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Abstract

Introduction: This study explores the application of the ChemSpaceAL pipeline, an AI-driven tool
for molecular generation, in discovering drug candidates for various molecular targets, such as the HNH
domain of Cas9, Fibroblast Activation Protein-alpha (FAP-alpha) and Trophoblast cell surface antigen 2
(TROP2). The goal was to evaluate the pipeline’s capacity to generate promising molecules and compare
them with known inhibitors, including FDA-approved drugs for c-Abl kinase.

Methods: The ChemSpaceAL pipeline employs deep learning, specifically a Generative Pretrained
Transformer (GPT)-based model, to generate novel molecules across multiple iterations. Active learning
was used to refine the generated molecules by docking them to specific target proteins and scoring them
based on predicted binding affinities. In the case of FAP-alpha, known patented inhibitors were scored to
create a benchmark for the AI-generated molecules. The process was iteratively improved by adjusting
learning parameters, such as the number of epochs and selection thresholds for active learning.

Results: The pipeline demonstrated the ability to generate molecules with a maximum score of 77 for
c-Abl kinase, surpassing the highest score among FDA-approved inhibitors (67.5 for bafetinib), while the
average score for the generated molecules was 48.5, compared to 53.1 for the FDA-approved inhibitors. In
the case of FAP-alpha, known patented inhibitors scored between 10.5 and 21. AI-generated molecules
produced comparable results, with an initial average score of 19.19 and a maximum score of 38.5 in
the first iteration. Subsequent iterations saw fluctuations in performance, with iterative improvements
stabilizing at an average score of 18.62 and a maximum score of 39 by the third iteration. Adjusting
the active learning threshold from the top 10% to 20% of scored complexes yielded more substantial
improvements in the molecular generation process.

Conclusion: The results suggest that ChemSpaceAL can explore chemical spaces beyond known
inhibitors, occasionally identifying novel molecules with superior predicted binding affinity. However,
the study highlights the limitations of relying solely on computational scoring methods, as aspects such
as bio-availability and off-target effects are not captured. Future work will focus on reducing the number
of active learning epochs to balance model performance and exploring more diverse chemical spaces. The
development of a graphical user interface (GUI) and interdisciplinary collaboration for experimental val-
idation will further enhance the pipeline’s accessibility and effectiveness, accelerating the drug discovery
process.
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1 Introduction

In understanding the urgency that motivates this research, it is essential to explore the current landscape
of drug development for targeted therapies, especially considering the challenges inherent in the traditional
approach. Cancer, a pervasive global health issue and one of the leading causes of mortality worldwide,
underscores the need for a reevaluation of conventional treatments, such as chemotherapy and radiation
therapy. These treatments often induce severe side effects, impacting both healthy and cancerous cells,
and they may not always achieve optimal results. In response to these limitations, targeted therapies have
emerged as a promising method in cancer treatment. These innovative approaches aim to specifically target
cancer cells or the molecular pathways driving their proliferation, with the goal of minimizing harm to
healthy tissues.

The effectiveness of targeted therapies depends heavily on the identification and design of precise compo-
nents, such as small molecules, that can selectively bind to biomarkers, which include enzymes or receptors
involved in cancer cell proliferation or resistance to treatment. Successful therapeutic design requires accurate
identification of these biomarkers and pathways to ensure selectivity and efficacy.

In the context of targeted therapy development, selecting appropriate biomarkers is crucial. Poor
biomarker selection and insufficient data on binding potential often lead to early failures in drug research
programs. Targeted therapies, which are compounds used for disease treatment and diagnosis, contain a spe-
cific binding component. They work by interacting with specific biomarkers, such as enzymes or receptors
that are overexpressed in diseased tissues. The selection of biomarkers depends on the biological features of
the disease being studied, such as cancer or other pathologies, as well as the attributes of the biomarker itself,
such as its location, level of expression, and specificity. Targeted therapies can achieve excellent efficacy and
diagnostic accuracy by specifically binding to biomarkers that are highly expressed in diseased tissues [13].

In drug development, biomarkers play a crucial role in characterizing patient populations and measuring
the degree to which novel medications bind to their intended targets, modify pathological pathways, and
produce desired clinical outcomes. In fields such as oncology and neurodegeneration, biomarkers can be
used to stratify patients or assess the efficacy of drugs in primary prevention or disease-modification trials.
The integration of clinically meaningful biomarkers into regulatory and therapeutic decision-making processes
allows for faster identification of promising drug candidates, enabling their rapid progression through clinical
development [4].

Traditionally, most cancer drugs aim to block one or more steps in the survival or multiplication of cancer
cells. However, this approach poses the risk of harming healthy cells that also require division and preventing
natural processes like apoptosis. To mitigate these toxicities, strategies have been developed that conjugate
therapeutic agents to small molecule ligands that specifically target tumor cells. This reduces the likelihood
of the drug being transported to healthy cells and decreases collateral damage [11].

One of the key challenges in drug discovery is identifying molecules that can bind to a specific biomarker
of interest. The vast chemical space of potential drug-like molecules is estimated to range between 1023 and
1060 molecules [3]. Despite the existence of compound libraries, only a small fraction of the synthesizable,
drug-like chemical space has been explored. Discovering drugs that effectively bind to specific biomarkers in
this vast space is a time-consuming and costly process. Recent advances in deep learning (DL) techniques
have revolutionized drug discovery by enabling the generation of innovative molecular structures. These
approaches can significantly reduce both the time and cost associated with drug development.

One such approach is ChemSpaceAL [6], a deep learning-based methodology for molecular generation.
ChemSpaceAL leverages generative artificial intelligence models to produce targeted molecules. It has been
demonstrated to optimize a GPT-based molecular generator for c-Abl kinase inhibitors and prove its applica-
bility to proteins (such as enzymes and receptors) that currently lack commercially available small-molecule
binders. This framework ensures broad relevance in the emerging field of in silico molecular generation and
offers open-source accessibility via the ChemSpaceAL Python package. In addition to c-Abl kinase, the HNH
domain of Cas9 was also examined in this study. The HNH domain of Cas9 lacks known small-molecule
binders, making it a challenging target. By applying the ChemSpaceAL model to such targets, this study
explores uncharted chemical spaces and aims to discover novel binders that could serve as starting points
for future drug development efforts.

This research seeks to contribute to this burgeoning field by implementing ChemSpaceAL to advance
targeted therapies through the generation of new molecules that could potentially be synthesized into vi-
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able drugs. Although significant advancements have been made in this field, methods like ChemSpaceAL
have not yet been adopted by the Department of Radiology and Nuclear Medicine at Erasmus Medical
Centre in Rotterdam. Therefore, this study will focus on the validation and potential implementation of
ChemSpaceAL. Specifically, ChemSpaceAL will be used to generate new small molecules that reside outside
the existing chemical space. Our efforts will include extending the transferability, robustness, and applica-
bility of ChemSpaceAL. The generated molecules will be validated in collaboration with the Department of
Radiology and Nuclear Medicine, utilizing their in-house generated data.

Two key biomarkers will be the focus of this study: fibroblast activation protein alpha (FAP-alpha) and
Trophoblast cell surface antigen 2 (TROP2).

FAP-alpha was chosen because it is a biomarker of interest for the Department of Radiology and Nuclear
Medicine, and they have developed several FAP-alpha binders that will serve as reference points for evaluating
the performance of ChemSpaceAL-generated molecules. FAP-alpha is a significant target in cancer research,
particularly for its role in tumor microenvironments. Evaluating potential binders for FAP-alpha could yield
valuable insights into both diagnostic and therapeutic applications.

In addition, TROP2 will also be tested. TROP2 is an important biomarker in cancer research, known for
its involvement in tumor growth and metastasis. Unlike FAP-alpha, there are currently no small-molecule
binders available for TROP2, making it a particularly challenging and novel target. Since there are no
existing references for TROP2-binding small molecules, this study presents a unique opportunity to explore
uncharted chemical space and potentially discover the first small-molecule binders for this target.

By harnessing the power of deep learning, this study aims to make a meaningful contribution to improving
drug development and advancing personalized medicine, with a particular emphasis on cancer treatment.
The selection of generated molecules will be tested on fibroblast activation protein alpha (FAP-alpha) and
Trophoblast cell surface antigen 2 (TROP2) to assess their potential efficacy.
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2 Objectives

2.1 Research Questions

1. How does the choice of biomarker (c-Abl kinase, HNH Domain of Cas9, FAP-alpha, and TROP2) affect
the performance of ChemSpaceAL in generating potential drug candidates?

2. Does the ChemSpaceAL model perform consistently across different biomarkers, and how does its
effectiveness vary between well-studied targets like c-Abl kinase and more challenging targets like
TROP2?

3. What are the key factors that influence the success of ChemSpaceAL in generating effective drug
candidates for different cancer-related biomarkers?

