
 
 

Delft University of Technology

Fast network congestion detection and avoidance using P4

Turkovic, Belma; Kuipers, Fernando; van Adrichem, Niels; Langendoen, Koen

DOI
10.1145/3229574.3229581
Publication date
2018
Document Version
Accepted author manuscript
Published in
NEAT'18

Citation (APA)
Turkovic, B., Kuipers, F., van Adrichem, N., & Langendoen, K. (2018). Fast network congestion detection
and avoidance using P4. In NEAT'18: Proceedings of the 2018 Workshop on Networking for Emerging
Applications and Technologies (pp. 45-51). Association for Computing Machinery (ACM).
https://doi.org/10.1145/3229574.3229581
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3229574.3229581
https://doi.org/10.1145/3229574.3229581


Fast network congestion detection and avoidance using P4
Belma Turkovic

Delft University of Technology

B.Turkovic-2@tudelft.nl

Fernando Kuipers

Delft University of Technology

F.A.Kuipers@tudelft.nl

Niels van Adrichem

TNO

niels.vanadrichem@tno.nl

Koen Langendoen

Delft University of Technology

K.G.Langendoen@tudelft.nl

ABSTRACT
Along with exciting visions for 5G communications and the Tac-

tile Internet, the networking requirement of attaining extremely

low end-to-end latency has appeared. While network devices are

typically equipped with buffers to counteract packet loss caused by

short-lived traffic bursts, the more those buffers get filled, the more

delay is added to every packet passing through.

In this paper, we develop congestion avoidance methods that

harness the power of fully programmable data-planes. The cor-

responding programmable switches, through languages such as

P4, can be programmed to gather and react to important packet

meta-data, such as queue load, while the data packets are being pro-

cessed. In particular, we enable P4 switches to (1) track processing

and queuing delays of latency-critical flows and (2) react immedi-

ately in the data-plane to congestion by rerouting the affected flows.

Through a proof-of-concept implementation in emulation and on

real hardware, we demonstrate that a data-plane approach reduces

average and maximum delay, as well as jitter, when compared to

non-programmable approaches.

CCS CONCEPTS
• Networks→ Data path algorithms; Programmable networks;

KEYWORDS
Low latency, Programmable data-planes, Tactile Internet, 5G.

1 INTRODUCTION
For long, available network capacity has been the most important

Quality-of-Service (QoS) parameter to optimize for. Recently, with

the emergence of novel application domains such as the Tactile

Internet – where the objective is to transport a sense of touch over

the Internet – and supporting communications technologies such

as 5G, low latency has also become a crucial QoS parameter. Tactile

Internet applications need very low latency (≈ 1ms), low jitter, high

bandwidth (in the order of Gbps), and high reliability [4, 6, 9].

Tactile Internet traffic could be very bursty, depending on the

required modalities (audio, video, and/or haptic). While prediction

algorithmsmight relax the latency requirement, consistent feedback

and a maximum delay bound are necessary for a haptic system to be

stable. Consequently, to minimize the end-to-end latency, packets

of Tactile Internet flows should not be delayed on any node on the

path nor be dropped by the network. This requires network nodes

to be able to quickly detect and react to any changes in the network

state, such as buffers filling up.

A packet typically encounters four types of network delay:

• Propagation delay: a function of the physical distance and

propagation speed of a link.

• Transmission delay: a function of the size of a packet and

the data rate of the link.

• Processing delay: the time required to inspect a packet header

and determine its destination.

• Queuing delay: the amount of time a packet is waiting in a

queue until it can be transmitted.

In contrast to the propagation and transmission delays, the process-

ing and queuing delays depend on the amount of traffic and how

it is handled in the network. As such, they may vary significantly

and controlling and limiting them is of importance and therefore

the main topic of this paper.

1.1 Problem definition
One of the most important factors that contributes to queuing

delay is congestion, which occurs when a network node is trying

to forward more data than the outgoing link can process.

