can be made with high confidence. Figure 4.3 depicts
how the RBF kernel models a time series data. In the illustration, the task is 5-step-ahead forecast
with 𝑝 = 10. The test set input and output are denoted in orange. Since there are many similar autore-
gressive vectors on the training data (indicated in blue), the RBF kernel can recognise the similarity
and forecast accurately. In this example, the time series which exhibits a periodic-like pattern can be
picked up with a local covariance function such as the RBF. The key is that the training data must
contain many similar autoregressive patterns in order to make an accurate forecast.

Section 2.3 defines both the RBF and RQ kernel that are instrumental to the GP-NAR model. The
definition for both kernels is written for scalar input, while in GP-NAR, for autoregressive order 𝑝 > 1,
the input are vectors. The RBF and RQ kernels can be extended to vector input as follows
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𝑘RBF(𝐱, 𝐱ᖣ) = 𝜎ኼ exp (−
1
2(𝐱 − 𝐱

ᖣ)ፓ𝐌(𝐱 − 𝐱ᖣ)) (4.5)

𝑘RQ(𝐱, 𝐱ᖣ) = 𝜎ኼ exp (1 +
1
2𝛼(𝐱 − 𝐱

ᖣ)ፓ𝐌(𝐱 − 𝐱ᖣ))
ዅᎎ

(4.6)

The lengthscale parameter 𝜆 is contained within the matrix 𝐌, and there are several ways to specify
the matrix 𝐌, which is outlined below

𝐌 = {𝜆
ዅኼ𝐈 isotropic kernel
𝑑𝑖𝑎𝑔(𝜆ዅኼኻ , … , 𝜆ዅኼ፩ ) ARD kernel

(4.7)

The first way is the isotropic kernel where all elements of the vector will be assigned to the same length-
scale parameter. The second way is to assign different lengthscale parameters to each autoregressive
value where the lengthscales are the diagonal elements of the matrix 𝐌. This arrangement assigns
relevance weight to each element of the autoregressive vector. The most relevant element will be as-
signed the smallest lengthscale and vice versa. Due to this weighting mechanism, this approach is
commonly referred as the Automatic Relevance Determination (ARD). In ordinary multivariate regres-
sion, the ARD kernel can provide information of which feature contributes the most to the variation. In
the GP-NAR, the ARD kernel could be more beneficial than the isotropic kernel, because the features
are the autoregressive value of the time series. Through the ARD kernel, higher relevance can be
assigned to the first few autoregressive elements than the 𝑝-th one because the first few elements are
the most correlated with the current value.

4.4. Determining the Order of the Autoregressive Model

0 20 40 60 80 100
6

4

2

0

2

4

6

0 5 10 15 20 25 30 35 40 45 50
0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

Partial Autocorrelation

Figure 4.4: Top row: A plot of a random ፀፑ(ኾ) time series. Bottom row: A corresponding PACF plot for the ፀፑ(ኾ) time series.
The PACF shows significant autocorrelation values up to the fourth lag, and then the values become insignificant. The area
shaded in blue indicates 95% confidence interval. The PACF plot displays a strong indicator to use ፩ ዆ ኾ for GP-NAR.
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The last design decision to be made is how to choose the order of the autoregressive model (𝑝). Choos-
ing the right order is important. An order that is too small will undermine the accuracy of the GP-NAR. In
contrast, using an order that is too large order will add computation complexity while adding no real im-
provement to themodel. Choosing the order is a non-trivial matter because it is a problem dependent is-
sue. Different time series has different dynamics. Therefore, a different order is needed to model those
dynamics sufficiently. Although there are several kinds of research on GP-NAR [8, 10, 19, 23, 35, 56],
these works do not explicitly outline how they determine the order of the AR. Because of that, this
section will discuss methods of choosing the right AR order.
One way to select the order is through a model selection procedure, similar to how the structure mod-
elling approach determines the best kernel (Section 3.2). The algorithm starts with 𝑝 = 1, repeatedly
adds the order by one, and keeps progressing until a little change in the score is shown. The similar
stepwise approach has been adopted by Hyndman and Khandakar in their automatic model selection
approach for ARIMAmodel [29]. They add the order of the AR andMA of an ARIMAmodel in a stepwise
manner while evaluating the fit of the model. The discussion on Section 3.2.3 recommends that prag-
matic cross-validation approach is used as search metric instead of BIC, therefore a cross-validation
metric will also be used for GP-NAR.
The approach as mentioned earlier should be working well for most cases since it empirically evaluates
the order from the training data. However, checking different order in a stepwise manner might be too
exhaustive to perform. As an alternative, there is a more systematic way. We could consult to the
autocorrelation function (ACF) plot and the partial autocorrelation function (PACF) plot to determine
the order of the autoregressive model [9]. This method is commonly used in time series analysis to
ascertain the order of an AR and MA in the ARIMA model.
In practice, determining the order of the AR is to find 𝑝 significant lags before the value becomes in-
significant in the PACF plot. Figure 4.4 shows an example of a PACF plot of a random 𝐴𝑅(4) process.
The PACF plot shows significant autocorrelation values up to the fourth lags, after that the value start
to decay to zero and become insignificant. This sign tells us that it is recommended to choose 𝑝 = 4.
Please note that the first autocorrelation value in the plot is the correlation with itself and that explains
why it always has a value of one. The PACF plot is a useful diagnostic tool to find the optimum au-
toregressive order of the GP-NAR. But, mind two drawbacks of PACF plot before using it. First, the
PACF assumes that the time series is stationary. Therefore, any non-stationarities such as trend and
seasonal that exist within the time series must be corrected prior using. Second, the autocorrelation on
the PACF plot measures the linear correlation. Therefore, it might be the case that the PACF returns
no significant lag although there is a strong non-linear correlation in the time series.
It is recommended to combine both the empirical evaluation and PACF diagnostic to determine the
order of the autoregressive. On the one hand, using a PACF plot alone is limited to stationary and linear
time series. On the contrary, using a model selection approach is extensive, since we are enumerating
the order in a stepwise manner. During the experiment of this research, it is found that combining
both approaches works well. The procedure starts by identifying the order from the PACF plot. Then,
the optimal lag as a result of the PACF plot reading will be used as a starting point for the empirical
evaluation. From this research experience, the optimum empirical order is usually found within 1 up to
5 lags from the PACF-optimum lag.

4.5. Forecasting the CO2 Data: GP-NAR Approach
Similar to Chapter 3, we demonstrate the long-term forecasting capability of the GP-NAR on the COኼ
dataset. The model uses an isotropic RBF kernel with 𝑝 = 10. The forecasting result is depicted in
Figure 4.5. From the result, we can see that the long-term forecasting performance of the GP-NAR
is worse than the structure modelling, especially for longer horizons. We will report the long-term
forecasting performance on various datasets in Chapter 5 and from there we shall see whether the
finding that is found in this section will hold in general.
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Figure 4.5: Long-term forecasting result on the COᎴ dataset using the GP-NAR approach. The forecasting performance is worse
than the structure modelling, especially for longer horizons.





5
Experiment

5.1. Setup
5.1.1. Window

Figure 5.1: The test on a time series dataset is run on several windows to provide a fair evaluation [25]. This diagram illustrates
how the windowed test is performed.

To prevent a ’lucky’ prediction, where a prediction looks better at one point in the future by coincidence,
all the test will be run over several windows. Here, a window of size 𝑁 is shifted on the time series
data. Figure 5.1 shows the schematic of a window-based test. In the example, we run a 48-window
test. In the first window, we use time series from 𝑡 = 1 up to 𝑡 = 17520 for training our model, then
forecast the value on 𝑡 = 17521. For the second window, we shift the window by one time unit, so now
we train a model with a time series from 𝑡 = 2 up to 𝑡 = 17521 and forecast 𝑡 = 17522. The amount of
shift, which is called the stride, does not have to be one. With this testing scheme, we make sure that
our tested model forecast consistently.

By default, all of our tests will use the windowing system. This type of evaluation is widespread in wind
energy forecasting literature and dissimilar from the kind of testing that we often find in econometric
research [9, 28, 48]. In econometric, the typical evaluation setting is using a single window, but the
forecast is run on multiple horizons. Hence, we would have many forecasts across different horizons.
In contrast, the window-based test is undertaken at multiple windows but done on a single horizon.
This research will perform the latter type of test. Evaluating in multiple windows is more fitting since we
can see the average forecasting performance on different horizons.

