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Summary

One of the main cost drivers of an offshore wind power plant are the support struc-
tures of the wind turbines, it is therefore of primary importance to optimize their
design. Among the support structures available, the concept most widely adopted
is the monopile-based support structure, whose design is often fatigue-driven. Off-
shore structures need to withstand the wave loads, that play a major role among the
cyclic loads that excite the support structure. The design of the support structure’s
geometry is of primary importance, since it determines the structural vibrations.

Therefore, this thesis aims to understand how, varying the diameter of the sup-
port structure, affects the wave induced fatigue loads acting on a monopile-based
offshore wind turbine. A FE model was developed to represent the structural mo-
tion, where the Euler-Bernoulli beam theory was adopted. The linear wave theory
was used, and the wave loads were computed according to the Morison equation.
The wave induced fatigue loads were calculated in frequency domain, assuming a
narrow-banded response spectrum. A case study was provided by Siemens Gamesa
RE, and the wind turbine was assumed in parked mode.

Two assignments were derived, to tackle the research question. First, a sensitivity
analysis was performed, to study the non-local effects on the wave induced loads,
due to varying the diameter of the support structure. Then, an analytical optimiza-
tion was applied to a simplified structure, aiming to find the diameter that minimizes
the mass of the support structure, accounting for fatigue damage. The hypotheses
of thin wall and deep water regime were assumed.

The results of the sensitivity analysis suggested that the non-local effects do not dif-
fer significantly from the local ones, and that to reduce the loads: it is beneficial
to reduce the diameter at waterline, to increase it around mudline, while variations
along the tower are quite irrelevant to this end. The analytical optimization was
run for different load cases. Wave induced fatigue loads alone were first considered,
then a diameter-independent fatigue load was introduced. It was concluded that, ac-
counting for resonant waves only, the smaller the diameter of the support structure,
the better.
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m Wöhler exponent −

N Number of cycles at failure −

n Number of cycles −

a Probability Density Distribution −

xiii



Q External load N

S Power spectrum m2 · s

T Wave period s

t Thickness m

v Velocity of the wave particle m/s

x In-plane horizontal coordinate m

y Out-of-plane horizontal coordinate m

z Vertical coordinate m

Greek symbols

Γ ”Gamma” function −

γ Thickness ratio −

τ Spectral width parameter −

∆ Variation or range −

η Wave distribution function −

Θ Peak-enhancement factor −

λ Wave length m

ξ Structural damping −

ρ Material density kg/m3

σ Stress Pa

Φ Modeshape −

ϕ In-plane rotation rad

ω Angular frequency rad/s

Subscripts

A Element A



B Element B

D Drag component

DEL Related to the DEL

D− ind Diameter-independent

eq Equivalent

fix Fixity depth

JS JONSWAP

LT Life Time (period)

M Inertia component

mid Middle level

opt Optimum

p Peak

PM Pierson - Moskowitz

S Significant

s Solid

SB Seabed

SH to-selected-height

SL Free surface line

t Thickness-related

bot Bottom level

w Water

x In-plane horizontal component

y Out-of-plane horizontal component

z Vertical component



Abbreviations

1P Frequency of the Rotor

3P Blade Tower-Passing Frequency

DEL Damage Equivalent Load

DOF Degree Of Freedom

FE Finite Element

HKZ Hollandse Kust Zuid

JONSWAP Joint North Sea Wave Project

OWT Offshore Wind Turbine

PDF Probability Density Function

PSD Power Spectral Density

RNA Rotor-Nacelle Assembly

SGRE Siemens Gamesa Renewable Energy

S-N Stress - Number of cycles

SWL Still Water Level

TP Transition Piece



Chapter 1

Introduction

It is renowned that the human kind is dealing with one of the greatest challenges
ever faced; stopping, and hopefully reversing the climate change, are goals that re-
quire everybody’s effort. Among the aspects of our lives that need a radical change,
the sources from which we generate energy are crucial ones; indeed, since the in-
dustrial revolution, the dramatic evolution in technology progressively increased the
demand of energy supply, which was compensated by the exploitation of fossil fu-
els. A big downside of this worldwide exploitation protracted in time, is that the
resulting waste gases have been contributing to global warming and consequently
to climate change. For this reason, especially during the past decade, the transition
to renewable energy has seen a strong boost, and so did offshore wind exploitation.

1.1 Offshore Wind

Apart from being greenhouse gases-free, offshore wind is a valid alternative because
there is a big supply of wind in offshore sites. Moreover, compared to onshore wind,
it is stronger and steadier because obstacles such as hills, mountains, forests and
buildings are usually far from them. The remoteness of offshore sites also decreases
the visual and auditory impacts of the wind turbines, allowing them to be bigger and
more numerous, and thus to produce more power. In fact, the power produced by
wind turbines scales with the second power of the rotor diameter.

Nevertheless, nothing comes for free. In fact, due to higher wind speeds and sea
waves, the maritime environment requires complex infrastructures to transport, in-
stall and support the wind turbines, which lead to higher financial costs. According
to T. Stehly et al. [25], one of the major contributors to the capital cost of an off-
shore wind power plant is the support structure of the wind turbines, ranging from
13% to 29% of the total cost, depending on the type of support structure adopted.

1



2 1. INTRODUCTION

1.1.1 Support Structures

Several types of support structures exist, but the main distinction exists between
bottom founded and floating support structures. Figure 1.1 shows the most common
types of support structures, divided by bottom fixed and floating.

Figure 1.1: Common types of support structures for bottom fixed and floating offshore
wind turbines [8].

The choice of the support structure is dictated by the water depth at the offshore site.
Bottom founded are preferred for shallow to medium water depths of up to 60 m, af-
ter which they are expected to become economically unfeasible. Thus, floating struc-
tures offer a more convenient alternative for deep waters. Although the exploitation
of offshore wind is starting to move toward deeper waters, bottom founded founda-
tions, monopiles in particular, are nowadays the most used, as shown in Figure 1.2.
This is mainly due to economic reasons, since bottom founded support structures are
cheaper than floating ones, therefore shallow water sites have been mainly exploited
so far; moreover, monopiles offer a simple and reliable solution based on decades of
experience coming from designing, manufacturing and installing them.

Monopile-based support structures are composed of three main parts, the monopile,
the transition piece (TP) and the tower, as shown in Figure 1.3. Each of these
components is made of sub-elements. They can be seen as a group of ”cans” piled
on top of each other, where each can is made of steel plates welded together. In the
monopile and TP, the cans are connected through welds, whereas the tower has a
more complex organization; this is usually due to the presence of multiple utilities
inside it, such as stairs and platforms for the installation and maintenance crews,
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1.1. OFFSHORE WIND 3

Figure 1.2: Overview of applied offshore wind support structure concepts until 2019
[26].

Figure 1.3: Supports structure and its parts.

and hosting structural damper at the top, but also for manufacturing procedures.
Thus, each structural section is made of multiple cans piled on top of each other,
that are usually bolted to the adjacent ones. Each section is then bolted to the others
through flanges, that increase the tower’s stiffness. The connections of the TP with
the tower and the monopile are bolted; nevertheless, also grouted connections can
be used.
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4 1. INTRODUCTION

1.1.2 OWT Design Process

Being the monopile-based support structures still widely adopted in offshore wind
projects, an optimal design of these is of primary importance. The monopile and
TP are designed by the foundation manufacturer, while the tower is designed by the
wind turbine manufacturer. The optimal design of the monopile and TP, combined
with the optimal design of the tower, possibly form an optimal design of the support
structure. This process is characterized by some iterations between the foundation
designer and the tower designer, who exchange information about loads and struc-
tural design, as shown in Figure 1.4. Although in theory an unlimited number of
iterations could be needed for the designs to converge, typically the support struc-
ture design is concluded in 2-3 iterations.

Figure 1.4: Representation of current design process.

Alternatively to this design approach, also integrated design exists, where the tower,
TP and monopile are designed altogether. According to some studies [10] [11],
this approach can lead to reduce significantly the structural mass and, if costs are
hypothesized for simplicity to scale linearly with the structural mass, to cheaper
support structures as well.

Four limit states are considered to design offshore wind support structures:

• ULS - Ultimate Limit State, caused by extreme waves and wind gusts acting on
the structure.

• FLS - Fatigue Limit State, caused by cyclic loading exciting the structure.

• ALS - Accidental Limit State, in case of accidental events or failures.

• SLS - Serviceability Limit State, concerning the functionality of the structure
under routine conditions.
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1.2. PROBLEM STATEMENT 5

Industrial experience suggests that the design is predominantly driven by FLS and
ULS.

1.2 Problem Statement

Within the topic of structural optimization of offshore wind support structures, this
thesis relates in particular to the fatigue driven design, in which waves excitation
plays a major role. It is indeed important to understand what variables affect the
wave induced fatigue loads more significantly, and how. This would help to in-
crease the awareness of the designers, and allow them to include as many details
as possible into the optimization process, useful to trim unnecessary costs and com-
putational time. This type of analysis falls under the category of sensitivity analysis,
that indeed aims to measure how sensitive a quantity is to its variables. The geome-
try of the system surely is one of the most important variables to account for, since it
determines the response of the support structure to the external loads, and the final
cost of the support structure, too.

1.3 Literature Review

With respect to the topic of structural optimization of monopile-based support struc-
tures and sensitivity analysis of fatigue loads, several researches have already been
conducted. Here is a summary of the most relevant to this thesis:

• N. Maljaars [18] focused on the minimization of the support structure’s mass
using a Particle Swarm algorithm and an integrated approach, since many local
optima were expected. The design variables used are the diameter and the
wall thickness of the monopile-based support structure, and the constraints
included fatigue loads, but also buckling and the support structure’s maximum
deflection. The optimization was run for several case studies, and it yielded a
mass reduction of 13− 17%.

• P. Markolefas [19] developed a fatigue analysis model of offshore wind turbine
monopile-based support structures in the frequency domain, aiming to make
the structural optimization more efficient. Fatigue loads are addressed in fre-
quency domain with Dirlik’s method, and a sensitivity analysis of the fatigue
loads to the mesh chosen to model the structure is performed. The result is a
reliable and quick model.
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6 1. INTRODUCTION

• L. Ziegler et al. [30] adopted a frequency domain method to perform the
sensitivity analysis of fatigue, in particular to site conditions such as water
depth, soil stiffness, wave height, and wave period. The Dirlik method is used
to calculate fatigue damage in frequency domain, and it is found that: the
method shows a >90% accuracy if compared to a time domain approach, and
fatigue damage is especially sensitive to water depth and wave period. The
method used is ideal for applications where fast simulations are needed.

• K.-H. Chew et al. [4] focused on analytical methods to calculate gradients of
fatigue damage and equivalent fatigue loads, both in time and frequency do-
main, for implementation in the optimization of offshore wind turbine struc-
tures. Dirlik’s method is applied to calculate fatigue in frequency domain, and
the results are compared to finite difference differentiation. An interesting re-
sult of this work is that fatigue sensitivity analysis is very susceptible to the
accuracy of response sensitivities, and this allows to propose several recom-
mendations to help improving the overall quality of numerical sensitivities.

• K.-H. Chew et al. [5] conducted a relevant study that focused on an analytical
gradient-based method to solve the problem of optimization of offshore wind
turbine support structures efficiently. The constraints of the optimization in-
clude the fatigue load, whose sensitivity is evaluated analytically. It has been
proved that analytical sensitivities are more accurate and efficient then the
often used finite differences approximations.

1.4 Research Question

The extensive research conducted on the topic of structural optimization and sensi-
tivity analysis of fatigue load gives an idea of the strong interest around them. The
previous researchers gave important insights in these areas of interest, focusing on
the accuracy and efficiency of the methods developed, rather than on the physical
interpretation of the results. Ziegler performed sensitivity studies on fatigue to site
conditions; nevertheless, there is not yet detailed research on where is beneficial to
vary the support structure’s geometry, and why. This thesis therefore aims to under-
stand how the geometry of the support structure affects the wave induced fatigue
loads. In the current structural design optimizations, the diameter distribution of
the support structure is fixed per design run, whereas the wall thickness distribution
undergoes the refining of the optimization. Thus, understanding how the diameter
affects the fatigue loads, would benefit further the optimization of support struc-
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1.4. RESEARCH QUESTION 7

tures. Hence, the main research question of the thesis is:

”How does varying the support structure’s diameter affect the wave induced
fatigue loads of a monopile-based offshore wind turbine?”