Congestion control mechanisms of traditional transport proto-

cols such as TCP detect congestion at the sender node and modify

the sending rate accordingly. In the case of tactile traffic, such

an approach is not feasible as it is not allowed to buffer or in-

crease/decrease the rate at the tactile source. Furthermore, many

congestion control algorithms only kick in after congestion has

occurred and need at least one round-trip time (RTT) to react to the

perceived congestion. Software-defined networking (SDN [8, 10]),

as a new paradigm in networking, offers an alternative. Because

every node in the network is controlled from software-based con-

trollers, these controllers have a centralized view of the network

and are able to react and adapt to changing network conditions

faster. A common method to provide QoS in SDN is to implement

virtual slicing of the available bandwidth on all the nodes on the

path, reserving parts of it for different services, or to use priority

queuing. But, as the required bandwidth can be in the order of a few

Gbps [9], reserving the maximum required bandwidth for every

flow is not scalable. Priority queuing, while minimizing queuing

delay for the higher prioritized flows, can lead to starvation of

flows and does not prevent congestion. In fact, high-priority flows

will starve when congestion forces low-priority flows to occupy

all available queue space. Alternatively, IEEE 802.1TSN works on

standardizing specialized schedulers for Time-Sensitive Networks

(TSN), such as time-aware traffic shapers [7], though those solutions

require a closed-circuit network to operate.

There are many frameworks that use some form of QoS routing

to find the path that satisfies different QoS requirements. However,



SDN frameworks from this group depend on some form of moni-

toring ([11, 12]). Incorrectly set monitoring intervals have direct

influence on the usefulness of the gathered data as well as the num-

ber of probe packets sent. Additionally, after congestion is detected,

a certain time is needed for the controller to recompute the path

and reconfigure table entries before switching the flow to a better

path. To avoid the aforementioned artifacts, the main problem to

be solved is: How to enable congestion control and avoidance in the
forwarding nodes, instead of at the source or via a controller?

1.2 Main contributions
In Section 2, we propose a hierarchical control model for latency-

critical flows. Our solution contains a small program running di-

rectly on the switches, which has real-time access to latency moni-

toring data to quickly reroute traffic when degradation is detected.

In Section 3, we evaluate our solution both by emulation through

software switches as well as with P4 hardware. We compare our so-

lution against a congestion-agnostic approach aswell as to congestion-

avoidance approaches that make use of probing.

2 CONGESTION DETECTION AND
AVOIDANCE IN THE DATAPLANE

If end-to-end delay, as well as jitter, needs to be kept under a certain

threshold, the main challenge is to detect and react to any increase

in delay when data is being processed at the switches and not (only)

at the source. If every switch minimizes the total delay per node (for

certain traffic flows) to a configurable value, bounding maximum

end-to-end delay becomes feasible.

Recently, in the wake of SDN, programmable switches have ap-

peared along with domain-specific programming languages such as

P4 to program them [5]. P4 offers the possibility to gather and ex-

port important packet meta-data (timestamps from different stages

of processing, queue depths, etc.) directly from the data-plane while

the data-packets are being processed. To leverage this unique pos-

sibility of collecting packet meta-data, we propose a hierarchal

architecture, as shown in Fig. 1, to detect and avoid congestion:

A local congestion control module at the P4 switches, as elabo-

rated on in Sec. 2.1, monitors the state of all the low-latency flows,

while a central controller configures the latency thresholds and

other parameters.

2.1 Local control
A local Congestion Detection and Avoidance module, see Fig. 2, is

developed to monitor the processing and queuing delays.

If the module determines that one of these delay components

is increasing for a latency-critical flow, and congestion is likely

to occur, it preemptively switches the traffic to a better backup

path if it exists or signals to the previous node in the path that

it is congested and that it should not forward any more packets

belonging to that flow.

