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Abstract
DNN learning jobs are common in today’s clusters due to
the advances in AI driven services such as machine trans-
lation and image recognition. The most critical phase of
these jobs for model performance and learning cost is the
tuning of hyperparameters. Existing approaches make use
of techniques such as early stopping criteria to reduce the
tuning impact on learning cost. However, these strategies
do not consider the impact that certain hyperparameters
and systems parameters have on training time. This paper
presents P���T���, a framework for DNN learning jobs that
addresses the trade-o�s between these two types of parame-
ters. PipeTune takes advantage of the high parallelism and
recurring characteristics of such jobs to minimize the learn-
ing cost via a pipelined simultaneous tuning of both hyper
and system parameters. Our experimental evaluation using
three di�erent types of workloads indicates that P���T���
achieves up to 22.6% reduction and 1.7⇥ speed up on tuning
and training time, respectively. P���T��� not only improves
performance but also lowers energy consumption up to 29%.

CCS Concepts • Computing methodologies→Model-
ing methodologies; Cluster analysis;

Keywords Parameter tuning, Deep Neural Networks train-
ing, accuracy time trade-o�.
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1 Introduction
Deep Neural Networks (DNN) are becoming increasingly
popular, both in academia and industry [16, 26]. They are
being adopted across a variety of application domains, in-
cluding speech [14, 37, 49] and image recognition [17], self-
driving vehicles [23], face-recognition [54, 56], genetic se-
quence modeling [61], natural language processing [15], e-
health [11] and more. Several public cloud providers o�er
native support to deploy, con�gure and run them, providing
tools to automatically or semi-automatically drive the DNN
processing pipeline. One important factor is the choice of
the DNN hyperparameters (e.g., number of hidden layers,
learning rate, dropout rate, momentum, batch size, weight-
decay, epochs, pooling size, type of activation function, etc.).
DNNs require careful tuning of the hyperparameters, and
if done correctly, it can achieve impressive boosts in perfor-
mance [4, 63]. However, miscon�gurations can easily lead
to wrong models and hence bad predictions [20, 53].
A naive approach to hyperparameter tuning is to per-

form a full exploration of the possible con�guration varia-
tions. Such a tuning approach becomes quickly unpractical,
costly and slow, as the number of variations grows exponen-
tially [43]. We show this using 3 types of ML-optimized EC2
instances in Figure 1 for a small number of parameters. We
take as example the tuning of a L�N�� model on the MSNIT
dataset and let it be tuned for di�erent number of parameters
(i.e., varying from 1 to 6). In this case, each parameter was
con�gured to take up to 3 di�erent values. We measure the
tuning time for each instance of this example and estimate
the cost of doing so using a small, medium or large sized EC2
instance. We then observe that the cost of doing so grows
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Figure 1. Clustering results grouped by workload type.

exponentially with the number of parameters being tuned,
becoming impractical.
Commercial platforms (i.e., Google Vizier [19], Amazon

SageMaker [36]), as well as on-premises solutions (i.e., Auto-
Keras [25]) help deployers by o�ering tuning services to
mitigate (possibly avoid) miscon�guration.

As a result of proper hyperparameters tuning, one should
achieve fast convergence and high accuracy. Unfortunately,
due to the tuning process length, this phase becomes expen-
sive, and the situation exacerbates in cloud deployments [47].
Even using cheap cloud instances (i.e., AWS EC2 Spot in-
stances [6], as suggested for instance by AWS SageMaker [3]),
the process can quickly lead to budget exhaustion.
We observe that some hyperparameters (e.g., number of

epochs, batch size, dropout) can drastically reduce training
time. Importantly, training a DNN by using di�erent sys-
tem resources (e.g., number of CPU cores, allocated memory,
number of GPUs) lead to di�erent results, as we also demon-
strate later in Figure 3 for varying number of cores.
However, handling system parameters as one of the hy-

perparameters is very time consuming, requiring in-depth
knowledge of the workload, and it is often an intuition-
driven process. In addition, doing so would directly a�ect
training and tuning time, and therefore state-of-the-art DNN
tuning systems [8] simply ignore this opportunity. Instead,
the majority of the existing tuning solutions restrict them-
selves to the sole hyperparameter tuning using a variety of
techniques, including grid search [21], random search [9],
hyperband [32], bayesian optimization [50, 52], evolutionary
algorithms [55, 62], population-based training (PBT) [24],
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Figure 2. Pro�ling of training a CNN model on the
N���20 dataset [1] during the initiation phase and the 5
following epochs with 16 cores and 32GB memory.

etc. While a possible yet naive approach to treat system pa-
rameters is to consider them as possible hyperparameters,
this leads to longer training periods (see Table 2).
P���T��� strives to optimize both accuracy and training

time of DNNs, while simultaneously tuning hyper and sys-
tem parameters. The key observation of P���T��� is that
the backbone of popular training algorithms for DNN is sto-
chastic gradient decent [7], an iterative algorithm. P���T���
exploits such repetitive patterns as a unique opportunity to
improve and achieve fast system parameter tuning. As an ex-
ample, Figure 2 illustrates the typical repetitive behavior of
a training process. We use a heatmap to show the hardware
events happening through the training of a CNN model on
the N���20 dataset [1] during 5 epochs. On the y-axis we
show 58 di�erent hardware events, on the y-axis initiation
phase plus 5 training epochs. Each cell of the heatmap repre-
sents the average number of each event per single epoch. We
see how certain events repeat throughput the epochs with
the same occurrence.
Building on this observation, we design, implement and

evaluate P���T���, a middleware solution coordinating be-
tween the DNN training applications and systems. In a nut-
shell, P���T��� relies on low level metrics to pro�le the
training trials on the epoch level andmake quick decisions re-
garding the system parameters. The main research questions
that P���T��� intends to answer, and the main contributions
of this work are the following.
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Table 1. State-of-the-art systems related to hyper and system parameter tuning.