3 Expected Results

By validating the recently published tool ChemSpaceAL, weak points will be identified, as well as prob-
lems, solving them as we encounter them and extending the existing method to increase robustness and
applicability.
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4 Literature Review Summary

Many methods using Deep Learning in drug discovery rely on prior knowledge, drawing upon the structure
and properties of known molecules to create similar candidates or extracting information on protein pocket
binding sites to identify molecules capable of binding [Figure 1]. Deep learning (DL)-based techniques
support variable molecule formats such as molecule fingerprints, molecule graphs, simplified molecular input
line entry system (SMILES) [10], and three-dimensional (3D) structures. They also have a wide range of
applications in the field of de-novo design. SMILES encodes molecular graphs in a concise, human-readable
format. It uses a formal grammar to represent molecules using a specific set of characters such as c and
C for aromatic and aliphatic carbon atoms, and O for oxygen, as well as symbols like -, =, and # for
single, double, and triple bonds. Moreover, the produced molecules could be optimized when the generative
model and reinforcement learning (RL) are coupled. In conclusion, deep generative networks have allowed
for significant advancements in drug discovery.

The available methods for generating molecules can be categorized into two types: ligand-based molecule
generation (LBMG) and pocket-based molecule generation (PBMG). LBMG methods create new molecules
by considering the structure and properties of existing ligands. For instance, 3DMolGNN [5] refines a
molecule produced by a pre-trained network to closely resemble known inhibitors of the same protein family.
This approach aims to generate small molecules that have a strong binding affinity to the target protein and
possess desirable drug properties. Their work developed a drug design pipeline by utilizing the capabilities
of deep learning and molecular modeling methodologies. This methodology can be helpful in situations when
target-specific ligand datasets are few or nonexistent. To generate an initial target-specific dataset, inhibitors
of the homologues of the target protein were screened at the target protein’s active site. The target-specific
dataset’s features were learned via transfer learning. The docking scores of the created compounds were
predicted using a deep predictive model. Reinforcement learning was used to integrate both of these models
to create new chemical entities with optimal docking scores. By creating inhibitors against the human JAK2
protein—none of which had been used for training—the pipeline was validated.

Another example is the work by Merk et al. [9], where they input SMILES strings and fine-tune the
models on a smaller dataset of active drugs to generate molecule libraries with specific activity towards the
target protein. A new perspective on molecular design is provided by generative artificial intelligence. They
describe a deep learning model’s first prospective use for creating novel drug-like molecules with desired
actions. In order to achieve this, they trained a recurrent neural network to recognize the composition
of a sizable collection of well-known bioactive substances, which are represented as SMILES strings. This
general model was improved to recognize retinoid X and peroxisome proliferator-activated receptor agonists
by transfer learning. Five of the best-ranked compounds created by the generative model were synthesized.
In experiments utilizing cells, four of the compounds demonstrated modulatory action of receptors ranging
from nanomolar to low-micromolar concentrations.

Figure 1: Simplified method of drug design

GENTRL [15], on the other hand, combines generative models with reinforcement learning, variational
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inference, and tensor decompositions to design inhibitors for a specific protein. It is pretrained using the
ZINC database and then further trained using data related to the target protein and common kinase in-
hibitors. Generative Tensorial Reinforcement Learning (GENTRL) for de novo small molecule design is
a deep generative model. GENTRL is optimized for synthetic feasibility, novelty, and biological activity.
Using GENTRL, they were able to discover strong inhibitors of DDR1, a kinase target involved in fibrosis
and related diseases, in just 21 days. Four compounds were active in biochemistry assays, and two were
confirmed in cell-based assays.

PBMG methods, on the other hand, rely on known information about protein binding sites. MolAIcal [1],
for example, generates 3D structures of molecules based on the 3D pockets of protein targets. It utilizes the
PDBbind database (a comprehensive collection of experimentally measured binding affinity data for protein-
ligand complexes deposited in the Protein Data Bank) and Autodock Vina [12] for docking screening.

Figure 2: Drug design method using SMILES and Molecular graph structures in a Deep Learning network

MoleAICal is a 3D drug design software that has two main modules. The first module uses a genetic
algorithm, a deep learning model trained from FDA-approved drug fragments, and the Vinardo score fitting
from the PDBbind database to design drugs. The second module uses a deep learning generic model trained
from drug-like molecules in the ZINC database, which is a web-based database with 3D molecules in several
formats compatible with most docking programs, and molecular docking invoked from Autodock Vino auto-
matically. To filter out unwanted ligands, they have introduced Lipinski’s rule of five [7], PAINS (Pan-assay
Interference compounds), and synthetic accessibility (SA). To demonstrate MolAICal’s functionality, they
selected the glucagon receptor and the SARS-CoV-2 main protease as the focal drug targets.

Miha et al. [14] trained a generative adversarial model to generate compound structures that complement
proteins based on the obtained structures of protein-ligand complexes.

Other methods, such as LiGAN and GVAE SVAE [8], encode protein pockets and use conditional vari-
ational autoencoders to generate new molecules that can bind to these pockets. They propose a deep
generative model capable of producing 3D molecular structures based on a specific 3D binding pocket. Con-
volutional neural networks are used to encode atomic density grids into receptor and ligand latent spaces.
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The ligand latent space is designed to be variational, allowing the generation of new molecules via sampling.
A decoder network then generates atomic densities for novel ligands while taking the receptor into account.
These continuous densities are then transformed into discrete atoms, resulting in the creation of unique and
valid molecular structures. As they explore further from the seed structure in the latent space, the novelty
of generated structures increases, but predicted binding affinity decreases.

Similarly, EGCM cRNN [2] integrates 3D structural information of protein binding pockets into con-
ditional recurrent neural network models to control the generation of drug-like molecules. This model
characterizes protein binding pocket composition using a coarse-grain strategy and represents 3D pocket in-
formation through the sorted eigenvalues of the Coulomb matrix (EGCM) of coarse-grained atoms forming
the pocket.

Despite substantial progress, challenges remain. LBMG methods struggle to break free from the existing
chemical space, limiting their ability to generate truly novel structures. They often produce molecules with
only a few new atoms added to the reference molecule.

This is why researchers are now focusing on a third type of method, which steps outside the existing
chemical space by generating molecules based on the target protein sequence [2].

In summary, existing methods differ in several key aspects: whether they generate entirely new molecules
or simply modify existing ones; their reliance on prior knowledge, such as the 3D structure of the target;
whether the generated molecules are outside known chemical space; whether they produce too many molecules
that need to be docked individually; and whether they are publicly available. An overview of these differences
is presented in Table 1.

Model Generates True
New Molecule

Relies Not On
Prior Knowl-
edge

Steps Out
Of Exist-
ing Chemical
Space

Generates <50
Molecules

Accessible
Open Source

3DMolGNN [7] Yes No No No Yes

Merk et al. [8] Yes No No No Yes

GENTRL [9] No No No No Yes

MolAIcal [10] No No No No Yes

Miha et al. [13] Yes No No No Yes

GVAE SVAE [14] No No No No Yes

EGCM cRNN
[15]

No No No No Yes

ChemSpaceAL
[8]

Yes No No Yes Yes

Yangyang et al.
[7]

Yes Yes Yes No No

Table 1: Comparison of models based on different criteria
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5 Methods

After comparing the different methods, the most promising method appeared to be ChemSpaceAL [6] [Table
1]. Another promising method was that of Yangyang et al. [13], but since this was not publicly available,
the method of choice is still ChemSpaceAL. Therefore, this will be the one that will be validated on new
target molecules.

5.1 Graphical representation of the Active Learning Methodology from ChemSpaceAL

Figure 3: Drug design method using SMILES and Molecular graph structures in a Deep Learning network

The following nine steps form the base of the active learning model ’ChemSpaceAL’:

1. Pretrain the GPT-based model on millions of SMILES strings.

2. Use the trained model to generate 100,000 unique molecules.

3. Calculate molecular descriptors for each generated molecule.

4. Project the descriptor vectors into a PCA-reduced space constructed from the pretraining set descrip-
tors.

5. Use k-means clustering on the generated molecules within the PCA space to group those with similar
properties.

6. Sample about 1% of molecules from each cluster and dock each of them to a protein target.

7. Evaluate the top-ranked pose of each protein-ligand complex with an attractive interaction-based
scoring function.

8. Construct an active learning training set by sampling from the clusters proportionally to the mean
scores of the evaluated molecules within each cluster, and combining with replicas of high-scoring
evaluated molecules.

9. Fine-tune the model with the active learning training set.
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Steps 2–9 are repeated for multiple iterations to progressively improve the model’s ability to generate
molecules optimized for the target protein.