According to the P4 language specifications [1, 2], table entries

at a switch cannot be modified without the intervention of the

control-plane (controller). Thus, in order to achieve rerouting in

the data-plane we are left with two choices: (1) add both entries

(primary and backup) to a table and decide which rule to apply

based on some meta-data stored in the registers, or (2) send packets

Central Controller

Tactile Internet

Module

Network Manager

and Monitoring

Module

Device and

Packet Manager

Module

Standard routing

Module

gRPC/Thrift

gRPC/Thrift server

Local Congestion Detection

and Avoidance Module

P4 Switch

Figure 1: Hierarchical design of the control plane.

P4 Switch

Local Congestion Detection

and Avoidance Module

tproc . tque .

data

BB

data

BB

BB

tque .

tproc .

if (congested)

reconfigure

Figure 2: Detection of congestion in the data-plane. Every
switch has a small congestion avoidance module, gathering
statistics (processing and queuing delay).

or packet digest notifications to a local listener that tracks the flows

and acts as a small local control-plane.

If we use meta-data and registers, the solution is applicable to all

P4-capable hardware and all processing is done entirely in the data-

plane. As a consequence processing delay per packet is increased,

as more table entries and registers are needed to maintain accurate

flow state in the data-plane. Additionally, updating registers per

packet can lead to race conditions when packets from the same flow

are processed in parallel. Since meta-data and register values affect

table entries dynamically, table lookup caching, must be disabled.

Alternatively, if we use packet copies or packet digests, a lo-

cal listener module (that is running on the same machine as the

switch itself) can make local routing decisions based on the re-

ceived data. The disadvantage is a slightly higher detection delay,

since transmitting the digest packet to and processing it at the local

control module takes additional time. Additionally, while digest

notifications are very small (containing only relevant packet data

and meta-data), the rate at which they are generated can be very

high if we want to obtain delay information about every packet on

the path. To avoid overloading the local control application module,

2



t1

t2

h5h3

h1

s2

s1 s3

s4

s5

s6

s7

Figure 3: The blue line is the primary path and the red line is
the backuppath that trafficwill takewhen any of the routers
on the primary path detects congestion. To be effective, both
paths have the same weight and are assumed equally stable.

we will shift the detection of the congestion to a P4 program and

use digests to notify the local module about congestion only when

the delay increases above a certain threshold.

The number of consecutive packets m with increased delay

needed to signal congestion, as well as the threshold values for

queuing tq and processing tp delays are configurable and depend

on the type of hardware used as well as the sensitivity needed.

On the one hand, if the thresholds are too small, the local control

module might reroute traffic unnecessarily, potentially increasing

the jitter as well as creating additional load on the central controller

that needs to recalculate a new backup route, delete rules from the

old primary path and install new backup rules. On the other hand,

if the thresholds are too large, the control module might react too

late, thus providing little increase in performance when compared

to legacy solutions.

2.2 Rerouting example
In order to have adequate backup paths available, for every new

tactile flow two paths that satisfy the latency requirement of that

flow are calculated, as shown in Fig. 3. The blue path (s1-s3-s5-s7)

is used as the primary path. The red path (s1-s4-s6-s7) is used as

backup. Multiple primary and/or backup paths could also have

been used, but we have opted for single paths, since it requires less

processing (in terms of packet re-ordering) at the end-node.

In case an increase in queuing delay is detected on switch s1,

the local congestion control program will change the output port

for this flow to s4 (as shown in Fig. 4). Switch s1 is still used, as

output ports and consequently output queues are different and not

affected by the detected queue build-up. The tactile route is already

configured on switches s4 and s6 and thus rerouting is achieved

instantly. The local control programs at the switches determine the

output ports based on input they receive from a central controller

that tracks the link utilizations and delays on all the nodes in the

network by sampling the network constantly.

In case switch s5 detects congestion (increased queuing delay

on the tactile queue to s7 or increased processing delay) it has no

better route configured and can thus only signal to its predecessor

that the output link is congested. It thus sends a control message

(congestion notification) to s3, who forwards it to s1. When s1

receives this message it will switch the affected tactile flow to s4

(as shown in Fig. 5).

t1

t2

h5h3

h1

s2

s1 s3

s4

s5

s6

s7

data data

data

data

data

data

data

data

Figure 4: If switch s1 is congested, it already knows a better
backup route. S1 will consequently reroute the traffic to s4.

t1

t2

h5h3

h1

s2

s1 s3

s4

s5

s6

s7

data data

cncn

data

data

data

data

data

data

Figure 5: If switch s5 is congested, no better route can be
found to t2. In this case, s5 will send a packet to s3 informing
s3 not to send packets through s5. S3 forwards this control
packet to s1, who will consequently reroute the traffic to s4.

