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Section of Geo-Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology, the Netherlands

A R T I C L E I N F O

Keywords:
Finite element analysis
Heterogeneity
Random fields
Slope stability
Three dimensional

A B S T R A C T

An improved semi-analytical method for calculating the reliability of 3D slopes with spatially varying shear
strength parameters is proposed. The response of an existing semi-analytical method has been compared with
that of the computationally more intensive, but more general, random finite element method (RFEM), demon-
strating that the simpler method underestimates the failure probability. An alternative relationship for the ex-
pected failure length and two correction factors are proposed, which modify the original formulation of the
simpler method. The proposed approach gives substantially improved results that compare favourably with
those obtained by RFEM, and therefore provides a more accurate simplified solution.

1. Introduction

Calculating the stability of slopes began centuries ago, starting with
various analytical methods and gradually progressing towards numer-
ical simulations. However, a complicating factor is the inherent nature
of soil to be spatially variable [1] due to a combination of various
geological, environmental and physico-chemical processes, among
others. The quantification of spatial variability (or heterogeneity) is not
a trivial task and requires extensive field and laboratory tests [2,3].
Hence, the stability of slopes is conventionally calculated determinis-
tically, i.e., by considering the entire slope to be made up of one or
more homogeneous layers and by ignoring the spatial variability of soil
properties within the layers. The outcome of such an analysis is a single
value of the factor of safety (FS), which reveals nothing about the re-
liability of, or risks associated with, that slope. However, the presence
of heterogeneity influences the slope stability, as well as the location
and type of failure mechanism [4,5], and ignoring it has been shown to
have a significant influence on computations of geotechnical perfor-
mance [6–9].

Reliability-based analysis methods have been developing since the
early 1970s to account for the uncertainties associated with a project,
including those associated with soil heterogeneity. These include the
first order second moment method [10], the first order reliability
method [11,12], the point estimate method [13], the stochastic re-
sponse surface method [14,15] and the random finite element method
(RFEM) [16]. In particular, RFEM has proven to be an effective and
versatile method [6,17], in which multiple possible responses of the
structure are computed. Lloret-Cabot et al. [18] and Li et al. [19] have
proposed ways to efficiently use available field data to condition these

responses in order to improve confidence through reducing uncertainty.
Much research has been done in 2D slope reliability analysis to

understand the influence of various levels of anisotropy of the hetero-
geneity in the mechanical and hydraulic parameters [20], and in
making use of inverse analysis techniques to reduce the uncertainty in
hydraulic conductivity by using pore pressure measurements [21].
These studies are based on the simplifying assumption that the me-
chanical and hydraulic parameters are correlated over an infinite dis-
tance in the third dimension. However, this is not the case, which in-
dicates a need for 3D reliability analysis.

So far, only a limited amount of research has been done in 3D, due
(at least in part) to the large computational requirements. This is
especially true for RFEM, which does not make any prior assumptions
regarding the location and shape of the failure mechanism, and hence
requires large computational time and memory to carry out multiple
finite element analyses. Spencer and Hicks [22] and Hicks and Spencer
[4] used 3D RFEM to investigate the influences of anisotropy of the
heterogeneity in the undrained shear strength and slope length in the
third dimension on the estimation of the failure probability. They also
grouped the failure modes into three categories, which were based on
the horizontal scale of fluctuation of the shear strength relative to the
slope dimensions. Meanwhile, Hicks et al. [5,23] and Huang et al. [24]
developed strategies to quantify the failure consequences in terms of
slide volume by using a threshold crossing technique linked to the out-
of-face displacements and the K-means clustering method, respectively.

Vanmarcke [25,26] pioneered 3D reliability assessments of slopes
by making certain (important) simplifying assumptions, and thereby
developed a simplified method which gives a quick and convenient
solution. Li et al. [27] and Varkey et al. [28] compared the performance
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of this method with that of RFEM for reliability predictions of an
idealised 3D slope, for cohesive and c– soils, respectively, and have
highlighted those instances in which the two methods give similar re-
sults, as well as those in which there are significant differences.
Moreover, Hicks and Li [29] investigated slope length dependency for
cohesive soils by comparing 3D RFEM with the Vanmarcke [25] method
and the “2.5D” method of Calle [30].