To tackle this research question, the following assignments were derived:

1. To determine the non-local effects on the wave induced fatigue load due to
varying the support structure’s diameter.

2. To obtain the optimal support structure’s diameter that minimizes the mass
of the support structure accounting for the fatigue constraint, following an
analytical approach.

The first assignment aims to answer the research question through the sensitivity
analysis of the wave induced fatigue loads in frequency domain. The sensitivity
of the fatigue loads to a diameter variation applied at a certain elevation of the
support structure, was obtained increasing by 5% the diameter of the element at
the height considered, and calculating the resulting variation of the fatigue loads at
every elevation. The effect of the diameter variation was computed individually for
each element of the support structure, i.e. when one element’s diameter is varied,
the others remain unchanged. The variations of the fatigue loads evaluated at the
same elevation where the diameter is varied, are named ”local effects”. On the other
hand, the variations evaluated at those elevations where the diameter is not varied,
are named ”non-local effects”. Thanks to this method, the non-local effects on the
wave induced fatigue loads, due to the diameter variation applied to all elevations,
were evaluated. Matlab was used to implement and run the analysis on a reference
support structure and for a North-Sea wave climate, both provided by SGRE.

The second assignment was applied to a simplified support structure, in particular
characterized by a diameter distribution constant along the height. A frequency
domain approach was adopted to calculate the wave induced fatigue loads. The
diameter that minimizes the support structure’s mass was calculated analytically, i.e.
calculating the first derivative of the equation of mass as a function of the diameter
constrained by the resistance to the fatigue damage, and finding its zeros. This
method helped answering the research question by showing transparently what role
is played by the diameter in the equations of the wave induced fatigue loads and
support structure’s total mass. The analysis was performed by hand and with the
aid of Wolfram Mathematica, for validation of the results and to produce insightful
figures.
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8 1. INTRODUCTION

1.5 Overview

The report is divided into three main chapters. After the Introduction, Chapter 2
introduces the equations, formulas and concepts used to answer the research ques-
tions. Then, Chapter 3 starts by introducing the case study used to look for local
and non-local effects of the diameter; then, the method adopted to calculate the
sensitivity is explained and eventually the results obtained are shown and discussed.
Chapter 4 explains the steps taken to perform the analytical optimization of the sup-
port structure’s diameter, along with a discussion of the results obtained. Eventually,
the lessons learnt throughout this work are wrapped up in the Conclusion chapter,
followed by some recommendations for future research.

CONFIDENTIAL



Chapter 2

Background

This chapter contains the basic knowledge that was used to conduct this work. Thus,
a summary of the background theory, i.e. the mathematical tools and concepts on
which this thesis was based, will be presented.

First, the theory used to describe the structure and its motion is described, going
through the outlines of the Finite Element Analysis, and the modal analysis. Then,
attention is given to the equations of the hydrodynamics: wave particles kinematics,
wave spectrum and wave loads. Eventually, the computation of fatigue damage is
introduced, both in time and frequency domain, focusing on the method used to
calculate the wave induced fatigue loads in frequency domain.

2.1 Finite Element Method

To model the support structure, the finite element method was applied. It is used
to give a discretized representation of a structure, using a mesh that allows for an
efficient yet accurate enough representation of the continuum. Such method is suit-
able to analyze the vibrations of a structure, as it can be easily set up and run by
calculators.

In this report, the support structure is divided into hollow cylindrical finite elements,
which are modelled according to the Euler-Bernoulli Beam Theory. This theory is
based on the following assumptions [13]:

• The material behaves accordingly to Hooke’s law, i.e. it is linear elastic.

• Plane sections remain plane and perpendicular to the neutral axis.

Although the Euler-Bernoulli Beam Theory was chosen due to its simplicity, note
that the Timoshenko–Ehrenfest Beam Theory shall be considered for a more accurate
analysis of the structural motion. In fact, according to this theory the beam’s sections
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10 2. BACKGROUND

are not bound to be perpendicular to the neutral axis, which has been proved to be
more accurate to describe the shear behaviour of ”short” beams, i.e. beams whose
length is small compared to the width (as for the elements of a monopile-based
support structure). Every element has 2 nodes at its extremes, as represented in
Figure 2.1.

Figure 2.1: Beam element, nodes, and DOF.

Each node carries part the properties of mass and stiffness of a beam element; ba-
sically, the inertia and stiffness of the beam element are equally split into the two
corresponding nodes. Since the structure is considered to lay into a 2-D plane, each
node has three degrees of freedom: vertical and horizontal displacements, and in-
plane rotation, as shown in Figure 2.1. What makes this method handy for the
computation of vibrations, is that the stiffness and inertia properties of a structure
can be gathered into matrix form. Therefore, a beam element would be represented
by the following stiffness and mass matrices [9]:
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2.1. FINITE ELEMENT METHOD 11

K =



EA
L 0 0 −EA

L 0 0

0 12EI
L3

6EI
L2 0 − 12EI

L3
6EI
L2

0 6EI
L2

4EI
L 0 − 6EI

L2
2EI
L

−EA
L 0 0 EA

L 0 0

0 − 12EI
L3 − 6EI

L2 0 12EI
L3 − 6EI

L2

0 6EI
L2

2EI
L 0 − 6EI

L2
4EI
L


(2.1)

M =
ρs ·A · L

420
·



140 0 0 70 0 0

0 156 22L 0 54 −13L

0 22L 4L2 0 13L −3L2

70 0 0 140 0 0

0 54 13L 0 156 −22L

0 −13L −3L2 0 −22L 4L2


(2.2)

E, the Young modulus, and ρs, the volumetric mass, are properties of the beam’s
material; A and I, are respectively the area and the second moment of area of the
cross section at the considered node; L is the length of the beam element. The
matrices M and K in Equation 2.2 and 2.1 are oriented according to the following
coordinates vector:

x(t) =


uz,1
ux,1
ϕy,1
uz,2
ux,2
ϕy,2

 (2.3)

Where uz,j is the vertical displacement of the j-th node, ux,j is the horizontal dis-
placement and ϕy,j the in-plane rotation. the subscripts 1 and 2 represent respec-
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12 2. BACKGROUND

tively the bottom node and top node of one element.

For a beam element characterized by an annular cross section with external diameter
D and wall thickness t, as shown in Figure 2.2, the area and second moment of area
are respectively:

A = π · (D · t− t2) (2.4)

Iyy =
π

64
· (D4 − (D − 2t)4) (2.5)

Figure 2.2: Annular cross section.

A relevant parameter often used to describe the geometry of the support structure’s
cross section is the ratio between its external diameter and the wall thickness, D/t.
High values of D/t indicate thinner sections, while low values indicate more bulky
structures. As a rule of thumb, the D/t ratio is in the order of 80 - 90. This rule of
thumb is valid for diameters in the range of 4 to 8 m, because for larger diameter
piles, very large wall thicknesses would result [26]. The limitations to this ratio come
from buckling behaviour, but also from fabrication, transportation and installation.
According to Steelwind Nordenham [21], D/t ratios up to 160 would be feasible.
Nowadays the average D/t ratio of a support structure is around 140.

2.2 Modal Analysis

To describe the vibrations of structures, the modal analysis is used. The dynamics of
a linear undamped system characterized by a mass and a stiffness matrix is described
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2.2. MODAL ANALYSIS 13

by the following equation of motion:

M · ẍ(t) +K · x(t) = Q(t) (2.6)

where Q(t) is a generic time-dependent load acting on the system. Please, note
that for this section, the variable t indicates the time, not the thickness. The modal
quantities of such system are determined performing the modal analysis. These steps
are followed:

1. The free vibrations of the system are considered, therefore the homogeneous
form of Equation 2.6 is used. A solution of the type x(t) = Φ · exp(λ · t)
is chosen, where Φ is the amplitude of the motion and λ ∈ C is a complex
number [20]. Inputting this solution in the homogeneous form of Equation 2.6
yields: (

λ2 ·M+K
)
·Φ = 0 (2.7)

2. Equation 2.7 only have non zero solutions if the determinant of
(
λ2M + K

)
determinant is zero. This condition yields the characteristic polynomial of the
system:

det
(
λ2 ·M+K

)
= 0 (2.8)

Solving the r roots of Equation 2.8 yields the eigenvalues λr of the system,
where r = 1 : NDOF, where NDOF is the number of degrees of freedom of the
system. Thus, the natural frequencies can be derived, since for an undamped
system the real part is zero [20]:

λ+ = i · ωr, λ− = −i · ωr (2.9)

where i =
√
−1 is the imaginary unit.

3. Once the eigenvalues are determined, the system in Equation 2.7 can be solved
for each mode to determine the corresponding modeshape Φr. It is important
to consider that, since the matrix

(
λ2M+K

)
is singular, the modeshape Φr is

not unique. In fact, any multiples of it satisfy the equation [14]. In this thesis,
it was chosen to normalize the modeshape by its biggest element in absolute
value.

4. Eventually, for the r-th mode, the modal mass Mr and modal stiffness Kr are
determined using the following equations [14]:

Mr = Φr
T ·M ·Φr (2.10)
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14 2. BACKGROUND

Kr = Φr
T ·K ·Φr (2.11)

The modal mass and stiffness are related through the following relation:

ω2
r =

Kr

Mr
(2.12)

The natural frequency ω0, the modeshape Φ0 and the modal stiffness K0 of the
first mode of vibration are needed as input for the wave induced fatigue load (see
subsection 2.4.3).

2.3 Hydrodynamic Equations

The components needed to describe the hydrodynamic used in this thesis are:

• The kinematics of waves.

• The wave spectrum.

• The wave loads.

2.3.1 Wave Kinematics

The linear wave theory [15] is considered in this study. For such waves, the relation
between the angular wave frequency, ω, and the wave number, k, is given by the
linear dispersion relation [15]:

ω2 = g · k · tanh(k · d) (2.13)

where g is the gravitational acceleration, and d is the water depth.

For linear waves, the horizontal and vertical components of the wave particle veloc-
ity are determined respectively by [15]:

vx =
h · ω
2

· cosh(k · (z + d))

sinh(k · d)
· sin(ω · t− k · x) (2.14)

vz =
h · ω
2

· sinh(k · (z + d))

sinh(k · d)
· cos(ω · t− k · x) (2.15)

The frame of reference for the axes x and z is shown if Figure 2.3. Please note that
in this section, the variable t indicates the time, not the wall thickness.
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2.3. HYDRODYNAMIC EQUATIONS 15

Figure 2.3: Waves frame of reference.

2.3.2 Wave Spectrum

Depending on the location-specific weather, different wave spectra may be needed.
The spectra used in this thesis are Pierson-Moskowitz’s and JONSWAP. The Pierson-
Moskowitz spectrum is:

SPM(f) = 0.3125 · h2S · Tp ·
(
f

fp

)−5

· exp

(
−1.25 ·

(
f

fp

)−4
)

(2.16)

where hS is the significant wave height, Tp is the peak period, and fp is the peak
frequency.

The JONSWAP spectrum can be viewed as the Pierson-Moskowitz spectrum multi-
plied by an additional factor, that is a function of the parameters Θ and τ :

SJS(f) = SPM(f) · (1− 0.287 · lnΘ) ·Θ
exp

−0.5·
( f

fp
−1

τ

)2


(2.17)

where τ is the spectral width parameter, which is equal to 0.07 if f ≤ fp, or 0.09 if
f > fp, and Θ is the peak-enhancement factor; it can be computed as a function of
hS and Tp [29], but it is common to use Θ = 3.3.

