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Binary Block Codes for Noisy Channels
With Unknown Offset

Jos H. Weber , Senior Member, IEEE, Renfei Bu , Kui Cai , Senior Member, IEEE,
and Kees A. Schouhamer Immink , Life Fellow, IEEE

Abstract— Decoders minimizing the Euclidean distance
between the received word and the candidate codewords are
known to be optimal for channels suffering from Gaussian noise.
However, when the stored or transmitted signals are also cor-
rupted by an unknown offset, other decoders may perform better.
In particular, applying the Euclidean distance on normalized
words makes the decoding result independent of the offset. The
use of this distance measure calls for alternative code design
criteria in order to get good performance in the presence of
both noise and offset. In this context, various adapted versions
of classical binary block codes are proposed, such as (i) cosets
of linear codes, (ii) (unions of) constant weight codes, and
(iii) unordered codes. It is shown that considerable performance
improvements can be achieved, particularly when the offset is
large compared to the noise.

Index Terms— Binary block codes, decoding criteria, noise,
offset, performance evaluation.

I. INTRODUCTION

BESIDES the omnipresent noise, an unknown offset is
another nuisance in many communication and storage

systems. While noise may vary from symbol to symbol, it is
often assumed that the offset is constant within a block of
symbols. For example, charge leakage from memory cells
may cause such an offset of the stored signal values [12].
While Euclidean distance based decoders are known to be
optimal if the transmitted or stored signal is only disturbed
by Gaussian noise, they may perform badly if there is offset
as well. On the other hand, decoders based on the Pearson
correlation coefficient are completely immune to offset
mismatch, at the expense of a higher noise sensitivity [8].

Various methods to deal with offset mismatch have
been proposed. One way is the use of fixed predetermined
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pilot symbols, from which the offset can be estimated.
After subtraction of the offset from the received sequence,
the decoder can deal with the noise as usual. However,
the pilot symbols lead to a redundancy increase, of course.
An alternative method is dynamic threshold detection [7],
in which the information is encoded using a conventional
error-correcting code and the actual offset is estimated based
on the disturbed received symbol sequence, that is re-scaled
accordingly and further processed using the Chase algorithm.

In the methodology considered in this paper, no offset
estimation is required. Hence, in contrast to prior methods,
no extra redundancy and/or operations to deal with offset
cancellation are needed. Actually, offset immunity is
guaranteed by considering normalized codewords in the
decoding process, rather than the codewords themselves.
The price to pay for this virtue is a worse noise resistance,
since the normalization brings the codewords closer to each
other in Euclidean space. Also, the decoding complexity
is typically high, which makes the method infeasible for
long codes.

With respect to the design of codes that work well in com-
bination with decoders that are immune to offset mismatch,
the emphasis has been on constructing a set of codewords
S ⊆ {0, 1, . . . , q − 1}n, q ≥ 2, with the following property
[14]. If a vector (u1, u2, . . . , un) is in S, then any vector of the
type (u1 + c, u2 + c, . . . , un + c), with c ∈ R, c �= 0, is not in
S. This indeed avoids codeword ambiguity for such decoders,
but the error rate may still be too high due to the noise, since
the codewords can be quite close to each other in R

n.
In this paper, we focus on the binary case, i.e., q = 2.

We design codes that work well with offset-resistant decoders,
even if there is considerable noise. One approach is based on
classical linear block codes. However, rather than using these
codes as such, we consider carefully chosen shifts of these
codes, i.e., cosets. Another approach is based on constant
weight codes [11]. These are known to be intrinsically resistant
to offset mismatch. In particular, we investigate unions of
such codes. Finally, we revisit the concept of unordered
codes [2], that turns out to be a promising alternative.

The rest of this paper is organized as follows. In Section II,
we present the channel model and further preliminaries.
Next, we analyze the distance measure under consideration
for the binary case in Section III. Based on this analysis,
we propose appropriate codes in Sections IV-VI, followed by
a performance evaluation in Section VII. Finally, the paper is
concluded in Section VIII.
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II. PRELIMINARIES

We consider the binary case, in the sense that we have
two real signal levels, l0 and l1, and that we use codes
over GF(2). By appropriate scaling and shifting operations,
we assume without loss of generality that l0 = 0 and l1 = 1.
Given the context, these zeroes and ones will be considered
as elements of either R, e.g., if we use them as signal
values, or GF(2), e.g., if we perform algebraic operations on
codewords. Furthermore, let ‘+’ denote the real addition and
let ‘⊕’ denote the XOR addition.

