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ABSTRACT
We introduce a concept of generalized blending and deblending, develop its mod-
els and accordingly establish a method of deblended-data reconstruction using these
models. The generalized models can handle real situations by including random en-
coding into the generalized operators both in the space and time domain, and both
at the source and receiver side. We consider an iterative optimization scheme using a
closed-loop approach with the generalized blending and deblending models, in which
the former works for the forward modelling and the latter for the inverse modelling in
the closed loop. We applied our method to existing real data acquired in Abu Dhabi.
The results show that our method succeeded to fully reconstruct deblended data even
from the fully generalized, thus quite complicated blended data. We discuss the com-
plexity of blending properties on the deblending performance. In addition, we discuss
the applicability to time-lapse seismic monitoring as it ensures high repeatability of
the surveys. Conclusively, we should acquire blended data and reconstruct deblended
data without serious problems but with the benefit of blended acquisition.

Key words: Blending, Deblending, Data processing, Generalized model, Inversion.

INTRODUCTION

In traditional acquisition, spatial and temporal interference
between shots is avoided, often resulting in poor sampling in
the source dimension. However, in blended acquisition, the
interference is allowed, leading to dense and wide sampling
in an economical way. Therefore, we can achieve higher data
quality with lower survey time and cost by blending and de-
blending, that is blended acquisition followed by deblended-
data-reconstruction processing. The blending and deblend-
ing, or simultaneous sourcing methodology is a leading-edge
technology that is becoming common wisdom in the industry
today, for example slip-sweep (Rozemond 1996); distance-
separated simultaneous sweeping or shooting (Bouska 2010;

∗E-mail: tmishiyama@adnoc.ae, tomohide.ishiyama@inpex.co.jp

Ishiyama, Mercado and Belaid 2012); independent simultane-
ous sourcing (Howe et al. 2008); managed sources and spread
(Bagaini, Daly and Moore 2012). There are plenty of exam-
ples using some concepts of this methodology; however, these
are under certain constraints such as large distance separation
among shot locations and large time shifts among shot times,
thereby so far not fully enjoy the benefits of this methodology.
Besides, several oil and gas companies, service companies and
academies are developing autonomous sources and receivers
in order to realize autonomous acquisition using these robots
(seismic robotization, Berkhout 2012), which is promoting
this methodology more and more.

As for blending at the source side, first, blended acqui-
sition stands for continuous recording of seismic responses
from incoherent shooting, the properties of which are char-
acterized and encoded by random spatial distribution and
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Deblended-data reconstruction 1853

time shifts among the involved sources of blended-source ar-
ray (Berkhout 2008). The benefit of blended acquisition is
to acquire a larger amount of data in a more economical
way than traditional acquisition. In addition, this method
offers denser and wider spatial sampling with finer inter-
vals and larger apertures, thus broader spatial bandwidth
than traditional one. Furthermore, this method allows po-
tential improvement of signal-to-noise ratio because of less
background noise recorded in a shorter survey-time window
(Berkhout and Blacquiere 2013). Second, blended acquisi-
tion uses seismic responses from inhomogeneous shooting, in
which the blended-source array consists of different sources
rather than traditional equal ones, for example several types
of narrow frequency–banded device instead of a certain type
of broad frequency–banded one (dispersed source array or
DSA, Berkhout 2012). This method yields frequency-banded
wavefields generated by each shot, thereby offers multi-scale
spatial sampling, for example optimally coarser spatial sam-
pling for a low frequency source, whereas relatively denser
spatial sampling for a high frequency one in order to meet
the Shannon–Nyquist sampling theorem for each frequency
band. Third, blended acquisition also uses signaturing, in
which each source is encoded with its own signature, for ex-
ample popcorn-shooting sequences (Abma and Ross 2013)
and near-orthogonal firing sequences (Mueller et al. 2016)
for marine acquisition; various sweeps (Bagaini 2006) and
pseudo-random sweeps (Dean 2014) for land. This method
again yields distinguishable wavefields generated by each shot.
However, the trade-off against these methods is obviously that
shot-generated wavefields are spatially and temporally over-
lapped and interfered with each other. Therefore, the blended
data should be deblended, that is deblended data should be
reconstructed in the course of processing after the blended
acquisition.

