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Driver mental workload is an important factor in the operational safety of automated driv-
ing. In this study, workload was evaluated subjectively (NASA R-TLX) and objectively (audi-
tory detection-response task) on Dutch public highways (�150 km) comparing manual and
supervised automated driving in a Tesla Model S with moderators automation experience
and traffic complexity. Participants (N = 16) were either automation-inexperienced drivers
or automation-experienced Tesla owners. Complexity ranged from an engaging environ-
ment with a road geometry stimulating continuous traffic interaction, and a monotonic
environment with lower traffic density and a simple road geometry. Perceived and objec-
tive workload increased with traffic complexity. When using the automation, automation-
experienced drivers perceived a lower workload, while automation-inexperienced drivers
perceived their workload to be similar to manual driving. However, the detection-response
task indicated an increase in cognitive load with automation, in particular in complex traf-
fic. This indicates that drivers under-estimate the actual task load of attentive monitoring.
The findings also highlight the relevance of using system-experienced participants and the
importance of incorporating both objective and subjective measures when examining
workload.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Monitoring ability is essential in an increasing number of vehicles offering supervised, or SAE2 automation (SAE
International, 2016), which require the driver to monitor the automation and intervene when needed. Driver mental work-
load is an important factor in the operational safety of supervised automation. When automation relieves the driver from the
continuous control tasks, mental underload can occur (De Waard, 1996). Over time, this can lead to a state of drowsiness,
inattention and slower reactions (Greenlee, DeLucia, & Newton, 2018; Hirose, Kitabayashi, & Kubota). This has raised con-
cerns regarding the driver’s ability to monitor the automation and his/her performance to intervene in critical situations
(Kyriakidis et al., 2017).

In order to address these effects, it is important to know how workload is affected by the use of automation, and how this
effect varies with driving conditions. This study focuses on two main moderating variables of workload: the complexity of
the driving environment and the driver’s experience with the automation. Understanding the effect of these moderators can
help to predict in which conditions workload is too high or too low. Experience with driving automation can lead to task
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execution at a lower cognitive level, or reduce the perceived complexity of the traffic situation (Paxion, Galy, & Berthelon,
2014; Young & Stanton, 2007). Automation experience can also lead to better monitoring and improved cognitive readiness
for familiar driving situations, resulting in higher control transition performance (Krampell, 2016; Larsson, Kircher, &
Andersson Hultgren, 2014; Paxion et al., 2014; Wright, Samuel, Borowsky, Zilberstein, & Fisher, 2016; Young & Stanton,
2007). Moreover, automation experience may reduce task demand, or reduce sensitivity to demand changes, and thus influ-
ence workload differently in high and low traffic complexity (Patten, Kircher, Ostlund, Nilsson, & Svenson, 2006; Stanton,
Hedge, Brookhuis, Salas, & Hendrik, 2005).

This study investigates how workload changes with monitored automated driving in real-world conditions, and how this
change is moderated by traffic complexity and by the driver’s prior experience with automated driving. We conducted an on-
road experiment on Dutch public highways in a Tesla Model S. The change in workload was assessed subjectively (NASA R-
TLX) as well as objectively (auditory detection-response task). Traffic complexity was moderated by driving in a monotonic,
low workload and a complex, engaging highway. To moderate automation experience, participants were either automation-
inexperienced drivers or automation-experienced Tesla owners. The conditions were driven both manually and with
automation. This resulted in a 2 (automation: on vs. off) � 2 (environment: monotonic vs. engaging) � 2 (experience:
experienced vs. inexperienced) mixed design as illustrated in Fig. 1.

1.1. Theories of workload

In line with resource theory and the capacity model (Kahneman, 1973), we describe workload as the ratio between task
demands and resources available to meet them. (A discussion of alternative definitions can be found in (Cain, 2007)). Task
demand depends on the complexity of the driving task and the traffic situation, but also on how the goals are set (i.e. accept-
ing a level of performance), and the strategy chosen to achieve it. To meet these demands, the driver has to allocate physical
andmental resources, which are limited in availability. Driving consists of multiple sub-tasks. To model when and howmuch
these tasks interfere, Wickens (1981) proposed the multiple resource theory in which resource pools are available for the
different modalities of perception (e.g. visual, auditory, tactile), the codes of processing (spatial or verbal) and response
selection and execution (hands, feet, speech). In addition, he proposed a cognitive resource shared across all tasks.

Resources are finite in capacity, but the upper limit is considered elastic (Kahneman, 1973; Young & Stanton, 2002), and
closely related to the driver’s energetic state. Drivers may exert state related effort to improve their energetic state. Investing
computational effort can compensate for increasing demand. Both forms of effort are consciously perceived, and are consid-
ered key aspects of perceived workload (De Waard, 1996).

The relation between task demand and workload is u-shaped (DeWaard, 1996) and consists of regions of underload, opti-
mal load and overload. In optimal load, performance is generally good and changes in demand have little or no effect on per-
ceived effort or achieved performance. Overload occurs when demands exceed the available resource capacity and
performance degrades despite the additional effort invested. Underload occurs when demands are exceptionally low or
monotonous in nature. Underload can lead to vigilance decrement, or inattention. However, low task demand can lead to
an increase in workload when drivers recognize the development of drowsiness and invest state-related effort to compen-
sate (Warm, Parasuraman, & Matthews, 2008).

Experience can make some demanding tasks impose less or no effort, even when performed concurrently with effortful
tasks. These include routine operations and learned skills, executed with a high degree of automaticity. Examples are lane
keeping, speed or headway maintenance and event detection. When automatized routines can handle the situation, these
driving tasks should be insensitive to changes in cognitive load. According to the cognitive control hypothesis, cognitive load
from competing tasks can only emerge for non-automatized tasks or when overruling skill-based behavior (Engström,
Markkula, Victor, & Merat, 2017). We thus expect automation-experienced drivers to have a lower workload during automa-
tion compared to automation-inexperienced drivers. Conversely, the cognitive control hypothesis predicts that supervised
automated driving, which mainly automates skill-based tasks, should not reduce workload for skilled drivers compared to
manual driving.
Fig. 1. Illustration of the independent variables: automation experience, automation use, and complexity of the environment.
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1.2. Measuring workload

There is an extensive amount of literature reviewing methods to measure workload, e.g. (Cain, 2007; De Waard, 1996;
Miller, 2001; Paxion et al., 2014; Stanton et al., 2005, chap. 39; Stanton, Salmon, Rafferty, Walker, Baber, & Jenkins, 2013,
chap. 8; Young, Brookhuis, Wickens, & Hancock, 2015). Each measure is sensitive to a different set of resource pools, and
in different performance regions (De Waard, 1996). Here we discuss measures used in the present study. The collection
of workload measures can be classified into subjective rating (self-report) or objective measures (task-performance and
physiological measures).