5.2 Data Collection

The first step that is needed is the data collection and the preprocessing of data. In this case, this has
already been done [6]. This was accomplished by merging every SMILES (Simplified Molecular Input Line
Entry System) string from ChEMBL 33, GuacaMol v1, MOSES, and BindingDB, eliminating any duplicate
strings, and filtering out the strings that the RDKit molecular parser identifies as invalid. The aggregated
dataset that is produced has 5,622,772 distinct and legitimate SMILES strings.

While this number may seem large, it is relatively small in comparison to the estimated chemical space,
which is believed to range between 1023 and 1060 molecules. If necessary, this SMILES library could be
further extended, as the current dataset may not contain compounds suitable for specific biomarkers like
FAP-alpha or TROP2. Extending the library would increase the likelihood of discovering molecules that
better fit these challenging targets.

There are originally 196 distinct tokens in this merged dataset. It was found that 148 tokens are repre-
sented in the dataset fewer than 1000 times. All SMILES strings containing at least one token that appears
fewer than 1000 times were eliminated in order to reduce the size of the vocabulary (from 196 to 48). Rare
transition metals and isotopes are included in the majority of the SMILES strings that were rejected.

5.2.1 Preprocessing the SMILES

99.99% of the strings in the dataset had 133 or fewer tokens, with the longest SMILES string in the combined
dataset having 1,503 tokens (details in Figures S11.1 – S11.2 in the Supporting Information). A SMILES
string length cutoff of 133 is applied, and any string longer than this cutoff is eliminated from the dataset.
The longest SMILES string in the dataset (133 tokens) is then expanded, if needed, to match the length of
all other SMILES strings.

5.2.2 Preprocessing of the PDB Files

The preprocessing of PDB (Protein Data Bank) files for use in computational pipelines like ChemSpaceAL is
a crucial step that streamlines the structural data, focusing on the essential atomic coordinate information.
This process involves stripping away various metadata and crystallographic details, leaving only the core
ATOM records that describe the three-dimensional structure of the protein.

When a PDB file is initially obtained, it contains a wealth of information beyond just the atomic coordi-
nates. The header section, for instance, provides valuable context about the structure, including details about
the experiment that determined the structure, publication information, and various annotations. While this
information is undoubtedly valuable for understanding the broader context of the protein structure, it is not
directly utilized in most computational analyses or docking simulations.

Similarly, the crystallographic information, such as the ORIGX and SCALE lines, provides critical data
for crystallographers about how the crystal structure relates to the coordinate system. However, for the pur-
poses of molecular docking and many other computational chemistry tasks, this information is superfluous.

By retaining only the ATOM records, the preprocessing focuses on the essential information needed
for computational analysis. Each ATOM record contains critical details: the atom’s serial number, name,
the residue it belongs to, its chain identifier, sequence number, three-dimensional coordinates, occupancy,
temperature factor (B-factor), and element symbol. This distilled information forms the backbone of most
structural analyses and simulations.

The reasons for this preprocessing are multifaceted. Primarily, it simplifies the input, creating a more
standardized format that reduces the likelihood of parsing errors in downstream analyses. This standardiza-
tion is particularly crucial when dealing with large numbers of structures or when computational resources
are at a premium. The reduced file size that results from this streamlining can significantly improve efficiency,
especially when processing multiple structures.

Moreover, many computational chemistry tasks, including molecular docking and scoring, rely solely
on the atomic coordinates and basic atom information. By focusing on these essential data points, the
preprocessing ensures that all structures are treated consistently, regardless of their original source or the
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amount of additional information they might have contained. This consistency is key to ensuring reproducible
and comparable results across different structures and experiments.

However, it’s important to note that this preprocessing is not without its trade-offs. In stripping away
the additional information, some potentially useful data is lost. Information about ligands, non-standard
residues, or experimental conditions, which might be important for interpreting results or for more specialized
analyses, is removed. This loss of information is generally acceptable for broad computational studies but
may limit certain types of in-depth analyses that rely on these additional details.

In the context of the ChemSpaceAL pipeline, this preprocessing serves a vital role. It ensures that the
focus remains squarely on the protein structure’s atomic coordinates, which are the critical elements for
tasks like molecular docking and scoring. By removing extraneous information, the pipeline can operate
more efficiently and with reduced risk of errors that might arise from variations in PDB file formats or
unnecessary data.

This streamlined approach aligns well with the goals of computational drug discovery pipelines, where
the emphasis is on rapid screening and evaluation of potential drug candidates. The simplified PDB format
allows for faster processing, enabling researchers to explore larger chemical spaces and iterate through more
potential molecules in their search for promising drug candidates.

In essence, the preprocessing of PDB files represents a careful balance between retaining essential struc-
tural information and optimizing for computational efficiency. While some granularity is lost in the process,
the benefits in terms of standardization, efficiency, and focus on the most critical data make it an invaluable
step in modern computational chemistry workflows, particularly in the realm of drug discovery and design.

5.3 Setup and Dependencies

To ensure smooth execution of the ChemSpaceAL pipeline, several key dependencies must be properly
installed. The following packages with specific versions are required: prolif (2.0.1), pandas (1.5.3), numpy
(1.23.1), rdkit (2023.03.3), and torch (2.1.0). Additionally, a CUDA version of 9 or higher is necessary for
optimal performance, particularly for the deep learning components of the pipeline.

To facilitate this setup process, a dedicated initialization cell will be added to the pipeline notebook.
This cell includes clear instructions for installing these dependencies, along with commands to check for their
correct installation and version compatibility. For packages that may require specific installation procedures,
such as rdkit or torch with CUDA support, detailed guidance is provided.

Users are strongly advised to execute this initialization cell and verify all dependencies before proceeding
with the main pipeline. This step is crucial for avoiding runtime errors and ensuring consistent perfor-
mance across different environments. Furthermore, where possible, local installations of these packages are
recommended to maintain a stable working environment.

The initialization cell also includes a script to check for these dependencies and their versions, helping
users quickly identify any missing or incompatible packages. This proactive approach to environment setup
significantly reduces the likelihood of errors during the pipeline’s execution and ensures a smoother experience
for first-time users.

By clearly stating these requirements and providing an automated way to check and install them, the
ChemSpaceAL pipeline becomes more accessible to researchers who may not have extensive experience with
Python environment management or deep learning frameworks. This attention to the initial setup process
is a critical step in making the tool more user-friendly and reducing potential barriers to its adoption in
diverse research settings.

5.4 Workflow Overview

The code works as follows. The first step is that the GPT (Generative Pretrained Transformer)-based model
is trained on millions of SMILES (Simplified Molecular Input Line Entry System) strings. The GPT-based
transformer is fine-tuned toward, for example, a protein with FDA-approved small molecule inhibitors like
c-Abl kinase. A dataset is created using various datasets to build a rich internal representation of these
SMILES strings, enabling it to generate a diverse array of molecules (in total about 5.6 million SMILES
strings).
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The second step is to let the trained model generate 100,000 molecules. Then the molecular descriptors
are calculated for each generated molecule. These molecular descriptors are projected into a PCA (Principal
Component Analysis)-reduced space, constructed from the descriptors of these generated molecules. K-
means clustering is used to group the generated molecules with similar properties within the space. About
1 percent of each of these clusters is docked onto the target protein. For evaluation, an interaction-based
scoring method is used, along with fine-tuning if needed. This whole process can be repeated for multiple
iterations. For this research, the ChemSpaceAL method is used to generate and evaluate molecules outside
of the existing chemical space using this active learning pipeline.

5.5 Pipeline Execution and Environment Setup

The pipeline was executed via a SLURM script, submitted to the GPU cluster using the command:

sbatch full_iteration.sh

The code was implemented in a Jupyter Notebook environment using Python, with the source code
available on GitHub at batistagroup/ChemSpaceAL.

5.6 Adapting for Jupyter Notebook Execution

To ensure broader compatibility, the pipeline was modified to use the subprocess module instead of shell
commands. For example:

!python /content/DiffDock/datasets/esm_embedding_preparation.py

--protein_ligand_csv /content/input_protein_ligand.csv

--out_file /content/DiffDock/data/prepared_for_esm.fasta

was replaced with subprocess calls, such as:

import subprocess

subprocess.run([

"python", "/content/DiffDock/datasets/esm_embedding_preparation.py",

"--protein_ligand_csv", "/content/input_protein_ligand_csv",

"--out_file", "/content/DiffDock/data/prepared_for_esm.fasta"

], check=True)

5.7 Parameter Tuning Process

Before script submission, the current protein ID and iteration number were verified and adjusted in the
’full iteration.sh’ script. Further parameter tuning, including the threshold and number of epochs, was
performed in the ’50 refitModel activeLearning.py’ script.

5.8 Experimental Validation

After molecules have been generated and selected, it is crucial that they undergo experimental assessment.
This step should be conducted in collaboration with the Department of Radiology and Nuclear Medicine.
The generated molecules should be evaluated for viability using the specific target protein for which they
were designed, such as fibroblast activation protein-alpha (FAP-alpha) or TROP2, depending on the focus
of the study. This experimental validation is essential to confirm the computational predictions and assess
the actual effectiveness of the generated molecules. Based on the outcomes of these experiments, further
adjustments to the generation process or the molecules themselves may be necessary to improve their efficacy
and suitability as potential therapeutic agents.