Another concept in this methodology, in particular at the
receiver side, is spatial sampling based on compressive sens-
ing (Baraniuk 2007). This method introduces non-uniform
and under-sampling acquisition followed by regularization
and interpolation processing (Herrmann 2010; Mosher et al.

2014). The benefit is that a signal can be recovered from far
fewer samples than required by the Shannon–Nyquist sam-
pling theorem. The trade-off is the effort for regularization
and interpolation. This is achieved by reconstructing from
observed data on an irregular and coarse observed grid (on
which the data are acquired) into the corresponding data
on a regular and fine nominal grid (on which the data are
reconstructed) in the measurement domain (e.g. the space-
time domain). The spatial bandwidth to be recovered can be

arbitrarily determined according to the spatial sampling inter-
vals and apertures of the nominal grid.

Combined implementation of these methods can enhance
the blending and deblending methodology, make it more flex-
ible with less constraint, thereby promote this methodology
further for future seismic robotization. In this paper, we in-
troduce a concept of generalized blending and deblending,
and establish its models including all the above-mentioned
means. Accordingly, we establish a method of deblended-data
reconstruction using these models. We give an overview of
the theory and method, and show existing real data exam-
ples in order to demonstrate its virtues. We discuss the com-
plexity of blending properties on the deblending performance.
In addition, we discuss the application to time-lapse seismic
monitoring as it ensures high repeatability of the surveys.

GENERALIZED BLENDING AND
DEBLENDING

A concept of generalized blending includes random encod-
ing both in the space and time domain, both at the source
and receiver side (e.g. double blending, Berkhout, Blacquiere
and Verschuur 2009), thus all the above-mentioned means.
In fact, incoherent and inhomogeneous shooting and signa-
turing are special cases of blending only at the source side;
non-uniform and under sampling are special cases of blend-
ing with randomizing only in the space domain. Similarly, a
concept of generalized deblending includes data reconstruc-
tion that works all for shot-generated-wavefields separation,
spectrum recovery and balancing, designature, regularization
and interpolation, again both at the source and receiver side.

For these generalized concepts, we do face a challenging
question: how to fully reconstruct deblended data from the
fully generalized blended data. We should solve this problem
in order to fully enjoy the benefits of blending and deblend-
ing methodology. To address this challenge, we consider an
iterative optimization algorithm using a closed-loop approach
(Berkhout 2013). This approach has been developed for sev-
eral stages in seismic processing, in which an optimal pa-
rameterization at each stage is used to describe its forward
and inverse models. For deblended-data reconstruction, we
use the properties of blended signal. Here, blended acquisi-
tion is encoded by the blending operators containing the shot
locations, times, signatures, etc. for the involved sources of
blended-source array. One of the properties is the coherency
of blended signal versus the incoherency of blending noise in
the pseudo-deblended domain (i.e. the domain after the ad-
joint of blending operation has been applied). This can be
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posed as an inverse problem with quantifying the coherency
and its solutions by selecting optimal metrics of the coherency.
A key element is the sparse representation of the metrics, thus
the model parameters in a transform domain, where blended
signal is sparsely compressed, whereas blending noise is ran-
domly distributed, for robust parameter selection or signal
extraction. Examples are: Mahdad, Doulgeris and Blacquiere
(2011) in the Fourier domain; Ibrahim and Sacchi (2014) in
the Radon domain; Lin and Herrman (2009) in the curvelet
domain; Kontakis and Verschuur (2014) in the focal domain.