Subjective rating reflects workload as experienced by the operator (driver) and is thus sensitive to changes in effort. It is
the simplest way to measure workload and is considered more reliable than physiological measures (Miller, 2001). The NASA
task load index (TLX) (Hart, 2016) is a commonly used subjective measure in aviation and automotive research, and captures
operator workload through six dimensions (mental, physical and, temporal demand; effort, frustration and performance)
and reduces variability between participants and task contexts by letting participants score the relevance of each of these
items. A variant, the Raw TLX (R-TLX), ignores this scoring step and has been found to remain an effective workload measure
(Hart, 2016). We adopted the R-TLX to reduce the length of the post-drive questionnaire.

Subjective workload ratings have high face validity, but ratings may deviate from the actual workload. Stanton (1995) and
Young and Stanton (1997) suggest in the contextual attention theory (CAT) that imbalance between perceived and actual
demands and/or resources is one of the mechanisms through which poor performance can emerge, and that such an imbal-
ance is especially likely in automated driving when there is insufficient feedback on the driver’s performance (Norman,
1981). In order to capture such a mismatch, it is necessary to also collect objective measures of workload.

Objective workload measures often derive from task-performance, assuming reduced performance with under- and over-
load. Performance can either be measured on the primary task, or on secondary tasks. Most primary tasks in driving require
manual operation of the vehicle (e.g. lane keeping performance), and are not suitable for automated driving. Secondary tasks
aim to measure the driver’s spare capacity. They tend to have a high reliability and can be designed to target specific resource
pools. Consequentially, a variety of secondary tasks can be found throughout literature. One drawback of secondary tasks is
that they interfere with the primary task. The detection-response task (DRT) is a secondary task designed to measure driver’s
cognitive load, and has been verified extensively (NEN-ISO 81748, 2016). Specifically, it measures the driver’s ability to shift
attention between the primary driving task and the DRT by measuring the delay between stimulus and response. When
using a modality not interfering with the driving task (i.e. tactile or auditory), it is regarded as a pure measure of cognitive
load. Compared to other secondary tasks, the additional cognitive demand induced by the DRT is generally considered to be
low (Martens & vanWinsum, 2000), but not effortless and not prone to automaticity (Engström et al., 2017). We selected the
auditory DRT since monitoring of automation is centered in the cognitive resource pool, has low interference with the driv-
ing task and is not visually distracting. We preferred auditory over tactile stimuli, as this minimizes intrusive
instrumentation.

Physiological measures sensitive to changes in workload include cardiovascular activity, galvanic skin response, brain
activity and pupilometry. Brookhuis regards physiological measures as ‘‘the most natural type of workload index, since, by def-
inition, work demands physiological activity” (cited in Stanton et al., 2005, p.17–2). Physiological measures can be recorded
continuously and unlike performance measures they do not require any task to be performed, which makes them interesting
for driver state monitoring. Cardiac monitoring is one of the most commonly used physiological measures of workload. Men-
tal effort is associated with arousal which increases heart rate, while heart rate variability is found to decrease under high
mental effort (Stanton et al., 2005, chap. 20, chap. 39). This relation between heart rate variability and mental effort is related
to the sympathovagal balance between the sympathetic (0.02–0.06 Hz) and parasympathetic (0.15–0.40 Hz) nervous system,
which is measured in the 0.10 Hz range, or as the ratio between high and low frequency ranges (Though the idea that the
LF/HF ratio is a suitable indicator for the sympatho-vagal balance has been challenged; see Billman (2013) for a comprehensive
review). However, heart activity (and variability in particular) are not selective measures of workload. They primarily
respond to the body’s regulatory functions and are hypersensitive to noise from movement, changes in breathing rate
and speech (Jorna, 1992; Young, 2000). We recorded heart activity and explored LF/HF ratio and standard deviation of
inter-beat intervals, as they are related to mental workload and less affected by artifacts than other variability measures
(Stapelberg, Neumann, Shum, McConnell, & Hamilton-Craig, 2017). Eye measures related to workload include blink rate, hor-
izontal gaze dispersion (for highway driving) and pupil diameter (Marquart, Cabrall, & de Winter, 2015). The latter is par-
ticularly sensitive to high levels of cognitive load, but requires careful control of light conditions (Kahneman, 1973). In
addition, eye tracking can provide further insight into the quality of monitoring (i.e. task performance) by assessing changes
in glance frequency and durations to regions of interest (Kircher & Ahlstrom, 2017). We included eye tracking in our study to
assess visual load and monitoring quality.

1.3. Empirical workload in automated driving

The theories of workload can help to explain and predict how automation and other moderators affect the driver’s work-
load, but for quantitative effects we need to examine empirical findings. To this end, we selected studies addressing effects of
driving automation, traffic complexity and automation experience.
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The empirical review from DeWinter, Happee, Martens, and Stanton (2014) summarizes workload findings from 32 stud-
ies comparing different levels of automation on the NASA TLX and RSME (Rating Scale Mental Effort). TLX responses were
converted to a percentage scale for better comparison to RSME, with the lowest item mapped to 0% and the highest to
100%. Studies were mainly performed in simulators, and indicated a workload reduction of 21% on average from manual
to automated driving. Six of the reviewed automated driving conditions could be considered SAE2 (Damböck,
Weißgerber, Kienle, & Bengler, 2013; McDowell, Nunez, Hutchins, & Metcalfe, 2008; Saxby, Matthews, Warm, &
Hitchcock, 2013; Schermers & Malone, 2014). With SAE2 automation workload was only 13.5% lower compared to manual
driving. Ratings ranged from 23 to 66% for manual and from 23 to 40% for SAE2 automated driving.

The influence of traffic complexity on workload can be as large as the use of driving automation, with a 35% workload
increase from low to high traffic complexity in manual driving (Teh, Jamson, Carsten, & Jamson, 2013). During supervised
automated driving, traffic increases demands for the monitoring task (Jamson, Merat, Carsten, & Lai, 2013).

While task complexity increases demand, experience with automation may reduce it. Until recently, the influence of
experience with automation could hardly be investigated due to the unavailability of automation-experienced drivers. Sim-
ulator studies on workload in automation often include a familiarization period, but the 15–30 min exposure times are too
short for the development of experience (Beggiato, Pereira, Petzoldt, & Krems, 2015). Some studies have approximated auto-
mated driving experience by using adaptive cruise control (ACC) experienced drivers (Larsson et al., 2014; Naujoks, Purucker,
& Neukum, 2016) or developed special procedures to create experience through training (Krampell, 2016). Some effects of
experience, such as the perceived risk and trust, may also be hard to study in simulators, which pose limitations on the per-
ceptual fidelity (De Winter, van Leeuwen, & Happee, 2012; Hallvig et al., 2013). However, some recent studies measured
mental workload during automated driving on the road.

