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A B S T R A C T

Depth-contours are an essential part of any hydrographic chart—a
map of a waterbody intended for safe ship navigation. Traditionally
these were manually drawn by skilled hydrographers from a limited
set of surveyed depth measurements. Nowadays this process of map
making is shifted towards the digital domain, not in the last place
because of the huge amounts of data resulting from modern survey-
ing techniques. Furthermore, the task of automating the process of
cartographic generalization that depends on subjective criteria is chal-
lenging. The produced depth-contours should comply with the four
hydrographic generalization constraints of safety, legibility (smooth-
ness), topology and waterbody morphology.

I show that grid-based approaches to generalize depth contours
that are currently used in practice do not always comply with those
fundamental generalization constraints. Most notably, the safety con-
straint, that ensures that a map never indicates an area as being shal-
lower than measured, is often violated. But also the legibility and
morphology constraints are not always optimally respected.

Furthermore, heterogeneous datasets (that contain a transition of
very sparse to very dense data), can lead to unwished interpolation
artifacts, when the popular Inverse Distance Weighting (IDW) spatial
interpolation method is used. Part of this problem is the non-adaptive
nature of IDW, that requires the user to re-set the interpolation param-
eters when the spatial distribution of the input point changes.

I present and prototype a novel surface-based approach for the
generalization of hydrographic depth-contours that is based on the
Voronoi Diagram (VD) and performs generalization on the surface
that defines the contours, rather on the contour lines individually.
Through the VD, a fully adaptive, automatic and smooth spatial inter-
polation method known as the Laplace interpolant is coupled with
a Delaunay Triangulation (DT) data structure that contains all data
points with their exact planimetric coordinates. Using this concept
a number of operators is defined that are able to perform the rel-
evant cartographic generalization operations for hydrographic con-
tours: simplification, smoothing, aggregation, omission and enlarge-
ment.

The significance of the proposed approach lies herein that it honors
all four hydrographic generalization constraints, most notably: it is
guaranteed to be safe. As opposed to current automated approaches,
it does therefore not require any form of manual safety verification.
And, because all of the employed algorithms are local, it is also well
scalable to big datasets in principle.
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1 I N T R O D U C T I O N

The way maps are made is rapidly changing. Traditionally, the pro-
cess of transforming spatial measurements into a relevant graphical
representation (a map) has involved a lot of manual work, as well as
the trained eye of a cartographer. Nowadays the entire map making
process has shifted towards the digital domain. This shift comes with
great benefits, but it also requires a fundamental rethinking of the
entire map making process (as depicted in Figure 1). In order to fully
understand this we first need to ask ourselves two elementary ques-
tions: Why do we make maps? and What makes a good map? After an-
swering those questions, I will discuss the more practical challenges
in modern map making, after which I state the subject and goal of
this thesis, which is in a way a fundamental rethinking of the map
making process of hydrographic charts.

Data collector Cartographer Map reader

Recognized 
geographical 
information

Geographical 
reality Map Map Image

Echo sounding
GPS

Selection
Generalization

Reading
Analysis

Interpretation

Figure 1: The different steps in the process of map making. Figure
adapted from (Kimerling and Muehrcke, 2009).

Why do we make hydrographic charts?

Kimerling and Muehrcke (2009) write that the power of a map lies in
its ability to visualize environmental patterns. The ultimate goal of
that visualization is to optimally convey a message to the map reader
in a timely and reasonable fashion. The contents of that message—
and therefore the form of visualization—entirely depends on the map
purpose. It is the map purpose that sets the constraints on the process
of cartographic abstraction: the complete process of transforming data
that have been collected about our environment into a visualization,
i.e. a graphical representation, of features relevant to the purpose of
a map (Kimerling and Muehrcke, 2009).
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2 introduction

Hydrographic charts are maps of the underwater world, specifi-
cally intended for safe ship navigation1. The purpose of a hydro-
graphic chart is thus to facilitate safe and efficient ship navigation,
consequently the main constraints of a hydrographic chart are:

1. The safety constraint. A hydrographic chart is primarily a depth-
map of the underwater surface. At every location, the indicated
depth may never be deeper than the depth that was originally
measured at that location. This is to guarantee that a ship never
runs aground because of a faulty map.

2. The legibility constraint. A shipper should be able to quickly
grasp an good impression of the waterbody morphology by
looking at the map for only a short period of time. Superflu-
ous and insignificant information for ship-navigation will only
slow down the map-reading process, thus only the essential in-
formation should be present on the map in a form that is clearly
and efficiently apprehensible.

3. The topology constraint. The topology of the depicted map el-
ements must be correct. Contour lines for instance may not
intersect.

4. The morphology constraint. The map should also be as realistic
and accurate as possible, i.e. the overall shape of the morphol-
ogy of the underwater surface should be clearly perceivable.

A map that is able to deliver this knowledge intuitively to the map
reader is clearly of great value to a shipper. That is why hydrographic
charts are made.

What makes a good hydrographic chart?

A good map is a usable map, thus a map that fulfills its purpose by
respecting all of its constraints. Making a good map however, is a te-
dious task. It is not without reason that cartography is often referred
to as an art. Successfully integrating all of the required map con-
straints, requires the ability to purposefully select, adapt and depict
the raw and often imperfect samples of reality. Especially with small
scale maps, where available space is limited and elements tend to get

1 Both paper and digital variants of such charts exist and the digital variant is named
Electronical Navigational Chart (ENC), as defined in the S-57 IHO Transfer Standard
for Digital Hydrographic Data. ENCs are used onboard in a so-called Electronic Chart
Display Information System (ECDIS) and, as opposed to paper charts, also have the
ability to dynamically set the color scale of depth areas, using current water lev-
els and the ship dependent draft (the water depth needed to float the ship). ENCs
are often integrated with other systems such as radar and Global Positioning Sys-
tem (GPS), that complete system can also automatically warn for possible collisions.
(Wright and Bartlett, 2000)
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Figure 2: Details from two maps of the river Merwede in 1729 by the
Delft engineer and cartographer Nicolaus Cruquius. One of
the earliest uses of depth contours.

so small that they are no longer visibly perceivable, it is a challenging
task to devise a map that still conveys the right message and still is
pleasant to read.

The first step in process of cartographic abstraction is cartographic
selection, it is to choose the relevant bits of information to include on
a map, and thus also determining what should be left off. It is effec-
tively reducing the abundance of available data to its sheer essence.

A prime example of cartographic selection on a hydrographic chart
is the depth contour (§ 2.4). As Figure 2 demonstrates, these are smooth
looking lines that connect points of equal depth and aim to give the
map reader a clear impression of the seabed morphology. The fact
that every sample point that is not on a contouring depth is omitted,
reduces the amount of information that is depicted on a map, but in
case of good contours the reader will still be able to deduct the gen-
eral seabed morphology. It is even so that the use of contours will
speed up the map reading process, as it conveys just that relevant bit
of data to the map reader rather than ’flooding’ the reader with in-
formation which essentially makes the user do his own cartographic
selection. Creating good depth-contours requires generalization (see
§ 2.5), i.e. the process of meaningfully reducing detail. Ultimately
the depth-contours need to look simple and smooth (Figures 2 and
3b) so that the shipper can quickly and surely consider his surround-
ings (the legibility constraint). This, in strong contrast to the raw
and cluttered ungeneralized contours of Figure 3a. Only by deviating
from original measurements one can achieve these smooth looking
contours. But since hydrographic charts are intended for safe naviga-
tion (the safety constraint), this deviating can only happen towards
deeper areas. In other words, while generalizing the original mea-
surements to achieve the smooth or legible look it is only allowed to
do this by artificially moving the underwater surface upwards and
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(a) TIN interpolation from raw data
points and corresponding raw
depth contours.

(b) Hydrographic map product of the
same area.

(c) Detail. Pits are removed, while
peaks are preserved or integrated.

(d) Detail. Groups of nearby contour
lines are aggregated

Figure 3: Comparison of raw data and a hydrographic chart from the
Royal Australian Navy of the Torres Strait north of Australia.
Raw depth contours are blue, generalized depth contours are
black.

never downwards. Besides, there is also the morphology constraint
to consider: the overall (original) feature shapes need to be preserved,
which further limits the range of surface alterations that can be made
for the sake of legibility. Figures 3c and 3d illustrate some aspects of
the process of generalizing depth-coutours.

In brief, the constraints for hydrographic charts are conflicting; op-
timally satisfying one constraint will violate another constraint. It is
the art of cartography to obtain a sort of optimal equilibrium between
the map constraints. I use the word art because it implies a certain
subjectivity, i.e. there is no well defined set of formal metrics to as-
sess a map’s quality in all its various aspects. And, although serious
efforts are made to tackle this problem by for instance Stoter et al.
(2009), it remains extremely difficult to fully automate a problem that
is dependent on subjective procedures.

Data

Naturally, a map cannot be made without data, i.e. samples of geo-
graphical reality (this is explained in § 2.1). In modern hydrographic
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Figure 4: Multi Beam Echo Sounding (MBES) is based on the principle of
measuring the time of flight—that corresponds to twice the
distance to the reflecting object—of hundred of individual
signal pulses. By keeping track of the angle of the transmitted
signal and by correcting for ship motion using an Inertial
Navigation System (INS), accurate depth soundings are
obtained.

map making the two main challenges in automatically processing
these data are:

1. There is a lot of data.

2. Data is imperfect.

During the past century, the acquisition-rate, density and accuracy
of the underwater surface measurements have been continuously in-
creasing. Long ago these measurements (referred to as depth sound-
ings) were collected by sinking a leadline from a ship. Resulting
soundings were sparse and inaccurate. A more modern technique
is Single Beam Echo Sounding (SBES) (sonar). This is using single
beams of sound to measure depth more quickly and more accurately.
Today the most widely used system is Multi Beam Echo Sounding
(MBES) (see Figure 4), which swaps the underwater surface with hun-
dreds of narrow beams. With the use of a Global Positioning Sys-
tem (GPS) and by correcting for the ship’s motion this results in accu-
rate and very dense depth soundings. The resulting massive and
dense point clouds arguably lead to higher quality products, but
these point clouds have also proven to be challenging to process effi-
ciently, since they do not fit in a computers’ internal memory.
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Figure 5: This dataset of the Thames (thinned to 10%) is composed of
both SBES and MBES surveys. The dents in the Inverse Distance
Weighting (IDW) interpolated depth contours are caused by the
varying point densities. Darker blue points indicate a deeper
area.

Datasets also tend to have flaws. In the case of using bathymetric
data to make a hydrographic chart, the main problem is the mixture
of surveys with strongly varying point densities. Large areas of the
sea are only sparsely surveyed and for some areas only old and ex-
tremely sparse leadline soundings are available, yet other adjacent
areas are densely surveyed. I call this a heterogeneous distribution
of sample points. It is at the boundaries between areas of different
surveying densities that existing automated contouring approaches
have problems (I elaborate on that in Chapter 3), which results in un-
acceptable contours (see Figure 5). In fact this was a specific problem
of a former major commercial player in hydrographic software, that
partly initiated this thesis work. That company was the Dutch com-
pany Atlis, which regrettably went bankrupt during the writing of
this thesis2.

1.1 objectives & research questions

This thesis explores an alternative approach to perform hydrographic
depth-contouring, which thus includes generalization. This approach

2 Atlis has been declared bankrupt as of April 2012

(www.gismagazine.nl/blog/laatste-nieuws/transfer-solutions-neemt-atlis-
medewerkers-over)

http://www.gismagazine.nl/blog/laatste-nieuws/transfer-solutions-neemt-atlis-medewerkers-over
http://www.gismagazine.nl/blog/laatste-nieuws/transfer-solutions-neemt-atlis-medewerkers-over
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is specifically aimed to be robust and scalable with respect to massive
and heterogeneously distributed datasets, but it also respects all of
the hydrographic map constraints. It builds on the preliminary work
of Ledoux (2009), who proposed the original idea of using a Voronoi-
based spatial interpolation method to safely generalize hydrographic
contour lines. Through the implementation of a prototype software
and by studying current solutions that idea is improved and extended
and it is shown that it forms a viable approach for the generation of
hydrographic depth-contours from real-world datasets.

Methodology and significant findings

The Voronoi- and surface-based approach that is presented in this the-
sis is a fundamentally different approach from current hydrographic
contouring solutions. Rather than obtaining contour lines in a series
of sequential operations that may imply loss of significant informa-
tion with every step (see Chapter 3), it is a unified approach that in-
trinsically respects the hydrographic chart constraints, is completely
adaptive to the spatial distribution of sample points and deals with
the entire processing chain: from sample points to generalized depth
contours. Furthermore the sample points are stored with their ex-
act coordinates and the only form of discretization takes place at the
very final processing step. A conceptual surface is defined that is
guaranteed to be smooth. Also, a number of local, thus in principle
well scalable, generalization operators on that conceptual surface are
defined that can perform every relevant cartographic generalization
operation and respect the safety constraint by definition. Chapter 4

discusses this proposed approach in more detail.
After closely studying the complete hydrographic contouring pro-

cess of current methods, it is concluded that none of the methods
that are known to be used in practice are truly respecting the hydro-
graphic safety constraint. Chapters 3 and 5 further elaborate on this.

The main research question of this thesis is defined as follows:

• Is the Voronoi- and surface-based approach a viable option for
the automatic generation of depth-contours for hydrographic
charts?

Additionally the following set of sub-research questions are defined:

1. What characterizes surfaces that lead to good depth contours
for hydrographic charts and what is needed in terms of interpo-
lation and generalization to achieve such a surface?

2. Are those characterizations respected in the Voronoi- and surface-
based approach?

3. Does the Voronoi- and surface-based approach perform well for
heterogeneously distributed input data?
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4. To what extent can the Voronoi- and surface-based approach be
automated?

5. Is the Voronoi- and surface-based approach well scalable to big
datasets?

In order to obtain answers to all these questions 1) an extensive liter-
ature review is done, 2) a prototype software application is developed
as a proof of concept and 3) this application is tested and compared
to existing methods using a number of real-world datasets.

1.2 scope of research

In order to maintain a clear research focus and to more strictly define
the scope of this research, the following points are explicitly made:

1. The sample points that form the input of the methodology de-
scribed in this thesis, are considered to be statistically prepro-
cessed and reliable. By absence of any metadata on point qual-
ity in the available datasets, it is assumed that input points are
error-free. Note that Arge et al. (2010) both give an overview
of the different noise types and demonstrate an effective and
efficient way to remove it from MBES datasets.

2. It is not considered how to deal with any temporal changes in
morphology, for instance time series of point clouds.

3. The implemented prototype serves only as a proof of concept.
It is not aimed to be production ready.

4. Coordinates are assumed to be Euclidean. This effectively means
that all data is projected before it is used.

5. While the work done in this thesis fits in the hydrographic gen-
eralization problem as a whole, the aim of this research is not
to solve the complete hydrographic map making problem. Pri-
marily, it only deals with depth-contours, which is only a part
of a hydrographic chart.

1.3 thesis outline

The next five chapters are structured as follows:

• In Chapter 2 I introduce the reader to the relevant theory for
this thesis. It covers the fundamentals of the digital represen-
tation of field-based spatial information and the preparation of
that information for map-use using generalization.
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• Chapter 3 describes and analyses current approaches in hy-
drographic contouring from hydrographic practice and lit-
erature. Difficulties with those approaches are illustrated and a
comparison of general characteristics is made.

• In Chapter 4 I motivate and describe a voronoi- and surface-
based approach, the alternative method for hydrographic con-
touring that I propose. The chapter includes several algorithms
and schematics.

• Chapter 5 continues with the implementation and experi-
ments of the proposed approach. A set of objective metrics is
defined that are used to quantify the effectiveness of the pro-
posed approach with respect to its fundamental requirements
(the hydrographic generalization constraints). Noteworthy as-
pects are highlighted and a comparison with existing methods
is made.

• Chapter 6 gives a summary of the most significant conclu-
sions and future work. The main contributions of my work
are summarized and I answer the research questions.

Following are a number of appendices:

• Appendix A describes a modified drop-heuristics algorithm which
is related to § 4.2.

• Appendix B gives more details on the implementation of the
prototype software that was developed.

• Appendix C gives an overview of the datasets that were used.

• Appendix D illustrates the smoothing operator that is defined
in § 4.3.1 with a series of 3D renderings.





2 T H E O R Y

This chapter provides an overview of the relevant theory related to
what is to come in the following chapters. In § 2.1 the difficulties
in modeling the infinite complexity of the tangible world around us
is discussed. Following is § 2.2 that explains how to do this, specifi-
cally using a digital model. § 2.3 is about spatial interpolation, § 2.4
elaborates on the idea of contouring and in § 2.5 the concept of gen-
eralization is introduced.