THEORY AND M ETHOD

To describe seismic data, we introduce the WRW model for
blending (Berkhout 2008; Berkhout et al. 2009). In this model,
seismic events can be described for each monochromatic com-
ponent by operator matrices. Each matrix multiplication rep-
resents a multi-dimensional spatial convolution, and each
element of every matrix contains amplitude and phase infor-
mation. Using this representation and the same mathematical
notation, we can describe a forward model as

P′′ = �DP�S, (1)

P = LHM, (2)

where P′ ′ is the blended data on an observed grid, P is the
unblended data on a nominal grid, both in the measurement
domain. �S and �D are the generalized blending operators (i.e.
the generalized shooting operator at the source side and the
generalized sensing operator at the receiver side). The forward
model corresponds to the generalized blending operation. This
can include random encoding both in the space and time do-
main by specifying the locations, times, signatures, etc., thus
can explain all incoherent and inhomogeneous shooting, sig-
naturing, non-uniform and under sampling, each at the source
and receiver side. Incoherent and inhomogeneous sensing can
also be included theoretically at the receiver side, but might
not be practical in real situations. Unless otherwise mentioned,
we assume non-blending at the receiver side (i.e. �D = I) in this
paper. M is the data in a transform domain (e.g. the Fourier
domain). L is the transform operator, and LH is the adjoint of
L where the superscript H denotes Hermitian (i.e. conjugate
transpose). Similarly, we can describe an inverse model as

�D
HP′′�S

H =<P>, (3)

L <P>=<M>, (4)

where the angle bracket <·> denotes estimated data. The
inverse model corresponds to the generalized deblending
operation. This is data reconstruction that can include all
shot-generated-wavefields separation, spectrum recovery and
balancing, designature, regularization and interpolation again
each at the source and receiver side. However, this is an ill-
posed problem since the inverse model is underdetermined
(i.e. P′ ′ has less data than P) and the generalized blending
operators are not orthogonal (i.e. �D

H�D � I, �S�S
H � I)

in general, which requires additional constraints in order to
solve the problem. In these models, the blended data for a basis
function, P′ ′, is parameterized by the samples in the transform
domain, M.

Given these models and the observed data, P′ ′, our goal
is then to solve for the model parameters, M, and the recon-
structed data, P(M). We can describe the inverse problem as
minimizing the objective function

J = ∥∥P′′ − <P′′>
∥∥2

2 + μ
∑

l

ln(1 + m2
l /σ

2), (5)

where the first term on the right is the residual term, the sec-
ond one is the regularization term with Cauchy norm. μ is
a weighting factor related to a measure for noise present in
the observed data. σ is a weighting factor for the model pa-
rameters specifying a degree of sparseness in the solution. m
is a column vector to represent M in a lexicographic order.
The subscript l denotes a number of samples. For instance, if
certain samples in the transform domain, <M>, are the solu-
tion in the equation (5), <PM> = LH<M> is the deblended
data on the nominal grid, and then <P′ ′> = �D<PM>�S is
the reblended data on the observed grid in the measurement
domain. The spatial sampling intervals and apertures of the
nominal grid can be arbitrarily determined.

To solve the inverse problem, we introduce a closed-loop
approach. Figure 1 illustrates the conceptual flow. The closed
loop contains not only the inversion module (steps in blue
in the figure) but also the forward-modelling module (steps
in red in the figure), allowing evaluation of the residual be-
tween observed and estimated data, �P′ ′ = P′ ′ − <P′ ′>, thus
feedback from the estimated model parameters, <M>, via
the estimated data, <P′ ′>. For our closed-loop approach, the
transform domain is a three-dimensional Fourier domain, or
more specifically the kDkS-f domain, where kD and kS rep-
resent the wavenumbers each in the receiver and source di-
mension, and f for the frequency. The blended signal is more
sparsely compressed in this domain, rather than in a con-
ventional Fourier domain. For the parameter selection, we
adopt a pre-conditioning followed by a regularization-term
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Figure 1 Conceptual flow of the closed-loop approach for deblended-data reconstruction.

algorithm of iterative reweighted least-squares inversion, in-
stead of our previous thresholding algorithm (Ishiyama et al.