This paper further investigates the differences in 3D solutions ob-
tained by RFEM and Vanmarcke’s method for a slope with a fixed length
in the third dimension and, having established the differences to be due
to simplifying assumptions in Vanmarcke’s method, investigates an
approach to improve its performance. Uncertainty in the spatial
variability of the shear strength parameters (c and ) is the focus of the
paper. The authors use random fields of shear strength parameters in
modifying Vanmarcke’s method, so that it gives satisfactory results over
the full range of possible levels of anisotropy of the heterogeneity in
shear strength while retaining the simplicity of the solution.
Specifically, an alternative relationship for the expected failure length
and some modifications, quantified in terms of correction factors, are
proposed for the original Vanmarcke method. Curves have been plotted
for calibrating the correction factors and recommended values for them
are also provided. These curves have been validated for a range of slope
heights and slope angles.

2. Random finite element method

RFEM is based on a Monte Carlo simulation and links random field
theory, for modelling the spatial variability of soil property values, with
finite elements, for computing structure response.

In this paper, independent (i.e. uncorrelated) random fields for both
shear strength variables have been generated using local average sub-
division (LAS) [31], which requires only the mean (µ), standard de-
viation ( ) and scales of fluctuation (i.e. spatial correlation distances) in
the three dimensions , where z is the vertical scale of fluctuation ( v)
and =x y are the horizontal scales of fluctuation ( h). The random
fields are here generated using the Markov covariance function:

= +, , exp 2 2 2
x y z

z

z

x

x

y

y
M

2
2 2

(1)

where ,x y and z are the lag distances in the respective directions. An
isotropic random field is initially generated using = = =x y z in
Eq. (1), and this field is then post-processed by squashing and/or
stretching in the respective directions to generate the required level of
anisotropy ( = /h v); see Hicks and Samy [6,17] and Hicks and
Spencer [4] for details.

Following the random field generation, the field values are mapped
to the Gauss points of a finite element mesh, and the boundary value
problem is analysed by finite elements. In this paper, the strength re-
duction method is used to determine the factor of safety of the slope in
each realisation, and multiple realisations are performed to generate a
distribution of safety factors.

Hicks and Spencer [4] conducted similar 3D RFEM analyses for a
cohesive slope with v equal to one fifth of the slope height, and pro-
posed three categories of failure mode, for different values of h with
respect to the slope height (H) and slope length (L):

(i) Mode 1 ( < Hh ): Failure propagates through weak and strong
zones alike, resulting in considerable averaging of property values
along the entire slope length. This is similar to a 2D analysis based
on the mean property values.

(ii) Mode 2 ( < <H L/2h ): Failure propagates through semi-con-
tinuous weaker zones, resulting in discrete 3D failures and a wide
range of possible solutions.

(iii) Mode 3 ( > L/2h ): Failure propagates through weak zones and

there is a wider range of possible solutions. The failure impacts the
entire slope length, and the solution is analogous to that for a 2D
stochastic analysis.

Hicks et al. [5] investigated the modes of failure in more detail, by
automatically computing failure geometries in 3D RFEM. It was thereby
shown that the Mode 2 category of failure is widespread, and may also
occur for the relatively small and large values of h normally associated
with failure mode categories Mode 1 and Mode 3.

3. Vanmarcke’s method

Vanmarcke [25] considered 3D slope reliability by extending a
circular slip circle to a cylindrical failure surface with resisting end-
sections within a probabilistic framework. The load (due to self weight)
and cross-sectional characteristics were assumed to be constant along
the slope axis. Hence, only the uncertainty due to the natural variability
of the soil strength mobilised along the failure surface was considered.
Vanmarcke [25] first considered the spatial variability in undrained
shear strength, and later considered a slope with spatial variability in
drained soil shear strength along with several other extensions [26].