We assume a channel such that

r = x + ν + b1, (1)

where x = (x1, . . . , xn) is the transmitted codeword taken
from a code S ⊆ {0, 1}n ⊂ R

n, ν = (ν1, . . . , νn) ∈
R

n is the noise vector, where the νi are independently
normally (Gaussian) distributed with mean 0 and standard
deviation σ, b is a real number representing the unknown
channel offset, 1 is the real all-one vector (1, . . . , 1) of length
n, and r ∈ R

n is the received vector. Note that we assume
that the noise may vary from symbol to symbol, while the
offset is fixed within a block of codeword symbols. The offset
value may vary from codeword to codeword though [8]. This
precludes the usage of regular offset control estimation based
on previously retrieved codewords.

A general decoding technique upon receipt of the vector
r is to choose as the decoder output a codeword optimizing
some criterion. In the case of Gaussian noise without offset
mismatch, it is well known that minimizing the Euclidean
distance between the received vector and the candidate code-
words achieves maximum likelihood decoding. The squared
Euclidean distance between u and v in R

n is defined by
δ(u,v) =

∑n
i=1(ui − vi)2. Upon receipt of a vector r,

a Euclidean decoder outputs

arg min
x̂∈S

δ(r, x̂). (2)

When there is offset mismatch besides the Gaussian noise,
then a good alternative, inspired by the well-known Pearson
correlation coefficient, is to apply the squared Euclidean dis-
tance principle on vectors which are normalized by subtracting
their average value from each coordinate [8]. This leads to the
distance

δ∗(u,v) = δ(u − ū1,v − v̄1), (3)

where w̄ = 1
n

∑n
i=1 wi. Note that this is not a metric in the

strict mathematical sense, since, for example, δ∗(u,v) = 0
may hold for vectors u and v �= u. Actually, an interpretation
of (3) is that the vectors u and v in R

n are mapped to
vectors in the hyperplane {y ∈ R

n : ȳ = 0} by orthogonal
projection, i.e., in the direction 1, and that then the squared
Euclidean distance between these projections is calculated.
As a consequence, codeword pairs (u,v) such that u = v+c1,
c ∈ R, c �= 0, should be avoided, since these cannot be
distinguished from each other.

Upon receipt of a vector r, a decoder using measure (3)
outputs

argmin
x̂∈S

δ∗(r, x̂). (4)

This criterion is known to be immune to offset mismatch,
in the sense that the decoding result is independent of the
value of b. However, it is more sensitive to noise than (2), due
to the projection as just described, which brings codewords
closer together. It has also been shown in [8] that rather than
minimizing δ∗(r, x̂) among all candidate codewords x̂ ∈ S,
we may as well minimize δ(r, x̂ − ¯̂x1), called the modified
Pearson distance in [8], since it leads to the same result.

The word error rate (WER) of a code S when there is no
offset mismatch, i.e., b = 0, can be upper bounded by using a
union bound type of argument. If (2) is used as the decoding
criterion, then it is well known [8] that

WER ≤ 1
|S|

∑
u∈S

∑
v∈S,v �=u

Q

(√
δ(u,v)
2σ

)

=
∑
α∈R

NαQ

(√
α

2σ

)
, (5)

where Nα = 1
|S|
∑

u∈S |{v ∈ S : v �= u ∧ δ(u,v) = α}| and

Q(z) = 1√
2π

∫∞
z e−u2/2du.

If (4) is used, we denote the word error rate as WER∗.
Then it has been shown in [8] that

WER∗ ≤ 1
|S|

∑
u∈S

∑
v∈S,v �=u

Q

(√
δ∗(u,v)
2σ

)

=
∑
α∈R

N∗
αQ

(√
α

2σ

)
, (6)

where N∗
α = 1

|S|
∑

u∈S |{v ∈ S : v �= u ∧ δ∗(u,v) = α}|.
Define δmin = minu,v∈S,u �=v δ(u,v) and δ∗min = minu,
minv∈S,u �=v δ∗(u,v). For small values of the noise standard
deviation σ, we have

WER ≈ Nδmin × Q(
√

δmin/(2σ)), (7)

if (2) is used, and

WER∗ ≈ N∗
δ∗
min

× Q(
√

δ∗min/(2σ)), (8)

if (4) is used.
In this paper we focus on the design of binary codes

avoiding codeword pairs (u,v) with small δ∗(u,v) values,
since this has a positive impact on the word error rate, which
is apparent from the stated expressions.

