
Delft University of Technology
Faculty of Electrical Engineering, Mathematics & Computer Science

Delft Institute of Applied Mathematics

Analysis of Microscopic Images: Boundary
Detection Using a Modified Mumford-Shah Model

Analyse van Microscopische Afbeeldingen:
Grensdetectie met behulp van een Gemodificeerd

Mumford-Shah Model

Bachelor thesis submitted to the
Delft Institute of Applied Mathematics

as part to obtain

the degree of

BACHELOR OF SCIENCE
in

APPLIED MATHEMATICS

by

ARTHUR KERST

Delft, the Netherlands
June 2018

Copyright © 2018 by Arthur Kerst. All rights reserved.

BSc thesis APPLIED MATHEMATICS

“Analysis of Microscopic Images:
Boundary Detection Using a

Modified Mumford-Shah Model ”

“Analyse van Microscopische Afbeeldingen:
Grensdetectie met behulp van een

Gemodificeerd Mumford-Shah Model”

Arthur Kerst

Delft University of Technology

Supervisor

Dr. N.V. Budko

Other members of the committee

Drs. E.M. van Elderen Dr. J.G. Spandaw

June, 2018 Delft

1 Abstract

Deformable energy-minimizing contours are used in image analysis, particularly to detect boundaries
from objects. From the Mumford-Shah model we derive an equation to move such contours towards the
boundary, which minimizes the functional. The external force is computed using the mean value of the
inside and outside area of the contour. Various image filtering methods are proposed to enhance this
model. We introduce an improved Mumford-Shah model to improve the computational time without
losing accuracy. An artificial force is added at the beginning of the simulation to quickly yield an approx-
imation of the contour. Finally, we consider a simplified version of the model, which we solve analytically.
The solution is used to find suitable parameters for the model.

Vervormbare energie-minimaliserende contouren worden gebruikt in beeldanalyse, in het bijzonder om
randen van objecten te detecteren. Van het Mumford-Shah model ontlenen we een vergelijking om con-
touren naar de grens te verplaatsen, zodat de functionaal wordt geminimaliseerd. De externe kracht
wordt berekend met behulp van de gemiddelde waarde van het binnen- en buitengebied van de contour.
Verschillende beeldbewerking methoden worden voorgesteld om dit model te verbeteren. We introduceren
een verbeterd Mumford-Shah model om de rekentijd te verbeteren zonder de nauwkeurigheid te verliezen.
Aan het begin van de simulatie wordt een kunstmatige kracht toegevoegd om snel een benadering van
de contour te verkrijgen. Ten slotte beschouwen we een vereenvoudigde versie van het model, die we
analytisch oplossen. De oplossing wordt gebruikt om geschikte parameters voor het model te vinden.

4

Contents

1 Abstract 4

2 Introduction 6

3 Functional Minimization 7
3.1 Introduction . 7
3.2 Mumford-Shah Model . 7

3.2.1 Minimizing in u with fixed C . 7
3.2.2 Minimizing in C . 8

3.3 Energy Minimization by Gradient Descent . 13

4 Numerical Methods 15
4.1 Space Discretization . 15
4.2 Time Discretization . 17

4.2.1 Forward Euler . 17
4.2.2 Backward Euler . 19

5 Image Filtering 21
5.1 Locating the Center of a Cell . 21

5.1.1 Cell Center Method . 21
5.1.2 Cell Vertex Method . 23

5.2 Down-sampling . 26
5.3 Binary Image . 27
5.4 Removing Noise from Binary Images . 30

6 Improvements to the Mumford-Shah Model 38
6.1 Extra Internal Force . 38
6.2 Moving Area . 39
6.3 Improved Mumford-Shah Model . 41

6.3.1 Jump Phase . 41
6.3.2 Mumford-Shah Phase . 45
6.3.3 Inflation . 50
6.3.4 Results . 52

7 Analytical Solution of the Simplified Mumford-Shah Model 57
7.1 Simplified Mumford-Shah Model . 57
7.2 Derivation of the Analytical Solution . 57
7.3 Implementation . 59
7.4 Results . 60
7.5 Parameters for a Steady Contour . 62
7.6 Choosing the Parameters . 63

8 Conclusion 67

9 Discussion 68

A Code 70

5

2 Introduction

The aim of this project is to improve the development of seed potato by analyzing microscopic images for
the company HZPC. HZPC is an innovative global market leader in potato breeding, seed potato trade
and product concept development1. Breeders develop seed potato varieties that optimally match local
growing conditions. In order to improve the development of seed potato, microscopic images are used
which contain useful information about the plant phenotype. The images are studied to find parame-
ters, such as the number of cells, areas and diameters of cells, ellipticity of cells and other geometrical
parameters. Our goal is to locate the boundary of the cells; this can be used to determine the previously
mentioned parameters.

An important problem in image analysis is to find the boundary of objects in an image. Different
models with deformable contours have been proposed, each with a different approach. Every model makes
use of a functional, which describes the forces working on the contour. In [5] a gradient vector flow (GVF)
has been introduced to solve the problem using the vector field of the image. The boundary can also be
found by inflating the contour, as has been done in the balloon model [4].
In this study, the Mumford-Shah model [1] is discussed and applied, which uses the image date from
the inside and outside of the contour to locate the boundary. With this model, we wish to find the
boundaries of potato cells in a large image. We assume that these object are smooth as in [1], [4] and [5],
such that we can use smooth deformable contours. The contours can move under the influence of internal
and external forces. The external force is designed to attract the contour towards the boundary, and the
internal force is necessary to keep the contour smooth. These forces are described by the Mumford-Shah
functional. The optimal solution of the problem corresponds to the minimum of the functional, thus our
goal is to minimize this functional.

Besides the model, other techniques from graph theory and image filtering are discussed, which have
been used to yield a desired result. Such as; locating the center of a cell using Euler’s formula and
removing noise using an Gaussian blur filter.

Since our problem consists of finding the boundaries in a large image, the computational time is fairly
important. We introduce a new improved Mumford-Shah model which does not necessarily improves the
accuracy, but rather the execution time.
Furthermore, we have considered a simplified Mumford-Shah model. The model is solved analytically
with Fourier series. The solution is useful for investigating the influence of parameters of the model on
the time evolution of the contour

1www.hzpc.com

6

3 Functional Minimization

3.1 Introduction

For this problem we define a contour in a domain. We adapt the shape of this contour in every time
step until the contour is at the boundary of the cell. In order to do this, we have to define a functional
E(u,C), where u is an approximation function of a given image f and C the contour. The idea of this
method is to minimize this functional, by optimizing the contour C and the approximation function u. In
order to use the functional for our model, we first have to find the Euler-Lagrange equation by computing
its variation with respect to the unknowns u and C. The Euler-Lagrange can be used in our model to
adapt the shape of the contour.

3.2 Mumford-Shah Model

The image domain is denoted by Ω ⊂ R2. Let f : Ω→ R be a given gray-scale image. The domain Ω is
split up in the inside and outside area of the contour C, denoted by Ωi and Ωo. The contour C is given
by r(s), with 0 ≤ s < 1.

Ω = Ωi ∪ Ωo ∪ C.

The functional E of the modified Mumford-Shah model [2] to be minimized is given by,

E(u,C) =

∫
Ω

(f − u)2dxdy +

∫
Ω\C
|∇u|2dxdy +

1

2
ν

∫ 1

0

|rs|2ds. (1)

The original Mumford-Shah functional [1] has the term 1
2ν
∫ 1

0
|rs|ds instead of 1

2ν
∫ 1

0
|rs|2ds. We choose

to use the latter term, such that the Euler-Lagrange equation can be found in a more convenient manner
[2]. The Euler-Lagrange equation will be discussed later in this section.

The idea of the Mumford-Shah model is to compute the optimal approximation of the general image
function f(x, y) by a piecewise-smooth function u(x, y). However, we will be using a more simple case
of the Mumford-Shah model, where u(x, y) is a piecewise-constant function. This is called the cartoon
model [2]. The functional E then simplifies to

E(u,C) =

∫
Ω

(f − u)2dxdy +
1

2
ν

∫ 1

0

|rs|2ds. (2)

We can rewrite this as

E(u,C) =

∫
Ωi

(f − ui)2dxdy +

∫
Ωo

(f − uo)2dxdy +
1

2
ν

∫ 1

0

|rs|2ds. (3)

where ui and uo are constant functions inside Ωi and Ω0 respectively. Here, Ωi is the area inside and Ωo
the area outside the contour C.

3.2.1 Minimizing in u with fixed C

We want to find the optimal function u such that the functional E is minimized for that function u. Let
us assume that C is fixed and that u is optimal. We define a new functional ε 7→ A(ε) = E(u + εv) for
all ε ∈ R>0 and all real valued constant functions v. This is

A(ε) =

∫
Ωi

(f − ui − εv)2dxdy +

∫
Ωo

(f − uo − εv)2dxdy +
1

2
ν

∫ 1

0

|rs|2ds. (4)

Taking the derivative with respect to ε yields

d

dε
A(ε) = −2

∫
Ωi

v(f − ui − εv)dxdy − 2

∫
Ωo

v(f − uo − εv)dxdy.

7

We must have E(u,C) = A(0) ≤ A(ε) = E(u + εv, C) for all real valued functions v and all ε ∈ R>0,
since u is optimal for E. Thus we impose for all such v the following, as has been done in [3]:

d

dε
A(0) = 0. (5)

Then we get

−2v

∫
Ωi

(f − ui)dxdy − 2v

∫
Ωo

(f − uo)dxdy = 0.

Now we use that ui, u0 and v are constant functions. Then we yield

ui

∫
Ωi

1dxdy + uo

∫
Ωo

1dxdy =

∫
Ωi

fdxdy +

∫
Ωo

fdxdy.

This equation holds if

ui =

∫
Ωi
fdxdy∫

Ωi
1dxdy

=: meanΩi(f), u0 =

∫
Ω0
fdxdy∫

Ω0
1dxdy

=: meanΩo(f), (6)

thus we find that the functional is minimized by setting ui = meanΩi(f) and uo = meanΩo(f). Therefore
it is sufficient to minimize

E(C) =

∫
Ωi

(f − ui)2dxdy +

∫
Ωo

(f − uo)2dxdy +
1

2
ν

∫ 1

0

|rs|2ds, (7)

with ui and uo as described as in (6).

3.2.2 Minimizing in C

In the previous section we minimized with respect to u and with fixed C, but now we want to minimize
the functional with respect to C. We assume that (u,C) is a minimizer of E and we vary C. The variation
Cε of C is shown in Figure 1 and will be defined later in this section.

Figure 1: The variation Cε of the contour C.

8

Here, Ωεi is the intersection of the inside area of Cε and the outside area of C and Ωεo is the intersection
of the outside area of Cε and the inside area of C.

The set of intersection points of C and Cε is denoted by S. Let Si be the set of pairs of intersection
points, such that for an element of Si, say sj = (sj,1, sj,2), the contour Cε is outside the contour C for
every s ∈ [sj,1, sj,2]. And So is the set of pairs of intersection points, such that the contour Cε is inside the
contour C for every s ∈ [sj,1, sj,2]. For the example in Figure 1 that would be S = {s1, s2, s3, s4, s5, s6},
Si = {(s2, s3), (s4, s5), (s6, s1)} and So = {(s1, s2), (s3, s4), (s5, s6)}.

The variation Cε is for all positive piecewise smooth functions v, such as in Figure 2.

Figure 2: Positive piecewise smooth function v.

For the variation Cε we have to find an expression. The contour C is given by r(s) and the variation

of the contour Cε = C + C̃ε is described by the following representation:

rε(s) = r(s) + εv(s)ñ(s), 0 ≤ s < 1, (8)

for all ε ∈ R>0 and all positive piecewise smooth functions v. Here, ñ is defined by

ñ(s) =

{
n, s ∈ [sj,1, sj,2] with sj ∈ Si
−n, s ∈ [sj,1, sj,2] with sj ∈ So

, (9)

where n is the unit normal vector to the contour C.

This modified unit normal vector ñ is used, in order to get a single expression for the variation Cε.
If we decided to use n, we would get r(s) + εv(s)n(s) and r(s) − εv(s)n(s) for elements of Si and So,
respectively. See Figure 3. We also define a modified function ṽ given by

ṽ(s) =

{
v, s ∈ [sj,1, sj,2] with sj ∈ Si
−v, s ∈ [sj,1, sj,2] with sj ∈ So

, (10)

such that

ṽ(s)n(s) = v(s)ñ(s), ∀s ∈ [0, 1). (11)

9

Figure 3: Vector representation of the variational contour Cε.

Again, we define a new functional ε 7→ B(ε) = E(u,C+ C̃ε) = E(u,Cε). The functional then becomes

B(ε) =

∫∫
Ωi

(f − ui)2dxdy +

∫∫
Ωo

(f − uo)2dxdy +∫∫
Ωεi

[
(f − ui)2 − (f − uo)2

]
dxdy +∫∫

Ωεo

[
(f − uo)2 − (f − ui)2

]
dxdy +

1

2
ν

∫ 1

0

|(r + εṽn)s|2ds.

For the next part we introduce a coordinate transformation, since the integrals over Ωεi and Ωεo are
difficult to evaluate with Cartesian coordinates. This coordinate transformation will only be used for the
the integrals over Ωεi and Ωεo.

x(s, ξ)
y(s, ξ)

=

{
xc(s) + ξñx(s)
yc(s) + ξñy(s)

, s ∈ [0, 1), ξ ≥ 0.

The determinant of the Jacobian matrix is

∣∣J(s, ξ)
∣∣ =

∣∣∣∣∣∂x∂s ∂x
∂ξ

∂y
∂s

∂y
∂ξ

∣∣∣∣∣ =
∂x

∂s

∂y

∂ξ
− ∂x

∂ξ

∂y

∂s

= (x′C + ξñ′x)ñy − (y′C + ξñ′y)ñx.

The area {(x, y) ∈ Ωεi/o(sj)} transforms to {(s, ξ)|sj,1 ≤ s ≤ sj,2, 0 ≤ ξ ≤ εv(s)}. Eventually we get the

10

following functional B(ε):

B(ε) =

∫∫
Ωi

(f − ui)2dxdy +

∫∫
Ωo

(f − uo)2dxdy +

∑
sj∈Si

∫ sj,2

sj,1

∫ εv

0

[
(f − ui)2 − (f − uo)2

] ∣∣∣∣
r+ξñ

J(s, ξ)dξds+

∑
sj∈So

∫ sj,2

sj,1

∫ εv

0

[
(f − uo)2 − (f − ui)2

] ∣∣∣∣
r+ξñ

J(s, ξ)dξds+

1

2
ν

∫ 1

0

|(r + εṽn)s|2ds.