The general method predicts the failure length b, along the em-
bankment axis, which maximises the probability of failure occurring
when centred at a specific location (see Fig. 1). Using the classical
circular-arc stability approach, the factor of safety of the slope is given
by

= +F s L b r R
Wb a

( )
( )b

b a e

(2)

=R s A r(2 )e e (3)

where sb is the averaged shear strength along the failure surface of
length b L, a is the length of the cross-sectional failure arc, r is the lever
arm of the resisting moment about the centre of rotation, Re is the re-
sisting moment of the end-sections defined by Eq. (3), W is the weight
per unit length of the sliding mass, a is the lever arm of the centre of
gravity of the sliding mass about the same centre of rotation, se is the
shear strength over the two end-sections, A is the area of each end-
section and r is the effective rotation arm for the end sections.

For a spatially variable shear strength, and by assuming a de-
terministic overturning moment and neglecting any variance in the
end-resistance, the mean and standard deviation (denoted by a bar and
tilde, respectively, above the random variable) of the factor of safety
are given by

= +F s L b r s A r
Wb a

( ) (2 )
( )b

b a e

(4)

Fig. 1. Failure mass within a 3D slope (based on [25]).
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=F s L b r
Wb a

( )
( )b

b a

(5)

For a stationary random field of the shear strength parameters, the
averaged shear strength on the end-sections s( )e and the averaged shear
strength along the failure surface s( )b are assumed to be equal to the
mean of all point shear strength values s( ) throughout the slope [25].
Following Vanmarcke [25] and assuming =r r , Eq. (4) simplifies to

= +F sL r
Wa

d
b

( ) 1b
a

(6)

and thereby to

= +F F d
b

1b (7)

where F is the mean plane strain factor of safety, which can be cal-
culated via any appropriate method, and d is the effective width of the
end-sections given by

=d A L2 / a (8)

The random shear strength at any point, as well as the mean and
variance of all point shear strength values, are respectively given by
[26]

= +s c tan( )n (9)

= +s c tan( )n (10)

= +s c (tan( ))n
2 2 2 2 (11)

where c is the cohesion, is the friction angle and n is the stress normal
to the failure surface.

Assuming that the failure surface is known, the averaged value of
shear strength over the failure length (sb) is calculated as the average of
spatial averages of strength over the failure surface for embankment
segments of unit length (s1) perpendicular to the cross-section. The
greater the length of the failure arc for an embankment segment of unit
width, over which the point shear strength values are averaged, the
more the fluctuations in shear strength cancel each other out, resulting
in a reduction in the standard deviation. Moreover, the greater the
length of the cylindrical surface along the embankment axis, over which
s1 is averaged, the more the fluctuations in s1 cancel each other out,
resulting in a further reduction in the standard deviation. Hence, Eq. (5)
may be expressed as

=

=

F L b s L b r
Wb a

F L b V F

( ) ( )( )
( )

( ) ( )

b
a a

b a s (12)

where Vs is the coefficient of variation of the point shear strength
(= s s/ ), and L( )a and b( ) are the reduction factors relating to the
standard deviation along the failure arc and failure length, respectively.

b( ) is given by

= <
=

b b b
b b

( ) ( / );
( ) 1;

h h

h (13)

and L( )a is obtained by replacing b with La and h with the equivalent
scale of fluctuation (based on both h and v) along the failure arc (for
details, see [25]).

Both Fb and Fb are dependent on the failure length (b). When the
probability of failure is considered for a length centred at a specific
location, there is a critical length (bc) which maximises the probability
of failure occurring at that location. Vanmarcke [25] proposed the
following equation for the expected failure length:

= = >
=

b b d b
b b

;
;

F
Fc 1 c h

h c h (14)

4. Comparison of Vanmarcke and RFEM solutions

A 50 m long slope, with the geometry shown in Fig. 1, has been
analysed by Vanmarcke’s method and RFEM. The finite element model
was meshed by 4000, 20-node hexahedral elements, which were 0.5 m
deep and 1 m × 1 m in plan (except along the slope face), and used

× ×2 2 2 Gaussian integration. The mesh was fixed at the base, with
rollers on the back face preventing movement perpendicular to the face,
and rollers on the two end-faces allowing movement only in the vertical
direction. The end-faces were fixed against horizontal movements be-
cause Spencer [32] found that allowing horizontal movement on the
end-faces appeared to result in a bias of failures congregating towards
the ends of the slope; this was thought to be due to the implied sym-
metry of the random field about the mesh end boundaries. A further
investigation and explanation of the boundary conditions is given in
Hicks and Li [29].