2018). The pseudo-deblended data are pre-conditioned by a
velocity filtering in the kDkS-f domain. A wide-band filtering
with a low velocity is used to pass all blended signal in our
case. Optionally, a narrow-band filtering with a high velocity
is used during early iterations, and its pass band is extended
gradually in the course of iterations. The model parameters
are then updated under sparsity constraints promoted by the
regularization term so that the objective function is oriented
to the minimum. This algorithm also helps the process avoid
overfitting and makes it stable. We select Cauchy norm rather
than L1 and L2 norms for the regularization term since this
norm works the best compared to other norms in our case
(Ishikawa et al. 2018). Optimal μ and σ should be selected by
processing-parameter testing for each dataset. μ is first esti-
mated and fixed around the order of max(|P′ ′|)2, and σ is then
fine-tuned in the order of 10−3max(|<M>|) in our case.

For each iteration of the closed loop, from certain esti-
mated deblended data, <P>i, the model parameters are up-
dated in the Fourier domain

<m> i = (LLH + μQ (mi ))
−1mi , (6)

where

mi = L <p> i , (7)

Q (mi ) =

⎛
⎜⎜⎜⎜⎜⎝

Q
(
mi,1

)
. . .

Q
(
mi,l

)
. . .

⎞
⎟⎟⎟⎟⎟⎠

,

Q
(
mi,l

) = (
σ 2

(
1 + m2

i,l/σ
2
))−1

, (8)

that is Q(mi) is a diagonal matrix to include damping factors
for the model parameters. Note that Q is m dependent, al-
lowing <m> to become sparse. <p>i is a column vector to
represent <P>i in a lexicographic order. The subscript i de-
notes a number of iterations. Equation (7) corresponds to the
equation (4). Then, from <M>i and <PM>i after the equa-
tion (2), the residual is updated:

�Pi = �D
H(P′′ − �D <PM > i�S)�S

H

= �D
H(P′′− <P′′ > i )�S

H

= �D
H�P′ ′

i�S
H, (9)

by referring to the equations (1) and (3). Finally, the estimated
deblended data are updated:

<P> i+1 =<P> i + αi�Pi , (10)

where αi is a scale factor to orient the residual to the mini-
mum; a step length in a steepest decent algorithm in our case
(Nakayama et al. 2018). This update is the input for the next
iteration. This loop process is iterated until it has reached
a stopping criterion. At the convergence, <P>i+1 becomes
mostly the same as <PM>i since �Pi becomes nearly zero.

Figures 2 and 3 step-by-step illustrate the closed loop
using a blended dataset with two sources in the blended-
source array, which will be described in detail and used again
in the following section. Figure 2 shows the illustration in
the space–time domain for display purpose. Figure 2(a,b)
shows the input, thus the blended data, P′ ′, in the (common-
source and) common-receiver domain. For the first iteration,
the pseudo-deblended data, <P>P, corresponds to the first
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(a)
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Figure 2 Step-by-step illustration of the closed-loop: (a) and (b) blended data; (c) pseudo-deblended data; (d) estimated model parameters; (e)
and (g) residual; (f) and (h) estimated deblended data in the common-source (CS) and common-receiver (CR) domain. Illustrations (c)–(f) for the
first iteration; (g) and (h) after 300 iterations. The red and magenta circles indicate the two sources and their shot locations of blended-source
array in this particular section. In the blended domain, the blended shots are sorted along the first sources and their shot locations, thereby the
spatial sampling aperture is halved in the CR domain.
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Figure 3 The same illustration as Fig. 2 but in the kDkS-f domain.
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estimated deblended data, <P>1 (Fig. 2c). The model param-
eters, <M>1, are updated by the pre-conditioning followed
by the regularization-term algorithm (Fig. 2d). The residual,
�P′ ′

1, and the estimated deblended data, <P>2, are updated
by the closed-loop algorithm (Fig. 2e,f). This loop process is
iterated up to a stopping criterion, for example �P′ ′

300 and
<P>301 (Fig. 2g,h). Figure 3 shows the same illustration as
Fig. 2 but in the kDkS-f domain again for display purpose.