43
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5.1.2. Evaluation Metric
Given a time series observation at time 𝑡, 𝑦፭, and the corresponding forecast �̂�፭, the forecast error is
given by 𝑒፭ = 𝑦፭ − �̂�፭. In our GP model, we have a distribution of outputs, so �̂�፭ is equal to the mean of
the distribution. When we evaluate multiple forecasts results, we would have a set of forecast errors,
{𝑒፭}. Two methods are commonly used to evaluate the set, and those are the mean squared error
(MSE) and the mean absolute error (MAE). MSE computes the mean of the squared error over the
error set, while the MAE calculates the mean of the absolute error

MSE = 1
𝑛

፧

∑
።዆ኻ
(𝑦። − �̂�።)ኼ (5.1)

MAE = 1
𝑛

፧

∑
።዆ኻ
|𝑦። − �̂�።| (5.2)

This set of errors signifies a different kind of errors, where these can be forecasting errors over different
horizons, forecasting errors over a single time series on multiple windows, or forecasting errors over
different time series. Both MSE and MAE have the benefit of removing the difference between negative
and positive errors. One difference between MSE and MAE is that the MSE is more reactive to extreme
errors because of the square operation. Large error gets amplified while small error gets contracted.
MAE does not have that effect as all errors have equal significance.
One small problem when using either MSE or MAE is that both are scale dependent. Therefore, they
cannot be used to compare the performance between distinct time series. For that reason, the percent-
age error 𝑝፭ is developed, where 𝑝፭ = 100𝑒፭/𝑦፭. Again, it is common to evaluate multiple percentage
errors. Mean absolute percentage error (MAPE) is one metric to evaluate a set of percentage errors
{𝑝፭} and is given by

MAPE = 100
𝑛

፧

∑
።዆ኻ
|𝑦። − �̂�።𝑦።

| (5.3)

where multiple error values are evaluated across different horizons, windows, or series. The problem
that comes with MAPE is zero division. When we have zero values in our data, the denominator of
MAPE becomes zero and causes a zero division error. In this experiment, all datasets contain no zero
value, so the utilisation of MAPE is justified.
Another frequently used error evaluation in time series forecasting is to calculate the improvement over
a baseline model [15, 30]. This method calculates the error (MAE for example) from both our proposed
model and a baseline model, and calculates the difference in error made by these two models. In
general, the improvement (I) can be computed as

I = 100EC∗ − EC
EC∗

(5.4)

where EC is the forecasting error made by our forecasting model while EC∗ is the error made by the
baseline model. The baseline method can be any forecasting method, although it is common to use
the persistence or naïve method as a baseline (Section 1.4.2). In this experiment, the MAE, MAPE,
and improvement evaluation score will be used to evaluate our forecasting performance, unless it is
mentioned otherwise.

5.1.3. Software
The software is published on the following link https://github.com/bagasabisena/mscthesis.
The Gaussian process regression is implemented using the GPy [21] framework with our own imple-
mentations for Chapter 3 and Chapter 4. This experiment uses Bayesian linear regression implemen-
tation from the scikit-learn library [41]. For ARIMA, we utilise the forecast package [29].

https://github.com/bagasabisena/mscthesis


5.2. Dataset 45

5.2. Dataset

0 20 40 60 80 100 120 140
0

1

2

3

4

5
2-kernel

0 20 40 60 80 100 120 140
0
5

10
15
20
25
30
35
40

4-kernel

Figure 5.2: Synthetic datasets, where the data are generated from a Gaussian Process with known prior. Top row: 2-kernel
dataset (RBF ዄ Per). Bottom row: 4-kernel dataset (Lin ዄ RBF ዄ Per × Lin)

Evaluation is done on two types of datasets. The first type is a synthetic time series, which is generated
from a known generative model. This time series is generated from a Gaussian process with a pre-
defined covariance function. In this research, two synthetic datasets are generated. One dataset is
generated from a Gaussian process with a RBF + Per kernel. The other one is generated from a Lin +
RBF + Per × Lin kernel. These datasets will be called the 2-kernel and 4-kernel dataset respectively.
Figure 5.2 shows the generated time series. Each dataset contains 150 data points.

In addition to the two synthetic datasets, other experiments are done on two real-world datasets. The
first dataset is the TU Delft wind speed dataset. The plot of the wind speed dataset is shown in Fig-
ure 5.3 top row. This dataset is collected from several weather stations in the Rotterdam area, The
Netherlands. The station captures a variety of weather variables, and one of them is the wind speed.
The stations sample the data every 5 minutes, and thus it gives a uniformly sampled discrete-time time
series data. The wind speed is chosen because of its non-stationarities, with many trends and periods
that are changing over time. The dataset is publicly available for download 1. For this experiment, the
data is upsampled into 1-hour sample, and values within the 1-hour period are aggregated by taking
the average. This operation is done to remove any noises that are generated by the sensors and might
obfuscate the underlying signal. The data is taken at 2015-12-09 10:00:00. The size of the training
data is equal to 60 days of past observations from the point the data is taken, which means we are
going to use data from 2015-10-10 10:00:00 until 2015-12-09 10:00:00 with 𝑇 = 1440.

The second real-world dataset is the electricity net generation measured in billions of kilowatt hours
(kWh) in the United States [28]. From now on, this dataset will be referred as the electricity dataset. The
observation is taken monthly from 1973 until 2010, where 𝑇 = 454. This dataset is chosen because it
has strong non-stationarities with yearly trend and seasonality patterns. The bottom row of Figure 5.3
shows the plot of the electricity dataset.

1http://weather.tudelft.nl/csv/
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Figure 5.3: Real-world datasets. Top row: wind speed dataset. Bottom row: electricity dataset.

5.3. Forecasting Model
Table 5.1: List of the forecasting models that are used in the experiment

Model Description

ARIMA Autoregressive integrated moving average methods
persistence 𝑦ፓዄ፡ = 𝑦ፓ for all ℎ
BLR Bayesian linear regression
RBF-iso GP-NAR with isotropic RBF kernel
RQ-iso GP-NAR with isotropic rational quadratic kernel
RBF-ard GP-NAR with automatic relevance determination RBF kernel
RQ-ard GP-NAR with automatic relevance determination rational quadratic kernel
greedy structure modelling using the greedy search strategy
exhaustive structure modelling using the exhaustive search strategy

Evaluation of the proposed GP-based methods is not complete without the comparison with other ex-
isting probabilistic techniques. In this experiment, we focus on the point forecasting performance. In
other words, we compare the mean of the distribution that is returned by each of the probabilistic mod-
els. There is four main probabilistic forecasting model that will be used for the experiment: Bayesian
linear regression (BLR), ARIMA, GP regression with the structure modelling approach, and GP-NAR.
The detail behind the BLR has been discussed in Section 2.1. Instead of using the time index as input,
The BLR in this experiment will utilise similar autoregressive structure as the GP-NAR

𝐱፭ = [𝑦፭ዅኻ, … , 𝑦፭ዅ፩]ፓ (5.5)

We are using the automatic ARIMA approach that is proposed by Hyndman and Khandakar [29]. The
traditional ARIMA requires the forecasters to choose the order of AR (𝑝), differencing (𝑑), and MA (𝑞)
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manually. This automatic method implements an automatic selection of those order via a step-wise
search algorithm. For structure modelling, the only required user parameter is the number of search
level, and the search level is set to 6 for all datasets. The last forecasting method is the GP-NAR. We
are using two kernels, the RBF and RQ kernels with both the isotropic and ARD setting. This gives
us 4 GP-NAR models in total. One important parameter that defines both the GP-NAR and Bayesian
linear regression is the order of the AR. In this experiment, the order is determined using the hybrid of
cross validation and PACF diagnostic method, as it was discussed in Section 4.4. Results of both the
GP-NAR and Bayesian linear regression are already trained using the optimum lag according to the
cross-validation. Table 5.1 lists all the forecasting models that are employed in the experiment, along
with their abbreviated model name.

5.4. Test 1: Search Strategy Evaluation for StructureModelling
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Figure 5.4: Plots of synthetic datasets corrupted by noise with varying level

This test assesses two aspects of the structure modelling approach, which are the search strategy and
the search metric. We compare the covariance function that is returned by our search strategy to the
true generating one. We utilise the 2-kernel and 4-kernel datasets, where the true generating process
is known. Ideally, these search strategies should be able to return the same generating covariance
function. These datasets will be corrupted by two different levels of noises. First, noise with 1/10 of
the variances of the signal will be added, such that the signal-to-noise ratio is equal to 10 (𝑆𝑁𝑅 = 10).
Second, the signal-to-noise ratio is equal to 1 (𝑆𝑁𝑅 = 1), hence the noise variance is equal to the
signal variance. Figure 5.4 depicts the plot of the noisy synthetic datasets.

Table 5.2 and Table 5.3 show how the optimum kernel are returned our kernel search. Table 5.2
reports the result for SNR = 10 synthetic dataset while Table 5.3 reports the result for SNR = 1
dataset. Both tables display the returned kernel for both the greedy and exhaustive strategy, using two
different search metric: the BIC and cross-validation (CV) search metric (Section 3.2). The BIC returns
the same kernel for all forecasting horizons and utilises all the training data while the CV does not, as
different forecasting horizons require training separate models. Because of that, we might see different
kernel outputs for different forecasting horizons for the cross-validation method.