III. ANALYSIS OF δ∗(u,v) FOR BINARY VECTORS

The weight of a binary vector u is defined by w(u) =
|{i : ui = 1}|. Further, define N(u,v) = |{i : ui =
0 ∧ vi = 1}| for any two binary vectors u and v of length
n. Hence, the Hamming distance between such vectors can
be expressed as d(u,v) = N(v,u) + N(u,v). Note that
for binary vectors of length n the squared Euclidean distance
equals the Hamming distance, i.e., δ(u,v) = d(u,v), while
we have the following result for δ∗(u,v).
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TABLE I

δ∗(u, v) FOR GIVEN VALUES d(u, v) = d AND m(u, v) = m

Theorem 1: For any binary vectors u and v of length n,

δ∗(u,v) = d(u,v) − (N(v,u) − N(u,v))2/n. (9)

Proof: Let A = |{i : ui = 1 ∧ vi = 1}|, B = N(u,v),
and C = N(v,u). Then ū = (A+C)/n and v̄ = (A+B)/n,
and thus

δ∗(u,v) = δ(u − ū1,v − v̄1)

=
n∑

i=1

(
ui − vi − (A + C) − (A + B)

n

)2

=
n∑

i=1

((ui − vi)2 − ((C − B)/n)2)

= B + C − (C − B)2/n,

which corresponds to the stated result.
For convenience, we define

m(u,v) = min{N(v,u), N(u,v)}. (10)

Corollary 1: For binary vectors u and v of length n with
d(u,v) = d, 1 ≤ d ≤ n, and m(u,v) = m, 0 ≤ m ≤ �d/2
,
we have

δ∗(u,v) = d − (d − 2m)2/n. (11)

Proof: This is an immediate consequence of Theorem 1
by noting that |N(v,u) − N(u,v)| = d(u,v) − 2m(u,v).

This result is illustrated in Table I.
Corollary 2: When considering δ∗(u,v) as a function of d

and m as given in (11), it shows the following behavior.
• For fixed d, δ∗(u,v) is strictly increasing in m, with

minimum d−d2/n at m = 0 and maximum d (if d even)
or d − 1/n (if d odd) at m = �d/2
.

• For fixed m > �n/4
, δ∗(u,v) is strictly increasing
in d, with minimum 2m at d = 2m and maximum
4m(n − m)/n at d = n.

• For fixed m ≤ �n/4
, δ∗(u,v) is strictly increasing from
d = max{2m, 1} to d = 2m + �n/2
, and then strictly

TABLE II

SMALLEST POSSIBLE VALUES OF δ∗(u, v) IN INCREASING
ORDER (d(u, v) = d, m(u, v) = m)

decreasing from d = 2m+ �n/2� to d = n. The absolute
maximum when n is even is n/4 + 2m (reached at
d = 2m+n/2). The absolute maximum when n is odd is
(n2 − 1)/(4n) + 2m (reached at d = 2m + (n − 1)/2
and d = 2m + (n + 1)/2). The absolute minimum
is 0 (reached at d = n) if m = 0 and 2m (reached at
d = 2m) if m > 0.

Proof: These results follow by analyzing (11) using basic
calculus tools.

Observe that the lowest values of δ∗(u,v) appear when
m is small and d/n is either close to 0 or close to 1. See
also Table II. In particular, note that in the design of binary
codes without codeword pairs (u,v) with small δ∗(u,v)
values, codeword pairs with large Hamming distances and
small m(u,v) values should be avoided. This is a big contrast
with classical code design and will be further explored in the
next sections.

IV. COSET CODES

A binary block code S of length n is a subset of {0, 1}n.
A linear binary block code of length n, dimension k, and min-
imum Hamming distance dmin, is denoted as an [n, k, dmin]
code. In classical code design, the emphasis was on achieving
high code rates, avoiding vector pairs with small Hamming
distances, and allowing simple encoding and decoding proce-
dures. Here, we have an additional challenge, as just discussed
at the end of previous section. A first priority, when decoding
according to (4), is that δ∗min > 0. Hence, the main focus in
literature so far, see, e.g., [14], [15], has been on avoiding
codeword pairs (u,v) with δ∗(u,v) = 0. For the binary case,
this leads to the code {0, 1}n \ {1} of size 2n − 1. It has an
extremely high code rate, very close to 1, but it suffers from
the fact that the number of codewords is not a power of two,
which makes information encoding cumbersome. Furthermore,
we conclude from the previous section that δ∗min = 1−1/n for
this code, which may be too low to offer sufficient resistance to
the noise. Therefore, it is of interest to investigate possibilities
of increasing δ∗min and/or enabling easy implementation by
sacrificing some rate. The important result presented in the
next theorem will be used in order to do so. Let Sα denote
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the coset of S obtained by adding the fixed binary vector α of
length n to all codewords of S, i.e., Sα = {α⊕c|c ∈ S}. Note
that Sα is a code that has the same length, cardinality, rate, and
minimum Hamming distance as S, while information can also
be uniquely mapped to its codewords by using an encoding
procedure for S followed by a simple shift operation.