2.3.3 Wave Loads

The renowned Morison equation is used to calculate the wave loads, because it is
fast and relatively simple to implement. It expresses the force per unit length due
the waves acting on a cylindrical body, as a linear superposition of an inertia com-
ponent, proportional to the horizontal acceleration of the water particles relative to
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the structural acceleration, v̇x(t)− u̇x(t), and a drag component, proportional to the
square of the horizontal velocity of the water particles relatively to the velocity of
the structure, vx(t) − ux(t). Since monopiles support structures’ acceleration and
velocity are small compared to those of the water particles, they can be neglected;
in this case, the absolute form of the Morison equation is:

Qwave = Qinertia +Qdrag =

=
π

4
· ρw · CM ·D2 · v̇x(t) +

1

2
· ρw · CD ·D · vx(t) · |vx(t)| (2.18)

Here, ρw is the water density, CM and CD are respectively the inertia and drag
coefficients, D is the outer diameter of the cross section of the cylinder. The domi-
nant wave loads acting on a monopile are represented in Figure 2.4, as a function
of the wave height h, monopile diameter D, and wave length λ. Since the Mori-

Figure 2.4: Representation of wave forces on a cylindrical body [28].

son equation only describes the effects of drag and inertia loads, it is only valid for
πD/λ < 0.5, which is often the case for offshore monopiles. Nevertheless, since
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2.4. FATIGUE DAMAGE 17

lately their size has been growing, it may be required to account for the diffraction
effect. In this case, the inertia coefficient can be corrected to account for it. The
diffraction correction can be performed based on the following formula [27]:

CM = −2.5 ·
(
D(z)

λ

)3

+ 7.53 ·
(
D(z)

λ

)2

− 7.9 ·
(
D(z)

λ

)
+ 3.2 ≤ 2 (2.19)

Transforming Equation 2.18 in frequency domain yields the following hydrodynamic
transfer function, that for the r-th mode of vibration returns:

Ha,r(ω) = ω ·
∫ zSB

zSL

ch(ẑ) · η(ẑ, ω) · Φr(ẑ) · dẑ + (2.20)

+ i · ρw · ω2 ·
∫ zSB

zSL

CM (ẑ) · π ·D(ẑ)2

4
· η(ẑ, ω) · Φr(ẑ) · dẑ

where ch is the hydrodynamic damping coefficient, which accounts for both the drag
coefficient CD and the linearization of the wave particle velocity, and the distribution
function of the horizontal velocity field, η(z, ω), is:

η(z, ω) =
cosh

(
k · (z + d)

)
sinh (k · d)

(2.21)

where z is the vertical coordinate with origin at the SWL. More details on Equa-
tion 2.20 can be found in Hapel, Chapter 4.4 [12]. The effect of stretching wave
kinematics to the wave crest is neglected in frequency domain, due to its inherent
non-linearity.

2.4 Fatigue Damage

A structure experiences fatigue damage when it is excited by cyclic loads. Due to
this, the structure oscillates and develops stresses that allow cracks to form and/or
propagate within the material, which may eventually cause it to fail. The speed of
propagation depends on the response of the structure to the external loads. Not
having control on the environment, the geometry of the structure is the key for a
good design, as it determines its eigenvalues, hence how wide and how often the
structure vibrates in response to external loads. In fact, a structure whose natural
frequencies fall around the peaks of the environmental loads’ spectrum is likely to
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have a shorter life span, compared to a structure whose natural frequencies are far
from such peaks. Therefore, a structure that is not properly designed to endure
fatigue damage, might experience a failure during its operative life, something that
has to be seriously prevented.

Mathematically, as it is recommended in DNV-OS-J101 [29], under the assumption
of linearly cumulative damage, the fatigue damage F can be seen as the summation
over the stress ranges that the structure experiences during an period of time, of
the ratios between the number of cycles experienced at one stress range, ni, and
the number of cycles that the structure can stand before failure at the same stress
range, N(∆σi). It is therefore handy to calculate a constant-amplitude equivalent
stress range, ∆σeq, that yields the same fatigue damage as all the stress ranges, for
a fixed equivalent number of cycles, neq. This is described by the Palmgren-Miner
rule, according to which, the fatigue damage is [29]:

F =

m∑
i=1

ni
N(∆σi)

=
neq

N(∆σeq)
(2.22)

where the equivalent number of cycle is usually neq = 107 [7]. Thus, the fatigue
damage F is the ratio of the accumulated damage divided by the total damage that
a structure can take before failure, that happens for F = 1.

During the past century, the behavior to fatigue of several materials has been tested,
tracking the stress ranges and number of cycles at failure. These results have been
then gathered in the so-called S-N curves, i.e. logarithmic plots that describes how
many cycles N a structure can resist before failure due to the stress range ∆σ. Such
plots are described by the following equation:

log (N) = log (a)−m · log (∆σ) [7], or N =
a

∆σm
(2.23)

where log(a) is the intercept of the mean S-N curve with the log(N) axis, andm is the
negative inverse slope of the S-N curve (see Figure 2.5). There are different values
of log(a) and m, per material. Moreover, the S-N curves are in general bi-linear,
therefore, per material, there are usually two different pairs of a and m, depending
on the number of cycles considered. Nevertheless, in this thesis single-sloped S-N
curves will be considered, as they are more handy to perform analytical calculations.

To calculate the stress due to the bending moment Myy around the y axis (Fig-

CONFIDENTIAL



2.4. FATIGUE DAMAGE 19

Figure 2.5: Single-sloped S-N curve.

ure 2.2), this equation is used:

∆σ =
Myy ·D/2

Iyy
(2.24)

where D/2 is the distance between the outer diameter of the cross section of the
support structure and the neutral axis, and Iyy is the second moment of area of the
section perpendicular to the neutral axis, with respect to the y axis.

When the equivalent stress ∆σ is considered, Equation 2.24 becomes:

∆σeq =
DEL ·D/2

Iyy
(2.25)

where DEL is the damage equivalent load, thus the constant-amplitude equivalent
bending moment that induces an equivalent stress range that in neq cycles causes
the same damage as all the stress ranges present in the considered load history.

Inserting Equation 2.25 in Equation 2.23, and this into Equation 2.22, gives the
fatigue damage due to the DEL:

F =
neq · (∆σeq)m

a
(2.26)

The fatigue damage accumulated throughout a certain period of time can be scaled
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to a desired time interval, according to the following formula:

Fnew = Fold · Tnew
Told

(2.27)

Where Tnew is the desired time period, and Told is the time period considered for the
previous damage.

To determine the number of cycles ni per stress range ∆σi, different methods exist in
time domain and frequency domain; they will be described in the next paragraphs.

2.4.1 Time Domain

Following the time domain approach, the time series of a cyclic stress range is de-
composed using the Rainflow Algorithm into individual stress cycles, and the num-
ber of occurrences of each of them is calculated. Here, the assumption is made that
the individual cycles may be superimposed upon one another. (For the complete de-
scription of the Rainflow Counting algorithm, please see [2].) The stress ranges and
their respective numbers of cycles are then used in the Palmgren-Miner rule, which
allows to calculate the fatigue damage. The steps to calculate the fatigue damage in
time domain are summarized in Figure 2.6.

Figure 2.6: Time domain method to estimate fatigue [22].

Nevertheless, for preliminary structural design the time domain approach may result
too expensive computationally. Spectral methods offer instead a more agile solution.
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2.4. FATIGUE DAMAGE 21

2.4.2 Frequency Domain

Different methods exist to estimate the fatigue damage in frequency domain, yet
the most reliable and widely used for structural design is Dirlik’s method [24]. In
general, the frequency domain approaches consist of estimating the probability den-
sity distribution pR of the stress ranges from their power spectrum S(f), and then
calculate the fatigue damage with an ”integral version” of the Miner’s sum:

F =
E[P ]

a
·
∫ ∞

0

(∆σ)m · pR · d∆σ [24] (2.28)

where E[P ] is the expected number of peaks per unit time.

Dirlik proposed a method to estimate a stress range PDF that may be applied to
both wide and narrow-band Gaussian processes. This method was developed by
considering more than 60 different processes with power spectra of various shapes,
computing their stress range PDF in the time domain via Rainflow counting and
fitting a general expression for the stress range PDF in terms of the 0th, 1st, 2nd, and
4th spectral moments. Figure 2.7 summarizes the steps of Dirlik’s spectral method.
This description of Dirlik’s method [6] is based on P. Ragan et al. [22].

Figure 2.7: Dirlik’s spectral method to estimate fatigue [22].

The main advantage of using frequency domain methods to compute the fatigue
damage is to avoid the computationally expensive steps due to simulations and Rain-
flow Counting. In fact, time domain methods require usually many simulations to:
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1. Account for the larger stress cycles that rarely occur and are very important to
the fatigue damage experienced by the structure.

2. Achieve an adequate resolution of the stress range histograms needed for the
Rainflow algorithm.

Dirlik’s method, instead, requires less computational effort to obtain the loads power
spectrum with less statistical uncertainty; this is then used to estimate the stress
range PDF.

Dirlik’s method works for both wide and narrow-band Gaussian processes. In this
thesis, the assumption of narrow-band spectrum is taken, because the support struc-
ture has a low structural damping and there is not aerodynamic damping, as the
wind turbine is assumed in parked mode. As explained in Barltrop [3], the PDF of
the peaks of a narrow-band process follows a Rayleigh distribution, and so does the
PDF of the stress range. In this case, the DEL is calculated according to the following
equation:

DEL = (8 · b0)
1
2 ·
[
Γ

(
2 +m

2

)] 1
m

(2.29)

where b0 is the 0th spectral moment of the bending moment power spectrum.

2.4.3 Wave Induced Fatigue Loads

Based on the formulation given by Seidel [23], Equation 2.29 is then used to de-
termine the wave induced fatigue loads on the low-damped support structure of a
parked wind turbine. The 0th spectral moment of the power spectrum is the vari-
ance of the spectrum. Therefore, assuming a constant slope of the S-N curve m = 4,
the DEL for nref number of cycles results:

DEL = 2
3
2 · σM ·

[
Γ

(
2 + 4

2

)] 1
4

= 3.363 · σM (2.30)

where σM is calculated as done by Seidel [23]:

σM = σM (z) = σu,RNA ·HSH(z) (2.31)

σu,RNA is the standard deviation of the tower displacement at tower top, andHSH(z)
is the structural transfer function, that allows calculate the standard deviation of the
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bending moment at any elevation z:

HSH(z) = ω2
0 ·
∫ zRNA

z

Φ0(ẑ) · µ(ẑ) · (ẑ − z) · dẑ (2.32)

This transfer function accounts for the inertial loads due to the acceleration of the
elements above the elevation at which the transfer function is calculated. Note that
only the first mode of vibration is considered because it is close to the peak of the
wave spectrum, whereas the others are further away and thus do not give a signifi-
cant contribution to the structure’s motion.

The standard deviation squared of the displacement at tower top is:

σ2
u,RNA = Φ0(zRNA)

2 ·H2
a,0 · Sζζ(ω0) ·

∫ ∞

−∞
|H0(ω)| · dω (2.33)

where Φ0(zRNA) = 1, because of the normalization of the modeshape, Ha,0 is the
hydrodynamic transfer function, Sζζ(ω0) is the wave energy spectrum evaluated at
the first angular natural frequency, and H0(ω) is the dynamic transfer function of a
linear system. The solution of the integral in Equation 2.33 is computed analytically
as done by Seidel [23]: ∫ ∞

−∞
|H0(ω)| · dω =

π

K2
0 · 4ξ0

· ω0 (2.34)

where ξ0 is the structural damping of the first mode. This term accounts for the
stiffness of the structure, the structural damping, and the number of cycles, that is
represented by the natural frequency of the structure.