When the noise level is low (SNR = 10), the dominant structure can be recovered by the search
with the BIC search metric although not the exact kernel is returned. For the 2-kernel dataset, the
dominant structure is a periodic with some noise. Both search algorithms return the ’locally periodic’
RBF×Per covariance function, which is close to what the true generating kernel RBF+Per. A similar
observation is found in the 4-kernel dataset. The most dominant covariance function from this dataset
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Table 5.2: The optimum kernel that is chosen by the greedy and exhaustive search strategy, under two different model selection
metric: BIC and cross-validation (CV). Here, the result for the SNR ዆ ኻኺ noise level is reported.

greedy (BIC) exhaustive (BIC)

True Kernel ℎ = 10 ℎ = 20 ℎ = 40 ℎ = 10 ℎ = 20 ℎ = 40

RBF + Per RBF × Per RBF × Per
Lin + RBF + Per × Lin Per × Lin + Lin × Lin Per × Lin + Lin × Lin

greedy (CV) exhaustive (CV)

True Kernel ℎ = 10 ℎ = 20 ℎ = 40 ℎ = 10 ℎ = 20 ℎ = 40

RBF + Per Per Per Per + Per Per Per + Per Per + Per
Lin + RBF + Per × Lin Lin × Lin Lin × Lin Lin × Lin Lin × Lin Lin × Lin

+ Lin × Lin
Lin × Lin
+ Per + Per

Table 5.3: The optimum kernel that is chosen by the greedy and exhaustive search strategy, under two different model selection
metric: BIC and cross-validation (CV). Here, the result for the SNR ዆ ኻ noise level is reported.

greedy (BIC) exhaustive (BIC)

True Kernel ℎ = 10 ℎ = 20 ℎ = 40 ℎ = 10 ℎ = 20 ℎ = 40

RBF + Per RBF RBF
Lin + RBF + Per × Lin Lin Lin

greedy (CV) exhaustive (CV)

True Kernel ℎ = 10 ℎ = 20 ℎ = 40 ℎ = 10 ℎ = 20 ℎ = 40

RBF + Per Per Per Per + Per Per Per + Per Per × Per
Lin + RBF + Per × Lin Lin × Lin Lin × Lin

+ Per
Lin × Per Lin × Lin

+ Per
Lin × Lin
+ Per

Lin × Lin
+ Per

is the Per × Lin, which creates a signal with growing amplitude. These kernels can be recovered by
both the greedy and exhaustive search. The rest of the kernel cannot be recovered since the signal is
insignificant compared with the dominant kernel Per×Lin. Figure 5.5 shows the residual of the 4-kernel
dataset after removing the Per×Lin part. It can be observed that the amplitude of this signal is subtle in
comparison with the actual signal. We can conclude that in the low noise setting, both the greedy and
exhaustive strategies can recover the dominant kernel when the BIC search metric is used. This finding
confirms the nature of BIC which is finding the best approximate to the true generating model.

For the noisy dataset (SNR = 1), it can be seen that both the greedy and exhaustive search with the
BIC search metric cannot recover the true generating kernel. This can be explained by the fact that the
noise hides the true signal that resides in the data. The diagram in Figure 5.6 shows the search path of
the greedy search for the 4-kernel dataset. The algorithm always chooses the Lin kernel and cannot
find the periodic pattern because of the noise. Adding Lin kernel does not actually mean anything since
the addition of linear kernel will result in another linear kernel, so the algorithm should have stopped
this. The result shows that both algorithms are incapable of recovering the generating kernel and even
running an exhaustive search will not help because the data is too noisy to begin with.

In contrast with the BIC, the cross-validation metric does not return a comparable kernel combination
as the true generating kernel for both the SNR = 10 and SNR = 1 datasets. This is expected, as the
cross-validation metric aims to find the model with the best predictive capability regardless of whether
the model is close to the true generating model. Because of that, we perform a test to directly compare
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Figure 5.5: The decomposition of the 4-kernel synthetic dataset, after removing the Per × Lin component. This result in a
residual component, which is insignificant

Lin Lin + Lin + LinLin + Lin Lin + Lin + Lin + Lin

Figure 5.6: How the greedy search progresses for a 4-depth search to find the best kernel of the 4-kernel dataset with SNR=1.
The search always chooses the linear kernel as the local optimum and cannot see the periodic pattern because the data is too
noisy.

the forecasting performance of the model selected by the BIC and cross-validation, using the greedy
search strategy. In this test, we forecast the synthetic dataset, using the same setting that is used in
Section 5.5. We forecast on the dataset without noise, unlike the previous test.

The result is reported in Table 5.4. From the table, it is clear that the model that is selected by the
BIC provides superior long-term forecasting across several horizons than the cross-validation. This
reason is that the cross-validation does not use all training data for forecasting. Consult to Figure 3.7
for better illustration. When we use a larger forecasting horizon, the portion of training data that is
unused becomes bigger. Besides that, the fraction of data that has to be given up is the data that are
closer to the present time. This drawback wastes the potential learning source, as the most recent data
should be the most relevant to the forecast.

Table 5.2 and Table 5.3 reveal that both greedy and exhaustive return the similar covariance function
for both the 2-kernel and 4-kernel datasets. The computation time that is used for searching is reported
in Table 5.5. Knowing that the greedy can recover the same kernel combinations with much less search
time, especially when the search level is deep, the greedy search strategy is highly recommended as the
search strategy. This observation also discourages the usage of another sophisticated searchmethods,
such as the genetic algorithm or even the exhaustive search, because the greedy heuristic can recover
the exactly same kernel on the fraction of the cost of the exhaustive search. By the end of this section,

Table 5.4: The forecasting performance of the 2-kernel and 4-kernel dataset without noise using the structure modelling approach
with greedy search strategy. The purpose of this test is to see the predictive performance of the model chosen by the BIC and
cross-validation (CV). It can be seen that the BIC has better forecasting performance across all horizons. The performance is
measured by the mean absolute error and the value denoted in the parentheses is the standard deviation.

2-kernel 4-kernel

model ℎ = 10 ℎ = 20 ℎ = 40 ℎ = 10 ℎ = 20 ℎ = 40

BIC 0.99 (0.74) 0.72 (0.67) 0.75 (0.80) 0.27 (0.20) 0.56 (0.56) 2.71 (1.79)
CV 1.32 (0.91) 1.24 (0.92) 0.86 (0.56) 8.41 (7.15) 11.55 (7.16) 20.18 (11.51)
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Table 5.5: The search time comparison between the greedy and exhaustive strategy for the synthetic dataset using the BIC
search metric

Search Time (s)

True Kernel greedy exhaustive

RBF + Per 14.797 41.306
Lin + RBF + Per × Lin 121.974 8532.929

we come up with two important findings of structure modelling approach. First, the experiment shows
that BIC model selection is better than the cross-validation, both in term of generative and predictive
performance. Second, the greedy search is recommended to be used as a search strategy, for both
practical and performance concern. Henceforth, only the greedy strategy combined with the BIC model
selection is considered for further tests.

5.5. Test 2: Synthetic Dataset Forecasting Performance
Table 5.6: The forecasting performance of the 2-kernel dataset. MAE denotes the mean absolute error and MAPE signifies the
mean absolute percentage error. Those performance measures are evaluated over 20 windows. Values marked in bold are not
significantly different from the best-performing forecasting model, in a paired t-test with a p-value of 5%. Value denoted in the
parentheses is the standard deviation.

MAE MAPE (%)

model ℎ = 10 ℎ = 20 ℎ = 40 ℎ = 10 ℎ = 20 ℎ = 40

persistence 0.98 (0.68) 0.83 (0.39) 1.34 (0.86) 37.3 (31.8) 29.7 (18.0) 67.7 (53.1)
ARIMA 0.70 (0.41) 0.49 (0.34) 0.53 (0.29) 21.9 (10.7) 16.4 (11.1) 26.9 (20.5)
BLR 0.80 (0.42) 0.48 (0.34) 0.40 (0.32) 24.9 (10.0) 16.1 (11.5) 18.8 (15.7)
RBF-iso 1.03 (0.67) 0.48 (0.34) 0.74 (0.57) 31.9 (17.2) 16.1 (11.5) 36.3 (29.6)
RQ-iso 0.79 (0.66) 0.50 (0.34) 0.80 (0.51) 25.5 (18.8) 17.1 (13.2) 39.6 (27.3)
RBF-ard 1.08 (0.71) 0.52 (0.36) 0.84 (0.56) 33.9 (18.0) 18.7 (16.4) 39.9 (26.8)
RQ-ard 0.79 (0.66) 0.51 (0.33) 0.81 (0.50) 25.5 (18.4) 18.1 (14.5) 39.7 (25.9)
greedy 0.99 (0.74) 0.72 (0.67) 0.75 (0.80) 32.6 (23.8) 24.4 (22.6) 38.1 (42.3)

The test is run over 20 windows with three forecasting horizons ℎ = {10, 20, 40}. The reason for using
20 windows is because if we look at the plot of both the 2-kernel and 4-kernel datasets, we can see that
there are periods which last over more or less 20 time-units. Thus, by using 20 windows, we average
out the forecast over a single period and assess whether the model could forecast consistently across
a single period in the future. Due to this reasoning, ℎ = 40 can be considered as a long-term forecast,
because it spans for two periods in the signal, while ℎ = 10 is short-term and ℎ = 20 is medium-term
forecast. The forecasting performance will be evaluated using the MAE, MAPE, and improvement
metric. The improvement will be compared against the persistence method. Section 5.1.2 reviews
those metrics in more details. It is important to remind that the test is run over several windows, hence
the mean operation on MAE and MAPE is calculated over several windows. MAE value in the ℎ = 10
column signifies the average absolute error that is calculated over 20 windows of forecast where the
target is 10-step-ahead forecast.
Table 5.6 and Table 5.7 show the MAE and MAPE forecast evaluation for the 2-kernel and 4-kernel
dataset. Furthermore, Table 5.8 reports the improvement over the persistence model for each of the
forecasting model. Figure 5.9, 5.10, and 5.11 show the actual forecasting results in comparison to the
true observed value per horizon. Similarly, Figure 5.12, 5.13, and 5.14 depict the comparison for the
4-kernel dataset.
Now, let us assess the forecasting performance for the 2-kernel dataset. It can be seen that the linear
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Table 5.7: The forecasting performance of the 4-kernel dataset. MAE denotes the mean absolute error and MAPE signifies the
mean absolute percentage error. Those performance measures are evaluated over 20 windows. Values marked in bold are not
significantly different from the best-performing forecasting model, in a paired t-test with a p-value of 5%. Value denoted in the
parentheses is the standard deviation.