2.1 modeling reality

The geographical world in which we live is a complex one. It is a
world of infinite detail and continuous change, human built or oth-
erwise. And even though it seems impossible to have a complete
and accurate model of all this, we are able to measure and approxi-
mate useful properties such as the shape of the earth’s surface with
some detail. Such an approximation is bound to be limited, since
we can only take a finite number of measurement samples with a fi-
nite amount of accuracy. And storing this approximation in a data
structure1 on a computer leads to even further abstractions and gen-
eralizations of the real world (Goodchild, 1992). Still, as the plethora
of Geographic Information Science (GIS) applications illustrates, even
such a limited approximation or data model2 of a property of the earth
can be of great use (Maguire et al., 1991). How can this be?

Goodchild (1992) uses the term geographical reality to refer to the
empirically verifiable facts about the real world. He also describes a
way to define the fundamental element of geographical information
as the tuple T = 〈x, y, z1, z2, ..., zn〉. This allows us to give every two-
dimensional location (x, y) a set of n spatial variables. T could also
be extended to include a third dimension and time. For this thesis
however it suffices to include just one spatial variable next to the
dimensions x and y:

T = 〈x, y, h〉 (1)

h being the depth at location (x, y). Because both x and y are con-
tinuous, the number of tuples is infinite. The infinite set of tuples is
defined as a field (Molenaar, 1998). Every unique location, defined by

1 A set of guidelines for the representation of the logical organization of the data in
a data base consisting of named logical units of data and the relationships between
them. (Tsichritzis and Lochovsky, 1977)

2 The continuous surface implied by a data structure. (Kumler, 1994)

11
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two independent variables (x and y), has one dependent variable (h) as-
sociated with it. An implication of this is that the field, as defined
here, can not be used to represent some true 3-dimensional topo-
graphic features such as caves or overfolds. For this reason the field
is said to be single-valued or 2.5D; only two of its spatial dimensions
are represented truly.

As stated earlier we can not obtain the full (infinite) set of tuples
of a field, since that would take infinite time to do (not to mention
that fields in reality are continuously changing in time as well). In
addition it would be impossible to store all those tuples in a digital
data store, which only has finite storage capacity.3.
Luckily there is the notion of spatial autocorrelation that holds for many
spatial variables. It is perhaps best explained by citing Tobler’s First
Law of Geography:

“Everything is related to everything else, but near things
are more related than distant things” (Tobler, 1970)

So if we take two spatially autocorrelated tuples T1 and T2 the simi-
larity of their spatial variables, in our case only the depth h, increases
as their (x, y) locations converge.

This has two major consequences. Firstly, even with a finite number
of samples of a geographic phenomena it is still possible to create a
good description of its field. And secondly, the local similarity in
spatial variables of nearby tuples can be exploited to predict those
spatial variables at locations where no sample was taken.

In other words: Tobler’s First Law explains why we can sample and
interpolate. It explains why it is valid to represent geographical real-
ity in abstracted, generalized and discretized form. In that sense it is
fair to say that Tobler’s First Law lays at the foundation of Geograph-
ical Information Science (Goodchild, 2004). Yet, while Tobler’s First
Law justifies the use of sampling and interpolation techniques, it is
still very important to apply caution in the use of such techniques. As
Fisher (1997) and Goodchild (1992) explain, the nature of a geograph-
ical phenomena itself and the method of measuring are always to be
considered in the subsequent process of storage and processing.

2.2 digital representations of fields

In GIS, a field is commonly represented as a piecewise tessellation of
the plane (Goodchild, 1992). By dividing (or discretizing) the plane in

3 Note that if depth in geographical reality is a signal of limited frequency, it could
be represented with a finite number of samples. That is according to the Nyquist–
Shannon sampling theorem: A signal with a highest frequency f can be completely
reconstructed from a discrete series with a sample rate of at least 2 f . The question
then is of course what is the magnitude of f , and if 2 f is a technically achievable
sampling rate.
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pieces it becomes possible to represent it in digital form. The shape
and size of these pieces depends on the data model that is chosen.
One possibility is to tessellate the plane into uniform and rectangular
pieces. Rasters (§ 2.2.1) fall in this category. An alternative approach
is to tessellate the plane into triangular pieces of variable size. The
Triangular Irregular Network (TIN) (§ 2.2.2) can be classified as such.

The choices for a data model and a data structure are interwoven,
and cannot always be treated independently. When choosing for a
particular data model, one should also consider how it can be imple-
mented as a data structure and what are the related implications for
scalability, speed and storage efficiency. Inversely, when choosing for
a particular data structure instead, consider how this might limit the
actual field representation.

Note that the Voronoi- and surface-based approach proposed in
this thesis is centered around the use of the TIN. However, since
many of the existing contouring methods (as described in Chapter
3) are based on rasters and to motivate the preference for the TIN, a
description is still included.

2.2.1 Rasters

?

cellsize

cell

Figure 6: Representing a set of irregularly distributed points using a
raster

The regular square grid or raster is essentially a two-dimensional
matrix of (depth) values (see Figure 6). The exact meaning of every
cell or pixel in this matrix varies in literature and is not uniquely de-
fined (Fisher, 1997; Goodchild, 1992). First of all, it could represent a
value at some systematic location within the area of the pixel. In this
case one could argue that the raster structure itself does not imply a
piecewise tessellation of the plane. It merely represents a set of reg-
ularly spaced points. Representative values for positions in between
these points however, could be obtained by applying spatial interpo-
lation (Goodchild, 1992; van Kreveld, 1997). Alternatively the value
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of a pixel could be representative for the complete area of the pixel.
Possible metrics to assign this value could be the mean, median, min-
imum or maximum of the field data available within the area of the
pixel. Because of the discrete jumps between the pixel values, the
raster can not represent a truly continuous field in this case (unless
the pixels are infinitely small, which is impossible).

A natural way to pick a spatial data structure for a field would be
on the basis of the data acquisition method. The hardware used in
many remote sensing techniques, such as multi-spectral imaging, is
already physically arranged in a two-dimensional array. For storing
the spatial information captured by such imaging devices a raster is
therefore a very natural choice. And in this case even the exact mean-
ing of a pixel, which is mapped directly to the fundamental (physical)
sample unit, is likely to be precisely specified in the sensor’s design
specification (Fisher, 1997).

On the contrary, other data acquisition methods such as LIght De-
tection And Ranging (LIDAR) or echo sounding do not necessarily
output data in a regular arrangement. When such data is represented
with a raster, the pixel will not directly correspond to the fundamen-
tal sample unit. This is certainly the case for irregularly distributed
samples, whose exact locations will thus be lost in the raster represen-
tation (observe Figure 6). In addition, even significant geographical
features might be lost when a large cell size is chosen, while other
cells might not even contain any samples at all. Variability in geo-
graphical reality can differ greatly from place to place. This is disre-
garded by the arbitrary rectangular and regular tessellation of space
that is imposed by a raster. Similarly, a heterogeneous distribution of
data samples would also be disregarded.
For these reasons it might be argued that the fixed resolution of a
raster should, at least to some degree, coincide with the data samples
it represents.

The regular structure that is enforced by a raster constraints its
geographical applicability. However, for its implementation as a dig-
ital data structure it is anything but a constraint. Because rasters
are essentially two-dimensional arrays, they are extremely straight-
forward to implement on a computer system. In many programming
languages such as C or C++ an array is available as a basic data struc-
ture. Iterating over its elements is as simple as moving to the next
memory unit. And given the proper spatial definitions, a very simple
relation exists between a pixel’s position in the array (the index) and
its geographical extent. In other words: the raster data structure is a
spatial index on its own. It also implies that the geographical coor-
dinates for each pixel do not even need to be stored, which reduces
storage capacity requirements.

The fact that a raster is so naturally and efficiently represented on a
computer has given rise to many trivial raster-based algorithms that
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perform spatial analysis and manipulation (image processing). It is
probably also an important reason why it has such a strong presence
in GIS.

2.2.2 Triangulated Irregular Networks

A Triangular Irregular Network (TIN) is a triangular subdivision of
the plane (see Figure 7). It is in many ways the counterpart of a
raster. Other than with a raster, little freedom is left in the interpre-
tation of how it relates to geographical reality. Each triangle or face
corresponds to an area in reality. The vertices of a triangle are points
in reality. And the boundaries (excluding the vertices) or edges would
correspond to lines in reality. Often, points in between vertices are as-
signed a value by linear TIN interpolation. Furthermore, vertices do
not need to lie in a particular pattern and the density may vary: a TIN

is adaptive. This has two consequences. First of all, the geographical
location of a sampled point can be exactly represented with a vertex.
Secondly, it makes the TIN a suitable structure to represent geographic
regions with varying scales of detail or any geographical point data
set with a strong heterogenous distribution. A TIN implies a topology

face

edge

vertex

Figure 7: Representing a set of irregularly distributed points using a TIN

between nearby faces, edges and vertices. When this topology is ad-
equately implemented, like in a Doubly Connected Edge List (DCEL)
(de Berg et al., 2000), it can be used to efficiently walk through the tri-
angulation. Obviously, a raster also has implicit neighbour relations
between pixels. Depending on how it is counted, every pixel has four
or eight direct neighbours. However, these are only neighbours in
structural sense, and do not necessarily correspond to the morphol-
ogy of the geographical surface. Contrarily, neighbour relations in
a TIN could feature such morphological correspondence. Combined
with the fact that a triangle is the simplest way to model an area—so
it causes least degeneracies , it encourages the design of many in-
teresting algorithms (van Kreveld, 1997). This is despite the slightly
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more complex implementation details compared to a raster (Kumler,
1994).

2.2.2.1 Delaunay and Voronoi

A crucial choice in the construction of a triangulation is how to con-
nect vertices into the formation of triangles. In this regard different
types of triangulations exist. An interesting one is the data-dependent
triangulation in which the topology of the triangulation is chosen
based on the three-dimensional surface fit through the sampled points
(Garland and Heckbert, 1995; Verbree and van Oosterom, 2003). This
generally leads to a low approximation error with respect to the ini-
tial triangulation. However, the most commonly used method to con-
struct a TIN is according to the Delaunay or empty circle criterion:
a triangulation is said to be Delaunay if the interior of the circum-
scribed circle of any triangle does not contain any vertices.

The resulting triangulation is unique, if the vertices are in general
position, that is no three vertices are co-linear and no four vertices are
co-circular4, as depicted in Figure 10. The Delaunay Triangulation
(DT) has a number of valuable properties, most notably:

angle optimality: the DT maximizes the minimum angle. As a re-
sult, triangles are as ‘fat’ or equilateral as possible. Skinny, elon-
gated triangles are avoided.

locality: if triangles are locally Delaunay, the global triangulation
is also Delaunay. This for instance means that the operation to
delete or insert a point to an existing Delaunay triangulation is
incremental and does not require a global re-triangulation. Be-
cause of this property, the construction and maintan ce of a
Delaunay triangulation is quite efficient.

These properties have made the Delaunay TIN quite ubiquitous. In fa-
vor of the DT, in a comparison with the data-dependent triangulation
Garland and Heckbert (1995) argue that natural terrains for which
the data-dependent triangulation excels (in terms of approximation
error) are statistically less common, after which they conjecture that
data-dependent triangulation does not yield significantly higher qual-
ity approximations than DT for natural terrains in general. This state-
ment is also supported by the studies of Rippa (1990) and Wang et al.
(2001), who both conclude that the DT is in fact the best triangulation
to model terrains according to their respective criteria of triangulation
quality and surface roughness.

A graph that is closely related to the DT is the Voronoi Diagram (VD).
The VD is a different (non-triangular) subdivision of the plane. It

4 If one would perform a one-to-one mapping from raster to TIN, where every grid
cell is subdivided in two equally sized triangles, the result would be a triangulation
that is not in general position, which is thus not uniquely defined.



2.2 digital representations of fields 17

Figure 8: The empty circle criterium holds for every triangle in a DT

Figure 9: The DT (solid lines) is the dual of the VD (dashed)

Figure 10: Co-circularity results in a non-unique triangulation; i.e. the
dashed and the dotted edges both results in a triangulation of
the four co-circular points that respects the Delaunay
criterium.
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DT VD

face ↔ vertex
vertex ↔ face
edge ↔ edge

Figure 11: Duality between the DT (dotted) and the VD (dashed)

consists of the union of its Voronoi cells. Every vertex p ∈ S, the set of
all vertices defined in R2, corresponds to one Voronoi cell. A Voronoi
cell Vp of a vertex p is defined as the set of points x that are closer to
p, than to any other vertex q. Formally:

Vp = {x ∈ R2 | ‖x− p‖ ≤ ‖x− q‖, ∀ q ∈ S} (2)

So every cell is a sort of ’proximity region’ around its vertex.
The VD is in fact the dual graph of the DT. As a result a unique one-to-
one mapping of the data structure of a Voronoi diagram to the data
structure of a DT exists (Ledoux, 2006). This works in both directions,
meaning that you can both derive a DT from a VD as the other way
around. The one-to-one mapping between the constructs of both data
structure concepts is illustrated in Figure 11. A Delaunay face maps
to a Voronoi vertex, while a Voronoi face maps to a Delaunay vertex.
And finally, a Delaunay edge corresponds to a Voronoi edge, and is
perpendicular to it. Consequently the VD also shares the properties of
adaptiveness and neighbour relations with the Delaunay TIN, which
lets it serve as an excellent basis for spatial interpolation methods.

2.3 spatial interpolation

Many methods exist to come to a reasonable estimate of a spatial
variable at locations in the field were no sample point was taken.
These are generally referred to as interpolation methods. According
to Watson (1992) “Interpolation, using a computer, is the performance
of a numerical procedure that generates an estimate of functional
dependence at a particular location, based upon knowledge of the
functional dependence at some surrounding locations. It is only an
informed estimate of the unknown.” Clearly this indicates a heavy
dependence on the notion of spatial autocorrelation. What sets the
different interpolation methods apart is how they model or approxi-



2.3 spatial interpolation 19

mate spatial autocorrelation. Some methods, like Kriging, explicitly
assume certain properties in the modeled field. Other methods less
so (but implicit assumptions might be made), instead they will pro-
duce a more deterministic and local estimate. These methods need
to search for nearby points, either based on a (Euclidian) distance
(e.g. Inverse Distance Weighting (IDW)) or adjacency relationships
(e.g. natural neighbours). Some points of interest are the computa-
tional and implementation efficiency, but of course also the quality of
approximation in general.

Watson (1992) lists the properties of his ideal interpolation method,
these are presented here with slight alterations (similar to Ledoux
(2006)):

exact: the interpolation method should return the exact value, rather
than some estimate, of a sample point when it is queried at that
precise location. Note that an inexact interpolation method may
thus violate the hydrographic safety constraint at the locations
of sample points, if the interpolated depth is deeper than the
original depth.

continuous: 1) every (x, y) location in the interpolated region cor-
responds to exactly one value and 2) there are no discrete jumps.
Such a surface is also said to be C0.

smooth: also the derivative of the interpolated surface is continuous
(this is called C1). Possibly, also higher derivatives are continu-
ous (Cn with n > 1). However Sibson (1997) says C1 is sufficient
for a surface to be perceived as smooth by the human eye.

local: the method should only use a local subset of data for the
interpolation of a point. This prevents the widespread propaga-
tion of dominant feature values throughout the surface. More
importantly it limits computational cost and supports efficient
addition or removal of new data points.

adaptive: the method performs well for varying configurations and
density patterns of sample points.

automatic: although not in Watson’s original list, it is relevant here.
An interpolation method is said to be automatic if it requires no
manual configuration.

One could argue that there is no such thing as an ideal interpolation
method, since it strongly depends on the application and the distribu-
tion and origin of sample points. However the above list is certainly
applicable in the quest for the ideal interpolation method in the con-
text of this thesis. With these requirements in mind, the following
sections discuss a number of different interpolation methods.
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2.3.1 Kriging

17Multivariate Data Analysis, 2010

Filtering Application

=>

Separate signals of different spatial scales.Figure 12: Kriging can be used to filter certain frequencies in the field.
Note how in the right image, which is a detail of the left
image, the high frequency dunes have been removed, while
the general (low frequency) structure is preserved
(Lindenbergh and Hooper, 2010).

With Kriging (Oliver and Webster, 1990) the spatial autocorrelation
is modeled by fitting a mathematical function through the observed
covariance (which is the similarity in value between sample points as
a function of the distance between them). Through this function a
stochastic model of the data set is obtained, which can then be used
to predict values anywhere in the field. One of the nice things about
this is that it can now be proven mathematically that these predic-
tion are the best, in the sense that it minimizes the expected value
of the squared difference between the predicted and the ‘true’ value
(through least-squares adjustment). Kriging is also exact and contin-
uous, although these properties are lost when it needs to correct for
noise in the samples (by including a nugget-model), and it also gives
a well defined error description for the predicted points. Kriging is
a global method; a predicted point is a weighted sum of all sample
points. Variants with local support do exist, but as proven by Meyer
(2004) these can lead to discontinuities in the terrain model. Because
of its solid theoretical foundation Kriging is a highly regarded inter-
polation method in geostatistics, and it has a diverse range of ap-
plications. Using Kriging, it is for example possible to filter certain
frequencies in the field. This might have an interesting application
in the contouring of sandbanks that typically have wavy features at
different frequencies: one could simple filter out the high frequency
waves that have no meaning for ship navigation, while preserving the
overall structure of the sandbanks (Figure 12).