Solís-Marcos, Ahlström, and Kircher (2018), measured visual secondary task performance in a Volvo S90 equipped with
pilot assist (SAE2) and included both automation-inexperienced drivers and vehicle owners who had experienced the
automation for 4.5 months on average before participation. In contrast to their expectations, they found that automation
use increased the percentage of incorrect responses to the secondary task compared to manual driving, despite similar task
completion rates in both conditions and longer glances towards the visual task with automation. TLX ratings of mental effort
were high (79% in manual driving and 67% with automation use), which indicates that in supervised automation, secondary
visual-motor tasks can be very demanding. Automation-experienced drivers gave shorter glances to the road compared to
automation-inexperienced drivers in all conditions. They also gave longer glances at the secondary task, and this behavior
was more pronounced during automated driving compared to manual driving, whereas the inexperienced drivers did not
change glance time with automation use.

Banks and Stanton (2016) studied the workload of automation-inexperienced drivers during a short but engaging trip in a
prototype supervised automated vehicle. In contrast to findings from simulators, the perceived workload was higher during
automated driving (42%) compared to manual driving (27%). The participants’ lack of prior training with the system, the
additional tasks (performing three lateral maneuvers and answering an interview) and reported issues with the automation’s
behavior may all have contributed to the perceived workload increase.

Heikoop, de Winter, van Arem, and Stanton (2017) performed an on-road test with professional drivers familiar to super-
cars, but with no prior experience with lateral automation in a Tesla Model S on the highway, following a lead vehicle after
30 min of test-track training. A simple secondary task (counting bridges) was performed during part of the trip. The per-
ceived workload during automated driving was rated very low overall (average of 19%), which is even below findings from
simulator literature and reduced over time, suggesting that accustomization occurred during the trip. Accordingly, negative
standardized change scores between the pre-drive and post-drive engagement ratings on the Dundee stress-state question-
naire suggest an overall disengagement during the drives.

Eriksson, Banks, and Stanton (2017) investigated the transition time in non-critical control transitions on the road in a
Tesla Model S and compared it to a simulator study. Participants in the on-road experiment had prior experience with driv-
ing automation while the participants of the simulator study did not. Drivers in the on-road experiment regained control 32%
(1.5 s) faster on average compared to the simulator drivers. The workload was perceived as low in both studies and no sig-
nificant difference was found between the two studies.

Naujoks et al. (2016) performed a field study measuring secondary task uptake, secondary task workload and compen-
satory behavior in congested traffic while driving manually, with ACC and ACC plus steer assist in a Mercedes-Benz E-
Class. They explored the effect of automation experience by comparing drivers with and without prior ACC experience.
ACC-experienced drivers performed more secondary tasks in automated driving than in manual driving, in particular when
driving at lower speeds, suggesting reduced workload with automation at lower driving speed. The effect however was not
present for ACC-inexperienced drivers, suggesting that automation experience is a prerequisite for freeing cognitive
resources for secondary tasks.

Based on these preceding works, we formulated the following hypotheses for supervised automation:

H1. Workload will be higher in the engaging condition than in the monotonic condition for both manual and automated
driving.
H2. Automation will reduce workload.
H3. Workload during automated driving will be higher for automation-inexperienced drivers compared to automation-
experienced drivers.
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We expect these effects to occur for both objective (auditory DRT) and subjective (R-TLX) workload measures. It should be
noted that H2 concurs with a wide range of findings in various tasks, including driving in simulators, but not with the cog-
nitive control hypothesis. Also, opposite effects were reported in two recent on-road studies as reviewed above.

2. Methodology

2.1. Participants

Two groups (N = 8 each) of participants took part in the experiment and were selected through convenience sampling.
Automation-experienced Tesla owners were recruited through the Dutch/Belgium section of the Tesla Motors forum
(Motors, 2017). Seven reported using a Tesla and its Autopilot on a daily basis. One was an irregular user but reported
10,000 km travelled using Autopilot. One of the experts was the safety instructor, who had observed 8 participants prior
to taking part himself.

The automation-inexperienced participants were invited through the universities’ employee mailing list and through a
list of drivers who had indicated their interest to participate in research regarding automated driving. Inexperienced drivers
were required not to have experienced driving automation before. Users of adaptive cruise control were excluded but users
of non-adaptive cruise control were included. The demographics of both groups are summarized in Table 1.

2.2. Vehicle and instrumentation

An on-road driving task was performed with a rented Tesla model S 75D equipped with Autopilot (hardware version 1;
update 8.0) and the driver’s seat on the left side. The vehicle features supervised automation, which combines adaptive
cruise control with automated lane keeping. The system supports lane changes (which have to be initiated by the driver)
and adapts driving speed to traffic in the adjacent lanes and road curvature. The automation requires the driver to keep
the eyes on the road and the hands on the wheel. An overview of the instrumentation can be seen in Fig. 2. Video was
recorded with three GoPro cameras observing the traffic in front and behind of the car, as well as the driver. A webcam
observed the instrument panel.

An auditory detection response task (DRT) was performed as an objective measure of the driver’s cognitive workload. The
DRT was implemented in Python on a Raspberry PI 3B running Raspbian Jessie. The implementation and analysis were in line
with NEN-ISO 8(1748, 2016), with the following notable exceptions:

– An auditory stimulus was provided randomly with an on-set interval of 3–5 s with a 3.1 kHz tone lasting one second, irre-
spective of response time.
Table 1
Demographics of the two participant groups, with mean l, standard deviation r and [interval].

Experienced group Inexperienced group

Age l = 43 r = 14 [27–69] l = 41 r = 14 [21–61]
Years licensed l = 22 r = 15 [4–51] l = 21 r = 15 [3–43]
km driven past 12 months l = 26.500 r = 21.500 [7.500–75.000] l = 15.000 r = 13.000 [3.000–42.500]
Gender 7 male, 1 female 8 male

Fig. 2. Overview of the instrumentation.
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– Stimuli were presented over 5 min at a time (amounting to 72 stimuli per participant per condition).
– The button used to respond to the stimuli was strapped to the participant’s right index finger, as the right hand had no
driving-related tasks other than steering during the DRT.

– The DRT instruction was phrased as ‘‘Press the button as soon as you hear the signal, but keep your attention on the road”.

Heart activity was recorded as a psychophysiological measure of arousal and workload. Two variability metrics were ana-
lyzed: standard deviation of inter-beat intervals (sdNN), where low variability indicates high workload; and low over high
frequency ratio (LF/HF), where a high ratio indicates a high workload. These metrics were calculated every 30 s over 300 s of
data.

Heart activity was recorded using an optical sensor mounted to the participant’s right middle finger, powered by an Atmel
AtMega328P embedded processor board. The sensor was able to obtain a heart rate measure, but occasionally suffered from
artifacts (e.g. holding the steering wheel differently changed contact pressure of the sensor or reduced blood circulation in
the fingertip). The heart rate and variability metrics were calculated using an open-source Python toolbox (Van Gent, 2017;
van Gent, Farah, van Nes, & van Arem). Data were collected at 100 Hz, and low pass filtered with a second-order Butterworth
with a cutoff frequency of 5 Hz. The dominant (R-wave) peaks were identified as the maximum sample from any signal sec-
tion rising above a 1.5 s moving average. Sections of poor data were identified by a variety of error detection and peak rejec-
tion algorithms, including the exclusion of heart rates outside the normal range [30–130 bpm] as well as any R-peaks whose
associated inter-beat intervals exceeded the [250–300 ms] range.