Theorem 2: Let S be a binary [n, k, dmin] code with
dmin ≥ 2, which contains the all-one vector, i.e., 1 ∈ S.
Then, for any binary vector α of length n with weight �dmin

2 
,
�dmin

2 �, n − �dmin
2 
, or n − �dmin

2 �, it holds that

δ∗(u,v) ≥ dmin(1 − dmin/n) (12)

for all u,v ∈ Sα, u �= v.
Proof: Since S contains the all-zero and all-one words,

it does not contain codewords c with 1 ≤ w(c) ≤ dmin − 1
or n− dmin + 1 ≤ w(c) ≤ n− 1. Hence, due to the linearity,
the Hamming distance between any two different codewords
in S is either (i) in between dmin and n−dmin (both inclusive)
or (ii) equal to n. Since a shift operation on a code is invariant
with respect to Hamming distance, the same holds for any two
different codewords u and v in Sα. We will show that the
stated result holds for both cases (i) and (ii).

If dmin ≤ d(u,v) ≤ n − dmin, then

δ∗(u,v) = d(u,v) − (N(v,u) − N(u,v))2/n

≥ d(u,v) − (d(u,v))2/n

≥ dmin − (dmin)2/n,

where the equality follows from Theorem 1 and the second
inequality from the distance restrictions in this case, while
taking into account that the parabola x − x2/n with domain
[dmin, n − dmin] obtains its minimum value at the boundaries
of this interval.

If d(u,v) = n, then

δ∗(u,v) = d(u,v) − (N(v,u) − N(u,v))2/n

= n − (n − 2m(u,v))2/n

≥ n − (n − 2�dmin/2
)2/n

= 4
(�dmin/2
 − (�dmin/2
)2/n

)
≥ 2dmin − 2 − (dmin)2/n

≥ dmin − (dmin)2/n,

where the first equality follows from Theorem 1, the sec-
ond equality from the fact that u = 1 ⊕ v in this case,
the first inequality from the fact that m(u,v) = min{w(u),
n−w(u)} ≥ �dmin

2 
 due to the specific weight of α, and the
last inequality from the fact that dmin ≥ 2.

Note that for any binary linear block code S containing
the all-one vector δ∗min = 0 since δ∗(0,1) = 0. Theorem 2
shows that δ∗min significantly increases by using a well-chosen
coset of S rather than S itself. Actually, when n is large
compared to dmin, it follows from (12) that δ∗min is close
to δmin = dmin, and thus that the noise performance of the
decoder using (4) is close to the noise performance of the
decoder using (2), while the former has the advantage of being
immune to offset mismatch, in contrast to the latter. Since
many classical binary linear block codes do contain the all-
one vector, we can try to exploit Theorem 2 in order to design

codes which are immune to offset mismatch while having a
good noise performance as well. This will be further explored
in the following subsections.

A. Cosets of the Repetition Code

In the [n, 1, n] repetition code the single information bit
is repeated n − 1 more times. Hence the code has only
two codewords, the all-zero and the all-one word. Therefore,
δ∗min = 0 for this code. However, by taking a coset, this can be
increased to (almost) the Hamming distance, as shown next.

Theorem 3: Let S be the binary [n, 1, n] code. Then, for
any binary vector α of length n with weight �n

2 
 or �n
2 �,

it holds for Sα that δ∗min = n if n is even and δ∗min = n−1/n
if n is odd.

Proof: Since Sα = {α,1 ⊕ α}, it has δ∗min =
δ∗(α,1 ⊕ α), which gives the stated result by applying
Theorem 1, while observing that d(α,1 ⊕ α) = n and that
|N(α,1 ⊕ α) − N(1 ⊕ α, α)| equals |n/2 − n/2| = 0 if n
is even and |(n + 1)/2 − (n − 1)/2| = 1 if n is odd.

B. Codes With a Single Parity Bit

Another simple way to provide protection against errors is
to use a single parity bit. A codeword then consists of n − 1
information bits followed by one parity bit. The parity bit
can be chosen in such a way that the number of ones in each
codeword is even, in which case the code is indicated as Seven,
or by making the number of ones odd, in which case the code
is indicated as Sodd. Both Seven and Sodd have length n,
redundancy 1, code rate 1 − 1/n, and minimum Hamming
distance 2. Note that Sodd can be considered to be a coset of
the linear [n, n− 1, 2] code Seven, i.e., Sodd = (Seven)α with
α being a vector of length n and weight 1.

The use of these codes to deal with noise and offset issues
was already briefly discussed in [9], where hybrid Pearson
and Euclidean detection was considered. By substituting the
value zero for the weighing parameter γ in [9, Eq. (35)] (and
then squaring because of a different notation), it appears that
a δ∗min of 2−4/n can be obtained by using a single parity bit.
However, this result only holds for even values of n, n ≥ 4,
as shown in the next theorem.