As with all interpolation methods, the quality of the predicted sur-
face is at most as good as the quality of the sampled data. More
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importantly, fitting a suitable covariance function is challenging and
can not be automated to satisfaction (Watson, 1992). Clearly, if the
covariance is not adequately modeled, the predicted points have little
meaning. In terms of computational expenses the main disadvantage
is the huge matrix inversion—it includes covariances between all sam-
ple points—that needs to be performed (Lindenbergh and Hooper,
2010). This generally makes it unattractive to use in practice for big
datasets.

2.3.2 Inverse Distance Weighting

p1

p2

p3
p4

r
p0

d1

Figure 13: Inverse Distance Weighting (IDW) interpolation

An ubiquitous group of interpolation methods are the Inverse Dis-
tance Weighting (IDW)-methods. In principle IDW is based on a dis-
tance weighted sum of near points. Observe Figure 13. Let p0 be the
point of which the depth ĥ0 needs to be predicted and di = d(p0, pi)

be the Euclidean distance between p0 and pi. The points p1, ..., pn

are the n closest around p0 with depths h1, ..., hn. Now the predicted
depth ĥ0 equals

ĥ0 =
1

∑n
i=1 wi

·
n

∑
i=1

wihi (3)

with the weights

wi =
1

di
α (4)

where α is configurable power, usually α ≥ 1. Higher powers would
give closer points relatively more weight. Many variants to IDW exist
and they mostly differ in the procedure to select the closest points.
One option is to equal n to the total number of sample points, this
will have a smoothing effect. But to exploit locality and subsequently
speed up the interpolation process, n is usually much smaller. It may
be dependent on a search radius r around p0, in which all points or
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(a) Good (b) Heterogeneous (c) No points

Figure 14: Overview of different point configurations and how IDW

interpolation would choose its points.

just a closest subset is selected. And in order to ensure points are not
taken from only one direction, the search disk may be subdivided
in four quadrants, after which some number of points is selected
from each quadrant. The resulting surface is often quite smooth and
constrained by the sample points, but it is also discontinuous at those
sample points (Watson, 1992). The effectiveness of IDW very much
depends on the chosen parameters and the distribution of sampled
points. For example, when a distance di approaches 0, the weight
becomes disproportionally heavy if n is not sufficiently large. The
extrema that subsequently show up in the interpolation have been
dubbed the ‘bull’s eye’ effect. In order to prevent this, n or r should
somehow relate to the point density. Moreover, when the distribution
of sample points is heterogeneous, a fixed value for n is ineffective. In
a region with locally very little points on one side and a lot of points
on the other side, a common depth-value of the dense side may be
disproportionally represented in the interpolated value (Figures 14b
and 49c, p. 81). Even worse would be when r is chosen such that
the search disk contains no sample points at all in areas of low point
density (Figure 14c). Sadly, these type of sample point configurations
are not uncommon in bathymetric data sets. Thus smoothness and
continuity are not guaranteed.

2.3.3 Linear TIN interpolation

Linear interpolation in a Triangular Irregular Network (TIN) is both
trivial and fast. This interpolation method always uses the three
points that form the triangle that contains the point p0, whose depth
ĥ0 needs to be predicted. The value of the depth will lay on the plane
that is spanned by the triangle’s vertices (consider depth as the third
coordinate). Observe Figure 15 The equation for linear triangle inter-
polation is simply

ĥ0 = αh2 + βh3 + γh1 (5)
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Figure 15: Linear TIN interpolation

With the scalars α, β and γ being fractions of the normalised edge
p1 p2. The continuity of the resulting surface is C0; it is not smooth at
the edges. On the plus side, linear TIN interpolation is local, adaptive,
automatic and exact. It is mostly used for quick visualisation or data
extraction (see for instance § 2.4), in which case a smooth (C1) surface
is not required.

2.3.4 Natural Neighbours
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(a) Natural Neighbour interpolation
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(b) Laplace interpolation

Figure 16: Interpolation methods based on the VD. Black points indicate
Natural Neighbours. The dashed region marks the Voronoi
cell that would be added with the insertion of p0 to the VD

Natural Neighbour or Sibson interpolation, proposed by Sibson
(1981), works in a way that intrinsically incorporates the spatial dis-
tribution of data, it is thus highly adaptive to the sample distribution.
Natural Neighbour interpolation is based on so-called natural coordi-
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nates, that are defined through the Voronoi diagram of the sampled
points. A natural coordinate is essentially a weight that is propor-
tional to the closeness of a natural neighbour with respect to the local
point distribution. Observe Figure 16a. The natural neighbours are
the sample points in the Voronoi cells that are adjacent to the cell
Vp0 that appears if the prediction point p0 would be inserted in the
Voronoi diagram. Now the weights (or natural coordinates) for each
of these natural neighbours are defined as:

wi =
Area(Vp0 ∩ Vpi)

Area(Vp0)
(6)

Here Vi are the Voronoi cells of the natural neighbours with i = 1, ..., n
for n natural coordinates, the value of which is now strictly deter-
mined by the local spatial point distribution. The fraction indicates
for each natural coordinate to what extent it is spatially related. This
is measured by the amount of area overlap between V0 and Vi in rela-
tion to the total area of V0. Simply put: the more area in the Voronoi
diagram that is ‘stolen’ from a particular natural neighbour, the more
influence that neighbour has. Note that the natural coordinates al-
ways sum up to unity. Finally the linear combination of the weights
and depth values makes up the value of the predicted depth ĥ0 for
p0:

ĥ0 =
n

∑
i=1

wihi (7)

The resulting interpolation proves to be smooth everywhere, except
at data points. But methods to work around this limitation have been
described by Gold (1989); Sibson (1981); Watson (1992), for instance
by using local gradient estimations. Besides, according to Sambridge
et al. (1995) the lack of differentiability at the sample points is rarely
a problem in practice for topographic data.

Natural neighbour interpolation is automatic, local and exact. Also
the fact that it is based on the Voronoi diagram makes it an interesting
option when a (Delaunay) TIN is used as the primary data structure.

On the down side the area-intersection calculation is relatively ex-
pensive in computational terms (Shokin and Afanas’ev, 2011). Luck-
ily a computationally cheaper alternative exists. It was independently
discovered by Christ et al. (1982), Belikov et al. (1997) and Hiyoshi
and Sugihara (1999). This method, called non-Sibsonian interpola-
tion or the Laplace Interpolant, is faster to compute, but yields iden-
tical properties compared to the conventional Natural Neighbour in-
terpolation. The performance benefit is gained by replacing the area
computation with distance computation. Observe Figure 16b. The
weights are now defined by:

wi =
dVi

di
(8)
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where di denotes the Euclidean distance between p0 and pi, and dVi

is the length of the Voronoi edge incident to V0 and Vi. Note that
this fraction becomes indeterminate when p0 equals on of the sample
points pi. In this case the Laplace interpolant therefore simply defines
that ĥ0 = hi. Formally:

ĥ0 =

{
hi if p0 = pi

1
∑n

i=1 wi
·∑n

i=1 wihi otherwise (9)

Thus, the Laplace interpolant is exact by definition. In a qualitative
analysis of interpolation methods for a Digital Elevation Model (DEM)
Yanalak (2004) shows that Natural Neighbour and Laplace interpola-
tion are only slightly outperformed by computationally more expen-
sive and global interpolation methods.

2.4 contouring and contouring algorithms

A contour line is an isoline, literally a ‘line of equalness’. Generally
speaking an isoline is a path along which some attribute of a field is
constant. In bathymetry this is usually the bathymetric depth with
respect to some lowest water tide. In this case the isoline is called a
depth-contour or isobath. In this thesis the term contour is used to
refer to the latter (and historically speaking this also seems to be how
contours were originally conceived).

In relation to the field, as defined in § 2.1, the contour lines for a
constant depth hc are made up of the set of tuples that satisfy:

h = hc (10)

In principle, a single contouring depth hc corresponds to a set of
disconnected and—unless they are outside the data extent—closed
contour lines. One particular property of contours, is that their di-
rection is alway perpendicular to the direction of the steepest slope.
Another property that follows from the 2.5D property of the field, is
that contours neither intersect themselves nor each other.

The purpose of contours on a map is to reveal the shape of the
underlying field. By observing the shape and interrelation of neigh-
bouring contours, the presence and significance of surface features
becomes apparent. Reading a contour map requires some skill, how-
ever as Watson (1992) points out, it is considerably easier to learn to
interpret a contour map than to manually draw one from a limited
set of point data. Yet this was exactly the task of many cartographers
in the past couple of centuries. It was intuitively done by imagining
a local triangulation of sample points (Watson, 1992). As is the case
with many cartographic skills, the skill is developed through practice
and experience. Consequently, the exact thought process behind the
skill is difficult to capture in a fixed algorithm. And the follow-up
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process of evaluating the outcome of a contouring-algorithm is prob-
lematic for the same reason. On the other hand it can be argued that
through the availability of more and higher quality data and the use
of automated interpolation algorithms, it has become much easier to
understand the morphology of the field.

In cartography a contour rarely has a one-to-one relationship with
geographical reality. In fact, the choice for contours on itself, is al-
ready a form of cartographic selection5: choosing the relevant informa-
tion to display on a map. By choosing to use some specific data, the
other data is obviously omitted. Compare for example a continuous
color map to a set of contours from the same field. Data in between
contours is simply absent in the contour map. Yet, in case of good
contours the reader will still be able to deduct the general field mor-
phology. It is even so that the use of contours will speed up the
map reading process, as it conveys just that relevant bit of data to the
map reader rather than ‘flooding’ the reader with information which
essentially makes the user do his own cartographic selection. Con-
touring is a form of discretizing the field that makes it easier to use a
map. Naturally, as Goodchild (1992) points out, this comes at a price.
He states that the level of approximation of the field can (dramati-
cally) differ in between contours, the biggest error would be midway
in between contour lines. But, depending on the relation between
the spacing between contours (the contour interval) and the map scale,
which in turn is dependent on the map application, this effect may
be neglected.

(a) Original (b) Poorly generalized (c) Better generalized.

Figure 17: Example of generalization of contour lines. Imhof opposes
overly smoothed contours, as these do not adhere to the
morphological nature of the sampled field (Imhof, 1965)

The relationship of a contour line with geographical reality can be
distorted. Imhof (1965) argues that the contour shape, which is often

5 Cartographic selection is the first step in the process of cartographic abstraction: the
process of transforming data that have been collected about our environment into
a graphical representation of features and attributes relevant to the purpose of the
map (Kimerling and Muehrcke, 2009).
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influenced by generalization, should be true to the topographical sur-
face that is depicted. He seems particularly against overly smoothing
contour lines simply because that looks nice, see Figure 17. A (region
of a) field that is not smooth from itself should thus not be repre-
sented with smooth contours, think of cliffs and rock formations for
example. On the other hand, Sibson (1997) and Watson (1992) talk of
smoothness as a part of the definition of a contour, on which basis
they advertise the use of smooth surface models to contour from. Of
course it is also dependent on the map’s purpose. And Imhof (1965)
himself states that in case of nautical charts, the topographic repre-
sentation of the ocean floor takes second place, since everything is so
much directed towards the goal of safe navigation.

Figure 18: The ’contouring grid’ (dotted lines) that is used as the basis
for the linear interpolation in conventional raster contouring.

Contours are usually directly extracted from the available digital
field representation. Any interpolation method that was used to con-
struct that field representation is not relevant for the contour extrac-
tion algorithm itself, which in its basic form performs its own linear
interpolation in-between the data elements of the data model (i.e. a
raster or a TIN). Therefore the number and size of the line segments
in the resulting contour lines are dependent on the resolution of the
data representation. Consequently by refining that data representa-
tion, e.g. by performing interpolation, the resolution of the contour
lines is improved.

Regardless of whether a raster or a TIN is contoured, the basic algo-
rithm can be broken down to iteratively contouring the defining data
elements, respectively the grid cell or the triangle, for one depth hc.
The algorithm GenerateContours (Algorithm 1) then boils down
to recognizing the particular configuration of a data element with
respect to the contouring depth, and performing the appropriate con-
touring action.
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Figure 19: Possible grid cell intersections with contouring depth hc. A ’0’
indicates a vertex at contouring depth hc, ’+’ and ’−’ are
vertices respectively above and below hc. A ’�0’ indicates a
vertex that is not equal to hc.
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Figure 20: Possible triangle intersections with contouring depth hc. A ’0’
indicates a vertex at contouring depth hc, ’+’ and ’−’ are
vertices respectively above and below hc.

Note that since the algorithm contours every grid cell or triangle
individually and requires only local information, it is very easy to
parallelize. It is thus quite a scalable algorithm.
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The resulting line segments—at most one for every data object—
can be merged into the complete contour lines afterwards, if such
connectivity is required for the intended application.

Algorithm 1 A simple contouring algorithm
Input: a planar partition of elements E (grid cells or triangles)
and a list of contouring depths Hc

Output: a list of line segments that form the contour lines

1: function GenerateContours

2: segmentList← [ ]

3: for all depths hc ∈ Hc do
4: for all elements e ∈ E do
5: if hc intersects e then . See Figures 19 and 20

6: extract intersection χ of hc with e
7: append χ to segmentList
8: end if
9: end for

10: end for
11: return segmentList
12: end function

2.4.1 Contouring a raster

In the case of contouring a raster using GenerateContours a grid is
used that has the data points at its intersections, observe the dotted
lines in Figure 18. Intersections are computed by linear interpolation
along the edges of this grid.

Figure 19 illustrates the different intersection cases. The top row
indicates the cases that are not intersected, either because there is
no intersection with hc or because the intersection would already be
included by one or more neighbouring cells. For the same reason of
avoiding duplicate line segments and in case of the left-middle case
in Figure 19, only bottom and left edges need to be extracted.

The most interesting case is the bottom-right one in Figure 19, that
occurs when the two pairs of opposing points are respectively above
and below the contouring depth hc. An ambiguity arises here since
there are two ways to extract a valid pair of contour line segments.
This can be resolved by simply picking a random option, consistently
choose one geometric orientation (the Geospatial Data Abstraction Li-
brary (GDAL) does that) or by considering what is the safest in terms of
the hydrographic safety constraint. The latter is promoted by Zhang
et al. (2008), who always choose the option that gives more area to
the shallower side of the contour.
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Note that when considering the complete contouring pipeline—
and even when always picking the safer option in the ambiguous
case—raster contouring is likely to violate the safety constraint (see
§ 3.2).

2.4.2 Contouring a TIN

Since a triangle has one edge less than a square grid cell, there is
less possible intersection cases (observe Figure 20). There is also no
ambiguous case. Otherwise the intersection cases are quite similar to
the raster situation and they can be easily implemented with Gener-
ateContours.

Van Kreveld (1994) proposes a more efficient algorithm to compute
contours for a TIN. It requires an additional data structure, the inter-
val tree, that aids fast localization of triangles that intersect a certain
depth. Compared to the brute-force GenerateContours, this ap-
proach has two advantages. Firstly, not all triangles need to be visited
during contouring, which is especially beneficial when the requested
contour line does not intersect a large portion of the triangles. And
secondly, the method delivers connected contour segments straight
away, so no line merging needs to be performed as with Generate-
Contours. Van Kreveld et al. (1997) also propose a somewhat similar
approach that is based on the slightly more sophisticated contour tree
(also known as the Reeb graph).

Given that the auxiliary data structure is available, these approaches
can compute a set of contour lines in logarithmic time, compared to
linear time for GenerateContours.

2.5 generalization

Generalization is a very comprehensive concept. There are many as-
pects to it and it inherently relates to many of the ideas that are dis-
cussed in this chapter. This section will introduce the basic concepts,
relate them to the contents of previous sections and discuss what
generalization means from a bathymetric point of view.

In essence, generalization is the process of the meaningful reduc-
tion of detail (on a map). This is not an optional process; all maps are
reductions of reality (Kimerling and Muehrcke, 2009). As explained
in § 2.1, it is impossible to capture reality in its full complexity, let
alone to depict it on a map. But, as a consequence of Tobler’s First
Law, we can discretize reality and still come to an acceptable approx-
imation. In this context, discretization is in effect a way to meaning-
fully reduce detail. It is meaningful in the sense that the resulting ap-
proximation can now be (digitally) stored, analyzed and reproduced.
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Thus, discretization is a form of generalization. Gruenreich (1992)
termed this type of generalization object generalization: building a pri-
mary model of the real world. This primary model is typically the
result of physically sampling reality and storing those samples in a
digital representation that contains as much information as possible.
For technical reasons, like computational and storage efficiency or
lowering network transfer bandwidth (Weibel, 1997), the detail in the
primary data model is often further reduced systematically. For fields
this is usually done by downsampling6. Gruenreich (1992) calls this
model generalization, it is a process that transforms the primary model
to a secondary model, which has the same general data structure but
contains less data elements.