Parameter Tuning Supported DL FrameworksSystem CPU GPU Distributed Training Hyper System BigDL TensorFlow Keras PyTorch MXNet Open Source

Astra [51] 7 3 7 3 3 7 7 3 3 7 7 7
AutoKeras [25] 3 3 7 3 3 3 7 3 3 7 7 3
ByteScheduler [46] 3 3 3 3 7 3 7 3 3 3 3 3
GRNN [45] 3 3 7 3 7 7 7 3 7 3 7 7
HyperDrive [48] 3 3 3 3 3 7 7 3 3 7 7 7
Hop [38] 3 7 3 3 7 7 7 3 7 7 7 7
Optimus [45] 3 3 3 3 7 7 7 7 7 7 3 7
Orion [59] 3 7 3 3 7 7 7 3 7 7 7 3
Parallax [29] 3 3 3 3 7 7 7 3 7 7 7 3
PipeDream [42] 7 3 3 3 7 7 7 3 7 7 3 3
SageMaker [36] 3 3 3 3 3 7 7 7 7 7 7 7
STRADS [28] 3 7 3 3 7 7 7 7 7 7 7 3
STRADS-AP [27] 3 7 3 3 3 7 7 3 7 7 7 7
Tune [35] 3 3 3 3 3 7 7 3 3 7 7 3
Vizier [19] 3 3 3 3 3 7 7 7 7 7 7 7
PipeTune 3 7 3 3 3 3 3 3 3 7 7 3

RQ1: Why system parameters must be taken into account
in the process of DNN tuning?

We show (§ 3) that by taking into account the system pa-
rameters, the overall tuning runtime can be greatly reduced
while at the same time improving the model performance.
Moreover, the training time can at the same time bene�t from
this approach, especially if the underlying system resources
and their usage is exposed to the tuning phase.

RQ2: Can out-of-the-box hyperparameter optimization
algorithms also take care of system parameters?

We show that it is possible to include system parameters
in the tuning process and ask the algorithm to optimize the
ratio of accuracy to performance. However, our experimen-
tal evidences (§ 7) highlight the following drawbacks. First,
tuning runtime signi�cantly increases (up to ⇥1.5 in our
experiments). Second, in doing so, the delicate equilibrium
between performance and accuracy is negatively a�ected.

Roadmap. The reminder of this paper is organized as
follows. We discuss related work and clarify how P���T���
positions in § 2. In § 3, we present a background of DNN
tuning and outlines the basic features needed to support
P���T���. In § 4, we present an alternative approach relying
on state-of-the-art solutions and show the need for our novel
approach. We present the design of P���T��� in § 5 and
describe its prototype implementation in § 6. In § 7, we
present the results of our in-depth evaluation. Finally, we
conclude in § 8.

2 Related Work
There is a large body of work behind machine learning in
general, and parameter tuning more speci�cally. We survey
the most prominent ones in Table 1. We distinguish between
systems that support CPU or GPU processing nodes, if they
can be deployed over a distributed cluster, if they support hy-
per or system parameters tuning. Finally, we identify what

mainstream Deep Learning frameworks are natively sup-
ported by such systems. We distinguish between systems
improving new techniques for training, others speci�cally
optimized for hyperparameter tuning, and those focusing on
system parameters tuning.
Improving training. GRNN [22] constructs a hybrid per-
formance model that estimates the cost of a con�guration
according to the communication and computation needs. It
ranks all the con�gurations and selects the �rst top-K to
compile and run returning the fastest among them.

Hop [38] is a heterogeneity-aware decentralized training
protocol. It relies on a queue-based synchronization mech-
anism that can implement backup workers and bounded
staleness in a decentralized setting.

Optimus [45] uses online �tting to predict model conver-
gence during training, and sets up performance models to
estimate training speed as a function of allocated resources in
each job. It estimates online how many more training epochs
a job needs to run for convergence and how much time a
job needs to complete one training epoch given a certain
amount of resources. Speed model is computed based on a
small sample set of training data, with possible combinations
of parameter servers and workers.
Orion [59] performs static dependence analysis to deter-

mine when dependence-preserving parallelization is e�ec-
tive and map a loop computation to an optimized distributed
computation schedule. It automatically parallelizes serial
imperative ML programs on distributed shared memory.
Parallax [29] combines Hyperparameter Server [33] and

AllReduce [39] architectures to optimize the amount of data
transfers according to the data sparsity. It splits between a
static phase for graphs with dense variables, and a sampling
phase for fewer iterations.

PipeDream [42] combines inter-batch pipelining and intra-
batch parallelism to improve parallel training throughput,
helping to better overlap computation with communication
and reduce when possible the amount of communication.
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Figure 3. Impact of hyper and system parameters on accuracy, runtime and energy training of L�N�� andMNIST workload.

These approaches focus on optimizing the training pro-
cess, and can be combined with P���T��� to achieve further
performance gains.
Hyperparameter tuning. As the process of tuning hyper-
parameters is, in most cases, crucial to �nd the best model
performance of a given application, there are many proposed
approaches and tools addressing this problem.
Astra [51] is a framework for online �ne-grained explo-

ration of the optimization state space in a work-conserving
manner while making progress on the training trials.
STRADS [28] exposes parameter schedules and parame-

ter updates as separate functions to be implemented by the
user. A parameter schedule identi�es a subset of parameters
which a given worker should sequentially work on. STRADS-
AP [27] extends STRADS to a distributed ML setting. These
approaches leverage a runtime and API comprised of Dis-
tributed Data Structures (DDSs) and parallel loop operators.