It is important to notice that links of the backup path are disjoint

from the links of the primary path after s1 (the switch that can

actually perform the fail-over). The paths are calculated this way

to prevent the backup path from forwarding the traffic to the same

congested link as the primary path. The central controller, which

has knowledge about the whole network, computes these paths

periodically, based on the current network state. When a flow is

switched to a backup route, that route becomes the new primary

path and a new backup must be computed and installed.

3 EVALUATION USING EMULATION
We have evaluated our solution, via the set-up described in Sec. 3.1,

using the Mininet emulation environment with the P4 software

switch (behavioral model, nicknamed bmv2 [3]).

3.1 Experiment setup
Multiple flows were generated and RTT, maximum RTT, packet loss,

as well as ingress processing, queuing, jitter, detection and reaction

delays were measured. Per tactile flow, one primary and one backup

route were configured. Additional traffic was generated to create

congestion on different intermediate nodes on the primary route.

Each tactile traffic trace was 15 seconds long, and these scenarios

were repeated 40 times.

We varied the detection threshold for processing and queuing

delays, as well as the number of consecutive packetsm that need

to have an increased delay in order to detect congestion. Scenario

3



DataplaneX_m represents a scenario where the thresholds for pro-

cessing and queuing delays were X times the processing and queu-

ing delays on the switch if no additional load was generated andm
is as defined before.

Our approach was compared to (1) an approach that uses no

congestion detection and never recomputes paths (scenario No CC),

which is mimicking traditional routing protocols such as OSPF

and (2) an SDN-like approach that uses a centralized controller

and periodically sends probe packets (scenarios ProbingX sec), to
determine the current network state and detect congestion. We

used different monitoring intervals, namely 1, 2, and 5 sec.

3.2 Mininet results
We have used the network topology displayed in Fig. 3. The rate

of all the bmv2 output queues was limited to 170.000 pkts/s (≈

200Mbps) in order to make sure that there would be a queue build-

up. With this configuration, as the packet arrival rate is smaller

than what the bmv2 ingress pipeline can process (≈ 1Gbps on a

server in our testbed), the bandwidth, and not the processing is the

bottleneck. If the rate of the output queues is not limited, when the

maximum throughput is reached, packets are dropped before the

ingress pipeline, and there is no queue build-up, since the egress

pipeline is usually faster than that of the ingress in bmv2.

In our scenario, 8.000 packets per second (≈ 4Mbps with a packet
size of 64B) were injected by the tactile flow that we were interested

in. If the amount of additional traffic was below the configured

bottleneck bandwidth of ≈ 200Mbps , the switches could process the
low-latency data at line rate (Fig. 6). When the volume of additional

traffic approached 200 Mbps, the delay on node s3 increased, as the

total amount of traffic exceeded the configured rate of the output

queue. This was also the point were all the evaluated approaches

correctly detected congestion and reconfigured the path for the

tactile data.

Detection time: In the probing scenarios, as the controller uses

increased delay of probe packets as an indication of congestion, the

smaller the probing interval, the faster the controller was able to

detect congestion, as shown in Fig. 6c. As the volume of additional

traffic increased, the number of dropped probe packets, as well as

the maximum delay, increased as well. In these scenarios, when

no probe was returned within the probing interval, the controller

assumed that the packet was lost and the link congested. This is

why the detection delay in Fig. 6c is higher than expected (half the

monitoring interval). By comparing the values for the maximum de-

tection delay, we observed that in the worst case it is approximately

two times the value of the probing interval, which corresponds to

one probe packet being sent immediately after congestion (in the

queue build-up phase) and the subsequent packet being lost. Thus,

the controller needed to wait for the timeout value (one monitoring

interval) to expire.