Of a more substantial nature is cartographic generalization. Weibel
(1997) describes this as the generalization of spatial data for carto-
graphic visualization. It is the transformation of a primary or sec-
ondary model into a final map product. He further states that the
main objective of generalization, in the conventional (cartographic)
sense, is to create maps of high graphical clarity so that the map
image is easily perceived and the message that the map intends to
deliver can be readily understood. In achieving this, map scale and
map purpose are particularly important. As map scale is reduced,
small map objects (symbols, points, lines and areas) may approach
the limits of visual perceptibility (Weibel, 1997). To maintain legi-
bility and preserve aesthetic quality, the map’s objects are therefore
altered in their visual representation. Depending on the map’s pur-
pose, some (properties of) objects are assigned higher priorities than
others during the process of cartographic generalization. Besides, all
map objects are related; the alteration of one map object may very
well induce changes to nearby map elements. Yet, at all times the con-
nection to geographical reality and the nature of the depicted spatial
data must be respected. With the wilderness of map design choices
that results, it is not hard to understand that two equally compe-
tent cartographers can come up with two different maps, nonetheless
those maps will still comply with the same map objectives (Kraak and
Ormeling, 2003). Cartographic generalization thus involves a good
deal of subjective decisions. That sets it apart from object- and model
generalization, whose processes can be automated more easily.

2.5.1 Hydrographic generalization constraints

From the map purpose a set of generalization constraints can be de-
termined. These are to be used as guidelines during the process of
generalization. For the contour generalization of hydrographic charts,
the following ones are important (Zhang and Guilbert, 2011):

6 Downsampling here means to reduce the sample count of a digital field representa-
tion. For example in case of a raster this is to increase the pixel size
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safety: contours may not indicate a depth deeper than the mea-
sured field. Thus of any point on the map the real depth is
at least the depth as interpretable from the map.

legibility: contours must be clearly legible. Unnecessary detail is
to be removed while basic geometrical form and spatial position
must be maintained (Kimerling and Muehrcke, 2009).

topology: topological relationships are to be preserved. Contour
line intersection may not occur. Depth soundings are consistent
with the contour lines.

morphology: morphological details of the waterbody must be main-
tained as much as possible.

Of these the safety and legibility are the most important. Note that
these constraints are sometimes conflicting. Particularly the safety
constraint limits the effectiveness of many operators that improve leg-
ibility (this is also observed in § 5.4.4, p. 76).

2.5.2 Object based generalization operators

The process of (cartographic) generalization is often decomposed into
subprocesses: the generalization operators. Do note that generaliza-
tion is more than just a sum of its parts. A good cartographic gener-
alization operator (e.g. line simplification) may be relatively simple
to implement, however to recognize when it needs to be applied and
to make the different generalization operators work together with-
out causing conflicts, is a bigger challenge. On the other hand, a
decomposition into separate generalization operators does make the
complex process of generalization easier to understand, as it results
in some smaller but more clearly defined problems to solve. These
operators may be sequentially applied on a map, in which case it
should be noted that the ordering in the sequence makes a difference
(Weibel, 1997). A standard sequence that works for every applica-
tion does not exist, yet for instance Weibel (1997) does provide some
general pragmatic guidelines on this matter.

Here I present a basic list of such generalization operations that
are relevant to hydrographic contour line generalization. What they
have in common is that they all aim to remove insignificant details in
order to improve legibility. Furthermore, they all respect the safety
constraint, as can be seen in Figure 21.

simplification: selectively reducing the number of points required
to represent an object. Superfluous bents and shaped in a con-
tour line are to be removed.

smoothing: reducing the angularity of angles between lines to im-
prove the aesthetic quality of the map.
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(a) Simplification

(b) Smoothing

(c) Aggregation

(d) Omission

(e) Enlargement

Figure 21: Generalization operators for hydrographic contours. The ‘+’
and ‘−’ symbols respectively indicate shallow and deep
regions. Note how the safety constraint is always respected
by only moving lines towards the deeper regions.
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aggregation: grouping of individual nearby features into a single
larger object.

omission: not including an object. Take for instance very small con-
tours that depict a small pit in the surface. The pit may be
smaller than the dimension of the navigating ship or its loca-
tion may be so that it has no meaning to navigation. In either
case the pit is deemed to be an irrelevant detail, and should
thus be removed. Of course the opposite, a bump in the sur-
face, should never be omitted as this would violate the safety
constrain.

enlargement: features, such as sharp peaks, that would be too
small to be legible on the map, yet very significant for safe nav-
igation, must be enlarged so that they are still noticed by the
map user.

Observe that in Figures 21a-(e) the hydrographic safety constraint
is respected at all times. This means that the contours are always
pushed towards the deeper area as illustrated in Figure 22.

In literature the listed generalization operators are often described
as object based and context-independent (Kimerling and Muehrcke,
2009; Weibel, 1997). As such, they operate on map objects, such as
(contour) lines, individually, disregarding the rest of the map and
how they affect each other. Also note that the object based view of
reality does not really apply to contour lines. Although contours are
line objects on a map, they do in fact represent fields.

Unsafe generalization

Safe generalization

Original depth-contour

+

−

Figure 22: During generalization, contours can only be moved towards
greater depth (indicated by a ’−’).

2.5.3 Generalization of the field

Specifically in the light of contour line generalization, the renowned
cartographer Eduard Imhof makes a compelling argument for a field
based approach in the first of his eight rules for contour line general-
ization for small scales:

“One must never overlook the fact that (geographic) sur-
faces are being depicted with contours. A single line says
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very little. One line does not define a surface. Everything
comes back, eventually, to the formation of the system of
lines, that is, the surface.” (Imhof, 1965)

Where Imhof, who drew maps by hand, talks of a system of lines
that forms a surface, I think that with the technological advances of
GIS we should even say that a field forms a surface. It is simply so,
that a system of lines—and even more so—a field gives a much more
complete impression of geographical reality than a single line does.
And, as pointed out by Imhof, in the generalization of a contour line
one should also make use of this type of additional information that
is related to nearby morphological features.

Field-based variants of the afore mentioned object based operators
do exist in some cases. For instance smoothing a field, by averaging or
removing and re-interpolating points, is quite common. Interestingly,
when we look at the corresponding contour lines, the smoothing of a
field often also results in some form of omission and aggregation (see
Figure 40, p. 70). To control exactly where on the map the generaliza-
tion is applied, structure recognition can be employed. Weibel (1997)
mentions the use of so-called structure line models, consisting out
of ridges and drainage channels, for the generalization of a terrain
field. The resulting network of terrain feature lines are generalized,
after which the regions in between are re-interpolated based on the
generalized structure lines. This will reduce detail, while retaining
significant surface lines. Figure 23 illustrates this process with an
example.

(a) Original field (b) Generalizaed field

Figure 23: Generalization using structure line models (Weibel, 1997).

Alternatively simplification of (terrain) fields in the case of TINs
can be achieved using TIN simplification (explained in § 3.3), which is
in a way both model and cartographic generalization (Weibel, 1997)
because it offers a meaningful way to reduce data.

In Chapter 4 a generalization method is developed that performs
field based generalization of contour lines for hydrographic charts.
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2.5.4 The generalization process as a whole

The availability of implementations of generalization operators on it-
self does not solve the complete problem of automatic generalization.
The challenge remains to successfully deploy these operators in an in-
tegrated approach that fulfills the generalization objectives of a given
map application. As described by Mackaness et al. (2007) three gen-
eral approaches exist to tackle this problem. The first one, named
condition-action modeling, is based on structural knowledge that is de-
rived from map objects themselves and their relations to each other.
Based on this structural knowledge a set of conditions is evaluated
on basis of which certain actions (operators) are performed. For ex-
ample:

Example of condition-action modeling
1: if length(contour) > 10m AND contour is a pit then
2: remove contour from map
3: end if

Second is human interaction modeling, which is based on the princi-
ple that the cognitive workload can be shared between computer and
human. Tasks that can be sufficiently formalized are carried out by
the computer, while the human assumes responsibility for guiding
and controlling the algorithm. A variant were the computer is not
limited to merely performing fixed generalization operators initiated
by a mouse click of the user, is amplified intelligence (Weibel, 1991).
Here the computer performs a structural analysis on the data and
subsequently proposes likely solutions to generalization problems by
visually highlighting them. It is still up to the user to accept them
or not. Such a guided approach aims to lighten the workload of the
cartographer as much as technically possible, yet still leaves him in
full control of what is happening.

Third are the constrained-based models, where the generalization pro-
cess is continually guided by a set of constraints. The system seeks
to fulfill these constrains as much as possible. An example is a form
of artificial intelligence named agent-based modeling. It is based on the
definition of autonomous agents each of which controls a part of the
map. Every agent knows its objectives and attempts to find the best
solution to fulfill those. Interaction between agents plays an impor-
tant role, as well as a continuous evaluation of the effectiveness as
possible solutions. Zhang and Guilbert (2011) employ a multi-agent
system in the generalization of hydrographic contour lines.



3 C U R R E N T A P P R OA C H E S I N
H Y D R O G R A P H I C C O N TO U R I N G

The main goal of this chapter is to describe current computer-based
approaches to hydrographic contour line generalization, using some
of the theory that was introduced in the previous chapter. Described
are mostly methods that are common practice, but also some other
relevant methods from literature. In the final section of this chapter
(§ 3.6), the pros and cons for each method are summarized.

The described methods have the common goal of hydrographic con-
tour line generalization, but that goal can be achieved in different
manners. Observe Figure 24 that illustrates the basic processing pipe-
line that is commonly used to obtain generalized contour lines from
a point cloud.

Points
Surface

(Raster/TIN)
Contours

Point-based

Raster-based

TIN-based Line-based

Virtual Gridding

Max Raster

IDW Raster

Raster coarsening

TIN Simplification Double buffering

Spline-snake

Figure 24: Basic processing scheme to obtain generalized contours from
a given point cloud.

Evidently, every processing operation that is performed in this
pipeline has an effect on the generated contour lines. This simple fact
has two consequences. Firstly, it means that the hydrographic con-
touring constraints (see § 2.5.1)—most importantly the safety constraint—
must be carefully considered during each operation, and any assump-
tion made on the input of one processing operation should be valid
given the preceding operations. And secondly, it means that differ-
ent strategies exist to obtain those nicely generalized depth-contours.
The different methods, that are described in this chapter, work on
different parts of the pipeline (as seen in Figure 24). I make the fol-
lowing categorization of methods:

point-based methods: methods that work on points (§ 3.1).

37
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raster-based methods: methods that work with a raster data struc-
ture (§ 3.2).

tin-based methods: methods that work on a TIN data structure
(§ 3.3).

line-based methods: methods that work on contour lines (§ 3.4).

Other related work, that does not fall into these categories is dis-
cussed in § 3.5. Do note that all of the presented methods are no
more than mere generalization operators. In order to employ these
methods in the complete process of hydrographic chart generation,
that may require interaction with other operators and other types of
map objects (e.g. depth soundings, symbology), more sophistication
is required (also described in § 2.5.4).

(a) Using all points (b) Using a random 2% of points

Figure 25: Reduction of detail by throwing away random points. Shown
is a Natural Neighbour interpolation with a cellsize of 50cm.
Portion of the Zeeland dataset (see Appendix C.5).

3.1 point-based methods

Point-based methods perform filtering, i.e. reducing the data volume
by dropping points. Point filtering is mainly done for three reasons:

1. to remove noise and statistical outliers;

2. less points take less time to process;

3. sparser data requires less generalization since it contains less
detail per definition

The first reason is out of the scope of this thesis, input points are
considered to be clean (e.g. Arge et al. (2010) describes how that can
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(a) Exact point (b) Centered point (c) Area

Figure 26: Virtual gridding (a) and simple rasterization (b and c) of a set
of irregularly distributed points. Deeper blue indicates
shallower points.

be achieved). However, the other two reasons are of interest for this
thesis.

Reducing the volume of data by point filtering is a form of object
generalization, where the reduction of the data volume is an objective
on itself in order to save storage and processing time. As such, very
simple methods like randomly selecting a subset of points or, quite
arbitrarily, keeping one point out of every 100 points would serve the
purpose. However, using those methods does not agree with the con-
cept of cartographic generalization where only insignificant—rather
than arbitrary—detail should be removed. That is especially valid for
data sets with heterogeneous distribution, since such random selec-
tion methods would significantly alter relatively big areas in the very
sparse regions, where one point might represent a really big portion
of the geographical extent of the data set. Of course the safety con-
straint, which may also promote a point to being significant, is to be
considered here. The removal of any point will have an effect on the
eventual surface that is created. And any point that is filtered out
should lay below that surface, otherwise the safety is violated. It does
seem difficult to create such a safe surface, when points are already
omitted in the very beginning of the processing pipeline. It gives rise
to the question if we should remove any points at all when the safety
constraint is to respected? It certainly seems safer not to.

However, in order to obtain well generalized depth-contours, in-
significant detail—initially represented by points—must be removed.
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So, also for that reason it makes sense to filter out some (insignificant)
points. As can be observed from Figure 25, interpolated surfaces, and
thus the derived contours, indeed appear more generalized when con-
structed from less points.

3.1.1 Virtual gridding

A point filtering method that is employed in practice is virtual grid-
ding. The idea is to overlay a virtual grid on the input points and
to keep one point for every virtual grid cell, as in Figure 26(a). The
number of remaining points is at most equal to the number of grid
cells that are used in the virtual grid. Different functions can be
used to pick a point for each cell. It can for instance be the deepest,
the average, the median or the shallowest point that lays within the
boundaries of that cell. For the sake of the safety constraint the shal-
lowest point is often chosen, see Figure 27a for a one-dimensional
equivalent.

(a) Virtual gridding

(b) Max rasterization

2r

(c) IDW rasterization

Figure 27: One-dimensional schematics of different filtering and
rasterization methods. Red circles indicate points that are
chosen to represent the grid cell.
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A slight variant of this method uses a quadtree data structure
rather than the fixed regular grid. In that quadtree, cells are merged
(preserving the shallowest point) if the variance of data points in each
cell is below a pre-set value (Ledoux, 2009). This results in less re-
maining points in areas with relatively low variance. At the same
time the quadtree also functions as an efficient spatial index that al-
lows for quick extraction of a subset of the data with the required
resolution. In practice the selected points are used to either create a
TIN or an IDW interpolation based raster.

(a) Virtual gridding and TIN-based contour values

(b) Max rasterization

(c) IDW rasterization

Figure 28: The one-dimensional contouring surface of Figure 27 is
shown in thick black lines (the 2D contours, that would go
orthogonal to the paper, are points on these lines). Red
arrows indicate where the safety constraint is violated. Also
note that in case a grid cell contains no data, no contours can
be derived.

However, picking the shallowest point per virtual grid cell does
not guarantee safe contours in principle. The problem is that contour
extraction algorithms (see § 2.4) perform a linear interpolation on top
of the points present in the data structure. As can be observed from
Figure 28a, this easily results in safety violations at ’secondary’ local
maxima in a grid cell. The number and severity of these violation is
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related to the used cellsize of the virtual grid cells. A bigger cellsize
will result in more and more severely violated points.

3.2 raster-based methods

3.2.1 Max rasterization

This method is quite similar to virtual gridding. The difference lies
herein that instead of exact points, a raster is outputted. Every cell in
the virtual grid now becomes a raster cell, which is usually assumed
to represent a point located at the cell’s center, see Figure 26b for the
two-dimensional case and Figure 27a for the one-dimensional case.
This disregards the exact coordinates of the original points, and effec-
tively moves the shallowest point in the grid cell to the center of the
pixel. The result is a surface that—for the same reason as with vir-
tual gridding—does not guarantee safety. But, aside from that it also
disregards the morphology of the sampled field with these arbitrary
point movements. That not only violates the morphology constraint,
but it can also cause extra safety violations (compare Figures 28a and
28b). Again, the severity of these problems depends on the chosen
cellsize.

An additional problem that might occur here are grid cells that
do not contain any sample points. These cells, that thus can not be
assigned a depth-value, lead to gaps in the eventual depth-contours.
Although this is not usually a problem for multi-beam data, it might
be problematic with heterogeneous datasets that also contain sparsely
sampled areas.

Alternatively the assumption can be made that a grid cell repre-
sents a square area. This has been illustrated in Figure 26c. The
resulting non-continuous surface is now guaranteed to be safe. Be-
cause of the discontinuities in this surface it can not be used to gen-
erate smooth depth-contours. One might be able to define a smooth
surface on top of this blocky raster surface. To my best knowledge
however, that has never been tried in the context of hydrographic
contouring.

3.2.2 IDW interpolation to a raster

Another way of creating a raster from sample points is through spa-
tial interpolation. In hydrographic contouring practice, Inverse Dis-
tance Weighting (IDW) interpolation is a popular interpolation method.

Figure 27c illustrates the process of IDW interpolation (§ 2.3.2) to
gridded raster points. As a result of the averaging that takes place
with IDW interpolation and the fact that grid cells seldom coincide
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with sample points, extrema are disregarded and subsequently the
safety constraint is violated. This is also evident from Figure 28c.

