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Abstract
This report covers the investigation of impact of uncertainties on the multidisciplinary design optimiza-
tion of amedium-range single-aisle turbofan aircraft for minimum global warming impact. The employed
workflow for the investigation is a five step process, starting with the implementation of the determin-
istic climate impact model and carrying out of the design optimization for minimal climate impact. The
second step involves the characterisation of uncertainties, where the uncertainties within the climate
impact model are identified and quantified. The third step involves the uncertainty analysis, where
Monte Carlo simulations are performed to estimate the variability in the average temperature reduction
potential of the climate-optimized aircraft with respect to the cost-optimized aircraft. In the fourth step,
a robust design optimization is carried out using a non-sorted genetic algorithm to minimize both the
average temperature response and variability in average temperature response potential. The sensi-
tivity analysis is carried as the last step using the Morris and variance-based Sobol methods, to identify
what the key uncertain parameters are towards the uncertainty in climate impact of the aircraft designs.

Scientific uncertainty is identified within the linear climate impact model for the carbon impulse re-
sponse function parameters, species radiative efficiencies, the NOx and contrail altitude forcing factors,
methane lifetime, species efficacies, and are all assigned a probabilistic description. Scenario uncer-
tainty is identified in the future average global CO2 atmospheric concentration projection, for which
different realistic future scenarios are characterised. Carrying out the uncertainty analysis has shown
that the average temperature response reduction potential of the climate-optimized aircraft is highly
uncertain, having a 90% likelihood ranging between 17 and 98 % of the average temperature response
of the cost optimized aircraft. This is primarily due to large variability in the estimation of contrail av-
erage temperature response. Although the robustness-based optimization did not allow to find any
significant improvement in robustness for the climate-optimized aircraft, it did allow to identify an ar-
ray of robust climate-optimized design solutions. From the sensitivity analysis, it was found that the
uncertain parameters showing predominant influence on the output variability are the contrail-related
radiaitive efficiency and forcing factors. Additionally, a variability of ±50% in average temperature re-
sponse apportioned to CO2 emissions was identified due to uncertainty related to future average global
CO2 concentration projections.
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1
Introduction

The commercial aviation sector has experienced significant growth in the period between 1960 and
2018, with the revenue passenger kilometers growing from 109 to 8269 billion kmyr−1 [37]. In 2018, the
aviation emissions contributed to approximately 2.5% of annual global CO2 emissions, and is predicted
to reach to 22% by the year 2050 if no mitigation strategies are employed [3]. Due to the fast pace of
growth of the aviation sector, aviation induced emissions are as well expected to increase significantly
in the future. This growth is expected to have large impact on climate change, as both aviation CO2
and the sum of non-CO2 emissions lead to increased surface temperatures [38]. Hence, mitigation
strategies for reducing the climate impact of novel aircraft technology and operation are increasingly
relevant although commercial air traffic is today nearly exclusively cost driven [11]. When assessing
new aircraft technology options, climate models allow for evaluating the associated marginal climate
impact. Climate impact metrics are set as design objectives in the aircraft Multidisciplinary Design
Optimization (MDO) study, thereby finding the optimal set of engine, air-frame and operational design
variables that minimize the climate impact of the aircraft fleet.

Kroo et al. (2005) explored the possibility of using the climate impact in the MDO objective by
using the cumulative CO2 emissions (in kg) as the climate impact metric. NOx emissions in landing
and take off conditions are also considered as an additional objective, however are not considered in
cruise conditions [35]. Metrics such as the Average Temperature Response (ATR) look a step further
in the causal sequence from emission to climate impacts, and therefore are more relevant to policy
makers. Dallara & Kroo (2011) incorporates the ATR in a aircraft climate optimization study, where the
climate forcing impacts of NOx and contrail cirrus are also considered. It was found that the climate
impact is reduced considerably when the design cruise altitude and mach number are reduced. The
minimal fuel design has little to no climate impact reduction compared to minimal direct operating cost
(DOC) design, mainly as it flies in region where contrail formation is more probable [65]. Hence the
benefit of using the ATR as a climate impact metric over the fuel consumption was proven. The study
by Koch et al. (2016) performed a similar study using a more sophisticated climate model (AirClim) that
also takes into account the location (longitude and latitude) of the emissions, and focuses on the route-
specific trade-off between the climate impact reduction and increased DOC by varying cruise speeds
and cruise flight altitudes[11]. The study by Proesmans (2021) further verifies the finding that using fuel
burn as design objective does not give same results as setting minimal ATR in the MDO, and extends
the studies by Dallara & Kroo and Koch by additionally incorporating engine design variables such as
the overall pressure ratio (OPR) and turbine inlet temperature (TIT), as well as the contrail formation
criteria [52].

The climate models used in the aforementioned aircraft optimization studies incorporate significant
uncertainties. The uncertainties are mainly classified as scientific uncertainties that arise due to lack
of scientific knowledge and inexact modelling of climate impacts [79]. These uncertainties affect the
robustness of the optimization results obtained by Dallara & Kroo, Koch, and Proesmans ([11, 52, 65])
and hence affect the reliability in the Climate Impact Reduction Potential (ATRRP ) compared to the
minimal Direct Operating Cost (DOC) design. It has been shown that climate impact optimization is a
conflicting design objective with respect to cash operating cost, through Pareto front representations
in the study by Dallara & Kroo, Koch and Proesmans [11, 52, 65]. Hence in order for aircraft designers

1



2 Chapter 1. Introduction

to perform an effective and well-informed trade-off between cash operating cost and climate impact, it
is important to know the extent in which the uncertainties affect the aircraft climate optimization. This
knowledge also holds societal relevance, as the level of impact of uncertainties is an important point of
consideration in the evaluation of feasibility of policy measures by aviation’s regulatory bodies. Such
policy measures include, for example, the inclusion non-CO2 emissions in the Emissions Trading Sys-
tem of the EU, or the management of flight trajectories to avoid highly contrail-sensitive regions [1].

The investigation of impacts of uncertainties on the climate impact model output variation is also
known as Uncertainty analysis (UA).Monte Carlo (MC) simulations are carried out, where the determin-
istic climate impact evaluation is repeatedly performed on randomly sampled values of the uncertain
inputs [72]. The aircraft optimization studies by Dallara & Kroo (2011) and Koch et al. (2016) both take
uncertainties into consideration [11, 65]. Dallara & Kroo assumes probability distribution for input pa-
rameters of the climate model and performs a Monte Carlo analysis using the climate-optimized aircraft
design to measure the probability distribution of the ATR reduction with respect to the cost optimized
aircraft design. All model parameters and forcing factor functions are assumed to be uncertain [65].
Koch et al. similarly performs a Monte Carlo simulation using the AirClim tool to find the reliability of
climate impact mitigation strategies, using probabilistic description of model parameters as outlined by
Grewe & Stenke (2008) [18]. However, the uncertainty in the dependency of radiative forcing of the
emission species on flight altitude is not taken into account [11]. The aforementioned studies use best
estimate and uncertainty values of model parameters from literature that are not updated according to
the the most recent changes in scientific understanding. This calls upon the need to produce a detailed
summary of the most up to date best estimate and uncertainty values of the climate model parameters,
together with the correlation factor and dependencies between model parameters. This highlights the
first knowledge gap.

Using parameter best estimate and uncertainty quantification based on present day level of scientific
understanding would also allow for carrying out sensitivity analysis where the importance of uncertain
parameters are quantified. The use of the Global Sensitivity Analysis (GSA) method allows for quanti-
fying individual parameter importance as well as the influence of parameter interactions on the output
uncertainty. The utility of GSA is shown by the extensive application in a wide range of scientific re-
search fields, including that of aviation climatic impact. Stettler et al. (2013) carried out Sobol’ variance
based SA to compute the contribution of each input parameter in the estimation of the UK airport emis-
sion inventory due to aircraft landing and takeoff operations [69]. Zhu et al. (2021) similarly performed
GSA in the assessment of sources of uncertainty of aircraft pollutant emissions due to landing and
takeoff operations around the Baiyun International Airport [84]. The application of GSA in the study of
uncertainties in aircraft climate optimization has however not been performed to date. This highlights
the second knowledge gap.

The integration of the uncertainty analysis within themultidisciplinary optimization framework (UMDO),
looks at minimising the output sensitivity to variations (robustness-based UMDO) or looks at maximis-
ing the likelihood of performing a certain function [58]. Robustness-based optimization would allow for
finding the design that has both maximal climate impact reduction potential and maximal probability
of achieving that potential. For aircraft climate optimization this is relevant as the study by Koch et
al. (2016) observed the inverse relationship between the ATR reduction and its variance in the Pareto
front between ATR and DOC. This is because minimising the climate impact looks specifically at re-
ducing the impact of emission species such as NOx and contrails which both have a high degree of
uncertainty [11]. Robustness-based design optimisation (RBDO) would therefore allow for more robust
optimized conceptual designs to be further traded-off against other design objectives such as operating
costs. UMDO application to aircraft climate-optimization has not been previously performed and hence
highlights a further knowledge gap that this study aims to uncover.

In summary, previous research that has applied UA in the study of climate impact performance of
conceptual aircraft designs consider uncertainty values that are not updated according to the the most
recent changes in scientific understanding. Secondly, although the use of GSA has been applied in
the study of emission inventories of aviation, it has not been applied in field of aircraft climate impact
evaluation or optimization. A third identified knowledge gap is the inclusion of output uncertainties in
the set of objective functions in the design optimisation framework. To address these knowledge gaps,
this paper will seek to answer the following research questions and sub-questions:

1. Based on present day level of scientific understanding, what is the uncertainty in ATRRP of the
climate optimized aircraft design?
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(a) What is the 90% likelihood range in the normalized ATRRP of the climate optimized aircraft
design?

(b) What is the confidence interval of the emission species normalized ATRRP for the climate
optimized aircraft design?

(c) How does the confidence interval in ATRRP vary throughout the different Pareto-optimal
aircraft designs in the trade-off between ATR and DOC?

2. What aircraft design modifications can be made to improve the robustness of the climate opti-
mized aircraft design?

(a) For the set of Pareto optimal solutions of themultidisciplinary optimization of ATR andATRRP
standard deviation, what is the relationship between design variable values and the ATRRP
variability?

(b) What robust design solutions would provide optimal performance when further traded off
with DOC?

3. What are the most relevant sources of uncertainty to the performance of the climate optimized
aircraft design?

(a) What is the composition percentage of the variance in ATR reduction attributed to the differ-
ent uncertain inputs?

(b) What is the sensitivity to variation in average global atmospheric CO2 concentration projec-
tions within the year 2100?

Report Structure In Chapter 2, a background overview is provided of climate impact modelling, the
sources of uncertainties associated with it, and their quantification methods. Chapter 3 outlines the
general workflow delineated for the investigation of uncertainties, designed to methodically answer the
aforementioned research questions. This chapter also contains a description of the deterministic multi-
objective aircraft design optimization framework developed by Proesmans & Vos (2021) [52], upon
which the current uncertainty study is based on. Chapter 4 provides an overview of the linear climate
model employed in the evaluation of marginal climate impacts of the aircraft fleet, together with the
comprehensive uncertainty characterisation where uncertainties within the climate model are identified
and quantified. Chapter 5 outlines the methodology employed in the investigation of uncertainties,
which is then verified in Chapter 6. The results of the uncertainty investigation are provided in Chapter 7,
and finally the conclusions and a discussion is provided in Chapter 8





2
Overview of Climate Impact Modelling

and Uncertainties
This chapter will serve as an introduction to the topic of climate impact modelling, and to the sources
of uncertainties associated with it. It is to be emphasized that the area of focus is climate impact of
kerosene powered commercial aviation. Section 2.1 gives an overview of the causal sequence from
aviation emission to impacts, and discusses different metrics for quantifying those impacts. Section 2.2
looks more in detail at the individual emission species, and how they are assessed for a given fleet.
Thirdly, Section 2.3 looks more broadly at the topic of sources of uncertainties in climate modelling,
their different characterisations, and the framework used to quantify them.

2.1. Climate Impacts of Aviation Emissions
Throughout the optimization of the aircraft fleet performed in this study, one of the objectives is to
minimize climate impact. The climate impact can measured at different stages of the causal sequence
of aviation emissions to damages to environment and society as given in Figure 2.1 [79]. Initially
aircraft emissions are quantified and changes in radiative forcing are measured. Changes in the climate
are thereafter derived and lastly the environmental and social economic impacts. At every stage of
the sequence, climate impact metrics can be formulated. Latter stages of the sequence hold higher
relevance for policy makers, whilst it also becomes more difficult to accurately quantify the impacts and
hence uncertainty also grows [65].

Figure 2.1: Causal Sequence of Emissions to Climate Impact [79]
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The quantification of emissions is the first step of the causal sequence. The emissions alone are
informative of the climate impact, however provide very incomplete picture thereof. The radiation bal-
ance is affected through different mechanisms according to the emission species. Species such as
CO2 and H2O are referred to as ’direct greenhouse gases’ as they absorb the radiation in the infrared
range, and re-radiates it back to earth, increasing the net irradiance at the tropopause [44]. Species
such as NOx enhances the ozone and reduces methane atmospheric concentrations, both of which
are direct greenhouse gases and hence affect the radiative balance. Therefore NOx is considered an
’indirect greenhouse gas’. Another mechanism in which emission species affect the climate forcing
is through the ’direct aerosol effect’. This occurs through the change in particle concentrations in the
air due presence of particles in emissions such as soot and sulphate aerosols. Lastly, the radiative
budget is affected via the aviation induced cloudiness, simply referred to as contrails. The presence
of particles also affects the life cycle of clouds and hence affects the overall impact of clouds towards
climate forcing [19]. Further discussion on each emission species is made in Section 2.2.

The second step in the causal sequence is the radiative forcing (RF) change. Radiative forcing can
be defined as the change in net irradiance at the boundary between troposphere and stratosphere (i.e.
the tropopause) caused by changes in atmospheric composition due to aviation emissions [19]. The use
of radiative forcing concept is commonly used, including in the reports by the Intergovernmental Panel of
Climate Change (IPCC), being the body of the United Nations dedicated to scientific research in the field
of climate change [70]. Whilst the RF gives a direct indication of the magnitude of temperature change
in the global mean context, the forcing from different species may not produce the same magnitude of
temperature change, due to differences in the species’ spatial distribution [79]. The RF concept alone
works for well-mixed greenhouse gases with long perturbation lifetimes such as CO2. For short-lived
species, such as ozone, perturbation lifetime is small and the climate is directly affected on a more
local scale. This characterises the main disadvantage of RF as a climate impact metric [19].

In order to consider impacts of both short and long-lived species, the Kyoto Protocol makes use of
the GWP. The GWP compares the 100-year integrated RF for a given emission scenario and compares
that to the forcing due to an equal mass of CO2 emission. Its limitation lies in the fact that some
emissions, in specific contrails, are not solely function on the amount of emissions alone. Short lived
emissions are also less effectively evaluated using the GWP due to their very short lifetimes [79].

Computing the temperature change from the computed radiative forcing allows to go a step further
in the causal sequence of emission to impacts. The temperature response depends on the spatial
distribution of the radiative forcing. For example, for NOx-induced methane or contrails, the radiative
forcing is highly spatially heterogeneous. The temperature change may also be affected by the atmo-
spheric adjustments that take place due to the emission species, such as aerosols causing rapid cloud
coverage changes. In order to take into consideration the climate impact of of both short and long term
emission species, the study by Proesmans & Vos utilize the Average Temperature Response (ATR) as
the climate metric. This is defined as the average surface temperature response over 100 years by
Grewe and Stenke (2016) [21]. This is expressed inEquation 2.1:

ATR =
1

H

∫ H

0

∆Ts(t)dt (2.1)

t is the time period in years after t0, being the initial year when climate impact of the fleet is evaluated.
The ATR metric has the advantage over the previously mentioned metrics such as the GWP as it limits
the influence of the time horizon on the resultant climate impact. This is relevant to the current study
as a balanced valuation of short and long term climate impact over the lengthy 100 year time horizon
is looked for [52].