First we will look at the first part of the functional B1(ε), which consists of the first four integrals. We
begin by taking the derivative with respect to ε;

d

dε
B1(ε) =

∑
sj∈Si

∫ sj,2

sj,1

d

dε

∫ εv

0

[
(f − ui)2 − (f − uo)2

] ∣∣∣∣
r+ξñ

J(s, ξ)dξds+

∑
sj∈So

∫ sj,2

sj,1

d

dε

∫ εv

0

[
(f − uo)2 − (f − ui)2

] ∣∣∣∣
r+ξñ

J(s, ξ)dξds.

For the first two integrals we use the Leibniz’s rule.

d

dε
B1(ε) =

∑
sj∈Si

∫ sj,2

sj,1

[
(f − ui)2 − (f − uo)2

] ∣∣∣∣
r+εvñ

J(s, ξ)

∣∣∣∣
ξ=εv

v(s)ds+

∑
sj∈So

∫ sj,2

sj,1

[
(f − uo)2 − (f − ui)2

] ∣∣∣∣
r+εvñ

J(s, ξ)

∣∣∣∣
ξ=εv

v(s)ds.

The function inside the integral is evaluated at ξ = εv. For the first integral, that is∫ sj,2

sj,1

[
(f − ui)2 − (f − uo)2

] ∣∣∣∣
r+εvñ

J(s, ξ)

∣∣∣∣
ξ=εv

v(s)ds =∫ sj,2

sj,1

[
(f − ui)2 − (f − uo)2

] ∣∣∣∣
r+εvñ

[
(x′C + εvñ′x)ñy − (y′C + εvñ′y)ñx

]
v(s)ds.

This can also be done for the second integral.

We assumed that (u,C) is a minimizer of E. We must have E(u,C) = B(0) ≤ B(ε) = E(u,Cε =

C + C̃ε) for all real valued function v(s) and all ε > 0. Therefore we impose B′(0) = 0. We write this as

d

dε
B(ε)

∣∣∣∣
ε=0

= 0. (12)

For ε = 0 the functional B1 becomes

d

dε
B1(ε)

∣∣∣∣
ε=0

=
∑
sj∈Si

∫ sj,2

sj,1

[
(f − ui)2 − (f − uo)2

] ∣∣∣∣
r

[x′C ñy − y′C ñx] v(s)ds

+
∑
sj∈So

∫ sj,2

sj,1

[
(f − uo)2 − (f − ui)2

] ∣∣∣∣
r

[x′C ñy − y′C ñx] v(s)ds.

Now we start using the unit normal vector n to the contour C again instead of ñ from eq. (9). For

sj ∈ Si we have n = ñ and for sj ∈ So we have n = −ñ, with n =

(
nx
ny

)
. The integrals can be added

together, which results in

11

d

dε
B1(ε)

∣∣∣∣
ε=0

=
∑

sj∈Si∪So

∫ sj,2

sj,1

[
(f − ui)2 − (f − uo)2

] ∣∣∣∣
r

(
−y′c
x′c

)
· nv(s)ds.

The summation is now over all elements of Si and So, this means that the integration is over all s ∈ [0, 1).
Thus, instead of integrating over small parts of the domain [0, 1), we can simply integrate from 0 to 1;

d

dε
B1(ε)

∣∣∣∣
ε=0

=

∫ 1

0

[
(f − ui)2 − (f − uo)2

] ∣∣∣∣
r

(
−y′c
x′c

)
· nv(s)ds.

Now we look at the remaining part of the functional B2(ε) = 1
2ν
∫ 1

0
|(r + εṽn)s|2ds. This can be

rewritten as

B2(ε) =
1

2
ν

∫ 1

0

(∣∣∣∣drds
∣∣∣∣2 + 2ε

dr

ds
· d(ṽn)

ds
+ ε2

∣∣∣∣d(ṽn)

ds

∣∣∣∣2
)
ds.

Then, we take the derivative with respect to ε;

d

dε
B2(ε) =

1

2
ν

∫ 1

0

(
2
dr

ds
· d(ṽn)

ds
+ 2ε

∣∣∣∣d(ṽn)

ds

∣∣∣∣2
)
ds.

We can also apply eq. (12) to the remaining part of the functional B2,

d

dε
B2(ε)

∣∣∣∣
ε=0

= ν

∫ 1

0

dr

ds
· d(ṽn)

ds
ds

=
dr

ds
· ṽn

∣∣∣∣1
0

− ν
∫ 1

0

d2r

ds2
· ṽnds.

The contour C and its variation Cε are both continuous curves, and therefore the following must hold:

ṽn(0) = ṽn(1),

dr

ds

∣∣∣∣
s=0

=
dr

ds

∣∣∣∣
s=1

.

This results in dr
ds · ṽn

∣∣∣∣1
0

= 0 and then we get

d

dε
B2(ε)

∣∣∣∣
ε=0

= −ν
∫ 1

0

d2r

ds2
· ṽnds.

Finally we put the two parts of the functional back together B = B1 +B2. This gives us

d

dε
B(ε)

∣∣∣∣
ε=0

=

∫ 1

0

[
(f − ui)2 − (f − uo)2

] ∣∣∣∣
r

(
−y′c
x′c

)
· v(s)nds+−ν

∫ 1

0

d2r

ds2
· ṽ(s)nds

=

∫ 1

0

([
(f − ui)2 − (f − uo)2

] ∣∣∣∣
r

(
−y′c
x′c

)
v(s)− ν d

2r

ds2
ṽ(s)

)
· nds = 0.

This is equal to 0, because d
dεB(0) = 0. Since equation (13) must hold for every v(s) and ṽ(s), we can

conclude that [
(f − ui)2 − (f − uo)2

] ∣∣∣∣
r

(
−y′c
x′c

)
− ν d

2r

ds2
= 0.

We write

nC =

(
−y′c
x′c

)
, (13)

12

where y′c and x′c are evaluated at the original contour C. This gives us the equation[
(f − ui)2 − (f − uo)2

] ∣∣∣∣
r

nC − ν
d2r

ds2
= 0. (14)

This is the Euler-Lagrange equation of the minimization problem. In contrast to the original functional,
this equation can be used to actually find the contour C.

3.3 Energy Minimization by Gradient Descent

The Euler-Lagrange equation is time independent, but since we want to iteratively minimize the energy
with respect to the contour C and the approximation function u, it is useful to make it time dependent by
using an artificial time parameter. The minimization problem can be solved by gradient descent, leading
to the following equation

∂r

∂t
= −∂E

∂r
= [e+(s, t)− e−(s, t)]nC(s, t) + ν

∂2r

∂s2
(s, t). (15)

The terms e+ and e− denote the energy densities

e+ = (f − uo)2, e− = (f − ui)2

on the contour, and nC is the outer normal vector given by eq. (13). This gives us an equation which
we can use to find the optimal contour. Equation (15) consists of two parts; an external force normal to
contour C which moves the contour to the boundary, and an internal force which discourages stretching.
The internal force is needed to make the contour smooth. The external force is given by

F = [e+ − e−]nC .

The behavior of this force is made clear in the next part. Let us consider an example with a given
gray-scale image f : Ω→ [0, 1], an approximation function u and a contour C at a certain time step. The
values of ui and uo are evaluated by computing the mean value of f of the area inside and outside the
contour, respectively. For this example we take the values ui = 0.6 and uo = 0.2. See Figure 4.

Figure 4: Image of a cell with contour C.

The contour has not reached the cell boundary yet. Let us compute the external force for a point on
the contour with value f = 0.6:

F =
[
(f − uo)2 − (f − ui)2

]
nC

=
[
(0.6− 0.2)2 − (0.6− 0.6)2

]
nC

= 0.16nC .

13

The force is positive, in the direction of the normal vector. This causes the contour to move towards the
boundary.

In each time step we determine the values of ui and uo, such that the external force can be computed.
We also determine the internal force. These two forces makes the contour move.

If a point on the contour reaches the boundary, the intensity of that points will decrease. Consider
the following situation where f = 0.4 for a certain point. See figure 5. The external force then becomes:

F =
[
(f − uo)2 − (f − ui)2

]
nC

=
[
(0.4− 0.2)2 − (0.4− 0.6)2

]
nC

= 0.

We find that the external force is 0. Thus, if the value of a point is halfway between ui and uo, then
there is no external force.

(a) The intensity of f , ui and uo. (b) Point inside a cell near the boundary.

Figure 5: The intensity is given by the blue line. The external force at this point is 0.

Throughout this report we will use an additional internal force; the bending force. This force prevents
the contour from bending too much, its weighting parameter is denoted by κ. The equation with this
bending force is given by:

∂r

∂t
= −∂E

∂r
= [e+ − e−]nC + ν

∂2r

∂s2
− κ∂

4r

∂s4
. (16)

Since this is an improvement to the modified Mumford-Shah model, this will be discussed in Section 6.1.

14

4 Numerical Methods

In the previous section we derived a equation which we can numerically solve by using an artificial time
parameter. In this section we will discuss the numerical methods used to solve the problem. First we
will discretize the original problem in space, then we will dicretize the obtained system in time.

4.1 Space Discretization

Equation (15) needs to be discretized in space. For this discretization we use Finite Difference. The
contour has periodic boundary conditions and the contour r is equal to the initial contour r0 at t = 0.
The equation with boundary and initial conditions then becomes

(P)


rt = [e+(s, t)− e−(s, t)]nC(s, t) + νrss(s, t), t > 0, s ∈ [0, 1)

r(0, t) = r(1, t), t > 0
rs(0, t) = rs(1, t), t > 0
r(s, 0) = r0(s), s ∈ [0, 1)

, (17)

As stated, we will discretize problem (P) using Finite Difference. We will use N equidistant unknowns
for s. We decide to scale the values of s, such that the distance between si and si+1 is equal to 1 for
every i. Then we get si = i for i = 1, 2, ..., N and with h = ∆s = 1. We will derive the Finite Difference
equation for an internal node, and the two edge nodes for i = 1 and i = N .

Since the outer normal vector nC is of the form

(
f(y)
f(x)

)
, we will get a mixed system for the x and

y-component. Therefore it is convenient to divide the equation into two part; the x-component and the

y-component for r =

(
x
y

)
. We will discretize these two components separately and put these at the end

together. We rewrite problem (P) as{
xt = [e+(s, t)− e−(s, t)](−y′) + νxss(s, t), t > 0, s ∈ [0, 1]
yt = [e+(s, t)− e−(s, t)]x′ + νyss(s, t), t > 0, s ∈ [0, 1]

, (18)

For this part we only consider the equation for the x-component of r and afterwards we will also apply
this to the y-component. First we look at the internal force term xss, where the discretized value of x is
denoted by x̃. This is discretized using central difference.

f ′′i =
1

h2
(fi−1 − 2fi + fi+1) +O(h2). (19)

In our case we have h = ∆s = 1, thus for an internal node i = 2, ..., N − 1 we have

x̃′′i = x̃i−1 − 2x̃i + x̃i+1.

For the edge nodes, we introduce two virtual points s0 and sN+1. Since r is periodic, we have r(s0) =
r(sN) and r(sN+1) = r(s1). Consider i = 1, then we get

x̃′′1 = x̃0 − 2x̃1 + x̃2

= x̃N − 2x̃1 + x̃2,

because x(s0) = x(sN). For i = N , we have

x̃′′N = x̃N−1 − 2x̃N + x̃N+1

= x̃N−1 − 2x̃N + x̃1,

because x(sN+1) = x(s1). The discretization of xss is xss = Ax, where A is the matrix

A =


−2 1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 1 −2

 . (20)

15

For the discretization of −y′ we also use central difference. In this way, the order of both numerical
schemes is 2. The numerical scheme for the first derivative is as follows:

f ′i =
1

2h
(fi+1 − fi−1) +O(h2). (21)

For an internal point si, this is

−ỹ′i =
1

2
(ỹi−1 − ỹi+1).

For the edge nodes we use the virtual points again. Then we get:

ỹ1 =
1

2
(ỹN − ỹ2),

and

ỹN =
1

2
(ỹN−1 − ỹ1).

This results in the discretization ỹ′ = Bỹ, where B is the matrix

B =


−1 1

1 −1
. . .

. . .

1 −1
−1 1

 . (22)

Now we look at the factor [e+(s, t)− e−(s, t)]. For a point si, this is

(e+ − e−)i = [(f(x(si), y(si))− uo)2)− f(x(si), y(si))− ui)2],

where uo and ui are defined as in eq. (6). If we put these values in a diagonal matrix, we get

E =


(e+ − e−)1

(e+ − e−)2

. . .

(e+ − e−)n−1

(e+ − e−)n


The total space discretization of the x-component is

dx̃

dt
= EBx̃ + νAx̃ (23)

The only part of the discretization of the y-component that differs form the x-component is the first
derivative x′. For x′ we have the discretization x̃′ = Cx̃, where C = −B. The total discretization of the
y-component is

dỹ

dt
= ECỹ + νAỹ. (24)

Combining eq. (23) and (24) yields;

d

dt

(
x̃
ỹ

)
=

(
νA EB
EC νA

)(
x̃
ỹ

)
. (25)

This is the obtained system after discretizing problem (P) in space.

16

4.2 Time Discretization

In the previous section we discretized the problem in space. The next step is to discretize the system in
time. In this section we will discuss two different time integration methods; Forward Euler and Backward
Euler. We will compare the results of both methods for different time steps. For this we take a small
image where we want to find the boundary of one cell. This can be seen in Figure 6. The contour has 30
points, and the simulation starts with a given initial contour. In this section, a bending force is already
applied, which will be introduced later in Section 6.1.

Figure 6: Image with one cell and a initial contour.

4.2.1 Forward Euler

First we will discretize in time using Forward Euler. That is, given the solution r̃k =

(
x̃
ỹ

)k
at time

tk = k∆t, the solution at time tk+1 can be found by computing the following sytem(
x̃
ỹ

)k+1

=

(
x̃
ỹ

)k
+ ∆t

(
νA EB
EC νA

)(
x̃
ỹ

)k
. (26)

We simulate this method for different time steps to see if this method works correctly for our model. Since
Forward Euler is not conditionally stable, not every choice of time step ∆t leads to a good result. However,
we only have to perform a matrix multiplication for this method, which has a small computational time.
This is an advantage of Forward Euler. We simulate this method for one cell for different time steps.
The results can be seen in Figure 7.For points of the contour we use negative orientation, such that the
normal vector is pointed outwards.

17

(a) ∆t = 1.0 and steps = 10000. (b) ∆t = 5.0 and steps = 2000.

(c) ∆t = 8.0 and steps = 1250. (d) ∆t = 10.0 and steps = 1000.