A pupil labs head mounted eye tracker with the Linux distribution of pupil capture (Pupil-Labs V0.9.1, 2017) was included
for the exploratory glance behavior analysis. However, a power outage on the second testing day resulted in software cor-
ruption, leading to random crashes of the tracking software. As a consequence, we only obtained full recordings of two par-
ticipants and dropped the eye tracking from further analysis.

Vehicle motion (6 DOF acceleration, speed and location) was recorded using an MPU6050 IMU and GTPA013 GPS sensor
connected to a second Atmel processor.

A safety instructor sat next to the participant and was proficient in the use of the Autopilot and experienced in introduc-
ing new drivers to the vehicle. During the drive, his tasks were to inform or warn the driver when needed, to help with the
navigation and vehicle settings from the center console and to provide answers to technical questions. He was also allowed
to engage in idle conversations except when instructions were given by the experimenter or during the DRT. The participant
was allowed to initiate a conversation at any time. We did not inhibit speaking to maximize behavioral validity. By allowing
participants the freedom to engage in conversation, the effects of experimenters’ presence on behavior became more repre-
sentative to having any other passenger.

To control for confounders that are inevitable in an on-road study, the DRT data was enriched by annotating events which
may influence the response, such as lane changes, uninstructed (dis)use of the automation and verbal interactions. For each
stimulus-response pair, the following classifications were made through manual annotation of the video footage:

– Lane change: ego vehicle undergoing a lane change or having indicators activated
– Use of Autopilot (on/off)
– Periods of congested traffic (vehicle or traffic speed slower than 75 km/h)
– Driver speaking (y/n)
– Other occupant speaking (y/n)

A stimulus was classified when these events occurred at any moment between the end of this stimulus and the end of the
preceding stimulus.

To obtain an accurate record of the experienced traffic conditions, traffic flow (intensity) and traffic speed were logged
from the NDW open data server (Warehouse, 2018) every minute. For each recording that contained both values, traffic den-
sity was calculated as lane-averaged intensity divided by lane-averaged traffic speed, where empty lanes were ignored. After
pre-processing, the lane-average traffic data was interpolated to the GPS position and time, to obtain a continuous estimate
of the traffic condition surrounding the vehicle. This interpolation accounted for differences in information travel in free and
congested traffic as described in the traffic-adaptive model of Treiber and Helbing (2002). When GPS data was not available,
a single average was computed for the road section over the duration of the condition.

2.3. Subjective measures

Three questions were asked while driving, to which the participant responded verbally on a scale from 1 to 9. The first
question covered mental demand, the second regarded alertness and the third question reflected the driver’s trust. In each
condition, the three questions were asked before and after performing the DRT to verify that this task did not influence the
driver’s state. The questions were phrased as: On a scale from 1 to 9, how mentally demanding was the {manual driving, use of
autopilot}? On a scale from 1 to 9, how alert were you during the {manual driving, use of autopilot}? On a scale from 1 to 9, how
much did you trust {yourself with the driving, the automation}? For the alertness question, the descriptions of Karolinska sleepi-
ness scale (KSS) (Kaida et al., 2006) were used: 1: very sleepy, great effort to keep awake 2: sleepy, some effort to keep awake
3: sleepy, but no effort to keep awake 4: some signs of sleepiness 5: neither alert nor sleepy 6: rather alert 7: alert 8: very
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alert 9: extremely alert. Each time, the participant was reminded of the description of the given response and was permitted
to revise the response accordingly. The demand and trust questions were not anchored while driving, but 1 was described as
low and 9 as high before departure.

The NASA Raw Task Load Index (R-TLX) was filled out after each driving condition on a 21-point scale. (we report results
in percentages, with the lowest possible rating mapped to 0% and the highest possible rating mapped to 100%) Additionally, a
confidence questionnaire based on Rendon-Velez et al. (2016) was used, with items (1) driving manually was easy, (2) I felt
confident to drive manually, (3) I had a feeling of risk, (4) using the automation was easy, (5) I felt confident to use the automation
and (6) I had a feeling of risk during automated driving on a 5-point scale with anchors: disagree strongly, disagree a little, nei-
ther agree nor disagree, agree a little, agree strongly. Also the 12-item automation trust questionnaire from Jian, Bisantz, and
Drury (2000) was adopted on a 7-point scale. This questionnaire was only filled out for the drive as a whole, and not for each
condition separately.

2.4. Environment

Two highway sections were selected to represent two levels of driving complexity; an engaging environment with a road
geometry stimulating continuous traffic interaction, and a monotonic environment with lower traffic density and a simple
road geometry and a low chance for high-demand scenarios to occur (Fig. 3).

For the engaging environment, the A10 (ring-East of Amsterdam) was selected for its high traffic density throughout the
day and the 10–13 on/off-ramps (depending on direction traveled). To maximize the traffic interaction, the driver was
instructed to drive in the right lane as much as possible and was allowed to overtake slow moving traffic. On parts of this
road it is legal to use the shoulder lane, but we instructed drivers to keep the regular right lane to avoid unpredictable behav-
ior of the Autopilot. The A10 was entered from the A1 and followed down till exit Oud Zuid, either driving manually or using
the automation. The highway was then followed in the opposite direction until exit Zeeburg, during which the DRT was per-
formed. The route was then repeated with the remaining mode of automation.

For the monotonic environment the A6 between Almere (exit 7) and Lelystad (exit 10) was selected, which is a straight
two-lane highway with low traffic density and no on/off ramps between the two cities. Here the driver was instructed to
remain in the right most lane, to not overtake slow traffic and to drive as fast as traffic permits, but not faster than
110 km/h. Drivers got stuck behind a truck or trailer driving approximately 85 km/h in 80% of the monotonic scenarios.
The automation was either used on the way towards Lelystad or back towards Almere.

The two driving environments were located 15 min away from one another. The A1 connects the two locations and was
used for the familiarization. The A1 was entered from the A9 and first traveled in eastern direction. When the familiarization
was to be followed by the engaging environment in Amsterdam, the first available exit was taken before practicing the auto-
mated lane change, but no later than Naarden. When the familiarization was to be followed by the monotonic condition, the
road was simply continued towards the A6. The order of monotonic/engaging drives after the familiarization was counter
balanced. For the inexperienced driver, the total trip lasted for 1.5 h when first driving to the monotonic condition or
1.75 h when first driving to the engaging condition. The experienced driver needed 1.5 h for either route due to the shorter
familiarization.
Fig. 3. The driven route. Images were recorded during the drive of participant 5.
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The McDonald’s Amsterdam Zuidoost was selected as the start/end point of the route, as it was logistically located
between the highway entrance and the Tesla supercharger, and provided the facilities needed for welcoming the
participants.