In each realisation of the RFEM analysis, an independent random
field was generated for each shear strength parameter. The parameter
values were then assigned to the finite element mesh at the Gauss point
level, and the finite element analysis carried out using the strength
reduction method. Gravity loading was applied to the model to gen-
erate the in situ stresses, and the resulting shear stresses at the in-
tegration points were checked against the Mohr–Coulomb failure cri-
terion. If the stresses exceeded the failure criterion, the excess stresses
were iteratively redistributed throughout the model. If equilibrium
could not be achieved within 500 iterations the analysis was deemed to
have reached failure; otherwise, the shear strength parameters were
reduced in the subsequent step and the whole process repeated until
failure occurred. The lowest factor by which the shear strength para-
meters needed to be reduced to induce failure was taken to be the safety
factor for that realisation.

The soil parameter values are listed in Table 1, and a normal dis-
tribution was considered appropriate for both c and . Note that the
coefficients of variation (= SD/mean) of cohesion and friction angle
were set at 0.2, which is well within the typical range reported in
Cherubini [33] and small enough to avoid the possibility of negative
values with the normal distribution. The vertical scale of fluctuation
was taken to be 1 m for all analyses (see [3] for typical values), whereas
a wide range of h was considered.

Based on the mean values of the shear strength parameters listed in
Table 1, the plane strain factor of safety was found to be 1.4, with
failure involving an =A 12 m2 block of soil (per unit length) sliding
along an approximately circular arc of length =L 9.3 ma , giving a value
of d of 2.58 m. The failure geometry was determined using finite ele-
ments and the ridge finding procedure described in Hicks et al. [5].
These derived parameters were used to compute Vanmarcke’s solution
(Eqs. (7) and (12)) for the same problem. Meanwhile, a total of 500
Monte Carlo realisations were carried out to make predictions using
RFEM.

Fig. 2 compares the mean and standard deviation of the factor of
safety for the two methods, for different values of h. The mean and
standard deviation of Fb (i.e., in Vanmarcke’s solution) are largely de-
pendent on the predicted failure length b, as seen in Eqs. (7) and (12).

Fig. 3 compares the mean failure length obtained by the two
methods (see [28] for a comparison of slide volumes). For each RFEM

Table 1
Table of parameter values.

Parameter Mean SD v h

Cohesion, c 10 kPa 2 kPa 1 m 1 to 104 m
Friction angle, °25 °5 1 m 1 to 104 m
Dilation angle, 0° – – –
Young’s modulus, E 1 × 105 kPa – – –
Poisson’s ratio, 0.3 – – –
Unit weight, 20 kN/m3 – – –
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realisation, the integrated failure length was calculated from the total
number of elements in the row directly above the slope toe in which the
out-of-face displacement was greater than a calibrated threshold value
(representing failure), and follows the procedure described in detail in

Hicks et al. [5]. Also for each realisation, the discrete failure lengths
were calculated from the number of continuously linked elements in the
row directly above the slope toe in which the out-of-face displacements
were greater than the same threshold value (as described in [29]). For
this investigation, the threshold displacement was calibrated to be 37%
of the maximum computed out-of-face displacement. The mean in-
tegrated failure length and the mean discrete failure length in the RFEM
analyses were obtained by averaging over all the realisations for each

h. Note that although the integrated and discrete failure lengths are
approximately equal at very small and very large h, at intermediate
values of h the two differ, due mostly to the increased probability of
multiple failures of shorter length relative to the slope length. Since the
integrated failure length is more closely related to the slope length,
discrete failure lengths are considered in the remaining part of this
paper as a more independent measure of the failure length. Overall,
Fig. 3 shows that the RFEM solutions are consistent with the 3 cate-
gories of failure mode identified previously by Hicks and Spencer [4];
i.e., an overriding disposition to shorter discrete 3D failures (Mode 2),
but with an increased likelihood of long failures (Modes 1 and 3) at very
small and very large h. In contrast, the Vanmarcke solution predicts a
small failure length for very small h. For larger h, the predicted failure
length by Vanmarcke’s method is equal to h (Eq. (14)), but is here
limited to a maximum of 50 m due to the finite length of the slope in
this study.