AutoKeras [25] enables Bayesian optimization to guide the
network morphism for e�cient neural network architecture
search. The framework develops a neural network kernel
and a tree-structured acquisition function optimization al-
gorithm to e�ciently explore the search space. Similarly,
Tune [35] provides a narrow-waist interface between train-
ing and search algorithms.
Finally, we mention two auto-tuning tools used in indus-

try. HyperDrive [48] is a package part of Azure Machine
Learning which supports hyperparameter tuning. It follows
POP’s scheduling algorithm which combines probabilistic
model-based classi�cation with dynamic scheduling and
early stop techniques. Amazon SageMaker [36] is a fully
managed machine learning service. It supports automatic
model tuning component that �nds the best version of a
model by running many training trials on the dataset us-
ing the algorithm and ranges of hyperparameters speci�ed
by the user. Google Vizier [19] is an internal service used
to optimize machine learning models and other systems. It
also provides core capabilities to Google’s Cloud Machine
Learning HyperTune subsystem.

As our approach is an extension of pure hyperparam-
eter tuning, the above mentioned systems and all others
which focus on hyperparameter auto-tuning could pro�t
from P���T���.
Systemparameter tuning.ByteScheduler [46] is a Bayesian
optimization approach. It speci�cally focuses on auto-tune
tensor credit and partition size for di�erent training models
under various networking conditions. ByteScheduler uses
auto-tune algorithms to �nd the optimal system related con-
�gurations. Instead, P���T��� allows the user to perform
hyperparameter auto-tuning and �nds the best system con-
�gurations independently of this process.

AutoKeras [25] supports a form of system parameter tun-
ing, by means of an adaptive search strategy for di�erent
GPU memory limits. However, instead of adapting the sys-
tem parameters to the workload, as we do in P���T���,
AutoKeras limits the size of the neural networks according
to the GPU memory.

To the best of our knowledge, P���T��� is the �rst solution
that e�ciently combines hyper and system parameters in a
holistic manner.

3 DNN Tuning: A primer
In this section, we discuss how hyperparameter tuning oper-
ates and explain why taking system parameters into account
is bene�cial. Then, §4 experimentally shows the bene�ts of
our rationale.

3.1 Hyperparameters
A hyperparameter is a con�guration external to the model.
Its value cannot be estimated from data, it is set before the
training starts, and does not change afterwards. Choosing
the right hyperparameters during the tuning phase is key,
as the output accuracy of the trained models can vary sig-
ni�cantly. This phase is typically based on trial-and-error
with model selection criteria. The complexity of this phase
sparked several research e�orts towards its automation and
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autotune frameworks [19, 25, 35]. As a result, hyperparam-
eter optimization outputs a tuple of hyperparameters that
yields an optimal model which minimizes a prede�ned loss
function on given independent data [12].
Typically the selection criterion considered is model ac-

curacy. However, the hyperparameters values will impact
model accuracy, its training time and the energy footprint.
The former is typically related to the utility of the trained
model, the latter two to its costs. Figure 3a shows this behav-
ior by reporting the impact of varying one hyperparameter
(i.e., batch size) for the training of a L�N��model [31] on the
MNIST [30] dataset. On the y-axis we show the measured
di�erences for accuracy, duration and energy observed for 3
possible batch size values (i.e., 64, 256, and 1024), against a
default value of 32.
We can observe how larger values of batch size achieve

worse accuracy, but shorter training time and lower energy
footprints. However, these observed trends might present
considerable variations for di�erent applications as it strongly
depends on the workload and the values of the other hy-
perparameters. Therefore, these trade-o�s are not trivially
predicted, making it challenging to handle multidimensional
selection criteria.

3.2 System Parameters
We de�ne system parameters the con�gurable resources of
the underlying computing infrastructure where the train-
ing will execute (e.g., memory, CPU cores, CPU frequency).
Typically, the hyperparameter optimization �xes the same
system parameters for each trial, although they might bene-
�t from di�erent con�gurations. To highlight this, we train
again a L�N�� model on the MNIST dataset. We vary the
number of CPU cores used with di�erent batch sizes. Fig-
ure 3b and Figure 3c depict our �ndings. We observe how
the number of cores is bene�cial for larger batch size values
(e.g., 1024), but not for smaller ones. In fact, for smaller val-
ues (e.g., 64) the runtime increases as the number of cores
increases. This behavior is explained by the synchronous
mini-batch stochastic gradient descent (SGD) algorithm used
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Figure 5. Characterizing T���’s performance under vari-
ous system conditions (i.e., system load, number of cores,
and hyperparameters) during tuning.

to train the neural network model. Each N iterations, SGD
�rst computes the gradients using the current mini-batch,
and then makes a single update to the weights of the neural
network model. The batch size hyperparameter is divided
by N to form these mini-batches, where N is the number of
cores. When this value is too small, the overhead of model
parameters synchronization is too high and ends up slowing
down the training itself. This overhead can be amortized by
using techniques such as the ones implemented by Drizzle
[57] which schedules multiple iterations of computations at
once, greatly reducing scheduling overheads even if there
are a large number of tasks in each iteration [13].

Regarding the energy observations, we estimate the over-
all energy consumption of the cluster by calculating the
trapezoidal integral of the power values collected every sec-
ond during training. We observe a clear correlation between
the energy variations (Figure 3c) and training runtime’s gains
(Figure 3b). These observations might however vary when
the tuning is applied to di�erent set of system parameters,
e.g., CPU frequency, or for di�erent workloads.
In summary, these preliminary results show the delicate

trade-o�s between hyper and system parameters. One needs
to balance them all towards optimal values, such that the
underlying system achieves the best training performance
without compromising the model accuracy.
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3.3 Workload
A workload is a tuple pairing a model and dataset. Typically,
DNN workloads are used for training (i.e., learning) or in-
ference (i.e., prediction). In this work, we only consider the
training phase of DNN workloads. Moreover, we assume
that this training phase includes parameters tuning on top
of learning the weights of the model. Hence, tuning a single
workload consists of multiple training trials, each divided
into epochs. Each epoch involves one forward and one back-
ward pass of the entire input dataset. For ease of processing,
the dataset is split into smaller batches, and each batch is
propagated forward and backward once during an epoch (i.e.,
iteration). These mechanisms apply generally to all DNNs.
It is a common practice to train the same model with dif-
ferent datasets, as well as di�erent models using the same
dataset. Figure 4 depicts this practice. Our approach lever-
ages the similarity existent among such jobs to improve the
tuning performance.