Quantifying societal costs and damages of impacts of climate change (4th and 5th stages of the
causal sequence shown in Figure 2.1) provides a more comprehensive evaluation for policy makers by
allowing for cost-benefit analysis of proposed policy measures. For the analysis of novel technology to
introduce to the market, such as a new aircraft at a fleet-wise level, it would also allow for performing
cost-benefit analysis when comparing with the fleet’s operating cost. Current studies investigating the
impact and damages however show large sensitivity to modelling uncertainty. Marais et al. (2008) [43]
looks at damages of climate impact in six categories: agriculture, sea level rise, health, human set-
tlements and ecosystems, other market sections affected by climate change, and non-market impacts.
Limitations are identified arising from the overall complexity of the problem and difficulties of measuring
impacts not commonly expressed in monetary terms. Mahashabde et al. (2010) [42] similarly estimates
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the health and welfare costs of aviation through damage functions. Emphasis is however again made
on the significant uncertainties present in the evaluation. Schwarz-Dallara (2011) furthermore mentions
the challenge to quantify damages and the significant magnitude of the problem, in addition to the thin
base of empirical studies [65]. For the aforementioned reasons, the study by Proesmans & Vos (2021)
decides to no include the evaluation of cost of damages [52].

2.2. Emission Species
When looking at emission species of kerosene-fueled aviation, both CO2 and non-CO2 species are
taken under consideration. The main non-CO2 species of interest in terms of contribution to the global
RF are NOx, water, sulphate and soot aerosols, and contrail-induced cloudiness [37]. The formation
and RF characteristics of each species is further discussed in this section.

CO2 CO2 is the most abundant carbon containing species emitted from the aircraft [38]. One of
the main differences between CO2 and non-CO2 species is that the perturbation lifetime of CO2 is in
the order of decades, whilst for non-CO2 species this is significantly shorter (e.g. hours for contrails,
months for ozone, and years in the case of induced methane changes) [46]. As CO2 is considered a
well-mixed greenhouse gas, the climate impact is not considered to vary with emission altitude. CO2
emissions cause a positive RF [38]. Calculating the CO2 concentrations over time produced by a given
emission scenario requires the use of a global carbon-cycle model. These range from high degrees
of complexity for comprehensive Earth System Models (ESM) to Simple Climate Model (SCM), which
approximate the results from the ESM using an impulse response function [37].

NOx Nitrogen oxide emission cause photochemical effects, resulting in short term atmospheric in-
crease in ozone and a long term decrease in lifetime and abundance of methane. The resultant long
termmethane reduction additionally induces a decrease in ozone and stratospheric water vapour levels
(SWV). The short term NOx effects induce a positive RF whilst the long term effects induce a reduction
in RF. Overall, a net warming effect is produced, however the magnitude of this warming is less signifi-
cant compared to CO2 and contrails. Other effects fromNOx emissions include the short-term formation
of nitrate aerosols and enhancement of sulphate aerosols, however due to the large number of uncer-
tainties in studies regarding these effects, models typically omit them [37]. The RF efficiency of NOx is
shown to be strongly correlated with cruise altitude, hence flying at lower altitudes reduces the climate
impact for a given amount of emissions. Furthermore, climate impacts can be reduced by lowering the
amount of NOx emissions, achieved by lowering engine core temperature. This would also decrease
the thermal efficiency and hence requires a trade-off between fuel burn and NOx emission. Predicting
the RF response to NOx emissions involves the use of Global Atmospheric Chemistry/Climate models
to simulate the photochemical effects taking place. Such models prove particular sensitivity to NOx lev-
els in the background troposphere. It is as-well shown that significant correlations are present between
long term and short term NOx RFs, that can be represented by a correlation factor (p=-0.7) [37].

Water The emission of water vapour affects the background humidity levels in the lower stratosphere
and thereby changes the radiative balance, making it a direct greenhouse gas. Water emissions overall
have a warming effect on the climate. The water vapor RF is complicated due to sensitivity to altitude,
latitude, seasonal changes in tropopause altitude, and the short perturbation lifetimes, thereby compli-
cating its estimation [38]. At higher altitudes, larger water vapour has a longer residence time, making
its impact more weighty. However as the overall contribution to aviation RF is relatively small, the
altitude dependency is typically omitted in the simple climate models used to calculate the water RF.

Soot and Sulphate Aerosols (aerosol-radiation interaction) Particles in the form of soot, being a
mixture of black carbon (BC) and organic carbon (OC), are directly emitted by the engines as a product
of the condensation of unburnt hydrocarbons in the combustor. The soot aerosol emission works to
contribute to a positive RF (warming effect) by absorbing short wave radiation. Sulfate aerosol form
from the oxidation of sulfur in the ambient atmosphere after emission. Sulphate aerosols are formed
from the oxidation of the sulfur in the fuel, and hence is function of the Fuel Sulfur Content (FSC). An
FSC of 600 ppm is often assumed in calculations. The majority of the sulphate aerosols are emitted as
SO2, whilst a small percentage is emitted as H2SO4 [37]. The percentage of conversion is quantified
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by the conversion efficiency. Sulfate aerosol contributes to negative RF as it scatters incoming short
wave radiation. Computation of aerosol RF are performed by different global aerosol models [37].

Soot and Sulphate Aerosols (aerosol-cloud interaction) Another radiative forcing mechanism
which aerosols emission may potentially contribute to is through interaction with clouds. The forma-
tion of clouds is influenced by the nucleation of cloud droplets and ice crystals on aerosol particles.
Best estimate of the RF of aerosol-cloud interaction are not considered in present-day evaluations of
aviation climate impact, mainly due to the very large uncertainties in the model estimates. The source
of uncertainty largely comes from the lack of knowledge of the ice nucleating capability of the aerosol
particles. Studies do however indicate a net negative RF for the aerosol-cloud effects [37]. The dis-
tribution of a constant amount of cloud water over the more larger number of aerosol nuclei results in
more, smaller cloud droplets. This increases the cloud droplet surface area, thereby increasing the
albedo of the cloud and generating a negative RF [6].

Contrails Contrail cirrus, consisting of both persistent linear contrails and cirrus cloudiness arising
from them, are clouds that form at high altitudes. These are composed of ice crystals that evolve in so
called ’ice supersaturated regions’. Ice supersaturation refers to the condition where the water partial
pressure lies above saturation level of ice. This requires sufficiently cold and moist atmospheric condi-
tions [29]. Contrails are formed predominantly in the 8-13 km altitude range where ice supersaturation
conditions are most frequent. The increase in cloudiness arising from persistent contrails contribute to
radiative forcing. Overall, a net cooling effect is estimated for short wave radiation, while for long wave
radiation a net warming effect is estimated. The effect at night is considered to only be warming [37].
Global Climate Models (GCMs) employ process-based contrail cirrus parameterizations are used to es-
timate magnitude of contrail climate impact. The cirrus life-cycle in these models is simulated from the
persistent contrail formation and their spread, to the point where they become indistinguishable from
natural cirrus [37]. Ice-supersaturated conditions along a flight track are variable in space and time
in the troposphere and tropopause region, making the estimation of contrail formation difficult. Line-
shaped contrails can be evaluated through direct observations in various regions of the world, similarly
for regional cirrus clouds. This allows for correlations to be drawn between regional air traffic trends
and contrail formation [54].

2.2.1. Assessment of Aviation Emissions
When assessing the climate impact of a past aviation pattern, the amount and location of each emit-
ted species must be quantified. This allows for input to be generated for the climate model. The
assessment of emissions has previously been done with the use of ’emission inventories’, being three-
dimensional gridded databases of aviation emissions compiled for given years. In addition, the gridded
flown kilometers can be used as input for the contrail/cirrus models [38]. These inventory models take
into account the global pattern of scheduled commercial flights and provide estimation of aircraft fuel
burn and emissions on a global scale, using non-proprietary databases and methods [32]. Widely used
emission inventories are AERO2K providing emissions for the year 2002 (Eyers et al. [14]), SAGE for
years 2002-2005 (Kim et al., 2007 [32], and AEDT for year 2006 (Barrett et al. [4]). The three emission
inventories are briedly described below:

• SAGE: CO, HC, and NOx emission indices are modelled using the Boeing Fuel Flow Method 2
(BFFM2). BFFM2 is a comprehensible method developed based on experimental performance
data obtained via full-scale engine tests at ground level [39]. On the other hand, CO2, H2O, and
SOx emissions are modelled based on fuel composition using Boeing-derived emissions indices.
The values derived by SAGE reflect the fleet-wide global averages between the years 2000 and
2005 [32].

• AERO2k: Emission indices are computed using publicly available engine data, for the year
2002.Special consideration is made on the particulate number in emission. Together with the
distance flown parameter, offers foundation for estimation of the climate impact of contrail cirrus.
CO2 and H20, similarly to SAGE are modelled using fuel composition of Jet A-1 fuel. The EI of
NOx is estimated by means of fuel flow correlation method. This is done by means of measure-
ments at various inlet conditions, provided by the ICAO emissions data bank. Similar correlation
methods are employed for the EI of soot [14].
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• AEDT: Aircraft fuel burn and emissions on a flight-by-flight basis, covering the majority of civil
aviation computed for the year 2006. Similar to previously stated methods, CO2 and H20 EIs
are found making use of fuel composition values. For soot emissions, AEDT distinguishes the
emission index below and above 3000ft. Hence includes altitude dependence. Sulphate aerosol
emissions estimated using the Fuel Sulphur Content (FSC). The best estimate for the EI for SO4
made assuming a FSC is 600 ppm [4].

Emissions from CO2, H2O, sulphate aerosols scale directly with fuel burn and hence can be quanti-
fied with the use of Emission Indices (EIs), linearly relating the two components. This is because these
species are solely based on the fuel composition of Jet A-1 Kerosene, the jet fuel predominantly used in
commercial aviation. Emissions of NOx, CO (soot) and HCs however do not scale directly with fuel burn
because it depends also on the way the combustion is controlled. Different methods are therefore used.
One option is the use of fuel flow correlation algorithms. For NOx, these include the DLR-2 fuel flow
method or the Boeing Fuel Flow Method-2. These algorithms are developed based on experimental
performance data obtained via full-scale engine tests [39]. Fuel flow correlation algorithms are useful
because they do not require access to proprietary information of the engine, as the only parameter
used is the fuel flow at altitude, which is a ’nonproprietary’ indicator of the engine thrust setting [10]. If
access to engine proprietary information is available, simple empirical analytical functions are available
as predictors for EI. The total pressure and total temperature measured at ground level is correlated
with EI. A correction for difference in inlet pressure at ground level and at altitude is included with the
presence of correction terms. In the case of the expression developed by the NASA Clean Combustor
Program, the specific humidity is used as a correction term, as it varies with altitude [65].

2.2.2. Assessment of Contrail Formation

To predict contrail formation, the use of Schmidt-Appleman criteria is used. Contrail form when hot
engine exhaust reaches saturation with respect to water vapour (meaning maximum amount of water
vapour is contained for the given temperature) during the mixing process with ambient air. The mixing
process involves a drop in temperatures and water vapour pressure, following a gradient G, according
to the research Schumann (1996) [64]. This gradient is a function of the total pressure p, specific heat
capacity cp, ratio of molar masses of water and air, emission index of water vapour, EIH2O, propulsive
efficiency ηp and specific combustion heat, Q [63]. The points used to evaluate if the criteria is fulfilled
are the point at the end of the mixing line, Tamb, and the point where the vapour saturation line intersects
with the critical mixing line, denoted Tcf . The critical mixing line represents the critical conditions for
contrail formation [5]. The Schmidt-Appleman criteria states that contrail formation takes place if Tamb

is smaller than Tcf [5].

For contrails to be persistent, the Schmidt-Appleman criteria is not sufficient. Persistence takes
place if the condensed particles do not evaporate by time the exhaust is fully mixed. This is predicted
by estimating whether the partial pressure of the mixed exhaust lies above the threshold of saturation
of ice. This condition is namely called ’ice supersaturation’. Figure 2.2, from the study by Whelan et al.
(2009) [78] visually show the mixing line, the vapour and ice saturation lines, the region where contrail
formation takes place, and where contrail remains persistent.
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Figure 2.2: Schmidt-Appleman Criterion for contrail formation. Mixing line given in red, representing themixing process of engine
exhaust with ambient air. Saturation line of water vapour and ice given by bold and dotted blue lines respectively (Whelan et al.
[78])

2.3. Uncertainties in Climate Impact Modelling
The uncertainty existing in the estimation of climate impacts can be characterised by the different
sources of the uncertainty. Schwarz & Dallara (2011) [65] identify the three main sources to be sci-
entific uncertainty, valuation uncertainty, and scenario uncertainty, each one elaborated below:

• Scientific Uncertainty is the main focal point of this study, and deals with the lack of scientific
knowledge and inexact modelling of the climate impacts. The current scientific understanding
of the potential effects on climate from aviation emissions can be expressed using the ’Level Of
Scientific Understanding’ (LOSU), appointing a subjective range from ’good’, ’fair’, ’poor’ and ’very
poor’. Wuebbles et al. (2010) determines the LOSU to be ’good’ for long-lived carbon dioxide
emissions, to ’fair’, for the atmospheric chemistry and radiative effects from emissions of shorter-
lived gases such as nitrogen oxides and water vapor, to ’poor’ for the climate effects of cirrus
clouds [79]. It must be noted that though the level of scientific understanding may be considered
’good’, the confidence intervals may still be very large. This is the case as there is inherent
variability in the system that is not captured by the Global Climate Models (GCMs)( [61]. Further
modelling uncertainty is induced by the inability of GCMs to resolve small, sub-grid scale features
such as precipitation and evaporation, surface wind variability, jet streams, cloud physics and local
atmospheric circulation patterns [16]. Alternatively, scientific understanding is quantified using
a more objective framework by assigning numerical uncertainties using probability distribution
functions (PDFs) [37].

• Valuation Uncertainty deals with the temporal weighing of emission impacts, and evaluates the
relative importance of short term and long term impacts [79]. The use of the ATR climate metric
averages out both short and long term effects, if a sufficiently long integration period is taken under
consideration. Hence the valuation uncertainty has little significance for the climate assessment.

• Scenario Uncertainty refers to the uncertainty around the future climate responses to emissions.
The most significant scenario uncertainty is the change in CO2 background concentration over
the next century, as this directly affects the forcing due to a unit CO2 emission. Other sources of
scenario uncertainty lie in the future forcing mechanisms and the species’ radiative efficiencies.
[79]. The future change in aero-engine technology or fuel composition is also a source of such
uncertainty, however this study assumes the technology to be fixed throughout the operational
lifetime of the fleet.
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2.3.1. Modelling Uncertainty
As going further down the causal sequence from emissions to climate impacts, more comprehensive
Gand computationally expensive modelling approaches are required. For evaluating the CO2 concen-
tration change, carbon cycle models are simulated using ’Earth System Models’. For the computation
of radiative forcing due to emission species such as NOx, contrails, ’Global Climate Models’ are uti-
lized, which simulate the microphysical processes taking place throughout the spread and interaction
with the background atmosphere. The mean surface temperature change given a perturbation in the
atmosphere’s net solar irradiance requires the use of a comprehensive energy balance model. These
models take into account the in-homogeneity of the climate forcer and the atmospheric responses to
the emission species [37].