13



5.9 Establishing Reference Scores for Target Molecules

A critical step in this methodology is the establishment of reference scores for each target molecule by
evaluating existing inhibitors. This process involves collecting SMILES representations of known inhibitors
for the specific protein target and subjecting them to the same scoring function used in the generative
pipeline. By doing so, a benchmark can be created against which the generated molecules can be compared.
This reference score serves multiple purposes:

1. Realistic Target Setting: It provides a realistic target for the optimization process. Knowing the
scores of effective, existing inhibitors gives a clear goal to aim for in the molecular generation.

2. Scoring Function Validation: It helps in validating the effectiveness of the scoring function. If the
function correctly assigns high scores to known effective inhibitors, it increases the confidence in its
ability to identify potentially effective new molecules.

3. Performance Assessment: It offers a means to assess the relative performance of the generated
molecules. The scores of the new molecules can be directly compared to those of known inhibitors,
giving us a tangible measure of how promising the generated compounds might be.

4. Threshold Determination: The scores of known inhibitors can help in setting thresholds for selecting
promising candidates from the generated set. Molecules scoring above or close to these thresholds would
be prioritized for further investigation.

For instance, in the case of c-Abl kinase, the SMILES of FDA-approved inhibitors such as imatinib,
nilotinib, and dasatinib will be evaluated. Each of these drugs has demonstrated effectiveness in clinical
settings, making their scores valuable benchmarks. Then, these SMILES will be processed through the
scoring pipeline, which includes docking simulations and interaction analysis, to obtain their reference scores.

The scores of these known effective inhibitors guide the generative process and help contextualize the
results. For example, if the generated molecules consistently score higher than known inhibitors, it could
indicate that a chemical space with potentially higher binding affinities is being explored. Conversely, if
the molecules consistently score lower, it might suggest that the model needs further refinement or that a
different area of chemical space is being explored.

Moreover, comparing the scores of the generated molecules to these references allows for gauging whether
compounds with potential binding affinities similar to or better than existing drugs are being generated. This
comparison is crucial in the early stages of drug discovery, as it helps prioritize which generated molecules
are worth pursuing for further experimental validation.

While the initial validation of ChemSpaceAL focused on c-Abl kinase, a target with well-known small
molecule inhibitors, the true potential of this pipeline lies in its application to novel or challenging targets.
Two of such target are TROP2 (Trophoblast cell-surface antigen 2) and FAP-alpha, both proteins of sig-
nificant interest in cancer research. Unlike small molecule inhibitors, which are represented by SMILES,
therapeutic approaches for TROP2 are currently antibody-based and cannot be easily addressed using tra-
ditional SMILES input. The lack of small molecule inhibitors for TROP2 presents both a challenge and an
opportunity for ChemSpaceAL to explore new chemical space and identify novel modulators.

The pipeline’s ability to generate diverse molecules and score them based on predicted interactions
with the target protein becomes especially valuable in this case. By applying ChemSpaceAL to TROP2,
researchers aim to identify small molecule leads that could complement or potentially offer advantages over
existing antibody therapies, such as improved tissue penetration or oral bioavailability. This application
underscores the versatility of the ChemSpaceAL approach in addressing targets that lack established small
molecule inhibitors, potentially opening new avenues in drug discovery for challenging targets.

A comprehensive guide detailing the setup and usage of the ChemSpaceAL pipeline, including the adap-
tations for Jupyter Notebook environments and the considerations for epoch adjustment, is provided in
Appendix A. This guide offers step-by-step instructions for researchers looking to implement or adapt the
pipeline for their specific needs, ensuring broader accessibility and reproducibility of this methodology.

14



6 Results

6.1 Implementation of the ChemSpaceAL Pipeline

The ChemSpaceAL pipeline was successfully implemented in a Jupyter Notebook environment, enhancing
its accessibility for users at the Erasmus Medical Centre. Key outcomes of the implementation include:

1. Automation of multiple iterations of SMILES string generation, sampling, docking to target molecules,
and scoring of docked complexes.

2. Creation of a system that requires only the target molecule’s PDB file as input for generating candi-
dates.

3. Development of a parallelized docking process, theoretically reducing docking time for 1,000 SMILES
from 18 to 9 hours, and total iteration time from 22 to 13 hours.

4. Implementation of automatic directory creation for storing target-ligand complexes, preventing over-
writing of previous files.

5. Addition of features such as email notifications upon completion or error occurrence, and visualization
of the top ten scoring candidates using RDKit’s draw module.

6.2 Handling of Molecular Sanitization Errors

During the execution phase, particularly in scoring, molecular sanitization errors were encountered despite
initial filtering for valid SMILES strings. The scoring.py script was successfully modified to handle these
errors by skipping problematic molecules and continuing with the next, enhancing the pipeline’s robustness.

6.3 Parameter Tuning Outcomes

Initial parameter settings, such as basing the threshold on the average of the top 30% of scores, required
adjustments between iterations for optimal results. A threshold that approximately 30% of the complexes
could reach generally yielded satisfactory results, though this often needed adjustment between iterations.

6.4 Molecular Evolution comparison with the ChemSpaceAL paper

Inhibitor Score
Imatinib 62.5
Bosutinib 44.5
Asciminib 41.0
Nilotinib 53.5
Ponatinib 61.0
Bafetinib 67.5
Dasatinib 41.5

Range 41.0 - 67.5
Average 53.1

Table 2: Scoring results for FDA-approved c-Abl kinase inhibitors from the ChemSpaceAL paper

Table 2 presents the scoring results for seven FDA-approved c-Abl kinase inhibitors using the ChemSpaceAL
pipeline’s scoring function. The scores range from 41.0 to 67.5, with bafetinib achieving the highest score of
67.5 and asciminib the lowest at 41.0. Imatinib and ponatinib also scored relatively high at 62.5 and 61.0,
respectively. The average score across all seven inhibitors is 53.1. These scores provide a benchmark for
evaluating the performance of the AI-generated molecules against known, effective inhibitors of c-Abl kinase.
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HNH Average Score Percentage of Scores Above 11 (%) Maximum Score
al0 7.9 21.30 32.50
al1 9.1 31.90 26.50
al2 9.8 39.10 25.00
al3 10.4 43.90 23.00
al4 11.1 50.10 33.50
al5 11.5 52.10 34.00

Table 3: Evolution of protein-ligand attractive interaction scores between molecules from the ChemSpaceAL
paper for HNH

HNH Average Score Percentage of Scores Above 11 (%) Maximum Score
al0 8.21 21.10 29.50
al1 7.86 17.80 29.00
al2 7.93 19.10 31.00
al3 8.51 23.30 33.50
al4 9.02 26.50 31.00
al5 9.85 32.70 36.00
al6 11.57 44.40 46.00

Table 4: Evolution of protein-ligand attractive interaction scores between molecules for HNH

Table 3 presents the evolution of the SMILES scores for the HNH domain of Cas9 that the authors from
ChemspaceAL found Table 4 presents the evolution of protein-ligand attractive interaction scores between
generated molecules and the HNH domain of Cas9 across the active learning iterations that were generated
in this thesis. For each iteration, the table displays three key metrics: the percentage of generated molecules
with scores above the threshold (%>Threshold), the mean score of all generated molecules, and the maximum
score achieved in that iteration. Iteration 0 represents the initial state of the model after pretraining, while
subsequent iterations reflect the model’s output following each round of active learning. This table allows
for a quantitative assessment of how the distribution of scores changes throughout the iterative process.
The complete set of top-scoring molecules for each iteration can be found in Appendix B, providing a more
detailed view of the generated compounds.
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Figure 4: Molecular structure and score of FAP-alpha inhibitors.

Figure 5: Molecular structure and score of FAP-alpha inhibitors.

Figures 4 and 5 present the molecular structures and corresponding scores of several patented in-house
FAP-alpha inhibitors. These inhibitors, developed by the Erasmus Medical Centre, serve as important ref-
erence points for evaluating the performance of the ChemSpaceAL pipeline. The scores for these known in-
hibitors range from 10.5 to 21, providing a benchmark for assessing the quality of the AI-generated molecules.
This range of scores for established inhibitors offers valuable context for interpreting the effectiveness of the
molecules generated by ChemSpaceAL, allowing for a direct comparison between known effective compounds
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and the novel structures produced by the AI model.