Figure 7: Mumford-Shah model with Forward Euler.

As expected, this method is not stable for every ∆t. For ∆t = 10.0 the contour is not smooth anymore,
but this method still works quite well for ∆t = 5.0. The method gives different results for different time
steps ∆t, even though tend = ∆t ∗ steps = 10000 is the same for each simulation. This can be explained
by the fact that the method is not linear.

The execution time of the simulations can be seen in the Table 1.

∆t Time
1.0 5.98 s
5.0 3.52 s
8.0 1.05 s
10.0 0.97 s

Table 1: Execution time of Forward Euler for different time steps ∆t.

18

The execution time is very large. Eventually we want to find the boundaries of all cells in a full image,
which contains about 500 cells. If we use Forward Euler with ∆t = 5.0, we will have a total execution
time of 30 minutes. This is of course not acceptable, so we have to find a way to solve this problem.

4.2.2 Backward Euler

Secondly we will discretize in time using Backward Euler. That is, given the solution r̃k at time tk = k∆t,
the solution at time tk+1 can be found by solving the following system for r̃k+1;(

x̃
ỹ

)k+1

=

(
x̃
ỹ

)k
+ ∆t

(
νA EB
EC νA

)(
x̃
ỹ

)k+1

. (27)

We can rewrite this as (
x̃
ỹ

)k+1

=

(
I2N −∆t

(
νA EB
EC νA

))−1(
x̃
ỹ

)k
, (28)

where I2N is the 2N × 2N identity matrix. For this method we have to compute an inverse matrix.
Unfortunately, this matrix is not constant in time, since we have to update E in each step. This increases
the computational time, but since Backward Euler is unconditionally stable, we can take larger time steps
than with Forward Euler. We also simulate this method for one cell for different time steps. The results
are shown in Figure 8.

19

(a) ∆t = 1.0 and steps = 10000. (b) ∆t = 5.0 and steps = 2000.

(c) ∆t = 10.0 and steps = 1000. (d) ∆t = 15.0 and steps = 667.

Figure 8: Mumford-Shah model with Backward Euler.

As expected, we find that Backward Euler behaves more stable, which leads to smoother contours.
For ∆t = 10.0 we still have an acceptable result in contrast to Forward Euler. The execution time of the
simulations can be seen in Table 2.

∆t Time
1.0 15.94 s
5.0 3.5 s
10.0 1.87 s
15.0 1.43 s

Table 2: Execution time of Backward Euler for different time steps ∆t.

The execution time for Backward Euler is larger than for Forward Euler, but since we can take a
larger time step ∆t = 10.0, this method is preferred over Forward Euler.

20

5 Image Filtering

5.1 Locating the Center of a Cell

For this modified Mumford-Shah model a initial contour is needed to find the boundary of the cells. The
initial contour has to be a good choice in order for the method to work properly. A suitable choice would
be inside the cells. Therefore we need to locate the centers of the cells. In this section we will discuss a
method to find the centers.

5.1.1 Cell Center Method

The Cell Center methods finds the centers of the cell. This methods consists of the following steps;

� Applying Gaussian blur

� Finding local maxima

� Dividing the local maxima in slices

� Calculating the center of each slice

First we will apply an Gaussian blur filter [5] defined by Ĩ(x, y) = Gσ(x, y) ∗ I(x, y), where Gσ is the
two-dimensional Gaussian distribution

Gσ(x, y) =
1

2πσ2
e

−[x2+y2]

2σ2 , (29)

and I(x, y) the original image. And the operation ∗ is the convolution operation. For the 2D discrete
case, this is

Ĩ(x, y) =
m∑
j=0

n∑
i=0

1

2πσ2
e

−[(i−x)2+(j−x)2]

2σ2 I(i, j). (30)

However, this is not the way it is implemented. We make use of the function ndimage.gaussian filter from
the library scipy. This function uses Fast Fourier Transform [6] to compute the convolution operation
much faster.

Secondly, we find the local maxima of the blurred image. For each pixel in the image we search in
the neighborhood with a certain size for the maximum value. Then we set the value of the pixel to that
maximum value. As a result, we have a image with many connected components containing pixels with
the same values.

In the next step each connected components gets a number. And for each numbered component the
center is calculated. This gives us the center of each cell in the image.

The steps of this operation are shown in Figure 9.

21

(a) Original image. (b) Gaussian blur filter.

(c) Local maxima for each pixel. (d) Cell centers.

Figure 9: The steps of Cell Center method.

In order for this method to work correctly, we have to make a suitable choice for σ. If the parameter
σ is too large, we will get a very blurred image with only a few centers, but if σ is too small, we will get
many local maxima. This means that there are multiple centers located in one cell.
We applied this method for several σ’s and calculated the number of centers found. The results are shown
in Figure 10.

22

(a) Number of centers for different σ. (b) Second derivative of the number of centers. The interval
J with M = 15 is indicated by the dotted green lines.

Figure 10: Results of the Cell Center method for different σ.

We see that for some values of σ the number of centers does not change much. We look for an interval

J such that ∀σ ∈ J we have
∣∣∣d2Ncenterdσ2

∣∣∣ < M , where Ncenter is the number of centers and M a positive

constant scalar. The results can be seen in Figure 10(b). This only gives us an interval for an suitable
choice for σ. We need a more specific approach to find the correct σ. This is done in the next section.

5.1.2 Cell Vertex Method

The Cell Center method gives a good estimate of the total number of centers for the right choice of σ.
We will discuss another method to find the number of centers for a given image; the Cell Vertex method.
This method does not look for centers of cells, but it uses the confluences of the boundaries of the cells.
Then Euler’s formula for plane graphs is used to calculate the number of cells. Since this method behaves
slightly different than the Cell Center method, we can compare both methods to find the correct choice
of σ.

An image is represented as a graph as follows: the confluences of the boundaries of the cells are the
vertices of the graph and the boundaries are the edges between the vertices. An example of such a graph
can be seen in Figure 11.

23

Figure 11: An image of cells represented as a graph with vertices and edges.

We have to find the location of the vertices. This method works the same as the Cell Center method,
but instead of finding local maxima, this method searches for local minima. Since the diameter of the
cells are about twice as large as the edges, we use σ̃ = σ/2 for the Gaussian blur filter where we would
use σ for the Cell Center method. For the image in Figure 12 σ = 7.0 was used to locate the vertices.

(a) 171 vertices found with Cell Vertex method (b) 84 centers found with the Cell Center method

Figure 12: Image with vertices given in red and the centers given in blue.

The graph in Figure 11 can be considered to be a 3-regular graph, meaning each vertex has 3 adjacent
edges. Thus each vertex has degree 3. The graph is connected and it is also a plane graph since it can be
drawn on the plane without crossing edges. Now we can use Euler’s formula [7], which is stated as follows;

24

Theorem 1 (Euler’s formula). If G is a finite, connected plane graph with vertex set V , edge set E and
face set F , then

|V | − |E|+ |F | = 2. (31)

The number of vertices |V | can be computed by the method discussed above and our goal is to find
the number of faces |F |. The number of edges can be found using the Handshaking lemma [7].

Theorem 2 (Handshaking lemma). For a graph with vertex set V and edge set E, we have∑
v∈V

degree(v) = 2|E|. (32)

Since our graph is a 3-regular graph, we have degree(v) = 3 for each vertex v. This gives us∑
v∈V

degree(v) = 2|E|

3|V | = 2|E|

=⇒ |E| = 3

2
|V |.

If we substitute this in Euler’s formula, we get

|V | − 3

2
|V |+ |F | = 2

=⇒ |F | = 2 +
1

2
|V |. (33)

We use eq. (33) to calculate the number of centers given the the number of vertices from the example in
Figure 12. This gives us |F | = 2 + 1

2171 = 87.5 ≈ 88 faces. This is reasonably similar to the number of
centers found with the Cell Center method. Then we apply this method for several σ as we did with the
previous method. The results are shown in Figure 13.

Figure 13: Number of centers found by both methods.

25

The two lines intersects at σ1 = 4.0, σ2 = 7.0 and σ3 = 8.0. Since σ1 lies outside the interval
J = [6.0, 11.0], only σ2 = 7.0 and σ3 = 8.0 are valid choices for σ. It is possible that we have multiple
solution for σ; if this occurs, then we take the average of the solution, thus σ̄ = 7.5.

With this value for σ we can determine the location of the centers of the cells.

5.2 Down-sampling

The images of the cells have very high resolution. This is unnecessary and it only makes the computa-
tional time much higher. Therefore we choose to apply down-sampling on the image by only taking a
fifth of the pixels in the x-direction and the y-direction. This will make the image 25 times smaller.

This is not the only way to down-sample the image. We can also take the mean value of small blocks
of the image. We divide the image in 5× 5 blocks and for each block we compute the mean value. This
value becomes the intensity of one pixel in the new image. Since we take all points in consideration, the
down-sampling method by taking mean values is preferred over the other method. Figure 14 shows that
this way of down-sampling clearly gives a smoother result.

(a) Original image (b) Down-sampled image (c) Down-sampled image by taking
mean values

Figure 14: Images of the two down-sampling methods.

We tried both down-sampling methods with the Mumford-Shah model. See Figure 15. As expected,
the second method performs better than the first method.

26

(a) Down-sampled image (b) Down-sampled image by taking mean values

Figure 15: Mumford-Shah model with both down-sampling methods.

Since the down-sampling method by taking mean values leads to a better result, we decide to continue
using this method throughout this report.

5.3 Binary Image

The main problem with our current model is that it is very time consuming. The external force in each
time step is very small, thus it is required to take many steps. If we choose to scale the external force
with a parameter, the method becomes instable.

The external force in the Euler-Lagrange equation is given by

F = [(f − uo)2 − (f − ui)2]nC ,

where ui and uo are the mean value of the image of the area inside and outside the contour, respectively,
and f is the intensity of the image at the contour.
Consider a point of the contour. At the beginning of the simulation ui and f are equally large, and uo
is a little bit smaller, because Ωo contains the boundary of the cell, which has a lower intensity than
the rest of the cell. Since the boundary of the cell is only a small part of Ωo, this does not have a large
effect on uo, resulting in a small difference between ui and uo. This means that the external force can be
approximated by

F = [(f − uo)2 − (f − ui)2]nC

≈ [(ui − uo)2 − (ui − ui)2]nC

= [(ui − uo)2]nC .

Since ui− uo is very small, (ui− uo)2 is also very small. In the image from Figure 17 we have ui = 0.770
and uo = 0.722. This results in an external force;

F = [(ui − uo)2]nC

= 0.0023nC .

With such a small force, many steps are required to reach the boundary.

27

Figure 16: Initial contour of original image.

This problem can be solved by making the image binary, meaning the image only has values 0 and 1.
For this operation we need a threshold, such that if the intensity of a pixel if larger than the threshold,
then the pixel gets value 1, otherwise 0. The binary image Ibin is defined by

Ibin =

{
1, I(p) ≥ Ithreshold
0, I(p) < Ithreshold

, (34)

for all pixels p in the image. In Section 5.4 we will discuss a method to determine Ithreshold.

As a result, the difference between ui and uo is larger. This leads to a larger force. Now we do
not have to take many steps in order to find the boundary. In the image below we have ui = 1.00 and
uo = 0.836, which is a larger difference than in the previous example.

Figure 17: Initial contour of binary image.

28

For the original image, we need take 3000 time steps and time step ∆t = 5.0. For the binary image it
is sufficient to take 250 time steps, but ∆t can not be to too large. We use ∆t = 2.0, because larger ∆t
leads to instabilities, since we have a larger force. For the simulations we use ν = 0.001. The results are
shown in Figure 18.

(a) Original image with κ = 0.01. (b) Binary image with κ = 0.01. (c) Binary image with κ = 0.05.

Figure 18: Mumford-Shah model with Backward Euler for original and binary image.

The Mumford-Shah model seems to work quite well for the binary image, however, the contours are
not as smooth as the contours of the original image. It can be made smoother by increasing the bending
parameter κ, but this leads to inaccurate results, as can be seen in Figure 18(c).

We test this approach for different images. Results show that this does not work correctly for every
image. See Figure 19.

Figure 19: Mumford-Shah model with Backward Euler for a binary image.

The problem is caused by the small points inside each cell. Varying the parameters does not solve
the problem.

29

5.4 Removing Noise from Binary Images

In the previous section we found that making the image binary improves the execution time, but unfor-
tunately this approach does not work for every image, especially when there are many black points inside
each cell, which we call noise. We are looking for a way to remove those points. In this section we will
discuss a method to remove unwanted black points in the binary image.

This approach consists the following steps

� Converting to binary image

� Applying Gaussian blur

� Checking the difference in intensity for each pixel

� Removing the points with a large difference in intensity

� Removing small points

First the image will be converted to an binary image, as has been done in the previous section. For the
operation a threshold is needed. Then we will apply a Gaussian blur filter. The black points surrounded
by a lot of white space will become a lot more gray than a black point in the boundary. This can be used
to remove the noise.
Next, we will remove the points that changed a lot in intensity by setting the value of the pixel to 1
(white). In the next part we will go more into detail.

In order to make the image binary, we have to find a suitable threshold. Therefore we look at the
histogram of the intensity of the image. See Figure 20.

Figure 20: Histogram of the intensity of pixels in the image.

The aim is to find a threshold, such that only the light gray points will get value 1, and the dark
gray points value 0. As can be seen in the histogram, there is large peak at around the intensity of 0.8.
This peak represents the light gray points, which forms the inside of the cell, thus not the points from
the boundary. Our goal is to remove such points. We want to find the intensity, where the peak begins.
This can be achieved by looking at the acceleration of the frequency, thus the second derivative of the
frequency with respect to the intensity. For the numerical calculation of the second derivative, we use
first order forward difference formula:

f ′′i =
1

h2
(fi+2 − 2fi+1 + fi) +O(h). (35)

30

The result can be seen in Figure 21.

Figure 21: Second derivative of the frequency with respect to the intensity. The threshold Ithreshold = 0.72
is given by the red dotted line.

We find that that the maximum is located at 0.72. Thus, we set Ithreshold = 0.72. In Figure 22 a
histogram is shown from an image, where we also calculated the threshold value. In the background the
gray-scale of the intensity is shown to illustrate which values will be set to 0 and to 1. The pixels of the
histogram left to the red dotted line will be set to 0, and the others will be set to 1. Thus more pixels
will get value 1.

Figure 22: Histogram of the intensity of pixels in the image, with in the background the gray-scale of the
intensity. The red dotted line is the threshold value.