The usage of comprehensive climatemodels is accompanied by extremely large computational cost,
making climate impact assessment on supercompters require weeks. This makes the forwards looking
assessment of climate impact of aviation emissions prohibitive. Simplifications of the fully comprehen-
sive climate models using using linearised relations are known as Linear Climate Models (LCMs) or
Linear Response Models. LCMs significantly reduce the computational budget and allow for forwards
looking climate assessment to be integrated in climate optimization studies. As only first-order effects
are captured, they greatly simplify the physics and chemistry of aircraft-induced climate change. Ef-
fects of varying background concentrations, latitude and longitude, timing, and interaction with other
pollutants not measured [65]. Hence additional modelling uncertainty is to be considered.

2.3.2. Quantification of Climate Model Input Parameters
Methods to quantify uncertainties in the input of a model vary according to the nature of the uncertainty.
Uncertainty is mathematically classified as either ’Aleatory’ or ’Epistemic’. Aleatory uncertainty is de-
fined to be due to the inherent variation of system or environment under consideration. If an uncertainty
is fully due to the inherent variation, it can be considered an irreducible uncertainty, meaning a higher
level of scientific understanding would not reduce the level of uncertainty. As one theoretically has full
knowledge of the variability of the system, aleatory uncertainty is typically modelled using a probabilis-
tic framework. Epistemic uncertainty on the other hand is due to the inaccuracy present from lack of
scientific knowledge. This is a subjective or reducible uncertainty and may include uncertainties about
the model used to describe reality. Such uncertainties are typically modelled using uncertainty ranges
with an upper and lower bound, without specifying a probability distribution [72].

Literature covering uncertainties in linear climate model parameters, summarised throughout the
uncertainty characterisation performed Section 4.2, shows that although the nature of the uncertainty
is both aleatory and epistemic, the probabilistic framework is predominantly used to describe the un-
certainties. Hence this section will give further overview into classical probability theory. Expressing
uncertainty in inputs using probabilistic framework allows for outputs to be represented similarly by a
random variable, allowing statistics of the output to be estimated such as the expectation and variance
after performing a forwards uncertainty propagation. Usage of probabilistic framework has its limitation
in the fact that it theoretically impossible to model epistemic uncertainty using a PDF as it requires full
knowledge of probability of outcomes. Inaccuracies in modelling the PDF will propagate into uncer-
tainties in the resultant output uncertainties. In addition, knowledge is generally derived from several
conflicting sources [72]. Hence, the use of probability theory can give a false sense of exactness [58].

Classical Probability Theory Probability of an event is defined as the number of cases the event
occurred, over the total number of possible outcomes. An uncertain variable is represented as a random
variable, being a measurable function from probability space into the real numbers [8]. The probability
distribution of a continuous random variable, X, is expressed using the density function, f(·), defined
as follows:

P(a ≤ X ≤ b) =

∫ b

a

fX(x)dx (2.2)

Cumulative Density Function of X, FX(·), is then written as:

FX(x) =

∫ x

−∞
fX(u)du (2.3)
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Table 2.1 lists the probability density functions for different continuous distributions utilized in the
uncertainty characterisation, later outlined in Chapter 4 [49]:

Type of Distribution PDF Parameters

Uniform fX(x) = 1
b−a

a=lower bound
b=upper bound

Normal fX(x) = 1√
2πσ2

exp
[
− 1

2 (
x−µ
σ )2

] µ ∈ (−∞,+∞)
σ > 0

Log normal fX(x) = 1
xσ

√
2π

exp
(
− 1

2 (
ln(x)−µ

σ )2
) µ ∈ (−∞,+∞)

σ > 0

Table 2.1: Description of Common Probability Distribution Functions

For the log-normal distribution, the random variable, X, is written in terms of the standard normal
variable, Z as follows:

X = eµ+σ (2.4)

Hence µ and σ indicate the mean and standard deviation random variable’s natural logarithm. Not
to be mistakes with the mean and expectation of X as it is.

Joint Probability Distributions When one wishes to sample from input random variables U1 and U2

that are correlated, it is convenient to define a joint probability distribution, f(u1, u2) such that:

P ((X,Y ) ∈ A) =

∫ ∫
A

fU (u1, u2)du1du2 (2.5)

The function of the joint probability distribution is to predict or control one random variable from
another. The correlation between two random variables is often expressed in terms of the correlation
coefficient, ρ. When ρ is zero, the variables are uncorrelated. The larger is ρ, the stronger is the linear
correlation. The join probability distribution can be written out in terms of this correlation factor as well
as random variable moments. For example, for two normally distributed correlated random variable
the ’bivariate PDF’ can be expressed as [15]:

f(u1, u2) =
1

2σ1σ2π
√
1− ρ2

exp

(
− 1

2(1− ρ2)

[(
u1 − µ1

σ1

)2

+

(
u2 − µ2

σ2

)2

− 2ρ
x1 − µ1

σ1

u2 − µ2

σ2

])
(2.6)

The bivariate log-normal can be converted to the bivariate normal distribution by taking the natural
log of each random variable [71].

2.3.3. Uncertainty Analysis in Aviation Climate Impact Mitigation Studies
Studies have been carried in the topic of climate impact mitigation potential for aviation, while also
quantifying the uncertainties. Studies by Mahashabde et al. (2010), Dallara & Kroo (2011) [65], Koch
et al. (2016) [11] and Dahlmann et al. (2016) look at policy options (e.g. climate-optimized aircraft
design), and compare with baseline/reference scenarios [11, 27, 42, 65]. The uncertainty is quantified
by looking at the probability distribution of the climate impact reduction compared to the reference case.
For example in the study by Dallara & Kroo, the climate impact of the climate optimized aircraft design
is compared with the minimum operating cost design (i.e. the standard case). Uncertainty analysis is
carried out by looking at the probability distribution of the ATR reduction (ATRref−ATR), approximated
using Monte Carlo sampling approach. Quantification of uncertainty in the ATR reduction is preferred
over quantifying the absolute ATR of each design, as only the uncertainty relative to the difference
between the different designs is represented [65].

When performing uncertainty analysis by comparing climate impact with baseline case, a Monte
Carlo sampling of the output of both the baseline and reference case is required. Mahashabde et al.
(2010) suggests making use of the paired sampling approach for the Monte Carlo simulation. This
approach uses the same draw for both the baseline and policy option. Double counting uncertainties
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is avoided, as the uncertainty is common to the climate impact of both the baseline and policy option.
Hence uncertainty of the climate impact reduction is reduced [42].





3
Uncertainty Investigation Framework

This study aims to investigate the impact of the uncertainties on the climate impact optimisation. The
three main steps of the investigation are the uncertainty analysis (UA), the robustness-based optimi-
sation (RBDO), and the sensitivity analysis (SA). The general workflow combining the characterisation
of uncertainties, the deterministic climate impact model, and the different steps of the uncertainty in-
vestigation is provided in Section 3.1. The investigation of uncertainty is performed on the conceptual
aircraft design of a single-aisle medium-range turbofan aircraft optimized for minimal climate impact
using the deterministic optimization framework. The multi objective optimization framework utilized in
the study by Proesmans & Vos [52] is directly implemented in this research. Section 3.2 gives the
outline of this deterministic optimization framework.

3.1. General Workflow
The general workflow employed for the uncertainty investigation in this study is shown in Figure 3.1.
Step A includes defining the deterministic model used for evaluating the ATR for the given aircraft de-
sign. Step B looks at identifying the uncertain parameters in the climate impact model, and assigning
a description of the probability that allows the uncertainty to be quantified. This allows the uncertainty
quantification of inputs to be integrated together with the deterministic climate impacts model in the un-
certainty analysis (UA) in step C, where statistics about the output are inferred. The output of interest is
average temperature reduction potential (ATRRP), being the difference in ATR of the optimized aircraft
with respect to the Direct Operating Cost (DOC)-optimized aircraft (given in Equation 3.1. This metric
assumes the cost-optimized aircraft to be the reference aircraft, used to compare the performance of
the climate-optimised aircraft. Both the climate- and cost- optimized conceptual aircraft designs are
obtained using the deterministic multi-objective optimization framework described in Section 3.2.

ATRRP = ATRcost-optimized − ATRclimate-optimized (3.1)

With the uncertainty propagation model at hand, the robustness-based design optimization (RBDO)
is performed next in step D, where solution having low sensitivity to variability in the system is aimed
for. The RBDO is hence concerned with minimizing both the mean and the variability about the mean
due to the uncertainties of the climate impact model. Robust solution are looked for because they
are more likely to meet the climate impact target as level of scientific understanding increases over
time, avoiding expensive redesigns [58]. Finally the sensitivity analysis can be performed on both the
climate-optimized and the robust design solutions, to quantify the contribution of the individual sources
of uncertainty towards the variability in climate impact reduction potential.

The workflow is cyclic, as the last step, the sensitivity analysis, directly informs about which of
the characterised uncertainties have most influence on the uncertainty in the output of the system,
and hence informs about where further uncertainty reduction work would most benefit aircraft design.
After uncertainty reduction work is carried out, the uncertainty characterisation, uncertain analysis and
robustness based design optimization can once again be repeated. Uncertainty reduction effort is
however is outside the scope of the current study, hence only single iteration of the cyclic workflow
is carried out. Section 3.2 will provide insight into the deterministic climate optimization framework,
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being the first step of the general workflow, and is hence lays the foundation for the further uncertainty
investigation.

Figure 3.1: General workflow used for uncertainty investigation of the climate-optimized aircraft design (inspired byMavromatidis
et al. [47])

3.2. Deterministic Climate Optimisation Framework
This research works with the multiobjective optimization framework developed in the study by Proes-
mans & Vos (2021) [52], concerned with the conceptual design optimization for minimal climate impact
design and costs of a single-aisle medium-range turbofan aircraft. The climate impact is quantified us-
ing the ATR, defined in Equation 2.1, and the cost is quantified using the DOC. The study by Proesmans
& Vos [52] utilizes methods by Roskam [59] to compute the DOC. The operating costs are categorized
into five components. The first is flight-related costs, including fuel, crew salary, and insurance. The
second category is maintenance costs, including labor costs of airframe and engine engineers, and
spare engine and airframe units. The third category is depreciation costs. Fourthly is the financing
costs, assumed proportional to the DOC, and lastly is the operational fees, assumed proportional to
the MTOW.

Both the ATR and the DOC are estimated for an envisioned time period of 65 years of fleet operation,
between the years 2020 and 2085. A fixed productivity level is defined for each year. Productivity is
quantified by the Revenue Passenger Kilometers per year (RPK), and is defined constant for the given
year. The fleet size in a given year i, NAC, i is then derived from the productivity, RPKi, according to the
annual utilization of the aircraft, UAnn, the block time of the mission, tbl, the number of passengers per
flight, and the block range according to Equation 3.2 [52]. A single aircraft is assumed an operational
lifetime of 35 years.

NAC, i =
RPKi

Capacity [pax/flight] · rbl[km]
· tbl[hrs]
UAnn[hrs]

(3.2)

Design Problem Formulation The single-objective optimization problem, for minimal climate impact
or operating cost, is defined in Equation 3.3



3.2. Deterministic Climate Optimisation Framework 17

minx F (x) = ATR(x) or DOC(x)

s.t. W/S ≤ 1

2
ρ0

(
Vapp
1.23

)2

CLmax ,

b ≤ bmax,

TETTO ≤ TETTO,max,

CLcr ≤
CLbuffet

1.3
=

0.86 · cosΛ0.25

1.3
,

CLmax ≤ 2.8 · cosΛ0.25,

xL
i ≤ xi ≤ xU

i for i = 1, 2, ..., 10

(3.3)

The 10 design variables of the optimization are related to the conceptual design of the airframe,
the engine, and the aircraft operation. The airframe design variables are the wing loading (W/S),
the aspect ratio (A) and the maximum lift coefficient (CLmax

). The engine design variables are the
bypass ratio (BPR), the fan, LPC and HPC pressure ratios (Πfan,ΠLPC,ΠHPC), and the turbine entry
temperature (TET). The operational design variables are the initial cruise altitude (hcr) and the cruise
Mach number (Mcr). The XDSM of the deterministic optimisation is shown in Figure 3.2. This allows
the interfaces among components to be visualized by showing the data exchange, as well as the order
in which the components are run, to be visualized.
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Figure 3.2: The extended design structure matrix of the deterministic conceptual aircraft design optimisation for minimal climate
impact and cost as adapted from the study by Proesmans & Vos [52]



4
Climate Impact Model Uncertainty

Characterisation
The first step in the investigation of uncertainties is the uncertainty characterisation. This involves
the identification of uncertainties and the assignment of quantitative description. In order to do so,
an overview of the Linear Climate Model (LCM) used to perform the climate impact evaluation of the
aircraft fleet is firstly provided in Section 4.1. A summary of best estimate and uncertainty quantification
of parameters identified in the LCM then follows in Section 4.2 follows.

4.1. Climate Impact Model Overview
The climate impact metric used for assessing the marginal climate impact of aviation operation of the
proposed aircraft design is the Average Temperature Response (ATR), defined as the average global
surface temperature response over the specified time horizon [20]. The ATR metric is advantageous
for it provides balanced valuation of short and long term effects is not limited by the influence of time
horizon [39]. A time horizon of 100 years is utilized, between the years 2020 and 2120. This is sufficient
to capture the long term climate effects of the envisioned 65 years of fleet operation.

The forwards looking assessment of the ATR is performed using the LCM utilized in the study by
Proesmans & Vos (2021) [52]. The model replicates first order globally averaged effects as computed
using more comprehensive of the Global Climate Models (GCMs). Hence it assumes that the new fleet
will have a spatially distributed routing similar to present-day commercial air traffic, which is largely
concentrated in northern hemisphere mid-altitudes [27]. Dependency of the climate impact of NOx-
induced short- and long-lived O3 as well as contrails on the emission altitude is directly incorporated.
Effects of varying background concentrations, latitude and longitude, timing, and interaction with other
pollutants however is not measured [65]. The emission species taken into consideration are CO2, NOx,
H2O, SO4, soot, and contrails. The indirect emission species are the NOx-induced CH4, long- and
short- lived O3, and Stratospheric Water Vapour (SWV). This differs from the study by Proesmans
& Vos (2021), where the inclusion of SWV as an indirect emission species was not considered. The
inclusion of SWV was made possible by the quantification of its radiative efficiency, ASWV , and species
efficacy, fSWV, in the study by Lee et al. (2021) [37]. An overview of the assumptions employed in the
employed LCM are as follows:

• Constant background CO2 level concentration.
• A constant methane lifetime [73]. As the key driver to the methane lifetime is methane itself, this
implicitly assumes a constant methane background concentration.

• For short lived species, a perturbation lifetime of one year is assumed.
• Linear relationship between emissions and atmospheric concentration changes of species.
• Flight trajectory representative of global spatial average of historical global commercial flight pat-
tern

• Physical climate responses will not change in the future, or in other words, that climate feedback
mechanisms and all species’ radiative efficiencies remain constant.

19
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• Full knowledge of engine thermodynamic performance.
• Same aero-engine technology used on aircraft throughout operational lifetime.
• No degradation in aircraft performance over operational lifetime.
• Constant fuel composition throughout operational lifetime.
• Emissions during ground operations not accounted for.