4 The "System as Hyperparameters" Case
The idea to consider system parameters as an additional
set of hyperparameters is appealing. To verify its viability,
we consider a state-of-the-art hyperparameter auto-tuning
system, T��� [35], an open-source library implemented in
Python supporting an extensive list of hyperparameters op-
timization algorithms. Note that the ideas shown next are
nevertheless independent of the underlying tool used for the
auto-tuning process of hyperparameters.

First, we consider two versions of T���. In V1, it is used
out-of-the-box to perform hyperparameters tuning with the
objective of maximizing accuracy, without taking the system
parameters into account. In this version all trials run with
the same default system parameters. Then, in V2, the system
parameters are included in the list of parameters to be tuned.

Table 2.Accuracy, training and tuning time taken by each
considered approach for L�N�� model on MNIST dataset.

Approach Accuracy [%] Training Time [s] Tuning Time [s]
Arbitrary 84.47 445 -
T��� V1 91.54 272 4575
T��� V2 81.76 187 4817
P���T��� 92.70 188 3415

This second version requires the resources used by each trial
to be manually controlled. Also, the objective function must
be adapted to maximize the ratio accuracy to duration, rather
than restricting it to accuracy only.

Figure 5 shows the results of T���’s performance charac-
terization under various system conditions (i.e., the number
of cores assigned to the tuning job and the number of jobs as-
signed to the same logical cores). We used the V2 version of
T��� to perform hyperparameter tuning. The tuning process
was pinned to the same set of cores as the background jobs.
For example, a con�guration of 2 cores and 3 jobs meant a
tuning job and 2 background jobs used the same 2 cores for
execution. Figure 5 (a) illustrates the improvement in error
relative to a single T��� V1 job. Figure 5 (b) is similar but
shows training time improvement. Tuning under di�erent
system conditions signi�cantly impacts the performance of
the model being trained. There are only a few system con-
�gurations that yielded improvements over the baseline for
error and training time. Some system con�gurations caused
the tuning to trade better accuracy for faster training.
Hyperparameter tuning without system conditions can

produce less e�cient models. Table 2 shows the accuracy,
training and tuning time achieved by di�erent approaches
for a L�N�� model onMNIST dataset. These results show us
the following. First, arbitrary values, if not correctly chosen,
lead to both worse accuracy and training time. Second, if
the user’s focus is accuracy only, then P���T���’s accuracy
results are comparable to T��� V1 however achieve in a
lower tuning time. Third, if the user’s focus is both accuracy
and training time, then P���T���’s training time results are
comparable to T��� V2 but with better accuracy and lower
tuning time as well.

5 The P���T��� System
This section presents the system design of P���T���. We
begin clarifying the problem addressed by our system (§ 5.1).
Then, we showcase its work�ow (§ 5.2), the role of P���T���’s
pro�ling phase (§ 5.3), the ground-truth phase (§ 5.4) and
�nally probing (§ 5.6).

5.1 Problem statement
One of the �rst challenges of applying deep learning algo-
rithms in practice is to �nd the appropriated hyperparame-
ter values for a given workload. We assume that most DNN
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tuning jobs make use of some existing hyperparameter opti-
mization solution. In the following we refer to these types
of jobs as HPT Jobs (i.e., Hyperparameters Tuning Jobs).

A given HPT Job takes as input a given workload, a set of
parameters, its respective set of range values, an objective
function and the metric of interest (e.g., accuracy, perfor-
mance, energy). This job spawns a collection of training
trials based on the possible values of the parameters, follow-
ing a given search algorithm (e.g., GridSearch, HyperBand).
Each training trial takes as input the workload and a set
of �xed values for the parameters of interest, where these
values belong to their respective given ranges. These trials
can run either sequentially or in parallel depending on the
setup. They produce a trained model and a score for the
given parameters values. Scores correspond to the metric of
interest de�ned by the user. The optimal set of parameters
values is chosen by applying the objective function to the
scores. Figure 6 illustrates this process.

We consider a deep learning cluster consisting of N nodes,
each containing C cores and M GB of memory. Note that
despite a common trend to include GPUs in DNN clusters,
we explicitly put aside this option. We do this given the
(rather small) nature of jobs on which we focus, for which
commodity machines are su�cient for training. HPT Jobs
are scheduled in a FIFO manner. We categorize these jobs
in the following two main types: Type-I: tuning the same
model for di�erent datasets (e.g., recommendation engines),
and Type-II: tuning di�erent models for the same dataset
(e.g., computer vision).

Both types of tuning jobs can still be divided into two
sub-types: (a) same set of hyperparameters and ranges, and
(b) same set of hyperparameters but di�erent ranges. Each
job, independent of its category, performs the earlier de-
scribed tuning process from scratch. A key observation

Algorithm 1: P���T��� algorithm.
1 Function train(model, data, hyperparameters):
2 job = async model.train(data, hyperparameters);
3 async tuneSystem(job);
4 job.wait();
5 return model;
6 Function tuneSystem(model, data):
7 pro�le = getPro�le(job);
8 (score, con�g) = getSimilarity(pro�le);
9 if score > threshold then
10 setSystemParameters(con�g);
11 else
12 foreach sp� 2 systemParameters do
13 setSystemParameters(sp� );
14 wait until epoch �nishes;
15 add collected metrics tom;
16 bestCon�g = �nd best con�g inm;
17 setSystemParameters(bestCon�g);

is that these jobs could bene�t from previously com-
puted results for other jobs in the same category to
converge faster. Moreover, training trials spawned by the
same HPT Job run all with the same system parameters even
though they might require di�erent resources con�guration.
Another major limitation of the currently available ap-

proaches to hyperparameter auto-tuning is that only a single
objective metric can be speci�ed. This means that for a given
HPT Job, one could choose to optimize either accuracy or
performance, but not both simultaneously.
In summary, our problem’s input consists of an HPT Job

with the objective of achieving either maximum accuracy, or
maximum accuracy with minimum training time. The former
must output the best possible hyperparameters leading to the
highest accuracy, independent of training time. For the latter,
a combination of optimal hyper and system parameters is
expected which leads to the highest accuracy and lowest
training time. Note that for both scenarios, a shorter tuning
times is bene�cial, as allowed by our approach.