31

In the next step we apply a Gaussian blur filter. The Gaussian blurred image is denoted by Ĩ = Gσ ∗I.
In Figure 23 a blurred image and its original image is shown, where the smaller block represents the noise
inside a cell, which we wish to remove. This block is more faded than the larger block, which represents
the boundary of a cell.

(a) Original image. (b) Blurred image.

Figure 23: Original and blurred image.

For this operation we first have to find a suitable σ. We want to choose σ such that a point at edge
of the boundary will not be influenced by the white area at the other side of the boundary by applying
Gaussian blur. Thus the dark point will not become more gray because of the white area at the other
side, only because of the adjacent white area. See Figure 24.

Figure 24: Binary image with a point at the edge of a boundary. The green circle is shown to illustrate
the influences of the surrounding pixels by applying a Gaussian blur filter, with σ = b/2.

This can be achieved by setting σ = b/2, where b denotes the boundary width. In this case the value
of the point at the edge of the boundary is mostly influenced by the boundary and the adjacent white area.

For this approach we need to determine the boundary width b. In order to estimate b, we need to

32

make some assumptions for the binary image, that is; every cell is a square (Rin + b) × (Rin + b) with
equally large boundaries, and the cells are located, such as in Figure 25.

Figure 25: Simplified image of cells.

As can be seen in Figure 25, the cells are divided such that it contains half the width of the boundary.
In this way, the cells are equally divided. The diameter of the white area inside the cell is denoted by Rin.

First, we calculate the area of a cell and thereafter (Rin + b) can be calculated. This is done by
dividing the total area of the image by the number of cells, which we already found in Section 5.1. Let
m× n be the shape of the image. Then,

Acell =
mn

Ncell
, (36)

where Acell is the area of one cell, and Ncell the total number of cells.
Since the cells are squares (Rin + b)× (Rin + b), we have

Acell = (Rin + b)2 =⇒

Rin + b =
√
Acell.

(37)

If we are also able to calculate Rin, then we can determine the width b of the boundary.

Each cell in the binary image consists of a black and white part. In the previous part, we have found
a threshold for the binary image. Thus, now we can calculate the part black and white points. The part
white point is denoted by ρwhite, which is defined by,

ρwhite =
1

mn

∑
p

1p, with 1p =

{
1, I(p) ≥ Ithreshold
0, I(p) < Ithreshold

, (38)

where p are the pixels in the image.

Consider one cell with area Acell, we are now able to calculate the white area Acell,white of the cell:

Acell,white = ρwhiteAcell. (39)

33

And again, we find for the white area Rin ×Rin:

Acell,white = (Rin)2 =⇒
Rin =

√
Acell,white.

(40)

Combining eq. (37) and (40) yields an approximation for b:

b = (Rin + b)− (Rin)

=
√
Acell −

√
Acell,white. (41)

Note that this value for b is an over estimation of the actual boundary width, since we have black noise
inside the cells, which results in a smaller ρwhite. Eventually, with eq. (36), (39) and (41) we find an
expression for σ:

σ =
b

2
=

√
Acell −

√
Acell,white

2

=
(1−√ρwhite)

√
mn
Ncell

2
. (42)

For the the next part we look at the difference between the original image I and the Gaussian blurred
image Ĩ defined by

I∆ = Ĩ − I. (43)

For the images in Figure 26, I∆ is determined and shown in Figure 26.

Figure 26: Difference of blurred image and original image.

The difference is very large at the block, but also at the corner of the boundary. We wish to find a
threshold denoted by Î∆, such that the smaller block will be removed and none of the points from the
boundary. If the difference in intensity of a point is larger than the threshold, then that point will be
removed. Consider a point at the corner of the boundary, such as in Figure 27.

34

Figure 27: Point at the corner of the boundary, which we do not want to remove.

We do not want to delete this point, thus we have to find a large enough threshold. We calculate the
new value of the point after the Gaussian blur. Assume that this is located at (0, 0) and that the upper
right part of the image is black and the remaining part white. Then, we can evaluate the intensity after
the Gaussian blur. This is approximately

Ĩcorner(0, 0) = (Gσ ∗ I)(0, 0)

≈ Gσ[black part] ∗ 0 +Gσ[white part] ∗ 1

≈
∫ ∞

0

∫ ∞
0

Gσ(x, y)dxdy ∗ 0 +

(
1−

∫ ∞
0

∫ ∞
0

Gσ(x, y)dxdy

)
∗ 1

= 1−
∫ ∞

0

∫ ∞
0

Gσ(x, y)dxdy. (44)

We have Ĩ∆(0, 0) = (Ĩ − I)(0, 0) = Ĩ(0, 0), because I(0, 0) = 0. Since we do not want to delete this point,

the threshold has to be greater than Ĩcorner. If we make the threshold too large, no points will be deleted,
thus we set the threshold Î∆ to Ĩcorner. If b = 4.0, then we get σ = 2.0, and now we can determine the
threshold with eq. (44), that is Î∆ = 0.64.

In the last step, we delete the small remote points inside the cells. If a small area of black points
is surrounded by white points, then we remove these black points. Finally, we get the following result,
which can be seen in Figure 28.

(a) Original image (b) Removing noise with Gaussian
blur.

(c) Removing noise with a small area.

Figure 28: Results of removing noise.

35

This approach removes a lot of noise inside the cells, which is convenient for the simulation of the
model. In Figure 29 we simulated a small image, where we first removed the noise in the image.

Figure 29: Mumford-Shah model for an image, where the noise is removed.

This gives a better and more stable result than the image from Figure 18.

We also simulated this for a larger image. The Mumford-Shah model performs better with the with
the image where the noise has been with the binary image. However, this method can create holes in the
boundary, where the boundary was either thin or very light in the original image. This can be seen in
Figure 30.

36

Figure 30: Mumford-Shah model for a large image, where the noise is removed.

The simulation took 34.0 seconds, which is much better than the simulation with the original image.
However, not every contour has successfully reached the boundary of the cell. Some contours went
through a hole in the boundary and others stopped at a black line or point, which is not part of the
boundary cell. For some cells this methods seems to work quite well, but for other cells this is a too
aggressive approach.

37

6 Improvements to the Mumford-Shah Model

In this section we will introduce some improvements to the Mumford-Shah model, which will either
improve the accuracy or the computational time of the simulation.

6.1 Extra Internal Force

Our current modified Mumford-Shah model has two types of forces. An external force (e+ − e−) and an

internal force |rs|2. In many other contour models, an extra internal force is used |rss|2. This is a force
designed to keep the contour from bending too much, while our current internal force is designed to keep
the contour from stretching too much. The new functional then becomes

Ẽ(u,C) =

∫
Ω

(f − u)2dxdy +
1

2

∫ 1

0

ν|rs|2 + κ|rss|2ds,

where ν and κ are weighting parameter. These parameters control the contour’s tension and rigidity [2].
Again, we can apply variational calculus to find the Euler-Lagrange equation which the contour must
satisfy in order to minimize Ẽ. However, this is analog to the derivation of the Euler-Lagrange equation
without the extra internal force, which has been done in Section 3.2.2. We get

[
(f − ui)2 − (f − uo)2

] ∣∣∣∣
r

(
−y′
x′

)
− ν d

2r

ds2
+ κ

d4r

ds4
= 0.

As we did before, the minimization problem can be solved by gradient descent. This gives us

∂r

∂t
= −∂E

∂r
= [e+ − e−]nC + ν

d2r

ds2
− κd

4r

ds4
. (45)

The next step is to discretize this in space. The numerical scheme of the fourth derivative with central
difference is

f
(4)
i =

1

h4
(fi−2 − 4fi−1 + 6fi − 4fi+1 + fi+2) +O(h2). (46)

Using the periodicity of r we find the discretized system of r′′′′. That is r′′′′ = Dr, where D is the matrix

D =



6 −4 1 1 −4
−4 6 −4 1 1
1 −4 6 −4 1

. . .
. . .

. . .

1 −4 6 −4 1
1 1 −4 6 −4
−4 1 1 −4 6


. (47)

Using Backward Euler as time integration we get the following system(
x̃
ỹ

)k+1

=

(
I2N −∆t

(
νA− κD EB
EC νA− κD

))−1(
x̃
ỹ

)k
, (48)

In Figure 31 we see the results of two simulation, one without and one with the extra bending force. The
same image is used for both simulations.

38

(a) Without bending force (b) With bending force, κ = 0.01.

Figure 31: Mumford-Shah model with Backward Euler, ν = 0.001 and ∆t = 5.0.

The model with only the stretching force clearly performs worse than the model with the extra internal
bending force, so this is good improvement to the modified Mumford-Shah model.

6.2 Moving Area

Constant areas were used in the previous modified Mumford-Shah models. For each cell, an large enough
rectangle for the area Ω is defined, such that the cell is fully contained in the area. As a result, some
areas were way too large for the concerned cell and this led to a mediocre result. In this section we will
be using moving areas instead of constant areas, so that we no longer encounter that problem. At the
end of the simulation, the variable area will only be slightly larger than the contour itself.

We start with a given initial contour represented by r, and we define the boundary of the area by

rΩ = r + hn, (49)

where h > 0 is a constant scalar and n is the unit normal vector to the initial contour. The area Ω is
the inside of rΩ. Since r changes in each time step, we also change rΩ in each time step. If the contour
becomes larges, the area also becomes larger. The initial situation of this method can be seen in Figure
32.

39

Figure 32: Initial contour with its moving area give by the orange line.

The method works the same as the modified Mumford-Shah model except for one thing. At the
beginning of the simulation we will have uo ≈ ui, because the boundary of the cell is not inside the area
yet. This means that

F =
[
(f − uo)2 − (f − ui)2

]
nC

≈
[
(f − ui)2 − (f − ui)2

]
nC

= 0,

thus we have a force almost equal to 0. We solve this problem by using an artificial force.

If uo ≈ ui, then u∗o = uo − 0.05. (50)

During the simulation the difference between ui and uo becomes greater. This happens when parts of the
boundary comes to lie in the current moving area. In Figure 33 the average of ui and uo of 392 contours
can be seen. This figure shows that the artificial force is needed for about the first hundred steps. This
reduces the amount of steps needed and thus the computational time.

Figure 33: Average ui and uo of 392 contour during a simulation.

40

We simulate this method for two images. We take 300 steps with time step ∆t = 10.0. We use the
parameters ν = 0.004, κ = 0.004 and h = 2.0. The results can be seen in Figure 34.

(a) 5 contours (b) 73 contours

Figure 34: Results of Mumford-Shah with moving areas.

For the image in Figure 34(a) this methods seems to work quite well, but the methods does not work
properly for some cells in the image Figure 34(b). This can be caused by a small difference between ui
and uo, even though the contour is at the boundary of the cell. This occurs when only few points has
reached the boundary. Then the contour will get an artificial force, which causes the contour to jump
past the boundary.

The moving area method has a better computational time than the modified Mumford-Shah model,
but adding an artificial force can lead to jumping past boundaries.

6.3 Improved Mumford-Shah Model

The main problem with the modified Mumford-Shah model is the computational time. We have tried
solving this problem using image filtering and moving area. These methods indeed improved the com-
putational time, but they do not perform optimal. In this section we will discuss an improved version of
the Mumford-Shah model. This method consists of two phases; the first phase gives an approximation
and the second phase gives an accurate result.

6.3.1 Jump Phase

Before we use the modified Mumford-Shah model, we first want to find an approximation of the boundary
of the cell. This approximation need not to be accurate, it only needs to be near the boundary. In this
way we do not have to take many steps with the modified Mumford-Shah model. This is done in the first
phase of the method; the jump phase. We try to quickly move the contour towards the boundary with
the aim to reduce the computational time.

For this method we use a moving area defined by

rΩo = r + hjumpn, (51)

where hjump is a positive constant and n the unit normal vector to the contour. At the beginning of
the simulation, when the contour has not reached the boundary yet, the difference between ui and uo is
very small. This results in a very small external force, and this causes the contour to shrink due to the

41

internal forces. A way to counter this is by jumping over such areas, where the difference of the outside
and inside area is small.
Consider the case where uo ≈ ui. Thus we can assume that the outside area does not contains a part of
the boundary of the cell. Now we can jump to the boundary of the area Ωo without jumping over the
boundary of the cell. Thus we apply the following rule: if

∇u < k, with ∇u ≈ u+ − u−, (52)

then we jump to boundary of the area. Here, k is a positive constant. This value can not be too large,
since this will result in approximation contour, which has jumped past the boundary of the cell. However,
if this value is not large enough, the approximation contour will not come near the boundary.

In Figure 35 an example is shown, where Ωo is the area between r and rΩo , and Ωi is the area inside
the contour r. In this example, we have ∇u < k, thus the contours jumps to the boundary of the area
Ω, see Figure 35(b).

(a) We check if ∇u < k. (b) The contour jump towards the boundary of the area
Ω.

Figure 35: An iteration step of the contour in the jump phase. The contour is given in red and the
boundary of the area Ω in green.

This approach causes the contour to move quickly to the boundary of the cell, but for many cells this
leads to unwanted results. If just one point of the contour reaches the boundary, the difference between
ui and uo is not large enough to stop the entire contour from jumping. Eventually, the contour will jump
past the boundary, as can be seen in Figure 36.

42

Figure 36: Result of jump phase when using a collective outside and inside area.

The aspect that causes the problem is checking the difference globally. One point at the boundary
will simply not be noticed with this approach. One way to solve this problem is by checking the jump
statement from eq. (52) locally for an individual point instead of the entire contour. This requires to
evaluate the mean value uo for smaller areas. We have to define such areas for each point, this is shown
in Figure 37.

Figure 37: Each point has its own outside area ujo.

In equation (53) ujo is defined for each point sj , this will be discussed in the next phase of the method.

Now, for every ujo we check if ∇uj < k. This results in a much better approximation of the boundary.

43

This can be seen in Figure 38, where the contour has 15 points.

(a) Final result of the approximation contour. (b) Time evolution of the jump phase.

Figure 38: Results of the jump phase with small areas ujo for each point.

Figure 38 shows the result and the time evolution of the contour. We see that the contour makes a
jump in each time step at the beginning. As the contour comes close to the boundary, some points stop
jumping. If eventually 75% of the points stops jumping, then we stop every point from jumping.
This particular cell is quite simple, so we will get a desired result. However, if a cell has a dark area
inside the cell, it can occur that one point of the contour does not jump, because ∇uj ≥ k for a point sj .
In this case, the final contour will have inward spikes. This can be seen in Figure 39(a). Therefore it is
necessary to still use the Mumford-Shah model with large enough weighting parameters ν and κ. This
will pull the point that has stopped jumping towards its adjacent points, since its internal stretching and
bending force are very large. We simulate this method with and without the Mumford-Shah model for
one cell. Figure 39 clearly shows that using the Mumford-Shah model yields a better result.