The first step in the LCM is themission analysis, where the amount of each emission species at each
year of operation is computed, based on the mission profile, engine performance, and fuel consumption
of the fleet. Section 4.1.1 gives insight into the methods employed in the mission analysis. The next
step involves the computation of RF throughout the time horizon under consideration, as elaborated in
Section 4.1.2, and finally the evaluation of the average global surface temperature change, summarized
in Section 4.1.3.

4.1.1. Mission Analysis
The first step of the climate impact assessment is the mission analysis, where based on the flight
envelope and fuel consumption at the different stages therein, the emissions are computed for each
emission species. For CO2, water vapour, and soot and sulphate aerosol emissions, this is assumed
proportional to the fuel burn wfuel and is evaluated via a constant emission index, EI, as shown in
Equation 4.1:

EIi = EIiWfuel (4.1)

NOx emission does not scale linearly with fuel burn. Instead, it is estimated using the semi-empirical
analytical expression developed by NASA’s Experimental Clean Combustor Program (ECCP) given in
Equation 4.2. These correlations are designed to predict the EI for the engines of the GE90 engine
family. The engine is representative of modern high bypass ratio, high overall pressure ratio turbofan
[65]. The EI is correlated with power setting by measurement of NOx emission at various throttle
settings, thereby varying the total pressure and temperature ahead of the engine. The specific humidity
factor,H0 varies with altitude and hence serves as an altitude correction factor, allowing the expression
to be used at every point in the mission profile [41].

EINOx = 0.0986 ·
( pT3

101325

)0.4
− eTT3/194.4−H0/53.2 (4.2)

Contrail Formation Assessment At every point of the mission profile, whether a linear contrail is
formed, and whether it persists, is assessed according the criteria explained in Section 2.2.2. Firstly
is the Schmidt-Appleman criterion, met if the hot exhaust air reaches saturation with respect to water
during the mixing process with the ambient air. This determines whether contrail formation takes place.
Secondly is whether the static ambient temperature lies below 235 Kelvin. Thirdly, for contrail to be
persistent, and hence for them to affect the earth’s radiative budget, the partial pressure of the mixed
exhaust air must lie in between the thresholds of saturation above ice and below that of water vapour
[52].

4.1.2. Radiative Forcing Computation
After the mission analysis, the change in global radiative budget for the given amount of emission
at every year of operation of the aircraft fleet is computed. The methodology used to obtain the RF
response for the different species is summarised below.

Carbon Dioxide To compute the CO2 concentration change and respective RF change due to CO2
emission, the Simple Climate Model (SCM) by Sausen-Schumann (2000) [62] is used. This LTR model
approximates the comprehensive carbon-cycle model by Maier-Raimer and Hasselmann (1987) by
use of a Finite-amplitude Impulse Response Model (FaIR) [37]. This model is also referred to as the
’LinClim’ model in literature. Firstly the concentration change of atmospheric CO2 is computed from the
emissions is a given year, ECO2 according to Equation 4.3:
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δχCO2(t) =

∫ t

t0

GχCO2
(t− t′) · ECO2(t

′)dt′, where GχCO2
(t) =

5∑
i=1

αi · e−t/τi (4.3)

GχCO2
represents the impulse response function based on coefficients τi and αi representing the

perturbation lifetime and strength of the response modes. The values of these parameters are provided
by Sausen & Schumann (2000) [62]. The concentration change translates to the normalized RF change
according to Equation 4.4, where χCO2,0 is the global CO2 background concentration (in ppm).

RF∗(t) =
1

ln 2
· ln

(
χCO2,0 + δχCO2(t)

χCO2,0

)
(4.4)

Nitrogen Oxides For long-term NOx effects, namely a depletion in methane and ozone, the RF is
modelled according to Equation 4.5. The formulation includes a ’forcing factor’ si(h), which accounts
for the altitude dependency of the species, further explained in Equation 4.1.2. The parameter τi is the
perturbation lifetime of the species and Ai is coined the term ’radiative efficiency’ and represents the
change in RF per unit emission species, in this case being NOx. For the effect of NOx on long term
Stratospheric Water Vapour (SWV) radiative forcing, Equation 4.5 can also be used, even-though not
previously accounted for in the studies by Proesmans (2021) or Schwarz-Dallara (2011) [52] [65]. In
addition, there is no estimation available for the forcing factor in literature for the RF of SWV.

RFi(t, h) = si(h)

∫ t

t0

Gi(t− t′) · ENOx(t
′)dt′, where Gi(t) = Aie

−t/τi for i = CH4, O3L (4.5)

For short-lived NOx species, ozone level in troposphere and lower stratosphere is increased. The
perturbation is assumed to only be active in the year of the emission. The RF response is then formu-
lated as follows, where RFref

ENOx
represents the radiative efficiency due to short-term ozone concentration

changes:

RFNOx−O3,SL
(t, h) = si(h)(

RFref

Eref
)NOx−O3,SL

ENOx(t)dt (4.6)

Water, Soot and Sulphate Water, soot and sulphate all are short lived species and therefore their
RF can be represented the same way as for short term NOx effects in Equation 4.6. However in the
case of water, soot and sulphate, the forcing factor si(h) is equal to 1, as the altitude dependency is
not included.

Contrails RF response for persistent contrails, consisting of linear contrails and cirrus cloudiness
arising from them is formulated in Equation 4.7. RF forcing is expressed as a function of total stage
contrail length, L(t), a radiative efficiency parameter, RFref

Lref , relating the RF to the distance flown, and
once again a forcing factor scontrails(h). The total stage contrail length, L(t), is evaluated during the
mission analysis by assessing whether contrail formation takes place at each point throughout the
mission profile. The criteria for contrail formation, as explained in paragraph 4.1.1, must all be satisfied
in order for contrail formation to be assumed.

RFcontrails(t, h) = scontrails(h) ·
(
RFref
Lref

)
AIC

L(t) (4.7)

Forcing Factors The forcing factor, si(h), is an altitude dependence unitless parameter defined for
NOx-induced short- and long-lived ozone and methane as well as contrails. This term accounts for the
variation in RF per unit emission at a particular altitude, normalized by the fleet-wide average RF [65].
These functions are derived from measurements of the RF change due to perturbing air traffic by a
small amount at each height in turn. This factor is derived for NOx species, i, by normalizing its RF
per emission as function of altitude, RFi

ENOx
(h), by the distance-weighted RF per emission by applying

Equation 4.8:
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si(h) =

RFi

ENOx
(h)∫∞

0
RFi

ENOx
(h)l(h)dh

(4.8)

RF/ENOx(h) is estimated from data of global RF per unit emission at various altitudes in the study
by Kohler et al. (2008). The RF computations are performed for a fleet having the same air traffic
pattern as commercial aviation in the year 2002 according to the AERO2K emission inventory [33].
This same air traffic pattern is used to compute l(h), being the ratio of the distance flown at given
altitude to the total distance flown by the air traffic. Data is not available below 16,500 ft, therefore
the forcing factor is assumed constant between ground level and at altitude of 16,500 ft. For contrails,
Equation 4.8 is similarly applied, however by expressing the RF per unit distance flown (RFAIC/Lref(h)),
instead of emissions. This is expressed in Equation 4.9. RF per distance flown as function of altitude,
RFAIC/Lref(h), is estimated by data from Radel and Shine (2008) [56].

sAIC(h) =

RFAIC
Lref (h)∫∞

0
RFAIC
Lref (h)l(h)dh

(4.9)

The forcing factor as function of altitude is plotted in Figure 4.1, using the data from the studies by
Radel and Shine (2008), and Kohler et al. (2008) [33, 56].

Figure 4.1: Forcing factor for NOx and contrails based on data from Radel and Shine (2008), and Kohler et al. (2008) [33, 56]

4.1.3. Temperature Response Computation
The temperature change is the final step considered in the causal sequence from emission to impacts.
The ATRmetric is computed using Equation 2.1, as the time integral of the surface temperature change,
∆Ts, divided by the time horizon. The computation of ∆TS(t) for each year is performed using Equa-
tion 4.10.

∆TS(t) =

∫ t

t0

GT (t− t′)RF∗(t′)dt′, where GT (t) =
2.246

36.8
e−t/36.8 (4.10)

The normalized RF, RF∗, is equal to 1 if the carbon dioxide change is equal to a doubling compared
to pre-industrial times [52]. The total RF∗ is the sum of the RF∗ of each individual species, RF∗i, which
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in turn is a function of the RF, the species efficacy, fi, and the actual RF concentration equal to doubling
of CO2 concentration, RF2×CO2 :

RF∗(t)i = fi ·
RFi(t)

RF2×CO2
(4.11)

The species efficacy is equal to the ratio between climate sensitivity parameter of the species and
that of CO2.

4.2. Uncertainty Characterisation
The first step in the general workflow of investigation of uncertainties as presented in Chapter 3, is the
uncertainty characterisation. Key sources of uncertainties in the forward looking assessment of emis-
sion impact on the Average Temperature Response (ATR), are identified and assigned a quantitative
description. The first type uncertainty that this study will focus on is scientific uncertainty, which deals
with the lack of scientific knowledge and inexact modelling of climate impacts. This type of uncertainty
is characterised using a probabilistic framework. This is done by obtaining a description of the proba-
bility distribution and best estimate value of the uncertain parameter from scientific literature. Moments
of the particular probability distribution are thereafter derived. A summary of the quantitative uncer-
tainty estimates provided by various scientific literature is provided in Table A. The sources that best
reflect present day level of scientific understanding are selected and used to perform the uncertainty
characterisation in this section. The second type of uncertainty treated in this study is scenario uncer-
tainty, related to the sensitivity to assumptions about future-related parameters used in climate model.
Uncertainty in design variable values within the multidisciplinary modelling system are not taken into
consideration and hence are not characterised. Hence, this study will solely focus on uncertainties in
the climate impact model.

For scientific uncertainty, the first uncertain input parameter group are the uncertainty in direct
emissions, identified in the emission index parameters, EI. An overview of these uncertainties is pro-
vided in Section 4.2.1. The second parameter group is the CO2 impulse response function parameters.
Namely, the coefficients and time scales (αCO2 , τCO2), discussed in Section 4.2.2. Next are the param-
eters related to the radiative forcing response, namely the radiative efficiencies Ai, forcing factors si,
and methane lifetime τn. These uncertainties are discussed in Section 4.2.3, Section 4.2.4, and Sec-
tion 4.2.5 respectively. Lastly are the uncertainties in temperature response modelling, identified in the
species efficacies fi of all emission species, and the ’RF due to doubling of CO2 concentrations since
pre-industrial times’ parameter, RF2xCO2 . Scenario uncertainty, on the other hand, is identified in the
uncertainty around projected global background atmospheric CO2 concentration. These are discussed
in Section 4.1.3. This is further elaborated in Section 4.2.7.

4.2.1. Direct Emission Uncertainty

The direct emissions are computed as function of the emission index (EI), as described in Section 4.1.1.
Table 4.1 summarizes the best estimates and respective uncertainty based on present day level of
scientific understanding. The uncertainty in the direct emission ofCO2, NOx, H2O, SO4 and CO are
quantified here. For uncertainty around persistent contrail formation, the uncertainty in the three crite-
ria used determine the probability of persistent contrail formation, described in Section 2.2, would be
required. This is however deemed outside the scope of this research, and hence is not quantified in
this section.
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Table 4.1: Emission Index Uncertain Parameter Values and Distributions

Emission Index
(Section 4.2.1) Parameter Description Best Estimate Probability Representation

EICO2 Carbon dioxide emission index 3.16 [37]
Uniform Distribution:
U(0.99µ, 1.01µ) [37]

EINOx Nitrogren oxides emission index
Semi-emipirical analytical expression
(NASA ECCP program) for the GE90-85B engine
[41]

Normal Distribution:
N(µ, 0.091µ) [37]

EIH2O Water vapour emission index 1.23 [4]
Uniform Distribution:
U(0.98µ, 1.02µ) [4]

EISO4 Sulphate emission index 1.20 [37]
Uniform Distribution:
U(0.33µ, 2.33µ) [4]

EICO Soot emission index 0.030 [37]
Uniform Distribution:
U(0.92µ, 1.25µ) [4]

CO2 Emission Index The emission index for CO2 as reported by Lee et al. (2021) [37], gives the
value found from the AERO2K emission inventories. The associated uncertainty is additionally very
small. According to expert judgement in the most recent study by Lee et al. (2021), the uncertainty is
stated to be within 1 % [37]. The basis for this uncertainty is the variability in C:H mass ratio found in
jet fuel [4].

Nitrogen Oxides Emission Index As explained in Section 4.1.1, the emission index for NOx is esti-
mated using the semi-empirical analytical expression developed by NASA’s Experimental Clean Com-
bustor Program (ECCP) for the GE90-85B engine [65]. It is used to predict the EI for the GE90 engine
family, representative of modern high bypass ratio, high overall pressure ratio turbofan [65]. The EI is
correlated with power setting by measurement of emission of NOx emission at various throttle settings,
thereby varying the total pressure and temperature ahead of the engine. The specific humidity factor,
H0, varies with altitude and hence serves as an altitude correction factor, allowing the expression to
be used at every point in the mission profile. One source of uncertainty is that the expression refers
to conditions ahead of the combustor, and hence does not account for changes in and downstream
of the combustor. There is however little change in emission levels due to kinetics occurring down-
stream of the combustor, hence is is not significantly expected to vary results [41]. As the expression
is derived from direct correlation of emission performance at ground level, variability in predictions oc-
curs for the engine at altitude. Study by Schumann et al. (1997) [63] estimates this variability to be
±18% on average when such semi-empirical expression are used. Correlations specifically formulated
for a particular engine, as is the case for the ECCP expression for GE-90 engine family, are however
more accurate [41]. As further uncertainty must be still be accounted for due to the variability of the
engine performance within the GE90 engine family, it is reasonable to assume an uncertainty range
of 15%. The value of EI is treated as being normally distributed around the value obtained using the
deterministic semi-empirical analytical expression.

Water, Soot and Suphate Emission Indices Values for EIH2O is SAGE emission inventory by Kim
et al. (2007) [32]. The with uncertainty range being within 2%. Similarly to the case with carbon dioxide,
the main source of uncertainty lies in variation in fuel composition values. The best estimates for CO EI
provided by Lee et al. (2021) [37] makes reference to values provided AEDT emission inventories re-
spectively. The EI of soot is evaluated using a constant value, although it is known that it does not solely
depend on fuel composition but also on the way the combustion is controlled. Hence, altitude depen-
dency and effect of engine operating conditions are ignored, incurring the larger uncertainties. Eyers
et al. (2004) [14] analyses the errors that arise in the estimation of soot production (in estimation used
in the AEO2K inventory), referring to its complexity and limited available scientific knowledge. Specific
areas of uncertainty are the non-homogenous flow and temperature field in combustion chamber, the
variation in influences of different injection systems and combustor technologies, and the influence of
type of fuel [14]. Similar to the case with carbon dioxide and water, the EI for sulphate aerosol is solely
dependant on the fuel composition. The EI for emission is derived from the fuel sulfur content (FSC),
and considering a molar ratio of 2:1 in the conversion of sulfur (S) to sulphate (SO2). A conversion
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efficiency, close to 100%, additionally defines the percentage of FSC converted to sulphate. The most
recent best estimate used in the report by Lee et al. (2021) uses an FSC of 600 ppm used in the AEDT
emission inventory and assumes a 100% conversion to sulphate [38]. Uncertainties in the emission
indices are considerably large. Sources of uncertainty identified by Lee et al. (2010) are the lower
cut-off size of the particle counters, the plume age, the variation in FSC, the conversion efficiency and
the number of chemi-ions (CIs) available from the engine. Barrett et al. (2010) [4] quantifies the uncer-
tainty by setting the interval of [400,800] about the best estimate of 600 ppm for the FSC and of [0.5,6]
about the best estimate of 2 % mole conversion ratio of sulfur as SV I . Hence applying uncertainty
propagation rules, this allows for setting the uncertainty intervals on the best estimates from Lee et al.
(2021) [37].