2.5. Procedure

The experiment was approved by the human research ethics committee (HREC) of the TU Delft. Upon arrival, the partic-
ipants were informed of the tasks and risks of the experiment. A pre-drive questionnaire was filled out and the procedures
were explained. Prior to departure, the safety instructor informed the participants about the operation and limitations of the
vehicle and the automation while the experimenter positioned the eye tracker, heart rate sensor, and DRT button. To explain
and demonstrate the basic operation of the vehicle, the safety driver closely followed a checklist covering the controls; all
possible automation modes, their functional meaning and methods for activating and disengaging them. Also the
automation-related symbols were explained using Fig. 4. Guidelines for safe use were phrased as: when using autopilot,
you should be on the lookout for things that the automation cannot handle correctly, for instance: lane markings that are not well
visible or that have to be crossed, situations that require very strong braking or steering, traffic that behaves unexpectedly, when
the car does something you would not do, or when it doesn’t do something when you would. The participants were further
instructed repeatedly to remain attentive drivers at all times.

Once on the highway, a familiarization drive was performed, during which the participants were introduced to the gen-
eral operation of the vehicle and the basic behavior of the automation. The performed tasks covered the different methods of
activation and deactivation of the automation, the adjustment of the cruise speed setting and the automated lane change.
Questions were asked to make sure that the driver understood the instrument panel and operation of the vehicle. The famil-
iarization lasted as long as necessary to let the participant perform each task successfully. The inexperienced drivers needed
around 20 min while the experienced drivers required 8 min on average. The participants then drove manually to the engag-
ing or monotonic environments, where they performed 4 rides in manual/automated and engaging/monotonic conditions in
a randomized order.

To test for a possible effect of the DRT on subjective workload, within each condition we drove 5 min without DRT and
5 min with DRT. Each condition started with the instructions regarding driving behavior, followed by 5 min of driving with-
out DRT. The three questions regarding mental demand, alertness and trust were asked before and after the DRT.

3. Analysis and results

The drives were performed on workdays between the 3rd and 10th of March 2017. All drives took place between 9:00 and
16:45 to avoid rush hours and congestion. All tests occurred in normal (Dutch) weather conditions, except for two
automation-experienced drivers, who drove in heavy rain. The automation operated reliably for all drivers in all experienced
conditions. There was one occasion where ACCmomentarily braked for no apparent reason (we suspect that the radar caught
a guard rail at the end of a highway exit) and a couple of non-critical conflicts with surrounding traffic (e.g. another vehicle
cutting in front, Autopilot attempting to undertake another vehicle at the right lane); all were adequately resolved by the
participants with no or negligible inconvenience. Two experienced drivers did not follow all instructions during the mono-
tonic condition. One occasionally overtook trucks. The other had not turned off ACC during manual driving in the first half of
the monotonic drive.

During the DRT, the 8 automation-inexperienced users collectively made 8 lane changes in the engaging condition during
the automated drive (2 with automation turned off) and 5 in the manual drive. The 6 experienced users made 17 in the auto-
mated drive (4 with automation turned off) and 15 in the manual drive, suggesting that the experienced users were more
comfortable with making lane changes. In the automated engaging drive, the Autopilot was turned off 9.8% and 5.2% of
the time by inexperienced and experienced drivers respectively, while in the monotonic drive the Autopilot was turned
off 1.9% and 0.7% of the time respectively. The descriptives and effect sizes resulting from a 3-way ANOVA are provided
in Tables 4 and 5and will be described in Sections 3.2 and 3.3.
Fig. 4. illustration of the automation-related information on the instrument panel.
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3.1. Traffic conditions

Despite a technical malfunction in the power supply to the GPS equipment, we managed to retain the GPS data of 48 5-
minute conditions among 11 drives. Since the interpolated traffic estimates require this GPS signal, approximate traffic esti-
mates were made for the conditions where the GPS signal was not available. The two methods were compared to ensure that
the approximation is appropriate. Pearson’s r and the difference in means between the two calculation methods as well as its
significance according to a paired Student’s t-test are outlined in Table 2. On all three metrics, the two calculation methods
correlate well. Although the difference in means of traffic flow and (consequentially) density is statistically significant, we
deemed its practical significance small enough to include the approximate traffic data in the analysis.

Table 3 shows the mean driving and traffic conditions among the experimental conditions, as well as the sample sizes for
which GPS (and thus traffic speed) is available. Fig. 5 shows traffic density and speed of the individual participants. It demon-
Table 3
Driving speed and traffic properties.

Monotonic Engaging

Automated Manual Automated Manual

l r l r l r l r

Car speed [km/h] 87.3 13.7 88.5 10.5 87.2 16.6 90.0 9.9
Traffic speed [km/h] 111.2 15.6 115.2 12.4 96.0 10.5 96.9 6.5
Traffic flow [veh./h] 751 524 707 530 1303 421 1302 448
Density [veh./km] 9.43 5.70 8.06 4.19 14.14 4.90 14.04 4.29
Nused 16 16 16 16
NGPS 8 8 8 4
NGPS during DRT 5 5 4 3
Ntraffic 16 16 14 13
Ntraffic during DRT 14 14 13 11

Nused = number of participants driving each condition.
NGPS = number of participants for which GPS (and thus car speed) data is available.
Ntraffic = number of participants for which traffic data (speed, flow, density) is available.
During DRT = number of samples for which 5 min of data is available while performing the DRT.

Table 2
Pearson’s correlation between interpolated and approximated estimates of traffic speed, flow and density.

r Econtinuous–approx t(1,47) p

Traffic speed 0.836 �0.407 (km/h) �0.415 0.680
Traffic flow 0.871 �85.7 (veh./h) �2.858 0.006
Traffic density 0.929 �0.458 (veh./km) �2.385 0.021

Fig. 5. Traffic density (left) and speed (right) as experienced by the two groups across all test conditions during the DRT. Lines indicate condition means,
symbols represent individual participants. engAuto = engaging environment using automation, engMan = engaging environment with manual driving;
mono” = monotonic environment with either driving mode.
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strates that comparable traffic conditions were obtained between manual and automated driving for both groups, while dif-
ferentiating between the two driving environments.

3.2. Detection response task (DRT)

The auditory DRT was performed as an objective measure of changes in cognitive load. Due to missing values, the expe-
rienced and inexperienced group are represented by six and eight participants respectively.

Lane changes contributed to only 0.10% of the time for the inexperienced group and 0.17% of the time for the experienced
group. During lane changes in the engaging condition reaction times were 240 ms (t(5) = 3.206, p = .024) and 261 ms (t(7)
= 3.797, p = .007) slower for the experienced and inexperienced drivers respectively. These effect sizes are comparable to the
1-back task (adds 232 ms to baseline manual driving according to NEN-ISO 8(1748, 2016, Table E8)) or counting backwards
from a 3-digit number (adds 125 ms to baseline manual driving according to Merat, Johansson, Chin, Nathan, and Victor
(2006, figure 30)). Of all DRT misses, 30% and 25% occurred during lane changes for the inexperienced and experienced group
respectively, resulting in a miss rate of 12% for automation-experienced and 19% for automation-inexperienced drivers dur-
ing lane changes.