MAE MAPE (%)

model ℎ = 10 ℎ = 20 ℎ = 40 ℎ = 10 ℎ = 20 ℎ = 40

persistence 9.36 (6.48) 10.02 (4.91) 8.10 (6.61) 85.1 (112.6) 67.6 (92.0) 34.1 (25.0)
ARIMA 6.19 (4.23) 7.22 (4.85) 10.07 (5.74) 61.1 (97.8) 44.0 (67.8) 51.5 (42.6)
BLR 0.65 (0.45) 1.70 (1.20) 5.67 (4.60) 7.3 (13.1) 13.5 (26.4) 26.4 (21.6)
RBF-iso 0.74 (0.45) 2.08 (1.38) 11.73 (6.10) 7.7 (11.4) 16.0 (28.0) 50.7 (17.5)
RQ-iso 0.72 (0.44) 1.91 (1.07) 7.03 (4.22) 7.5 (11.2) 14.1 (24.5) 33.4 (22.4)
RBF-ard 7.93 (9.11) 6.38 (6.29) 17.01 (7.05) 46.2 (44.7) 29.6 (28.8) 82.1 (38.5)
RQ-ard 0.86 (0.97) 2.44 (2.27) 7.81 (4.73) 4.6 (4.2) 12.0 (9.9) 42.9 (48.6)
greedy 0.27 (0.20) 0.56 (0.56) 2.71 (1.79) 2.0 (2.1) 3.3 (4.2) 16.5 (23.6)

Table 5.8: The improvements over the persistence method for both the 2-kernel and 4-kernel dataset. The improvement is in
percentage and the larger the value, the better it is. A negative value means that the model is worse than the persistence method.

2-kernel 4-kernel

model ℎ = 10 ℎ = 20 ℎ = 40 ℎ = 10 ℎ = 20 ℎ = 40

ARIMA 28.37 40.26 60.66 33.93 27.89 -24.34
BLR 18.04 41.92 70.37 93.11 83.02 29.95
RBF-iso -4.67 41.63 44.73 92.08 79.27 -44.78
RQ-iso 19.47 40.09 40.02 92.27 80.93 13.16
RBF-ard -10.46 36.91 37.48 15.28 36.32 -110.05
RQ-ard 19.58 38.01 39.85 90.81 75.66 3.55
greedy -0.60 12.92 44.19 97.10 94.39 66.52

model like ARIMA and linear regression perform better than the GP-based methods. The ARIMA is the
most consistent method throughout all horizons while linear regression shows the best performance
for the ℎ = 40 forecast. Looking at GP-based methods, we find that the GP-NAR performs well up to
ℎ = 20 only. The greedy shows disappointing results among others. Figure 5.9, 5.10, and 5.11 provide
an insight of why these results are observed. If we look at the forecast trajectories of all GP-based
methods, we can see that GP-based methods attempt to model the up and down in the signal, but
sometimes they end up wrong, where for example the true signal is going up while the forecast goes
down. This observation is especially apparent in the greedy method. In contrast, the linear model of
ARIMA and linear regression ’play it safe’ by outputting flat forecasts around the mean of the function,
where the mean of the dataset is �̄� = 2.65. Since the function exhibits ups-and-downs around the
mean, this can provide the explanation on why forecasts of ARIMA and linear regression are more
accurate than the GP-based methods.

The second dataset, the 4-kernel dataset, shows a contrasting result where results report that the
greedy is significantly better than other methods. The MAPE of ℎ = 10 and ℎ = 20 are remarkably
lower in comparison with the MAPE from the 2-kernel dataset which suggests an excellent forecast.
The results show that only ARIMA performs significantly worse for all horizons. Figure 5.12, 5.13, and
5.14 clearly show the cause. While the GP-based method and linear regression can model the trend
and period of the true value, the ARIMA cannot. The output of ARIMA forecasts is roughly flat, which
suggests a similar pattern of follow-the-mean. This follow-the-mean strategy that was working nicely
in the 2-kernel dataset apparently does not work in this dataset due to the presence of a strong trend.
In ℎ = 40 forecast, as it is shown in Figure 5.14, only the greedy method that can still follow the pattern
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decently. The result of ARIMA’s failure on the 4-kernel dataset can be explained by the non-stationarity
of the 4-kernel dataset.
In the end, the 2-kernel dataset proves to be harder to forecast than the 4-kernel dataset, judging by
the MAPE score. If we look at the discrepancy between results of 2-kernel and 4-kernel, we can draw
insight that the greedy approach works particularly well when there are a clear trend and period in
the dataset. When such pattern is apparent, the greedy method can forecast very far. The 40-step-
ahead forecasting performance using the greedy method is very decent, and that is quite impressive
considering we have only 150 number of observation in total. On the contrary, the performance of
GP-based methods on the 2-kernel is worse than the simpler method of ARIMA and linear regression
although in general, all models are struggling. The reason for this is because the 2-kernel dataset does
not have a clear structure that the GP model can learn.

5.6. Test 3: Real World Dataset Forecasting Performance
Table 5.9: The forecasting performance of the wind speed dataset. MAE denotes the mean absolute error and MAPE signifies
the mean absolute percentage error. Those performance measures are evaluated over 24 windows. Values marked in bold are
not significantly different from the best-performing forecasting model, in a paired t-test with a p-value of 5%. Value denoted in
the parentheses is the standard deviation.

MAE MAPE (%)

model ℎ = 12 ℎ = 24 ℎ = 48 ℎ = 12 ℎ = 24 ℎ = 48

persistence 0.45 (0.32) 0.67 (0.27) 0.72 (0.54) 18.3 (13.0) 25.2 (10.7) 40.0 (45.4)
ARIMA 0.41 (0.32) 0.66 (0.28) 0.65 (0.53) 16.7 (13.0) 24.7 (10.5) 36.2 (44.6)
BLR 0.43 (0.28) 0.65 (0.24) 0.56 (0.44) 16.9 (10.0) 23.8 (7.6) 30.5 (35.2)
RBF-iso 0.40 (0.34) 0.50 (0.21) 0.77 (0.58) 16.2 (13.7) 18.7 (7.2) 48.7 (59.5)
RQ-iso 0.47 (0.29) 0.47 (0.33) 0.72 (0.44) 19.1 (12.1) 17.6 (12.4) 40.8 (35.7)
RBF-ard 0.39 (0.27) 0.47 (0.23) 0.65 (0.51) 15.6 (9.7) 17.6 (9.1) 40.2 (47.8)
RQ-ard 0.36 (0.29) 0.57 (0.32) 0.70 (0.43) 14.4 (12.3) 21.8 (12.7) 41.2 (40.3)
greedy 0.27 (0.15) 0.29 (0.18) 1.22 (0.64) 11.6 (7.2) 11.3 (7.9) 74.0 (69.6)

Table 5.10: The forecasting performance of the electricity dataset. MAE denotes the mean absolute error while MAPE signifies
the mean absolute percentage error and smaller value is also better. Those performance measures are evaluated over 24
windows. Values marked in bold are not significantly different from the best-performing forecasting model, in a paired t-test with
a p-value of 5%. Value denoted in the parentheses is the standard deviation.

MAE MAPE (%)

model ℎ = 12 ℎ = 24 ℎ = 48 ℎ = 12 ℎ = 24 ℎ = 48

persistence 9.32 (7.26) 10.55 (7.89) 10.54 (8.99) 2.7 (2.1) 3.1 (2.2) 3.1 (2.5)
ARIMA 17.50 (15.59) 17.56 (14.65) 32.58 (18.54) 5.0 (4.0) 5.0 (3.7) 10.2 (6.5)
BLR 7.46 (7.57) 9.10 (7.70) 26.94 (12.97) 2.1 (2.2) 2.6 (2.0) 8.1 (3.7)
RBF-iso 7.58 (7.41) 8.10 (7.08) 20.40 (18.82) 2.2 (2.1) 2.3 (1.9) 6.1 (5.3)
RQ-iso 7.58 (7.41) 9.16 (10.45) 12.06 (7.52) 2.2 (2.1) 2.7 (3.0) 3.6 (2.2)
RBF-ard 8.09 (7.17) 8.78 (6.63) 16.71 (10.52) 2.3 (2.0) 2.5 (1.8) 5.2 (3.4)
RQ-ard 7.69 (6.29) 10.32 (6.58) 15.86 (9.64) 2.2 (1.8) 3.0 (1.8) 4.9 (3.2)
greedy 7.10 (6.43) 7.02 (6.42) 22.81 (9.96) 2.0 (1.9) 2.0 (1.7) 6.9 (3.2)