The large difference between the mean FS of the two solutions at
small h is mainly due to the differences in predicted failure length,
coupled with an exaggerated influence of the cylinder ends in
Vanmarcke’s method. At small h there is considerable averaging of
properties, resulting in a longer failure length in the RFEM analysis;
however, Vanmarcke’s method predicts short failure lengths, which
results in a relatively larger contribution from the end-resistance and
thereby bigger factors of safety relative to RFEM. In contrast, at very
large h, the two methods converge to the same FS as the 2D solution.
For intermediate values of h, an additional cause of the higher FS in
the Vanmarcke solution is that it takes no account of failure being at-
tracted to weaker zones; i.e., the solution is driven by the means of the
property distributions.

Finally, Fig. 2 shows that convergence to a 2D solution at high h is
slower with two random variables compared to the similar investiga-
tion involving variability in only undrained shear strength (one random
variable) in Li et al. [27]. Note that for very large h, the failure length
computed by RFEM is limited to the finite length of slope considered.
Also, Fig. 3 shows that failure lengths computed by RFEM for very small
and very large h are shorter than the slope length. This is attributed to
the failed zone not reaching the ends of the mesh, due to the boundary
conditions which have a greater influence due to the non-zero friction
angle.

5. Corrections to Vanmarcke’s method

This section further investigates the reasons behind the differences
in results by the two methods and proposes a way to correct for them.
Firstly, three causes for the differences are evaluated as follows:

5.1. End-resistance due to geometric assumptions

The 3D cylindrical slip surface in Vanmarcke’s method includes an
additional resistance from both ends of the cylinder. However, this end-
resistance is overestimated, as demonstrated by Li et al. [27] and re-
inforced by Fig. 2(a). The reason for the overestimation is partly the
shape effect, as illustrated in Fig. 4. Vanmarcke assumes vertical end-
sections, whereas the failure obtained in a typical RFEM analysis has a
very different geometry. Moreover, Eq. (8) further overestimates the
resisting moment by taking r r .

To correct for the overestimation in the end-resistance due to the
geometric assumptions, finite element analyses were carried out for

Fig. 2. Comparison of (a) mean and (b) standard deviation of 3D factor of safety
(FS) by the two methods.

Fig. 3. Comparison of mean failure length by the two methods.
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different slope lengths based only on the mean shear strength para-
meters. The ratio of the factors of safety obtained by finite elements
using the strength reduction method and by Vanmarcke’s method, for
the same failure length, is denoted as and used here as a correction
factor to account for the overestimation of end-resistance in the
Vanmarcke method. Thus, the mean factor of safety Fb in Eq. (7) be-
comes

= +F F d
b

1b (15)

The end-resistance correction factor ( ) values calibrated for a slope
with the cross-sectional geometry shown in Fig. 1 are plotted in Fig. 5
with respect to failure length, for the set of parameters listed in Table 1
and for cases representing high and low friction angles. As expected, the
impact of the geometric assumptions in Vanmarcke’s method reduces as
the length of the failure increases. The value of varies from 0.8 for
short failures to 0.98 for very long failures, for the range of scenarios
considered.

5.2. Averaged strength along slip surface

Eq. (7) is based on the assumption that the averaged mean shear
strength over the failure surface s( )b is the same as the mean point shear
strength (s ) throughout the slope. However, RFEM results indicate that
weak zones have a greater influence on the failure mechanism than
strong zones in each realisation, as has been highlighted in numerous

previous slope reliability studies (e.g., [4,6]). Similar findings have also
been reported by Ching and Phoon [34] and Ching et al. [35], who
showed that the mean shear strength over the failure surface is typically
lower than s for various 2D boundary value problems. All these studies
have highlighted the difference between spatial averaging over the
whole domain and spatial averaging over an emergent slip surface,
which is the solution of a boundary value problem over a spatially
variable domain and hence changes from realisation to realisation.