4.2.2. Carbon Dioxide Impulse Response Function
The Simple Climate Model (SCM) by Sausen-Schumann (2000) [62], expressed in Equation 4.3, is uti-
lized to compute the CO2 concentration response due to CO2 emission. This model does not employ a
single radiative efficiency or perturbation time parameter, instead it models the response as a linear su-
perposition of various response modes with differing perturbation lifetimes. To quantify the uncertainty
of the system, the variability in response between different SCM is used. As the SCM are designed
to approximate the results from fully comprehensive comprehensive global carbon cycle models, the
variation in response between different SCM highlights the variability in those global carbon cycle mod-
els. This in turn give an quantification of the level of uncertainty due to lack of scientific knowledge and
inexact modelling.

Lee et al. (2021) compares the response of the currently used SCM model with results from two
other SCM; the CICERO-2 SCM proposed by Fuglestvedt and Berntsen (1999) and the FaIR SCM by
Skeie et al. (2017). The variability in CO2 concentration responses vary by less than 15 %. Hence,
each coefficient αi and τi in Equation 4.3 is described as a normally distributed random variable with
a 90 % likelihood of being within 15% of its nominal value. A main area of scientific uncertainty in
the global carbon cycle models is the magnitude of ocean and land carbon uptake, especially for land
[70]. Based on these estimates, the probabilistic representation for the αi and τi parameters is given
in Table 4.2.

Further source of uncertainty in the use of SCMs for the CO2 response modeling is that linearized
models are applicable only for certain ranges of concentrations and emission scenarios [62]. The
physics in the carbon cycle model is non-linear, and the effect of the non-linearities begins to take
more significant effect after 50-60 years. After this time horizon, CO2 concentration start to affect the
ground and ocean re-uptake and hence the use of the SCMs becomes less applicable, as shown in the
comparison with more sophisticated carbon-cycle model, MAGICC 6.0 in the study by Lee et al. (2021)
[37]. The impact on the uncertainty is however not quantified in the current study.

Table 4.2: CO2 Impulse Response Function Uncertain Parameter Values and Distributions

Carbon Impulse
Response Function
Parameters
(Section 4.2.2)

Parameter Description Best Estimate Probability Representation

αi
Coefficients of CO2 concentration change
impulse response function

Table I in Sausen and
Schumann (2000) [62]

Normal Distribution:
N(µ, 0.061µ) [37]

τi
Perturbation lifetime of response modes of CO2
concentration change impulse response function

Table I in Sausen and
Schumann (2000) [62]

Normal Distribution:
N(µ, 0.061µ) [37]

4.2.3. Radiative Efficiency
The RF is correlated with the emissions using the radiative efficiency parameter. The literature source
providing best estimate and uncertainty ranges of the radiative efficiency based on present day level
of scientific understanding is the report by Lee et. al.([37, 38]). The study quantifies the total RF due
to commercial aviation in the year 2018, by assimilating estimates from various different studies which
employ different comprehensive GCMs. The cumulative emissions of global aviation between the years
1940 and 2018 are taken into account. The provided uncertainty ranges and probability distributions
are based on variability in the quantified RF estimates, and observed spread thereof. The uncertainty
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estimates hence incorporate the inter-model variability of GCMs, as well as uncertainty in emission
inventories used to evaluate the emissions from the recorded air traffic data. The radiative efficiency
uncertainty for different emission species are all assumed independent, except for the uncertainty be-
tween short-lived NOx effects, namely short-term ozone, and long-lived NOx effects, i.e. long term O3,
CH4, and SWV. The radiative efficiencies of short- and long- term NOx effects are hence modelled ac-
cording to bivariate distribution, for which the probability distribution is written out in terms of correlation
factor, ρ. The best estimate and probabilistic representation of radiative efficiencies are summarised
in Table 4.3.

Table 4.3: Radiative Efficiency Uncertain Parameter Values and Distributions

Species Radiative
Efficiencies
(Section 4.2.3)

Parameter Description Best Estimate Probability Representation

AO3S Radiative efficiency of O3S (Wm−2/Tg) 7.64 [37]
Lognormal Distribution:
LN(−0.43µ, 0.29µ) [37]

AO3L Radiative efficiency of O3L (Wm−2/Tg) -0.200 [37]
Lognormal Distribution:
LN(−0.09µ, 0.44µ) [37]

ACH4 Radiative efficiency of CH4 (Wm−2/Tg) -0.401[37]
Lognormal Distribution:
LN(−0.09µ, 0.44µ) [37]

ASWV Radiative efficiency of SWV (Wm−2/Tg) -0.0710 [37]
Lognormal Distribution:
LN(−0.09µ, 0.44µ) [37]

AH2O Radiative efficiency of H2O (Wm−2/Tg) 0.00520 [37]
Normal Distribution:
N(µ, 0.44µ) [37]

ASO4 Radiative efficiency of SO4 (Wm−2/Tg) -19.9 [37]
Lognormal Distribution:
LN(−0.56µ, 1.54µ) [37]

ACO Radiative efficiency of CO (Wm−2/Tg) 101 [37]
Lognormal Distribution:
LN(−0.27µ, 0.74µ) [37]

AAIC Radiative efficiency of AIC (Wm−2/km) 1.82 ·10−12 [37]
Normal Distribution:
N(−0.43µ, 0.43µ) [37]

NOx Radiative Efficiencies Best estimate and uncertainty is based on the reported values by Lee et
al. (2021) [37], which estimates the RF due to NOx-induced O3S, O3L, CH4 and SWV using results from
20 studies as assessed based on 18 different global atmospheric chemistry/climate models (GCMs).
A wide range of present-day aviation emission inventories are additionally utilized [37]. The variation
in results is indicative of the differences in the available GCMs/CCMs, and is therefore a measure of
the present modelling uncertainty. The spread of global RF from the array of different studies is utilized
to formulate the likelihood ranges for the radiative efficiencies. The correlation between the observed
short- and long- lived RF amongst the 20 studies is additionally used to estimate the correlation factor
ρ of 0.7.

Long-lived NOx Effects The radiative forcing for long-lived NOx species is modelled according to an
exponential decay function, as expressed in Equation 4.5. The radiative efficiency parameter hence
represents the radiative forcing per unit NOx emission at t0, being the first year emission. The ra-
diative efficiency values provided by Lee et al. (2021) [37] are in terms of mWm−2(Tg(N)yr−1)−1.
The provided values hence represent the time-integrated radiative forcing divided by the cumulative
NOx emission. The radiative efficiency parameter, to be expressed in terms of mWm−2(Tg(NOx))−1,
hence requires the time-integrated quantity provided by Lee et al. (2021) to be divided by the methane
perturbation lifetime, τCH4 , according to the relation given in Equation 4.12. τCH4 is assumed to be
equal to 12 years. Additionally, numbers presented by Lee et al. (2021) are normalized to Tg(N) rather
than 1 Tg(NOx). Assuming composition mainly of NO2, the reported values are reduced by a factor of
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(46/14), being the molar ratio of NO2 to that of N . An important scientific understanding change giv-
ing smaller likelihood range estimates for the radiative efficiency of long-lived O3 compared to previous
studies is the ability of present-day GCMs to directly model the long-term ozone depletion [37]. Another
important scientific understanding change is of the climate impact of stratospheric water vapour (SWV).
Namely, its depletion resulting from NOx induced reduction in methane abundance results in a cooling
effect. Estimates of RF of SWV were not provided in the previous report by Lee et al. in 2009 [36].∫ T

0

RF ref
i (t0)e

− t
τi dt ≈ RF ref

i (t0) · τi (4.12)

Water, Soot, Sulphate Radiative Efficiency The study by Lee et al. (2021) uses wide variety of
GCMs to obtain the RF best estimates; 10 estimates across 8 models were used to evaluate soot and
sulfate aerosol normalized RFs, while water vapor effects are assessed using results from nine studies.
The radiative efficiency is expressed in terms of integrated radiative forcing over the perturbation lifetime
(RF ·yrs). This is assumed equal to the radiative efficiency as it is assumed that effects are only present
during the year of emission. The uncertainty is quantified from the variability in RF estimates from range
of studies. This degree of uncertainty is smaller compared to the previous estimates by IPCC (1999)
[53], due to the larger number of available studies and more detailed physics used in the GCMs [37].
Overall, the LOSU remains low due to limited amount of studies and large uncertainty in the emission
inventories accounted for in the uncertainty in RF response.

Contrail Radiative Efficiency Lee et al. (2021)[37] provides best estimates of contrail radiative ef-
ficiency, with the use of process-based simulation models. Due to the small number of independent
estimates of contrail RF, the uncertainty is estimated from the sensitivities of the underlying processes,
parameters and fields. The uncertainties associated with the processes were fitted to a single uncer-
tainty range using a Monte Carlo analysis with a normal distribution. The processes fall into two groups;
those connected with the upper tropospheric water budget and the contrail cirrus scheme (including
uncertainty in number of soot particles emitted, uncertainty in upper tropospheric ice-supersaturation
frequencies, ice nucleation within the plume) and those connected with the change in radiative transfer
due to the formation of contrail cirrus [37].

4.2.4. Forcing Factor
The forcing factor term, si, of NOx-induced short- and long-lived O3 and CH4 is derived from the esti-
mates of RF per unit emission as function of altitude, (

RFCH4
ENOx

(h)), from the study by Kohler et al. (2008)

[33]. The same study quantifies the uncertainty of
RFCH4
ENOx

(h) to be normally distributed with a 66% like-
lihood of being within 15 % of the published values [33]. As as the CH4, O3S and O3L radiative forcing
estimates are not available at altitudes below 16,500 ft,

RFCH4
ENOx

(h) is assumed constant between ground
level and at altitude of 16,500 ft.

For contrails, the forcing factor is derived from the estimates of RF per distance flown as function of
altitude, (RFAICL(ref)

(h)), from the study by Radel & Shine (2008) [56]. Radel & Shine estimate the uncertainty
in these estimates to be normally distributed with a 90% likelihood that the value is within 70% of the
reported values. The source of uncertainty highlighted by Radel includes the annual variability of upper
tropospheric humidity, assumed ice crystal radiative parameters and the neglect of three-dimensional
radiative transfer in used GCMs. These uncertainties are also included in the RF efficiency uncertainty
quantification, covered in Section 4.2.3. Further sources of uncertainty include the neglect of the impact
of variation in engine parameters, and the empirical choice of the relative humidity threshold at which
persistent contrails form. The RF per distance flown estimates are uncertain with a 90% likelihood that
the value is within 70% of published values, according to Radel and Shine (2008) [56].

Value of forcing factor at a given altitude is likely to be correlated with that at nearby altitudes. To
account for this correlation, the approach used in study by Schwarz & Dallara (2011) [65] is utilized. Un-
certainties in RF per emission (or per distance flown in the case of contrails) are assumed independent
at 2.5 km intervals in altitude. Specifically, uncertainties are independent at 17,500ft, 25,500ft, 33,500ft,
and 41,500ft, and a linear variation between the altitudes is assumed for the uncertainty between these
levels. Table 4.4 summarises the defined uncertain parameters and their probability descriptions.
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Table 4.4: Radiative Efficiency Uncertain Parameter Values and Distributions

Forcing Factors
(Section 4.2.4) Parameter Description Best Estimate Probability Representation

CH4 altitude forcing 1
CH4 radiative efficiency at
h=17500 ft (mW/m2/Tg(N)/a) Table 1 in Kohler et al. (2008) [33]

Normal Distribution:
N(µ, 0.16µ) [33]

CH4 altitude forcing 2
CH4 radiative efficiency at
h=25500 ft (mW/m2/Tg(N)/a) Table 1 in Kohler et al. (2008) [33]

Normal Distribution:
N(µ, 0.16µ) [33]

CH4 altitude forcing 3
CH4 radiative efficiency at
h=33500 ft (mW/m2/Tg(N)/a) Table 1 in Kohler et al. (2008) [33]

Normal Distribution:
N(µ, 0.16µ) [33]

CH4 altitude forcing 4
CH4 radiative efficiency at
h=41500 ft (mW/m2/Tg(N)/a) Table 1 in Kohler et al. (2008) [33]

Normal Distribution:
N(µ, 0.16µ) [33]

O3S altitude forcing 1
O3S radiative efficiency at
h=17500 ft (mW/m2/Tg(N)/a) Table 1 in Kohler et al. (2008) [33]

Normal Distribution:
N(µ, 0.16µ) [33]

O3S altitude forcing 2
O3S radiative efficiency at
h=25500 ft (mW/m2/Tg(N)/a) Table 1 in Kohler et al. (2008) [33]

Normal Distribution:
N(µ, 0.16µ) [33]

O3S altitude forcing 3
O3S radiative efficiency at
h=33500 ft (mW/m2/Tg(N)/a) Table 1 in Kohler et al. (2008) [33]

Normal Distribution:
N(µ, 0.16µ) [33]

O3S altitude forcing 4
O3S radiative efficiency at
h=41500 ft (mW/m2/Tg(N)/a) Table 1 in Kohler et al. (2008) [33]

Normal Distribution:
N(µ, 0.16µ) [33]

AIC altitude forcing 1 AIC radiative efficiency at
h=17500 ft (mW/m2/Tg(N)/a) Table 1 in Radel & Shine (2008) [56]

Normal Distribution:
N(µ, 0.43µ) [56]

AIC altitude forcing 2 AIC radiative efficiency at
h=25500 ft (mW/m2/Tg(N)/a) Table 1 in Radel & Shine (2008) [56]

Normal Distribution:
N(µ, 0.43µ) [56]

AIC altitude forcing 3 AIC radiative efficiency at
h=33500 ft (mW/m2/Tg(N)/a) Table 1 in Radel & Shine (2008) [56]

Normal Distribution:
N(µ, 0.43µ) [56]

AIC altitude forcing 4 AICe radiative efficiency at
h=41500 ft (mW/m2/Tg(N)/a) Table 1 in Radel & Shine (2008) [56]

Normal Distribution:
N(µ, 0.43µ) [56]

4.2.5. Species Lifetime
The long-lived non-CO2 emission species relevant to the analysis of climate impact of aviation are the
long-lived NOx effects. The atmospheric concentration decay is modelled according to an exponential
function parameterized using an e-folding time. This parameter is characterised as the methane per-
turbation lifetime, for which the 2007 IPCC report gives an uncertainty estimate of 90% likelihood of
being within 15 % of the reported best estimate of 12 years [68]. The probability distribution is assumed
normal.

Table 4.5: Species Lifetime Uncertain Parameter Values and Distributions

Species Lifetimes
(Section 4.2.5) Parameter Description Best Estimate Probability Representation

τCH4 Methane perturbation lifetime (yrs) 12 [68]
Normal Distribution:
N(µ, 0.09µ) [68]

4.2.6. Temperature Response Model Parameters
The relation between the radiative forcing and temperature response is modelled using the species
efficacy parameter, fi, being the ratio of climate sensitivity of the species to that of carbon dioxide. The
climate sensitivity is uncertain and its estimates differ considerably among different atmospheric models
[43]. This introduces uncertainty into the species efficacy parameter. Uncertainties are represented as
normal distributions, except for fsoot, which is represented using a log-normal distribution. The second
identified uncertain parameter in the temperature change response model is the RF due doubling of
CO2 atmospheric concentration since pre-industrial times (year 1750), RF2xCO2 . The 2007 IPCC report
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gives an uncertainty estimate of 90% likelihood of being within 10 % of the reported best estimate [68].
Again, the distribution is assumed normal. Table 4.6 gives an overview of the temperature response
model parameters and uncertainty ranges provided by literature.