Theorem 4: For binary codes using a single parity bit,
the δ∗min values are as stated in Table III.

Proof: Let ui, with 0 ≤ i ≤ n, denote the binary vector
of length n starting with i ones followed by n−i zeroes. Note
that m(ui,uj) = 0 and d(ui,uj) = |i − j| for all i and j.

If n is odd, then Seven does not contain un = 1, but it
does contain both u0 = 0 and un−1. Hence it follows from
Table II that δ∗min = 1 − 1/n for Seven. The same conclusion
holds for Sodd if n is odd, since it does not contain u0 = 0,
but it does contain both un = 1 and u1.

If n is even, then Seven does contain both u0 = 0 and
un = 1, and thus δ∗min = δ∗(0,1) = 0. Further, Theorem 3
gives that Sodd = (Seven)u1

has δ∗min = 2 if n = 2, while
Theorem 2 gives that it has δ∗min ≥ 2 − 4/n in the case of
even n ≥ 4. Equality in this last case follows by observing
that u1,un−1 ∈ Sodd and δ∗(u1,un−1) = 2 − 4/n.

Hence, from the δ∗min perspective, there is a significant
difference between Seven and Sodd in case n is even.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 05,2020 at 08:15:41 UTC from IEEE Xplore.  Restrictions apply. 



WEBER et al.: BINARY BLOCK CODES FOR NOISY CHANNELS WITH UNKNOWN OFFSET 3979

TABLE III

δ∗min FOR SINGLE PARITY CODES

C. Cosets of (Shortened) Hamming Codes

Next, we consider the important family of
[2s − 1, 2s − 1 − s, 3] Hamming codes Hs [10], with s ≥ 3.
The s× (2s − 1) parity-check matrix Hs of Hs consists of all
possible columns of length s except the all-zero column. Since
these codes contain both the all-zero and the all-one words,
they have δ∗min = 0, but it follows from Theorem 2 that there
exist cosets with δ∗min ≥ 3− 9/(2s − 1). Equality holds, since
each coset can be shown to contain words achieving this value.

The lengths of such Hamming codes are rather restrictive,
but actually any length n with s + 1 ≤ n ≤ 2s − 2 can
be achieved, while maintaining redundancy s and Hamming
distance (at least) 3, by applying an appropriate shortening
procedure on Hs. Specifically, this can be done by removing
h columns from Hs such that the rank of the new parity-check
matrix remains s, which leads to a [2s−1−h, 2s−1−s−h, 3]
code for any 1 ≤ h ≤ 2s − s − 2. Next, we will investigate
which δ∗min values can be achieved when shortening.

If 3 ≤ h ≤ 2s−1 + 2, s ≥ 4, then we can choose the
columns to be removed from Hs in such a way that their XOR
sum is the all-zero column, which implies that the resulting
shortened code contains the all-one word. This enables the
construction of a coset with δ∗min ≥ 3−9/(2s−1−h) according
to Theorem 2.

If 1 ≤ h ≤ 2, then the shortened code does not contain
the all-one word, no matter how we choose the removed
column(s). These two cases will be discussed next.

If h = 1, s ≥ 3, the Hamming distances d between
different codewords appearing in the shortened code of length
n = 2s−2 all satisfy 3 ≤ d ≤ n−2. From Table I we can thus
conclude that δ∗min ≥ 2 − 4/n. This lower bound is achieved
between the all-zero word and any of the codewords of weight
n − 2. There are n/2 such codewords. Each of them has its
zeroes in two positions for which the corresponding columns
in the parity-check matrix have their XOR sum equal to the
removed column in the shortening process. Taking a coset
rather than the code itself may reduce the average number
of nearest neighbours, but it will not increase δ∗min.

If h = 2, s ≥ 3, the Hamming distances d between different
codewords appearing in the shortened code of length n =
2s − 3 all satisfy 3 ≤ d ≤ n − 1. From Table I we can
thus conclude that δ∗min ≥ 1 − 1/n. This lower bound is only
achieved for the all-zero word and the single codeword of
weight n−1. Taking a coset by shifting the code over a vector
α of weight one, where the single one in α is not in the
position where the codeword of weight n − 1 has its single
zero, does increase δ∗min to 2 − 4/n. Other choices of α do
not lead to higher values of δ∗min.