Generalization can be achieved by tuning the interpolation param-
eters. With IDW these are primarily the radius and the power (as
described in § 2.3.2). A higher radius and a lower power will result
in a more generalized and smoother looking surface. On the on the
other hand however, that would also lead to bigger safety violations,
as the amount of averaging increases.

3.2.3 Raster coarsening

Raster coarsening is somewhat similar to max rasterization, the differ-
ence is that it takes a raster as input rather than exact points. Based
on that input raster, a new raster is created that has larger cellsize.
In this way small details in the surface are omitted. Subsequently
the contour lines that correspond to this coarsened raster surface also
contain less small details. In terms of safety this method has the same
drawbacks as max rasterization.

3.3 tin simplification

The objective of TIN simplification is to minimize the the number of
vertices in a TIN while staying as close as possible to the initial model.
The resulting TIN has just enough vertices to model every phenomena
it represents within a given tolerance. This means more vertices in re-
gions of high variability and less vertices in (planar) areas of small
variability. Less vertices overall of course means more efficient trian-
gle traversal and less storage requirements on the one hand and it
could be seen as a form of cartographic generalization on the other
hand.

To my knowledge TIN simplification is not being used for the gen-
eralization of hydrographic depth-contours. Yet, I think that it could
be an effective method to achieve that. Unlike the described raster-
based generalization method, most TIN simplification methods take
into account the geometric configuration of neighboring points. Fur-
thermore points are not arbitrarily shifted, which does happen with
the raster-based methods.

Heckbert and Garland (1997) conducted a comprehensive survey
of numerous existing TIN simplification methods developed by re-
searchers from various fields in science. Garland and Heckbert (1995)
also propose their own fast algorithm to approximate height fields.
It is based on a very simple local metric of judging the importance
of a point, first used by Lee (1989) who proposed a comparable al-
gorithm (he named it the drop heuristics algorithm), that in terms of
approximation quality outperforms more complicated or global met-
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rics. This metric is defined as the vertical (elevation) difference of
an input point with the triangulation without that point at the same
location. This metric calculated for all input points after which either
the point with the biggest difference is added to an initial minimal
triangulation that covers the data extent (this the refinement approach)
or the point with the smallest difference is dropped from a complete
triangulation of all points (the decimation approach). That step is re-
peated until a pre-set threshold of elevation difference is reached. As
pointed out by Lee (1989), Garland and Heckbert (1995) and van Krev-
eld (1997) this results in a high quality approximation of the sampled
field with only a limited set of vertices that is also a Delaunay trian-
gulation.

Garland and Heckbert (1997) propose a truly three-dimensional
simplification algorithm for triangular meshes, which as demonstrated
in the same paper also works well for terrain models. The quadric
edge contraction algorithm that they propose is based on a metric
that is defined for each vertex as the sum of squared distances of a
point to the planes that are spanned by the triangles incident to that
vertex. For every edge in the triangulation the sum of this quadric
metric for the incident vertices is calculated. And by minimizing this
sum, the location of a new vertex follows that could replace both
initial vertices. The next step is to perform the edge contractions
(replacing its two initial vertices with a single vertex that minimizes
summed quadric errors) for the edges for which the quadric error is
the lowest. Evidently, every edge contraction also implies a local re-
triangulation. This process is continued until some preset number of
triangles is remaining. The quality of resulting geometry in terms of
approximation of the initial model is arguably better than the earlier
described simplification algorithm, because quadric edge contraction
is based on a fully three-dimensional metric and also optimizes the
location of new vertices, whereas drop-heuristics is just based on a
one-dimensional metric and does not perform any optimization of
vertex location.

In § 4.2 I discuss the implementation of one of these TIN simplifica-
tion methods for the application in hydrographic contour line gener-
alization.

3.4 line-based methods

The generalization of lines in general is a very common operation
in digital cartography. Among others, Guilbert and Saux (2008) and
Li and Openshaw (1992) have classified the numerous line smooth-
ing and simplification methods according to different characteristics.
Unfortunately most of them do not explicitly take into account the
constraint of navigation safety, since they are not specifically devel-
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oped for bathymetric charts. Only methods that do respect the safety
constraint are described here.

(a) The B-spline snake model. Different
line patterns indicate different
contour depths. Taken from Guilbert
and Saux (2008)

(b) Double buffering. The
original contour line is first
buffered to the green line,
which is subsequently
buffered back to the red line.
From Smith (2003)

Figure 29: Different line-based depth contour generalization methods.
Blue represents the original contour lines, red are the
generalized contour lines.

3.4.1 Double buffering

One line-based approach is double-buffering. It is a popular method
employed in major commercial hydrographic packages from compa-
nies such as Atlis and Caris. As illustrated in Figure 29b, it works by
buffering a set of input contour lines back and forth, effectively tak-
ing into account the safety constraint as well as performing a form of
aggregation. When a sphere is taken instead of a disk, the method
can also be used on a 3D surface. Resulting contour lines seem to be
safe, they are however not always C1 smooth, because sharp outward
pointing angles are retained (visible in Figure 29b).

Do note that the safety can only be guaranteed in case of safe input
contours. If the input contours are not safe, for example if they are ex-
tracted from an IDW interpolated grid, the double buffering operation
does not make them safe (but neither would it cause extra violations
of the safety).

A problem with double buffering is that it uses a fixed buffering
distance, which might not always be appropriate because some re-
gions may require a different buffering distance than other regions.
Furthermore, from Figure 29b it can be argued that the resulting con-
tours imply a surface that is completely constructed from the inter-
section of disks, which is not necessarily morphologically correct. In
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other words: the hydrographic morphology constraint is not fully
respected.

3.4.2 Spline snake model

A spline is a piecewise polynomial function that is by definition
smooth. Guilbert and Lin (2007) use splines in combination with a
snake model to perform smoothing of bathymetric contour lines. In
a later paper (Guilbert and Saux, 2008) the method is extended with
enlargement and aggregation operators. The spline snake model is
an iterative optimization method that minimizes the total energy that
is associated with a spline (or contour line). This energy is related to
the shape of the spline itself (internal energy) and to constraints that
are imposed externally (external energy). A smoother and straighter
line has less internal energy. The external energy is lower when con-
straints such as a minimum line distance and the safety are met. The
sum of the energies is iteratively minimized.

The method respects the safety constraint and achieves smooth con-
tours at the same time (see Figure 29a). Furthermore, in each itera-
tion it is checked if there are any conflicts in the contours. A conflict
occurs when the distance between line segments (from the same or
another contour) is below a given threshold, if that is the case the
conflicting segment is removed. Also the contours are generalized
in order of ascending depth, so that deformations resulting from con-
flicts are propagated towards the deepest contours. The method is de-
signed to be fully automatic; parameters in the spline model are auto-
matically set. However in practice it seems that manual intervention
is still required. Firstly because the method itself does not recognize
the topology of the contours (i.e. the orientation with respect to the
safety constraint). And secondly, in one of the case studies a contour
line needed to be split because it got stuck between two other con-
tours. It is unclear how well the method performs on raw contours,
as the input contours in the presented case studies are b-splines al-
ready and it is unclear how these b-splines can be safely obtained in
the first place. The authors also note that the computational cost of
the algorithm is high for complex lines, where convergence is slow
because of the safety constraint.

3.5 other related work

3.5.1 Multi-agent systems and Feature trees

Guilbert (2012) introduces a method to extract (bathymetric) terrain
features and to store them in a feature tree that provides a description
of the surface at multiple levels of detail (see Figure 30). This graph
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structure allows for automatic recognition of certain types of surface
features such as peaks or pits and their hierarchal relations. Zhang
and Guilbert (2011) propose the idea to use these feature trees in a
multi-agent generalization system (as discussed in § 2.5.4). Guilbert
and Zhang (2012) research this further, and also combine it with sev-
eral generalization operators based on the spline snake model. The
size of spot soundings labels is also considered1, and it is ensured that
the contours do not intersect the label. However, how to obtain those
spot soundings is not mentioned. Also, the spline-snake smoothing
operator (see § 3.4.2) is not (yet) integrated in the approach.

3.5.2 The navigational surface

Smith et al. (2002) and Smith (2003) introduced the concept of the
’Navigational Surface’ which aims to improve the workflow of the
nautical charting process in different ways. Firstly, it focusses on
obtaining an uncertainty grid of the available depth soundings by
averaging the measurement-uncertainty in depth-soundings in multi-
beam regions and empirically estimating the uncertainty at linear TIN

interpolated grid cells in regions with low data density (see § 2.3.3).
Secondly, it sets rules to combine different overlapping surveys (rasters)
based on the modeled uncertainty and date of acquisition. And
thirdly, it proposes to keep a unified database model that contains
high resolution grids, including the uncertainty models, that can then
be used to derive chart product for different applications. These
rasters are constructed using max rasterization (see § 3.2) in case of
densely distributed data and using linear TIN interpolation in case of
sparsely distributed soundings. Deriving a hydrographic chart from
the Navigational Surface involves raster coarsening (see § 3.2.3) to the
appropriate scale and also double buffering (see § 3.4.1). Furthermore
in case of grid cells with low horizontal accuracy the surface is locally

1 Spot soundings are significant depth measurements that are explicitly indicated on
a hydrographic chart.

Figure 30: Structural analysis of the surface through the feature tree.
From Zhang and Guilbert (2011).
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’defocused’, which is quite similar to the enlargement generalization
operator depicted in Figure 21e.

Note that the objective of the Navigational Surface is not to fully au-
tomate the charting process, but to facilitate and support the hydrog-
rapher in his work. That however, also implies that the hydrographer
is the one responsible for any violations of the hydrographic safety
constraint, which will occur since the approach is based on virtual
gridding and raster coarsening (Smith (2003) calls this shoal binning).
To mitigate the danger of critical depth soundings the Navigational
surface Smith (2003) lists three points. Firstly, the resolution of the
raster should be chosen approximately equal to the sonar resolution.
Secondly, the hydrographer can use the earlier described uncertainty
models. And third, the hydrographer is given the ’opportunity’ to
select Golden Soundings, that will be honored at the nearest grid cell.

3.6 conclusions

The most significant conclusion for this chapter is that most general-
ization methods are in fact not safe by definition, i.e. they are likely
to violate the safety constraint for a number of input points. Further-
more, for the methods that are safe on itself, that observation is only
of limited value since those methods assume safe contour lines at the
input and it is not clear how to obtain those safely.

Table 1 summarizes the general findings of the different general-
ization methods that were discussed in this chapter. This is done
in terms of safety (column 3), generalization (column 4) and (C1)
smoothness (column 5). These criteria respectively correspond to the
hydrographic generalization constraints of safety, morphology and
legibility (see § 2.5.1). The topology constraint is satisfied for all meth-
ods and is therefore not relevant in the comparison.

Type Safe Generalization Smooth Other:

Virtual Gridding point − a −
Max rasterization raster − a −
Raster coarsening raster − a −

IDW interpolated Raster raster − s
√

TIN simplification TIN − s −
Double buffering line

√
* s,u −

Spline-snake line
√

* s
√

Computationally
expensive

a = arbitrary reduction of detail
s = significant features are preserved

u = unnatural appearance of contour lines
*Only if the input contours are safe

Table 1: Summary of generalization methods in the hydrographic
contouring pipeline
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The first three methods in the table (virtual gridding, max raster-
ization and raster coarsening) have similar characteristics, which is
not surprising since they are all quite similar. The fundamental prob-
lem for these methods is the fact that (significant) detail is arbitrarily
omitted. It is a result of the fact that these are in essence only model
generalization methods (see § 2.5), where the significance of a fea-
ture is not considered and the primary objective is reducing the data
volume. Consequently the safety constraint is not respected by these
methods.

The IDW interpolated raster does a better job in terms of smooth-
ness (if an appropriate raster cellsize is chosen). However it does not
respect the hydrographic safety constraint and also suffer.

Next in the table is TIN simplifcation which is a definite improve-
ment over the previous three methods, because the significance of
features is considered during the generalization process. The safety
of one of these methods is further discussed in § 4.2. Last in the table
are the line-based methods, which are, given valid and safe contour
lines as input, both safe. However in case of double buffering the
resulting depth-contours are not smooth, as certain contour config-
urations result in sharp joints. Furthermore the morphology of the
surface is not optimally respected as explained in § 3.4.1 and ulti-
mately the result is only as safe as the inputted contour lines. The
spline snake based method is both smooth and safe, yet it appears to
be slow and not robust and thus not completely automatic. Further-
more it is unclear how this method performs on raw input contours,
as it is only tested with splines as input and it is unclear how these
can safely be obtained from raw input points.

Note that many more contouring methods exist, yet those are aimed
at the general problem of contour generalization and thus never dis-
cuss the safety constraint. For instance Matuk et al. (2006) perform
contour line generalization based on skeleton retraction that would
preserve topology by definition. The triangulation based method of
van der Poorten and Jones (2002) delivers smooth contours that are
topologically sound.





4 A V O R O N O I - A N D
S U R FA C E - B A S E D A P P R OA C H

The key motivation behind the Voronoi- and surface-based approach
that is presented here follows from the fundamental limitations of
methods that are currently in use for hydrographic contour line gen-
eralization (see Chapter 3). Point- and raster-based methods do not
guarantee the safety and do not always perform cartographic general-
ization. Line methods assume safe input contours, but it is unclear
how to obtain those. Furthermore, the safety constraint is often not
truly respected. Part of the problem is the fact that the different pro-
cesses such as spatial interpolation, generalization and contouring
are treated as independent processes, while they are in fact interre-
lated. In my opinion this calls for a radical rethinking of the existing
processing pipeline as depicted in Figure 24, p. 37.

Therefore, and in consideration of the theory described in Chap-
ter 2, the aim of the surface-based approach that is presented in this
chapter is to unify the concepts of the digital field representation
(data structure), spatial interpolation, generalization and contouring,
while keeping a meaningful relation to geographical reality: the loss
of information by discretization is minimized. Specifically, it respects
the spatial distribution of the source data. But it also intrinsically re-
spects the hydrographic safety and legibility constraints (in terms of
smoothness), while guaranteeing topological consistency of the out-
putted contour lines. Instead of generating contours in a linear se-
quence of independent processing steps, the idea behind the surface-
based approach is to have a single consistent field representation from
which contours can be generated as a sort of view. Conceptually this
somewhat resembles what a spatial database system does. But it is
much less generic than a spatial database, since it specifically focusses
on the goal of this thesis: the generalization of depth-contours for hy-
drographic charts.

§ 4.1 gives a general overview of the surface-based approach, ex-
plaining the different components and the terminology that is used
throughout this chapter. This is followed by a section (§ 4.2) that
shortly discusses the idea of incorporating TIN simplification into the
surface-based approach. Then, § 4.3 describes the basic operations
and algorithms that lie at the core of the surface-based approach. Fi-
nally, § 4.4 and § 4.5 discuss how the surface-based approach can be
further improved in terms of automation and scalability.

51
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4.1 overview

Observe Figure 31. At the core of the surface based approach lies
the Voronoi Diagram (VD). It serves as a natural coupling between a
Delaunay Triangulation (DT) that contains all of the original sample
points and a spatial interpolation method based on natural neighbors.
The initial surface that is constructed is defined by the Laplace inter-
polation of the input points. Because Laplace interpolation is exact
and smooth, this surface is safe and smooth per definition. Further-
more, input points are stored as vertices in the triangulation, mean-
ing that their coordinates are also stored exactly. The topology of
the DT also serves as a convenient base for any operators that work
on the surface, both locally and otherwise. Contours are derived di-

Operators

Contours

TIN

Voronoi 
Diagram

Conceptual surface

Sample points

Smoothing

Reshaping

Densification

The Surface

Figure 31: Overview of the Voronoi- and surface-based approach

rectly from the triangulation using the algorithm described in § 2.4.2.
As a result those contours are topologically correct and will not con-
tain any intersections. Note that this also means that discretization,
caused by the linear interpolation in the contouring algorithm, is only
applied at the very final step of the process. The surface itself is, at
least conceptually, entirely continuous and smooth.

Generalization operators work on the surface through interaction
with the DT, which is thus tightly coupled with the Natural Neigh-
bour interpolated field by means of the VD. By never removing any
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points and never moving any point downward in the surface, the
safety constraint is respected at all times.

4.1.1 Terms and definitions

Throughout this chapter a number of terms and definitions are used.
The following list summarizes and clearly defines these terms.

surface: This refers to the complete Voronoi- and Surface surface-
based framework as presented in this chapter and as depicted
in Figure 31.

sample points: These represent the sampled geographical reality
and are the input points for the surface. Typically this is a point
cloud acquired through echo-sounding.

conceptual surface: This is the continuous field that is initially
interpolated from the sample points using Laplace interpola-
tion. This is assumed to be the ground truth, i.e. the best known
representation of geographical reality.

tin: This is the DT, the data model that represents the conceptual
surface, it contains all of the sample points as well as the natural
neighbour relations. The triangulation itself is also a linear TIN

discretization of the conceptual surface.

safe: A representation is said to be safe if the depth of all of the
original sample points lay under or precisely on that represen-
tation.

operator: A function or process that can be employed on the sur-
face to perform generalization.