Table 4.6: Temperature Response Uncertain Parameter Values and Distributions

Temperature Change Model
(Section 4.2.6) Parameter Description Best Estimate Probability Representation

fO3S Short lived ozone species efficacy 1.37 [55]
Normal Distribution:
N(µ, 0.32µ) [18]

textfO3L Long lived ozone species efficacy 1.18 [37]
Normal Distribution:
N(µ, 0.32µ) [18]

textfCH4 Methane species efficacy 1.18 [55]
Normal Distribution:
N(µ, 0.10µ) [18]’

textfSWV Stratospheric water vapour species efficacy 1.18 [37]
Normal Distribution:
N(µ, 0.32µ) [18]

textfH2O Water vapour species efficacy 1.14 [55]
Normal Distribution:
N(µ, 0.32µ) [18]

textfSO4 Sulphate aerosol species efficacy 0.9 [68]
Normal Distribution:
N(µ, 0.33µ) [68]

textfCO Soot aerosol species efficacy 0.7 [68]
Lognormal Distribution:
N(−0.43µ, 0.93µ) [68]

textfAIC Aicraft-induced cloudiness species efficacy 0.59 [37]
Normal Distribution:
N(µ, 0.10µ) [18]

RF2xCO2

Radiative forcing due to doubling of
atmospheric CO2 concentration
compared to pre-industrial times (W/m2)

3.7 [68]
Normal Distribution:
N(µ, 0.06µ) [68]

4.2.7. Scenario Uncertainty
Scenario uncertainty is characterised in the form of sensitivity to assumptions about future-related pa-
rameters used in the climate model. The identified source of scenario uncertainty is the global back-
ground CO2 concentration χCO2, 0, which accompanies the forward looking CO2 RF response mod-
elling. As is shown in Equation 4.4, the RF response for CO2 is dependant on the background CO2
levels, in ppm. In the study by Proesmans & Vos (2021), this value is set equal to 380ppm [52] and
assumed constant. However according to different anthropogenic emission forecasts, this background
CO2 value between the year 2030 and 2100 is predicted with high confidence to increase [48]. This
affects the CO2 RF response as a larger background concentration would imply a smaller fractional in-
crease in CO2 due to a given emission perturbation. Fuglestvedt et al. (2003) [17] quantifies this effect:
for a CO2 concentration increase of 1ppb at 365 ppm background concentration, the forcing is 0.015
Wm−2/ppm, while for a background concentration of 450 ppmv this is reduced to 0.013 Wm−2/ppm.

This scenario uncertainty is investigated by implementing different realistic future global anthro-
pogenic CO2 emission scenarios, and quantifying the sensitivity to the variation in resultant ATR. The
four CO2 emission projections for the 21st century, i.e. Representative Concentration Pathways (RCPs),
outlined by Meinhausen et al. (2011) [48], are used as representations of realistic future scenarios.
These represent the emission projections by four different Integrated Assessment Models (IAMs) for
2005–2100. The projections include the ’RCP2.6’ [74], the ’RCP4.5’ [9], the ’RCP6.0’ [45], and lastly
the ’RCP8.5’, also known as the ’business-as-usual’ scenario [57]. Each RCP is detailed below:

• RCP2.6 Assessment by Van Vuuren et al. (2011) [74] explores the ’low end’ global emission
scenario, exploring the possibility to keep global mean temperature increase below 2 degrees
relative to pre-industrial times. Deemed to be technically feasible assuming participation of all
countries, and requires the cumulative emissions of greenhouse gases from 2010 to 2100 to
be reduced by 70% compared to a baseline scenario that assumes current historical trends to
continue throughout the 21st century. It assumes a concentration of 450ppm in the year 2050,
and a decline to 405ppm by the year 2100.
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• RCP4.5 Assessment by Thompson et al. (2011) [9] explores the scenario that the global RF
stabilizes at 4.5 W/m−2 in the year 2100. This scenario would demand significant changes
in the energy system, such as switch to electricity greener emissions energy technologies and
the deployment of carbon capture and geologic storage technology. The harmonized RCP4.5
CO2 concentration in 2100 is 526 ppm. The stabilisation of CO2 concentration is assumed to be
reached in the year 2080.

• RCP6 Assessment by Masui et al. (2011) [45], explores the scenario that global RF reaches 6
W/m−2 in the year 2100. The greenhouse gas emission mitigation measures are less rigorous
compared to the RCP2.6 and RCP4.5 scenarios. A stabilisation in RF and CO2 concentration is
assumed by the year 2100 to be at 660 ppm.

• RCP8.5 Assessment by Riahi et al. (2011) [57] surveys the ’high emission scenario’, where the
RF reaches 8.5W/m−2 by the year 2100. This model draws assumptions about large population
growth and slow income growth, together with modest rate of technological advancement. An
exponential growth in CO2 concentrations sees a level of 560ppm in the year 250 and 950ppm
in the year 2100.

The CO2 global atmospheric concentration change projected by different RCPs are plotted in Fig-
ure 4.2. As the time window of interest for this study is between the year 2020 and 2120, trends are
further linearly extrapolated between the year 2100 and 2120.
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Figure 4.2: Atmospheric CO2 Representative Concentration Pathways (RCPs) 2.6, 4.6, 6 & 8



5
Methodology for Uncertainty

Investigation
The uncertainty investigation comprises of the uncertainty analysis (UA), the robustness-based design
optimization (RBDO), and the sensitivity analysis (SA). This corresponds to the steps C to E in the
general workflow for uncertainty investigation given in Chapter 3. In the UA, the statistics about the
output ATR reduction potential (ATRRP) are inferred for the climate optimized aircraft design. In the
RBDO, a robust solution is aimed form, having both minimal ATR and minimal variability in the ATRRP.
Finally, the sensitivity analysis is to be performed on both the climate-optimized and the robust design
solutions, to quantify the contribution of the individual sources of uncertainty towards the variability in
climate impact reduction potential. This chapter serves to provide a detailed overview of the methods
used within the each step of the outlined uncertainty investigation.

5.1. Uncertainty Analysis
In the uncertainty analysis, it is aimed to quantify the uncertainty in the ATRRP of the ATR-optimized
aircraft design with respect to the minimal DOC-optimized aircraft design. A set of requirements are
to be met in order to conduct the UA. Firstly, converged ATR-optimized and cost-optimized aircraft
designs are necessary. This is obtained by conducting the single-objective optimization for minimal
ATR- and DOC- using the updated set of climate impact model parameter best estimate values outlined
in Section 4.2. The multidisciplinary optimization framework used in the study by Proesmans & Vos
(2021) [52], as explained in Section 3.2, is directly applied for this task. The design vector of the
ATR- and DOC- optimized aircrafts are given in Section 7.2. Furthermore, an uncertainty propagation
method is required. The Monte Carlo Simulation (MCS) method is chosen, which further explained in
Section 5.1.1. The implementation of the MCS is the further elaborated on in Section 5.1.2.

5.1.1. MCS Methodology Overview
Standard MC relies on random sampling according to the probability distributions of the random vari-
able. This process requires sufficient information about the probability distribution of of the inputs to be
known. The uncertainty characterisation of the climate impact model in Section 4.2 shows the neces-
sary information is indeed available. Random samples are ’independent’, meaning the generation of a
sample is not correlated with the generation of any of the other samples [23]. Each set of random input
samples independently and randomly generates an output through running the deterministic computa-
tional model. After repeating the process multiple times, the output data is combined to estimate the
variability of the stochastic system outputs. After generating n number of output samples, the expected
value of the output, s = E[Y], is estimated by taking the average of output values:

ŝn =
1

n

n∑
i=1

yi (5.1)

The MC estimator is considered an unbiased estimator as according to the strong law of large
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numbers, the average converges almost certainly to the true expected value s. The variance of the MC
estimator of ŝn is expressed as:

V[ŝn] = E[(s− ŝn)
2] =

σ2

n
(5.2)

Hence, the Root Mean Squared Error (RMSE) for ŝn is σ/n2. The convergence rate of the estimator
is in the order of n− 1

2 . The variance of the output, defined as V[Y ] = σ2 can be estimated directly from
the sample values, yi, as follows:

ζ2 =
1

n− 1

n∑
i=1

(yi − ŝn)
2 (5.3)

The estimator given above is unbiased as E[ζ2] = σ2 for n > 2 [82].
The described methodology for standard MC shows its effectiveness and accuracy in evaluating

statistical moments of the output, and is very easy to implement. The most important advantage of
standard MC is that the convergence rate is not dependant on the dimensionality of the problem. When
a non-intrusive approach to MCS is used, only evaluations of the original deterministic model are per-
formed, allowing the simulation model to be treated as a black box. This is advantageous, for one
must not modify the original model, and hence is more straightforwards and easy to implement. A
disadvantage of MCS, in particular for non-intrusive approaches, is the large computational effort due
to the required large number of samples for convergence of the error. This can make standard MC in-
feasible for high-fidelity simulations [82]. However, the linear climate model used in this study employs
linearised relations between input and output space and does not have significant computational cost.
Therefore the large computational effort is not a limiting factor. Alternatively, intrusive MCS approaches
can be utilized, which typically rely on the usage of surrogate models. Surrogate models reduce com-
putation burden of having to repeatedly evaluate the deterministic model. Surrogate model prediction
with high-dimensional input space however is prone to accumulation of modelling prediction error [25].
In addition this would eliminate the advantage of ease of implementation of non-intrusive MCS.

Quasi Monte Carlo Quasi-random Monte Carlo (QMC) offers a sampling methodology for the MCS
to overcome the limitation of slow convergence rate of the standard MC approach. Quasi-random sam-
pling is performed using quasi-random sequences, which aim to uniformly cover the unit interval, [0, 1].
The sequences are designed to sample each region of the sample space with the same likelihood [23].
The ’discrepancy’ of the sequence is a measure of the deviation from this uniformity. The usage of
quasi-random sequences implies that unlike random samples, quasi-random samples are not indepen-
dent from each other. The MC estimator, ŝn, is computed in the same manner as in a standard MCS,
as expressed in Equation 5.1. For QMC however, the RMSE of the estimator, ŝn, is now in the order of
log(n)d/n, with d being the size of the input sample space [50]. For small dimensionality of the problem,
this is more favorable than standard MC. Therefore the low discrepancy of quasi-random sequence can
potentially improve the convergence speed of the propagated output uncertainty.

5.1.2. Monte Carlo Simulation Implementation
The uncertain parameters included in the UA are the CO2 impulse response function coefficients and
time scales (αCO2 , τCO2), the radiative efficiencies Ai of all species, the forcing factors si for short- and
long- lived NOx effects, the CH4 lifetime, τCH4 , the efficacy parameter for all species, fi, and the ’RF
due to doubling of CO2 concentrations since pre-industrial times’ parameter, RF2xCO2 . The emission
indices are not treated as uncertain parameters/variables as the uncertainty in radiative efficiency al-
ready incorporates uncertainty in the quantification of emissions. The uncertain input parameters are
treated as quasi-random variables according to the assigned probability distribution as described in
Section 4.2, using the Sobol sequence. Quasi-random variables have the property of not being statisti-
cally independent, the way random variable are. Each region of the input sample space has the same
likelihood of being sampled, thereby favoring convergence of the MCS [23]. This is further verified in
Section 6.1. The Sobol sequence is chosen over other quasi-random sequences as it produces least
error and is most stable for high-dimensional problems [50]. This applies to this case study as a total
of 32 uncertain parameters are identified.



5.2. Robustness-Based Optimization 33

A sample matrix is generated by sampling from the Sobol sequence for each of uncertain parameter.
Sobol sequences are sequences in base 2, hence a sample size of base 2 is required to maintain ac-
curacy [51]. A sample size of 214 (=16384) was used for the uncertainty analysis. The Sobol sequence
generates uniformly distributed points on the unit hyper cube, [0, 1]k. The first point of the sequence is
always at the point (0, 0). Transformation to Gaussian distribution makes the point infinite, which leads
to large error. Although a common option is to skip this point, the applied method is to scramble the
points and maintain the full set. Scrambling randomly distributes the Sobol sequence on the unit hyper
cube, while still maintaining the space-filling property, and hence accuracy, of the original sequence.
This circumvents the drawback of inferior rate of convergence brought about when transforming to
Gaussian distribution [51]. The uniformly distributed samples are transformed to the uncertain param-
eter’s distribution using the inverse cumulative density function (CDF). This applies to all parameters,
except when the distribution is bivariate, which is the case for the short- and long- term radiative ef-
ficiencies of NOx. The Sobol sequence is not able to account for correlated uncertainties, hence the
parameters are separately sampled using standard random sampling. For n number of samples of the
k uncertain parameters, the sample matrix is generated as follows:

X =


x1,1 x2,1 · · · xk,1

x1,2 x2,2 · · · xk,2

...
...

. . .
...

x1,n x2,n · · · xk,n

 (5.4)

After the samples are generated, n MC evaluations are performed. Each row of the sample matrix
is inputted into the function evaluating the ATRRP, referred to as f(x). This function computes the
ATR of the climate-optimized aircraft, ATRATR, and cost optimized aircraft, ATRDOC , by executing
the climate impact model on the design vector of each aircraft design respectively. ATRRP is then
equal to ATRDOC − ATRATR. The same set of input parameter samples is used for evaluating ATR
of both optimized aircrafts, hence uncertainties are not double counted. n output ATRRP samples are
obtained, from which variability and statistical moments are computed:

ATRRP1

ATRRP2

...
ATRRPn

 =


f(x1,1, x2,1, · · · , xk,1)
f(x1,2, x2,2, · · · , xk,2)

...
f(x1,n, x2,n, · · · , xk,n)

 (5.5)

5.2. Robustness-Based Optimization
A robust design solution is one whose performance has minimal variability about the mean due to the
uncertainties in the climate impact modelling system. The main elements of RBDO as identified by
Zaman et al. (2011) are as follows [81]:

1. Objective Robustness: Relates to maintaining robustness in the objective function.
2. Estimating variance of the objective function: This relates to the estimation of uncertainty, via

uncertainty propagation methods.
3. Multi-objective Optimization: Robustness-based optimization considers two objectives: opti-

mizing the mean of the objective function and minimizing its variability.

The first element, objective robustness, requires a metric for quantifying the robustness in objective
function. The standard deviation σ of the ATRRP is utilized. Directly related to the first element, is
the estimation of variance of the objective function. Hence, at every design point evaluated by the
optimizer, uncertainty propagation needs to be performed to quantify the ATRRPσ. This is carried
out utilizing the methodology employed in the UA (outlined in Section 5.1. A MCS using Sobol quasi-
random sampling of all uncertain input parameters as summarized in Section 4.2 is performed. The
MC sample size is set at 2048. Verification of convergence of the ATRRP σ estimate was carried out
in Section 6.4, to ensure the MC sample size is sufficient to ensure MCS estimation error is below
0.5%. To avoid the burdensome computational cost associated with quantifying uncertainty at various
iterations of the optimizer, numerous existing RBDO studies implement surrogate model instead of the
full deterministic model, to propagate uncertainty [24, 26, 31, 66]. Again however, the climate model
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employed in this study makes use of first order approximation of more comprehensive models global
climate models, and has limited computational cost. Therefore, usage of surrogate modelling for the
RBDO is not implemented.