It is assumed that the drag term is negligible, since it is small for fatigue waves
[16]; this assumption is valid for typical monopile diameters for fatigue wave condi-
tions encountered in the North or Baltic Sea. Therefore, the hydrodynamic transfer
function (Equation 2.20) at the first natural frequency results:

Ha,0 = ρ · ω2
0 ·
∫ zSL

zSB

CM (ẑ) · π ·D(ẑ)2

4
· η0(ẑ) · Φ0(ẑ) · dẑ (2.35)

The DEL calculated as in Equation 2.30 is the damage equivalent load for the number
of cycles nref , which is computed as:

nref = f0 · T (2.36)
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Usually the 1-Hz equivalent DEL is used, where the number of reference cycles
nref,1Hz is the number of seconds within the interval T, i.e.:

nref,1Hz = fref,1Hz · T = T (2.37)

The conversion to 1-Hz equivalent yields:

DEL = 3.363 · σM ·
( nref
nref,1Hz

) 1
m

= 3.363 · σM · f
1
4
0 (2.38)

Therefore, the resulting equation of the 1-Hz damage equivalent load is:

DELwave(z) = DEL(z) = 1.8825 ·
√
Sζζ (ω0) ·

1

K0
·
√

1

ξ0
· ω

3
4
0 ·Ha,0 ·HSH(z) (2.39)

The 1-Hz equivalent DEL is independent of the intended service life, therefore, com-
bined with the number of seconds during the intended service life, it yields the total
damage. Equation 2.39 later on is referred to in the following form:

DEL(z) = f(ω0) ·Ha,0 ·HSH(z) (2.40)

where f(ω0) gathers those components that are related to the natural frequency:

f(ω0) = 1.8825 ·
√
Sζζ (ω0) ·

1

K0
·
√

1

ξ0
· ω

3
4
0 (2.41)
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Chapter 3

Sensitivity Analysis

As the name suggests, the sensitivity analysis is a study that measures how sensitive
a certain quantity is to the parameters on which it depends, explicitly and/or implic-
itly. There are several ways to perform it. An important distinction exists between
”local” and ”global” sensitivity analyses. For the scope of this thesis, a ”local” sensi-
tivity analysis is used. This type of analysis applies small changes to the parameters
considered, to capture how the result changes; this is equivalent to the concept of
derivative, i.e. a linearization of the expected change due to the small change of
some parameters. The ”global” sensitivity analysis, on the other hand, differs from
the first one because it attempts to understand changes in the results due to large
changes in the parameters.

This chapter discusses the methodology developed to perform the ”local” sensitivity
analysis of the wave induced fatigue loads, in frequency domain, acting on a support
structure supporting an offshore wind turbine, with respect to its diameter; such
methodology is then applied to a case study. First, an outline of the case study is
given, followed by the method used to calculate the sensitivity of the fatigue loads.
Then, the results of the sensitivity analysis applied to the case study considered are
shown, along with a description and interpretation of what is observed. Eventually
some of the most relevant hypotheses are discussed, to speculate on how they have
affected the results.

3.1 Case Study

The case study considered in this chapter refers to a monopile supporting an offshore
wind turbine in parked mode; i.e. the monopile is excited by waves in absence of
relevant wind loads. This mode mainly occurs during the downtime condition, i.e.
when the wind turbine is not operating because of off-nominal environmental con-
ditions, major failures and catastrophic events. Although the shorter the downtime
the better, the parked mode cannot be neglected, as nowadays the typical design
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26 3. SENSITIVITY ANALYSIS

assumption for this condition is ∼ 2.5 years.

Figure 3.1: Representation of the case study.

The hub height is zRNA = 150.0 m, The water depth is d = 50.0 m, and the distance
from the mudline to the fixity level is 22.0 m. Thus, the total length of the structure
is 222.0 m.

3.1.1 Support Structure

The geometry and the properties of the support structure were provided by SGRE.
In particular, the following parameters:

• External diameter distribution, D(z);

• Thickness distribution, t(z);

• Length of the sub-elements, L(z);

• Steel properties: density ρs, Young’s modulus E, shear modulus G;

• Mass and mass moment of inertia of the RNA, respectively MRNA and IRNA;

See Figure A.1 and Table A.1 in Appendix A for the summary of the inputs used.
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Figure 3.1 shows a representation of the case study.

In this case study, the type of connections between plates and cans were simplified.
The monopile was modeled as a whole hollow cylindrical structure, whose diame-
ter and thickness vary discontinuously along its length, following the geometry of
the structure provided by SGRE. Moreover, the marine growth, appurtenances and
corrosion effects that act on the monopile and transition piece were neglected; in
general, the first two elements cause an increase to the wave loads and the total
mass of the structure, and so affect its dynamics; the latter, impacts the lifetime
and the stability of the structure, as an oxidized structure is more prone to failures.
Although important for a detailed structural design, these effects were neglected
for simplicity, because the marine growth and appurtenances contributions are low
relatively to the total wave loads and structural mass, and because anti-corrosion
measures prevent the structure from experiencing critical damages.

The soil stiffness was also modeled simply, adopting a fixity depth model, i.e. the
monopile is considered clamped at a fixity depth below mudline. Accounting for such
length yields a rough approximation of the soil stiffness. The fixity depth is usually
chosen as 3-5 times the monopile’s diameter, nevertheless here it was considered
diameter-independent, because the variation applied to the diameter is local, as
it will be explained in section 3.2; thus, it is reasonable to keep the fixity depth
unvaried.

3.1.2 Wave Climate

In parked mode, the wave climate is the most important environmental factor to
account for. In general, it is described by different sea states, each of which is char-
acterized by a significant wave height HS , a peak period Tp, and a probability of
occurrence p. Usually based on a combination of ”hindcast models” and on-site
measurements, these data provide information about how often waves with a deter-
mined height and frequency are expected to hit a structure, throughout its lifetime.

For this case study, a North Sea wave climate was provided by SGRE’s hydrodynamics
team. A polynomial fit was done on the data-set forHs, and for Tp, from the hindcast
statistics time series from Hollandse Kust Zuid (HKZ) [1], defining one sea state per
wind speed, up to 32 m/s.

It is important to remark that HKZ is a shallow site, therefore it does not perfectly
represent a North Sea site of 50 m depth, as in general deeper waters are correlated
with rougher sea states for the structure. Nevertheless, this is partly balanced by the
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conservative assumption of considering waves coming from the same direction.

One last remark, is that the lumping method used to represent the full data-set
is quite rough, i.e. industry standard are not respected; on the other hand, the
discrepancies due to this are smaller, compared to those caused by the assumptions
presented above. The wave inputs are gathered in Appendix A, Table A.2.

3.2 Method

As mentioned in the introduction to this chapter, calculating the ”local” sensitivity of
the DEL with respect to the diameter, is basically equivalent to compute the deriva-
tive dDEL/dD. To do so, an analytical method was firstly attempted; nevertheless,
the analytical formulas of some relevant components of the wave-induced DEL, such
as the modal quantities, contained complexities that did not allow to proceed as
planned. Therefore, a finite difference approach was used, varying one element’s
diameter alone per time by a certain amount, and comparing the resulting DEL(z)
to the one of the unvaried structure. The variation was set to +5% of the element’s
diameter, since in absolute terms it translates to increases in the range of 25.0 - 58.0
cm, that is a magnitude relatable to reality.

Figure 3.2: Sensitivity vs. diameter variation.
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Moreover, it was observed that the derivatives obtained have a quite linear behav-
ior, since very similar results were obtained calculating the derivatives for different
variation percentages, from -50% to +50%, as shown in Figure 3.2. As it can be ob-
served, around tower top and waterline the sensitivities are reasonably linear for any
variations, while around mudline it is not linear for positive and negative variations
greater than 10%.

Matlab was used to implement and run the calculations. The DEL was first calcu-
lated at each node of the reference structure presented in section 3.1. The steps
needed to calculate the DEL in frequency domain, according to Equation 2.39, are
the following:

• The modal analysis, as described in section 2.2; this was needed to calculate
the natural frequency, the modeshape, and the modal stiffness of the first mode
of vibration of the fore-aft motion. For this analysis, a FE model was set up,
as described in section 2.1, where each node has 2 DOFs: in-plane horizontal
displacement, and in-plane rotation. Therefore, the shear and bending stiff-
ness were accounted for, while the geometric stiffness, due to the axial loads
given by the RNA mass and the structure mass, was not. The FE model was

Figure 3.3: Validation of the modeshape.

implemented from scratch, and it was validated against a reference provided
by SGRE. The natural frequency overestimated SGRE’s by 3%, while the maxi-
mum deviation of the modeshape underestimated SGRE’s by 2.5%. Therefore,
the structure showed a slightly stiffer behaviour, compared to the reference.
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Figure 3.3 shows the validation of the modeshape against SGRE’s. Note that
the for simplicity, the following approximation was applied: the modal quan-
tities were determined for an undamped system, whereas Seidel’s approach
accounts for structural damping (see Equation 2.34).

• The structural transfer function HSH described in Equation 2.32;

• The hydrodynamic transfer function Ha,0 described in Equation 2.35;

• The wave spectral energy evaluated at the first natural frequency Sζζ(ω0); the
JONSWAP spectrum was chosen to represent the wave energy spectrum (Equa-
tion 2.17). Since each sea-state yields a different wave spectrum, and the DEL
is proportional to

√
Sζζ(ω0), an averaging was applied to calculate the DEL

that best represents the whole wave climate. Thus, the sea-states were aver-
aged as follows: [√

Sζζ(ω0)

]
avg

=

(∑
j

(Sζζ,j(ω0))
m
2 · p̂j

) 1
m

(3.1)

where p̂j is the probability of occurrence of the j-th sea-state, normalized by

Figure 3.4: JONSWAP spectrum averaged according to Equation 3.1.

the sum of the sea-states’ probability of occurrence. The averaged spectrum is
plotted in Figure 3.4. Note that the natural frequency of the structure consid-
ered is on the right side of the peak, according to the usual design values of
ω0.
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Thus, the DEL is calculated at each node. Consequently, the damage equivalent load
is computed for a 5% increase of the diameter of element i. The sensitivities are ob-
tained calculating the relative percentage variation between DELi(z) and DEL0(z),
as follows:

∆DELi(z) =
DELi(z)−DEL0(z)

DEL0(z)
· 100 (3.2)

To understand the role played by each of the DEL’s components, the total sensitivity
was decomposed into its parts.

During the analysis of the results, it was noticed that in correspondence of the
flanges, whose vertical length is much smaller than the other elements, the sensi-
tivity of DEL had a significant drop. Thus, it was deduced that the element’s length
affects the sensitivity of the DEL due to diameter variations, because varying the di-
ameter of a shorter element has a lower impact on the DEL, compared to a change
performed on a longer element. Filtering out this effect could not be simply done
by normalizing the results by the elements’ lengths, since it was observed that it
flipped the drops into peaks. What was done instead, was to rediscretize the ele-
ments’ length distribution, into a homogeneous one, i.e. of equally long elements;
the same number of elements, and distribution of diameter and thickness were kept.
This approach allowed to obtain results clean from the influence of the relative dif-
ference between elements length, although it was noticed that the overall behavior
of the sensitivity remained rather similar. The comparison between the two cases is
shown in Appendix A, Figure A.2.

3.3 Results and Discussion

Applying this method to the case study introduced earlier, yielded the results of the
sensitivity analysis of the DEL to the structure’s diameter. A graphical representation
gives a direct overview of the sensitivity behavior. Hence, the results can be observed
in the figures presented in the following pages. In the following 3-D plots, the axis
named ”Variation Coordinate” indicates where the diameter was increased by 5%;
the ”Evaluation Coordinate” indicates the elevation where the DEL was calculated.

The surface plotted in Figure 3.5 shows the effects of a diameter increase per-
formed at every element of the structure, on the wave induced DEL(z). According
to this plot, the diameter has a low impact on the DEL above the waterline, since
∆DEL −→ 0%, whereas it has a greater impact below the waterline, resulting in vari-
ations in DEL within the range of -2.5% and 4%. Moreover, it shows that applying
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Figure 3.5: Sensitivity of DEL to the diameter per elevation.

a diameter variation along the Variation Coordinate, the DEL variation is quite con-
stant along the Evaluation Coordinate. Therefore, it can be stated that, according
to the approach followed, non-local effects are observed, although they are basically
equal to the local ones.

In light of these two main considerations, an interpretation of the local effects is first
given; then, it will be explained why the non-local effects do not differ significantly
from the local ones.

3.3.1 Local Effects

Figure 3.6 shows the percentage variation of the wave induced DEL, evaluated at
the same elevations where the elements’ diameter is increased by 5%. Basically, it
is the curve that results from intersecting the sensitivity surface with the vertical
plane passing through the horizontal diagonal from [−100, −100] m to [150, 150] m,
as shown in Figure 3.5. It shows clearly the trend of the DEL sensitivity: it is close
to zero along the tower, then increases to a positive peak right below the waterline,
after which starts decreasing and becomes negative for water depths > 16 m.