EXAMPLES

We demonstrate our method of deblended-data reconstruc-
tion with existing 2-D 2-C OBC data acquired in a shallow-
water environment offshore Abu Dhabi. The target levels are
Lower Cretaceous and Upper Jurassic successions, around 1.5
s in the seismic data. The number of shot points is trimmed to
100, and 100 for receiver points as well. The spatial sampling
intervals and apertures are 25 m and 2500 m, respectively,
both for the sources and receivers. First, pre-processing was
applied, such as random and linear noise attenuation and P-Z
summation. The consequent data are regarded as traditional
unblended data, P. Then, blended data, P′ ′, were numerically
synthesized with several blending scenarios. These data corre-
spond to noise-attenuated blended data. This is based on the
fact that there are several noise-attenuation techniques that
can be applied to non-uniform and under-sampled blended
data beyond aliasing and before deblending (e.g. Ishiyama
et al. 2016). For the synthesizing process, the blending fold
(i.e. the number of involved sources in blended-source array)
is 2. The maximum spatial separation is 1250 m, and the max-
imum random time shift is 0.256 s. This assumes a difficult
situation with a small separation of distance offsets and time
shifts between the shots in blended-source array. The ampli-
tude level is similar among the shots. Different amplitude lev-
els, though, can be treated by including corresponding scale
factors in the generalized deblending model, for example a
scale factor of 0.5 for two times larger amplitudes. The blend-
ing scenarios, represented by generalized blending operators
�S and �D for each case, are as follows:
1 Incoherent shooting only at the source side.

For marine,
2 Popcorn, or self-inhomogeneous shooting at the source side
in addition to the scenario 1, by using three types of frequency-
banded airguns in popcorn-shooting configuration for each
shot: low-frequency-banded subunit of 0/4-12/20 Hz; mid of
8/16-24/40 Hz; high of 16/32-96/125 Hz, with random and
multi-scale shot repetition by activating the subunits succes-
sively over a period of time rather than firing those at the same

time as a tuned one: 1 of 9 repetitions for low; 2 for mid; 6
for high.
3 Inhomogeneous shooting at the source side in addition to
the scenario 1, by using three types of frequency-banded air-
guns in marine DSA: low-frequency-banded source of 0/4-
12/20 Hz; mid of 8/16-24/40 Hz; high of 16/32-96/125 Hz,
with random spatial distribution and multi-scale spatial sam-
pling: 11% of 100 shot points for low; 22% for mid; 67% for
high.

The scenarios 2 and 3 are primarily for stationary acqui-
sition geometries. These scenarios, though, could be also for
streamer acquisition with an assumption of minimal influence
from the non-stationarity.

For land,
4 Inhomogeneous sweeping at the source side in addition to
the scenario 1, by using three types of frequency-banded vi-
brators in land DSA with the array configuration same as for
the scenario 3. The sweep length is 6.5 s each with its own
sweep rate.

For transition zone,
5 Combined case of the scenarios 1, 3 and 4, with random
spatial distribution: 50% of 100 shot points for airguns of
marine DSA; 50% for vibrators of land DSA.
6 Fully generalized case of the scenario 5 in addition to non-
uniform and under sampling both at the source and receiver
side (i.e. �D � I in terms of sampling), by applying 9% random
decimation each at the source and receiver side, consequently
about 25% random decimation in total.