The third element of RBDO is multi-objective optimization. This applies given both minimal ATR,
the deterministic objective, and minimal ATRRP σ, the robustness objective, is searched. The two ob-
jectives are conflicting, signifying that no optimal solution has absolute superiority over the other [34].
This requires the employment of Pareto optimization methods. Two types of Pareto Optimization meth-
ods exist. The first are classical methods, that convert the problem to a series of single-optimization
problems by operating on one candidate solution at a time. The second are population-based methods,
which operate on a set of candidate solutions at the same time [34]. Population-based methods are
particularly advantageous when seeking for a dense set of solutions, in order to give designers a full
picture of the trade-off.

Genetic algorithms (GA) are heuristic methods, which operate on a set of candidate solutions si-
multaneously (population-based method). These exhibit significant advantage over classical methods
which operate on a single solution at a time, as they concurrently search different regions of the design
space. Obtaining a large and diverse set of optimal solutions therefore becomes more computationally
efficient. Secondly, their applicability extends also to non-convex or discontinuous solution spaces, for
which classical methods do not always promise convergence [2]. Thirdly, being a heuristic method, GAs
do not require the computation of gradient of objective function or constraints the way gradient-based
optimization methods would. This is troublesome for the robustness objective, as σ is estimated using
a MCS, and thereby is itself a random variable with a degree of variability. To ensure convergence of a
gradient-based algorithm would hence require a very large MCS sample size requirement, making the
cost prohibitive if a large set of solutions is desired. The use of GAs is therefore the most widespread
method to robustness-based Pareto optimization problems, especially in the field of uncertainty-based
design optimization. This is verified through the literature covering Pareto optimization in the field of
UMDO [28, 30, 31, 66]. The literature additionally verifies in specific the extensive applicability of the
NSGA-II algorithm, which is designed for high efficiency and a well distributed set of solutions, in par-
ticular for low-dimensional optimisation problems [80].

Section 5.2.1 serves to further explain the workings of genetic algorithms and in specific for the
Non-Dominated Sorting Genetic Algorithm II (NSGA-II), whilst Section 5.2.2 elaborates more on the
implementation of the NSGA-II for the current study.

5.2.1. Genetic Algorithm Methodology
GA apply the mechanisms that evolutionist theory uses to explain the emergence of species. Weak,
’unfit’ species go extinct, whilst strong, ’fit’ species are most likely to reproduce and pass their genes
to the next generation. Random changes can occur, which are preserved in case the change gives
additional fitness to the population [34]. In terminology used within GAs, a solution vector is referred
to as a population and each solution is an individual or chromosome. Each individual is composed of
genes, which determine features of the individual. The operators used to generate a new population
are crossover and mutation. In crossover, two parent chromosomes are selected to have their genes
combined to generate new offspring chromosomes. Parent chromosomes are chosen with proclivity
towards fitness. Mutation on the other hand puts forth random variations to the chromosomes. Mutation
operator introduces diversity into the population and allows for unexplored regions of the design space
to be evaluated. This avoids having the algorithm being stuck in local optima [34].

The Figure 5.1 from the depicts the three main steps taken, from left to right, within the inner loop of
the NSGA-II algorithm. The creating of offspring using the crossover and mutation operators is the first
step. In the second step, each individual of the combined offspring and parent populations is ranked
using a non-dominated sorting approach. This involves identifying the first front as the individuals not
dominated by any other individuals. The second front is then identified by repeating the process after
subtracting individuals from first front. As there will be a situation where a front needs to be split because
not all individuals are allowed to survive, the crowding distance sorting is used. Hence the last front is
split according to the crowding distance of the points, being a measure of how close each point is to
other individuals in the objective function space. Individuals with larger crowding distance are selected
for the next generation. This ensures that the points are uniformly distributed and diverse [76].
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Figure 5.1: The procedure of non-dominated sorting algorithm (NSGA-II). Source [12]

The parameters of NSGA-II are described in Table 5.1:

Table 5.1: Main parameters of NSGA-II algorithm and respective descriptions

Parameter Description
Population Size Size of population.

Number of generations
Number of generations over which NSGA2 will evolve.
Larger number ensures better convergence. Convergence rate declines
significantly with increasing generation number [75]

Crossover probability Controls the chance of each chromosome undergoing
crossover process [75]

Mutation probability Controls the chance of each chromosome undergoing mutation process.
Contributed to prevent population being trapped in local optima [75]

Crossover Distribution index
(DIc)

Determines probability distribution of the value of genes of offspring
around their parents’ during crossover operation.
Large value of DIc keeps offspring similar to parents [22]

Mutation Distribution index
(DIm)

Determines probability distribution of the value of genes of offspring
around their parents’ during mutation operation
Large value of DIm keeps children similar to the parents [22]

5.2.2. NSGA-II Implementation
Table 5.2 presents the specifications of the implemented NSGA-II. As population size is the most im-
portant parameter in the hierarchy of impacts imposed by GA parameters, special attention was made
in order ensure that it is large enough to capture a sufficiently diverse set of genes at the start of the op-
timization, and such that the density of solutions of the Pareto front is sufficient to obtain convergence.
The generation size was likewise calibrated in order to allow for sufficient iterations of the algorithm to
be carried out for the computed Pareto optimal set of solutions to converge to the actual Pareto front.
This is further verified in Section 6.5. The pymoo multi-objective optimization library is utilized for the
Python implementation of the NSGA-II.

Table 5.2: Specification of NSGA-II

Population
Size:

No. of
Generations:

Crossover
Probability:

Mutation
Probability:

Crossover
DI:

Mutation
DI:

50 15 0.9 0.1 15 20
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5.2.3. Optimal Solution Selection
Methods for selection of optimal solution from the array of Pareto optimal solutions are reviewed by
Wang et al. (2017) [77]. Considering the method’s number of required user inputs, simplicity of method
and applicability, TOPSIS and GRA are found most suitable. TOPSIS looks at identifying the solu-
tion with smallest Euclidean distance from the ideal solution and largest Euclidean distance from the
negative-ideal solution. The ’ideal solution’ is defined as the combination of the best value of each
objective in the set of Pareto solutions. Instead, the ’negative-ideal’ is defined as the combination of
the worst value of each objective. Weighting parameters are included, representing the relative im-
portance of each objective function in the selection of the optimal solution. The GRA method, on the
other hand, computes the optimal solution with use of the Gray Relational Coefficient (GRC), being a
measure of the similarity between the objective values and the ideal solution. Being free from decision
maker inputs, this method has very straight forward implementation and hence is additionally utilized
[77].

5.3. Sensitivity Analysis
The sensitivity analysis is carried out in two distinct steps. Firstly, the global sensitivity analysis (GSA),
and secondly, the local sensitivity analysis (LSA). The GSA measures the contribution of uncertain
climate model parameters to the output variance. This includes the full range of uncertain input param-
eters as implemented in the UA (described in Section 5.1.2). The LSA is conducted in order to quantify
the sensitivity in ATRRP of the climate-optimized aircraft designs around the assumed projections of
future anthropocentric growth scenarios. Specifically, the sensitivity with respect to the global back-
ground atmospheric CO2 concentration, χCO2,0, around the currently assumed constant background
concentration scenario is investigated. The GSA and LSA in combination allow the identification of
most influential inputs on the uncertainty of the ATRRP for the climate-optimized aircraft designs.

For the GSA, a two-step approach is implemented. Firstly, a Morris analysis is conducted, where
parameters are varied one-at-a-time. This allows to qualitatively rank the parameters according their
influence towards output variability, at a low computational cost. For a selection of most influential
parameters identified from the Morris analysis, a Sobol sensitivity analysis is carried out. This gives
a quantitative measure of the importance of parameters, which includes parameter interaction effects
[83]. A brief overview of both Morris and Sobol methods are given in Section 5.3.1 and Section 5.3.2
respectively, after which the overall implementation of the SA methods is described in Section 5.3.3.

5.3.1. Morris Method
The Morris method is a qualitative analysis which has its advantage over the quantitative counter-
part due to its lower required number of model evaluations. Qualitative methods are based on the
disceretization of input space to identify which input parameters have largest impact on the output vari-
ability [8]. Each uncertain input parameter effect on output is defined as either negligible, linear and
additive, or nonlinear. It is an efficient and simple method for SA for interval analysis [58].

Morris method varies one parameter at a time while keeping the rest at a baseline value. Consid-
ering the best estimate values of the input uncertain parameters, xj as a baseline for the model f(·),
Morris method is performed by varying one of the inputs within the defined uncertainty interval while
the other input parameters are frozen. The k number of intervals are first split into p levels, giving p
discrete values within each interval and a grid of pk points. An r number of repetitions are measured
for each variable, with r requiring to be at least equal to p. Influence of variation in input on the output
is called the elementary effect, µ∗

j (i) and is computed for the jth input variable for the ith repetition as
follows:

ej(i) =
f(xj(i) + δj)−f(xj(i))

δj
(5.6)

, with δj being a step variation in the input variable. In the end, the standard deviation, σj and mean
µ∗
j is computed of the elementary effects of each variable. Large value of mean shows an important

influence on output, and a large standard deviation shows a large nonlinear effect and interaction with
other elements [72].

Ranking according to the elementary effect allows for most influential parameters to be identified.
This ranking shall only be regarded qualitatively, as it does not provide quantitative information of how
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much more one parameter is influential over another [47]. The Morris method does not accurately
quantify the total sensitivity when various distribution types of inputs are considered. Also, interactions
between inputs are not captured by the elementary effects [40]. r(k+1)MCS evaluations, with r being
the number of repetitions, are required. r is required to be at least as large as the number of levels, p,
in which the uncertainty interval is split into [8].

5.3.2. Sobol Method
Sensitivity analysis using Sobol Indices is a ’variance-based technique’, a quantitative approach op-
posed to the previously discussed Morris method. Variance based methods aim to understand how the
output variance is attributed to individual input variables and the interaction between them. First order
effect of a given input parameter X on output Y is formulated as follows:

V arX [E(Y | X)]

V ar(Y )
(5.7)

, where V arX [E(Y | X)] denotes the variance of Y due to fixed value of X, and V ar(Y ) denotes the
total output variance. The Sobol method looks to quantify the sensitivities via the Sobol Indices. ST,i

is a measure of the output variance in case all parameters except for xi are kept constant. S1,i instead
is the expected reduction in output variance in case xi is kept constant [47]. For example if there are
three input parameters (A, B, C), the total effect of parameter A is:

ST (A) = S1(A) + S2(AB) + S2(ABC) (5.8)

, where ST (A) denotes the total sensitivity index for parameter A, S1(A) denotes the first order
sensitivity index for parameter A, and S2(AB) denotes the second order sensitivity index for parameters
A and B, and so on. The second order indices would provide an indication of the level of interactions
between the two parameters. If no higher order interactions take place, the difference between ST and
S1 would be zero. The method requires to repeatedly carry out MCS. For first and total order sensitivity
index computation, the computational cost is n(k+ 2), with n being the MCS sample size, and k being
the number of input parameters.

Steps for Implementation of Sobol Method: The procedure of computing the Sobol indices as
implemented by Bilal (2014) [7] is provided here. The model output function, y = f(x), and an input
factor space Ωk is considered.

1. Select the total number of simulations to run.
2. Select the input parameters for the sensitivity analysis and assume a range for the input variables
3. Select a probability distribution for the parameters.
4. Run the Monte Carlo Simulation and calculate the mean, f0 and variance, D of the parameters

according to :

f0 =

∫
f(x)dx ≈ 1

N

N∑
k=1

f(xk)

D ≈ 1

N

N∑
k=1

f2(xk)− f2
0

, where N is the sample size of the MC simulation.
5. Compute the partial variance or first order effects for each parameter by fixing the values of that

parameter i and varying the rest of the parameters:

Di ≈ D − 1

2N

N∑
k=1

[f(xk)− f(xik − x
′

−ik)]
2 (5.9)

, where x−i = (x1, ..., xi−1, xi+1, ..., xm) is the combination complementary to xi.
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6. The total sensitivity effect for each parameter is finally found:

Dtot ≈
1

2N

N∑
k=1

[f(xk)− f(x
′

ik, x
′

−ik)]
2 (5.10)

7. Sort the parameters according to their sensitivities.

5.3.3. SA Implementation
For the GSA, the two-step approach is implemented. The Morris analysis is conducted for the full set
of uncertain input parameters (k = 32). An r number of repetitions are measured for each parameter
[8]. Influence of variation of input on the output is quantified using the elementary effect, µ∗. With
p (number of levels in which the uncertainty interval is split into) being set at 64, and r (number of
repetitions are measured for each parameter) being set at 100, a total of 3300 (r(k+1)) evaluations of
the climate impact model are required. In the second step of the GSA, the top 10 identified parameters
identified from the Morris analysis are used to run a Sobol sensitivity analysis. The two quantities of
interest estimated for each parameter are the total sensitivity index, ST,i, and the first order sensitivity
index, S1,i. Higher order interactions are not investigated in this study, due to the observed small
relative difference between the first and total order indices. The size of n is set at 210 (=1024), allowing
for sufficient convergence of the sensitivity indices, as verified in Section 6.3. The SALib sensitivity
analysis library is utilized for the Python implementation of the GSA methods. For the LSA, variability
in output ATRRP is measured by implementing the different RCPs, as outlined in Section 4.2.7, one-at-
a-time.
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Verification

6.1. Random Sample Generation
The choice of random sampling method was made between standard random sampling and quasi-
random sampling. Due to the large dimensionality of the UQ problem given the total of 32 inputs, the
advantage of using the quasi-random sampling requires verification. This is because the upper bound
of the Monte Carlo (MC) error is expected to increase in proportion with the dimension [67]. Verification
is performed by comparing the convergence of the MC error when using standard- and Sobol quasi-
random sampling with increasing sample size. The MC error is expressed as the absolute difference
between the MC estimate of the ATRRP , µ̂n and the expected ATRRP , µ, as given in Equation 6.1.
The expected value is computed using the deterministic climate impact model (i.e. without considering
uncertain input parameters as random variables). Both values are computed for the climate-optimized
aircraft design.

ϵ =| µ̂n − µ | (6.1)

The convergence of the two methods is compared by plotting the MC error against sample size. For
Sobol quasi-random sampling, the samples must be generated for a sample size of base 2, 2m. Hence,
the MC estimate is computed using discrete sets of input samples generated with increasing m. For
random sampling, the sample size may have any size. Hence, the MC estimate is computed on the
continuously increasing set of input samples. The comparison of convergence is shown in the log-log
plot Figure 6.1:

The slope of the best fit line in the log-log plot of sample size against MC error indicates the con-
vergence rate, p, being the order at which the MC error, approaches zero with increasing sample size.
When using random sampling, p is shown to be -0.59, while for quasi-random sampling, p is -0.95. This
numerical experiment firstly verifies that the constructed MCS UQ framework correctly and accurately
propagates the uncertainties. Secondly, it is verified that the Sobol quasi-random sampling method
allows for improved convergence of the MCS, and hence should be used for the UA, as well as in the
RBDO and when carrying out the variance-based GSA.

6.2. Input Parameter Distribution Choice
For the characterisation of scientific uncertainty, input parameters for the climate impact model are
identified as being uncertain. These parameters are represented using a probabilistic framework and
are assigned a probability distribution according to uncertainty characterisation in literature. The lack
of scientific knowledge implies that there is additional uncertainty introduced due to assumption about
uncertainty distribution itself. Therefore the sensitivity of climate impact model output with respect
assigned input uncertainty distribution is investigated.