The time spent conversing varied across participants, with 3 out of 14 participants accounting for 65% of all conversations
held. When speaking, the participants’ reaction time was 240 ms slower compared to when being silent (t(13) = 3.45,
p = .004). No difference in reaction time was found between other occupants being silent or speaking (t(13) = 1.388,
p = .188). The DRT thus showed a higher miss rate and slower response time during lane changes and a slower response time
during speaking. This indicates that single DRT responses can uncover additional information when combined with the iden-
tification of external events.

To remove some of the confounders for the DRT, we omitted all stimuli that occurred during lane changes, uninstructed
automation (dis)use, and during driving or traffic speeds below 75 km/h. This refinement excluded 10.4% of the stimuli (with
17.0% of stimuli removed from the engaging-automated condition, 18.7% from the engaging-manual condition, 1.8% from the
monotonic-automated condition and 0.5% from the monotonic-manual condition). Results after this removal are presented
in Tables 4 and 5. Stimuli during speaking or listening were not excluded from the analysis, as we consider speaking to be
inherent to the driving strategy, but we verified if removing stimuli during speaking would change the trends and effects
reported in Tables 4 and 5. All trends with automation, experience and complexity remained. Reaction time received slightly
smaller effect sizes, but significant effects remained significant. The effect of environment on miss rate became insignificant
(p = .081). It is however not surprising that miss rates, which depend on the occurrence of rare events, are sensitive to data
removal.
Table 5
Univariate effects and interactions of 3-way ANOVAs for reaction time, miss rate and overall workload. The effect of automation in the R-TLX contradicts that of
RT and MR. Significant effects (confidence a < .05) are highlighted. Sub-items indicate which R-TLX sub-scale items were significant (mental, physical,
temporal, performance, effort, frustration).

Effects and interactions Reaction time (ms) Miss rate (%) R-TLX (%)

F(1,12) p g2
p F(1,12) p g2

p F(1,13) p g2
p Sub-items

Environment 15.168 0.002 0.558 7.036 0.021 0.370 14.584 0.002 0.529 m,ph,t,pe,e
Automation 11.321 0.006 0.485 0.480 0.502 0.038 8.871 0.011 0.406 m,ph,t,e
Experience 0.028 0.870 0.002 0.972 0.344 0.075 0.886 0.364 0.064 –
Environment * experience 2.266 0.158 0.159 0.514 0.487 0.041 0.003 0.957 0.000 –
Automation * experience 1.306 0.275 0.098 0.007 0.934 0.001 5.945 0.030 0.314 m,pe,f
Environment * automation 4.111 0.065 0.255 0.360 0.559 0.029 0.175 0.682 0.013 –
Environment * automation * experience 0.218 0.649 0.018 0.000 0.999 0.000 1.119 0.309 0.079 –

Table 4
DRT reaction time and miss rate, and R-TLX.

Reaction time (ms) Miss rate (%) R-TLX (%)

Experienced
N = 6

Inexperienced
N = 8

Experienced
N = 6

Inexperienced
N = 8

Experienced
N = 7

Inexperienced
N = 8

l r l r l r l r l r l r

Engaging
Automated 548 212 532 161 3.10 2.00 4.19 3.09 24.30 20.3 42.90 20.1
Manual 491 232 460 160 2.55 2.15 3.54 2.99 48.30 19.6 42.60 17.1

Monotonic
Automated 379 109 451 182 1.70 0.62 1.93 0.70 10.20 7.1 24.70 16.2
Manual 386 114 420 167 1.65 1.09 1.79 1.09 32.00 19.6 29.60 15.4
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Reaction times and miss rates show similar trends (see Table 5). Both reaction time and miss rate have a main effect of
environment (engaging environment has 99 ms slower reaction time and 1.6% higher miss rate compared to the monotonic
environment), indicating that the engaging environment is more demanding than the monotonic environment. This effect
size is similar to adding the 0-back task to baseline manual driving, which increases reaction time with 99 ms according
to NEN-ISO 8(1748, 2016, Table E8). Reaction time also shows a main effect of automation (38 ms slower reaction during
automated driving compared to manual driving), indicating that automation use resulted in less spare cognitive capacity
compared to manual driving. Miss rate did not increase significantly with automation. However this can be attributed to
a capping effect from the measurement resolution; with 72 stimuli, only miss rate increments of 1.4% can be distinguished
with each measurement. No main effect for experience was found. None of the interactions was statistically significant.

Although the interaction automation * environment is not statistically significant (p = .065), the increase in reaction time
during automated driving is more pronounced in the engaging environment (Eauto-man = 64 ms, SE = 18) compared to the
monotonic environment (Eauto-man = 13 ms, SE = 16). Thus, automation seems to increase cognitive workload particularly
in the engaging condition. These effect sizes are similar (but opposite) to comparing DRT performance with and without
manual driving (baseline driving increases DRT reaction time with 52 ms on average according to NEN-ISO 8(1748, 2016,
Table E8)).

3.3. NASA R-TLX

Subjective workload ratings were collected using the NASA R-TLX. Due to missing values, the experienced and inexperi-
enced group were represented by seven and eight participants respectively. The subjective workload is given in Table 4 and
Fig. 6, which also includes the six contributing items. The main effects and interactions are given in Table 5. For each effect
and interaction, we indicated the sub-scale items that were statistically significant. The familiarization condition was
excluded from further analysis, as it differs in road type.

Overall, workload was perceived 15.4% higher in the engaging than in the monotonic environment, and 12.6% lower dur-
ing automated driving compared to manual driving. The interaction automation * experience however indicates that only the
experienced group (Eman-auto = 22.9%, p = .003) perceived a workload reduction with automation use, whereas the inexperi-
enced group did not experience a workload difference between manual and automated driving (Eman-auto = 2.29%, p = .699).
The perceived workload reduction with automation for the experienced group was consistent for both traffic conditions and
for the six contributing items (Fig. 6 left). No main effect of experience and no further interactions were observed.

3.4. Heart activity

Individual heart rate traces are shown in Fig. 7. An ANOVA on the mean-adjusted heart rate did not reveal any main
effects or interactions on environment or automation use. Similarly, no effects or interactions were found for sdNN or LF/
HF. Heart rate varied over time without apparent relation to the conditions or observed events, We suggest that the inherent
variability of on-road driving along with artifacts from speaking, gripping of the steering wheel and other confounders over-
shadowed any possible effects resulting from automation or complexity of the environment.