In case the detection was done using the measurements in the

data-plane, the controller was always able to detect the changes

very fast, by observing the data itself independently of the probe

packets that were sent. The advantage of this approach is especially

noticeable when detection time is compared to other approaches,

as shown in Fig. 6c. An increased number of subsequent packetsm

(Dataplane12_20) increases detection delay. However, this increase

is very small when compared to scenarios ProbingX sec.

Reaction time: After detecting congestion, in case of the prob-

ing scenarios, the controller needed to find a new route and install

new table entries starting from the end of the path in order to min-

imize the number of dropped packets. After traffic was switched,

some packets were still present in the queues of the congested node.

Consequently, packets arrived in the wrong order at the endpoints.

All data-plane schemes only needed to update one table entry.

The switches could immediately forward traffic on the new path

and thus the total time needed to switch the traffic was minimized.

Delay and jitter measurements: The data-plane schemes, as a

consequence of fast detection, had the lowest average andmaximum

delay, as can be seen in Fig. 6e. Increasing the number of subsequent

packetsm has a negative influence on the maximum delay, as well

as maximum jitter, especially in case of very high additional traffic.

Average loss: In the case of no congestion control (scenario No

CC), packets were queued until the buffer limit on s3 was reached,

causing an increased number of dropped packets as can be seen in

Fig. 6b. All probing scenarios were able to detect and reduce the

number of dropped packets. By comparing the loss values, we can

see that data-plane approach was the only one that could keep the

loss value at 0%. For the probing solutions the loss increased with

the amount of additional traffic, due to faster overruns of buffers.

Artifacts caused by the environment: One of the identified
problems was that, depending on the configured threshold for the

detection in the data-plane, the probability of false negatives was

significant (scenario Dataplane2_5). In these scenarios, although

the threshold was set to twice the value of the queuing delay when

no additional traffic was generated, switches detected congestion

every time. By increasing the value of the threshold, or the number

of subsequent packets needed, the value of false positives can be

reduced, as shown in Fig. 6d, while maintaining the QoS parameters

at almost the same level.

4 PROOF OF CONCEPT USING P4
HARDWARE

We have built a proof of concept using our P4 hardware testbed that

consists of physical general-purpose servers enhanced with smart

network interface cards (Netronome Agilio CX 2x10GbE), which

were connected as shown in Fig. 7. All the servers used Thrift RPC

as the control interface and ran Ubuntu with kernel version 4.10.

Two different data-plane approaches were evaluated. The first

one (DP_direct) did all the processing in the data-plane, while

the second one (DP_listener) implemented the detection of delay

increase in the data-plane and did all the subsequent processing of

the notifications in the local digest listener module. Our approach

was compared to an approach that does no congestion control

(scenario No CC, as in Sec. 3) as well as to an approach that uses

periodic sampling of the current state of the network stored in

switch registers (Probing1sec-5sec). All scenarios were repeated 50

times.

A tactile flow was generated between switches s1 and s4, while

additional traffic was passing between hosts h1-h4 and hr, gen-

erating congestion on the output port of switch s2. The tactile

flow had a throughput of 20 kpps (≈ 240Mbps with packet size of

4



100 150 200 250

0

10

20

30

additional traffic [Mbps]

[m
s]

No CC

Probing5sec

Probing3sec

Probing1Sec

Dataplane2_5

Dataplane12_5

Dataplane12_20

(a) Average RTT for tactile data.

100 150 200 250

0

0.1

0.2

0.3

additional traffic [Mbps]

[%
]

No CC

Probing5sec

Probing3sec

Probing1Sec

Dataplane2_5

Dataplane12_5

Dataplane12_20

(b) Average loss for tactile data.

200 220 240 260 280

0

5

10

additional traffic [Mbps]

[m
s]

Probing5sec

Probing3sec

Probing1Sec

Dataplane2_5

Dataplane12_5

Dataplane12_20

(c) Congestion detection + reac-
tion delay.