5.2 P���T��� Work�ow
Figure 7 depicts the architecture components of P���T���
design and the main work�ow. While training hyperparam-
eters, a trial is a single training run with a �xed initial hy-
perparameter con�guration. In order to �nd the best values
for a given set of hyperparameters, the system executes a
collection of trials, supervised by a given tuning library (e.g.,
Vizier, Tune) and using one of the supported trial scheduling
algorithms (e.g., GridSearch, HyperBand).
P���T��� enhances the tuning of system parameters fol-

lowing a pipelined parallelism approach. That is, within each
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trial, a collection of sub-trials is executed, with the goal of
de�ning the best system con�gurations for a given optimiza-
tion function and metric of interest. This sub-trial consists
of varying the system con�guration on the epoch level and
monitoring the system itself as well as the metrics of interest.
The execution of sub-trials is controlled by P���T���, which
may also rely on di�erent underlying scheduling algorithms.

Algorithm 1 details the pipelined approach. Function train
(lines 1-5) is executed during a trial for a given workload
(i.e., model and dataset). After initiating the model training
using the hyperparameter con�guration given for that trial,
tuneSystem (line 3) is invoked asynchronously.

The pro�ling phase (lines 7) is initiated for this given trial
with the objective of characterizing the workload properties
and its systems requirements. This process is done at the
granularity of epochs for the currently running trial. We rely
on kernel performance counters (e.g., cpu cycles memory
stores, instructions) to gather hardware events correspond-
ing to low-level metrics of the underlying system.
Once this pro�ling phase is over, its outcome is used as

input to a ground truth phase. This process consists of ap-
plying a similarity function (line 8) on the job’s pro�le. This
is done to reuse optimal con�gurations known by the sys-
tem for other jobs with similar characteristics. If the score
of this similarity function is within a speci�c con�dence
level (line 9), then the optimal known con�gurations are
applied (line 10) and no further system metric trials are re-
quired. However, if the score does not cross the threshold,
a new probing phase starts, searching the optimal system
con�gurations for that trial.

The probing requires each system con�guration to be ap-
plied for a di�erent epoch, following a given scheduling
algorithm. We collect several meaningful metrics (e.g., run-
time, energy) plus low-level metrics (e.g., hardware events).
Then the optimization function is applied over these metrics
(line 16) to identify the overall best system con�guration.
This process consists of iterating over the collected values for
each tuple of system parameters, looking for the one which
best �ts the optimization function (e.g., shortest runtime,
lowest energy consumption). The complexity of this search
isO(n), where n is the number of distinct system parameters
considered. Finally, the con�guration identi�ed as optimal is
applied for the remaining iterations (line 17) and saved for
further improving of the ground truth phase.

5.3 Pro�ling
The pro�ling component leverages hardware performance
counters to collect low-level events of the system during
the applications execution time. After an initial experiment
campaign, we gathered a comprehensive list of such events.
As the number of events collected per time unit is limited
by the number of actual hardware counters of the CPU, we
�lter out highly correlated as well as unsupported events.

As result, our prototype deployed on x86 architectures cur-
rent considers 58 measurable events, most of them being
Performance Monitoring Unit (PMU) hardware events (e.g.,
branch-instructions, cache-misses, cpu-cycles, mem-loads),
reported by Linux’s perf (v4.15.18). Although we have �l-
tered the list of possible events to be collected, common Intel
processors have only 2 generic and 3 �xed counters. Generic
counters can measure any events while �xed counters can
only measure one event.

When there are more events than counters (as it is in our
case), then the kernel uses time multiplexing to give each
event a chance to access the monitoring hardware. When
this happens, an event might miss a measurement. If this
happens, its occurrences are recomputed once the run ends,
based on total time enabled vs time running [2], with:

f inal_count = raw_count ⇤ time_enabled/time_runnin�.

This provides an estimate of what the count would have
been, had the event been measured during the entire run.
Considering that the output value is not an actual count,

depending on the workload, there might be blind spots which
can introduce errors during scaling. Although we pro�le
workloads at the epochs granularity, each epoch runs for at
least a few minutes and we measure the events of interest
every second. To mitigate the potential pro�ling errors, we
store the average of results during each epoch’s time window.

5.4 Ground Truth
During this phase, new incomingHPT Jobs exploit the ground
truth results from historical data collected during the previ-
ously completed jobs with similar system characteristics, to
accelerate their system-parameter tuning phases. Our design
allows the similarity function to be pluggable, and while we
do settle on k-means [58] in the current implementation,
P���T��� allows to easily switch to alternative techniques.

The implementation of ground truth is done as a separate
module which is used by P���T���. In this module, the user
can point to a pre-trained similarity function for a warm
start or let the system build a new one from scratch. For
this, our currently implementation relies on the scikit-learn
machine learning library for Python [44] which already sup-
ports several clustering algorithms (e.g., a�nity propagation,
mean-shift, DBSCAN, OPTICS, Birch). The exhaustive list of
supported models are then inherited by P���T��� and could
be easily used as alternative similarity functions.
Regarding the currently used model (i.e., k-means), it is

trained over the low-level system metrics collected during
the pro�ling phase. The datasets are then partitioned into
k = 2 groups (i.e., model and dataset). Extensions to other
values of k , as well as to other similarities dimensions (e.g.,
hyperparameters, ranges) are left for future work.