TABLE IV

REDUNDANCY AND LOWER BOUNDS ON δ∗min OF COSETS OF (SHORT-
ENED) HAMMING CODES OF ANY LENGTH n ≥ 5

Hence, for h = 1 or h = 2, neither the shortened codes
nor their cosets achieve δ∗min = 3− 9/n. However, in case we
would like to use a code for which the length n is of the format
2z − 2 or 2z − 3, z ≥ 3, it is still possible to have δ∗min ≥
3 − 9/n, by shortening Hz+1 by h = 2z + 1 or h = 2z + 2
positions and taking appropriate cosets as indicated before.
Note that the resulting codes have redundancy z + 1 rather
than z, which is the price to be paid for the higher δ∗min value.

To summarize the results discussed in this subsection,
we provide in Table IV an overview of parameters which
can be achieved for appropriately chosen cosets of (shortened)
Hamming codes.

D. Other Coset Codes

The approach of the previous subsections can be applied
to any binary block code to obtain further trade-offs between
code rate and δ∗min values. Descriptions of various celebrated
classes of codes, such as BCH and Reed-Muller codes, can be
found in text books like [11] and [10]. For the many codes
containing the all-one vector, Theorem 2 is a key tool.

V. UNIONS OF CONSTANT WEIGHT CODES

It is well known that constant weight codes are intrinsically
resistant to offset mismatch. Here, we will show this once
more in the context of our framework, for completeness.
Furthermore, we will propose a method of taking the union of
several constant weight codes in order to obtain codes with a
low redundancy and high δ∗min.

A binary constant weight code, indicated as C(n, M, d, w),
is a set of M binary vectors of length n, weight w, and mutual
Hamming distance at least d, where 0 ≤ w ≤ n, 2 ≤ d ≤ n,
and d is even. For example, the set of all words of length n
and weight w is a C(n,

(
n
w

)
, 2, w) code.

Theorem 5: For any constant weight code with minimum
Hamming distance dmin, it holds that δ∗min = dmin.

Proof: For any two vectors u and v of the same weight
and length, it holds that N(u,v) = N(v,u) and thus,
according to Theorem 1, δ∗(u,v) = d(u,v), which implies
the statement.

Rather than just taking one constant weight code, we may
also consider taking the union of several constant weight
codes. Based on the findings of Section III, we have the
following result.

Theorem 6: For any code which consists of the union of
t constant weight codes of the same length n and Hamming
distance d, i.e., ∪t

i=1C(n, Mi, d, wi), such that n ≥ (d + 1)2,
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0 ≤ w1 < w2 < · · · < wt ≤ n, wj+1 − wj ≥ d + 1 for all
j = 1, 2, . . . , t − 1, and wt − w1 ≤ n − d − 1, it holds that
δ∗min ≥ d.

Proof: For any two different codewords u and v from the
same constant weight subcode, δ∗(u,v) = d(u,v) ≥ d.

For any two codewords u and v from different constant
weight subcodes, we have that

δ∗(u,v) = d(u,v) − (N(v,u) − N(u,v))2

n

≥ |w(u) − w(v)| − |w(u) − w(v)|2
n

≥ d + 1 − (d + 1)2

n
≥ d + 1 − 1 = d,

where the first equality follows from Theorem 1, the first
inequality from the fact that d(u,v) ≥ |w(u) − w(v)| =
|N(v,u) − N(u,v)|, the second inequality from the weight
restrictions as stated in the theorem, while taking into account
that the parabola x − x2/n with domain [d + 1, n − d − 1]
obtains its minimum value at the boundaries of this interval,
and the third inequality from the fact that n ≥ (d + 1)2.

In conclusion, δ∗min is at least equal to d.
Codes constructed as (the union of) constant weight codes

typically possess less algebraic structure than the coset
codes of the previous section, but they may have favourable
redundancy and distance properties. For example, we consider
the constant weight code of length 7 containing all the
35 words of weight 3. The code’s Hamming distance is 2 and
because of Theorem 5 also δ∗min = 2. By selecting 32 out of
the 35 words we obtain a code which can protect messages
of 5 bits, thus the code has redundancy 7−5 = 2. Note that the
coset of the [7, 4, 3] Hamming code presented in the previous
section has redundancy 7 − 4 = 3 and δ∗min = 12/7 < 2,
so the constant weight code is better in both aspects. However,
it is not systematic in the sense that information bits can be
separated from the check bits. Further, note that for the cosets
of longer Hamming codes δ∗min = 3 − 9/n > 2, so those
have better noise resistance than a constant weight code of
the same length and Hamming distance 2.

A. Codes With Redundancy 2 and δ∗min = 2

The codes presented in Subsection IV-B have redundancy
1 and δ∗min as indicated in Table III, for any length n ≥ 2.
Here, we will present for any length n ≥ 3, (unions of)
constant weight codes with redundancy 2 and δ∗min = 2.