100 150 200 250

0

20

40

60

80

100

additional traffic [Mbps]

[%
]

Dataplane2_5

Dataplane12_5

Dataplane12_20

(d) Percentage of tactile data
that were rerouted to the
backup path.

100 150 200 250

10

20

30

40

50

additional traffic [Mbps]

[m
s]

Probing1Sec

Dataplane2_5

Dataplane12_5

Dataplane12_20

(e) Maximum RTT for tactile
data.

100 150 200 250

10

20

30

40

50

additional traffic [Mbps]

[m
s]

Probing1Sec

Dataplane2_5

Dataplane12_5

Dataplane12_20

(f) Comparison of maximum
variation in RTT.

Figure 6: Mininet scenario (Confidence intervals 90%). Com-
parison of different QoS parameters for different schemes
when congestion is present.

t1

t2

s2

s4s1

s3

h1 h2 h3 h4

hr

Figure 7: Hardware topology.

1500 B), while the additional traffic had a throughput of 1.5 Mpps

(where the packet size varied between 64 B and 1100 B), creating

load in the range of ≈ 750 Mbps to ≈ 13 Gbps. The first and last

second of the trace were not taken into account for latency and

jitter measurements and additional traffic started 2s after the tactile

traffic in order to observe queue build-up. To achieve high accuracy

(nanosecond range), as well as to limit the influence of external

factors (e.g., processing in the driver, kernel, etc.), latency was mea-

sured in the data-plane at switch s1. Every tactile packet that was

processed was equipped with an additional header field storing a

64-bit ingress time-stamp (when the packet was received from t1)

or an egress time-stamp (when the packet was forwarded to t2).

Since there is no external syncing between the switches, tactile

traffic was routed back from s4 to switch s1, which inserted both

timestamps, as shown in Fig. 7.

4.1 Netronome Agilio CX SmartNIC results
We encountered several limitations when we evaluated our scheme

using the above-mentioned testbed. In an initial experiment, while

measuring the ingress and egress processing delays, the delay be-

tween these two stages (which should represent queuing delay)

was constant, even when the switch was congested and the total

end-to-end delay increased. Because we were unable to obtain queu-

ing delay information directly from the P4 program, we measured

the total delay on the switch (from the ingress MAC component

to the egress MAC component). An ingress time-stamp (the time

in nanoseconds when the ingress MAC component receives the

packet) was attached to the packet data structure while the packet

was being processed at the card and could be inserted by the P4 pro-

gram itself. In order to get the egress time-stamp, we added a special

32-bit header to the start of the packet. When the egress MAC com-

ponent of the SmartNIC receives this special header it attaches the

egress counter-value “time-stamp” and forwards the packet to the

next switch. Since no external syncing is implemented, counter val-

ues can only be used for latency measurements inside one card. A

subsequent switch in the path keeps track of the difference between

these values in a register and based on that value decides whether

the previous switch is congested or not. If it determines that the

previous switch is congested it will send a congestion notification

back, that, when received by s1, will trigger the rerouting to the

backup path (s1-s3-s4). Thus, the detection of the congestion was

shifted by one node, increasing the reaction time when compared

to the emulated environment.

Measurements shown in Fig. 8 demonstrate a functional proof of

concept. All the evaluated data-plane approaches, DP_listener and

DP_direct, outperformed the other analyzed approaches by keeping

all the analyzed QoS parameters on par with scenarios where no

congestion was present. We have plotted only DP_direct_1.5_10

and DP_listener_1.5_10 in Figures 8a and 8b, but all other analyzed

data-plane scenarios had similar performance.

Average and maximum delay: When the switches were not

congested, the data-plane approaches, as a consequence of addi-

tional processing, had higher average and maximum delay than

the other evaluated approaches (from ≈ 1, 900 in scenario No CC

to ≈ 2, 000 for Dataplane_listener and ≈ 2, 500[cycles/8] in case of

Dataplane_direct ). The significant increase in average as well as

maximum delay for the Dataplane_direct scenario is a consequence

of a more complex data-plane implementation, since multiple tables

and registers are needed to keep the per-flow state.