Figure 8 shows clustering results using k-means grouped
by model and dataset labeled with their respective cluster’s
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Figure 8. Clustering results grouped by workload type.

labels. We can observe that the majority of data �ts into Type-
I and Type-II are labeled as cluster1 and cluster2, respectively.
This result supports our assumptions regarding workloads
similarities and shows that the chosen pro�ling technique
can also capture the implicit characteristics of each work-
loads. Finally, it shows that the clustering algorithm utilized
can identify the similarities present in those characteristics
and e�ciently cluster them.

5.5 Privacy concerns
Although the ground truth component of P���T��� makes
use of historical data, it does not require any information
regarding the users’ workloads (i.e., model or dataset). In-
stead, this process relies entirely on system events collected
using the hardware performance counters. This pro�ling
based on low level metrics allows P���T��� to character-
ize the applications while preserving user data privacy (e.g.,
user parameters like model and dataset are not revealed). We
assume that potential data, model and parameters similari-
ties between workloads will a�ect the collected metrics in
the same ways and therefore also be re�ected in the simi-
larity function. The results observed in Figure 8 supports
this assumption.

5.6 Probing
The probing phase pro�les a given set of workloads in dif-
ferent system conditions, in order to collect su�cient data
for a warm start of the ground truth component. In practice,
the ground truth model is re�ned as the similarity of the
incoming jobs with the historical data of the system starts
to decrease. When this happens, we launch a grid search on

Table 3. Workloads used for experiments.

Model Dataset Datasize Train Files Test Files
L�N��5 MNIST 12 MB 60 000 10 000Type-I L�N��5 F�������MNIST 31 MB 60 000 10 000
CNN N���20 15 MB 11 307 7538Type-II LSTN N���20 15 MB 11 307 7538
J����� R������ 26 MB 1650 7538

Type-III SPK������ R������ 26 MB 1650 7538
BFS R������ 26 MB 1650 7538

the system-parameters at the epoch granularity, yet other
search strategies are possible. In this case, the tuning of sys-
tem parameters for the current job is performed directly on
the analytical data collected. Moreover, this collected data is
saved to be taken into account once re-clustering is applied.

We decide upon the necessity to launch a new probing or
not for a given workload based on the similarity score out-
putted from the ground truth phase. When using k-means,
the threshold matches the distance from the new set of data
points to their current cluster’s centroid. The distance is com-
pared against the models’ inertia, to measure the reliability
of the prediction, or else if a re-clustering is needed.

6 Implementation
P���T��� is implemented in Python (v3.5.2) and it consists
of 947 LOC. We leverage two open-source projects, namely
Tune and BigDL. Tune [35] is a Python library for hyperpa-
rameter search, optimized for deep learning and deep rein-
forcement learning [34]. Tune provides several trial sched-
ulers based on di�erent optimization algorithms. While we
select HyperBand for the reminder of this work, Tune allows
to switch among the available ones, as well as to implement
new ones. As a consequence, P���T��� indirectly supports
all its hyperparameter optimization algorithms.
The training applications are executed by BigDL [13], a

distributed deep learning framework on top of Apache Spark.
BigDL supports TensorFlow and Keras, hence P���T��� sup-
ports models de�ned using such frameworks. The Ground
Truth module is based on a battle-tested k-means implemen-
tation openly available in the scikit-learn machine learning
library for Python [44].

Finally, as storage backend, we leverage InfluxDB (v1.7.4),
an open-source time series database. It o�ers a conve-
nient InfluxDB-Python client for interacting with In�uxDB
which we use to query information regarding the collected
system metrics. P���T��� is released as open-source 1.

7 Evaluation
This section presents our in-depth evaluation of P���T���
using real-world datasets. Our main �ndings are:

1. P���T��� achieves signi�cant tuning speedups with-
out a�ecting model performance (i.e., accuracy);

1https://github.com/isabellyrocha/pipetune
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Figure 9. Accuracy convergence.

2. By speeding up the tuning process, we also have a
more energy e�cient approach, not only due to the
runtime reduction but also because of the more e�-
cient utilization of system resources;

3. The proposed approach is sensitive to varying system
loads as this is also re�ected on the events used to
pro�le and our system adapts on a �ne granularity
(i.e., epochs level).

7.1 Experimental Setup
7.1.1 Testbed
We deploy our experiments using Type-I and Type-II work-
loads on a cluster of 4 quad-socket Intel E3-1275 CPU pro-
cessors with 8 cores per CPU, 64 GiB of RAM and 480 GB
SSD drives. Experiments involving Type-III workloads are
deploy on a single node containing an Intel E5-2620 with
8 cores, 24 GB of RAM and a 1 TB HDD. All machines run
Ubuntu Linux 16.04.1 LTS on a switched 1 Gbps network.
Power consumptions are reported by a network connected
LINDY iPower Control 2x6M Power Distribution Unit (PDU),
which we query up to every second over an HTTP interface
to fetch up-to-date measurements for the active power at a
resolution of 1W and 1.5% precision.

7.1.2 Workloads
We consider 7 state-of-the-art deep learning workloads for
image classi�cation, LLC-Cache computational sprinting and
natural language processing. Table 3 summarizes their de-
tails.
L�N��5 [31] is a convolutional network for handwrit-

ten and machine-printed character recognition. Convolu-
tional Neural Networks (CNNs) [40] are a special kind of
multi-layer neural networks, trained via back-propagation.
CNNs can recognize visual patterns directly from pixel im-
ages with minimal preprocessing. Long Short-Term Mem-
ory (LSTMs) [18] are arti�cial Recurrent Neural Networks
(RNNs) architectures used to process single data points (such
as images, connected handwriting recognition and speech
recognition), as well as sequences of data (i.e., speech, videos).
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Figure 10. Training trial time convergence.

Finally, Jacobi is a di�erential numerical solver, BFS is breath-
�rst-search and spk-means is k-means implemented on top
of Spark framework.