A linear regression on the mean adjusted heart rate shows a time on task effect for the inexperienced group
(b = �0.034 bpm/min, F(1,169) = 51.71, p < .001), but not for the experienced group (b = �0.002 bpm/min, F(1, 138)
= 0.024, p = .878). This indicates that the inexperienced drivers may have been acclimatizing to the vehicle and automation
use during the experiment. Apart from this trend, heart rate proved ineffective to disclose significant effects of automation
and traffic complexity.
Fig. 6. R-TLX for the experienced (left) and inexperienced (right) group, converted to percentage. Whiskers indicate standard errors.



Fig. 7. Mean-adjusted heart rate (bpm) over time of experienced (left) and inexperienced (right) drivers for each individual driver. Each sample is calculated
over a 5 min sliding window. Data collected during the conditions are highlighted.
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3.5. Questionnaires

To assess the impact of the DRT, the participants rated mental demand, sleepiness and trust both before and after per-
forming the DRT. Overall, mental demand was 32.4% without the DRT and 36.9% with DRT, which is a measurable yet small
increase in mental demand (F(1,9) = 3.361; p = .027). No difference between driving with and without DRT was found for the
KSS (F(1,9) = 0.941; p = .357) or for trust (F(1,9) = 0.764, p = .405).

Drivers reported lower sleepiness (KSS) in the engaging condition compared to the monotonic condition (Emono-

eng = 0.875 points; F(1,14) = 18.08, p = .001), but KSS was not affected by automation (F(1,14) = 1.577, p = .230), experience
(F(1,14) = 0.140, p = .714) or on any of the interactions.

An overall confidence rating was computed over the items of the confidence questionnaire. Ratings ranged from 63% to
95% as can be seen in Table 6. The confidence questionnaire only showed a main effect of environment, with the engaging
condition providing 13.4% less confidence than the monotonic condition (F(1,12) = 13.38; p = .003). The ratings suggest that
experienced drivers felt more confident during automated driving than in manual driving, while the inexperienced drivers
felt more confident during manual driving than in automated driving, but the interaction automation * experience was not
statistically significant (F(1,12) = 4.37; p = .059).

In the 12-item automation trust questionnaire, automation-experienced drivers reported a higher trust in the automation
than the automation-inexperienced drivers. (experienced: l = 84.9%, r = 9.42; inexperienced: l = 67.7%, r = 14.0; t(1,13)
= 2.82; p = .014)

3.6. Post-hoc analysis

To complement the ANOVAs presented in Table 5, we checked post-hoc for any relations between traffic conditions, heart
rate (BPM, sdNN, LF/HF) and DRT response time within the experimental conditions. Pearson’s correlation was used to
explore relations between the participant averages in each condition. Traffic density correlated inversely with traffic flow
on both environments (Pearson’s r = �0.590 for engaging; r = �0.624 for monotonic), which is in agreement with traffic flow
models. Within the conditions, none of the traffic metrics correlated with neither RT nor with any of the heart rate metrics.

We further checked if the difference in mileage between participant groups could confound the results by observing the
correlations between the DRT and R-TLX measures for both groups and all conditions. As shown in Table 7, 19 out of 24 cor-
Table 6
Confidence ratings among conditions and participant groups.

Confidence (%)

Experienced N = 7 Inexperienced N = 7

l r l r

Engaging
Automated 91.9 11.7 63.0 30.4
Manual 67.9 20.0 73.7 28.4

Monotonic
Automated 95.2 12.5 80.9 19.8
Manual 84.6 24.2 89.3 14.1



Table 7
Correlations between mileage and reaction time, heart rate and R-TLX. engAuto = engaging environment using automation, engMan = engaging environment
with manual driving; mono” = monotonic environment with either driving mode. The p-values are not corrected for the 8 independent comparisons.

Reaction time Miss rate R-TLX

Pearson’s r p Spearman’s q p Pearson’s r p

Inexperienced
engAuto �0.153 0.717 �0.621 0.100 �0.348 0.399
engMan 0.039 0.927 �0.185 0.660 �0.451 0.262
monoAuto 0.233 0.578 �0.113 0.791 �0.241 0.565
monoMan 0.202 0.631 0.296 0.476 �0.403 0.323

Experienced
engAuto �0.577 0.231 0.174 0.742 �0.351 0.440
engMan �0.441 0.382 �0.696 0.125 �0.078 0.868
monoAuto �0.292 0.574 �0.893 0.016 �0.323 0.480
monoMan �0.395 0.439 �0.585 0.222 0.583 0.170
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relations were of negative sign, which suggests a higher mileage is associated with better performance at the secondary task.
However, the sample sizes are too small to make any conclusive statements regarding the effect of mileage. Although the
miss rate correlation of the experienced group in the monotonic condition during automation was statistically significant
(p = .016), this may be attributed to an inflated type I error from the multiple comparisons being made. A Bonferroni correc-
tion for the 8 comparisons would dictate that the probability is to be tested at a confidence of a0 = 0.0064 instead of a = 0.05,
in which case also this correlation is not statistically significant.

Because the dynamics of mental demand vary at a smaller time scale than a five-minute average can reveal, we further
explored relations among the measurements at a shorter time scale by looking for correlations between individual DRT
responses, heart activity and traffic conditions, as well as time on task effects. Since the raw response times are not normally
distributed, Spearman’s non-parametric correlation was used. No correlations were found between heart rate and the indi-
vidual responses. Similarly, relations between the traffic conditions and individual responses did not reveal further relations
within the driving conditions. No time on task effects were found for DRT reaction time using linear regression (b = 0.1 ms/
stimulus, p = .645).

4. Discussion

In this study, we investigated how workload changes with attentively monitored automated driving in real-world condi-
tions, and how this change is moderated by traffic complexity and by the driver’s prior experience with automated driving.

The engaging traffic environment resulted both in a higher overall subjective (R-TLX) and objective (DRT reaction time
and miss rate) workload compared to the monotonic environment. Additionally, the drivers remained as sensitive to changes
in driving complexity while using automation as they were while driving manually. This supports hypothesis H1 and demon-
strates that monitoring automation imposes a considerable task demand.

Hypothesis 2, reduced workload with automation, is only supported for the perceived overall workload (R-TLX) for
automation-experienced drivers but not for automation-inexperienced drivers. Furthermore in both driver groups the objec-
tive cognitive load (DRT) increased with automation. These results were unexpected and show opposing effects on subjective
and objective workload in the experienced drivers.

The R-TLX ratings suggest that automation experience is a prerequisite for a reduction in perceived workload. The
automation-experienced user may have developed a less demanding (or automated) strategy for monitoring the automation,
while the inexperienced driver may stay closer to strategies from manual driving. This view is also supported by Solís-
Marcos et al. (2018), who showed that automation-inexperienced and -experienced drivers have different glance behavior
and that only the automation-experienced group changes glance behavior with automation use. In our study, during auto-
mated driving, automation-experienced drivers did not perform better on the DRT task compared to automation-
inexperienced drivers. Although we believe our per-group sample size is rather small to formally test hypothesis H3, we
would like to point out that this observation also aligns with Solís-Marcos et al. (2018), who despite the longer glances of
experienced drivers to the secondary task did not find a difference in task performance between the two groups. In contrast,
Naujoks et al. (2016) found that automation use resulted in a higher secondary task completion rate compared to manual
driving for ACC experienced drivers. A possible explanation could be the difference in driving speed, since higher perfor-
mance in Naujoks et al. (2016) only occurred in slow-moving (<60 km/h) congested traffic.