4.1.2 Properties of the surface

In summary, these are the principal properties of the surface:

1. Adaptive to the spatial distribution of input sample points

2. Safe, thus in accordance with the constrain of navigational safety
for hydrograhpic charts

3. Smooth, meaning that the surface is C1, i.e. its first derivative is
continuous.

4. Topological consistency is guaranteed in the generated depth-
contours, i.e. they do not intersect.

5. Exact, it respects and preserves the two-dimensional coordi-
nates of sample points. In discretization, no arbitrary changes
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in point coordinates are made that result in a loss of significant
information.

6. Local operators, in principle all algorithms related to construct-
ing, altering and extracting contours from the surface are local
algorithms.

4.2 tin simplification

One of my original ideas was to integrate one of the TIN simplifica-
tion algorithms that were described in § 3.3 into the Voronoi- and
surface-based approach that is presented in this chapter. This would
significantly reduce the data volume of input sample points with only
a minimal effect on the morphology of the surface, while at the same
time deliver a form of generalization.

I chose to implement the drop-heuristic algorithm to be the best
candidate for the following reasons:

1. It outputs a DT, which is a requirement if one wanted to employ
Laplace interpolation.

2. Its metric of vertical distances is directly related to the safety
constraint. This seems to make it straightforward to incorpo-
rate the safety constraint into the method, i.e. by simply only
dropping points from the triangulation that would move the
surface upwards.

While it may also be possible to use the quadric edge contraction
algorithm for hydrographic (safe) surface simplification, possibly us-
ing the method proposed by Zelinka and Garland (2002) to incorpo-
rate the safety constraint and the algorithm of Shewchuk (2005) to
obtain a Delaunay Triangulation, this would significantly complicate
the implementation and probably also significantly increase the run-
ning time of the algorithm.

I have thus implemented the drop heuristic algorithm, and mod-
ified it to only drop points that would at the time of the drop not
violate the safety constraint, i.e. a point is only dropped if that would
directly result in an upward movement in the surface. The complete
algorithm is given in Appendix A. However, after running the initial
tests, I discovered that the algorithm does in fact not respect the hy-
drographic safety constraint. The cause of this problem is the local
edge flipping—it is required for preserving the Deulaunay property
of the triangulation—that takes place over multiple point drops. Fig-
ure 32 illustrates this. The assumption that the safety constraint can
be respected by verifying at each iteration that a point is not moved
upwards (see Figure 32b) is flawed, because as a result of future point
drops the local triangulation can change in such a way that the safety
is still violated (see Figure 32c).
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Figure 32: Due to edge flips violation of the safety constraint may occur
after a series of point drops when using the algorithm of
Appendix A. A lower number means a shallower point.

A possible way to circumvent this problem might be to use some
sort of data-dependent triangulation instead of the Delaunay triangu-
lation, e.g. for the case of Figure 32 a triangulation exists that is safe
(but not Delaunay). However, that is unacceptable since that would
mean to give up the Voronoi-based interpolation that is essential for
the Voronoi- and surface-based approach. Another solution could be
not to drop those points that would be violated in a later iteration of
the algorithm. However that would probably significantly complicate
the algorithm and also make the simplification less effective (as less
point will be dropped). Therefore I ultimately decided to stop work-
ing on this idea, and focus on other more effective ways of surface
generalization.

4.3 operators on the surface

This section describes the operators that are defined in the surface-
based approach. And unlike the TIN simplification algorithm that
was described in § 4.2, these are guaranteed to respect the hydro-
graphic safety constraint. The function InterpolateDepth (Algo-
rithm 2) forms the basis for every surface based operator. It performs
a Laplace interpolation (see § 2.3.4) for a vertex v that is present in
the TIN using only its incident vertices (that corresponds to its natu-
ral neighbors). The local neighborhood is thus smoothed when the
newly interpolated depth is assigned to v.

In order to ensure that the safety constraint can not be violated, in
the function InterpolateCheckDepth (Algorithm 3), the newly in-
terpolated depth is only returned if it is shallower than the current
depth at the vertex. If the interpolated depth is deeper than the cur-
rent depth, the current depth is returned.
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Algorithm 2 The Laplace interpolant
Input: a vertex v that is to be estimated in the DT

Output: the Laplace interpolated depth h for that vertex v
1: function InterpolateDepth(vertex v)
2: for all natural neighbours vi around v do
3: e1 ← edge(v, vi)

4: e2 ← dual(e1)

5: wi ← length(e2)
length(e1)

6: end for
7: h← 0
8: for all wi, hi from the natural neighbours vi around v do
9: h← h + wi

∑ wi
∗ hi

10: end for
11: return h
12: end function

Algorithm 3 A safe Laplace interpolant
Input: a vertex v that is to be estimated in the DT

Output: the safely constrained Laplace interpolated depth h for
that vertex

1: function InterpolateCheckDepth(vertex v)
2: h← InterpolateDepth(v)
3: if h shallower than current depth at v then
4: return h
5: else
6: return current depth at v
7: end if
8: end function
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InterpolateCheckDepth, which in turn calls InterpolateDepth,
is always used when the depth of an existing vertex of the TIN is to
be altered. Only in cases where new vertices are inserted (this is only
the case for densification), the function InterpolateDepth is directly
used, to assign those vertices an initial depth in accordance with the
conceptual surface.

In the following paragraphs I introduce three functions that operate
on the surface, these are smoothing, reshaping and densification.

4.3.1 Smoothing

The operator Smooth (Algorithm 4) is the most trivial application of
the InterpolateCheckDepth function, it simply calls that function
for all input vertices, after which their depths are updated (see Fig-
ure 33). Thus, smoothing does not change the planimetric coordinates
of vertices, it only lifts vertex depths. It can be performed either on a
portion of a dataset or the whole dataset. Furthermore this operator
can be applied any number of times, delivering more generalization
with each pass. The reader is referred to Appendix D for a visual
impression on how smoothing affects the surface.

Algorithm 4 The smoothing operator
Input: a DT

Output: a smoothed DT

1: function Smooth(vertices V)
2: for all vertices vi ∈ V do . Interpolate all depths
3: hi ← InterpolateCheckDepth(vi)

4: end for

5: for all tuples vi, hi do . Now apply changes to DT

6: update depth of vi with hi
7: end for
8: end function

The primary objective of smoothing is to generalize the surface by
removing high frequency detail, while preserving the overall feature
shape. This both reduces the angle between the planes spanned by
adjacent triangles, which is analogues to the line based smoothing
operator (where the angle between adjacent line segments is reduced),
and simplifies overall shape, which is analogues to the object based
simplification operator, except that the number of points stays the
same. Thus, with some minor reservations, in terms of the object
based generalization operators of § 2.5.2, Smooth performs:

• smoothing and
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(a) Initial TIN (b) Estimation using only neighbours

Keep shallowest one

(c) Comparison of depths (d) Resulting TIN

Figure 33: Smoothing of a single vertex for the one-dimensional case.

• simplification.

A call to Smooth performs two linear loops over the n vertices of
the TIN, therefore the algorithm is O(n).

4.3.2 Reshaping

The reshaping operator aims to perform specific and aggressive sur-
face modifications where needed. It is also based on Interpolate-
CheckDepth, but other than with Smooth prior to updating the
depth of a vertex, the set of input vertices V are temporarily removed
from the DT. After that, each input vertex v ∈ V is individually re-
added to the triangulation, assigned a depth of InterpolateCheck-
Depth(v) and removed again. After doing that for every input vertex
v ∈ V, they are permanently put back into the triangulation, but
now with new depths that can be significantly different. Observe the
function Reshape (Algorithm 5).

Reshape should be considered as a mechanism to perform different
kinds of generalization that require specific and vigorous alteration of
the surface that can not be achieved through Smooth alone. In terms
of the object (contour) based operators listed in § 2.5.2, this includes:

• Omission,

• enlargement and

• aggregation.

In all cases the operator Reshape is to be performed once for every
(group of) contour feature(s) that require such cartographic gener-
alization. Figure 34 illustrates the process of aggregation using Re-
shape in more detail. Prior to calling Reshape, the relevant feature(s)
need to be identified (which is currently done manually) and a set
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(a) Initial situation: a
group of nearby
features

(b) Selection of primary
(light red) and
secondary (dark red)
steering points.

(c) Depth-estimation of
secondary steering
points using a VD of
only primary steering
points.

(d) Depth-estimation of
non-steering points
inside buffer using
VD of steering points
and other points
outside the buffer.

(e) The result; an
aggregated feature

Figure 34: Aggregation on the surface using the reshaping operator.
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Algorithm 5 The reshaping operator
Input: a set of vertices V that are to be reshaped
Output: a reshaped region in the DT

1: function Reshape(vertices V)
2: vertexCache← [ ]

3: for all vertices v ∈ V do
4: append v to vertexCache
5: remove v from triangulation
6: end for

7: for all vertices v in vertexCache do
8: insert v in triangulation
9: update depth of v with InterpolateCheckDepth(v)

10: remove v from triangulation
11: end for

12: for all vertices v in vertexCache do
13: insert v in triangulation
14: end for
15: end function

of so-called steering points needs to be assigned, these steer the pro-
cess of locally reshaping the surface. Figure 34a depicts two kinds of
steering points. A primary steering point, highlighted with a light red
circle, is a local maximum of a feature. In case of aggregation, the
secondary steering points are vertices that are on the the convex hull
(or alpha-shape) of the features that are to be aggregated, drawn in
dark red in Figure 34b. These secondary steering points are assigned
a (shallower) depth that follows from a natural neighbor interpola-
tion that includes only the primary steering points (see Figure 34c).
Finally, and as depicted in Figure 34d, the Reshape operator is called
using all vertices that are inside a buffer around the earlier described
convex hull, but excluding the steering points. The result, shown in
Figure 34e, is a locally reshaped surface with boundaries that closely
follow the convex hull or an alpha-shape of the initial features. Of
course, all general benefits from the Voronoi- and Surface based ap-
proach apply, meaning that the resulting surface is guaranteed to be
both smooth and safe.

In case of enlargement, the secondary steering points should be
picked along a circle centered at the primary steering point (local
maximum). And in case of omitting a pit, no steering point need to
be assigned, it suffices to simply call Reshape on all the vertices that
define the feature that is to be omitted.
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Note that a call to Reshape only performs changes to a very specific
region of nr vertices that is a subset of all the n vertices in the DT. Over
those nr points the scalability of the algorithm is O(nr).

4.3.3 Densification

The objective of densification is primarily to minimize the discretiza-
tion error in the contours that are extracted from the Delaunay tri-
angulation. By inserting vertices in large triangles, the resolution
of the Delaunay triangulation is improved. As a result also the ex-
tracted contour lines have smoother appearance because they now
have shorter line-segments. These newly inserted vertices are as-
signed a depth using InterpolateDepth (Algorithm 6) at the center
of the circumscribed circle (that is equivalent to a node in the Voronoi
diagram). The circumcenter is chosen here because that location is
equidistant to its three closest points, and subsequently results in a
very natural point distribution. In case of two co-circular triangles,
only one vertex needs to be inserted for both triangles (see Figure 10,
p. 17).

(a) Initial TIN (b) Conceptual surface (dashed)

(c) Interpolate at intermediate points (d) Resulting TIN

Figure 35: The densification operator for the one-dimensional case.

Considering that the conceptual surface is defined as the Laplace
interpolated field, densification does not actually change that concep-
tual surface, instead it aims to improve the approximation of the con-
ceptual surface—and, with that also the resolution of the extracted
contours—i.e. the TIN. Therefore, densification is to be applied just
before the extraction of the depth-contours. If applied before e.g. the
Smooth operator, it would limit the effectiveness of that operator,
since a denser triangulation smoothes more slowly. The Reshape op-
erator would in principle be equally effective, but more points would
need to be processed so there is no reason to do this either.
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Algorithm 6 The densification operator
Input: a DT

Output: the densified DT

1: function Densify(triangulation T, threshold maxArea)
2: for all triangles t ∈ T do
3: if area(t) > maxArea then
4: insert vertex v in triangulation at circumcenter(t)
5: set depth of v to InterpolateDepth(v)
6: end if
7: end for
8: end function

The Densify operator as presented in Algorithm 6 uses an area-
threshold that determines which triangles are densified. This way
triangles that are already sufficiently small are not densified. It per-
forms a single pass on the input triangles, thus with every call to
Densify the resolution of Delaunay triangulation is increased, until
all triangles have reached a certain area. Alternatively, a recursive
approach could be considered where every triangle is densified until
the user defined triangle area is reached.

If the maximum area threshold is ignored, a single call to Densify

is O(n), as it only requires a single pass over the n triangles of the
TIN. However, when a number of t densification passes is sequen-
tially performed, it only scales to O(3tn), since every point insertion
might create three new triangles. But, because of the maximum area
threshold that worst case scenario will never be reached in practice
with large t.

4.4 automation of the surface-based approach

The surface based operators proposed in this chapter may perform
well, but as pointed out in § 2.5.4 this does not solve the complete au-
tomatic generalization problem. Consider for instance the Reshape

operator, while it might be a very effective operator, the question re-
mains on how and on what features Reshape it is to be employed.
Of course that could simply be manually decided by a cartographer.
Doing this automatically however, would require some form of struc-
tural and qualitative feature analysis that is not currently part of the
proposed surface-based approach of hydrographic contour line gener-
alization. I do list two plausible approaches of tackling this problem.

Firstly, there is the idea of building a Graphical User Interface (GUI)
that usefully assists the cartographer in its generalization task. Recall
from § 2.5.4 this is called amplified intelligence (Weibel, 1991). The
GUI should be supported by a powerful and automatic structural anal-
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ysis tool, such as the feature tree that is described in Zhang and Guil-
bert (2011) and Guilbert (2012) and illustrated in Figure 30. Based
on that analysis that is either performed on the surface itself or on
the extracted contour lines, the system proposes likely generalization
actions. It is then up to the cartographer to accept these.

Secondly, a constraint-based approach could be developed that aims
to fully automate the generalization task. In addition to a structural
analysis tool, this would also require some qualitative analysis tool
that judges how well the hydrographic contouring constraints are re-
spected. A system like this should automatically converge to an op-
timal solution, that depends on a set of formally defined constraints.
Zhang and Guilbert (2011) discuss such a system for hydrographic
contour line generalization.

Both approaches have in common that they require structural fea-
ture analysis, yet in general the second approach seems to be the
more challenging. Therefore I would propose a course of action
where first the idea based on amplified intelligence is developed and
tested, which should result in-depth information of the complete con-
tour generalization process, which can then be used to define the
formal constraints and further analysis tools that are required for the
constrain-based approach.

4.5 scalability of the surface-based approach

Another issue that is not experimented with in this thesis, is the scal-
ability of the surface-based approach in terms of computational and
memory resources. However, since all algorithms that are required
to construct, manipulate and extract from the surface are local, the
surface-based approach should be well scalable. Two plausible ways
to achieve that are chunking and streaming.

Chunking means to divide the inputs into smaller portions, that are
processed in parallel. When that processing is done they are merged
back into the greater dataset. Though, special care is to be paid to the
boundaries of the portions.

Streaming works by performing a small number of sequential passes
over the input data, and processes the data using a memory buffer
whose size is a fraction of the stream length (Isenburg et al., 2006a).
While this limits the range of operators that can be applied—they
must be local—memory requirements are extremely low. Another
benefit is that, since the processed data is immediately outputted, the
next processing step can already commence before the current one is
finished. As demonstrated by Isenburg et al. (2006b) streaming can
be effectively applied to massive point clouds in order to e.g. gener-
ate Delaunay Triangulation (DT)s, perform smoothing and extracting
(topographic) contour lines.



64 a voronoi- and surface-based approach

In principle both approaches could be applied to the surface ap-
proach, since all its operations are local. Most promising seems to
be the streaming approach of Isenburg et al. (2006a) since a com-
parable processing pipeline, i.e. that generates contour lines from
points through triangulation, was already successfully demonstrated
(see Figure 36). It would be trivial to implement the smoothing and
densification operators using that approach.

Figure 36: Highly efficient streaming computation of elevation contours
from massive point clouds through triangulation. From
Isenburg et al. (2006b).



5 I M P L E M E N TAT I O N A N D
E X P E R I M E N T S

This chapter demonstrates the effectiveness of the Voronoi- and surface-
based approach that was introduced in the previous chapter. This is
done by running a number of experiments on a set of datasets that
are described in § 5.2 and using a prototype software (see §5.1). In
§ 5.3 metrics are defined that were used to asses the results of the
experiments that are presented in § 5.4.