When 3 ≤ n ≤ 8, it holds that
(

n
�n/2�

) ≥ 2n−2. Hence,
by selecting 2n−2 codewords of C(n,

(
n

�n/2�
)
, 2, �n/2
),

we obtain a code of length n with redundancy 2 and δ∗min = 2.
When n ≥ 9, then we have the following (almost) system-

atic construction. Let m be any message vector of length n−2.
We append to m a vector n of length 2 to form a codeword
c = (m,n) of length n, where n = 11 if w(m) ≡ n − 4
(mod 3), n = 10 if w(m) ≡ n − 3 (mod 3), and n = 00 if
w(m) ≡ n − 2 (mod 3). The only exception to this rule is
that if w(m) = 0, i.e., m = 0, and n ≡ 2 (mod 3), then we
set c = 1100 . . .01. Hence, m can always be retrieved from
c by omitting the last two bits, except when these bits are

equal to 01, in which case m = 0. Note that this code is a
collection of constant weight codes, of length n and Hamming
distance 2 each, where all the weights appearing are equal to
n − 2 modulo 3 and at least equal to 1 and at most equal to
n − 2. Hence, all the weight and length requirements from
Theorem 6 are satisfied, and thus this theorem gives that the
code has δ∗min ≥ 2, where equality holds since codeword pairs
meeting this bound are readily identified.

B. Codes With δ∗min > 2

In order to apply Theorems 5 and 6 to obtain codes with
δ∗min > 2, there is a need for constant weight codes with
Hamming distance larger than 2. An introduction on such
codes is given in [11, Chapter 17], with extensive tables of
(bounds on) the code sizes provided in [11, Appendix A].
More recent tables are available via [5].

As an example, we note from [11, App. A, Fig. 3] that
there exists a code with length 12 and Hamming distance 4,
in which each of the 132 codewords has weight 6. Hence,
by selecting 128 of these words, we obtain a code with length
12, redundancy 12 − log2 128 = 5, and δ∗min = 4.

VI. UNORDERED CODES

In this section we do not present new constructions, but
we revisit classes of codes that have been designed for
other purposes, but also turn out to be useful in the context
considered here.

We say that a transmitted or stored binary codeword suffers
from unidirectional errors if all the errors are either of the
0 → 1 type or of the 1 → 0 type [2]. A necessary and
sufficient condition for a code to be capable of detecting any
number of unidirectional errors is that the code is unordered,
i.e., m(u,v) = min{N(v,u), N(u,v)} ≥ 1 for all code-
words u and v �= u. Berger codes [1] are unordered codes
which are constructed by taking information words of length
k and then appending a tail of length �log2(k + 1)� which
represents the binary representation of the number of zeroes
in the information word.

The concept of unordered codes has been extended to t-EC
AUED (t error correcting and all unidirectional error detecting)
codes [3], [4]. A necessary and sufficient condition for a code
to have this property is that

m(u,v) ≥ t + 1 (13)

for all codewords u and v �= u. Note that unordered codes
appear as a special case by setting t = 0. An excellent
collection of papers on codes dealing with unidirectional errors
has been composed by Blaum [2]. Typically, a t-EC AUED
is constructed by taking a classical linear block code with
Hamming distance 2t + 1, which guarantees the correction of
up to t errors, and then adding extra bits to the codewords to
obtain the detection capability of all unidirectional errors [3].

It follows from Corollary 2 and (13) that any t-EC AUED
code S has

δ∗min ≥ min
u,v∈S,v �=u

2m(u,v) ≥ 2t + 2. (14)
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Fig. 1. Word error rate versus signal-to-noise ratio simulation results, in the
case of channel offset b = 0.02, for the code H4 and its coset H4,α , each
in combination with ED (2) and PD (4).

Fig. 2. Word error rate versus signal-to-noise ratio simulation results, in the
case of channel offset b = 0.2, for the code H4 and its coset H4,α , each in
combination with ED (2) and PD (4).

Hence, the vast literature on t-EC AUED codes can be used
to find codes with a desired δ∗min value. Most of these codes
have the virtue of being systematic. For example, it follows
from [6] that there exists a systematic 1-EC AUED code with
length 9 and redundancy 6. From (14), with t = 1, it follows
that this code has δ∗min ≥ 4. It should be mentioned that there
does exist a code with length 9, δ∗min = 4 and redundancy 5,
obtained by taking a subset of size 16 of the 18 codewords of
the constant weight code of length 9, weight 4, and Hamming
distance 4 [11, App. A, Fig. 3], but this code is not systematic.