This section reports the result of the experiment done on two real-world datasets, the wind speed and
electricity dataset. Similar to the experiment on the synthetic dataset, the forecast will be run on several
windows. This time, 24 windows are used. The wind speed has one hour while the electricity dataset
has one month as a time unit. A 24-window test suggests that the training is performed on one day
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Table 5.11: The improvement over persistence method for both the wind speed and electricity dataset. The improvement is in
percentage and the larger the value, the better it is. A negative value means that the model is actually worse than the persistence
method.

wind speed electricity

model ℎ = 12 ℎ = 24 ℎ = 48 ℎ = 12 ℎ = 24 ℎ = 48

ARIMA 8.35 0.71 10.06 -87.82 -66.50 -209.01
BLR 4.60 2.80 22.72 19.99 13.68 -155.58
RBF-iso 9.92 24.38 -7.50 18.66 23.18 -93.54
RQ-iso -4.21 29.84 0.08 18.69 13.18 -14.38
RBF-ard 13.49 29.87 9.44 13.14 16.80 -58.47
RQ-ard 20.61 14.17 2.19 17.44 2.12 -50.42
greedy 39.99 57.07 -69.70 23.79 33.41 -116.33

and one year of data respectively. This test has the benefit of averaging out the variations that occur
during the whole day and year. The target horizons are ℎ = {12, 24, 48}. 48-step-ahead forecast is
a quite challenging horizon in both tasks. In wind speed forecasting, ℎ = 24 and ℎ = 48 mean one
day and two days of forecasting horizons respectively and can be classified as long-term forecasts
according to Table 1.1. A year of time series (ℎ = 24) in the electricity dataset already exhibits at least
two seasonal patterns and an increasing trend, hence forecasting ℎ = 24 and ℎ = 48 should be a
demanding forecasting goal.

Following the previous test, the forecasting performance is evaluated by the MAE, MAPE, and im-
provement over persistence method. Table 5.9 displays the MAE and MAPE results of wind speed
forecasting and Table 5.10 for the electricity dataset. Table 5.11 shows the improvement results from
both the wind speed and the electricity datasets. Figure 5.15, 5.16, and 5.17 show the actual forecast-
ing results on the wind speed dataset in comparison to the actual observed value per horizon. Similarly,
Figure 5.18, 5.19, and 5.20 depict the comparison for the electricity dataset.

Results of electricity forecasting confirm our finding from the previous section that the greedy method
forecasts remarkably in light of apparent trend and seasonal patterns, at least for ℎ = 12 and ℎ =
24 forecasts. This time, the GP-NAR methods also perform well, especially for the ℎ = 48 forecast
where no other forecasting methods are significantly better than the GP-NAR with isotropic RQ kernel.
The decreasing result of the greedy method for ℎ = 48 is explained in the Section 5.7, where we
decompose the forecasting result. ARIMA also shows similar performance with the 4-kernel dataset
forecasting, which verifies the findings from the previous test that the ARIMA cannot handle the trend
and seasonality very well, as depicted in Figure 5.18, 5.19, and 5.20.

The wind speed dataset can be considered as the most challenging dataset in this experiment. From
the plot on Figure 5.3, we can see that the wind speed consists of periods of high and low that are not
easily predicted as they are changing over time. Moreover, this dataset also exhibits some small scale
variations that vary within days. The result of the greedy method for ℎ = 12 and ℎ = 24 invalidates
our analysis from the previous section that the greedy model only excels on an ’easy’ dataset with a
predictable pattern. The explanation for this outcome can be explained by the learning curve which
is displayed on Figure 5.7. Here it can be seen that the greedy method reaps the most benefit from
more data in comparison with other methods. Since the greedy method is based on finding trend and
seasonality, the more the data we have, the higher chance that we can find those long-term patterns.
As an illustration, imagine that there is a trend that we find on a time series dataset. If we expand the
time series to the past, we may discover that the trend is a slow moving season. So, we can conclude
that the structure modelling approach reaches its best capability when there are significant long-term
structures in the time series and having more data can help uncover those patterns.

For more distant forecasting horizons, which is represented by ℎ = 40 and ℎ = 48 in our experiment,
regression techniques display superior performance over the greedy method. Surprisingly, the linear
regression is the best performing method for the 40-step-ahead forecast in the 2-kernel dataset and
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Figure 5.7: The learning curve that shows the 24-step-ahead forecasts error as a function of the number of training data. The
dataset used for this curve is the wind speed dataset, and the number of training data is measured in days. The error is measured
in mean absolute error (MAE).

48-step-ahead forecast in the wind speed dataset, which can be considered as the hardest forecasting
tasks among the rest. There is not enough evidence to elucidate the reason behind this occurrence,
but judging from Table 5.6 and 5.9, there is a notable gap between the performance between the MAPE
value of 2-kernel (all horizons) and wind speed (particularly the ℎ = 48) with the rest. These results
indicate that these forecasting tasks are too difficult for our proposed forecasting method to learn due
to the absence of pattern and growing uncertainty.

The main building blocks of the GP-NAR are choosing between RBF and RQ kernel and assigning
either a single lengthscale (isotropic) or different lengthscale parameter (ARD) to the input. There is
no definitive choice for either as each option shows mixed performance score, although in general it
is found that GP-NAR with isotropic kernel works slightly better than the ARD kernel across different
horizons. This verdict contradicts the hypothesis in Section 4.3 that the ARD kernels should have better
forecasting performance than isotropic kernels because in the ARD kernel the weights are assigned
to each lag. As a consequence, the ARD kernel requires more parameters than the isotropic, which
makes the ARD kernel more susceptible to overfitting than the isotropic one. In that case, wemight want
to choose the isotropic kernel over ARD because of the reason that was mentioned previously.

5.7. Decomposition
Several experiments in the previous sections focused on forecasting performance. No dominantmethod
surpasses other methods, but the structure modelling method shows a promising result, especially in
the case of an evident pattern. One other thing that makes structure modelling approach desirable is
it presents a relatively interpretable model.

This section illustrates how we can interpret the result of the forecast of the electricity dataset. After
the search, the optimum kernel combination is shown below, with the explanation of the effect of the
kernel to the function.

RBF × Per⎵⎵⎵⎵⎵⎵⎵⎵
slow-varying trend with periodic

+ RBF⎵
short-term variation

+ RBF⎵
residual

The full expression of the kernel combination is given below
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Figure 5.8: The additive decomposition of the electricity dataset. The vertical dashed line denotes the boundary between the
training and test set. First row: actual dataset. Second row: RBF × Per component. Third row: Lin ዄ RBF, Fourth row: RBF
component.

𝑘(𝑡, 𝑡ᖣ) = 𝜎ኼኻ exp (−
(𝑡 − 𝑡ᖣ)ኼ
2𝜆ኼኻ

) × 𝜎ኼኼ exp (−
sinኼ(𝜋(𝑡 − 𝑡ᖣ)/𝑝)

2𝜆ኼኼ
)+

𝜎ኼኽ exp (−
(𝑡 − 𝑡ᖣ)ኼ
2𝜆ኼኽ

) + 𝜎ኼኾ exp (−
(𝑡 − 𝑡ᖣ)ኼ
2𝜆ኼኾ

) (5.6)

where 𝜎ኻ = 613.6, 𝜆ኻ = 191.6, 𝜎ኼ = 689.3, 𝜆ኼ = 47.3, 𝑝 = 0.32, 𝜎ኽ = 205.4, 𝜆ኽ = 2.71, 𝜎ኾ = 41.1, 𝜆ኾ =
0.01.
Figure 5.8 displays the additive decomposition of electricity dataset according to the kernel that we
found. The first additive component, RBF×Per, explains the most dominant feature of the time series,
and that is the increasing trend with small period periodic. The trend is caused by the RBF kernel,
where the lengthscale is 𝜆ኻ = 191.6. This RBF kernel creates an increasing signal with a slow moving
variation which looks like a trend, and when this signal is multiplied by the periodic kernel, we get a
periodic signal that is shown in the second row of Figure 5.8. Compared with the rest, this signal is
the most dominant, judging by the vertical scale of the signal. Apart from the RBF × Per, the other
RBF kernels model the variation within the the time series. From the lengthscale, 𝜆ኽ = 103.9, this
signal models a small-term variation, where the signal varies every three months. The last component,
another RBF kernel, explains a short-lived variation that looks like noise, which can be interpreted from
the lengthscale of this kernel which is 𝜆ኾ = 0.01.
Figure 5.8 clarifies the reason why the performance of the structure modelling drops for the ℎ = 48
forecast. If we look at the decomposition, we can see that only the RBF × Per component that can
extrapolate far ahead. The rest of the components consist of RBF kernels with short lengthscales.
Because of that, the forecast shows a mean convergence symptom that is displayed in Section 2.5
after a particular horizon. Therefore, the only available explanation for longer term forecast is the first
component. This component does not provide enough predictive power to explain any variability that
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occurs in the far future. It can be seen from the first row of Figure 5.8 that the increasing trend slows
down after a certain horizon and the first component cannot anticipate this change of pattern.
This decomposition experiment demonstrates the interpretability of the structure modelling model. This
feature is very useful beyond forecasting. We can perform a time series decomposition using the struc-
ture modelling method and present this technique as an alternative to the other decomposition method
such as the STL [12]. Lloyd et al. even take this approach ahead, by proposing an automated reporting
of features in a time series using natural language processing through interpreting the parameter of the
kernels that are returned by the structure modelling method [33].