(a) Without Mumford-Shah. (b) With Mumford-Shah, ν = 0.005 and κ = 0.005.

Figure 39: Jump phase without and with Mumford-Shah model.

44

In Figure 39(b) we see that some point have stopped jumping, while not being close to the boundary.
The internal forces of the Mumford-Shah model causes the points to move past the darker area. Eventu-
ally these points will start jumping again.

For the jump phase of the method we only use 15 points, which is a small amount compared to the 30
points used in the previous sections. The reason for this is to get a more stable approximation, because
of the following two reasons: if there is a dark area inside the cell, the contour with 15 point will not be
influenced much, because it takes the mean value of a larger area than the contour with 30 points. Also,
if a point does not jump because of a dark area, the adjacent point will probably pull it past the dark
area. If the contour has 30 point, then it is more likely that 2 points will get stuck behind the dark area.
Then the internal forces will not have the same effect. Therefore it is convenient to use few points for
the first phase of the method. The jump phase is simulated to illustrate this for a contour with 30 points
and it can be seen in Figure 40.

(a) Contour after 8 steps. (b) Contour and its time evolution after 15 steps.

Figure 40: The contour in the jump phase after 8 and 15 steps.

In Figure 40 an example is shown where a loop is formed, this is caused by a dark area inside the cell.
For some points their normal vector points towards each other, due to points that has stopped jumping,
while the other points continue to jump. Since the external force is in the direction of the normal vector,
the points will cross past each other, which creates a loop. Since we want to avoid this kind of situation,
we decide to use 15 points for the contours for this phase of the method.

6.3.2 Mumford-Shah Phase

In the jump phase of our method we have found an approximation. In the next phase we use the modified
Mumford-Shah model to get an accurate result from the approximation.

As discussed in the previous section, it is useful to use few points for the contour in the jump phase.
However, in the next part; the Mumford-Shah phase, it is necessary to use more points to get an accurate
result. Therefor we first double the amount of points, simply by putting the extra points between each
original point of the contour, see Figure 41.

45

(a) Contour with 15 points. (b) Contour with 30 points.

Figure 41: Doubling the number of points for a contour.

For this phase we again use smaller areas for each point for the outside area, but also for the inside
area. These area are denoted by Ωjo and Ωji , respectively and the mean values of the areas are denoted

by ujo and uji , see Figure 42.

Figure 42: Each point has its own outside and inside area, with mean values ujo and uji for j = 1, ..., N .

46

The boundary of the inside and outside area are denoted by rΩi and rΩo . This is defined as

rΩo = r + hMSn,

rΩi = r − hMSn.
(53)

In the next part we define the inside and outside area of a point sj . For a point between two points of a

contour C with representation r, we have r̄j = rj+rj+1

2 . The area Ωjo is the area between r, bounded by

r̄j−1 and r̄j , and rΩo , bounded by r̄j−1
Ωo

and r̄jΩo . And the area Ωji is the area between r, bounded by

r̄j−1 and r̄j , and rΩi , bounded by r̄j−1
Ωi

and r̄jΩi .

In each iteration we calculate uji and ujo for every point sj with j = 1, ..., N . For this phase of the
method we use a larger inside and outside area defined in eq. (53) than the area in the jump phase
defined in eq. (51), because we have to make sure that the boundary is contained in the outside area.

With these mean values, we calculate the external force for each point, that is

F j = [(f j − ujo)2 − (f j − uji)
2]nC . (54)

In the previous sections f j was evaluated by f j = f(xj , yj), but this approach can sometimes lead to
an unstable simulation. This happens when a point sj with coordinates (xj , yj) accidentally is located
at a dark area inside the cell. This causes the point to get stuck behind the dark area, while the other
points move forward. It can also occur that a point is accidentally at a lighter area, even though the
contour is already located at the boundary. Then this point will jump past the boundary. This results
in instabilities, which is shown in Figure 43(a).
This problem can be solved by choosing a different way to evaluate f j , such that the method is more
stable. A convenient choice would be

f j = meanΩjd
(f), (55)

where Ωj,d denotes the square area around point sj with size 2d× 2d. This is defined as

Ωj,d = [xj − d, xj + d]× [yj − d, yj + d]. (56)

The size of the square influences the stability of the method. If d is large, then the method will be more
stable, but not very accurate. The simulation will stop before the contour reaches the boundary of the cell.

In Figure 43 an example is shown where we simulated the method using f j = f(xj , yj) as has been
done in the previous sections and also using the new approach where f j is evaluated as in eq. 55.

47

(a) Result with fj = f(xj , yj). (b) Result with fj = meanΩj,d (f).

Figure 43: Results of the Mumford-Shah phase with different ways to evaluate f j .

This result shows that using f j defined as in eq. (55) leads to a more stable result. Despite being
less accurate, we will use this evaluation of f j . At the end of this section we will introduce a procedure
to improve the accuracy of the contour.

For the jump phase we used weighting parameters νjump and κjump. For the Mumford-Shah phase
we use different values for the weighting parameters νMS and κMS , since we take smaller steps than in
the previous phase.

An advantage of the Mumford-Shah model is that the contours do not have to be stopped when it
reaches the boundary of the cell. The contour stops by itself. However, if the external force is almost
zero for more than 75% of the total amount of points of the contour, the contour will be stopped. This
improves the computational time.

For the next part we simulate this method with two phases for an image with 13 contours. We use
the weighting parameters νjump = κjump = 0.005 and νMS = κMS = 0.002. We start with 15 points for
each contour and time step ∆t = 10.0 is being used for 40 steps. For the inside and outside areas we
choose hjump = 2.0 and hMS = 4.0 and for the square block in (56) we choose the value d = 3.0. The
results can be seen in Figure 44.

48

(a) Result of the jump phase. (b) Final result of the Mumford-Shah phase.

Figure 44: Results of the two phases.

This shows the behavior of the two phases. The first phase gives an approximation, and the second
phase an accurate result. In the latter phase the contour takes the form of its cell. The size of the contours
do not change much; this confirms that the results from the jump phase are indeed good approximations.
The execution time of this simulation is 4.85 seconds, which is an improvement compared to the previous
methods.

(a) Result of the method for 13 contours. (b) Enlarged image of the indicated part.

Figure 45: The time evolution of the jump and Mumford-Shah phase given in blue and turquoise, respec-
tively. The final result is given in red.

In Figure 45 the time evolution of the two phases is shown. The latter phase makes very small steps.
Figure 45(b) shows that the method is stable. If the point is not close to the boundary, the point will
move towards it. If a point is already at the boundary, then that point will not move much.

49

6.3.3 Inflation

As discussed before, the contours are not as close to the boundaries of the cells as we would like to be.
This is caused by the size of the square area as defined in (56). However, the contours are similar in
shape to the boundaries of the cells. Thus we only have to inflate the cells to get the desired result. This
can be performed by moving the points of the contour in the direction of the unit normal vector to the
contour. This can be described by

rinfl = r + hinfln. (57)

For this this value hinf we have to make a suitable choice. Consider a point sj of a contour at the end

of the simulation. The block Ωjd belongs to that point. If the simulation has come to an end, then this

means that the value of f j is the average of uji and uji , such that the external force is 0.

Now consider the simplified case, where Ωji , Ωjo and Ωjd are all equal in size d × d. Let the image I
be a binary image, which consists a small part of the boundary with a width given by b. This simplified
case can be seen in Figure 46(a). Next, uji and ujo can be calculated.

uji =
1(d× d)

d× d
= 1,

ujo =
1(d× (d− b)) + 0(d× b)

d× d
=
d× d
d× d

− b× d
d× d

= 1− b× d
d× d

Since f j is the average of the two values, we get

f j =
uji + uj0

2
=

1 + 1− b×d
d×d

2
= 1−

1
2 (b× d)

d× d
. (58)

We can conclude that the block Ωjd must contain half the width of the cell boundary, because the mean
value then becomes

meanΩjd
(f) =

1(d× (d− b/2)) + 0(d× b/2)

d× d
= 1−

1
2 (b× d)

d× d

and this is equal to the average form eq. (58).

Thus if we set hinflate = d, then the contour comes to lie in the middle of the boundary of the cell.
However, we want to locate the edge of the boundary, thus we have to correct this with half the width of
the boundary b/2. See Figure 46(b). Then we get hinflate = d− b/2. The value for b can be determined
by eq. (41) .An example of this procedure is shown in Figure 47.

50

(a) Simplified case with Ωj
i and Ωj

o given in purple and
blue, respectively.

(b) Original case, where the green point is the point
where we want to move the red point to.

Figure 46: The simplified and original case of the image to illustrate how we want to inflate the contour.
The block Ωjd is given by yellow.

(a) Contour after the Mumford-Shah phase. (b) Inflation with hinfl = d− b/2.

Figure 47: Inflation of the contour.

Figure 47 shows that the inflation of the contour in the last step leads to a good result. We also
applied this for the result in Figure 44. This can be seen in Figure 48.

51

Figure 48: Result after inflation with hinfl = d− b/2.

We see that this approach leads to a good result. With the use of the block Ωjd and thereafter the
inflation we get a stable and accurate result. The execution time of this method for the example in Figure
48 is 4.94 seconds.

6.3.4 Results

We simulate this model for a larger image, with νjump = κjump = 0.005, νMS = κMS = 0.002, hjump =
2.0, hMS = 4.0, niter = 40 and ∆t = 10.0. The initial contour consists of 15 points. An part of the image
with the results can be seen in Figure 49.

52

Figure 49: Results of the improved Mumford-Shah model.

This result show that most of the cell boundaries are detected as wished. Some contours only give an
approximation of the cell boundary and does not take on the shape of the boundary. This is of course
not a desired result, but the contours do not become unstable.

The execution time of the image in Figure 49 with 436 contours is 123.9 seconds. Thus, approximately
0.28 seconds per cell is needed to locate its boundary. Calculating the mean values ui and uo takes up
the most time, this is 91.7 seconds. Thus, roughly 70% of the total computational time is needed for
calculating the mean values, which is used to determine the force. Compared to the execution time of
the integration method, this is a large amount time.

If we decide to evaluate ui and uo only once in the Mumford-Shah phase, then the execution time
will be improved. For most cells, the result will be the same, see Figure 50(a).

53

(a) Part of an image with 183 contours. (b) Unstable contour.

Figure 50: Results of the improved Mumford-Shah model with evaluating ui and uo only once.

The execution time of this simulation with 183 contours is 21.7 seconds, where only 4.2 seconds is
used to evaluate the mean values. Thus, we have reduced the execution time of the mean evaluation from
70% to 5.1 %. Unfortunately, this can lead to unstable results, as can be seen in Figure 50(b). We can
conclude that this is not an acceptable approach for reducing the execution time.

For the next part, assume that a contour jumps past the boundary over the cell in the first phase, as
in Figure 51(a). We investigate what result the second phase of the method will yield.

Note that the the Mumford-Shah model is able to work in both directions. For a point sj on the

contour in Figure 51(a), we have uji < ujo, and f j is approximately equal to ujo, since the boundary in

contained in the areas Ωji . The force then becomes;

F = [(f j − ujo)2 − (f j − uji)
2]nC

≈ [(ujo − ujo)2 − (ujo − u
j
i)

2]nC

= [−(ujo − u
j
i)

2]nC .

We see that the force is directed in the negative direction to the normal vector nC . Thus, this means
that the force is pointed towards the boundary.

54

(a) Contour after the jump phase. (b) Contour after the Mumford-Shah phase.

Figure 51: Result of the improved model, where the contour has jump past the boundary.

Even though the contour jumped past the boundary in the first phase, the second phase still manages
to capture the shape of the cell on the opposite side of the boundary. Thus instead of inflating the contour
in the next step, we deflate the contour;

rdefl = r − hdelfn. (59)

The value for hdefl can be determined in a similar fashion as hinfl in eq. (57). In order to move the
contour towards the outside edge of the boundary, we have to choose hdefl = d− b/2. Since we wish to
locate the inside edge of the boundary, we have take the width b in account, then hdelf becomes:

hdelf = d− b/2 + b = d+ b/2. (60)

See Figure 52.

Figure 52: Result after deflation with hdefl = d+ b/2.

We also simulated this for multiple cells, where we artificially moved past the boundary, see Figure
53.

55

(a) Contours after the jump phase. (b) Contours after the Mumford-Shah phase and defla-
tion.

Figure 53: Results of the improved model, where the contours have jump past the boundary.

The results show that this does not work properly for each cell, but it still gives a decent approxima-
tion of the boundary. If this situation occurs, we want to determine whether to inflate or deflate. We
check this by looking at the mean value of uji and ujo for all j. If meanj(u

j
i) < meanj(u

j
o), then the

contour deflates, otherwise it inflates.

In this section the parameters are chosen such that the simulation gives a good result. The aim is
to automatically calculate the parameters beforehand for each image. This will be discussed in the next
section.

56

7 Analytical Solution of the Simplified Mumford-Shah Model

In the previous sections we solved eq. (15) numerically with Finite Difference and Backward Euler. In
this section we will analytically solve an simplified version of the Mumford-Shah model and study the
time evolution of a contour by using the analytical solution.

7.1 Simplified Mumford-Shah Model

Consider the equation for minimizing the modified Mumford-Shah functional;

∂r

∂t
= [e+ − e−]ñC + ν

∂2r

∂s2
− κ∂

4r

∂s4
, (61)

with ñC = −nC =

(
y′

−x′
)

. For the derivation of the analytic solution we use positive orientation, since

this is convenient for the Fourier series. In the modified Mumford-Shah model, however, we use the
negative direction, therefore we have to take ñC for this part.

We want to study the influence of the weighting parameters ν and κ, which control the contour’s
tension and rigidity, respectively. This can be done by looking at the eigenvalues and eigenvectors of the
problem. In order to do this, we simplify the problem, such that we have a constant external force γ
instead of [e+ − e−]. This simplifies to

∂x

∂t
= γ

∂

∂s

[
0 1
−1 0

]
x + ν

∂2x

∂s2
− κ∂

4x

∂s4
. (62)

7.2 Derivation of the Analytical Solution

Our goal is to write the solution in the form x(s, t) =
∑
n Tn(t)vn(s), then we can study the time evolu-

tion of the solution. This can be used to find suitable choices for the weighting parameters.