The MNIST dataset [30] of handwritten digits has a train-
ing set of 60 000 examples, and a test set of 10 000 exam-
ples. The digits have been size-normalized and centered in a
�xed-size image. F�������MNIST dataset [60] is a dataset
of article images consisting of a training set of 60 000 ex-
amples and a test set of 10 000 examples. Each example is
a 28x28 grayscale image, associated with a label from 10
classes. F�������MNIST shares the same image size and
structure of training and testing splits as the original MNIST
dataset. The N���20 dataset [1] is a collection of 20 000
messages collected from 20 di�erent netnews newsgroups.
We sample uniformly at random 1000 messages from each
newsgroup, and we partition them by name. The R������
Benchmark Suite [10] is a collection of pro�ling short-term
resource allocation (i.e., computational sprinting) policies
which targets heterogeneous computing platforms with both
multicore CPUs and GPUs. These workloads have the ob-
jective to classify or predict the original data reserved for
testing purposes.

7.1.3 Hyperparameters
There are several potential hyperparameters to tune. For
practical reasons, in our evaluation we select the 5 de-
scribed below. Note that their recommended range is typ-
ically application-driven, and we settle on speci�c values
without however generalizing for any workload.
1. Batch size. Number of samples to work through before

updating the internal model parameters. Large values for
batch size have a negative e�ect on the accuracy of net-
work during training, since it reduces the stochasticity of
the gradient descent. Range: [32 - 1024].

2. Dropout rate. Dropout randomly selects neurons to be
ignored during training. Dropout layers are used in the
model for regularization (i.e., modi�cations intended to
reduce the model’s generalization error without a�ecting
the training error). The dropout rate value de�nes the
fraction of input to drop to prevent over�tting [41]. Range:
[0.0 – 0.5].
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Figure 11. Evaluation of P���T���’s accuracy, performance and energy consumption for Type-I and Type-II Jobs.
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Figure 12. Evaluation of P���T���’s accuracy, performance and energy consumption for Type-III Jobs.

3. Embedding dimensions. Word embeddings provide a
mean of transfer learning. This mechanism can be con-
trolled by having word vectors �ne-tuned throughout the
training process. Depending on the dataset size on which
word embeddings are being re�ned, updating them might
improve accuracy [5]. Range: [50 – 300].

4. Learning rate. Rate at which the neural network weights
change between iterations. A large learning ratemay cause
large swings in the weights, making impossible to �nd
their optimal values. Low learning rates requires more
iterations to converge. Range: [0.001 - 0.1].

5. Number of epochs Number times that the learning algo-
rithm will work through the entire training dataset. Typi-
cally, larger number of epochs yields in longer runtimes
but also higher training accuracy. However, the number
of epochs required to achieve a given minimum desired
accuracy depends on the workload. Range: [10 - 100].

7.1.4 System Parameters
For the purpose of this evaluation, we restrict the list of
parameters to number of cores and memory. However, the
same mechanisms can be applied to any other parameter of
interest (e.g., CPU frequency, CPU voltage). In our cluster,
the ranges of valid values for system parameter tuning are [4
- 16] and [4 - 32] (GB) for for number of cores and memory,
respectively.

7.1.5 Baselines
Baseline I: hyperparameters tuning. Our �rst baseline
system (i.e., T��� V1) uses the tuning of hyperparameters
ignoring any system parameter. We rely on HyperBand for

the parameter optimization with the objective function set
to maximize accuracy.
Baseline II: system and hyper parameters tuning. We
further compare against T��� V2, where we include the
list of system parameters to be considered in the list of pa-
rameters to be tuned by the HyperBand algorithm. We also
include the training duration as part of the optimization
function which in this baseline is set to maximize the ratio
accuracy to duration (details in § 4).

7.2 Convergence Evolution
In order to build our initial similarity model we rely on
pro�ling data of the workloads described in Table 3. For
each workload, we vary the system con�gurations as follows.
Memory allocation can be 4GB, 8GB, 16GB, and 32GB. The
total number of cores that could be allocated were 4, 8, or 16.
Finally, batch size could take the values 32, 64, 512, or 1024.
In total, this sums up to 48 di�erent con�gurations for each
workload. There is no reason to expect variations in the data
collected from di�erent training instances using the exact
same parameters. However, we repeat this process twice for
each con�guration to make sure that the achieved model is
not a�ected by potential unseen variations.
We begin our evaluation by analyzing the convergence

trajectory of P���T��� compared to T��� V1 and T��� V2.
Figure 9 illustrates the accuracy evolution of the training
trials over the tuning time of a CNN model on the N���20
dataset. We observe that P���T��� converges to an accuracy
value comparable to T��� V1 but at a much faster rate. For
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Figure 13. Average response time for Type-I and Type-II
Jobs considered independently and all together.

instance, P���T��� reaches a 60% accuracy after approxi-
mately 4500 seconds. On average our approach is 1.5⇥ and
2⇥ faster than T��� V1 and T��� V2, respectively.
The training time achieved shows similar behavior (see

Figure 10). Interestingly, T��� V1 performs worse than
T��� V2. Since T��� V1 optimizes only for accuracy, the
most accurate model not necessarily achieves the shortest
training time. On the other hand, as T��� V2 optimizes for
the ratio accuracy to performance, the accuracy achieved
might not be the highest possible. However, the training time
in the given con�gurations might be lower (which is exactly
what happens in this instance of the problem). Finally, we
observe that P���T��� consistently presents shorter trial
times than the other two approaches during the entire tun-
ing process.