This paper quantifies the difference between the two spatial
averages and proposes a reduction factor ( ) for the mean safety factor
equal to the ratio of sb to s . This correction is not applied to the re-
sistance from the end-sections, even though Vanmarcke’s method also
assumes =s se in Eq. (4), as the vertical sides of the failure surface
generally pass through a spatially more variable domain due to a re-
latively low value of the vertical scale of fluctuation compared to H [3].
Thus, the mean factor of safety in Eq. (15) changes to

= +F F d
bb (16)

Fig. 6 shows the results for a typical RFEM realisation, illustrating
that failure is often located around the point where the averaged shear
strength per unit cross-section (s1) is a minimum (in this case, at 10 m
along the slope). This critical point is considered as the centre of the
most-probable failure surface for the purpose of estimating . The steps
to compute are:

• Generate 3D random fields of the shear strength parameters (e.g.,
using LAS).

• For each realisation:
- Identify the critical cross-section, i.e., the one with the minimum s1

(as in Fig. 6), along the embankment length;
- Compute the average shear strength over the expected failure

length (sb), centred at the critical position.
• Repeat the above process for all realisations.

Fig. 4. RFEM realisation illustrating iso-surfaces of shear strain invariant at
failure within slope, superimposed on Vanmarcke’s 3D cylindrical model.

Fig. 5. Calibrated values of end-resistance correction factor ( ).

Fig. 6. RFEM result for a typical realisation showing failure centred at a critical
position: (a) variation in average cross-sectional strength per unit length; (b)
failure mechanism.
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• sb = average of sb over all the realisations.
• = s s/b .

Since an actual slip surface is a function of the boundary value
problem and spatial variability in each realisation, its shape and or-
ientation cannot be determined without doing a finite element analysis.
Therefore, the averaging of shear strength is carried out over a three
dimensional domain (of dimensions comparable to the expected failure
cross-section and length) that can encompass an emergent slip surface.
Although this will tend to give an upper bound to the actual sb , due to
the actual slip surface being attracted to the weaker zones, it never-
theless provides a reasonable first approximation.

5.3. Expected failure length

Since RFEM results indicate the influence of weak zones on the
failure mechanism (cf. Calle [30], who suggested that the real failure, if

it occurs, coincides with the length of a potentially unstable zone), the
averaging of shear strength needs to be carried out along this potential
failure zone. However, the length of this potential failure does not ne-
cessarily coincide with the critical failure length predicted by Van-
marcke [25], since the latter does not take into account the influence of
weak zones.

Hicks and Li [29] compared the failure lengths computed using
RFEM, Vanmarcke’s method and the “2.5D” method of Calle for very
long slopes in cohesive soils. They showed that Calle’s method and
Vanmarcke’s method underestimate the potential failure length at small

h. For very small h relative to H, the failure length calculated by
RFEM tends to be very long, extending over the entire length of the
slope in each realisation. For larger h, the mean RFEM failure length
tends towards Calle’s solution. Since neither of the two methods
(Vanmarcke’s method nor Calle’s 2.5D method) predict the failure
length accurately for all values of h, it was proposed to use the mean
failure length calculated by RFEM as the averaging length in the

Fig. 7. Mean failure lengths with the associated one standard deviation error bar obtained by RFEM versus: (a) slope height (H); (b) slope angle; (c) friction angle ( );
(d) vertical scale of fluctuation ( v); (e) horizontal scale of fluctuation ( h).
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modified Vanmarcke method (MVM). However, because the use of
RFEM to determine the averaging length is computationally expensive,
which rather defeats the purpose of using MVM, an approximate
equation for the mean failure length (based on RFEM) is proposed in
this paper.

Figs. 7(a)–(e) show the sensitivity of the mean failure length
(computed using RFEM) to several parameters: H, slope angle,

, ,v h and slope length (L). Fig. 8 shows the histogram of failure
lengths obtained from multiple 3D RFEM realisations of a 5 m high
slope with = 6 mh , for the various values of slope angle, friction angle
and v considered in Figs. 7(b)–(d). Based on this sensitivity analysis,

the failure length is clearly a complex function of the soil spatial
variability, as well as of the geometry of the boundary value problem.
The median and mean of the histogram of failure lengths, obtained for
the range of possible values of parameters considered, are approxi-
mately equal to +H2 /2h and +H2 h, respectively (see Fig. 8), and
are used here as approximate solutions instead of the complex function
of failure length for intermediate values of h (i.e., for < <H L/2h , as
consistent with Mode 2 failures in Hicks and Spencer [4]).