To better understand what causes the trend observed in Figure 3.6, the different
components of Equation 2.40, f(ω0), Ha,0, and HSH , were plotted in the same fig-
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Figure 3.6: Sensitivity of DEL and its components at level z, due to a diameter varia-
tion at the same elevation.

ure. This plot clearly shows that, above the waterline, the three components balance
with each other, causing the sensitivity to be close to zero; a closer look to the tower
top, reveals that the sensitivity is positive there, while it is negative for the rest of the
tower. Below the waterline instead, it shows that the most influential component is
the hydrodynamic transfer function, Ha,0.

Sensitivity of the Natural Frequency-dependent Component

The component f(ω0) accounts for the effects of the resonant wave energy, the modal
stiffness and the number of cycles, that are all related to ω0. Its contribution yields
an overall reduction of the DEL, down to −1%. Figure 3.7 shows the influences of its
components:

√
Sζζ(ω0), 1/K0 and

√
(ω0). From this figure, it is important to notice

that an increase in diameter induces a small decrease of f(ω0) at the very top of the
tower, while it increases for the rest of the structure, approximately below z = 128 m.
With Equation 2.12 in mind, this means that above z = 128 m the diameter enlarges
the mass more than the stiffness, causing the natural frequency to decrease; vice
versa, below z = 128 m the stiffness increases more than the mass, thus the natural

CONFIDENTIAL



34 3. SENSITIVITY ANALYSIS

Figure 3.7: Local sensitivity of the function f(ω0) and its components.

frequency increases. The other two components show a negative contribution to
the sensitivity of f(ω0), that mirrors the trend of the sensitivity to ω0. In particular,
K0 mirrors the effect of ω0 because it is proportional to the square of it, but it is
at the denominator of f(ω0); this suggests that, for the majority of the structure,
increasing the diameter yields an increase in stiffness, thus a reduction in f(ω0)
and loads. Sζζ(ω0) instead, mirrors ω0 because an increase in diameter causes the
natural frequency of the structure to move closer or further to the peak frequency of
the wave spectrum, depending on the sign of the variation. Therefore, above z = 128
m, where the mass increases more than the stiffness, ω0 decreases and moves closer
to the peak frequency, causing the structure to vibrate less frequently yet with greater
amplitude, enlarging the loads. Vice versa, it increases below z = 128m.

Sensitivity of the Hydrodynamic Transfer Function

The most significant contribution to the DEL sensitivity is given by the hydrodynamic
transfer functionHa,0, as it is observed in Figure 3.6. The integration interval ofHa,0

ranges from the mudline to the waterline (see Equation 2.35), so the variations ob-
served along the tower and below the mudline must be due to the natural frequency
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Figure 3.8: Local sensitivity of the hydrodynamic transfer function and its compo-
nents.

and the modeshape, which are subjected to the diameter change also outside of the
integration range of Ha,0. Figure 3.8 shows the components’ contributions to the
sensitivity, and thus confirms this behaviour. The plot shows a dependency from ω0

that is symmetrical to the sensitivity to the natural frequency previously observed in
Figure 3.7. Note that also CM and η0 implicitly depend on the natural frequency, so
the plotted sensitivity to ω0 includes their influences as well. Hence, the combined
contributions of CM and η0 overcome the positive contribution of ω0, contributing
negatively to the sensitivity of Ha,0.

Nevertheless, this contribution does not dominate the sensitivity, which is led by the
modeshape Φ0 for the greater part of the structure, and by the diameter D for the
first 15 m below the waterline. A diameter increase below the waterline causes an
increase in loads, since the integrand of the hydrodynamic transfer function depends
on D2; nevertheless, the sensitivity due to the diameter scales with the distribution
function η0 (see Figure A.3), therefore a peak is observed right beneath the water-
line, that quickly drops to zero.
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On the other hand, the modeshape Φ0 mainly determines the trend of the sensitivity
of Ha,0 along the tower and below the water depth of 15 m. It is observed that an
increase in diameter applied from the waterline to the top of the structure, causes
a positive variation of Φ0 in the integration interval between mudline and water-
line. The sensitivity becomes negative at z = −15 m; this means that the modeshape
shows negative variations within the integration interval; this, weighted by η0, yields
a negative contribution to Ha,0. Figure 3.9 shows that, below z = −15 m the mode-
shape feels the non-local effects of the diameter change, that reduce its value. This
behaviour is due to two main reasons; the first is that increasing the diameter at
one elevation causes an increase in modeshape below it, and a decrease above; the
second is that, the closer to the bottom the diameter is increased, the more nega-
tively the modeshape varies. These trends are in line with what is expected, since
adding diameter on the higher part of the structure favours the increase of mass,
thus a more curved modeshape, while adding diameter on the lower part stiffens
the structure and reduce the curvature of the modeshape.

Figure 3.9: Non-Local sensitivity of the modeshape, due to a diameter increases at
three different levels.
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Sensitivity of the Structural Transfer Function

Back to Figure 3.6, it is also interesting to analyse the local sensitivity of the struc-
tural transfer function,HSH(z). This is plotted in Figure 3.10, that shows a sensitivity
dominated by the contribution of the natural frequency, as previously explained. The
particularity ofHSH(z) is that the lower bound of the integration interval changes for
every point of evaluation of the DEL, i.e. it corresponds to the coordinate at which
the transfer function is calculated, as shown in Equation 2.32. The sensitivity to the
modeshape behaves similarly to what is observed for Ha,0, with the difference that,
here, the switch from positive to negative sensitivity occurs at approximately z = 40
m, probably due to the different integration bounds. ω0 yields the biggest contri-
bution to the sensitivity of HSH(z), causing the same effect observed and explained
above.

The contribution of the mass per length µ, instead, is rather negligible compared to
the other components. Its effect is only visible at the very top of the tower, where
a small increment is observed. This behaviour is due to the nature of the integral’s
bounds, and to the modeshape. In fact, the variation of µ is only local and gets

Figure 3.10: Local sensitivity of the transfer function HSH and its components.
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less and less significant, because going down the structure, the integration interval
grows, and the modeshape tends to zero.

3.3.2 Non-Local Effects

A possible reason why the non-local effects are basically equal to the local ones is
that some of the driving components of the DEL’s sensitivity are constant along the
height of the structure, and others are integrated over parts of it. The only com-
ponent that may cause non-local effects that are different from the local ones, is
the structural transfer function HSH(z), because it varies along the vertical coordi-
nate z. Nevertheless, it does not yield a significant contribution because the integral∫ zRNA

z
Φ0(ẑ) · µ(ẑ) · (ẑ − z) · dẑ shows a relatively small sensitivity to the diameter

change element-wise.

The surface in Figure 3.11 shows the non-local effects due to a variation of D on
HSH . Here it is noticed that the non-local effects are actually more evident compared
to what is observed in Figure 3.5, since the surface presents more curves along the

Figure 3.11: Sensitivity surface of the structural transfer function.
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”Evaluation coordinate”; it also confirms that HSH is less sensitive to the diameter
compared to Ha,0 of approximately one order of magnitude, since an increase of 5%
in diameter causes a variation of the structural transfer function smaller than 0.6%.

3.3.3 Hypotheses Discussion

Here, some of the hypotheses and choices taken throughout this chapter are dis-
cussed, aiming to speculate about how they may affect the results obtained. In par-
ticular, the hypotheses discussed concern the effect due to the choice of an average
sea-state, the parked mode, and the fixity depth to model the soil stiffness.

Averaged Sea-states

According to the method adopted, only one sea state is considered, i.e. the aver-
age one. What if the wave-climate is different, and the average sea-state changes?
The DEL varies proportionally to

√
Sξξ(ω0). Therefore, a sea-state whose spectrum’s

peak frequency is further away from the resonance frequency of the structure would
induce lower loads, compared to a sea-state whose spectrum’s peak frequency is
closer to the resonant frequency. In general, the natural frequency is designed to be
greater than the peak frequency of the wave spectrum. Therefore, accounting for a
different sea-state would not yield qualitative changes in the sensitivity of Sξξ(ω0);
nevertheless, the impact of the diameter variation through

√
Sξξ(ω0) on the sensi-

tivity of DEL would change quantitatively, growing with the proximity of fp to f0.

Parked Mode

In this thesis, the wind turbine is considered in parked mode, since the focus is on
wave induced fatigue loads. It would be interesting, on the other hand, to study
how the results would change if the energy production mode was considered. For
example, how would the sensitivity of the wave induced DEL change, if a constant
wind was exciting the structure? In this operational mode, the structural vibrations
would be affected by the aerodynamic damping, and the response spectrum would
include also the 1P and 3P frequency ranges, on top of the waves’ one (see Fig-
ure 4.4). The increase in damping, could make the narrow-band assumption less
valid. In this case, a method as that proposed by Dirlik would be needed to estimate
the fatigue loads. The addition of 1P and 3P frequency ranges, on the other hand,
would not affect the sensitivity significantly. In fact, the first natural frequency of the
support structure is safely designed outside of these ranges, usually in the soft-stiff
range as shown in Figure 4.4; therefore, the variation in natural frequency due to a
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local diameter change is not expected to move it into into these ranges, preventing
an increase of DEL.

Soil Model

Some observations can be done with respect to the choice of keeping the fixity depth
diameter-independent. Considering the assumption of a diameter-dependent fixity
depth, that thus increases with the monopile’s diameter, how would the results be
affected? It is important to mention that the diameter of the monopile is constant
around the mudline, as can be seen in Figure A.1; thus, it is more significant to vary
the diameter of all the elements belonging to this part of the monopile, instead of
doing an element-wise variation. Two main factors shall be considered:

• The increase in diameter around the mudline;

• The increase in structural length;

The former causes a stiffening of the structure, and a negligible increase in wave
loads, since it involves the lowest elements of the structure (see the sensitivity of
the hydrodynamic transfer function Ha,0). The latter induces a decrease in stiffness,
since longer structures are softer. Further calculations would be needed to under-
stand exactly what contribution dominates the variation in stiffness; nevertheless,
since the length of the varied portion of structure affects importantly the sensitiv-
ity of the DEL, it is expected that the diameter-induced stiffening would prevail on
the increase of structural length, since a consistent part of the structure is involved
(∼ 50 m). Thus, lower wave induced fatigue loads are expected, since the natural
frequency would increase, shifting further away from the peak of the wave spectrum.
Consequently, the sensitivity of the DEL around the mudline is expected to be more
negative.

A more complete approach to account for soil stiffness, would be to remove the
constraint on the horizontal displacement at the bottom, introducing springs along
the underground part of the monopile, that contrast the horizontal displacement,
as shown in Figure 3.12. If such model was considered, the FE model should be
reformulated to account for the change of boundary condition at the bottom, and
to include the springs in the stiffness matrix. The sensitivity analysis should be
performed again, to investigate precisely what is the effect on the results. Moreover,
it would be necessary to investigate if the springs stiffness depends on the diameter
of the support structure, or if it reasonably independent. Nevertheless, it can be
expected that a local variation of the diameter below the mudline, would not change
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the results qualitatively, since varying the diameter in the lower part of the structure
is expected to increase its stiffness, and therefore reduce the loads.

Figure 3.12: Representation of soil stiffness modeled with springs.

3.4 Conclusions

Here, the conclusions drawn from the sensitivity analysis are summarized.

With respect to the non-local effects, it was instead observed that they do not differ
much from the local ones. This happens because the structural transfer function
HSH, the component of the DEL that shows non-local effects, has a low impact on
the global sensitivity of the DEL to the diameter.

Therefore, the following was concluded observing the local effects:

• Throughout the tower: the diameter does not have a significant effect on the
wave induced fatigue load; only minor negative variations are observed.

• Below the waterline: more significant effects are observed. According to
these, it is beneficial in order to obtain smaller loads, to reduce the diameter
close to the waterline, due to the high influence of the wave kinematics. Note
that this conclusion only relates to FLS design criteria. In fact, if ULS was con-
sidered, it should be expected that reducing the diameter would compromise
the buckling stability of the structure.

• Around the mudline: the wave kinematics influence drops and the mode-
shape takes the lead; this stiffens the structure and makes more beneficial an
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increase to the diameter in the lower part of the support structure.