First we write eq. (62) as ∂x
∂t = Dx, where operator D is

Dx :=

[
α ∂2

∂s2 − κ
∂4

∂s4 γ ∂
∂s

−γ ∂
∂s α ∂2

∂s2 − κ
∂4

∂s4

]
(63)

Now, consider:

Dvn = λnvn, vn(s) =

[
vn(s)
un(s)

]
. (64)

We assume that vn and un are of the form

vn(s) = an cos(2πns) + bn sin(2πns),

un(s) = cn cos(2πns) + dn sin(2πns).
(65)

Now we need to find the coefficient an, bn, cn and dn. Substituting (65) into (64)-(63) yields

Dvn =


[(
−ν(2πn)2 − κ(2πn)4

)
an + γ(2πn)dn

]
cos(2πns)+[(

−ν(2πn)2 − κ(2πn)4
)
bn − γ(2πn)cn

]
sin(2πns)[(

−ν(2πn)2 − κ(2πn)4
)
cn − γ(2πn)bn

]
cos(2πns)+[(

−ν(2πn)2 − κ(2πn)4
)
dn + γ(2πn)an

]
sin(2πns)


= λn

[
an cos(2πns) + bn sin(2πns)
cn cos(2πns) + dn sin(2πns)

]
=

[
λnan cos(2πns) + λnbn sin(2πns)
λncn cos(2πns) + λndn sin(2πns)

]
(66)

57

The coefficients must be chosen, such that Dvn = λnvn holds. Hence, we want:
(
−ν(2πn)2 − κ(2πn)4

)
an + γ(2πn)dn = λnan(

−ν(2πn)2 − κ(2πn)4
)
bn − γ(2πn)cn = λnbn(

−ν(2πn)2 − κ(2πn)4
)
cn − γ(2πn)bn = λncn(

−ν(2πn)2 − κ(2πn)4
)
dn + γ(2πn)an = λndn

This can be written as a system;
−φ 0 0 ψ
0 −φ −ψ 0
0 −ψ −φ 0
ψ 0 0 −φ



an
bn
cn
dn

 = λn


an
bn
cn
dn

 , (67)

where φ = ν(2πn)2 + κ(2πn)4 and ψ = γ(2πn). Since this is a symmetric matrix, we have λn ∈ R for all
eigenvalues. The eigenvectors can be easily found:

w(1)
n =


1
0
0
1

 , w(2)
n =


0
−1
1
0

 , w(3)
n =


−1
0
0
1

 , w(4)
n =


0
1
1
0

 . (68)

These eigenvectors gives suggestions for an, bn, cn and dn for the eigenfunctions from (65). We are
also interested in the eigenvalues of the problem (64) to study the time evolution of the contour. The
eigenvalues are: 

λ
(1)
n = −ν(2πn)2 − κ(2πn)4 + γ(2πn)

λ
(2)
n = λ

(1)
n

λ
(3)
n = −ν(2πn)2 − κ(2πn)4 − γ(2πn)

λ
(4)
n = λ

(3)
n .

(69)

The eigenvectors from (68) imply the following eigenfunctions for the operator D:

v(1)
n =

[
cos(2πns)
sin(2πns)

]
, v(2)

n =

[
− sin(2πns)
cos(2πns)

]
,

v(3)
n =

[
− cos(2πns)
sin(2πns)

]
, v(4)

n =

[
sin(2πns)
cos(2πns)

]
.

(70)

The eigenvectors v
(1)
n ,v

(2)
n v

(3)
n and v

(4)
n are mutually orthogonal for each n ∈ N. Namely,∫ 1

0

sin(2πns) cos(2πms)ds = 0, ∀n,m = 0, 1, ...,∫ 1

0

sin(2πns) sin(2πms)ds = δnm

∫ 1

0

sin2(2πns)ds =
1

2
δnm,∫ 1

0

cos(2πns) cos(2πms)ds = δnm

∫ 1

0

cos2(2πns)ds =
1

2
δnm,

and ∫ 1

0

sin2(2πns)ds =

∫ 1

0

cos2(2πns)ds =
1

2
, (71)

because ∫ 1

0

cos2(2πns)ds =

∫ 1

0

1

2
(1 + cos(4πns))ds

=
1

2
[s]

1
0 +

1

2

[
sin(4πns)

4πn

]1

0

=
1

2
+

1

8

(
sin(4πn)

4πn

)
=

1

2
,

58

since n is a integer. We have the following∫ 1

0

v(k)
n (s) · v(q)

m (s)ds =
1

2
2δnmδkq = δnmδkq, (72)

thus v
(k)
n (s) and v

(q)
m (s) are orthogonal for each m,n ∈ N and k, q = 1, ..., 4. Note that

Dv(k)
n = λ(k)

n v(k)
n , for k = 1, ..., 4.

For each n ∈ N, we have 4 eigenvectors v
(k)
n . Thus, we seek x(s, t) in the form:

x(s, t) =
∑
n

4∑
k=1

T (k)
n (t)v(k)

n (s). (73)

Substitution in eq. (62) yields the following equations for T
(k)
n (t) (after projection):

dT
(k)
n

dt
= λ(k)

n T (k)
n , k = 1, ..., 4; n = 0, 1, ...

T (k)
n = T (k)

n (0)eλ
(k)
n t.

(74)

The initial conditions are being used to determine T
(k)
n (0), that is;

x(s, 0) = x0(s),

with

x(s, t) =
∑
n

4∑
k=1

T (k)
n (0)eλ

(k)
n tv(k)

n (s). (75)

At t = 0 we have

x(s, 0) = x0(s) =
∑
n

4∑
k=1

T (k)
n (0)v(k)

n (s). (76)

Projection yields the following expression for T
(k)
n (0):

T (k)
n (0) =

∫ 1

0

x0(s) · v(k)
n (s)ds, k = 1, ..., 4; n = 0, 1, (77)

This gives us the analytical solution for the simplified problem.

7.3 Implementation

In the next part we implement the Fourier series (75), such that the time evolution of the contour can be

studied. In order to calculate T
(k)
n (0) for each k and n, we have to evaluate the integral in (77). For the

approximation of the definite integral we use the numerical integration technique trapezoidal rule, which
is given by ∫ 1

0

f(x)dx ≈
M∑
j=1

f(xj−1) + f(xj)

2
∆xj . (78)

We want to evaluate the following integral:∫ 1

0

x0(s) · v(k)
n (s)ds =

∫ 1

0

x0(s)v(k)
n (s) + y0(s)u(k)

n (s)ds. (79)

59

Now, let g
(k)
n (s) = x0(s)v

(k)
n (s) + y0(s)u

(k)
n (s), then we can approximate (79) as∫ 1

0

x0(s) · v(k)
n (s)ds ≈

M∑
j=1

g
(k)
n (sj−1) + g

(k)
n (sj)

2
∆sj . (80)

For the numerical integration we use M equidistant points sj = j−1
M for j = 1, ...,M . For the series from

eq. (75) we calculate up to P terms. Thus,

x̃(s, t) =
P∑
n

4∑
k=1

T (k)
n (0)eλ

(k)
n tv(k)

n (s), (81)

where x̃(s, t) is the approximation of x(s, t).

7.4 Results

We simulate this with N = 80 points, M = N and P = 25. The initial contour is a square rectangle
[−1, 1]× [−1, 1]. For the figures in this section, the initial contour x̃(s, 0) is given by the green line, the
contour x̃(s, 5.0) at t = 5.0 by the red line and the contours x̃(s, τ), for τ = 1.0, 2.0, 3.0, 4.0 by the blue
lines, unless indicated otherwise. If a parameter is not explicitly stated, then its value is zero.

In Figure 54 the solution is shown for the model with ν = 0.001 and for the model where we have an
external force γ = 0.03.

(a) Solutions with ν = 0.001. (b) Solutions with ν = 0.001 and γ = 0.03.

Figure 54: Solutions of the model without and with an external force.

We find that the stretching force makes the contour shrink as can be seen in Figure 54(a), but if we
add a large enough external force, the contour grows, see Figure 54(b). Note that the contour slowly
transforms into a circle.

For the next model we also make use of the bending force with the weighting parameter κ = 0.0001.
The result can be seen in Figure 55.

60

Figure 55: Solutions with ν = 0.001, κ = 10−4 and γ = 0.03.

This result shows that the contour first transforms into a circle and eventually starts shrinking. This
is caused by the internal bending force, which prevents the contour from bending too much. Both forces
share the same properties; preventing the contour from stretching and bending, but the stretching force
has more influence on the contour’s tension and the bending force on the contour’s rigidity.

For the next model we increase the external force γ = 0.05, which can be seen in Figure 56.

(a) Solutions with ν = 0.001 and γ = 0.05. (b) Solutions with ν = 0.001, κ = 10−7 and γ = 0.05.

Figure 56: Solutions of the model without and with an internal bending force.

The solution from Figure 56 grows faster at the corners towards the outer direction. This situation
occurs, since the normal vector nC from our model is not normalized, which results in larger normal

61

vectors at the corners. This leads to protrusions and inward spikes in the contour. In order to prevent
the emergence of protrusions and inward spikes, the bending force can be used, see Figure 56(b).

If the external force is too large compared to the internal forces, then loops will occur in the solution.
The spikes will eventually turn into loops, because the external force is pointed in the direction of the
normal vector. The points of a spike in the contour will have normal vectors pointed towards each other,
and this results in points crossing past each other, which creates a loop. This can be seen in Figure 57.

Figure 57: Solution at t = 10.0 given by the red line, with ν = 0.001 and γ = 0.06.

7.5 Parameters for a Steady Contour

We are interested in the parameter for which the contour is steady, that is; the contour does not move
for t > tst for a certain tst > 0. We study the eigenvalues of the problem to get a clearer understanding
of its behavior. The eigenvalues of the problem are:

λ
(1)
n = −ν(2πn)2 − κ(2πn)4 + γ(2πn)

λ
(2)
n = λ

(1)
n

λ
(3)
n = −ν(2πn)2 − κ(2πn)4 − γ(2πn)

λ
(4)
n = λ

(3)
n

(82)

We assume that γ > 0, and we already have ν, κ ≥ 0. Note that

λ(k)
n < λ

(k)
1 , for n > 1, k = 1, ..., 4. (83)

Hence, if we obtain λ
(k)
1 = 0 by choosing the parameters correctly, then the ground mode of the contour

will not grow. We investigate for which parameters this holds by looking at the eigenvalues for n = 1.

Since, λ
(3)
1 and λ

(4)
1 are always negative, because ν, κ, γ > 0, we do not have to consider the eigenvalues

for k = 3, 4, we only have to deal with λ
(1)
1 and λ

(2)
1 .

Consider n = 1; ν and κ have to be chosen, such that

λ
(1)
1 = λ

(2)
1 = −ν(2π)2 − κ(2π)4 + γ(2π) = 0. (84)

62

This is an equation with two unknowns ν and κ, thus we have infinite many solutions. We choose ν and
determine which value for κ has to be chosen, such that eq. (84) holds. Thus, we get

−κ(2π)4 = ν(2π)2 − γ(2π) ⇐⇒

κ =
γ

(2π)3
− ν

(2π)2
. (85)

This gives us an expression for κ. If ν is small, then κ has to be large and vice versa. This is to be
expected, since both internal forces has a similar influence on the contour, and the internal forces are
needed to stop the contour from growing too much. Since κ > 0 must hold, not every choice for ν is
valid. Stating this condition for κ yields the condition for ν:

κ =
γ

(2π)3
− ν

(2π)2
> 0 ⇐⇒

γ

2π
− ν > 0 ⇐⇒

ν <
γ

2π
.

(86)

Hence, ν can not be too large.

In Figure 58 the solution is shown, where κ is determined as in eq. (85).

(a) Solution for t = 10.0. (b) Solution for t = 100.0.

Figure 58: Results of the jump phase with small areas ujo for each point.

We find that the solution converges to a steady state; a circle. The terms from eq. (75) for n > 1 are

diminished, such that only x̃(s, t) =
∑4
k=1 T

(k)
1 (0)eλ

(k)
1 tv

(k)
1 (s) remains, which describes the circle from

Figure 58.

The analytic solution of the simplified Mumford-Shah model gives insight in the behavior of the model
and the influence of the parameters. This can be used as a guideline to determine the parameters of the
Mumford-Shah model.

7.6 Choosing the Parameters

In the first phase of the improved Mumford-Shah model from Section 6.3.1 we used a constant force (51),
just like in the simplified Mumford-Shah model. We jumped with step size hjump in the direction of

63

the unit normal vector to the contour. However, for the simplified model, the normal vector nC is not
normalized. For this part we want to use the nC , but in order to keep the same step size, we first have
to find the value h̃, such that h̃‖nC‖ = hjump‖n‖, where n is the unit normal vector to the contour and
nC is the normal vector defined in eq. (13).

Consider the initial contour C, which is a circle, consisting of N points. First we calculate nC =(
y′

−x′
)

. Consider the points sj of the contour with rj = (xj , yj) = (R cos(θ0), R sin(θ0)) for j = 1, ..., N ,

where θj = 2π(j−1)
N and R is the radius of the initial contour. Without loss of generality, since the initial

contour is rotationally symmetrical, we can consider the point r0 = (R cos(θ0), R sin(θ0)). For this point
we calculate y′0 and −x′0. See Figure 59.

Figure 59: Initial contour with 8 points.

For x′j and y′j we use the first order central difference formula;

x̃′j =
xj+1 − xj−1

2
,

where x̃ is the numerical approximation of x. Thus, we have

x̃′0 =
x̃1 − x̃N

2

=
R cos(2π

N)−R cos(− 2π
N)

2

=
R cos(2π

N)−R cos(2π
N)

2
= 0.

And for y′, we have

ỹ′0 =
ỹ1 − ỹN

2

=
R sin(2π

N)−R sin(− 2π
N)

2

=
2R sin(2π

N)

2
= R sin

(
2π

N

)
.

64

Then, we get

‖(nC)0‖ =
√

(x̃′0)2 + (−ỹ′0)2

=
√

02 + (−ỹ′0)2

=
√

(−ỹ′0)2 = R sin

(
2π

N

)
.

This gives us, using ‖n‖ = 1 since n is a unit normal vector, the following:

h̃‖nC‖ = hjump‖n‖ =⇒

h̃ =
hjump
‖nC‖

=⇒

h̃ =
hjump

R sin
(

2π
N

) .
Now we can apply this to the simplified model from (62), using γ = h̃. With the expression for κ,

we can find ν and κ, such that the contour is steady. We choose to take κ = ν, such that the stretching
force weights the same as the bending force. Substituting this in eq. (85) yields

ν =
γ

(2π)3
− ν

(2π)2
⇐⇒

ν[1 + (2π)2]

(2π)2
=

γ

(2π)3
⇐⇒

ν =
γ

2π[1 + (2π)2]
. (87)

In the improved Mumford-Shah model we used radius R = 5.0 for the initial contour with N = 15
points and step size hjump = 2.0. Now we can finally calculate the weighting parameters ν and κ;

ν =
h̃

2π[1 + (2π)2]

=

hjump

R sin(2π
N)

2π[1 + (2π)2]
≈ 0.0048.