The sequent figures show six examples with the blending
scenarios 1–6, respectively, followed by deblended-data re-
construction. Figures 4 and 5 show the first example. The first
column shows the inputs including the blended data, P′ ′, in the
common-source (and common-receiver) domain. The red and
magenta circles indicate the two sources and their shot loca-
tions of blended-source array in this particular section. For
the pseudo-deblended data in the first iteration, <P>P, the
blended signal is coherent but the blending noise is incoherent
in the common-receiver domain, indicating that the coherency
is effectively promoted in this domain. The second column
shows the outputs including the deblended data, <P>, after
300 iterations. In addition to the residual between blended
and reblended data, �P′ ′ = P′ ′ − <P′ ′>, the difference be-
tween unblended and deblended data, �PN = P − <P>, can
be displayed since the unblended data, P, are known here.
This also makes it possible to estimate the signal-to-noise ra-
tio (S/N), P/�PN, besides the residual, �P′ ′/P′ ′. The residual
significantly improved 24 dB down and the S/N consequently
rose 19 dB up. The same results are observed in terms of
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Figure 4 Results for the blending scenario 1. Inputs: (a) unblended data; (b) blended data; (c) and (d) pseudo-deblended data in the CS and
CR domain. Outputs after 300 iterations: (e) difference between (a) and (g) with the S/N value; (f) residual between (b) and reblended data
of (g) with its value; (g) and (h) deblended data each in the CS and CR domain. The red and magenta circles indicate the two sources and
their shot locations of blended-source array in this particular section. The unblended data were originally tapered at the edges both in the CS
and CR domain. This results in some imprints in other domains, for example the blending noise is not so visible around the middle for the
pseudo-deblended data in the CR domain, though this might not badly affect the examples.
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Figure 5 The same results as Fig. 4 but in the space-frequency domain.
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the temporal spectrum in the space-frequency domain. This
demonstrates that our method successfully reconstructed the
deblended data from the blended data, in particular separated
the interfered shot-generated wavefields quite well.

Figure 6 shows examples 2–5. The blended data, P′ ′, at
the second row and the deblended data, <P>, after 300 it-
erations with the S/N value at the fourth row; see Fig. 4(a)
for comparison with the unblended data, P. The two gener-
alized blending operators, �S, are shown at the first row for
the red one and at the third row for the magenta one in this
particular section. Examples 3 and 4 (Fig. 6b,c) indicate that
our method well reconstructed the full-frequency deblended
data from the blended data shot by the narrow frequency–
banded sources in DSA, thus it entirely recovered and bal-
anced the temporal spectrum correspondingly by interpolat-
ing data in each frequency band and combining those as the
full frequency band. Moreover, examples 2 and 4 (Fig. 6a,c)
indicate that our method properly reconstructed the designa-
tured deblended data from the signatured blended data. For
example 2 (Fig. 6a), our method restored notches caused by
popcorn shooting, thus it again recovered and balanced the
temporal spectrum by using information from nearby data.
Furthermore, example 5 (Fig. 6d) indicates that our method
simultaneously handled the blended data shot both by airguns
and vibrators in DSA.

Figures 7 and 8 show the last example in the order same
as for Figs 4 and 5. This is a fully generalized case so that all
the results are observed again, in particular, those for spec-
trum recovery and balancing in the space-frequency domain.
For the inputs, the unblended data (Fig. 8a) own the full fre-
quency band; the blended data (Fig. 8b) have the mid and
high frequency bands both from the red and magenta sources
in DSA in this particular section; the pseudo-deblended data
(Fig. 8c) have only the high frequency band from the red
source there. Nevertheless, the outputs (Fig. 8e–h) show that
our method entirely recovered and balanced the temporal
spectrum. In addition, this reveals that our method nicely re-
constructed the regularized and interpolated deblended data
from the non-uniform and under-sampled blended data. This
is clearly observed in terms of the temporal spectrum again in
the space-frequency domain. For all the examples, the S/N re-
sulted in more than 16 dB up, which is quite acceptable in gen-
eral in seismic processing. This demonstrates that our method
successfully worked even for the complicated blending situa-
tions without seriously affecting the deblending performance.
Conclusively, our method fully reconstructed the deblended
data from the fully generalized blended data, thus it totally
and simultaneously achieved all shot-generated-wavefields

separation, spectrum recovery and balancing, designature,
regularization and interpolation both at the source and re-
ceiver side.