The numerical approach adopted to calculate the sensitivity, allowed to gather infor-
mation about how the wave induced DEL depends on variations of the support struc-
ture’s diameter, and to relate such information to the physics of the problem. Yet,
this approach lacks an analytical description of the DEL sensitivity. In fact, analytical
calculations allow to obtain more general results, in a quicker and more transparent
way. Moreover, to determine what is the most beneficial support structure’s diame-
ter variation, it is necessary to know how the loads influence the structural design.
Therefore, the analytical optimal support structure’s diameter is calculated, aiming
to achieve the lightest structure, respecting the constraint posed by the fatigue dam-
age.
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Chapter 4

Analytical Optimization

This chapter aims to describe an analytical approach to find the optimal support
structure’s diameter, i.e. the diameter that yields the lightest structure, able to with-
stand the wave induced fatigue damage. The pros of an analytical description are:

• Intelligibility: analytical equations are like open books, that show directly
how the different quantities are related to each other. They allow to under-
stand the whys and the hows of a certain result.

• Speed: the evaluation of an analytical equation is straightforward, and much
faster than an iterative, numerical process.

On the other hand, the downside is that part of the completeness of the system
description may be lost, if several simplifications are needed to follow an analytical
approach. Indeed, equations often contain non-linear dependencies necessary to
describe the complexity of the system, which may need numerical approaches to
determine a solution. In other words, some completeness is lost, for the sake of
intelligibility and speed.

The first section introduces the method developed to perform the analytical analysis,
i.e. the equations and assumptions considered. Then, the results of such an analysis
are presented along with the interpretation of the results, and a discussion of some
relevant hypotheses.

4.1 Method

The method developed to find the analytical optimum is here presented. The case
study, i.e. the model of the structure and wave climate used is first presented; then,
the approach used to calculate the optimum design is explained in detail. Note that
the method adopts a frequency domain approach.
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Figure 4.1: Representation of the FE model of the MP.

4.1.1 Case Study

To model the support structure, some simplifications were applied in favour of the
transparency and ease of the calculations. The support structure was considered to
have a constant diameter distribution and a ”stepped” thickness distribution, where
the elements’ thickness are linearly related, as shown in Equation 4.2 and Figure 4.1.
The RNA mass is neglected; thus, it is expected that the first modeshape has a smaller
curvature, since the mass at the top is lower, and, due to a lower total mass, the first
natural frequency is expected to be overestimated. To represent such structure an
FE model was set up, characterized by:

• Two Euler-Bernoulli beam-elements of equal length L: each element is a
hollow cylinder, and has constant diameter and thickness. Two elements were
chosen for simplicity and to keep the equations transparent and lumped.

• One DOF per node: only the horizontal displacement was considered, i.e. the
in-plane rotation ϕ and the vertical displacement v were considered rigid.

• Fixed bottom and free end: the horizontal and rotational motion were as-

CONFIDENTIAL



4.1. METHOD 45

sumed fixed at the bottom, while they were set free at the top.

A graphical representation of this model is shown in Figure 4.1. To summarize:

DA = DB = D (4.1)

tA = γ · tB (4.2)

where γ is a constant parameter greater than 1, as it can be expected that the wall
thickness of the bottom element is bigger than the one above, since the loads will be
greater at the bottom, as the arm grows.

To obtain expressions in closed form of the fatigue damage, the thin wall assumption
was taken, thus t << D. As a result, the area of the cross section (Equation 2.4) and
second moment of area (Equation 2.5) of the i-th element became:

Ai ≃ πDi · ti (4.3)

Ii ≃
π

8
D3
i · ti (4.4)

Figure 4.2: Relative percentage error of A and I due to the thin wall assumption.

Figure 4.2 shows the accuracy of the thin wall assumption when it is introduced in
the equations of the area and second moment of area, with respect to the D/t ratio.

CONFIDENTIAL



46 4. ANALYTICAL OPTIMIZATION

It can be noticed that such an assumption is more accurate for elements character-
ized by a relatively big D/t ratio.

For the structure described, the mass could be simply calculated as the sum of the
masses of the two elements. Thus, accounting for the thin wall assumption, it re-
turned:

M =MA +MB = ρs · L · (AA +AB) = π · ρs · L ·D · (tA + tB) =

= π · ρs · L ·D · (1 + γ) · tB (4.5)

4.1.2 Thickness

Equation 4.5 has a direct dependency on the diameter, but also an implicit one
that lies in tB . The thickness was computed so that it ”saturates” the fatigue dam-
age. In other words, it was calculated as the smallest thickness that allows the
support structure to withstand the cyclic loads during the time period considered.
The fatigue damage was calculated according to Equation 2.26, considering the 1-
Hz equivalent. Imposing the saturation of the fatigue damage, F = 1, for a period
of TLT = 2.5 years, the wall thickness returned:

t =
4

π
·
(neq
a

· TLT
) 1

m · DEL

D2
(4.6)

Therefore, the thickness that saturates the fatigue damage was obtained. Since the
1-Hz equivalent was used, neq = nref,1Hz = TLT. Equation 4.6 shows that the wall
thickness is directly proportional to the DEL and it is inversely proportional to the
square of the diameter. Thus, to allow the structure to accommodate a higher DEL,
it was observed that it is more efficient mass-wise to increase the diameter rather
than thickness, since, under the thin wall assumption, the mass scales linearly with
both of them, while the DEL scales quadratically with the diameter.

4.1.3 Fatigue Load

As it is observed in equation 4.6, the thickness depends on the fatigue load that the
structure experiences at a certain elevation. The DEL is the result of the actions of
the environmental loads, such as waves and wind exciting the structure. More in
general, it was assumed to be caused by two main contributions:

• A diameter-dependent contribution: DELwave
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• A diameter-independent contribution: DELD-ind

To combine them, the damages due to these DELs were summed, since it was as-
sumed that the two contributions occurred at different times; using Equation 2.26
yielded:

F = Fwave + FD-ind =
T 2
LT

a
·
(π
4
· t ·D2

)−m
·
(

DELmwave + DELmD-ind

)
(4.7)

The total DEL was thus calculated as:

DEL =
(

DELmwave + DELmD-ind

) 1
m

(4.8)

The two contributions are further analysed in the next sections.

Wave Induced DEL

To calculate the DEL caused by the wave excitation, the frequency domain approach
described in chapter 2, subsection 2.4.3 was used. Therefore, Equation 2.39, 2.35,
2.32 were considered.

Firstly, the modal quantities were determined, such as the natural frequency ω0, the
modeshape Φ0(z) and the modal stiffness K0 of the first mode of vibration. For a
FE model with 2 beam elements and 1 DOF per node, accounting for the clamped-
bottom boundary condition, the mass and stiffness matrices are:

M =
ρs · L
420

·
[
156 · (AA +AB) 54 ·AB

54 ·AB 156 ·AB

]
(4.9)

K =
12 · E
L3

·
[
IA + IB −IB
−IB IB

]
(4.10)

These matrices were written based on the more general form presented in Equa-
tion 2.2 and Equation 2.1 respectively. Please, note that the the matrices and the
vectors are flipped with respect to the vertical coordinate, e.g. the top of the struc-
ture is represented by the last row/element.

The results of the FE modal analysis, described in chapter 2, section 2.2, are pre-
sented here. Solving the characteristic polynomial of the system, yielded the first
natural angular frequency:

ω0 = β ·D (4.11)

CONFIDENTIAL



48 4. ANALYTICAL OPTIMIZATION

Where β is a constant, defined as:

β =

√
105

L2
·

√√√√√E ·
35 ·

(
1−

√
1 + γ

)
+ 26 · γ(

595 + 676γ
)
· ρs

Therefore, it was possible to see that the first natural frequency varies linearly with
the diameter. The first modeshape, normalized by the maximum displacement re-
sulted:

Φ0 =

 0
26(1+γ)−9

√
1+γ

(1+γ)(−9+26
√
1+γ)

1

 =

Φ0,bot

Φ0,mid

Φ0,top

 (4.12)

Figure 4.3: Graphical representation of the continuous and discrete modeshape.

Thus, the modeshape does not depend on the diameter, but only on the thickness
ratio γ.

Since the integral in Equation 2.35 requires the modeshape evaluated at the sea
level, Φ0(zSL), and seabed level, Φ0(zSB), these were computed interpolating lin-
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early between the coordinates [Φ0,bot; zbot] and [Φ0,mid; zmid] (see Figure 4.3). The
result of the interpolation is:

Φ0,SL = Φ0,mid · d+Lfix

L

Φ0,SB = Φ0,mid · Lfix

L

(4.13)

Where Lfix is the fixity depth (see Figure 4.1).

The first modal stiffness was calculated as:

K0 = D3 · tB · δ (4.14)

Where δ is a constant, defined as:

δ =
3π · E ·

[
676γ2 + γ ·

(
1901− 1144 ·

√
1 + γ

)
− 1225 ·

(√
1 + γ − 1

)]
L3 ·

(
1 + γ

)
·
(
9− 26 ·

√
1 + γ

)2
It was observed that K0 scales with the cube of the diameter, and linearly with the
wall thickness of the element B.

To determine the analytical dependence of the hydrodynamic quantities on the diam-
eter, the equations presented in section 2.3 were used, assuming deep water regime
for the wave kinematics. This assumption is only valid if d · k0 > π, because in such
case tanh (d · k0) −→ 1. Therefore, the dispersion relation became:

ω2
0 = g · k0 (4.15)

From this equation it was possible to determine the wave number k0 as a function
of the diameter, substituting ω0 (Equation 4.11) into Equation 4.15:

k0 =
β2 ·D2

g
(4.16)

Please, note that the nomenclature of the wave number, small k0, differs from that
of the modal stiffness, capital K0. Inserting the wave number into the distribution
function, gave the following result for η(z):

η(z) =
cosh

(
β2

g ·D2 · (z − Lfix)
)

sinh
(
β2

g ·D2 · d
) (4.17)
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The distribution function evaluated at the extremes of the integral in Equation 2.35,
i.e. at water level and mudline, retuned:

ηSL = 1 (4.18)

ηSB =
1

sinh
(
β2

g ·D2 · d
) (4.19)

Note that for deep waters, at seabed the wave distribution function tends to zero,
ηSB −→ 0.

The last hydrodynamic quantity worth mentioning is the inertia coefficient CM ,
which for simplicity was kept constant:

CM = 2 (4.20)

Using this value of CM is a conservative choice, since, according to Equation 2.19, it
is the maximum value of CM . However, this is often considered a good assumption
[23].

The wave energy is represented by the Pierson-Moskowitz spectrum. Inserting Equa-
tion 4.11 in Equation 2.16, the spectrum as a function of the diameter returned:

SPM(ω0) = θ2 ·D−5 · exp [−ψ2 ·D−4] (4.21)

where the constants θ and ψ are respectively:

θ2 = 0.3125 ·
( 2π
TP

)4
·H2

S · β−5

ψ2 = 1.25 ·
( 2π
TP

)4
· β−4

The mass per length µ is a quantity that depends on the cross section of a structure.
It is therefore important to establish what is the mass per length of the middle node,
as a discontinuity in the thickness occurs here. To account for this, it was chosen to
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calculate µ(zmid) as the the average of µ(zbot) and µ(ztop). Thus:

µbot = ρs ·Abot = π · ρs ·D · tA

µtop = ρs ·Atop = π · ρs ·D · γ · tB

µmid = ρs · (Atop+Abot)
2 = π · ρs ·D · 1+γ

2 · tB

(4.22)

It was then possible to determine DELwave. Inserting equations 4.22, 4.12, 4.11, into
equation 2.32 returned the structural transfer function as a function of D:

HSH = π · (βD)2 · ρs ·D · tB · L2 ·


1 + Φ0,mid · 1+γ

2

1
2

0

 (4.23)

Considering then the hydrodynamic transfer function, and inserting the equations
4.20, 4.17, 4.13, and 4.11, into the equation 2.35, gave:

Ha,0 =
π

4
· ρw · β2 · d

L
· Φ0,mid ·

(
Lfix · ηSB + Lfix + d

)
·D4 (4.24)

Inserting equations 4.24, 4.23, 4.21, 4.14, 4.12, and 4.11 into equation 2.39, and
considering that in deep water regime ηSB −→ 0, the equation of DELwave gave:

DELwave = CDEL,wave ·D
9
4 ·
√

exp (−ψ2 ·D−4) (4.25)

Where:

CDEL,wave = 1.8825 · π
2

8
· θ
δ
· ξ−

1
2

0 · β 19
4 · ρs · ρw · CM · (4.26)

· d · L ·
(
d+ Lfix

)
· Φ0,mid ·


1 + Φ0,mid · 1+γ

2

1
2

0


CONFIDENTIAL



52 4. ANALYTICAL OPTIMIZATION

Diameter-independent DEL

There can be different sources of cyclic loading that are weakly or not at all related
to the diameter of the structure. For example, if the wind load is considered, this
can be seen as the result of two main contributions:

• Thrust on the rotor. This load depends on the wind conditions and the geom-
etry of the blades, while it is independent from the geometry of the tower.