Thus, we get ν = κ = 0.0048. For the jump phase of the improved model we have used νjump = κjump =
0.005 and this indeed led to a good result.

For the second phase of the improved Mumford-Shah model, we have a different force than in the first
phase; [e+− e−]nC . This external force is in the direction of the normal vector nC , however, [e+− e−] is
not constant. In order to insure that the contour does not stretch and bend too much, we use the upper
estimate of the force.

Since the image of the cell can be seen as a function f : Ω→ [0, 1], we have ui, uo, f
j ∈ [0, 1] for every

point sj on the contour. Thus, we yield∣∣[e+ − e−]
∣∣ =

∣∣(f j − uo)2 − (f j − ui)2
∣∣

≤
∣∣(f j − 0)2 − (f j − 1)2

∣∣
=
∣∣(f j)2 − (f j)2 + 2f j − 1

∣∣
=
∣∣2f j − 1

∣∣ ≤ 1,

65

since f j ∈ [0, 1].

Now, we take γ = 1.0, then we get from eq. (87);

ν =
γ

2π[1 + (2π)2]

=
1.0

2π[1 + (2π)2]
≈ 0.0039,

and thus νMS = κMS = 0.0039.

We simulated the improved Mumford-Shah model with the same parameters as in Section 6.3.4, except
for the internal weighting parameters ν and κ found in this section. The result can be seen in Figure 60.

Figure 60: Results from the improved Mumford-Shah model with the weighting parameters of this section.

The weighting parameters give a decent result, however, νMS and κMS can be chosen smaller.

66

8 Conclusion

We discussed the modified Mumford-Shah functional, from which we derived an equation by determining
the Euler-Lagrange equation and applying gradient descent in order to minimize the functional. This
equation has been fully discretized in space and time, which yields a system to move the contour under
the influences of the internal and external force.

Techniques from graph theory have been applied to determine the number of cells; this helped us
to locate the centers of the cells. We tried improving the computational time by converting the image
into a binary image. Although this operation improved the computational time, the results were less
accurate caused by noise inside the cells. An image filtering method has been applied to remove the
noise. This enhanced the performance of the Mumford-Shah model with the binary image, but it could
occur that this filtering method removed parts of the boundary, which led to contours passing through
the boundaries.

We introduced a new internal force, which also have been applied in other deformable contour models.
This discourages bending of the contour and proved to be a useful addition to our model.

We presented an improved Mumford-Shah model, which consists of two phases; the jump phase and
the Mumford-Shah phase. The first phase improved the execution time by quickly approximating the
location of the boundary of a cell. The latter phase adapted the approximation into an accurate result.
We modified the evaluation of the force in order to get a more stable result. In the last step of the model,
the contour performed an inflation to reach the edge of the boundary.

An simplified version of the Mumford-Shah model has been discussed, from which we derived the
analytical solution. This was used to study the influences of the stretching and bending parameters on
the contour. The time evolution of the contour was also investigated to understand the model and to
determine suitable choices for the parameters.

67

9 Discussion

The modified Mumford-Shah models performs as expected; the initial contour will eventually reach the
boundary, but this takes a long time. This gives the suspicion that the model is not appropriate for this
kind of problem. That is; the cartoon model without the gradient term in the functional, and where we
determined ui and uo as in eq. (6). For next studies, the Mumford-Shah functional with extra gradient
term can be considered. However, this operational will also increase the computational time per time
step, but perhaps this model allows us to take less steps in order to get the desired results, such that the
total computational time will be improved.

For the improved Mumford-Shah model we have used a jump condition to move the contour quickly
to the boundary; this gives us an approximation of the boundary. A similar approach has been applied
to the balloon model [4], where the contour is inflated such that it moves towards the boundary until it
reaches the boundary. Thus this model is likely to give a decent result for this problem in a small amount
of time. The balloon model should be considered and examined in order to verify its accuracy.

As stated before, the main problem with the Mumford-Shah model is the computational time. We
have tried solving this problem by improving the model and image filtering, however, the code of the
program can also be optimized. It can be improved by using sparse matrices, an alternate approach for
evaluating inverse matrices and a different way for calculating mean values. Adapting the code, such that
it can be executed parallel instead of sequential will also improve the computational time.

68

References

[1] Mumford, D.B. & Shah, J. (1989). Optimal approximations by piecewise smooth functions and as-
sociated variational problems. Communications on Pure and Applied Mathematics 42(5): 577-685.
doi=10.1002/cpa.3160420503

[2] Cremers, D., Schnörr, C., & Weickert, J. (2001). Diffusion-Snakes: Combining Statistical Shape
Knowledge and Image Information in a Cariational Framework. Variational and Level Set Methods in
Computer Vision, 13: 137-144. doi=10.1109/VLSM.2001.938892

[3] Bar, L., Chan, T.F., Chung, G., Jung, M., Kiryati, M., Mohieddine, R., Sochen, N. & Vese, L.A.
(2011). Mumford and Shah Model and its Applications to Image Segmentation and Image Restoration,
Handbook of Mathematical Methods in Imaging. doi=10.1007/978-0-387-92920-0 25

[4] Cohen, L.D. (1991). On active contour models and balloons. CVGIP: Image Understanding, 53(2):
211 - 218. doi=10.1016/1049-9660(91)90028-N

[5] Chenyang, X., Prince, J. (1997). Gradient Vector Flow: A New External Force for Snakes. Proc Cvpr
Ieee, 07: 66 - 71.

[6] Fialka, O., & Cadik, M. (2006). FFT and Convolution Performance in Image Filtering on GPU. In
Proceedings of the Tenth International Conference on Information Visualisation, 08: 609 - 614.

[7] Diestel, R. (2017). Graph Theory. doi=10.1007/978-3-662-53622-3

69

A Code

Below a python script that performs the improved Mumford-Shah model described in Section 6.3.

import numpy as np

import scipy.misc

from scipy import ndimage

import scipy.ndimage.filters as filters

import matplotlib.pyplot as plt

import matplotlib.cm as cm

from PIL import Image, ImageDraw

import time

#Reads image

def Read(img):

return scipy.misc.imread(img, ’L’)

#Scales the image to valus in [0,1]

def Normalize(I):

return (I−np.min(I))/(np.max(I)−np.min(I))

#Crops image

def Crop(I,h l ,h r ,v t ,v b):

return I[v t:v b ,h l:h r]

#Down−samples the image
#by evaluating the mean value of a block of size factxfact

def downsamplingMean(ar orig , fact):

sx orig , sy orig = ar orig.shape

sx = sx orig − sx orig%fact

sy = sy orig − sy orig%fact

ar = ar orig[0:sx,0:sy]

assert isinstance(fact, int), type(fact)

X, Y = np.ogrid[0:sx, 0:sy]

regions = sy/fact * (X/fact) + Y/fact

res = ndimage.mean(ar, labels=regions, index=np.arange(regions.max() + 1))

res.shape = (sx/fact, sy/fact)

return res

#Applies Gaussian blur filter

def Gaussianfilter(I, sigma):

return ndimage.gaussian filter(I, sigma=sigma)

#Determines the location of the maxima (or cell centers)

#far enough away (bdr) from the edge

def croppedMaxima(I,sigma,bdr):

m,n = I.shape

x list ,y list = findMaxima(I,sigma)

x list crop ,y list crop = [],[]

for i in range(len(x list)):

if (bdr<x list[i]<=n−bdr) and (bdr<y list[i]<=m−bdr):
x list crop.append(x list[i])

y list crop.append(y list[i])

return x list crop ,y list crop

#Finds the location of the maxima (or cell centers)

70

def findMaxima(I,sigma):

neighborhood size = 10

threshold = 0.8

I gauss = Gaussianfilter(I,sigma)

I gauss min = filters.minimum filter(I gauss , neighborhood size)

I gauss max = filters.maximum filter(I gauss , neighborhood size)

maxima = (I gauss == I gauss max)

diff = ((I gauss max − I gauss min)< threshold)

maxima[diff == 0] = 0

labeled, num objects = ndimage.label(maxima)

slices = ndimage.find objects(labeled)

x, y = [], []

for dy,dx in slices:

x center = (dx.start + dx.stop− 1)/2
x.append(x center)

y center = (dy.start + dy.stop− 1)/2
y.append(y center)

return x,y

#Determines the location of the minima (or cell vertices)

#far enough away (bdr) from the edge

def croppedMinima(I,sigma,bdr):

m,n = I.shape

x list ,y list = findMinima(I,sigma)

x list crop ,y list crop = [],[]

for i in range(len(x list)):

if (bdr<x list[i]<=n−bdr) and (bdr<y list[i]<=m−bdr):
x list crop.append(x list[i])

y list crop.append(y list[i])

return x list crop ,y list crop

#Finds the location of the minima (or cell vertices)

def findMinima(I,sigma):

neighborhood size = 10

threshold = 0.8

I gauss = Gaussianfilter(I,sigma)

I gauss min = filters.minimum filter(I gauss , neighborhood size)

I gauss max = filters.maximum filter(I gauss , neighborhood size)

minima = (I gauss == I gauss min)

diff = ((I gauss max − I gauss min)< threshold)

minima[diff == 0] = 0

labeled, num objects = ndimage.label(minima)

slices = ndimage.find objects(labeled)

x, y = [], []

for dy,dx in slices:

x center = (dx.start + dx.stop− 1)/2
x.append(x center)

y center = (dy.start + dy.stop− 1)/2
y.append(y center)

return x,y

#Matrix for the second derivative

def matrixA(N):

71

A = np.zeros([N,N])

for i in range(1,N−1):
A[i,i] = −2
A[i,i+1] = 1

A[i,i−1] = 1
A[0,0] = A[N−1,N−1] = −2
A[0,1] = A[0,N−1] = A[N−1,0] = A[N−1,N−2] = 1
return A

#Matrix for the first derivative

def matrixB(N):

B = np.zeros([N,N])

for i in range(1,N−1):
B[i,i−1] = −1
B[i,i+1] = 1

B[N−1,0] = B[0,1] = 1
B[N−1,N−2] = B[0,N−1] = −1
return 0.5*B

#Matrix for the n(egative) first derivative

def matrixC(N):

C = np.zeros([N,N])

for i in range(1,N−1):
C[i,i−1] = 1
C[i,i+1] = −1

C[N−1,0] = C[0,1] = −1
C[N−1,N−2] = C[0,N−1] = 1
return 0.5*C

#Matrix for the fourth derivative

def matrixD(N):

D = np.zeros([N,N])

for i in range(2,N−2):
D[i,i] = 6

D[i,i−1] = D[i,i+1] = −4
D[i,i−2] = D[i,i+2] = 1

D[0,0] = D[N−1,N−1] = D[1,1] = D[N−2,N−2] = 6
D[0,1] = D[0,N−1] = D[N−1,0] = D[N−1,N−2] = −4
D[1,0] = D[1,2] = D[N−2,N−1] = D[N−2,N−3] = −4
D[0,2] = D[0,N−2] = D[N−1,1] = D[N−1,N−3] = 1
D[1,3] = D[1,N−1] = D[N−2,0] = D[N−2,N−4] = 1
return D

#Matrix for the external force for u plus arr (array) and u min (integer)

def matrixE(xy arr ,u min ,u plus arr ,I,d):

x arr = xy arr[:len(xy arr)/2]

y arr = xy arr[len(xy arr)/2:]

Ediag = []

m,n = I.shape

for i in range(len(x arr)):

x elt = int(round(x arr[i]))

y elt = int(round(y arr[i]))

f = np.mean(I[y elt−d:y elt+d,x elt−d:x elt+d])
e plus = (f−u plus arr[i])**2
e min = (f−u min)**2

72

Ediag.append((e plus−e min))
E = np.diagflat(Ediag)

return E,Ediag

#Matrix for the external force for u plus arr (array) and u min arr (array)

def matrixE2(xy arr ,u min arr ,u plus arr ,I,d):

x arr = xy arr[:len(xy arr)/2]

y arr = xy arr[len(xy arr)/2:]

Ediag = []

for i in range(len(x arr)):

x elt = int(round(x arr[i]))

y elt = int(round(y arr[i]))

f = np.mean(I[y elt−d:y elt+d,x elt−d:x elt+d])
e plus = (f−u plus arr[i])**2
e min = (f−u min arr[i])**2
Ediag.append((e plus−e min))

E = np.diagflat(Ediag)

return E,Ediag

#Give the initial contour; a circle of N points with radius ’radius’

def initContour(x middle ,y middle ,radius,N):

x start = np.zeros(N)

y start = np.zeros(N)

for i in range(N):

x start[i] = x middle + radius * np.cos(i/float(N)*2*np.pi)

y start[i] = y middle + radius * np.sin(−i/float(N)*2*np.pi)
xy start = np.concatenate((x start ,y start))

return xy start

#Makes an array periodic

def makePeriodic(arr):

arr per = np.insert(arr,0,arr[−1])
return arr per

#Finds the average value between two values of an array

def findAverage(arr):

arr per = makePeriodic(arr)

arr avg = np.zeros(len(arr))

for i in range(len(arr avg)):

arr avg[i] = (arr per[i]+arr per[i+1])/2.0

return np.insert(arr avg ,len(arr avg),arr avg[0])

#Finds a suitable choice for sigma

def findSigma(I):

threshold = 10

bdr = 5

maxima list = []

minima list = []

sigma list = []

for i in np.arange(1,20,1):

x max ,y max = croppedMaxima(I,float(i),bdr)

sigma list.append(float(i))

maxima list.append(len(x max))

73

IGauss = Gaussianfilter(I,float(i)/2.0)