For higher volumes of additional traffic, only direct data-plane

approaches were able to keep the maximum delay at the same level

5



0.4 0.6 0.8 1 1.2

·104

0.2

0.4

0.6

0.8

1

·104

additional traffic [Mbps]

[c
y
cl
es
/
8
]

No CC

Probing5Sec

Probing3Sec

Probing1Sec

DP_listener_1.5_10

DP_direct_1.5_10

(a) Average RTT for tactile data.

400 600 800 1,000 1,200
0

5

10

15

20

additional traffic [Mbps]
r
t
t
[c
y
cl
es
/
8
]

No CC

Probing5Sec

Probing3Sec

Probing1Sec

DP_listener_1.5_10

DP_direct_1.5_10

(b) Average loss for tactile data.

0.4 0.6 0.8 1 1.2

·104

0.2

0.4

0.6

0.8

1

1.2
·104

additional traffic [Mbps]

[c
y
cl
es
/
8
]

Probing1Sec

DP_listener_1.5_1

DP_listener_1.5_10

DP_direct_1.5_1

DP_direct_1.5_10

(c) Maximum RTT for tactile
data.

0.4 0.6 0.8 1 1.2

·104

0.2

0.4

0.6

0.8

1

·104

additional traffic [Mbps]

r
t
t
[c
y
cl
es
/
8
]

No CC

Probing1Sec

DP_listener_1.5_1

DP_listener_1.5_10

DP_direct_1.5_1

DP_direct_1.5_10

(d) Maximum jitter for tactile
data.

0.4 0.6 0.8 1 1.2

·104

0

20

40

60

80

100

additional traffic [Mbps]

[%
]

Probing1Sec

DP_listener_2_1

DP_listener_2_10

DP_listener_2_20

DP_listener_2_50

(e) The influence of the number
of packetsm used to detect con-
gestion on the average percent-
age of packets that were pro-
cessed on the backup path.

0.4 0.6 0.8 1 1.2

·104

0

20

40

60

80

100

additional traffic [Mbps]

[%
]

Probing1Sec

DP_listener_1.5_10

DP_listener_2_10

DP_listener_2.5_10

(f) The influence of detection
threshold (tp + tq ) on the aver-
age percentage of packets that
were processed on the backup
path.

Figure 8: Netronome SmartNIC scenario (Confidence inter-
vals 90%). Comparison of different QoS parameters for dif-
ferent schemes when additional traffic is generated to create
congestion at node s2.

as before, as shown in Fig. 8a. Switch s1 was the one that rerouted

the traffic, causing delay between detection and reaction. Even the

data-plane approaches were unable to keep the maximum latency

value below a certain threshold, especially for higherm.

Maximum jitter was lowest for No CC approach and DP_direct

(Fig. 8d). The relatively high jitter for the other approaches is a

consequence of switching paths. The first packet that is processed

on the backup path has a very low RTT compared to the ones that

are still processed by the congested nodes.

Congestion detection and sensitivity Increasing the detec-

tion threshold, shown in Fig. 8f, has a negative influence as we miss

the start queue buildup phase and, consequently, more packets are

affected by congestion. By decreasing the threshold, even when the

value of additional traffic was not high enough to cause congestion,

all analyzed approaches (including the Probing scenarios) detected

it. In cases when both primary and backup paths have high link

utilizations, this behavior may lead to too many recalculations and

path switching, which would degrade the overall performance. This

can be resolved by increasing the number of packets used to detect

congestion, as shown in Fig. 8e.

5 CONCLUSION
To quickly detect and avoid congestion within a network, we have

proposed a P4-based technique that enables measuring delays and

rerouting in the data-plane. Our approach offers two main advan-

tages. First, the detection time is reduced and congestion is detected

per flow. Thus, only the affected flows are rerouted and QoS degra-

dation of other flows is avoided. Second, after detection, the reaction

time is minimized as a local controller, based on input from a cen-

tral controller, intervenes by configuring a better route. Therefore,

no new flow rules need to be installed and the load on the central

controller is reduced.