5.1 the implemented prototype

In order to test and analyze the algorithms presented in Chapter 4,
I implemented those algorithms in the C++ programming language.
The choice for C++ was made because the necessary software libraries
were all available in C++ and because it allows for a high level of
control on the implementation itself. The following software libraries
were directly used:

cgal: the Computational Geometry Algorithms Library; an exten-
sive and robust computational geometry library. Of main in-
terest for this thesis was its robust data structure for Delaunay
Triangulations.

gdal/ogr: the Geospatial Data Abstraction Library; used for import
and export to vector and raster file formats.

geos: the Geometry Engine Open Source; primarily used for the
merging of contour line segments after extraction from the TIN

(as described in section 2.4.2).

All of the described software and tools are Open Source, thus freely
available, including the software that I wrote. More details on the im-
plementation of the developed software can be found in Appendix B.

5.2 datasets

Thanks to George Spoelstra, from the former company Atlis, a var-
ied selection of datasets were available to use for experimentation.
Appendix C lists these datasets in more detail, following are a short
description for each dataset:

antilles: a Single Beam Echo Sounding (SBES) dataset. Very sparse
and anisotropic points from the deep sea.

65
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australia: a Multi Beam Echo Sounding (MBES) dataset with homo-
geneous distribution.

london: A portion of the Thames river in London. A mixture of
SBES and MBES data (I call this heterogeneous).

zeeland: A very dense MBES dataset from the river Westerschelde
in the Dutch province Zeeland. Its wavy sandbank patterns are
a notable feature.

5.3 metrics

As described in Chapter 1, a well-defined set of formal metrics to
measure the quality of a map does not exist. However, it is possible
to measure and quantify some of the underlying processes and char-
acteristics. For the analysis of the results presented in this chapter, I
introduce and apply the following formal metrics.

5.3.1 The root mean square of differences

The Root Mean Square (RMS) of differences is used to measure the
difference between two fields. Consider two rasters Ra and Rb that
both represent a field and their raster cells ha

i and hb
i , where i is the

zero-based cell index. The cells of Ra and Rb are equal in number and
geographical extent. If n is the total number of cells per raster, the
RMS of differences between Ra and Rb is calculated as:

eRa−Rb =

√√√√ 1
n

n−1

∑
i=0

(
ha

i − hb
i

)2 (11)

This measure is used to quantify the change in the surface as a
result of generalization operations. In terms of the generalization
constraints of the hydrographic chart, this is especially relevant for
the morphology.

5.3.2 Angularity

Of main importance for the legibility of the chart, is the smoothness
of the contour lines. Since smoothing is defined as reducing the angu-
larity of a line, I look at the angles between the contour line segments
to say something about the smoothness of a contour line. I define the
angularity αi of a point pi on the polyline L:

αi = π −∠pi−1 pi pi+1 (12)

That is π minus the angle—it is defined on the interval [0, π]—of
pi with its two neighbors (see Figure 37a). Thus, a high angularity
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pi−1

pi

pi+1

(a) The angle ∠pi−1 pi pi+1 is defined
as the smallest angle of point pi
with it neighbors.

−
+

0

(b) One-dimensional view of point
differences. A sample point that
lies above the field (indicated by
the curve) has a negative point
difference and is unsafe.

Figure 37: Metrics used for analysis

αi means that the point pi has a small angle. For quantifying the
angularity of the complete polyline L, I simply use the average of the
angularities of its n number of points:

αL =
1
n

n−1

∑
i=0

αi (13)

The angularity is used to analyze how the smoothness—and therefore
also the legibility—of a contour line changes as a result of generaliza-
tion operations.

Note that the angularity of a polyline can be reduced by simply
adding points on straight line segments, therefore I only use the an-
gularity to compare lines that have the same number of points.

5.3.3 Point differences

The point difference of a sample point pi with depth hi with respect
to the interpolated depth field F is defined as:

δi = F(pi)− hi (14)

As can be observed from Figure 37b, a negative value of δi therefore
means that the depth hi lays above the depth field F, in other words
the safety constraint is violated by F. Point differences can therefore
be used to verify if a field is safe.

5.4 experiments

The following paragraphs describe and analyze the experiments that
were performed to analyze the effectiveness of the Voronoi- and surface-
based approach. § 5.4.1 investigates the smoothing operator, § 5.4.2
the reshaping operator and § 5.4.3 the densification operator. In
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§ 5.4.4 it is investigated how respecting the safety constraint affects
the generalization result and § 5.4.5 focusses specifically on the per-
formance with a heterogeneous input. Finally, § 5.4.6 compares the
contours of different current approaches in hydrographic contouring
with those from the Voronoi- and surface-based approach.

5.4.1 The smoothing operator

In terms of the object based generalization operators, the aim of the
surface-based smoothing operator is to perform smoothing, simplifi-
cation, aggregation and omission. The effectiveness of the smoothing
operator is therefore demonstrated on a region that has very irreg-
ular and cluttered contour lines: sandbanks in the Zeeland dataset.
As can be observed from Figure 40a, the raw and ungeneralized con-
tours indeed meet those criteria. However the smoothed contours
from Figure 40b have a much cleaner and less cluttered appearance.
Clearly, the number of contour features has dropped. This is both be-
cause pits (local minima) have been lifted upwards by the smoothing
operator, and nearby peaks have been aggregated because the region
in-between has been lifted upwards. Thus omission and aggregation
take place in the contour lines, this is highlighted by respectively the
blue and green ellipses in Figure 40. A third effect of the smoothing
operator is the enlargement of certain features as a result the uplifting
of points surrounding a local maximum. This is highlighted by the
red ellipse in Figure 40.

The effect on the morphology of the surface is illustrated by Fig-
ures 38 and 41. Figure 41a shows the initial Laplace interpolated
field, notice the high frequency sandbank patterns in the top right of
the image. After smoothing these high frequency patterns have been
removed (see Figure 41b), while the general surface shape (low fre-
quency pattern) has been preserved. This observation is supported
by the difference map of Figure 41c since those high frequency pat-
terns are also clearly visibly there.

As to be expected, the overall effect of the smoothing operator on
the morphology of the surface is significant. As shown by the plot
of RMS differences between the initial and the generalized surface in
Figure 38 the smoothing of the surface results in a per pixel differ-
ence of several tens of centimeters. That supports the idea that the
smoothing the surface works against the preservation of all morpho-
logical features. However by Figure 41 it is also shown that especially
the high frequency features are altered, thus even though the surface
is significantly altered this is done a meaningful way. Another ob-
servation of Figure 38, is that the steepness of the plotted line slowly
decays. That indicates that the smoothing operator is especially effec-
tive with the earliest smoothing passes and that the amount of surface
alteration decreases in the later smoothing passes.
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Figure 38: RMS of differences with respect to the initial conceptual
surface as a function of the number of smoothing passes.
Dataset Zeeland.
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Figure 39: Line angularity for the contour of Figure 42 as a function of
the number of smoothing passes. Dataset Zeeland(b)

Naturally, the smoothing operator also smoothes and simplifies the
resulting contour lines. This is demonstrated in Figures 39 and 42.
Figure 42a illustrates the effect of the smoothing operator on a sin-
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(a) Raw contours

(b) 100x Smoothed contours

Figure 40: The effect of the smoothing operator on the extracted
contours (at every 50cm). The ellipses mark areas where
aggregation (green), omission (blue) and enlargement (red)
take place. Dataset Zeeland(a).
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(a) Initial conceptual surface

(b) Smoothed conceptual surface (100x)

(c) Difference map

Figure 41: The effect of the smoothing operator on the conceptual
surface. Dataset Zeeland.
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gle contour over 30 smoothing passes. It is clear that the contour
line moves towards the inner region, which is the deeper side of the
contour, which is to be expected since the smoothing operator is safe
per definition (and only lifts the surface upwards). What can also be
seen is that the line is simplified (the details on the outer rim disap-
pear, note however that the point count stays the same) and smoothed.
That is further supported by Figures 42b and 42c that shows the point
angularity before and after smoothing. It is evident that the number
of points with a medium to high angularity are significantly reduced,
which also corresponds to a smoother and more simplified contour
line.

Figure 39 clearly shows that the line angularity decreases with
more smoothing passes. Again the slope is the strongest with the
earliest smoothing passes, further supporting the observation that
the earliest smoothing passes are the most effective. After around
30 smoothing passes the line hardly becomes any smoother at all. So
at that point and at least for this particular contour line there is not
much reason to smoothen further.

5.4.2 The reshaping operator

The aim of the reshaping operator is to make vigorous changes to the
surface where that is wished from a cartographic point of view and
not obtained by the smoothing operator. Its effectiveness is demon-
strated by employing the reshaping operator on the two peaks shown
in Figure 43b. As described in § 4.3.2, prior to performing the reshape
operator the steering points need to be set. The primary steering
points are highlighted with yellow Voronoi cells in Figure 43a. The
secondary steering points are the other non-yellow points in the cen-
ter of the image. These are assigned new depth values similar to the
primary steering points, as indicated by the color of the correspond-
ing Voronoi cells in Figure 43c, where also the input points of the
reshape operator are removed from the VD. The result, the aggre-
gated peaks, are shown in Figure 43d, which demonstrates that the
reshape operator performs exactly as expected.
Figure 44 shows exactly how the surface was raised to aggregate the
two peaks. Evidently, the region in between the peaks is significantly
raised such that it has the same depth as the original peaks. In other
words: aggregation is performed.

5.4.3 Densification

The goal of the densification operator is to improve the TIN approxi-
mation of the conceptual surface. The effect is illustrated in Figure 46.
Shown are the raw, undensified, contour line in red, the densified con-
tour line in green and a number of Single Beam Echo Sounding (SBES)
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(a) From 0x smoothing (outer) to 30x smoothing (inner)

(b) Point angularity in radians at 1x smoothing

(c) Point angularity in radians at 30x smoothing

Figure 42: The effect of the smoothing operator on a single contour.
Dataset Zeeland(b).
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(a) Voronoi diagram of the sample
points. The Voronoi cells of the
primary steering points are
highlighted in yellow. The yellow
points are the points that are to be
reshaped.

(b) The initial conceptual surface with
corresponding contours

(c) Voronoi diagram and remaining
points after removal of the points that
are being reshaped.

(d) The conceptual surface after
reshaping. Both the initial (thin line)
as the reshaped contours (fat line) are
shown.

Figure 43: The reshaping operator performs aggregation. Before (upper
part) and after (lower part). Dataset Australia(a).
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Figure 44: Difference map of Figure 43b and Figure 43d. In white lines
the VD of the reshaped region is shown. Dataset Australia(a).



76 implementation and experiments

0 1 2 3 4 5 6 7
Number of densification passes

4

5

6

7

8

9

10

11

12

13

R
M

S
 o

f 
p
e
r 

p
ix

e
l 
d
if
fe

re
n
ce

s

Figure 45: Approximation error of TIN interpolation with respect to the
initial the conceptual surface as a function of the number of
densification passes. Dataset Antilles(a).

tracks. The sharp edges of the undensified line are caused by the
large triangles in the initial TIN (see Figure 46a), however after densi-
fication these large triangles are subdivided into much smaller ones
(see Figure 46b). The result is a much smoother and more realistic
contour line. Figure 45 shows how the approximation error of the TIN

with respect to the conceptual surface improves with more densifica-
tion passes for the same region. After about five densification passes
the approximation error stays practically constant. The remaining ap-
proximation error in this case is due to the heterogeneous nature of
the input points which is further explained by Figure 47d that shows
a difference map between the conceptual surface (Figure 47c) and
the 7x densified TIN (Figure 47b). Visible are parabolic patterns, cen-
tered at the sample points that are visualized in overlay. It is quite
interesting to see that these patterns or interpolation artifacts are not
present in the densified TIN (compare Figure 47b to Figure 47c), which
gives the densified TIN a more natural look (since those parabolic pat-
terns are unlikely to be present in reality) when compared to the true
Laplace interpolation (the conceptual surface).

5.4.4 The price of being safe

The proposed surface-based operators are all safe by definition. How-
ever, the safety constraint has implications for the other hydrographic
chart constraints on legibility and morphology. This was investigated
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(a) TIN before densification

(b) TIN after 3x densification

(c) Comparison of corresponding contour lines. The red line is not densified, the
green line is densified 3 times. Also shown are the sample points in blue.

Figure 46: Densification illustrated on a −1350m contour. Dataset
Antilles(a).

by removing the safety constraint from the operators, i.e. by replac-
ing every call to InterpolateCheckDepth with a call to Interpo-
lateDepth in the algorithms of Chapter 4. The result is shown in
Figure 48. Clearly the green and unsafe lines both have a more sim-
plified appearance and are positioned closer to the raw contours than
the red and safe contours. The former implies better legibility and the
latter implies that the morphology constraint is respected better by
the unsafe contours. This not unexpected, but it should be taken into
consideration when comparing to other (unsafe) methods.

5.4.5 Heterogeneous data

One of the sub research questions relates to the performance of the
proposed Voronoi- and surface-based approach with respect to het-
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(a) TIN interpolation (0x densified)

(b) TIN interpolation (7x densified)

(c) Laplace interpolation

(d) Laplace interpolation − TIN interpolation (7x densified)

Figure 47: Comparison of the (densified) TIN interpolated field with
conceptual surface. In overlay are the sample points. Dataset
Antilles(a).
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(a) Dataset London(a). (b) Dataset London(b).

Figure 48: The effect of incorporating the safety constraint into the
Laplace interpolant. Shown are the direct TIN interpolated
contours (grey), the unsafely generalized contours (green)
and the safely generalized contours (red). In both cases 10x
smoothing and 3x densification was applied.
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erogeneously distributed sample points. A detail of such a dataset
is shown in Figure 49a, it shows the sample points and the VD of
those points colored with depths. This figure illustrates why many
distance-based interpolation methods have problems with such a het-
erogeneous data distribution. In general such interpolation methods,
including IDW and the Laplace interpolant assume a homogeneous
point distribution where sample points from every direction have
equal importance. However, in the case of Figure 49a that assump-
tion is invalid, because of the vertical single beam tracks that have a
wide horizontal spacing. To compensate for the problematic sample
distribution in such an area, the interpolant should assign higher im-
portance to points that are along the axis through the interpolation
location and perpendicular to the single beam tracks. That is what a
cartographer would naturally do when drawing contours.

With that in mind, observe Figures 49b and 49c. In both cases
there is clearly an overly strong influence on the contour lines by the
very dense region of points on the bottom and top part of the im-
ages. In case of the Laplace interpolation this translates to contours
that are somewhat unrealistically bent toward the inner part of the
image, i.e. the horizontal centerline. And in case of IDW interpola-
tion it translates to the appearance of entirely unrealistic new local
maxima. Therefore I believe that, while still not perfect, the Laplace
interpolation does a significantly better job in this case.

Another point of interest here is the adaptiveness of the interpo-
lation methods. Since Laplace interpolation is fully adaptive to the
density of input samples there is no distance parameter that needs
to be set, that means that it can easily be applied on datasets with
strongly varying density in input samples. But in case of IDW, there
is a distance parameter, i.e. the radius of the search ellipse (see § 2.3.2).
As a result, in order obtain an interpolation result that covers the en-
tire region of Figure 49c, the radius was set to 150 meters. That kind
of radius gives much more cluttered contours in the lower part of the
image, and it results in a stronger effect of averaging, which plays
against both the safety and the morphology constraints. The Laplace
interpolant has none of those problems, making it the better choice
for data with varying point densities.

5.4.6 Comparision with existing methods

As pointed out in Chapter 3, the use of Inverse Distance Weight-
ing (IDW) interpolation in combination with a raster which is com-
monly done in practice therefore not safe. As a consequence, the box
plot of point differences in Figure 50 has a minimum value below
zero. With different parameters for the IDW interpolation, i.e. a larger
radius or a lower power, the safety constraint is violated even further.
Yet with the used parameters (radius=5m and power=2) roughly half
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(a) Voronoi Diagram colored with depths (darker blue is shallower) and sample
points

(b) Laplace interpolant

(c) Inverse Distance Weighting (radius=150m, power=2)

Figure 49: Dealing with heterogeneous data. Contours are shown at
every 50 cm. Dataset London(e).
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Figure 50: Boxplots of the sample point differences with respect to the
interpolated fields. The blue symbols are the outliers. Dataset
London.

of the sample points are violated already (with an extreme of -1.09

meter). On the other hand and quite obviously—since it is defined
by the sample points exactly—the box plot of the initial conceptual
surface is flat, thus fully safe and accurate with respect to the sample
points. And as expected also after smoothing the safety constraint
is respected. In case of raster coarsening the safety constraint is also
respected in its field representation (note that does not mean the re-
sulting contours are safe, see § 3.2.3). However when compared to
the smoothed conceptual surface it becomes clear that there the dif-
ferences are relatively larger, thus raster coarsening is less accurate
than the smoothed conceptual surface.

As a result of the violation of the safety constraint in IDW, there is
no guarantee that any contours derived from an IDW interpolation are
safe, neither can that be said of contours that are derived from a coars-
ened raster. And also any contours derived from those contours—i.e.
using double buffering—might not be safe.