• Drag on the tower. This load not only depends on the wind conditions, but
also on the geometry of the tower.

It is widely acknowledged that, in first instance, the thrust has a greater contribution
than the drag force on the fatigue damage of the tower.

From a dynamic point of view, the diameter of the tower does not affect the spectrum
of the wind induced excitation, such as the turbulence, 1P and 3P ranges, but it
does affect the first natural frequency and modal stiffness of the structure. As a
consequence, this has an effect on both the amplitude and the number of cycles of
the loads that the structure experiences. On the other hand, it is true that usually
the design philosophy chosen by the industry is to perform the tower design within
the soft-stiff range of the response spectrum, where the first natural frequency is far
from the peaks of the wind spectrum, as it can be seen in Figure 4.4.

Figure 4.4: Example of spectrum of environmental loads of an offshore wind turbine
[17].

Within this range, the oscillation of the structure does not vary significantly; it is
therefore acceptable to consider the wind-induced fatigue loads independent from
the diameter of the structure, as a first approximation. Therefore, if it was assumed
that the diameter-independent DEL is due to the wind loads lumped at the top of
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the structure. Hence, it was written as:

DELD-ind = DELwind =


DELwind,bot

DELwind,mid

0

 (4.27)

Since the DEL is an overturning moment, DELwind,bot and DELwind,mid were calcu-
lated as the DEL due to the wind thrust acting at the top of the structure, multiplied
by the arm, i.e. 2L and L respectively. Combining DELwave (Equation 4.25) with
DELwind (Equation 4.27) as shown in Equation 4.8, the DEL was obtained.

Thus, it was possible to find the equation of the thickness as a function of the di-
ameter, by inserting this result into Equation 4.6. Elevating t to the m-th power,
gave:

tm =

[
4

π
· 1

D2
·
(T 2

LT

a

) 1
m

]m
· (DELmwave + DELmwind) = tmwave + tmwind (4.28)

Where twave and twind are respectively the thicknesses needed to withstand the wave
loads and the wind loads.

twave =
4

π
· 1
D2

·
(T 2

LT

a

) 1
m · DELwave =

= Ct,wave ·D
1
4 ·
√
exp (−ψ2 ·D−4) (4.29)

With Ct,wave being a constant coefficient:

Ct,wave =
4

π
·
(T 2

LT

a

) 1
m ·


CDEL,wave,bot

CDEL,wave,mid

0

 (4.30)

On the other hand, the thickness needed to resist the wind loads was computed as:

twind = Ct,wind · 1

D2
(4.31)
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Where Ct,wind is a constant coefficient defined as:

Ct,wind =
4

π
·
(T 2

LT

a

) 1
m · DELwind = (4.32)

=
4

π

(T 2
LT

a

) 1
m ·


DELwind,bot

DELwind,mid

0


Combining the two contributions, the thickness resulted:

t = (tmwave + tmwind)
1
m = (4.33)

=

[Cmt,wave,bot

Cmt,wave,mid

 ·Dm
4 ·
(
e−ψ

2D−4
)m

2

+

Cmt,wind,bot

Cmt,wind,mid

 ·D−2m

] 1
m

From Equation 4.5, it was possible to see that the mass depends on the thickness tB:

tB = tmid =

[
Cmt,wave,mid ·Dm

4 ·
(
e−ψ

2D−4
)m

2

+ Cmt,wind,mid ·D−2m

] 1
m

(4.34)

Thus, inserting tB into Equation 4.5 gave:

M = π · ρs · L · (1 + γ)· (4.35)

·

[
Cmt,wave,mid ·D 5

4m ·
(
e−ψ

2D−4
)m

2

+ Cmt,wind,mid ·D−m

] 1
m

Considering only the wave excitation in parked mode, Equation 4.35 became:

M = π · ρs · L · (1 + γ) · Ct,wave,mid ·D 5
4 ·
√
e−ψ2D−4 (4.36)
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4.1.4 Inputs

To observe the behavior of mass with respect to the diameter, Equation 4.35 and
Equation 4.36 were plotted. To do so, the values of the inputs were set for a specific
case study, given by SGRE. This set of data is gathered in Appendix B, Table B.1.

In addition to these, it is important to specify also how the thickness ratio, γ, and
the diameter-independent DEL, DELwind, were addressed.

Diameter-independent DEL

The magnitude of DELwind was chosen arbitrarily, based on the magnitude of the
wave induced DEL. To select a value that is not too big or too small compared to the
wave induced DEL, the wind induced DEL was chosen within the range of the wave
DEL. The load case shown in Figure 4.5 was then considered.

Figure 4.5: Representation of wave and wind loads combined, as shown in Equa-
tion 4.8.

Thickness Ratio

To perform the calculations as presented in the previous sections, it was necessary
to fix the thickness ratio γ, otherwise one degree of indetermination would have
remained. It was determined iteratively: after choosing an initial guess, the calcu-
lations were performed; then, the actual thickness ratio was calculated. This value
was then used to perform the calculations again, until convergence. It was observed
that, when only wave induced loads are accounted for, γ −→ 4.30, i.e. the bottom
element is more than four times thicker compared to the upper element.

When both loads were considered instead, γ was observed to be a function of the
diameter. Therefore, in this case γ = 4.30 was used as initial guess, and the function
γ(D) determined in the first iteration was then fed to the second iteration. Figure 4.6
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Figure 4.6: The thickness ratio as a function of D.

shows the plot of the function γ(D) for the load case considered. This plot suggested
that γ is rather constant with respect to the diameter; only a slight increase was
observed around D = 7 m, since in correspondence of this diameter the total DEL
increases due to the wave loads.

4.2 Results and Discussion

Inputting the values listed in Table B.1, allowed to observe graphically the relation
between the mass and the diameter.

4.2.1 Wave Loads Only

When only the wave induced loads were considered, it was observed that the mass
grows almost linearly with the diameter, as it is shown in Figure 4.7. In the range 0 <
D < 1, the mass is approximately zero, due to the contribution of the exponential
of −1/D4. This is due to the energy of the resonant wave, that for small diameters
is close to zero, as it is observed in Figure 4.8. Then, from D ≥ 1, the trend is
governed mainly by D5/4, which explains why the mass increases almost linearly
with the diameter. Therefore, accounting for resonant waves only yields the lightest
structure for values of the diameter that tend to zero. On the other hand, for D −→ ∞
the mass goes to infinity; in fact, regardless the spectral energy is almost zero for
values of D > 8 m, the increase due to the diameter dominates with respect to the
decrease of wave energy.
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Figure 4.7: Mass and thickness vs. diameter for the case wave excitation only.

Despite these results, experience shows that the monopile-based support structures
are not as slender (commonly the diameter ranges approximately between 5 - 12 m).
Evidently, the assumptions taken into this approach fails to give a complete descrip-
tion of the system. As well as it can be expected that an excessively big diameter that
may benefit fatigue resistance yields an excessively heavy support structure, it also
makes sense that a too small diameter yields a light structure, yet not enough resis-
tant to fatigue damage. On this line of thoughts, it was chosen to add a diameter-
independent contribution to the DEL, a simple addition that aims to represent the
contribution to fatigue damage of those factors that are not related to the diameter
of the structure.

It is interesting to observe that there is a connection with the results of the sensitivity

Figure 4.8: Spectral energy of the resonant wave vs. diameter.
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analysis performed in the previous chapter. According to Equation 4.25, it can be
derived that the sensitivity of the wave induced DEL is positive due to an increase in
diameter, as it can be visualized in Figure 4.5. This aspect mirrors what is observed
in Figure 3.6 below the waterline, where indeed the the sensitivity of DEL scales
accordingly to the diameter. Therefore, in this simplified case study where the diam-
eter varies by the same amount along the whole structure, it can be stated that the
sensitivity of the wave induced DEL is dominated by the effect of the hydrodynamic
transfer function.

4.2.2 Waves and Wind Loads

Including a diameter-independent component led to the equation of mass presented
in Equation 4.35, whose trend can be seen in the following plot, for the load case
of Figure 4.5. Note that in this case, the wind turbine is not anymore in parked
mode; it would represent the power generation mode, i.e. when the wind turbine is
rotating and the wind thrust acts at hub height. In this case, as shown in Figure 4.9,
a different optimal diameter was found, depending on the load case considered.
Table 4.1 shows the values found.

Figure 4.9: Mass and thickness vs. diameter for the case of waves and wind excitation.

Table 4.1: Optimal diameter and thickness for the load case considered.

DELwind [MNm] Dopt [m] topt [mm] Mass [ton]
[ 60.00 ; 15.00 ] 7.55 [ 22.80 ; 5.48 ] 571.23

It was observed that, for D > Dopt the mass grows, similarly to how it grows in the
case of waves only, so it can be said that this part is dominated by the wave loads,
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that are diameter-dependent. For D < Dopt, the trend is instead different, since for
D −→ 0, M −→ ∞ . Therefore, this part of the plot is due to the diameter-independent
contribution of the DEL. In fact, forD −→ 0 in this case the thickness grows to infinity,
and so does the mass.

Accounting for other load cases, allowed to understand how the optimal diameter
changes with respect to the loads. Only the diameter-independent wind load was
varied; the load cases considered, included a stronger one and a weaker one, com-
pared to the one previously used. The results obtained per load case are gathered in
Table 4.2 and Figure 4.10.

Figure 4.10: Mass vs. diameter (left) and first derivative(right) per load case.

Table 4.2: Results of the optimization per load case.

DELwind [MNm] Dopt [m] topt [mm] Mass [ton]
[ 20.00 ; 5.00 ] 4.35 [ 26.14 ; 6.28 ] 377.44

[ 60.00 ; 15.00 ] 7.55 [ 22.80 ; 5.48 ] 571.23
[ 180.00 ; 45.00 ] 13.15 [ 19.72 ; 4.72 ] 859.84

It was observed that, increasing the load, the curves tend to widen, and to shift
up-right. In other words, for the same diameter the mass increases with the loads,
since a bigger thickness is needed to withstand them. Therefore, the optimal diam-
eter shifts toward the right, supplying the structure with the required resistance, yet
allowing a smaller wall thickness. Indeed, as mentioned above, to accommodate
bigger loads, increasing the diameter is more beneficial compared to the thickness
(see Equation 4.6). Nevertheless, the optimum also shifts upward, because the wave
induced component of the loads scales quadratically with the diameter (see Equa-
tion 4.25). From the results obtained, it was possible to draw the line of the minima
observed in Figure 4.11 (left figure) in function of the wind load. This shows how
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the optimal diameter behaves according to the wind load. Figure 4.11 (right figure)
indicates that the optimal diameter grows with the wind loads, nevertheless it also
suggests that the increase in diameter gets smaller for increasing wind loads.

Figure 4.11: Line of the optima (left) and optimal diameter per load case (right).

4.2.3 Hypotheses Discussion

Here, some of the hypotheses and choices taken throughout this chapter are dis-
cussed, aiming to speculate about how they may affect the results obtained. In
particular the thin wall assumption and the choice of neglecting the mass of the
RNA are considered.

Thin Wall Assumption

As observed in Figure 4.2, the thin wall assumption’s accuracy scales with the D/t
ratio: the bigger this is, the smaller is the error. In particular, the errors of the area
and the second moment of area are smaller than 5% for D/t > 70. Do the results
obtained actually represent thin walled structures?