7.3 Single-Tenancy
We now consider a single-tenancy scenario, and assume each
HPT Job runs in a dedicated cluster, where the required re-
sources demanded by the system parameters are available
and exclusive for a given tenant. This prevents interference
caused by other jobs co-located on the same cluster. How-
ever, as a given HPT Job spawns several training trials asyn-
chronously, the cluster still remains shared among these sub
jobs. We evaluate how P���T��� performs in such stable
setting, comparing it against T��� V1 and T��� V2, for all
the workloads.
Comparison with baseline. Figure 11 presents the results
of model accuracy, training and tuning runtime, and over-
all cluster energy consumption of o�ine HPT Jobs for the
di�erent workloads described in Table 3.
Figure 11 (a) presents the accuracy results. We can ob-

serve that the accuracy of P���T��� is not a�ected by the
performance optimization. In fact, results are on par with
T��� V1, where hyperparameters tuning is done with the
only objective of maximizing accuracy. As expected,T���V2
decreases accuracy up to 43%, since the objective function no
longer tries to optimize accuracy but also takes the runtime
into account.
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Figure 14. Average response time for Type-III Jobs.

Figure 11 (b) shows the training time of the achieved
model. In this case, P���T��� presents comparable results
to the baseline. In fact, we observe up to 1.7⇥ speed-up in
comparison with T��� V2 which focuses exactly in reducing
training runtime. We observe that T��� V2 increases tuning
duration by up to 18% when compared to T��� V1. This hap-
pens for the following two reasons. First, the search space of
T��� V2 is larger than of T��� V1, as it includes the system-
parameters. Second, the optimization function consists of
accuracy and runtime together. These two reasons make it
harder for the search algorithm to �nd the optimal set of
con�gurations, hence longer tuning times are observed.

On the other hand, P���T��� reduces tuning runtime by
at least 18% when compared against T��� V1, as shown in
Figure 11 (c). This performance gain is obtained because the
search space and optimization function remains the same,
and at the same time P���T��� �nds and applies during
runtime the optimal system con�gurations for each trial.
Moreover, all the additional steps introduced by P���T���
are done in parallel, without impacting the hyperparameters
tuning process.

Figure 11 (d) reports the energy results. The overall energy
consumption of the cluster is directly a�ected both by the
performance decays and gains. Compared against T��� V1,
we observe up to 22% energy increase for T��� V2 and up
to 29% energy decrease for P���T���.
Figure 12 compares T��� V1, T��� V2 and P���T���

on a single node. The Type-III workloads used in these ex-
periments have shorter epochs and each a di�erent CNN
model. Previous experiments deploy P���T��� on workloads
with epochs lasting minutes. Long epochs work in favor of
P���T��� since low-overhead pro�ling is performed across
the �rst couple of epochs to classify new workloads. There-
fore, next we perform an extra analysis on Type-III Jobs
which present this more challenging setup for P���T��� to
observe how it behaves.

Figure 12 (a-d) plots the same metrics as seen in Figure 11.
The goal is to test how well P���T��� can improve tuning
for workloads with short but many epochs per trial. Here
we can observe that P���T��� also achieves the expected
results in this more challenging scenario and reduces both
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training and tuning time when compared to the baseline
systems. Regarding model accuracy, we can also see that
our approach achieves comparable or better results than the
baseline. Finally, the energy results re�ects the performance
gains resulting in a more energy e�cient approach as well.
To summarize, for these single-tenancy scenarios,

P���T��� presents better performance with up to 23% re-
duction on tuning time, is more energy e�cient reducing
up to 29% the overall energy consumption of the utilized
cluster, and does not a�ect model accuracy as the observed
di�erences in this aspect are negligible.
Pro�ling overhead. Pro�ling is a fundamental part of our
system design and essential for the decision making process.
During the pro�ling of a given epoch, the extra computa-
tion introduce additional load, depending on the system
con�guration. However, as this pro�ling overhead only oc-
curs in the epoch granularity and does not apply for all the
epochs, the performance bene�ts resulting from tuning the
system-parameters overtake the measured overhead. The
experimental results presented above also support these as-
sumptions as, otherwise, we would not observe performance
gains when compared with the approaches T��� V1 and
T��� V2 which do not perform any pro�ling.

7.4 Multi-Tenancy
Next, we evaluate P���T��� in a multi-tenancy scenario (i.e.,
a shared cluster handling multiple HPT Jobs). In this case,
we show the average response time of jobs as an indicator
of performance. We consider that jobs arrive randomly with
the interarrival times being exponentially distributed. For
the case where two workload types are considered together,
each of them corresponds to 50% of the overall jobs (i.e.,
equally balanced). In all cases, within a given workload type,
the workloads are chosen following a round-robin strategy.
The portion of overall unseen jobs corresponds to 20%.

Figure 13 shows the results for the multi-tenancy scenario
considering workloads of Type-I and Type-II grouped by
type as well as the overall results. As in Section 7.3, this
evaluation has been performed in a distributed environment.
In this experiment we observe improvements similar to the
ones in the single-tenancy scenario. Regarding response time,
P���T��� results in up to 30% reduction when compared
with T��� V1 and T��� V2.

Figure 14 shows the same results described above but con-
sidering workloads of Type-III. This trace was executed in a
single node in contrast with the distributed environment of
the previously described results. In this speci�c scenario we
observe that the performance gain trends earlier observed be-
comes even more evident in such environment and workload
type. In this case, P���T��� results in up to 65% reduction on
the average response time in comparison with T��� V1 and
T��� V2. This indicates that the overhead of computation
added for the unseen jobs is compensated by the gain of
future similar incoming ones.

8 Conclusion
The combination of hyper and system parameter for Deep
Neural Network tuning is an overlooked opportunity that
many state-of-the-art tuning solutions ignore. This paper pre-
sented P���T���, an open-source system that leverages the
repetitive behaviour of DNN tuning jobs to quickly �nd the
best set of parameters. Our approach ismodular whichmakes
it easy to swap between similarity functions and underly-
ing search algorithms. We evaluated 7 di�erent real-world
datasets from di�erent domains, including text classi�cation
and image recognition. When compared against state-of-
the-art DNN tuning systems, P���T��� shows experimental
evidence that the approach greatly reduces tuning and train-
ing time while achieving on-par accuracy.
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