D I S C U S S I O N S

The above examples show that our method works even for
complicated blending situations encoded by the complicated
generalized blending operators. We discuss the influence of
complexity on the deblending performance and a way for-
ward on this matter. First, the blending properties are ar-
bitrarily preset, or known acquisition parameters, thereby
can be encoded precisely in the operators. The complex-
ness of blending properties increases the uniqueness of shots
in blended-source array, which allows more straightforward
shot-generated wavefields separation and designature by de-
coding the operators, or deconvolving the signatures by the
inverse operation. Remember that the examples use blended
data numerically synthesized by the operators, thereby there
is no difference between real signatures and preset ones in the
operators. However, it is not a case in general for real blended
data. The difference of real signatures from preset ones might
appear, and affect the deblending performance, though this
could be remedied by the iterative optimization scheme in our
method. We will address this concern in our ongoing study by
analysing sensitivity to the difference.

Second, though the complexity of blending properties al-
lows more simple and robust operations for shot-generated-
wavefields separation and designature, this leads to more
challenging situations for spectrum recovery and balancing,
regularization and interpolation. There is a trade-off: more
complicated generalized blending operators improve the for-
mer operations, but make the latter ones more difficult. For
instance, for a simple case (e.g. example 1), the shot-generated
wavefields are overlapped and interfered with each other even
after the pseudo-deblending (Fig. 4c). Besides, for a compli-
cated case (e.g. example 6), pseudo-deblended are the desig-
natured and frequency-banded wavefields, corresponding to
filtering results naturally in the frequency domain (Fig. 7c).
This is then switched to a data-reconstruction problem for
spectrum recovery and balancing, corresponding to regulariz-
ing, interpolating data in each frequency band and combining
those as the full frequency band. This is solved by the iterative
optimization scheme in our method. The resulting signal-to-
noise ratio is a bit lower than that of the simple case in these
examples.

Third, the number of sources in blended-source array was
set as 2, and all the blending scenarios achieved deblending
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Figure 6 Results for the blending scenarios 2–5: (a) scenario 2 of marine popcorn-shooting case; (b) scenario 3 of marine DSA case; (c) scenario
4 of land DSA case; (d) scenario 5 of a combined case of TZ DSA. Blended data at the second row and deblended data after 300 iterations with
the S/N value at the fourth row; see Fig. 4(a) for comparison with the unblended data. The amplitudes of blended data are two times scaled for
display purpose. The red and magenta circles indicate the two sources and their shot locations of blended-source array in this particular section.
The two generalized-blending operators are shown at the first row for the red one and at the third row for the magenta one each in the time
and frequency domain. The blended wavefields are shot by a high-frequency-banded source of the red one, and a mid-frequency-banded source
of the magenta one for (b), (c) and (d); also shot by an airgun of the red one, and a vibrator of the magenta one for (d).

well in the examples. However, increasing the blending fold
leads to poorer deblending in general. This is because the shot-
generated wavefields are more severely overlapped and inter-
fered with each other. The randomly scattered blending noise
dominates and surpasses the sparsely compressed blended sig-
nal in the transform domain; consequently, the iterative opti-
mization scheme often converges in local minima, and hardly
reaches a stopping criterion in our method. Nevertheless, we
feel in our ongoing study that a complicated case (e.g. more
blending folds in example 6) can achieve successful deblend-
ing even in this difficult situation, though a simple case (e.g.

more blending folds in example 1) cannot. All the discussions
come from the generalized blending and deblending models,
which can explain any blending properties, or any blending
methods. With this highly flexible and tolerant model, we
do face a challenging question: what is an optimal blended-
acquisition design that is the most suitable for deblended-data-
reconstruction processing. We will address this challenge in
our ongoing study by blended-acquisition designing based on
the deblending performance. Furthermore, we will acquire a
pilot blended data and reconstruct the deblended data in order
to validate our method.