6.5 FAP-alpha Results

Iteration Average Score Percentage of Scores Above 22 Maximum Score
al0 19.19 29.50% 38.50
al1 18.40 23.40% 39.00
al2 18.43 25.60% 36.00
al3 18.62 25.90% 38.50
al4 18.56 23.00% 36.50
al5 19.45 31.10% 44.00
al6 21.57 25.60% 46.00

Table 5: Evolution of FAP-alpha protein-ligand interaction scores for generated molecules

Table 5 presents the evolution of protein-ligand interaction scores for the FAP-alpha target across seven
iterations of the ChemSpaceAL pipeline. The table displays three key metrics for each iteration: the average
score, the percentage of scores above the threshold of 22, and the maximum score achieved. The data spans
from the initial iteration (al0) to the final iteration (al6). The average scores range from 18.40 to 21.57,
while the percentage of scores above the threshold varies between 23.00% and 31.10%. The maximum scores
recorded across all iterations fall between 36.00 and 46.00.

To provide a comprehensive view of the molecular evolution throughout the active learning process,
the top three scoring molecules for both FAP-alpha and TROP2 targets are presented for each iteration in
Appendix B. This detailed record allows for a thorough examination of the pipeline’s progression. In the main
Results section, for clarity and conciseness, the focus lies on comparing only the top three scoring molecules
from the first and last iterations. This comparison effectively demonstrates the overall improvement in
molecular design achieved by the ChemSpaceAL pipeline, while the full iterative progression can be examined
in appendix B for those interested in the step-by-step evolution.

Figure 6 and figure 7 provide a visual comparison of the top three scoring molecules generated for
FAP-alpha in the initial (iteration 0) and final (iteration 6) rounds of the active learning process. The figure
presents the 2D structures of these molecules, allowing for a direct visual assessment of their chemical features.
Each molecule is accompanied by its respective score, enabling a quantitative comparison between the initial
and final iterations. This visualization offers a qualitative glimpse into how the structural characteristics of
the highest-scoring molecules evolved over the course of the active learning process. For a comprehensive
view of the top-scoring molecules from all iterations, readers are directed to Appendix B, which contains the
full progression of generated structures throughout the study.
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Figure 6: Top three scoring molecules for iteration zero for FAP-alpha

Figure 7: Top three scoring molecules for iteration six for FAP-alpha

Figure 6 displays the top three scoring molecules generated for FAP-alpha during iteration zero (al0)
of the ChemSpaceAL pipeline. The figure presents the 2D structures of these molecules along with their
respective scores. Figure 7 shows the top three scoring molecules for FAP-alpha from iteration six (al6), the
final iteration of the pipeline. Similarly, this figure includes the 2D structures of the molecules and their
corresponding scores. These figures provide a visual representation of the highest-scoring molecules at the
beginning and end of the active learning process for the FAP-alpha target.

6.6 TROP2 Results

Iteration Average Score Percentage of Scores Above 22 Maximum Score
al0 17.06 18.1% 36.00
al1 16.81 13.5% 33.50
al2 16.99 14.8% 36.50
al3 18.56 23.0% 36.50
al4 19.81 31.3% 42.5

Table 6: Evolution of TROP2 protein-ligand interaction scores for generated molecules

Table 6 presents the evolution of protein-ligand interaction scores for the TROP2 target across five
iterations of the ChemSpaceAL pipeline. The table displays three key metrics for each iteration: the average
score, the percentage of scores above the threshold of 22, and the maximum score achieved. The data spans
from the initial iteration (al0) to the fourth iteration (al4). The average scores range from 16.81 to 19.81,
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while the percentage of scores above the threshold varies between 13.5% and 31.3%. The maximum scores
recorded across all iterations fall between 33.50 and 42.5.

Figure 8: Top three scoring molecules for iteration one for TROP2

Figure 9: Top three scoring molecules for iteration four for TROP2

Figure 8 displays the top three scoring molecules generated for TROP2 during iteration one (al1) of the
ChemSpaceAL pipeline. The figure presents the 2D structures of these molecules along with their respective
scores. Figure 9 shows the top three scoring molecules for TROP2 from iteration four (al4), the final iteration
of the pipeline for this target. Similarly, this figure includes the 2D structures of the molecules and their
corresponding scores. These figures provide a visual representation of the highest-scoring molecules at an
early stage and at the end of the active learning process for the TROP2 target.
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7 Discussion

7.1 Implications of Pipeline Implementation Challenges

The challenges encountered during the implementation of the ChemSpaceAL pipeline in a Jupyter Notebook
environment reveal important insights into the development of computational tools for drug discovery. The
initial difficulty in familiarizing users with the pipeline underscores a common tension in scientific software
development: balancing sophistication with user-friendliness. This experience highlights the need for more
intuitive interfaces and comprehensive documentation in computational chemistry tools, particularly as the
field moves towards interdisciplinary collaboration.

The issues with Google Colab, including the non-sequential execution of steps and unreliable resource
allocation, point to broader challenges in cloud-based scientific computing. While platforms like Colab
offer accessibility, their limitations in complex, resource-intensive tasks suggest that more robust, dedicated
computing environments may be necessary for advanced drug discovery pipelines. This observation has
implications for how research institutions approach computational infrastructure for drug discovery projects.

7.2 Significance of Adaptations and Improvements

The successful adaptation of the pipeline for Jupyter Notebook execution, particularly the transition to
using the subprocess module, represents a significant step towards creating more portable and robust
scientific software. This improvement not only enhances the pipeline’s usability across different computing
environments but also serves as a case study in software adaptation for the scientific community. The
experience gained here could inform best practices in developing flexible, environment-agnostic computational
tools in chemistry and related fields.

The attempt to parallelize the docking process, despite facing practical limitations, provides valuable
insights into the complexities of optimizing computational workflows in drug discovery. The discrepancy
between theoretical and actual performance gains highlights a critical aspect of high-performance computing
in chemistry: the need to balance algorithm design with the realities of available hardware and shared
resources. This experience suggests that future developments in computational chemistry might benefit
from more adaptive algorithms that can dynamically adjust to available computational resources.

7.3 Interpretation of Parameter Tuning Challenges

The necessity for frequent manual interventions and adjustments of parameters like the scoring threshold
reveals the complex, non-linear nature of the chemical space being explored. This observation has profound
implications for the field of AI-driven drug discovery. It suggests that fully automated, one-size-fits-all
approaches may be insufficient for navigating the intricate landscape of potential drug candidates. The
variability in optimal parameters across iterations and possibly across different molecular targets indicates
that successful AI in drug discovery may require more sophisticated, adaptive learning algorithms that
can autonomously adjust their parameters based on the specific characteristics of the chemical space being
explored.

7.4 Broader Impact

The challenges and insights gained from this implementation point to several critical areas for future research
and development:

1. Adaptive Parameter Setting: Developing machine learning algorithms that can autonomously adjust
parameters like scoring thresholds based on the evolving characteristics of the generated molecules could
significantly enhance the efficiency and effectiveness of the drug discovery process.

2. Intelligent Automation: Creating more sophisticated automation processes that can make informed de-
cisions about when human intervention is necessary could strike a balance between the benefits of automation
and the need for expert oversight.

3. Resource-Aware Computing: Designing algorithms and workflows that can dynamically adapt to avail-
able computational resources could make advanced drug discovery techniques more accessible to a broader
range of research institutions.
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4. Interdisciplinary User Interfaces: Developing more intuitive interfaces that cater to chemists, biologists,
and computational scientists alike could accelerate interdisciplinary collaboration in drug discovery.

These advancements could have far-reaching implications beyond just improving the ChemSpaceAL
pipeline. They could contribute to making AI-driven drug discovery more efficient, accessible, and adaptable
to diverse research questions and computational environments. Ultimately, this could accelerate the pace of
drug discovery, potentially leading to faster development of new treatments for a wide range of diseases.

In conclusion, while the implementation of the ChemSpaceAL pipeline faced several challenges, these
very challenges have illuminated critical areas for improvement in the field of computational drug discovery.
By addressing these areas, future iterations of this and similar pipelines could play a transformative role in
how we approach the complex task of identifying and developing new drug candidates.

7.5 The Evaluation of Generated Molecules Against FDA-Approved Inhibitors

In the original study of the ChemSpaceAL pipeline, the effectiveness of generated molecules for c-Abl kinase
inhibition was primarily assessed through structural similarity comparisons with known FDA-approved small
molecule inhibitors. However, this approach lacked a direct functional comparison. To address this limitation,
a new analysis was conducted, where the same scoring function used in the ChemSpaceAL pipeline was
applied to seven FDA-approved c-Abl kinase inhibitors.

The scoring results for these approved inhibitors were as follows: imatinib (62.5), bosutinib (44.5),
asciminib (41), nilotinib (53.5), ponatinib (61), bafetinib (67.5), and dasatinib (41.5). These scores range
from 41 to 67.5, with an average of 53.1, see table 2. In comparison, the original paper reported that after
five iterations of the ChemSpaceAL pipeline, the generated molecules achieved an average score of 48.5 and
a maximum score of 77.