When waves only are accounted for, Figure 4.7 shows that D/t ≥ 70 for every
D. Therefore, it can be stated that in this case the thin wall assumption yields
reasonably accurate results. When also the wind load is included, on the other
hand, it is observed from Figure 4.9 thatD/t ≥ 70 forD ≥ 4.5 m. Thus, the thin wall
assumption is only reasonably accurate for diameters greater than 4.5 m. For smaller
diameters, as explained above, the thickness grows exponentially and so does the
D/t ratio. In this case, the wall cannot be assumed thin, and the results observed
have therefore a low accuracy. If the optimization was run for a non-thin walled
structure for D < 4.5 m, it is expected that the results would change quantitatively,
but not qualitatively. In fact, it physically makes sense that to withstand diameter-
independent loads, a thick structure is needed if the diameter is small.

CONFIDENTIAL



4.2. RESULTS AND DISCUSSION 61

Mass of RNA

For the sake of dealing with equations that show a clear and simple dependency
on the diameter, the mass of the RNA was neglected. This is a rather extreme as-
sumption, since an important part of the loads that the support structure needs to
withstand comes from the RNA. So, how would the results change, accounting for
MRNA?

The RNA mass is implemented in the FE model, in particular in the element of the
mass matrix that represents the top node of the top beam element:

M =
ρs · L
420

·

156 · (AA +AB) 54 ·AB

54 ·AB 156 ·AB +MRNA

 (4.37)

Adding MRNA, makes the relationship between the modal quantities and the diam-
eter more complex,difficult to evaluate analytically; nevertheless, it can be expected
that, compared to the assumption of MRNA = 0:

• The natural frequency would be lower;

• The top of the modeshape would be relatively more displaced, compared to
the middle node;

• The modal stiffness would result lower;

In fact, MRNA represents a lumped mass at the top of the structure, so it is expected
to increase the mass of the system, and to decrease its overall stiffness.

Decreasing, the natural frequency is expected to move closer to the peak of the
wave spectrum, thus increasing the wave induced fatigue loads. Consequently, the
thickness needed to withstand such loads would increase accordingly, and so the
total mass. The effect of the diameter-independent fatigue loads would be unaltered.
Therefore, the results are not expected to change qualitatively. On the other hand,
it can be expected to read greater values of mass on the vertical axis of Figure 4.7
and 4.9. Moreover, according to an increase of mass due to an increase in the wave
induced fatigue loads, the right part of the curves in Figure 4.9 would shift upward,
causing the optimal diameters to reduce, for all the load cases considered.

Last but not least, the expected increase in thickness would reduce the accuracy of
the thin wall assumption, as explained above, since the D/t ratio would globally
reduce.
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4.3 Conclusions

To summarize, in this chapter it is concluded that:

• Accounting for resonant waves only, a smaller diameter is always optimal. This
is mainly due to the dependency of the wave induced fatigue load on the sec-
ond power of the diameter, that cancels out the contribution of the thickness,
that scales with the negative second power of the diameter. Therefore, the
mass of the support structure scales with a positive power of the diameter,
which yields a non-realistic optimum.

• Including a diameter-independent fatigue load, the lightest structure is not
achieved at the smallest diameter, because it yields a massive thickness. Thus,
the optimum found is more realistic compared to the case of waves only.

• The optimal diameter increases with the diameter-independent fatigue load;
nevertheless, the amount by which it increases reduces with the loads.
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Chapter 5

Conclusion

This final chapter aims to summarize the most relevant conclusions drawn from
the results of the Sensitivity Analysis (Chapter 3) and the Analytical Optimization
(Chapter 4), that are useful to answer the research question. After this summary,
the intention is to propose some recommendations for future research, based on the
lessons learnt throughout this thesis.

5.1 Conclusions

So, how does varying the support structure’s diameter affect the wave induced fa-
tigue loads of a monopile-based offshore wind turbine?

5.1.1 Sensitivity Analysis

The sensitivity analysis focused on the non-local effects on the wave induced fa-
tigue load due to the variation support structure’s diameter. These were calculated
according to Seidel’s approach to calculate the wave induced fatigue loads in fre-
quency domain, therefore:

• Narrow-band response spectrum was assumed;

• Only resonant waves were accounted for;

• Only the first mode of vibration was considered;

A 2 DOFs FE model was developed and implemented to calculate the structural
vibrations, according to the Euler-Bernoulli beam theory. The wave kinematics was
assumed linear, and the wave loads were calculated with the Morison equation,
neglecting the drag component. Performing a sensitivity analysis on a case study
provided by SGRE, allowed to observe how the wave induced fatigue load behaves
varying the diameter.
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With respect to the local effects, three main conclusions were drawn. In particular:

• Along the tower: the diameter does not have a significant effect on the wave
induced fatigue load; only minor negative variations are observed.

• Below waterline: more significant effects are observed below this. According
to these, it is beneficial in order to obtain smaller loads, to reduce the diameter
close to the waterline, due to the high influence of the wave kinematics.

• Around mudline: the wave kinematics influence drops and the modeshape
takes the lead; this stiffens the structure and makes more beneficial an increase
to the diameter in the lower part of the support structure.

With respect to the non-local effects, it was instead observed that they do not differ
much from the local ones. This happens because the structural transfer function
HSH, the component of the DEL that shows non-local effects, has a low impact on
the global sensitivity of the DEL to the diameter.

5.1.2 Analytical optimization

The analytical optimization of the diameter for the lightest support structure aimed
to give transparent insights on how the wave induce fatigue damage constrains the
choice of the optimal diameter. The same case study was adopted, but the structural
and hydrodynamic models were simplified. The thin-wall assumption was taken,
and the mass of the RNA was neglected. Moreover, use was made of the deep water
assumption for the wave kinematics. Two main load cases are considered: first
the fatigue load is only wave induced, then a diameter-independent contribution
associated with the wind loads is also accounted for, at different magnitudes.

The main conclusion drawn is that accounting for resonant waves only, a smaller di-
ameter is always optimal. This is mainly due to the dependency of the wave induced
fatigue load on the second power of the diameter, that cancels out the contribution
of the thickness, that scales with the negative second power of the diameter. There-
fore, the mass of the support structure scales with a positive power of the diameter,
causing the observed trend.
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5.2 Recommendations

In light of the insights obtained from the analysis conducted in this thesis, it is pos-
sible to state that it is relevant to deepen the understanding of how the support
structure’s diameter affects the wave induced fatigue loads of monopile-based off-
shore wind turbines. Nevertheless, the research question could be extended to: ”How
does varying the support structure’s diameter affect the mass of a monopile-based off-
shore wind turbine, accounting for wave induced fatigue damage?” In fact, although
this thesis explains, through the sensitivity analysis, how varying the diameter of
the support structure affects the wave induced fatigue loads, the other side of the
medal is missing: how does varying the wave induced fatigue loads affect the design
of the structure? As done in Equation 4.6, the thickness is designed as the mini-
mum thickness capable of enduring the fatigue damage. Therefore, varying the DEL
yields a variation of thickness, and consequently of mass as well. So, it is possible,
starting from a variation in diameter, to compute what is the corresponding effect
on the total mass of the support structure. This would allow to determine where it
is beneficial to increase or decrease the diameter, considering beneficial a variation
that reduces the fatigue loads, allowing the structure to be thinner and inducing an
overall lighter support structure.

The analytical optimization offers some insights in this sense. Nevertheless, although
it allows to see clearly what is the role played by the diameter in the wave induced
DEL, and consequently in the fatigue constraint and the total mass, the simplifi-
cations adopted prevent the method from finding a realistic optimal design of the
support structure, and to study in detail the non-local effects since the diameter
varies constantly along the structure. Therefore, it is not an effective method to per-
form the structural optimization; a numerical approach shall be preferred instead,
to achieve a detailed and realistically optimal design.

It may nevertheless serve as a simple method to understand the behaviour of the
components involved in the process of optimizing the monopile-based support struc-
tures, since it is easy to keep track of the players involved. Moreover, some quick
improvements for a more realistic optimization could be implemented. For exam-
ple, the FE model can be ameliorated by including a second DOF, i.e. the in-plane
rotation of the nodal sections, and also the mass and moment of inertia of the RNA;
additionally the loads could be modelled better by considering a more accurate wind
induced DEL, that accounts for a more detailed dependency on the support struc-
ture’s diameter.
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Are the sensitivities obtained case sensitive?

It would be ideal to obtain insights on the wave induced DEL’s sensitivity to the
diameter, that are as much generic as possible. It would be therefore interesting to
apply the methodology described in Chapter 3 to other case studies, to investigate
to what extent the sensitivities obtained are case sensitive, and what features of the
case studies have the most important impact.

What if more modes of vibrations are included?

Only the first mode of vibration is considered, so the vibrations due to higher modes
are neglected, and therefore the wave induced DEL is underestimated. More modes
could be included to obtain a more accurate description of the structural dynamics.
In fact, the sensitivity of the second mode could differ from that of the first mode,
suggesting to perform different diameter variations. An approach to include the
second mode is the following:

1. Perform the sensitivity analysis to get the natural frequency, the modeshape
and the modal stiffness of the second mode of vibration;

2. Calculate the wave induced DEL according to Seidel’s approach, simply using
the modal quantities of the second mode of vibration in place of the first;

3. Combine the DEL due to the second mode of vibration with that due to the
first mode;

4. Perform the sensitivity analysis;

It can be expected that the second mode has a lower impact on the DEL, compared to
the first one. Nevertheless, it is not trivial to speculate qualitatively on such impact,
which is the reason why it would be interesting to extend analysis, including at least
the second mode of vibration.
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Appendix A

Sensitivity Analysis

Figure A.1: Input diameter, thickness and element length distribution.

Table A.1: Input of the case study used in the sensitivity analysis.

MRNA [ton] IRNA [ton · m2] ρsteel [kg/m3] E [GPa]
CONFIDENTIAL CONFIDENTIAL 7850.00 210.00
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Table A.2: Wave climate used for the sensitivity analysis.

Wind Speed [m/s] Hs [m] Tp [s] Probability of Occurrence [%]
1 0.43 6.56 2.47
2 0.48 6.53 3.30
3 0.53 6.50 4.66
4 0.59 6.47 6.04
5 0.65 6.45 7.23
6 0.73 6.43 8.03
7 0.82 6.42 8.53
8 0.93 6.42 8.68
9 1.06 6.44 8.39

10 1.20 6.48 7.58
11 1.36 6.55 6.66
12 1.54 6.65 5.70
13 1.73 6.78 4.71
14 1.92 6.93 4.05
15 2.13 7.10 3.36
16 2.35 7.29 2.65
17 2.56 7.48 2.06
18 2.78 7.68 1.65
19 2.99 7.87 1.25
20 3.20 8.05 0.92
21 3.41 8.22 0.65
22 3.60 8.39 0.49
23 3.79 8.55 0.34
24 3.97 8.70 0.22
25 4.14 8.85 0.13
26 4.30 9.00 0.08
27 4.46 9.15 0.06
28 4.62 9.31 0.04
29 4.78 9.49 0.03
30 4.95 9.70 0.02
31 5.13 9.96 0.01
32 5.35 10.30 0.01
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Figure A.2: Comparison between the sensitivity of DEL computed with the original
length distribution vs. the rediscretized one.
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Figure A.3: Distribution function of the waves.
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Appendix B

Analytical Optimization

Table B.1: List of the inputs used in the analytical optimization.

Quantity name Symbol Value
Gravity acceleration g 9.81 m/s2

Water depth d 50.00 m
Critical damping ξ0 1.00 %

Fixity depth Lfix 22.00 m
Element length L 108.50 m

Significant wave height Hs 4.00 m
Peak period Tp 8.00 s

Density of steel ρs 7850.00 kg/m3

Density of seawater ρw 1025.00 kg/m3

Young modulus E 2.10 · 10 11 N/m
Number of seconds in 2.5 year TLT 3600·24·365 · 2.5 s

Wohler exponent m 4
Intercept of mean S-N curve with the log(N) axis log(a) 13.75
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