I fil = Normalize(filters.minimum filter(IGauss,threshold/2.0))

xl,yl = croppedMinima(I fil ,0.0,bdr)

minima list.append(2+0.5*len(xl))

maxima list = np.array(maxima list)

minima list = np.array(minima list)

der2 = np.zeros(len(maxima list)−2)
s arr = np.zeros like(der2)

valid = []

for u in range(0,len(maxima list)−2):
s arr[u] = u+1

der2[u] = maxima list[u+2]−2*maxima list[u+1]+maxima list[u]
for r in range(len(s arr)):

if der2[r]<20:
valid.append(s arr[r])

validmin = np.min(valid)

validmax = np.max(valid)

sigma list = np.array(sigma list)

plt.figure()

plt.plot(sigma list ,maxima list ,’forestgreen’,linewidth=3,

label=’Cell Center method’)

plt.plot(sigma list ,minima list , ’darkorange’,linewidth=3,

label=’Cell Vertex method’)

idx = np.argwhere(np.diff(np.sign(maxima list − minima list)) != 0)\
.reshape(−1) + 1
idxvalid = []

for idxelt in idx:

if validmin<=sigma list[idxelt]<=validmax:
idxvalid.append(sigma list[idxelt])

sigmacorrect = np.mean(idxvalid)

plt.plot(sigma list[idx], maxima list[idx], ’ro’,markersize=5)

plt.legend(loc=’upper right’)

plt.xlabel(’sigma’)

plt.ylabel(’Number of cell centers’)

plt.show()

return sigmacorrect

#Finds a suitable threshold for converting to a binary image

def findIthreshold(arr,b):

plt.figure()

n, bins, patches = plt.hist(arr.flatten(),np.arange(0,1.0+b,b),

facecolor=’green’,alpha=0.5)

plt.show()

der2 = []

for i in range(0,len(n)−2):
f2 = 1/(b**2)*(n[i+2]−2*n[i+1]+n[i])
der2.append(f2)

bins2 = bins[0:−3]

min der2 = np.min(der2)

74

max der2 = np.max(der2)

optimal = bins2[np.argmax(der2)−1]
plt.figure()

plt.plot([optimal+b/2.0,optimal+b/2.0],[min der2 ,max der2],’−−r’,
linewidth=2.0)

plt.plot(bins2,der2,linewidth=2.0)

plt.ylim([min der2 ,max der2])

plt.ylabel(’Second derivate of frequency’)

plt.xlabel(’Intensity’)

plt.show()

return optimal

#Finds the average width of a boundary

def findWidthBoundary(Ncell,m,n,rho,bdr):

return (1−np.sqrt(rho))*np.sqrt(((m−bdr)*(n−bdr))/float(Ncell))

#Finds the average diameter of a boundary

def findDiameter(Ncell,m,n,bdr):

return np.sqrt(((m−bdr)*(n−bdr))/float(Ncell))

#Converts image to a binary image

def binary image(I,Itr):

I bin = np.zeros like(I)

I bin[I> Itr] = 1

return I bin

#Evaluates the mean values of the jump phase

def MeanJump(xy arr ,x out orig ,y out orig ,I,h,xmin,ymin):

xy arr copy = np.array(xy arr ,copy=True)

x out = np.array(x out orig ,copy=True)

y out = np.array(y out orig ,copy=True)

x arr = xy arr[:len(xy arr copy)/2]−xmin
y arr = xy arr[len(xy arr copy)/2:]−ymin
x out −= xmin
y out −= ymin

x arr avg = findAverage(x arr)

y arr avg = findAverage(y arr)

x out avg = findAverage(x out)

y out avg = findAverage(y out)

m,n = I.shape

u plus arr = np.zeros(len(x arr))

u min = 0

block in = []

for i in range(len(x arr)):

block out = [(x arr avg[i],y arr avg[i]),(x arr[i],y arr[i]),

(x arr avg[i+1],y arr avg[i+1]),

(x out avg[i+1],y out avg[i+1]),(x out[i],y out[i]),

(x out avg[i],y out avg[i])]

block in.append((x arr[i],y arr[i]))

img out = Image.new(’L’, (n,m), 0)

75

ImageDraw.Draw(img out).polygon(block out , outline=1, fill=1)

mask out = np.array(img out)

I plus = np.ma.array(I, mask = mask out − 1)
u plus = np.mean(I plus)

u plus arr[i] = u plus

img in = Image.new(’L’, (n,m), 0)

ImageDraw.Draw(img in).polygon(block in , outline=1, fill=1)

mask in = np.array(img in)

I min = np.ma.array(I, mask = mask in − 1)
u min = np.mean(I min)

return u min , u plus arr

#Evaluates the mean values of the Mumford−Shah phase
def MeanMS(xy arr ,x out orig ,y out orig ,I,h,xmin,ymin):

xy arr copy = np.array(xy arr ,copy=True)

x out = np.array(x out orig ,copy=True)

y out = np.array(y out orig ,copy=True)

x in ,y in = findAreaContour(xy arr copy,−h)
x arr = xy arr[:len(xy arr copy)/2]−xmin
y arr = xy arr[len(xy arr copy)/2:]−ymin
x in −= xmin
y in −= ymin
x out −= xmin
y out −= ymin

x arr avg = findAverage(x arr)

y arr avg = findAverage(y arr)

x out avg = findAverage(x out)

y out avg = findAverage(y out)

x in avg = findAverage(x in)

y in avg = findAverage(y in)

m,n = I.shape

u plus arr = np.zeros(len(x arr))

u min arr = np.zeros(len(x arr))

block in = []

for i in range(len(x arr)):

block out = [(x arr avg[i],y arr avg[i]),(x arr[i],y arr[i]),\
(x arr avg[i+1],y arr avg[i+1]),(x out avg[i+1],y out avg[i+1]),\
(x out[i],y out[i]),(x out avg[i],y out avg[i])]

block in = [(x arr avg[i],y arr avg[i]),(x arr[i],y arr[i]),\
(x arr avg[i+1],y arr avg[i+1]),(x in avg[i+1],y in avg[i+1]),\
(x in[i],y in[i]),(x in avg[i],y in avg[i])]

img out = Image.new(’L’, (n,m), 0)

ImageDraw.Draw(img out).polygon(block out , outline=1, fill=1)

mask out = np.array(img out)

if mask out.size!=1:

I plus = np.ma.array(I, mask = mask out − 1)
u plus = np.mean(I plus)

u plus arr[i] = u plus

76

else:

u plus arr[i] = np.mean(I)

img in = Image.new(’L’, (n,m), 0)

ImageDraw.Draw(img in).polygon(block in , outline=1, fill=1)

mask in = np.array(img in)

if mask out.size!=1:

I min = np.ma.array(I, mask = mask in − 1)
u min = np.mean(I min)

u min arr[i] = u min

else:

u min arr[i] = np.mean(I)

return u min arr , u plus arr

#Finds the contour normal to the current contour

def findAreaContour(xy arr ,h):

x arr = xy arr[:len(xy arr)/2]

y arr = xy arr[len(xy arr)/2:]

B = matrixB(len(x arr))

C = matrixC(len(x arr))

x dev = np.matmul(C,y arr)

y dev = np.matmul(B,x arr)

a = abs(y dev/x dev)

dx = h/np.sqrt(1+a**2)

dy = a*dx

return x arr + dx*np.sign(x dev), y arr + dy*np.sign(y dev)

#Doubles the points of an contour

def doubleContour(xy arr):

size = len(xy arr)/2

x arr = xy arr[:size]

y arr = xy arr[size:]

x arr per = np.insert(x arr ,size,x arr[0])

y arr per = np.insert(y arr ,size,y arr[0])

x arr new = np.zeros(2*size)

y arr new = np.zeros(2*size)

for i in range(size):

x arr new[2*i] = x arr[i]

x arr new[2*i+1] = (x arr per[i]+x arr per[i+1])/2.0

y arr new[2*i] = y arr[i]

y arr new[2*i+1] = (y arr per[i]+y arr per[i+1])/2.0

xy arr new = np.concatenate((x arr new ,y arr new))

return xy arr new

#Finds boundaries of the cells using the improved Mumford−Shah model
def findBoundary(x list ,y list ,Radius,N,I,IGauss jump ,dt,nu jump ,kappa jump ,

nu MS ,kappa MS ,n iter ,h jump ,h MS ,d):

#Generate matrices

A = matrixA(N)

B = matrixB(N)

C = matrixC(N)

D = matrixD(N)

A2 = matrixA(2*N)

77

B2 = matrixB(2*N)

C2 = matrixC(2*N)

D2 = matrixD(2*N)

contour list = []

#Initial contour

for l in range(len(x list)):

xy arr = initContour(x list[l],y list[l],Radius,N)

contour list.append(xy arr)

JUMP = np.array([True]*len(contour list))

STOP = np.array([False]*len(contour list))

for i in range(n iter):

for j in range(len(contour list)):

xy arr = contour list[j]

if JUMP[j]:

#Calculate mean values inside and outside the contour.

x out orig , y out orig = findAreaContour(xy arr ,h jump)

xmin,xmax = int(np.min(x out orig)),int(np.max(x out orig))+1

ymin,ymax = int(np.min(y out orig)),int(np.max(y out orig))+1

IGauss part = IGauss jump[ymin:ymax,xmin:xmax]

u min , u plus arr = MeanJump(xy arr ,x out orig ,y out orig ,

IGauss part ,h jump ,xmin,ymin)

#Determine which points have to jump

jump = (u min−u plus arr<2*10**−2).astype(int)
jump2 = np.concatenate((jump,jump))

xy arr[jump2==1] = np.concatenate((x out orig ,y out orig))\
[jump2==1]

#If more than 75% of the point don’t jump,

#we stop the jump phase

if (N−np.count nonzero(jump))>0.75*N:
JUMP[j] = False

#Performs Mumford−Shah model
E,Ediag = matrixE(xy arr ,u min ,u plus arr ,IGauss jump ,d)

MS1 = np.concatenate((nu jump*A−kappa jump*D,np.matmul(E,C)),
axis=1)

MS2 = np.concatenate((np.matmul(E,B),nu jump*A−kappa jump*D),
axis=1)

MS = np.concatenate((MS1,MS2),axis=0)

BW = np.linalg.inv(np.identity(len(xy arr))−dt*MS)
xy arr = np.matmul(BW,xy arr)

#Check if the jump phase stops

if not JUMP[j]:

xy arr = doubleContour(xy arr)

contour list[j] = xy arr

else:

78

#If the contours stops movinfg, we continue with the others

if STOP[j]:

continue

else:

#Calculate mean values inside and outside the contour.

x out orig , y out orig = findAreaContour(xy arr ,h MS)

xmin,xmax = int(np.min(x out orig)),\
int(np.max(x out orig))+1

ymin,ymax = int(np.min(y out orig)),\
int(np.max(y out orig))+1

I part = I[ymin:ymax,xmin:xmax]

u min arr , u plus arr = MeanMS(xy arr ,x out orig ,\
y out orig ,I part ,h MS ,xmin,ymin)

#Performs Mumford−Shah model
E2,Ediag2 = matrixE2(xy arr ,u min arr ,u plus arr ,I,d)

MS1 = np.concatenate((nu MS*A2−kappa MS*D2,
np.matmul(E2,C2)),axis=1)

MS2 = np.concatenate((np.matmul(E2,B2),

nu MS*A2−kappa MS*D2),axis=1)
MS = np.concatenate((MS1,MS2),axis=0)

BW = np.linalg.inv(np.identity(len(xy arr))−dt*MS)
xy arr = np.matmul(BW,xy arr)

f tr = (abs(np.array(Ediag2))<10**−3).astype(int)
n stop = np.count nonzero(f tr)

if n stop>=N:
STOP[j]= True

contour list[j] = xy arr

return contour list

#Performs the inflation of the contour

def Inflate(curve list ,h):

for i in range(len(curve list)):

xy arr = curve list[i]

x,y = findAreaContour(xy arr ,h)

xy arr step = np.concatenate((x,y))

curve list[i] = xy arr step

return curve list

#Plots the results of the contours

def plotResult(curve list ,I):

m,n = I.shape

plt.figure()

plt.imshow(I, cmap = cm.Greys r)

plt.autoscale(False)

for i in range(len(curve list)):

xy arr = curve list[i]

x arr = xy arr[:len(xy arr)/2]

y arr = xy arr[len(xy arr)/2:]

x arr per = np.insert(x arr ,0,x arr[len(x arr)−1])
y arr per = np.insert(y arr ,0,y arr[len(x arr)−1])
plt.plot(x arr per ,y arr per ,’−or’,markersize = 3, linewidth = 2)

plt.axes().set aspect(’equal’)

79

m,n = I.shape

plt.xticks([])

plt.yticks([])

plt.savefig("Result.png",bbox inches=’tight’,dpi=300)

plt.show()

========================= Main ===============================

if name == " main ":

plt.close(’all’)

STARTtime = time.time()

#Beforehand determined parameters

downsamplingfactor = 5

N = 15

dt = 10.0

n iter = 40

#Consider only the part that is bdr removed from the edge of the image

bdr = 100

#Normalization and downsampling of image

img = ’../../../Images/img.jpg’

Image orig = Read(img)

Image normalized = Normalize(Image orig)

I = Normalize(downsamplingMean(Image normalized , downsamplingfactor))

m,n = I.shape

#Finding the correct parameters and values

#Sigma

sigma = findSigma(I)

print ’Sigma:’, sigma

#Ithreshold

IGauss = Gaussianfilter(I,sigma/10.0)

Ithreshold = findIthreshold(IGauss ,0.01)

print ’Threshold for binary image:’, Ithreshold

#Part white points

Ibin = binary image(I,Ithreshold)

rho = np.mean(Ibin)

print ’Part white points:’, rho

#Locating cell centers

x list , y list = croppedMaxima(I,sigma,bdr)

Ncell = len(x list)

print ’Number of cells:’,Ncell

#Diameter

diameter = findDiameter(Ncell,m,n,bdr)

print ’Diameter of cell:’,diameter

#Boundary width

b overestimation = findWidthBoundary(Ncell,m,n,rho,bdr)

80

b = 0.75*b overestimation

print ’Width of boundary:’, b

#Radius

Radius = 0.2*diameter

print ’Radius of initial contour:’,Radius

#h jump and h MS

h jump = b/2.0

h MS = 2.0*b

print ’h jump:’, h jump

print ’h MS:’, h MS

#Weighting parameters

nu jump1 = h jump/(Radius*np.sin(2*np.pi/float(N)))

nu jump2 = 2*np.pi*(1+(2*np.pi)**2)

nu jump = nu jump1/nu jump2

kappa jump = nu jump

nu MS = 1.0/(2*np.pi*(1+(2*np.pi)**2))

kappa MS = nu MS

print ’nu jump , kappa jump:’,nu jump

print ’nu MS , kappa MS:’,nu MS

#Blocksize d

d = int(b)

print ’Blocksize:’,d

#Inflate size h infl

h infl = d−b/2.0
print ’h infl:’, h infl

#Improved Mumford−Shah model
IGauss jump = Gaussianfilter(I,0.8)

contour list = findBoundary(x list ,y list ,Radius,N,I,IGauss jump ,dt,

nu jump ,kappa jump ,nu MS ,kappa MS ,n iter ,

h jump ,h MS ,d)

contour list inflated = Inflate(contour list ,h infl)

plotResult(contour list inflated ,I)

ENDtime = time.time()

print ’Execution time:’, ENDtime−STARTtime

The list contour list inflated contains the solution of the contours at the last iteration niter = 40.

81