This direct comparison provides several insights into the performance of the ChemSpaceAL pipeline.
The maximum score of 77 achieved by the pipeline exceeds the highest score among the FDA-approved
inhibitors (67.5 for bafetinib), suggesting that the method can potentially explore chemical space beyond
known effective inhibitors and identify novel structures with enhanced binding characteristics. However,
the lower average score of the generated molecules (48.5) compared to the average of the known inhibitors
(53.1) indicates that while the pipeline can produce high-scoring outliers, it may not consistently generate
molecules that match or exceed the quality of existing drugs.

This analysis underscores the importance of considering both peak performance and overall score distri-
bution when evaluating generative models in drug discovery. While the ability to generate molecules with
scores exceeding those of known drugs is promising, the goal should be to shift the entire distribution of
generated molecules towards higher scores. Future iterations of the pipeline might focus on narrowing this
gap, aiming to increase the average score of generated molecules while maintaining the ability to produce
high-scoring outliers.

Furthermore, this comparison highlights the value of incorporating known drug scores as a benchmark in
the evaluation process. Such comparisons provide a more nuanced understanding of the model’s performance
and its potential to contribute to drug discovery efforts. They also offer a clear target for future improvements:
consistently generating molecules that score comparably to or better than existing drugs while potentially
exploring novel chemical structures.

7.5.1 Analysis of HNH Domain of Cas9 Results

The application of the ChemSpaceAL pipeline to the HNH domain of Cas9 yielded intriguing results that
both align with and diverge from those reported in the original ChemSpaceAL paper, see table 3. This
implementation showed a gradual improvement in average scores from 8.21 in the initial iteration (al0) to
11.57 by the sixth iteration (al6), demonstrating the pipeline’s ability to learn and generate increasingly
promising molecules over time, see table 4. This trend is consistent with the original paper, which reported
an increase from 7.9 to 11.5 over five iterations. However, the rate of improvement in this study appears
to be slower, with the al5 results (average score 9.85) lagging behind the reported al5 results (average score
11.5).

Interestingly, while the average scores were generally lower, the maximum scores showed a different
pattern. This implementation achieved higher maximum scores in later iterations, reaching 46.00 by al6,
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compared to the highest reported score of 34.0 in the original paper. This suggests that this version of the
pipeline may be exploring a wider range of chemical space, potentially identifying more diverse and novel
candidates, albeit at the cost of overall consistency in high scores.

The percentage of scores above the threshold of 11 also showed a notable difference. In this implementa-
tion, this percentage increased from 21.10% to 44.40% over six iterations, while the original paper reported
an increase from 21.3% to 52.1% over five iterations. This discrepancy could indicate that this version of
the pipeline is generating a more diverse set of molecules, including both high-scoring outliers and a larger
proportion of lower-scoring compounds.

These differences in results could stem from various factors, including variations in the implementa-
tion details, differences in the scoring function, or the stochastic nature of the generative process. They
underscore the importance of reproducibility studies in computational drug discovery and highlight the po-
tential impact of subtle changes in methodology. Further investigation into these discrepancies could provide
valuable insights into the robustness and sensitivity of the ChemSpaceAL approach, potentially leading to
improvements in its application to challenging targets like the HNH domain of Cas9.

7.6 Analysis of FAP-alpha Results

The evaluation of potential FAP-alpha (Fibroblast Activation Protein-alpha) inhibitors using the ChemSpaceAL
pipeline represents a significant step in the drug discovery process. To establish a baseline for comparison,
a set of patented small molecule inhibitors from Erasmus MC were scored using the same methodology that
would be applied to the generated molecules. This approach provides valuable context for interpreting the
results of the AI-generated compounds.

The scoring of these known inhibitors yielded a range of values: 12.5, 17, 17, 10.5, 19.5, 19, 21, and 15,
see figures 4 and 5. These scores reflect the predicted binding affinity or interaction strength between each
molecule and the FAP-alpha target. The variation in scores among these known inhibitors is noteworthy,
ranging from a low of 10.5 to a high of 21. This spread indicates that even among patented compounds,
there is considerable variation in predicted effectiveness.

The highest score of 21, achieved by the seventh compound in the list, sets a benchmark for what might
be considered a promising candidate in this scoring system. Conversely, the lowest score of 10.5 for the
fourth compound suggests that even molecules with relatively low scores in this system might still possess
inhibitory activity against FAP-alpha.

This range of scores for known inhibitors is crucial for several reasons:

• Benchmark Setting: It establishes a realistic range of scores that can be considered promising for
potential FAP-alpha inhibitors. Molecules generated by ChemSpaceAL that score within or above this
range could be considered particularly interesting for further investigation.

• Validation of Scoring Method: The fact that known inhibitors receive varied but generally positive
scores lends credibility to the scoring method used in the ChemSpaceAL pipeline. It suggests that the
scoring function is capable of identifying molecules with potential inhibitory activity.

• Contextualizing Generated Results: When evaluating the scores of AI-generated molecules, these
reference scores provide a context for interpretation. For instance, a generated molecule scoring above
21 might be considered exceptionally promising, while those scoring below 10.5 might be viewed with
more skepticism.

• Understanding Scoring Sensitivity: The range of scores among known inhibitors (from 10.5 to
21) indicates that the scoring function has a good dynamic range, capable of distinguishing between
molecules with potentially different levels of activity.

• Guiding Optimization Efforts: For any AI-generated molecules, these reference scores can guide
further optimization efforts. Researchers might aim to modify generated structures to push their scores
towards or beyond the higher end of this reference range.

It’s important to note that while these scores are predictive and useful for prioritizing compounds, they
are not a direct measure of actual inhibitory activity. Factors such as solubility, cell permeability, and in
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vivo behavior are not captured by this scoring method. Therefore, while these scores are valuable for initial
screening and prioritization, experimental validation remains crucial for confirming the actual effectiveness
of any potential inhibitor.

In the context of the ChemSpaceAL pipeline, these reference scores serve as a valuable calibration tool.
They allow researchers to gauge the potential of generated molecules relative to known, patented inhibitors.
This comparison can help in quickly identifying the most promising candidates from among the vast number
of molecules that an AI system like ChemSpaceAL can generate, streamlining the drug discovery process
and potentially leading to the identification of novel, effective FAP-alpha inhibitors.

The results from the active learning iterations for FAP-alpha present an interesting pattern of perfor-
mance. Initially, at iteration 0, the model achieved an average score of 19.19, with 29.50% of molecules
scoring above the threshold of 22, and a maximum score of 38.5, see table 5. These baseline metrics are
impressive, especially when compared to the in-house generated inhibitors, which scored between 10.5 and
21.

Subsequent iterations show a nuanced progression. Iteration 1 saw a slight decrease in performance, with
the average score dropping to 18.4 and the percentage above threshold falling to 23.4%, though the maximum
score increased slightly to 39. Iterations 2 and 3 showed minor improvements, with average scores of 18.43
and 18.62 respectively, and the percentage above threshold rising to 25.6% and 25.9%. However, iteration 4
maintained a similar average score of 18.56 but experienced a decrease in molecules above the threshold to
23%, with a maximum score of 36.5.

This pattern aligns with the previously discussed exploration-exploitation trade-off in machine learning.
The initial high performance followed by a dip and then gradual improvement is typical of models adapting
to specific targets. However, the relatively small fluctuations in later iterations suggest that the model might
be reaching a plateau in its learning process.

The consistent generation of molecules with scores comparable to or exceeding the in-house inhibitors
is noteworthy. However, the lack of substantial improvement over iterations, particularly in the average
score and percentage above threshold, indicates potential overtraining. This could be due to using too
many epochs during the fine-tuning process in each active learning cycle. Excessive epochs might cause the
model to overfit to the high-scoring molecules from previous iterations, limiting its ability to explore new,
potentially beneficial areas of the chemical space.

To address this, future experiments, particularly with the next target protein TROP2, will be conducted
with a reduced number of epochs. This adjustment aims to strike a better balance between learning from
high-scoring molecules and maintaining the model’s ability to explore diverse chemical spaces, potentially
leading to more significant improvements across iterations.

7.7 Analysis of the TROP2 Results

7.7.1 Adjusting Epoch Count for TROP2

In the initial iteration for TROP2, a reduced number of epochs was implemented during the active learning
phase to mitigate potential overfitting, as previously discussed. However, this adjustment led to unexpected
results. After 100 epochs, the model converged to a loss value exceeding 1, which was higher than anticipated.
This suboptimal convergence had a detrimental effect on the subsequent iteration, resulting in the generation
of SMILES strings of lower quality compared to the previous iteration. This observation highlights the
delicate balance required in determining the optimal number of training epochs, emphasizing the need for
careful tuning of hyperparameters in the active learning process.