5.4. Recommended values for correction factors

Based on the RFEM computations of the mean failure length, Fig. 9
shows the values of the correction factor for the range of parameter
values considered in Figs. 7(a)–(e). Since is calculated as the ratio of
the averaged shear strength over a failed segment to the averaged shear
strength over the entire slope, the failure length is normalised by L in
Fig. 9. The value of approaches unity for very long failures relative to
L, whereas for intermediate failure lengths relative to L, lies between
0.92 and 0.96. The recommended values of and for a range of values
of the failure length are summarised in Table 2 (based on Figs. 5 and 9,
respectively). Note that the values reported in Table 2 correspond to a
soil with a friction angle of °25 . Slight variations in the value of , with
respect to those reported in Table 2, are expected for cases with higher
or lower values of friction angle (see Fig. 5).

6. Methodology and analysis

The steps followed to compute the mean FS (and standard deviation
of FS) of slopes with the proposed modified Vanmarcke method are:

• Calculate the 2D FS based only on the mean values of the soil
parameters.

• Calculate the effective width d of the end-sections using Eq. (8).
• Calculate the approximate failure length using either +H2 /2h or

+H2 h.
• Obtain from Fig. 5 or use the recommended values in Table 2.
• Obtain from Fig. 9 or use the recommended values in Table 2.
• Calculate the mean FS using Eq. (16).
• Calculate the standard deviation of FS using Eq. (12).

In order to test the methodology the 5 approaches listed in Table 3
have been compared for a base case problem. Note that approach MVM-
1, which uses the mean failure length obtained by RFEM analysis, has
been considered in order to check which one of the two simpler ex-
pressions for the failure length is a good approximation.

Fig. 8. Histogram of failure lengths obtained in each realisation of 3D RFEM
analyses of a 5 m high slope for the various scenarios considered in
Figs. 7(b)–(d).

Fig. 9. for all cases considered in Figs. 7(a)–(e).

Table 2
Table of recommended correction factor values.

Table 3
List of compared approaches.

Approach Description

RFEM Random finite element method
VM Vanmarcke’s method
MVM-1 MVM based on the mean failure length obtained by RFEM
MVM-2 MVM based on the failure length given by +H2 /2h
MVM-3 MVM based on the failure length given by +H2 h

Table 4
Mean failure lengths obtained by RFEM, corresponding correction factors and
mean FS calculated by using MVM-1 for the base case.

h (m) Mean failure length (m) Mean FS

1 37.0 0.940 1.000 1.408
6 15.7 0.881 0.950 1.375

12 16.7 0.882 0.954 1.369
24 18.6 0.895 0.960 1.377
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A 50 m long slope, again with the cross-sectional geometry shown in
Fig. 1, the soil parameters listed in Table 1 and a vertical scale of
fluctuation of 1 m has been considered. The mean failure lengths ob-
tained by RFEM for different values of h and the corresponding cor-
rection factors are summarised in Table 4 and represent the base case.

The mean FS obtained by using the different methods and the relative
influence of each correction factor (in MVM-1) towards improving the
mean FS for the base case are plotted in Fig. 10. At very small h the
major improvement is due to considering the correct failure length and
correcting for the overestimated contribution to resistance from the
end-sections. For intermediate values of h, each correction factor has a
considerable influence on the results, although has relatively lower
importance than the other two factors for this particular example. The
small remaining error in the MVM-1 analysis may be attributed to an
overestimated , due to the averaging of shear strength being carried
out over entire cross-sections of the slope segments, since the exact
shape of the failure surface is not known a priori.

Fig. 11 compares the standard deviation of the 3D FS obtained by
the different methods. The standard deviation has not improved as
significantly as the mean, but it remains above that obtained using
RFEM and is thus conservative. The difference between the VM and
MVM results is mainly due to the different failure lengths used in the
two methods. The main difference between the MVM and RFEM results
may be attributed to the approximate form of the variance reduction
factor used in Vanmarcke’s method, compared to the variance reduction
factor derived from the covariance function used in the RFEM model in

Fig. 10. Comparison of mean 3D FS by the different methods and relative in-
fluence of correction factors for the base case.

Fig. 11. Comparison of standard deviation of 3D FS by the different methods
for the base case.