5.8. Training Time
Table 5.12: Training time of Gaussian process regression model against ARIMA and linear regression

training time (second)

# of training data ARIMA BLR RBF-iso RBF-ard greedy

100 1.03 0.01 0.43 1.05 152.67
200 0.28 0.01 0.75 2.59 1148.56
300 0.37 0.01 1.58 6.76 845.41
400 0.33 0.01 2.54 11.20 1341.42
500 0.57 0.01 4.87 17.49 2540.50
600 0.51 0.01 6.59 22.50 7967.58
700 0.51 0.01 8.97 30.56 5407.02
800 0.63 0.01 16.75 46.03 11924.86
900 0.66 0.13 28.80 65.39 11390.19
1000 0.69 0.04 25.50 80.27 12061.39

Table 5.12 shows the time that is required to train a GP-NAR and greedy method in comparison with
ARIMA and Bayesian linear regression. The greedy method is trained on 5-level search depth, while
both the GP-NAR and Bayesian linear regression use autoregressive of order 5. From the table it is
clearly apparent that the greedy method requires a significant amount of time to train, far exceeding
other methods.
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Figure 5.9: Plot of 10-step-ahead forecast results on the 2-kernel dataset over 20 windows
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Figure 5.10: Plot of 20-step-ahead forecast results on the 2-kernel dataset over 20 windows
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Figure 5.11: Plot of 40-step-ahead forecast results on the 2-kernel dataset over 20 windows
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Figure 5.12: Plot of 10-step-ahead forecast results on the 4-kernel dataset over 20 windows
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Figure 5.13: Plot of 20-step-ahead forecast results on the 4-kernel dataset over 20 windows
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Figure 5.14: Plot of 40-step-ahead forecast results on the 4-kernel dataset over 20 windows
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Figure 5.15: Plot of 12-step-ahead forecast results on the wind speed dataset over 24 windows
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Figure 5.16: Plot of 24-step-ahead forecast results on the wind speed dataset over 24 windows
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Figure 5.17: Plot of 48-step-ahead forecast results on the wind speed dataset over 24 windows
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Figure 5.18: Plot of 12-step-ahead forecast results on the electricity dataset over 24 windows
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Figure 5.19: Plot of 24-step-ahead forecast results on the electricity dataset over 24 windows
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Figure 5.20: Plot of 48-step-ahead forecast results on the electricity dataset over 24 windows



6
Conclusion and Future Work

6.1. Conclusion
Long-term time series forecasting is very useful in many application domains, yet it is a challenging task
to perform. As time series forecasting becomes our problem, we might want to use the ARIMA model,
which is one of the most prominent time series forecasting models. Unfortunately, the ARIMA suffers
from a mean convergence issue which hampers its performance in long-term time series forecasting.
Hence, we turn our attention to the Gaussian process regression, a non-parametric probabilistic re-
gression technique. Due to its non-parametric property, a Gaussian process regression possesses
a more flexible modelling capability than the ARIMA model. With this flexibility, we hypothesise that
the GP regression can be a more potent solution for long-term time series forecasting problem than
the ARIMA. This research is among the first to empirically assess the performance of the ARIMA and
Gaussian process regression.

We employ two specific techniques that are based on the Gaussian process regression to solve our
long-term time series forecasting problem: the structure modelling and the autoregressive. These two
methods have been discussed in detail in Chapter 3 and Chapter 4. This research is then followed by
running several long-term forecasting experiments to empirically evaluate the long-term performance of
our proposed methods against the ARIMA method as can be observed in Chapter 5. Our experiments
are conducted to provide the answer to our proposed research questions as follows.

RQ1: Between the two Gaussian process regression approaches, the autoregressive and the
structure modelling, how do their long-term forecasting performances compare with the ARIMA
model?

TheGP-based approaches outperform ARIMA in a particular case where the time series exhibits a clear
trend and seasonal structures. In fact, the ARIMA method is the worst method in general, especially
when the data display some strong non-stationarities. Both the GP-based approaches as well as the
other models do not show an exemplary result on challenging tasks. This cases are marked by the
large gap in the MAPE performance score. Examples of such circumstances are the 48-step-ahead
forecast on the wind speed and the 40-step-ahead forecast on the 2-kernel dataset. These datasets do
not contain a clear trend and season which can be exploited by the forecasting model. The exception
is made to the Bayesian linear regression where it surprisingly shows decent forecasting performances
in these difficult problems. Even so, the difference in performance between the easy and difficult
problems suggests that improvements are necessary. In the end, we can conclude that the GP-based
approaches are highly recommended over the ARIMA for long-term time series problem where the
regularities are evident although we must take into account the length of the horizon as there is a limit
on how far the GP methods can take. In addition to that, we should also consider the performance
issue of the structure modelling, as it requires a significant amount of time to train in comparison with
ARIMA.

RQ2: Between the two Gaussian process regression approaches, the autoregressive and the
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structure modelling, which has better long-term forecasting performance?
There is no clear winner shown between autoregressive (GP-NAR) and the structure modelling ap-
proach. The general performance of structure modelling method is preferable, except for a more chal-
lenging long-term forecasting case such as 48-step-ahead forecasting of the electricity data, where the
GP-NAR outperforms the structure modelling method. Nonetheless, the structure modelling approach
has potential that the GP-NAR does not have: the interpretability of the model. This proportion makes
the structure modelling method unique. Several domains, such as economic and finance, prefer a more
transparent statistical model to black-box one as it can explain why the model can come up with a par-
ticular prediction. An interpretable model might help with the acceptance of the model by the human
user. In contrast with the structure modelling, the autoregressive setting of GP-NAR is a general set-up
that is not exclusive to the GP-NAR technique. With the autoregressive representation, one can easily
interchange the GP-NAR with other machine learning regression technique, such as neural network
or support vector regression. By this narration, we believe that the structure modelling method has a
better potential to be further developed.
Besides these conclusions, we present several discussion points that are discovered during our re-
search.
Uncertainty Quantification The Gaussian process regression and other probabilistic models output

a predictive distribution. In the experiment, we focus more on evaluating the performance by
comparing the mean of the distribution where the mean acts as a point forecast. A point forecast
is, of course, useful on its own, but utilising the probabilistic model comes with a benefit that
a non-probabilistic model does not have which is the ability to compute the uncertainty of the
forecast.
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Figure 6.1: A forecasting result with the uncertainty represented by the shaded region. Notice that some future data have lower
uncertainty even though they are ahead in the future. Data: Monthly totals (in thousands) of international airline passengers
from 1949-1960 [7]

For example, we can quantify the uncertainty of our forecasts by computing the 95% confidence
interval. The confidence interval is calculated from the variance of the forecast, which is the diag-
onal element of the covariance matrix that is obtained using Equation 2.18. Figure 6.1 shows the
illustration of the point forecasts and its 95% confidence interval. This confidence interval quan-
tifies the uncertainty of our prediction and can be useful in many applications. Silver writes one
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particular example where uncertainty information is neccesary [49]. In April 1997, a small town in
North Dakota, the United States of America, named Grand Forks is drowned by floods because
a nearby river overtopped the town’s levee. The flood had already been anticipated through the
forecast, where the forecast stated that the height of the water level was 49 feet, 2 feet below
the height of the levee, which was 51 feet. In turned out that the margin of error of the forecast
was about ±9 feet and it was not communicated to the townspeople. This miscommunication left
them unprepared when the real flood was above the town’s levee but still fell between the uncer-
tainty margin. Had the uncertainty was computed and reported, the flood can be anticipated. This
example signifies the importance of calculating the uncertainty of forecast, and GP regression is
capable of doing this.

Computation Time The computation time becomes the main weakness of the proposed GP meth-
ods. This issue is particularly noticeable for the structure modelling with the structure modelling
method, where it requires 200 minutes to train a forecasting model on a time series dataset with
1000 observations. This result is clearly unacceptable when an ARIMA model only needs 0.69
seconds to train on the same data. So, although the structure modelling can outperform the
ARIMA model concerning the forecasting performance, this computation issue is the biggest ob-
stacle to the adoption of the structure modelling method as an alternative to ARIMA. The reason
behind this problem is contributed by the fact that training a GP regression model requires us
to compute a matrix inverse through a Cholesky decomposition (Section 2.4) which has 𝒪(𝑛ኽ)
computation complexity. This fact points out a future problem that must be solved.

Inefficient Search Previously it was mentioned that the structure modelling has a severe performance
issue. The greedy search strategy and stopping criterion have considerably help to reduce the
computation time in comparison with using the exhaustive search. Still, the current greedy search
is not the most efficient search. One example of the inefficiency is shown in Section 5.4. In one
test it is found that the search keeps adding a linear kernel although it is meaningless as adding
linear kernels result in another linear kernel. Another inefficiency of the current greedy search is
shown in Section 5.7. In that section, it is reported that not all kernel combinations can model
the long-term forecast. Only the combinations that involve linear, periodic, and RBF with long
lengthscale can contribute to the long-term forecast. If we can remove these irrelevant kernels
from the search tree, the search could be more efficient.