The results for TROP2 highlight the challenges of applying this methodology to targets without known
inhibitors. The initial iteration (al0) showed promising results with a mean score of 19.81 and 31.3% of
molecules above the threshold. However, the subsequent iteration (al1) saw a decrease in performance, with
the mean score dropping to 17.06 and only 18.1% of molecules above the threshold. This regression suggests
that the initial threshold estimation and epoch count for TROP2 may have been suboptimal. The lower
threshold likely led to the inclusion of less optimal molecules in the active learning set, while the reduced
epoch count may have resulted in underfitting. These observations underscore the importance of careful
parameter tuning, especially for novel targets. Future work should focus on developing more robust methods
for threshold estimation in the absence of known inhibitors and on adaptive epoch adjustment strategies to
balance between overfitting and underfitting risks.
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7.7.2 TROP2 Results

Based on the results provided for the evolution of TROP2 small molecules, here’s an interpretation for the
discussion section of your thesis:

The evolution of small molecules targeting TROP2 over five iterations of the ChemSpaceAL pipeline
reveals an interesting pattern of improvement, albeit with some fluctuations. Initially, in iteration 0 (al0),
the model generated molecules with an average score of 17.06, with 18.1% of molecules scoring above the
threshold of 22, and a maximum score of 36, see table 6. This baseline performance suggests that the
pretrained model had some capacity to generate potentially binding molecules for TROP2, despite the lack
of known small-molecule binders for this target.

Interestingly, iterations 1 and 2 (al1 and al2) showed a slight decline in performance, with average scores
dipping to 16.81 and 16.99 respectively, and the percentage of molecules above the threshold decreasing to
13.5% and 14.8%. This initial decline is not uncommon in machine learning processes and may represent
the model’s exploration of the chemical space as it adapts to the specific requirements of TROP2 binding.

A turning point is observed in iteration 3 (al3), where we see a notable improvement across all metrics.
The average score increased to 18.56, the percentage above threshold rose to 23.0%, and the maximum score
reached 36.5. This improvement suggests that the model began to effectively learn from previous iterations,
refining its understanding of the chemical features that contribute to TROP2 binding.

The final iteration (al4) demonstrates the most significant improvement, with the highest average score
of 19.81, 31.3% of molecules above the threshold, and a maximum score of 42.5. This marked increase in
performance indicates that the model has successfully learned to generate molecules with improved binding
potential for TROP2.

The overall trend, particularly the substantial improvement in the later iterations, supports the effec-
tiveness of the active learning approach employed by ChemSpaceAL. It suggests that the model is capable
of progressively refining its understanding of the chemical space relevant to TROP2 binding, even in the
absence of known small-molecule binders to guide the process.

However, it’s important to note that while the improvement is promising, the scores are still relatively
modest compared to those typically seen for targets with known binders. This underscores the challenging
nature of generating small molecules for novel targets like TROP2. The fluctuations in performance across
iterations also highlight the complexity of the task and the potential sensitivity of the model to the specific
molecules selected for each active learning cycle.

These results provide valuable insights for future applications of ChemSpaceAL to novel targets. They
suggest that multiple iterations are crucial for allowing the model to explore and then exploit the relevant
chemical space. Furthermore, they indicate that patience is necessary when applying such methods to
challenging targets, as initial iterations may not show immediate improvements.

Future work could focus on extending the number of iterations to see if further improvements can be
achieved, as well as investigating the structural features of the highest-scoring molecules to gain insights
into potential binding modes for TROP2. Additionally, experimental validation of the top-scoring molecules
would be crucial to confirm the model’s predictions and potentially identify the first small-molecule binders
for TROP2.

7.8 Cross-Target Analysis of Learning Patterns

An intriguing pattern emerged across the experiments with different target molecules, including the HNH
domain of Cas9 and FAP-alpha. It was observed that the initial iteration (al0) typically yielded higher average
scores and a greater percentage of high-scoring molecules compared to the first active learning iteration (al1).
This phenomenon, consistent across multiple targets, provides valuable insights into the learning dynamics
of the ChemSpaceAL pipeline. The pretrained model, represented by al0, appears to generate a diverse set
of molecules that broadly sample the chemical space, occasionally hitting upon high-scoring compounds by
chance. As the active learning process begins in al1, a temporary dip in performance can be seen. This
initial decline likely reflects the model’s first attempts to adapt to the specific target, moving away from its
general pretraining biases and exploring new, potentially fruitful areas of chemical space.

The subsequent iterations, from al2 onwards, show a consistent upward trend in scores, indicating that
the model progressively refines its understanding of the target-specific chemical space. This pattern of
initial decline followed by steady improvement demonstrates the model’s capacity to balance exploration of
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new chemical territories with exploitation of promising leads. It showcases the robust nature of the active
learning approach, which allows the model to overcome initial setbacks and ultimately generate molecules
more tailored to each specific target. This consistent learning curve across different molecular targets not
only validates the effectiveness of this methodology but also highlights the importance of running multiple
iterations to fully harness the potential of the ChemSpaceAL pipeline in drug discovery efforts.

7.9 Methodological Adaptations and Their Implications

A significant deviation from the original ChemSpaceAL methodology emerged in the implementation regard-
ing the number of epochs used for active learning. While the original paper reported using only 10 epochs
for each active learning iteration, these experiments revealed that this was insufficient to achieve comparable
loss reduction. It was found that 100-150 epochs were necessary to reach loss levels similar to those reported
in the original study. This substantial increase in training time raises important considerations about the
trade-offs between model performance and potential overfitting. The need for extended training could in-
dicate differences in the dataset, model architecture, or implementation details. It might also suggest that
the original 10-epoch approach, while efficient, may not fully capture the complexity of the chemical space
for the specific targets. However, the increased number of epochs also introduces risks of overfitting to the
active learning set, potentially limiting the model’s ability to generalize and explore diverse chemical spaces
in subsequent iterations.

This observation underscores the delicate balance required in fine-tuning deep learning models for molec-
ular generation. To further investigate this discrepancy and assess the variability in model performance,
multiple iteration 0’s (the initial random sampling step) can be conducted. This approach would provide in-
sight into the inherent variability of the process and help determine whether the need for additional epochs is
consistent across different initializations. Such analysis could guide decisions on the optimal training regimen
and potentially reveal insights into the robustness and reproducibility of the ChemSpaceAL methodology
across diverse molecular targets.

The modification of the ChemSpaceAL methodology involved exploring the impact of varying the thresh-
old for selecting target molecules in the active learning phase. The original paper used a fixed score threshold
based on known inhibitors or database statistics, rather than a percentage-based cutoff. This approach, while
grounded in empirical data, may not always adapt well to different protein targets or scoring functions. Ex-
periments with using the top 10% of scored protein-ligand complexes to construct the active learning dataset
resulted in only minor improvements in the average scores of the 1000 scored complexes in each iteration.

This limited progress suggested that the stringent 10% cutoff might be too restrictive, potentially ex-
cluding valuable near-miss candidates from the learning process. However, expanding the selection to the
top 20% of scored complexes led to more substantial improvements. This enhanced performance can be
attributed to the larger and more diverse active learning dataset, which provides the model with a richer
set of examples to learn from. The broader selection likely captures a wider range of favorable interactions
and structural features, allowing the model to better generalize and generate improved molecules in subse-
quent iterations. It may also help in capturing subtle patterns that contribute to high scores but are not
immediately apparent in only the top-scoring complexes.

This finding highlights the importance of carefully tuning the selection criteria in active learning ap-
proaches for molecular generation, balancing the quality of selected examples with the size and diversity of
the training set. The optimal threshold may vary depending on factors such as the complexity of the protein
target, the nature of the scoring function, and the initial diversity of the generated molecules, emphasizing
the need for adaptive strategies in molecular design workflows.

7.10 The Importance of Synthetic Feasibility in Molecular Design

Upon visual inspection of the molecular structures presented in Figures 6-9 for both FAP-alpha and TROP2
targets, it is challenging to discern clear structural differences between high-scoring and low-scoring molecules
at first glance. The subtle variations in chemical structure that contribute to improved scores are not
immediately apparent to the untrained eye. This observation underscores the complexity of structure-activity
relationships in drug design and highlights the need for expert analysis. Specialized chemists, with their in-
depth knowledge of medicinal chemistry and structure-function relationships, would be better equipped to
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identify and interpret the key structural features that contribute to improved binding scores. Their expertise
is crucial for a more nuanced understanding of how molecular structures relate to predicted binding affinities
and for guiding further optimization of these AI-generated molecules.

While the scoring function employed in the ChemSpaceAL pipeline provides valuable insights into po-
tential binding affinity and drug-likeness, it does not account for the synthetic feasibility of the generated
molecules. This is a critical limitation, as highly scored molecules may be challenging or even impossible
to synthesize in practice, rendering them impractical for further development. Addressing this gap between
computational design and real-world applicability is crucial for the effective translation of in silico results to
viable drug candidates.