Fig. 12. Comparison of mean 3D FS by RFEM, VM and MVM for two additional
cases.
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this paper. Note that in Fig. 10(a), and Fig. 11, the mean and standard
deviation of FS are not calculated for very small values of h (<H ) by
MVM-2 and MVM-3, since the approximate equation for the failure
length does not hold true for this range of h.

Two additional cases with the same cross-sectional geometry have
been considered: one with a higher value of v and the other with a
longer slope length ( =L 100 m). The mean FS obtained by using the
different methods considered in this paper are plotted in Fig. 12.
Overall, Figs. 10 and 12 show that the mean FS obtained by MVM,
based on the mean failure length obtained by RFEM, or based on the

failure length calculated by +H2 /2h , are in good agreement with the
RFEM mean FS for all cases considered. Thus the proposed simplified
expression ( = +b H2 /2h ) for the failure length seems a good ap-
proximation, although good results have also been obtained using

= +b H2 h. Note that Hicks and Li [29] conducted 3D RFEM analysis
on much longer slopes with undrained shear strength parameters,
where the boundary effects have negligible influence on the calculated
failure length and FS. Their study also implied a mean discrete failure
length approximately equal to +H2 /2h (see [29]) and thus reinforces
the findings in this paper.

Figs. 10–12 are based on the 3D FS computed for slopes with the
specific cross-sectional geometry shown in Fig. 1. However, the influ-
ence of different cross-sectional geometry parameters, such as H and
slope angle, on the expected failure length (Figs. 7(a)–(b) and Fig. 8)
were taken into account in deriving the correction factors for the
modified Vanmarcke method, implying that the applicability of the
proposed method is not restricted to the one cross-section. Hence, in
order to demonstrate its wider applicability, additional cases of slopes
with different cross-sectional geometries (H and slope angle) have been
considered. These further analyses have been based on slopes that are
50 m long in the third dimension, the soil parameters listed in Table 1
and a vertical scale of fluctuation of 1 m. The results, expressed in terms
of percentage error in the mean FS computed by VM and MVM-2 re-
lative to the mean FS computed by RFEM, are plotted in Fig. 13, and the
failure lengths obtained by the various approaches are listed in Tables 5
and 6. Fig. 13 shows that the mean FS computed by MVM-2 has an error
<8% (relative to the mean FS computed by RFEM) and is substantially
better than the mean FS computed by VM (with an error of approxi-
mately 15–50%, and a tendency for larger errors at lower h) for the
range of parameters considered. This improvement is partly driven by
the improved estimates of the failure lengths shown in Tables 5 and 6.
Note that the relatively higher error in the mean FS computed by VM at

= 6 mh , for slopes with = =H H3 m, 4 m and slope angle = °26.56 ,
is due to the very short failure length predicted by VM (see Tables 5 and
6) in these cases.

The proposed method has been shown to work well for all test cases
considered in this paper. However, a few limitations of the proposed
method, which are beyond the scope of this paper, are that it cannot be
applied to slopes in which the failure surface passes through multiple
soil layers, nor to slopes with cross-sections or soil layer depths varying
along the embankment length, and nor to slopes made up of soils with
multiple scales of fluctuation of the inherent shear strength.

7. Conclusions

A modified semi-analytical method for slope reliability has been pro-
posed based on Vanmarcke’s [25] method. A comprehensive numerical
investigation identified three significant areas which required improvement.
These were corrected by an alternative relationship for the expected failure
length (equal to +H2 /2h for intermediate values of h) and a modified
equation (Eq. (16)) for the mean FS that utilises two correction factors,
and . Calibration curves for the correction factors are provided and re-
commended values for these factors are summarised in Table 2. These

Fig. 13. Error in mean 3D FS by VM and MVM-2 (relative to RFEM) for dif-
ferent cross-sectional geometries.

Table 5
Failure lengths obtained by VM and MVM-2, and mean failure lengths obtained by RFEM, for slopes of different height and slope angle = °45 .
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suggest that, for very long embankments, 0.92 and 0.85 0.92
may be reasonable first approximations. The mean FS obtained by using the
modified method was in good agreement with the mean FS obtained by
RFEM for all cases considered in this paper.
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