Disregarding the safety constraint for a moment (otherwise we
should reject all of the contours from current methods immediately),
we can still compare the contours of the different contouring methods
with respect to legibility and smoothness. Observe Figure 51. From
Figure 51a, it can be seen that the contours of both double buffering
and raster coarsening have sharp edges. In case of double buffering
this is due to the convex features (pointing south and towards the
deeper region) in the input line (shown in light blue). Those features
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are not smoothed by the process of double buffering unless a very
large buffer distance is chosen. In case of concave features in the
input line, the doubly buffered line clearly exhibits circle arcs in its
contour (Figure 51b), in a way that is quite an arbitrary depiction of
geographic reality that is not necessarily very realistic (I would not
expect the true seabed to be made up out of such circle arcs).

It is evident from both pictures in Figure 51 that the contours from
the coarsened raster are indeed quite coarse and therefore not smooth
at all. As expected, since the conceptual surface is smooth per defini-
tion, the contours from the Voronoi- and Surface based approach are
smooth, and also have a quite natural look.

(a) Ellipses indicate sharp angles. Dataset London(d).

(b) Dataset London(c).

Figure 51: Comparison with methods that are used for hydrographic
contour generalization in practice. Shown are IDW

(cellsize=1m, radius=5m, power=2) in purple, double
buffering (distance=6m) in blue, raster coarsening
(cellsize=5m) in red and the Voronoi- and surface-based
approach (smoothing 10x, densification 3x) in green.





6 C O N C L U S I O N S A N D F U T U R E
W O R K

6.1 conclusions

The conclusions can be subdivided in the answers to the research
questions that were given in the first chapter (§ 6.1.1), a summary of
the most significant contributions (§ 6.1.2), and a discussion of the
overall value of this research (§ 6.1.3).

6.1.1 Research questions

This paragraph answers the research questions. It starts with answer-
ing the sub research questions and concludes with the answer to the
main research question.

What characterizes surfaces that lead to good depth contours for hydro-
graphic charts and what is needed in terms of interpolation and general-
ization to achieve such a surface?

According to the hydrographic generalization constraints, a good
surface for hydrographic charts is:

• legible, i.e. smooth and clutterfree contours. A surface is
smooth if its first derivative is continuous (C1), which is thus
a requirement for the interpolation method. Clutter can be re-
duced through cartographic generalization, i.e by the processes
of simplification, omission and aggregation. Legibility can fur-
ther be improved by the application of the generalization pro-
cesses smoothing and enlargement.

• topologically consistent, more specially: non-intersecting con-
tours. This can be guaranteed if the surface is continuous.

• respecting the waterbody morphology it represents. This trans-
lates to exactly honoring sample points and not disregarding
any significant morphology during generalization, i.e. remov-
ing small high frequency detail while preserving large low fre-
quency detail.

• safe for navigation, which means that the depth at the loca-
tion of any sample point is never lifted downwards in the sur-
face model. This can be implemented by preserving all sample
points during the process of generalization and guaranteeing
that no point is moved downwards.
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Are those characterizations respected in the Voronoi- and surface-based ap-
proach?

Yes, because all of the stated requirements are incorporated into
Are those characterizations respected in the Voronoi- and surface-
based approach. It is also confirmed by experiments that were per-
formed.

Does the Voronoi- and surface-based approach perform well for heteroge-
neously distributed input data?

For strongly heterogeneous datasets, i.e. those containing a mixture
of single- and multi-beam surveys, the proposed method performs
significantly better than what is currently used (IDW interpolation),
although it is still not optimal.

To what extent can the Voronoi- and surface-based approach be automated?
As opposed to current methods, no (data-dependent) distance-based

parameters need to be set. In the current implementation the user con-
trols the amount of generalization (the number of smoothing passes),
or where generalization needs to be applied (in case of the reshaping
operator). Further automation is a subject of future research.

Is the Voronoi- and surface-based approach well scalable to big datasets?
Extreme scalability can be achieved through application of tech-

niques such as streaming and parallelization, because all algorithms
are local and do not require a global overview of the dataset. An
interesting direction for future work is therefore also to test this.

And now I can answer the main research question:

Is the Voronoi- and surface-based approach a viable option for the
automatic generation of depth-contours for hydrographic charts?

Yes. As far as this can be judged through the objective metrics
that were used for analysis of the experimental results and compari-
son with current methods, it can be concluded that the Voronoi- and
Surface-based approach performs well in terms of the hydrographic
generalization constraints. Furthermore, it is also simple to imple-
ment and very scalable in principle.

6.1.2 Summary of contributions

The main contributions of this work are twofold:

1. I have shown that current approaches to generate and general-
ize contour lines from points are not truly respecting the hydro-
graphic safety constraint.
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2. I have presented an effective and novel Voronoi- and surface-
based approach that uses natural neighbor interpolation at its
core, covers the complete contour generation pipeline from points
to generalized contour lines. The most significant properties are
that the approach is:

unified: it covers and integrates the complete processing chain
to generate generalized contours from points.

surface-based: generalization is performed through the sur-
face, i.e. through the complete and interrelated system of
contours, rather than on contours individually.

safe: non-violation of the hydrographic safety constraint is
absolutely guaranteed. This is particularly significant be-
cause this completely eliminates the need to manually check
the generated contours against the sample points for safety
as is the case with approaches from practice.

exact: planimetric coordinates of sample points are exactly
preserved during processing.

adaptive: it is automatically adaptive to the spatial distribu-
tion of sample points.

scalable: it is in principle extremely scalable using available
techniques.

effective in generalization: all of the relevant generaliza-
tion operators for hydrographic contours are incorporated.

6.1.3 Discussion

The major criticism on the Voronoi- and surface-based approach as
developed in this thesis is that it seemingly ignores the topic of mod-
eling the effect of cartographic generalization on the geometrical un-
certainty in sample points. Indeed, and as stated in § 1.2, I assume
error-free sample points. Yet, strictly speaking, every measurement
of reality inherently has an uncertainty associated to it that is com-
monly decomposed into a systematic and a random error. Minimum
requirements for these errors and issues such as the minimum size of
a feature that should be included, i.e. measurable by the surveying
equipment, in hydrographic surveys are stated in the International
Hydrographic Organization (IHO) S-44 standard on hydrographic sur-
veying (IHO, 2008). The motivation of that document is to ensure
a level of quality of every hydrographic survey, most importantly in
areas that are critical to navigation. The uncertainty in points should
also be recorded as part of the survey to be able to check if the survey
is meeting the requirements of the S-44 standard. If that is not the
case for some regions, that area should be re-surveyed with higher
accuracy.
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The question remains on how this information on uncertainty is
used and affected by the hydrographer that draws the hydrographic
chart; the process of generalization. To my best knowledge the IHO

does not state anything on this, other than referring to hydrographic
practices such as mentioning the geographic extent, quality descrip-
tion (using so-called Zone Of Confidence (ZOC)) and datedness of
the surveys that were used to draw the map (sometimes that is also
done for individual navigation-critical features). Still, the process of
generalization—and that lies at the core of this research—inevitably
causes displacements in boundaries of map features. Does that affect
the error in the modeled surface? Kimerling and Muehrcke (2009) ar-
gue that saying that positional displacement caused by cartographic
generalization is error, misses the whole point of generalization, i.e.
to perform meaningful alterations of feature geometry to improve
the overall legibility and usefulness of the map. Hydrographic chart
products (e.g. from the Dutch Hydrographic Office) also state in
capital letters “Always use the largest scale chart appropriate”. Ev-
idently, less generalization is applied to large scale charts, these are
thus closer to reality, than to smaller scale charts, which primarily
serve to provide a more simplified and clutterless overview of a large
area.

This does not mean that statistical uncertainty is not to be taken
into account at all during generalization. According to Smith (2003)
the most significant part of the vertical error in a sample point is
shoal-biased (i.e. directed towards the water surface). Since the safety
constraint is guaranteed to be respected in the Voronoi- and surface-
based approach, all alterations of the surface are shoal-biased. As-
suming a normally distributed vertical error, the size of the remain-
ing shoal-biased error (with e.g. 95% probability) after processing
can thus only decrease. Therefore I would argue that the significant
(shoal-biased) vertical error in a point can never get worse.

With regard to the horizontal error in a sample point, it is common
practice for a hydrographer to draw a contour more widely around
points with a particularly low horizontal accuracy as that increases
the probability that the true location of that point lies inside that
contour. Smith (2003) calls this defocusing the surface. Given the avail-
ability of a sample point’s quality description, this is also trivial to im-
plement using e.g. the reshaping operator that is part of the Voronoi-
and surface-based approach.

6.2 future work

Here I list a number of interesting topics for follow-up research. I
find the first two topics most interesting as these are both currently
very active and interesting research areas.
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more comprehensive generalization: More research can be per-
formed in investigating how the Voronoi- and surface based ap-
proach can be integrated with (the generalization of) other ele-
ments on the hydrographic chart, such as depth-soundings and
symbology. As stated in § 4.4 further automation can also be
achieved through an overall generalization methodology such
as amplified intelligence or a constraint-based approach. Rel-
evant research on this topic was performed by Guilbert and
Zhang (2012).

achieving scalability: As described in § 4.5 a re-implementation
of the developed prototype using techniques such as streaming
processing (Isenburg et al., 2006b) would greatly improve scala-
bility.

track dependent generalization: A suggestion from shippers
is to use known or likely ship routes during generalization. In
many inland hydrographic charts for example it can be consid-
ered to perform more aggregation in features that are along the
river axis. The reshaping operator could be used for this.

data-compression in contours: The outputted depth-contour of
the current implementation contain many points, that do not
significantly contribute to the shape of the contour. Using a
method such as the one proposed by Meijers (2011), those points
can probably safely be removed.

better handling of anisotropic data: As can be concluded from
Chapter 5, the Laplace interpolation from sample points with
anisotropic sampling (i.e in case of single-beam tracks) can re-
sult in unwanted artifacts. It might be possible to adapt the
Laplace interpolant in these cases to give points perpendicular
to the single beam tracks more importance, which would im-
prove the interpolation result.

adaptive densification: Since the densification operator aims to
minimize the approximation error of the generated contours,
it might prove beneficial to only densify those triangles that
contribute to the requested contour line depths, quite similar to
Figure 52. The difficulty in this lies in the fact that inserting a
point might induce changes to the triangulation even outside
the current triangle.

dealing with uncertainty: As follows from the IHO-S44 standard
(IHO, 2008) that is discussed in § 6.1.3, echo sounding sur-
veys should always including information on the errors in the
measurements. It would be interesting to study how these er-
rors are affected by the generalization operators of the Voronoi-
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and surface-based approach as well as those from existing ap-
proaches.

Figure 52: The TIN resolution is increased only at triangles that
contribute to the contour lines. From Floriani et al. (2000)
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This algorithm is virtually identical to the one described by van Krev-
eld (1997), which is an improved version of the original algorithm by
Lee (1989). The reported expected running time is O(n log n).
I added the conditional statements on lines 10 and 21 in an attempt
to satisfy the hydrographic safety constraint during simplification
(which ultimately did not work as explained in § 4.2).

Algorithm 7 A TIN simplification algorithm
Input: a Delaunay triangulation T , a threshold maxError
Output: the simplified Delaunay triangulation of T

1: function VerticalError(vertex v with depth h)
2: temporarily remove v from T and retriangulate hole
3: estimate depth h′ in the current T at the location of v using

Linear TIN interpolation
4: re-add v to T
5: Return h− h′

6: end function

7: function Simplify(triangulation T , threshold maxError)
8: for all vertices v ∈ T do
9: d← VerticalError(v)

10: if d > 0 then
11: store d in binary tree D
12: end if
13: end for
14: while d← min(D); d < maxError do
15: remove d from D
16: store the adjacent vertices to v, w1, ..., wj
17: remove corresponding vertex v from T
18: for all vertices wi ∈ {w1, ..., wj} do
19: remove corresponding error from D
20: d← VerticalError(wi)
21: if d > 0 then
22: insert the new d in D
23: end if
24: end for
25: end while
26: end function

91





B S O F T W A R E I M P L E M E N TAT I O N

b.1 voronoi- and surface-based approach

Interpolation

Delaunay 
Triangulation

Points (ASCII)

Linear TIN

Natural Neighbours

Laplace

Operator

Smoothing

Reshaping

Densification

TIN simplification

Extraction / Export
Points (ASCII .xyz)

Contours (Shapefile .shp)

Triangles (Wavefront .obj)

Field (Raster .tiff)

Point differences (ASCII)

Figure 53: Dependency graph of the prototype software implementation

Figure 53 shows a simplified schema of how the implemented pro-
totype is constructed. It was written in the C++ programming lan-
guage. At the core of the prototype lies a topological Delaunay Trian-
gulation (DT) data-structure, that is implemented using the Computational
Geometry Algorithms Library (CGAL)1. It is initially created from
an ASCII file. The operators are implemented as indicated in Chap-
ter 4 and can be used to modify the triangulation. The interpolation
methods are used by these operators and also by some of the export
function. For example, for exporting contour lines, linear TIN interpo-
lation is used (as in § 2.4). The contour lines are processed (line merg-
ing and orientation) using the Geometry Engine Open Source (GEOS)2

and exported to a Shapefile using the Geospatial Data Abstraction Li-
brary3, which is also used for raster export.

1 http://www.cgal.org/
2 http://trac.osgeo.org/geos/
3 http://gdal.org/
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The prototype was developed and run on laptop computer with a
2.4 GHz Intel Core 2 Duo processor and 8 GB of RAM running Mac
OS X.

b.2 additional tools

In addition to the implementation of the proposed Voronoi- and surface-
based approach a number of other programs were also developed:

1. A program to convert the sample data sets into a consistent
representation. This program also uses PROJ.44, which is a geo-
graphic projection library.

2. A program that performs raster coarsening (see Section 3.2.3).

3. An implementation of the double buffering algorithm (Section 3.4.1),
using the GEOS library.

4. An OpenGL-based 3D viewer application, see Figure 54.

Other tools that were used for analysis and comparison:

quantum gis and grass: Both GIS software used for elementary
GIS operations and visualization.

gdal utilities: For its IDW interpolation.

python: For data conversions, automation and visualization using
Matplotlib.

Figure 54: OpenGL-based viewer application

4 http://trac.osgeo.org/proj/

http://trac.osgeo.org/proj/


C DATA S E T S

c.1 overview

This chapter details the different datasets that were used for testing
and analysis in this thesis. The datasets were given to me by George
Spoelstra from the former company Atlis. They originate from vari-
ous geographical locations and all have different characteristics. Fig-
ure 55 shows the approximate locations of the datasets on a world
map. Table 2 lists the general (known) characteristics per dataset. All
datasets were delivered as an ASCII with for each point: latitude, lon-
gitude and depth. Information on point quality and vertical datum
was not available. Furthermore, for the London dataset, which repre-
sent a part of the river Thames, also the projection is unknown. No
form of downsampling or point filtering was applied.

Figure 56 shows for each dataset a histogram of triangle aspect ra-
tios. The triangle aspect ratio is defined as the longest triangle edge
divided by the shortest altitude and is calculated for the Delaunay
Triangulation (DT). The shape of these histograms is thus related to
the spatial distribution of points. Most notable is Figure 56a, the
histogram for the Antilles, that clearly indicates a relatively high as-
pect ratio which can be explained by the elongated triangles (see Fig-
ure 46a, p. 77) caused by its single-beam samples. The other datasets
have a more isotropic distribution, which results in a lower triangle
aspect ratio.

The following four sections give an image for every dataset. These
images indicate the different sub-datasets that were used in Chapter 5

and give an impression of the spatial distribution of points. Depths
are indicated with a colormap that runs from green to yellow to blue
in order of decreasing depth.

Figure 55: Geographical locations of datasets
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Antilles Australia London Zeeland

Min WGS84 lon 63.3352W 143.780417E unknown 3.80297E
Max WGS84 lon 63.8660W 143.785766E unknown 3.81422E
Min WGS84 lat 17.8016N 9.728203S unknown 51.37805N
Max WGS84 lat 18.2788N 9.723904S unknown 51.38410N

Depth range −2034 to −50 m −28 to −1 m −15.90 to 4.48 m −28 to −18 m
Point count 1081 1613 151704 102954

Type SBES MBES MBES+SBES MBES

Projection UTM 19 south UTM 53 south unknown UTM 30 north

Table 2: Details of datasets
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Figure 56: Histograms of triangle aspect ratios for all datasets
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c.2 antilles

Figure 57: Dataset Antillen



98 datasets

c.3 australia

Figure 58: Dataset Australia

c.4 london

Figure 59: Dataset London
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c.5 zeeland

Figure 60: Dataset Zeeland





D A 3 D V I E W O F S M O OT H I N G

(a) 0x (b) 1x (c) 2x

(d) 3x (e) 4x (f ) 5x

(g) 10x (h) 15x (i) 20x

(j) 30x (k) 100x

Figure 61: A 3D view on the effect of the smoothing operator on the
surface
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