It should be emphasized that our findings for automation-inexperienced drivers are in conflict with results from simula-
tor studies as reviewed in DeWinter et al. (2014), where automation-inexperienced drivers reported workload reduction due
to automation of a magnitude similar to the reduction we found for experienced drivers. Since the automation-
inexperienced group reported lower trust and confidence in the automation compared to the automation-experienced group,
we suspect that this difference between real-world and simulator findings relates to the low validity of risk perception in
driving simulators. This further suggests that driver trust accounts for a large difference in perceived workload reduction
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by automation. We should however remark that on-road studies provide mixed results. Automation-inexperienced drivers
perceived low workload during automation in Heikoop et al. (2017), while Solís-Marcos et al. (2018) found high workload
ratings for both inexperienced and experienced users of automation. With the emerging on-road studies addressing work-
load in automated driving with automation-experienced users, we believe that a new meta-analysis on the effects of auto-
mated driving may be in order.

The dissociation between perceived overall workload (R-TLX) and objective cognitive load (DRT) for the effects of
automation deserves further examination. Although overall workload incorporates more than cognitive load, we believe that
a direct comparison between the two measures is fair, because the monitoring sub-task, which is centered in the cognitive
resource pool, forms a large part of the driving task, and because the mental demand sub-items of the R-TLX show similar
patterns as the overall load. The increase in reaction time and miss rates could theoretically be attributed to mental under-
load since such performance reduction is an indicator of vigilance decrement (Greenlee et al., 2018). We have however sev-
eral indications that this is not the case. The Karolinska sleepiness scale did not indicate any development of drowsiness, and
when drowsiness had been compensated with state-related effort, we should have seen this reflected in the effort or mental
demand sub-scales of the R-TLX. Furthermore, the periods of automated driving were relatively short (10 min of automated
driving at a time, interluded with verbal ratings after 5 min). Although vigilance decrement can develop in such time span,
we should have been able to see such decrement as a time-on-task effect, which we did not in our regression analysis.
Finally, the reaction time increase with automation use was larger in the engaging condition compared to the monotonic
condition for both driver groups, which contradicts the hypothesis that longer reaction times of this study signify underload.

The increase in DRT reaction time can also not be fully explained by the malleable attentional resource theory (Young &
Stanton, 2002, 2007), which suggests that total capacity reduces when task demands are low. In order to explain the reduc-
tion in DRT performance, the capacity reduction should have been larger than the reduction in primary task demand,
whereas Young and Stanton (2002) propose that spare mental capacity should still improve, but disproportionally to the
reduction in primary task demand. The cognitive control hypothesis cannot explain the increase in reaction time, but pro-
vides an explanation why supervised automation did not reduce objective workload.

The increase in objective cognitive load (DRT) suggests that the ratio between task demand and allocated resource
increases with automation, whereas the reduction in subjective workload suggests that this increase is not perceived as such.
Assuming that the TLX ratings are not confounded by confirmation bias or attribution error, we believe that this is caused by
a mismatch between perceived and actual workload as suggested in contextual attention theory. Stanton (1995) proposed
there can be a mismatch between the perceived and actual demands, between perceived and actual resources, or between
the perceived demands and perceived resources. Under-estimation of task demand should result in too few resources being
mobilized for both primary and secondary task. Such underestimation would reduce monitoring performance but may still
lead to improved secondary task performance, unless the primary task demand is met with a resource allocation that is
higher than the perceived requirement. An over-estimation of allocated resource is particularly likely in low-effort condi-
tions, and could explain the reduced DRT performance under lower perceived workload. We can further expect workload
to be rated lower than actual load, when a surplus demand investment (either perceived, or allocated in response to the
instruction to monitor attentively) is ignored or weighted less in the overall workload rating. This suggests that either (1)
automation increases demand while automation-experienced drivers perceive less effort and lower demands, or that (2)
automation does not reduce demand as much as we think, and we allocate a larger fraction of our resource to monitoring
than we made available for it. The first suggestion would be in conflict with hypothesis H2 whereas the second is not. Both
however indicate a difference between perceived and actual workload. While drivers remain sensitive to changes in task
demand (i.e. changes in traffic), they appear to over-estimate their resource allocation. The idea that experienced users
under-estimate the actual task load has implications for safe usage of SAE2 automation. It indicates that supervised automa-
tion does not increase spare capacity as much for secondary tasks or interaction with in-vehicle information systems as the
driver believes. These perceptual differences should be incorporated in the design and user-education for these systems. The
results also reinforce the importance of measuring workload both objectively and subjectively. We recommend to incorpo-
rate objective measures of both primary task performance (i.e. monitoring) and spare capacity when studying mismatches
between perceived and actual workload.

Our DRT findings suggest that attentively supervised automation results in a healthy workload (i.e. a little higher than
manual driving) and thereby do not support the concern that supervised automated driving causes mental underload. In con-
trast, in particular the automation-experienced drivers perceived a reduced workload with automation. This means that,
when drivers supervise attentively, they can maintain a healthy workload while perceiving a meaningful comfort benefit.
However the mismatch between objective and perceived load may be a point of concern when it motivates users to pay less
attention than is required, which in turn could mediate underload and may compromise safety.

5. Limitations

Eye tracking could not be assessed due to technical malfunction. The number of participants was limited, which in par-
ticular makes the between-subject comparisons sensitive to individual differences. However, the within-subject effects were
very consistent among participants, and persisted when correcting for speaking during the experiment. The instructions and
presence of a safety instructor and experimenters motivated attentive supervision of the automation. The results should
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therefore be regarded as workload under intended use, which may differ from every-day use. The idle conversations held
may have reduced the sensation of being in an experiment, raised energetic state and increased workload. Although these
aspects are representative for a drive with other occupants, results may differ when driving alone, with no one to talk to.
The effects of supervised automation with longer periods of automated driving in a naturalistic setting without additional
motivations to supervise remain to be investigated. Convenience sampling balanced years licensed, age and sex. Mileage
was not balanced between groups, but sample size was too low to correlate this between-group difference. Furthermore,
the Tesla users were sampled from a forum which actively discusses the limitations and abilities of the vehicle. The owner’s
disposition towards the vehicle may have resulted in confirmation bias or attribution error (i.e. general satisfaction being
expressed on the workload scale). As an approach to compensate for such rater bias in future experiments, we propose to
assign automation users to different vehicle brands, or to group participants based on their disposition regarding the
automation.
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