User-defined Parameter The proposed GP-based methods require a few user-defined parameters.
For the structure modelling, several parameters have already determined by design, such as
the base kernels. The experiment suggests that the model selection based on the BIC is more
appropriate than the cross-validation as it provides superior forecasting accuracy. This left us
with the decision of choosing the depth of the search level. The search level depends on the
complexity of the time series to be modelled. One thing to be wary of is that the higher the search
level, the longer it is to run a kernel search, so the search level should be kept minimum. The
parameters GP-NAR are the choice of the kernel (RBF or rational quadratic) and the decision to
choose between the isotropic or ARD kernel structure. The kernel option is problem dependent,
so it is suggested that both kernel should be tried. The experiment shows that isotropic kernel
generally has slightly better forecasting performance than the ARDwhich means that the isotropic
kernel should be prioritised.

6.2. Future Work
In the previous section, we have concluded and discussed several aspects of our research, where some
future improvements are hinted. Below are some of the future directions that can be pursued.

Hybrid Approach Rather than choosing between the structure modelling and GP-NAR, an idea of
future research is to combine both approaches. The time series is considered to be composed
from two additive components: the interpretable component (𝑖፭) and the residual (𝑒፭) component

𝑦፭ = 𝑖፭ + 𝑒፭

where we forecast the interpretable component using the structure modelling and delegates the
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forecast of the residual to the GP-NAR.With this hybrid approach, we still retain the interpretability
of the structure modelling while being able to forecast the unexplainable pattern with the help of
GP-NAR.

Fast Approximation to Gaussian Process One main obstacle to push the GP-based method as a
replacement for the ARIMA model is the computation time. Some methods are developed to
approximate the inversion of the covariance matrix for a common GP regression. The paper by
Quinonero-Candela and Rasmussen [42] provides a detailed review of the approximation meth-
ods. The approximation technique revolves around the idea of using𝑚 data points to approximate
the covariancematrix instead of 𝑛, where𝑚 < 𝑛. Some techniques can bring the complexity down
to 𝒪(𝑛𝑚ኼ). These methods have the potential as approximation techniques for the GP-NAR ap-
proach. For a GP regression with time index as input, there exists an approximation method
where the computational complexity is linear with the number of data (𝒪(𝑛)). This technique is
proposed by Hartikainen and Särkkä, where they transform the GP regression problem into a
linear-Gaussian state space model, which can be solved exactly using the Kalman Filter [24].
The challenge here is to reformulate the covariance function by applying a spectral Taylor series
approximation. They already implement the Taylor approximation for the RBF kernel, therefore
if the same approximation can be applied to the linear and periodic kernel, then this fast approx-
imation technique can be utilised by our structure modelling approach.

Multivariate Time Series Learning the future solely from the past is the simplest form of time series
forecasting. We have seen some difficult forecasting cases from the experiment, for example
the 48-step-ahead forecast of wind speed. Here we see the inadequacy of a model that learn
solely from the past. While improving the model can be one solution to this problem, another
potential solution is by adding external information from exogenous variables aside from the past
data of our time series. These external variables can be deterministic, such as the name of the
day or a boolean variable that indicate public holiday. A more complicated model utilises another
time series, which might be correlated with the target time series. In the case of wind speed
forecasting, wind speed observations from nearby sensors or other weather observations such
as wind direction and atmospheric pressure can be employed. Implementing the multivariate
time series forecasting on the GP-NAR should be straightforward. Any additional features can
be added as columns to the input matrix 𝐗. If the exogenous variables are another time series,
then those time series can be transformed into the autoregressive representation.

Search Heuristic In the discussion we have outlined the inefficiency of the greedy search. We can
implement several heuristics that can reduce the search space of the greedy algorithm. One
possible heuristic is to stop evaluating the meaningless combination, such as the addition of
linear kernels. Another heuristic that can be useful is to focus solely on the covariance functions
that are capable of modelling the long-term pattern and ignoring the short-term and medium-term
effect.



A
Mean Convergence for ARIMA

This appendix is written to show that the ARIMA model will converge to the mean for longer horizon.
The derivation is shown for ARIMA(1, 0, 1), although it should generalise for all ARIMA(𝑝, 𝑑, 𝑞). Given
a time series 𝐲 = {𝑦፭}, where 𝑡 = 1,… , 𝑇, we wish to predict a ℎ-step-ahead forecast, 𝑦ፓዄ፡, using
ARIMA(1, 0, 1), ℎ = 1, 2, …. We assume that the time series is stationary. The ARIMA(1, 0, 1) is given
by

𝑦፭ = 𝑐 + 𝜖፭ + 𝜙𝑦፭ዅኻ + 𝜃𝜖፭ዅኻ 𝜖 ∼ 𝒩(0, 𝜎ኼ)

and the mean or the expected value of the ARIMA(1, 0, 1) is

𝐸[𝑦፭] = 𝐸[𝑐] + 𝐸[𝜖፭] + 𝜙𝐸[𝑦፭ዅኻ] + 𝜃𝐸[𝜖፭ዅኻ]
= 𝑐 + 0 + 𝜙𝐸[𝑦፭] + 0

𝐸[𝑦፭] = 𝐸[𝑦፭ዅኻ] because the time series is stationary. Let 𝐸[𝑦፭] = 𝜇, then

𝜇 = 𝑐 + 𝜙𝜇

= ( 𝑐
1 − 𝜙)

1-step-ahead forecast, ℎ = 1, is given by

𝑦ፓዄኻ = 𝑐 + 𝜙𝑦ፓ + 𝜃𝜖ፓ

Similarly, 2-step-ahead forecast (ℎ = 2) is

𝑦ፓዄኼ = 𝑐 + 𝜙𝑦፭ዄኻ
= 𝑐 + 𝜙(𝑐 + 𝜙𝑦ፓ + 𝜃𝜖ፓ)
= (1 + 𝜙)𝑐 + 𝜙ኼ𝑦ፓ + 𝜙𝜃𝜖ፓ

and for ℎ = 3
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𝑦ፓዄኽ = 𝑐 + 𝜙𝑦፭ዄኼ
= (1 + 𝜙 + 𝜙ኼ)𝑐 + 𝜙ኽ𝑦ፓ + 𝜙ኼ𝜃𝜖ፓ

From the previous three forecast equations, we can derive a general ARIMA(1, 0, 1) model for all ℎ,
which is given by

𝑦ፓዄ፡ = (1 + 𝜙 + 𝜙ኼ +…+ 𝜙፡ዅኻ)𝑐 + 𝜙፡𝑦ፓ + 𝜙፡ዅኻ𝜃𝜖ፓ

Since the time series is stationary, then |𝜙| < 1 (refer to Shumway and Stoffer for more detail [48]).
For ℎ → ∞, 𝜙፡ = 0 thus the expected value of a ℎ-step-ahead forecast is equal to

𝐸[𝑦ፓዄ፡] = 𝜇 = 𝐸[(1 + 𝜙 + 𝜙ኼ +…+ 𝜙፡ዅኻ)𝑐]
= (1 + 𝜙 + 𝜙ኼ +…+ 𝜙፡ዅኻ)𝑐

= 𝑐
1 − 𝜙

as

lim
፡→ጼ

(1 + 𝜙 + 𝜙ኼ +…+ 𝜙፡ዅኻ)𝑐 = 𝑐
1 − 𝜙 for |𝜙| < 1

This shows that for ℎ → ∞, the forecast will converge to the mean.



B
Bayesian Model Selection for Gaussian

Process

Bayesian model selection is an important concept which underlies two aspects of this thesis, which are
the covariance function parameter estimation from Section 2.4 and the kernel search from Section 3.2.
The discussion of Bayesian model selection is based on the narration of Rasmussen and Williams [44,
p.108].

Figure B.1: In Gaussian Process, the parameter posterior is inferred in a hierarchical manner. At the first level, the random func-
tion 𝐟 is inferred and then followed by the inference of the covariance function parameter 𝚯. Lastly, the best kernel combination
ፌᑚ is selected from the third level inference.