VII. PERFORMANCE EVALUATION

As already argued, the decoder in (2) is optimal with respect
to dealing with Gaussian noise, but not capable of handling
substantial offset mismatch. On the other hand, the decoder
in (4) is completely immune to offset mismatch, at the expense
of a higher noise sensitivity. As usual, applying coding tech-
niques will improve the error performance, at the expense of
an increased redundancy. The codes proposed in the previous
sections have been designed for channels suffering from both
noise and offset. Their suitability for such channels is based on
their δ∗min values. Substitution in (8) leads to an approximation
of the WER at high SNR. However, more in-depth research is
required to check their actual performance in case of low or
moderate SNR.

Fig. 3. Word error rate versus channel offset b simulation results, in the
case of an SNR of 15 dB, for the code H4 and its coset H4,α , each in
combination with ED (2) and PD (4).

Fig. 4. Word error rate versus signal-to-noise ratio simulation results, in the
case of Gaussian distributed channel offset with mean 0 and standard deviation
β, for the coset H4,α of H4 in combination with ED (2) and PD (4).

As an example case, we investigate the performance of
(a coset of) the [15, 11, 3] Hamming code H4, as presented
in Subsection IV-C, in various scenarios. Simulation results
are shown in Figures 1-4. For both the Hamming code H4

itself and the coset H4,α obtained by shifting H4 over a
vector α of length 15 and weight 1, we show the WER
values for the Euclidean-based decoder (ED) from (2) and
the Pearson-based decoder (PD) from (4). In the figures the
abbreviation SNR stands for signal-to-noise ratio, which we
define as −20 log10 σ dB.

In Figure 1, the offset is very small, b = 0.02. In such a
case ED performs best. Further, observe that ED has almost
the same performance for H4 and its coset, but that for PD the
coset performs considerably better than the code itself. In fact,
since H4 contains both the all-zero word 0 and the all-one
word 1 having δ∗(0,1) = 0, and since δ∗(r,0) = δ∗(r,1) for
any received vector r, the WER of H4 approaches for high
SNR the value of (8), i.e., it has an error floor at N∗

0 ×Q(0) =
(2/|H4|) × (1/2) = 1/2048 = 5 × 10−4. If the offset value
is increased, as done in Figure 2, b = 0.2, we observe that
the PD performance does not change, as expected since PD
is immune to offset mismatch, but that the ED performance
is now worse than the performance of the PD with the coset.
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In Figure 3, the SNR is fixed at 15 dB and the WER is given
as a function of the channel offset b. Indeed, we observe
that for small |b| ED is the best, but that for larger |b| PD
in combination with the coset is superior. Finally, remember
that the offset value b may vary from codeword to codeword.
In Figure 4, we assume that the offset is i.i.d. Gaussian with
mean 0 and standard deviation β. Results are shown for the
coset H4,α. The PD performance is of course independent of
β, but the ED performance rapidly gets worse with growing
values of β.

VIII. CONCLUDING REMARKS

In this paper, we have proposed adaptations of classical
binary block codes to make them work well with a decoding
criterion that guarantees immunity to channel offset mismatch.
This immunity generally comes at the price of a high noise
sensitivity, but it has been shown that appropriate code design
can considerably mitigate this negative effect.

A major concern, however, is the fact that the evaluation of
criterion (4) in an exhaustive way is infeasible for large codes.
Another issue is that in our analysis, we focused on δ∗min, but
ignored the number of nearest neighbours. Though the former
is indeed of utmost importance with respect to the WER
performance, the latter could play an important role too. For
example, in [7], an extended Hamming code of length 72 and
dimension 64 is used, without the shift to a coset as proposed
here. Since the code contains both the all-zero and all-one
words, it has δ∗min = 0, but this is only achieved between
these two codewords, occurring with a negligible probability
of 2−64 ≈ 5× 10−20 each. Hence, using the code itself rather
than a coset is no problem in the case of a large size.

In conclusion, we think that for the codes proposed in this
paper, the most promising opportunities, from the application
perspective, are for relatively small codes. For example, such
codes could be used as inner codes in a concatenated coding
scheme, where for the inner decoding (4) is used, while for the
outer decoding a fast traditional hard-decision (Reed-Solomon)
decoder is applied.

Besides the additive disturbances, i.e., noise and offset,
as in our model r = x + ν + b1, channels may suffer from
multiplicative effects as well. This could lead to the more
extensive channel model r = a(x + ν) + b1, where a > 0
is called the gain [8]. Like the offset b, the gain a is assumed
to be constant for a transmitted codeword, but it may vary
from one codeword to the next. A decoding criterion, that is
immune to both gain and offset mismatch, has been proposed
in [8], and some basic properties for the binary case have been
presented in [13]. An interesting topic for future research is
the design of suitable codes for this scenario as well.
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