C© 2019 European Association of Geoscientists & Engineers, Geophysical Prospecting, 67, 1852–1866



Deblended-data reconstruction 1863

(a)

(b)

P’’

P CS

CS

(c)

CS

(d)

CR

(e)

CS

17 dB

CS

(f)
-23 dB

(g)

CS

(h)

CR

<P>P

<P>P

<P>301

<P>301

∆PN301

∆P’’300

t (
s)

t (
s)

t (
s)

t (
s)

t (
s)

t (
s)

t (
s)

t (
s)

Figure 7 Results for the blending scenario 6 of a fully generalized case of TZ DSA in the order same as for Fig. 4. The amplitudes of (b) and (f)
are two times scaled for display purpose. The blended wavefields are shot as same as for Fig. 6(d).
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Figure 8 The same results as Fig. 7 but in the space-frequency domain.
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Finally, we discuss the application of our methodol-
ogy to time-lapse seismic monitoring as it ensures high
repeatability of the surveys. The examples suggest that our
methodology could be used for time-lapse seismic monitoring,
which involves repeating surveys over an oil and gas field. The
objective is to determine changes occurring in a reservoir in an
intervening time, such as caused by hydrocarbon production
or fluid injection. The results are commonly displayed as dif-
ferences of seismic properties representing the changes in the
reservoir like saturation and pressure. The difference is usu-
ally small, in particular in carbonate reservoirs. Detectability
of seismic properties and repeatability of seismic surveys are
of great importance in determining a true signal other than ar-
tifacts. To achieve high repeatability, monitor surveys should
follow the design of the baseline survey, for example, posi-
tioning sources and receivers as the baseline survey, as far as
possible. However, oil and gas fields often become congested
after the baseline survey due to additional infrastructure like
production facilities, pipelines and rigs, making it impossible
to reoccupy the same source and receiver positions for moni-
tor surveys. Furthermore, the design of the legacy survey often
becomes poorer compared to best practices in the industry to
be used for monitor surveys, making it also difficult that the
design is completely identical on the baseline and monitor
surveys. This situation makes it quite challenging to ensure
high repeatability in time-lapse seismic monitoring. Neverthe-
less, using our methodology, we can reconstruct from blended
data on an irregular observed grid of a monitor survey into
corresponding deblended data on a regular and fine nominal
grid, which is adaptable for the baseline survey. Therefore,
our methodology could reduce the repeatability problem, in
which reconstructing deblended data in monitor surveys is
much more realistic and reliable than using and positioning
sources and receivers exactly as the baseline survey. For in-
stance, in the examples, suppose that unblended data, P, are
from a traditional baseline survey, and blended data, P′ ′, are
from a generalized blended monitor survey. This suggests that
our method can fully reconstruct deblended data, <P>, from
the monitor survey, which is comparable with the unblended
data from the baseline survey. Again, we will acquire a pilot
blended survey in a time-lapse manner in order to validate our
methodology.

CONCLUSIONS

We established generalized blending and deblending mod-
els and a method of deblended-data reconstruction using
these models. Our methodology is quite practical, and can

handle real situations. Indeed, this can handle incoherent and
inhomogeneous shooting, signaturing, non-uniform and un-
der sampling both at the source and receiver side for gen-
eralized blending; besides, shot-generated-wavefields separa-
tion, spectrum recovery and balancing, designature, regular-
ization and interpolation again both at the source and receiver
side for generalized deblending. Our method of deblended-
data reconstruction succeeded to fully reconstruct deblended
data from the fully generalized blended data. Therefore, we
should acquire blended data and reconstruct deblended data
without serious problems but with the benefit of blended
acquisition.
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