We encountered some limitations with the evaluation of our

solution using Netronome P4 SmartNICs, such as a limit on range

matching, a performance penalty due to disabled caching, as well as

lack of information about the queuing delay of the current switch.

Nonetheless, we were able to show the feasibility of our solution

in both emulated and physical networks.

While the presented approach requires specialized hardware

(P4-capable switches), in a hybrid network where only some nodes

can be programmed, detection time as well as reaction time to

congestionmight still be reduced using this scheme, when the nodes

are placed at crucial points in the network such as the network

edge. Additionally, our solution can easily be extended to a solution

that uses bandwidth reservation and/or priority queuing.

REFERENCES
[1] P4 14 language specification. https://p4.org/p4-spec/p4-14/v1.0.4/tex/p4.pdf.

Accessed: 19-03-2018.

[2] P4 16 language specification. https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html.

Accessed: 19-03-2018.

[3] P4 behavioral model. https://github.com/p4lang/behavioral-model. Accessed:

19-03-2018.

[4] Berg, D. V. D., Glans, R., Koning, D. D., Kuipers, F. A., Lugtenburg, J., Po-

lachan, K., Venkata, P. T., Singh, C., Turkovic, B., and Wijk, B. V. Challenges

in haptic communications over the tactile internet. IEEE Access 5 (2017), 23502–
23518.

[5] Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J.,

Schlesinger, C., Talayco, D., Vahdat, A., Varghese, G., and Walker, D. P4:

Programming protocol-independent packet processors. SIGCOMM Comput. Com-
mun. Rev. 44, 3 (July 2014), 87–95.

[6] Fettweis, G. The tactile internet: Applications & challenges. IEEE Vehic. Tech.
Mag. 9, 1 (March 2014), 64 – 70.

[7] Maxim, D., and Song, Y.-Q. Delay analysis of avb traffic in time-sensitive

networks (tsn). In Proceedings of the 25th International Conference on Real-Time
Networks and Systems (2017), ACM, pp. 18–27.

[8] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L.,

Rexford, J., Shenker, S., and Turner, J. Openflow: Enabling innovation in

campus networks. SIGCOMM Comput. Commun. Rev. 38, 2 (Mar. 2008), 69–74.

[9] Seam, A., Poll, A., Wright, R., Mueller, J., and Hoodbhoy, F. Enabling mobile

augmented and virtual reality with 5g networks, January 2017.

[10] Sezer, S., Scott-Hayward, S., Chouhan, P., Fraser, B., Lake, D., Finnegan,

J., Viljoen, N., Miller, M., and Rao, N. Are we ready for sdn? implementation

challenges for software-defined networks. IEEE Communications Magazine 51, 7
(2013), 36–43.

[11] Shu, Z., Wan, J., Lin, J., Wang, S., Li, D., Rho, S., and Yang, C. Traffic engineering

in software-defined networking: Measurement and management. IEEE Access 4
(2016), 3246–3256.

[12] van Adrichem, N. L. M., Doerr, C., and Kuipers, F. A. Opennetmon: Net-

work monitoring in openflow software-defined networks. In 2014 IEEE Network

6

https://p4.org/p4-spec/p4-14/v1.0.4/tex/p4.pdf
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html
https://github.com/p4lang/behavioral-model


Operations and Management Symposium (NOMS) (May 2014), pp. 1–8.

7


	Abstract
	1 Introduction
	1.1 Problem definition
	1.2 Main contributions

	2 Congestion detection and avoidance in the dataplane
	2.1 Local control
	2.2 Rerouting example

	3 Evaluation using emulation
	3.1 Experiment setup
	3.2 Mininet results

	4 Proof of concept using P4 hardware
	4.1 Netronome Agilio CX SmartNIC results

	5 Conclusion
	References