In Gaussian Process regression, we work with three levels of parameters. These parameters affect
each other hierarchically, where the parameter of the lower level is controlled by the parameter of the
higher one. The lowest level of the parameter in the Gaussian Process regression is the function 𝐟.
The random function 𝐟 is distributed by a Gaussian process which is characterised by the covariance
function. The covariance function is controlled by the parameters 𝚯, for example 𝚯 = [𝜆, 𝜎]ፓ for an
RBF covariance function. Since 𝚯 controls the distribution of the 𝐟, we place 𝚯 on the second level of
the parameter hierarchy. 𝚯 is a parameter of the parameter 𝐟, so the parameter 𝚯 is often named as
the hyperparameter. On the highest level, we have the model𝑀። from a discrete setℳ. An example of
the model is found in Section 3.2, where each model corresponds to a different combination of kernels.
A full Bayesian inference computes the posterior of these parameters, and the computation is done
on three levels. Figure B.1 summarises the hierarchical concept. First, we calculate the posterior of 𝐟,
followed by the calculation of the posterior of 𝚯 and then we compute the posterior of 𝑀።. As we will
see next, computing the posterior of the higher level parameter requires the computation of the lower
level marginal likelihood.
Level 1 Inference Posterior over 𝐟 is given by

𝑝(𝐟|𝐲, 𝐗, 𝚯,𝑀።) =
𝑝(𝐲|𝐗,𝑀። , 𝐟)𝑝(𝐟|𝚯,𝑀።)

𝑝(𝐲|𝐗, 𝚯,𝑀።)
(B.1)

67



68 B. Bayesian Model Selection for Gaussian Process

𝑝(𝐲|𝐗,𝑀። , 𝐟) is the likelihood of the data given the function 𝐟 and 𝑝(𝐟|𝚯,𝑀።) is the prior over func-
tion. The denominator is called the marginal likelihood

𝑝(𝐲|𝐗, 𝚯,𝑀።) = ∫𝑝(𝐲|𝐗,𝑀። , 𝐟)𝑝(𝐟|𝚯,𝑀።)𝑑𝐟 (B.2)

which is the likelihood that is weighted by the prior over function averaged for all f.
Level 2 Inference Level 2 inference computes the posterior over kernel parameter 𝚯. The posterior

can be calculated as

𝑝(𝚯|𝐲, 𝐗,𝑀።) =
𝑝(𝐲|𝐗, 𝚯,𝑀።)𝑝(𝚯|𝑀።)

𝑝(𝐲|𝐗,𝑀።)
(B.3)

Notice that the marginal likelihood from the level 1 inference acts as the likelihood of the hyper-
parameter. 𝑝(𝚯|𝑀።) is the prior of the hyperparameter. The denominator of the hyperparameter
posterior is given by

𝑝(𝐲|𝐗,𝑀።) = ∫𝑝(𝐲|𝐗, 𝚯,𝑀።)𝑝(𝚯|𝑀።)𝑑𝚯 (B.4)

Level 3 Inference The posterior over model is given by

𝑝(𝑀።|𝐗, 𝐲) =
𝑝(𝐲|𝐗,𝑀።)𝑝(𝑀።)

𝑝(𝐲|𝐗) (B.5)

and the denominator can be computed as

𝑝(𝐲|𝐗) =∑
።
𝑝(𝐲|𝐗,𝑀።)𝑝(𝑀።) (B.6)

Again, the marginal likelihood of the level 2 inference is the likelihood of the model posterior.
This equation shows that every hierarchy of inference is connected and inferring the parameter
depends on the inference on the lower level.

B.1. Level 2 Inference in Section 2.4
Level 2 inference plays an significant role in Gaussian process regression model. In Section 2.4, it
is mentioned that training a GP regression model involves in finding the optimum parameter for the
covariance function, which we can obtain by computing the posterior over hyperparameter from Equa-
tion B.3. Calculating the exact hyperparameter posterior is challenging because the denominator from
Equation B.4 usually cannot be computed analytically [44]. As an approximation, the prior of the hyper-
parameter, 𝑝(𝚯|𝑀።), is considered equiprobable. Because of that, the posterior of the hyperparameter
is now proportional to the marginal likelihood of the level 1 inference as the denominator is constant
for all hyperparameter

𝑝(𝚯|𝐲, 𝐗,𝑀።) ∝ 𝑝(𝐲|𝐗, 𝚯,𝑀።) (B.7)

We are interested in the value of the most optimum hyperparameter of the covariance function 𝚯∗.
To get 𝚯∗, we calculate the most probable hyperparameter posterior, 𝑝(𝚯∗|𝐲, 𝐗,𝑀።), or in other words,
we calculate the posterior with the highest value. The hyperparameter that gives the most probable
posterior is the most optimum hyperparameter. Since the posterior is proportional to the likelihood, we
can maximise the likelihood instead w.r.t to hyperparameter 𝚯 to get this most optimum hyperparame-
ter



B.2. Level 3 Inference in Section 3.2.3 69

𝚯∗ = arg max
𝚯

𝑝(𝐲|𝐗, 𝚯,𝑀።) (B.8)

This above equation explains why in Section 2.4 we maximise the marginal likelihood to train a GP
regression model. The marginal likelihood is given by Equation B.2 and can be computed analyti-
cally.

The first term of the integral in Equation B.2 is the likelihood of the data given the function 𝐟 while the
second the is the prior over function. We already have defined the likelihood from Equation 2.14, and
it is Gaussian distributed, 𝑝(𝐲|𝐗,𝑀። , 𝐟) ∼ 𝒩(𝐟, 𝜎ኼፍ𝐈). The prior, which is shown by the Equation 2.13 is
again Gaussian distributed, 𝑝(𝐟|𝚯,𝑀።) ∼ 𝒩(0, 𝐊). Now, because both of the likelihood and prior are
Gaussian, the integral in Equation B.2 can be computed in closed-form. It is common to work with the
logarithm of the marginal likelihood since we are dealing with very small numbers in the likelihood. The
log-marginal likelihood is given by

log 𝑝(𝐲|𝐗) = −12𝐲
ፓ[𝐊(𝐗, 𝐗; 𝚯) + 𝜎ኼ፧𝐈]ዅኻ𝐲 −

1
2 log det[𝐊(𝐗, 𝐗; 𝚯) + 𝜎

ኼ
፧𝐈] −

𝑛
2 log 2𝜋 (B.9)

Here we make the covariance matrix 𝐊 explicitly depends on the hyperparameter 𝚯.
Training a Gaussian process regression model is equivalent to maximising the negative log-marginal
likelihood

𝚯∗ = arg max
𝚯

− 12𝐲
ፓ[𝐊(𝐗, 𝐗; 𝚯) + 𝜎ኼ፧𝐈]ዅኻ𝐲 −

1
2 log det[𝐊(𝐗, 𝐗; 𝚯) + 𝜎

ኼ
፧𝐈] −

𝑛
2 log 2𝜋 (B.10)

In Section 2.4 we have seen that maximising a marginal likelihood can select the hyperparameter while
avoiding overfitting. The explanation of Rasmussen and Ghahramani give an intuitive understanding
of why this is happening [43] (the notation is slightly changed to adapt with the notation of our docu-
ment):

The evidence (marginal likelihood) is the probability that if you randomly selected parame-
ter values from your model class, you would generate data set 𝐲. Models that are too simple
will be very unlikely to generate that particular dataset, whereasmodels that are too complex
can generate many possible data sets, so again, they are unlikely to generate that particular
data set at random.

This exactly what happens we assign an RBF kernel with a very short 𝜆. A short 𝜆 can model any
data. Because of that, the likelihood that our particular dataset will be generated is very unlikely, since
a short 𝜆 is very flexible that it can generate a various kind of data. Likewise, a long 𝜆 is very limited
modelling capability, hence the probability that this model will generate 𝐲 is very small as well.

B.2. Level 3 Inference in Section 3.2.3
An application of the level 3 inference is found in Section 3.2.3. There, we are faced with the problem
of selecting the best model 𝑀። from a discrete set ℳ. Each of the models is the possible kernel
combination in the search tree. According to the Bayesian methodology, the best model from the set
is the model which maximise the model posterior from Equation B.5. Normally, the prior probability of
the model, 𝑝(𝑀።), is equal. In that case, the model posterior is proportional to the likelihood

𝑝(𝑀።|𝐗, 𝐲) ∝ 𝑝(𝐲|𝐗,𝑀።) (B.11)

where the likelihood of the model posterior is equivalent to the marginal likelihood of the level 2 infer-
ence (Equation B.4). The integral in the marginal likelihood 𝑝(𝐲|𝐗,𝑀።) is often difficult to solve. As it
was already mentioned in Section 3.2.3, an approximation of this integral is the Bayesian information
criterion (BIC) [47]
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BIC = −2 log 𝑝(𝐲|𝐗, 𝚯,𝑀።) + 𝑚 log 𝑛 (B.12)

The BIC equation from Equation 3.6 and Equation B.12 is equivalent, with a slight change of notation.
The interested reader can follow the derivation of the BIC from Wasserman [54] or Neath and Kave-
naugh [37]. BIC is asymptotically equivalent to the model posterior of Equation B.5 under several weak
conditions [54]. The most important thing to note is the asymptotic assumption, which makes BIC more
effective for medium to large data.
In Section 3.2.3, it was mentioned that using the marginal likelihood of the hyperparameter is not ap-
propriate. By using this marginal likelihood, we approximate the marginal likelihood of the model,
𝑝(𝐲|𝐗,𝑀።) by the marginal likelihood of the hyperparameter

𝑝(𝐲|𝐗,𝑀።) ≈ 𝑝(𝐲|𝐗, 𝚯,𝑀።) (B.13)

In this setting, we completely ignore the integral of Equation B.4 and lose the regularisation effect that
is provided by the integral. In Section 2.4 we have seen the effect of the integral that regularises the
hyperparameter selection, and thus it avoids overfitting. By disregarding the integral, it is easy for the
model selection to overfit. The complex model, which in our case the model with many combinations
of base kernels, will get high likelihood 𝑝(𝐲|𝐗, 𝚯,𝑀።) because it models the data well. Figure 3.6a
shows an example of this circumstance. This situation is similar to the case where short 𝜆 will fits
the noisy data in Section B.1. Favouring a complex model is not desirable, that is why comparing
model by their marginal likelihood of the parameter is not suggested. The BIC tries to approximate
the integral provided by Equation B.4. The regularisation is provided by the right-hand term of the BIC
equation. It penalises model with too many kernel parameters. The effect of this can be clearly seen
in Figure 3.6b.
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