One proposed approach to tackle this issue is the incorporation of expert knowledge from medicinal
chemists. A system could be implemented where a panel of experienced chemists evaluates the generated
molecules through a majority voting process, categorizing each molecule as synthetically feasible or unfeasible.
While this method introduces a degree of subjectivity and may not capture the nuanced complexities of
organic synthesis, it provides a practical filter to prioritize molecules that are more likely to be synthesizable.

Alternatively, machine learning models trained on large datasets of known synthesizable compounds
could be integrated into the pipeline to predict synthetic accessibility. However, such models would need
to be regularly updated and validated to keep pace with advancing synthetic methodologies. Ultimately,
balancing computational efficiency with synthetic realism remains a key challenge in AI-driven drug discovery,
emphasizing the need for ongoing collaboration between computational scientists and synthetic chemists in
refining and validating molecular design pipelines.

7.11 Future Improvements in User Interface and Accessibility

While the current implementation of ChemSpaceAL has demonstrated promising results in generating tar-
geted molecules, it was recognized that its usability could be enhanced to make it more accessible to a
broader range of researchers. Presently, the pipeline requires a certain level of programming proficiency,
which may limit its adoption by researchers without extensive computational backgrounds.

A significant area for future improvement is the development of a graphical user interface (GUI). Such
an interface would greatly enhance the user-friendliness of the tool, allowing researchers to interact with the
pipeline more intuitively. A GUI could provide easy-to-use controls for adjusting parameters, initiating runs,
and visualizing results. For instance, users could adjust clustering parameters, modify scoring thresholds, or
fine-tune the active learning process through simple interface elements rather than modifying code directly.

Furthermore, the GUI could incorporate real-time visualization tools, allowing users to observe the evo-
lution of generated molecules across iterations, view the distribution of molecular properties, or examine
docking results visually. This would not only make the tool more accessible but also provide immediate feed-
back on the impact of parameter adjustments, facilitating a more intuitive understanding of the molecule
generation process.

Another potential improvement could be the integration of pre-set configurations for common use cases
or target proteins. This would allow less experienced users to quickly get started with the tool while still
providing the flexibility for more advanced users to customize all aspects of the pipeline.

By focusing on these user-centric improvements, the aim was to broaden the accessibility of ChemSpaceAL,
potentially accelerating its adoption in diverse research settings and enhancing its impact on drug discov-
ery efforts. The development of such a user-friendly interface would represent a significant step towards
democratizing AI-driven molecular design tools in the scientific community.

7.12 Proposed Approaches for GUI Implementation

In considering the development of a graphical user interface for ChemSpaceAL, two primary approaches
emerge as promising solutions: a desktop application and a web-based interface. Each of these approaches
offers distinct advantages and challenges, particularly in light of ChemSpaceAL’s current structure as a
Python package requiring local installation.

The desktop application approach, utilizing PyQt, presents a viable solution that aligns well with
ChemSpaceAL’s existing architecture. This method would involve creating a standalone executable that
bundles Python, ChemSpaceAL, and all necessary dependencies. Tools such as PyInstaller or cx Freeze
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could be employed to package these components into a single, easily installable application. This approach
offers several advantages: it provides native performance for resource-intensive tasks, allows for offline usage,
and eliminates the need for users to manually manage Python environments or packages.

In practice, the PyQt-based application would serve as an intuitive wrapper around ChemSpaceAL’s core
functionality. Users would interact with familiar GUI elements to set parameters, initiate computational
runs, and analyze results. The application would handle the interaction with the ChemSpaceAL package
behind the scenes, translating user inputs into appropriate function calls and presenting outputs in a visually
comprehensible format.

Alternatively, a web-based application could be developed to provide access to ChemSpaceAL’s capabil-
ities through a browser interface. This approach would involve implementing ChemSpaceAL on a server,
with a Flask or Django backend exposing its functionality through a RESTful API. A React-based frontend
could then provide an interactive interface for users to input parameters, submit jobs, and visualize results.
This solution offers the advantage of accessibility from any device with a web browser, without requiring
local software installation.

However, the web-based approach presents challenges, particularly in terms of server-side resource man-
agement. ChemSpaceAL’s computationally intensive processes would need to be handled on the server,
potentially introducing latency for users and requiring careful resource allocation. Additionally, maintaining
and scaling such a system would necessitate ongoing attention and resources.

The choice between these implementations will depend on a careful evaluation of the target user base,
available resources, and long-term maintenance considerations. Regardless of the specific implementation
chosen, the development of a GUI represents a critical step in enhancing the accessibility of ChemSpaceAL.

By providing intuitive interfaces for complex computational processes, a GUI would lower the barrier
to entry for researchers without extensive programming backgrounds. This could potentially accelerate the
adoption of ChemSpaceAL in diverse research settings, broadening its impact on drug discovery efforts. The
integration of real-time visualization tools and pre-set configurations, as mentioned earlier, would further
enhance the user experience and facilitate a more intuitive understanding of the molecule generation process.

In conclusion, the development of a graphical user interface for ChemSpaceAL, whether as a desktop
or web-based application, represents a significant opportunity to democratize access to advanced molecular
generation techniques. This enhancement has the potential to accelerate the pace of drug discovery across a
broader spectrum of the scientific community, furthering the impact of AI-driven molecular design tools in
pharmaceutical research.
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8 Conclusion

8.1 Summary of Key Findings and Limitations

Based on the thesis content, here are concise answers to the research questions for your conclusion:
1. The choice of biomarker significantly affects ChemSpaceAL’s performance in generating potential drug

candidates:
- For c-Abl kinase, a well-studied target, the pipeline generated molecules with scores surpassing known

FDA-approved inhibitors (maximum score of 77 vs. 67.5 for bafetinib). - For the HNH domain of Cas9,
the pipeline showed gradual improvement over iterations, demonstrating adaptability to less-studied tar-
gets. - For FAP-alpha, AI-generated molecules produced comparable or better scores than known patented
inhibitors. - For TROP2, a novel target without known small-molecule binders, the pipeline faced initial chal-
lenges but showed significant improvement over iterations, highlighting its potential for exploring uncharted
chemical spaces.

2. The ChemSpaceAL model’s performance varies across different biomarkers:
- For well-studied targets like c-Abl kinase, the model showed consistent improvement and generated

high-scoring molecules. - For challenging targets like TROP2, the model’s performance was less consistent
initially but demonstrated significant improvement in later iterations. - The model’s effectiveness appears to
correlate with the availability of prior knowledge about the target, with well-studied targets yielding more
immediate results.

3. Key factors influencing ChemSpaceAL’s success in generating effective drug candidates include:
- Availability of known inhibitors for reference scoring and parameter tuning. - Complexity of the target

protein’s binding site. - Optimization of hyperparameters, particularly the number of epochs and scoring
thresholds. - Balance between exploration of new chemical spaces and exploitation of promising leads. -
Appropriate selection criteria for the active learning dataset. - Consideration of synthetic feasibility in the
scoring function.

These findings underscore the versatility of ChemSpaceAL in addressing various biomarkers while high-
lighting the need for target-specific optimizations and the importance of iterative learning, especially for
novel targets. The study also emphasizes the potential of this approach in exploring new chemical spaces
for challenging targets in cancer research.
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Appendix

A

For the latest version of this modified version of ChemSpaceAL please see the following github link and go
to the ’scripts’ folder: https://github.com/sonjakatz/ChemSpaceAL-slurm
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B

Figure 10: top 3 scoring molecules for FAP-alpha for iteration 0

Figure 11: top 3 scoring molecules for FAP-alpha for iteration 1

Figure 12: top 3 scoring molecules for FAP-alpha for iteration 2
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Figure 13: top 3 scoring molecules for FAP-alpha for iteration 3

Figure 14: top 3 scoring molecules for FAP-alpha for iteration 4

Figure 15: top 3 scoring molecules for FAP-alpha for iteration 5
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Figure 16: top 3 scoring molecules for FAP-alpha for iteration 6

Figure 17: top 3 scoring molecules for TROP2 for iteration 0

Figure 18: top 3 scoring molecules for TROP2 for iteration 1
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Figure 19: top 3 scoring molecules for TROP2 for iteration 2

Figure 20: top 3 scoring molecules for FAP-alpha for iteration 3

Figure 21: top 3 scoring molecules for FAP-alpha for iteration 4
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C

Figure 22: step 1: log on to the GPU cluster

Figure 23: step 2: activate the environment and open jupyter notebook
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Figure 24: step 3: copy and paste the URLs

Figure 25: step 4: log on to the GPU cluster in a separate command window
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Figure 26: step 5: move to the correct directory
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Figure 27: step 6a: modify the iteration and target in ’AL ITERATION’ and ’PROTEIN ID’
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Figure 28: step 6b: adjust parameters

Figure 29: step 7: submit the script to the GPU cluster
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