The output statistics of the ATRRP of the climate optimized aircraf obtained for varying input dis-
tribution choices are given in Table 6.1. After evaluating the set of input parameter distributions of the
current uncertainty characterisation (as summarised in Section 4.2), a set of input parameters where
all distributions are triangular, and a set where all distributions are uniform is evaluated. For triangular
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Figure 6.1: Convergence of MC estimate of the climate-optimized aircraft design ATRRP µ using random and Sobol quasi-
random sampling

distribution, the upper and lower maximum values are set as the 5 and 95 percentile of the normal or
log-normal distributions. This is similarly done when setting the input distribution as uniform.

Table 6.1: Sensitivity of Statistics of ATRRP of climate optimized aircraft design with respect to input parameter distribution
choice

Statistic Baseline
Distribution

Triangular
Distribution

Uniform
Distribution

Mean, µ [%] 56.9 56.5 56.9
Median [%] 54.2 55.9 63.0
Skeweness, µ̃ 0.341 0.259 1.49
St. dev, σ [%] 26.9 16.7 52.9
90 % likelihood range [%] [17.3, 98.9] [30.0, 85.3] [17.2, 185]

The output variability is most sensitive to the choice in input distribution when uniform distributions
are implemented, given by the doubling of the standard deviation with respect to the baseline case.
Usage of a triangular distribution significantly reduces the standard deviation by 35 %. This is expected,
as the tail end of the distribution is cut off. Similar reduction is observed in the 90 % likelihood range,
for which the change occurs for the greater part due to an increase in the lower bound.

6.3. GSA Two-Step Approach
As explained in Section 5.3, the two-step approach is implemented in order to reduce the total required
computational effort when running the Sobol GSA. In order to verify whether screening parameters
causes a reduction in the variance of the ATRRP , the cumulative density function (CDF) obtained
from the MCS using the full parameter set and the top 10 most influential parameters according to the
Morris method is compared. The CDF of the ATRRP of the climate optimized aircraft design obtained
from a MCS using an n of 212, sampled using Sobol quasi-random sequence is shown in Figure 6.2.
It is observed that the CDFs match nearly identically, hence the substantial part of the uncertainty is
accounted for by the set of screen parameters using the Morris method.
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Figure 6.2: Comparison of Cumulative Density Function of ATR Reduction Potential of Climate Optimized Aircraft Design using
Full and Screened Parameters Sets

The number of MC evaluations required when using the Morris method is controlled with the number
of repetitions, r, which is set at 100. The greater this parameter, the higher the degree of convergence
of the elementary effects, µ∗. The degree of convergence of the sensitivity indices, S1 and ST using
the Sobol method is similarly dependent on the defined MCS sample size, n, which is set at 4096. In
order to verify whether the size of r and n provide sufficient convergence for the Morris and Sobol
analysis respectively, the 90 % confidence interval of the outputs provided by the SA software, SALib,
are analyzed. It is verified that confidence intervals for µ∗ and ST are all within 10 % of the estimated
value. This level of convergence is deemed sufficient in order to confidently draw conclusions from
GSA results.

6.4. RBDO Sample Size Determination

For every solution evaluated by the GA, the robustness objective is evaluated, namely the ATRRP σ.
This requires a MCS, for which Sobol quasi-random samples are used to render improved convergence.
In order to not cause prohibitive computational cost, the sample size is adjusted such that the ATRRP
σ is estimated to a sufficient degree of accuracy. The convergence of the standard deviation estimate
of the MC simulation using Sobol quasi-random sampling for increasing sample size is plotted in Fig-
ure 6.3, showing that the deviation of the σ estimate falls below 0.5 % of the final value at a sample
size of 212. This is deemed a sufficient level of accuracy, and hence is used for the MC uncertainty
quantification within the GA.
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Figure 6.3: Convergence of Monte Carlo Standard Deviation Estimate of TR Reduction Potential of Climate Optimized Aircraft
Design

6.5. NSGA-II Convergence
The hyper-volume metric is a measure of the area of the objective space dominated by the approxi-
mation Pareto set of solutions with respect to a reference point [85]. The reference point is defined as
the set of worst objectives value possible of both ATR and ATRRP σ, corresponding to the ATR of
the DOC-optimized aircraft and the ATRRP σ of the ATR-optimized aircraft. Figure 6.4 gives the plot
of the hyper-volume for increasing function evaluations. It is observed that by the final function evalu-
ation, corresponding to the generation size of 15, the hyper-volume has reached an asymptotic value.
The change in hypervolume is below 5e-4 over the last 7 generations. This verifies that a satisfactory
degree of convergence is attained, indicating that further iterations of the GA will not lead to significant
improvement in the approximated Pareto set.

Figure 6.4: Hypervolume Convergence of Robustness-Based Climate Optimization using NSGA-II Algorithm
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Results

This chapter presents the results of the investigation of uncertainties. Firstly the deterministic optimi-
sation results of the climate-optimised and cost-optimised aircrafts are introduced in Section 7.1. In
Section 7.2, the quantification of impact of climate model uncertainties on the average temperature
response potential (ATRRP) of the climate-optimised aircraft design is quantified. Subsequently, Sec-
tion 7.2 presents the robustness-based optimization results, where different robust climate-optimized
conceptual aircraft designs are identified. Global and local sensitivity analysis results are thereafter
presented in Section 7.4.

7.1. Deterministic Optimisation Results
The optimisation results without the consideration of uncertainties are summarised in this section. The
deterministic optimization of the climate-optimized aircraft, as well as the cost-optimised aircraft are
presented here. The cost-optimized aircraft is very relevant fore the remained of the uncertainty inves-
tigation in this study given it is used as bases of comparison when of the climate impact performance
for a given aircraft design.

The top level requirements of the deterministic optimization are defined for the maximum structural
payload, the harmonic range, the approach speed and the take-off length, as specified in Table 7.1. The
values utilized in the climate optimization study by Proesmans & Vos [52] are adapted. These require-
ment values are similar to existing single-aisle, medium range aircraft such as Boeing 737 or Airbus
A320. The maximal structural payload of 18.2 metric tons is approximated given a 180 passenger
high-density cabin configuration in economy seats.

Table 7.1: Top Level Requirement of Deterministic Optimization

Requirement [unit] Value
Maximum structural payload [kg] 18200
Harmonic range [km] 3200
Approach speed [m/s] 70.0
Take-off length (ISA conditions) [m] 2100

A commencement of fleet operation in the year 2020 is assumed, with a maximal productivity level
of 3.95 ·1012 RPK per year reached by 2050. This maximal level of productivity is assumed constant
between the year 2050 to 2055. By the year 2085, a termination of fleet operation is assumed. Climate
impact due to the operation of the fleet are however further evaluated until the year 2120. The mission
profile is characterised having a harmonic range of 3200 km (making it a medium-range aircraft), with
an additional 460 km loiter phase and a 35 minute turnaround time.

The deterministic optimisation results and have close resemblance with those obtained in the study
by Proesmans & Vos [52]. The same optimisation framework, top level requirements and productivity
levels are utilized, hence this is anticipated. To give an overview of the climate impact performance
of both aircraft, the contribution to the total ATR according to the different emission species, as well
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as the operating cost performance, are shown in Table 7.2. In addition, an overview The DOC- and
ATR- optimised aircraft designs resulting from the deterministic optimisation are briefly summarised, via
the respective design variable values given in Table 7.3. More comprehensive overview of the climate
optimization results can be consulted in the report by Proesmans & Vos [52].

Table 7.2: Components of the total ATR of the climate- and cost- optimized aircraft designs

ATR [mK] DOC
[USD/pax · nm]Total CO2 NOx H2O SO4 CO Contrails

ATR-
optimized 10.9 11.3 -0.398 0.129 -0.0621 0.0490 0.00 0.139

DOC-
optimized 25.4 11.1 0.684 0.127 -0.0611 0.0483 13.5 0.126

Table 7.3: Design variable values of the climate- and cost- optimized aircraft designs

Cruise altitude
[km]

Cruise
Mach BPR OPR TT4

[K]
WS
[kN/m2]

AR CL,max

ATR-
optimised 7.54 0.6 10.7 45.7 1479 6.06 11.6 2.8

DOC-
optimised 9.97 0.7 7.00 44.3 1530 5.65 11.2 2.7

The total ATR of the climate-optimized aircraft is reduced by 57% compared to the cost-optimized
aircraft. This reduction is primarily achieved via the reduction of the contrail contribution, which reduces
from 53 % of the total ATR to zero. The absolute ATRRP of contrails is hence 13.5 mK. NOx and CO2
have ATRRP of secondary magnitudes, with NOx having an absolute ATRRP of 1.08 mK and CO2
having a reduction potential of 0.2 mK. The impact of H2O, CO and SO4 on the ATRRP are shown
to be negligible. It is also shown that the total ATR and DOC are conflicting design objectives, with
the DOC reducing by 10.3 % for the cost-optimized aircraft. The reduction in total ATR was achieved
primarily by operating at decreased cruise Mach and altitude of 0.6 and 7.54 km respectively, and an
increased OPR of 45.7. More discussion with regards to design variable change, its impacts on the
climate performance and also on the resultant uncertainty in ATRRP is provided in Section 7.2.1.

7.2. Uncertainty Analysis Results

Figure 7.1 shows the distribution of output ATRRP for the climate-optimized aircraft obtained from the
MCS using 214 Sobol samples. To normalize the output, the ATRRP is expressed as percentage of the
ATR of the DOC-optimized aircraft design. The absolute and normalized output distribution statistics
are presented in Table 7.4.
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Figure 7.1: Probability Density Plot of ATRRP of climate-optimized Aircraft Design

Table 7.4: Average temperature response reduction potential (ATRRP) mean, median, standard deviation and 90% likelihood
range

Mean, σ Median St. dev, σ 90 % likelihood range
Absolute [mK]: 14.2 13.8 6.38 [4.38, 25.2]
Normalized [%]: 55.5 54.2 25.0 [17.3, 98.9]

The individual components of the ATR are divided into the different emission species. The confi-
dence interval of the components of the normalized ATRRP for the climate-optimized aircraft design
are given in the violin plot in Table 7.5. The probability distribution of the individual components of
the ATRRP are graphically represented in the violin plot in Figure 7.2. The ATRRP shows to have
a 90 % confidence interval from 4.48 to 25 mK, corresponding to 17.3 to 98.9 % of the ATR of the
cost-optimized aircraft.

Table 7.5: Mean, standard deviation and 90 % likelihood range of the individual components of the ATRRP

ATRRP Mean,
µ [%]

ATRRP
St. Dev, σ [%]

ATRRP 90 %
Likelihood Range [%]

Total 55.6 25.0 [17.2, 98.9]
CO2 -1.49 0.109 [-1.67, -1.31]
NOx 2.90 2.35 [-0.342, 7.13]
H2O -0.0163 0.00866 [-0.0332, -0.00504]
Soot -0.00653 0.0111 [-0.0228, -4.74e-4]
SO4 0.00827 0.0200 [2.90e-4, 0.0311]
Contrails 52.0 28.9 [11.9, 95.2]
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Figure 7.2: Probability distribution of components of the ATRRP of climate-optimized Aircraft Design

The size of the ATTRP uncertainty of contrails are shown to be predominantly larger compared to
the rest of the emission species, with a 90% likelihood range spanning from 11.9% to 95 % of cost
optimized aircraft ATR as computed in the deterministic case. ATRRP of NOx and CO2 additionally
have significant uncertainties, although being an order of magnitude smaller than that of contrails. The
size of the uncertainty range seems to be mainly be driven by the absolute magnitude of the ATRRP
of the species. Contrail thereby has the largest ATRRP σ component.

The size of the ATRRP σ compared to the ATRRP µ is referred to as a coefficient of variation
(CV). It can be seen as an indicator of how uncertain the input parameters are for that species. This
seems to be a secondary driver to their overall ATRRP uncertainty. For example, although that soot
and sulphate have largest CVs of 1.67 and 2.5, their absolute ATRRP σ size is negligible. From the
components having significant contribution to ATRRP (namely contrails, NOx, and CO2), NOx appears
to have largest CV as its ATTRP σ is close to the value of its ATTRP µ. Contrails also have significant
CV (ATTRP σ being 55% of ATTRP µ), while CO2 has significantly the lowest CV (ATTRP σ 7% of
ATTRP µ).

7.2.1. Uncertainty Analysis of ATR-DOC Pareto Front

To understand how to uncertainty in ATRRP varies in the trade-off between climate impact and operating
costs, the MCS is performed on the different Pareto optimal aircraft designs. These Pareto optimal
solutions are obtained from the multi-objective optimization for minimal ATR and DOC. Figure 7.3 gives
the size of the 90 % confidence interval of the ATRRP for the various Pareto-optimal designs.
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Figure 7.3: Pareto Optimal set of solutions of ATR & DOC multi-objective optimization together with the respective 90 % Likeli-
hood Range of the ATRRP

It can be observed that a near direct correlation is present ATR and variability in ATRRP, given by
the size of the likelihood range. This is confirmed by plotting the ATR against the estimated ATRRP σ,
as shown in Figure 7.4.

Figure 7.4: Change in ATRRP standard deviation for varying ATR computed for the Pareto-optimal set of designs from the ATR
& DOC multi-objective optimization
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The different regions of Pareto front presented in Figure 7.4 can be identified from the changes in
the slope of the front. Namely, the first phase spans between ATR values of 10.9 and 12.2 mK, and
sees negligible improvement in ATRRP σ. The second phase is between ATR of 12.2 and 23.1 mK,
where now the ATTRP σ sees a reduction. The third and final phase is identifiable from the steepening
of the slope of the of the Pareto front. This phase spans between ATR values of 23.1 and 25.5 mK.
To additionally gain insight into the changes that occur throughout the Pareto front, the contribution
from different emission species towards the total ATR across the ATR-DOC Pareto front is plotted in
Figure 7.5.

Figure 7.5: Contribution to the total ATR according to the individual emission Species

The aircraft-induced contrail impact goes from having a zero contribution towards the total ATR in
the first phase of the Pareto front, between 10.9 mK to 12.2 mK, to having a positive contribution of
almost 50% of the total ATR. This increase increase in contrail ATR correlates with the decrease in
ATRRP σ. NOx goes from having a negative ATR of -0.4 mK to a positive ATR of 0.7 mK. This change
predominantly takes place in the first phase of the Pareto front, after which it increases at a slower rate.
CO2 contribution also sees an increase in the first phase from 11.4 to 11.7 mK. Throughout the second
and third phase it linearly decreases to a value of 11.2 mK.

To better understand what causes the uncertainty to vary, the change in design variable values are
plotted, for the ATR- and DOC- Pareto optimal set of solutions. Groups of design variables are subdi-
vided into the operational design variables, engine design variables, and airframe design variables.

Operational Design Variables
In the first phase, between 10.9 mK to 12.2 mK, the cruise height increases from 7.5 to 8.5 km, as
shown in Figure 7.7. The first implication is that the SFC of the engine increases, causing an increase
in fuel consumption from from 9.7 to 9.96 metric tons, and hence a growth in CO2 contribution from
11.2 to 11.7 mK. This increases the magnitude of the CO2 ATRRP, therefore increasing the contribution
towards total ATRRP σ. The second implication is that forcing factors of O3S grows from 0.8 to 1.05.
This makes the warming term of the NOx dominate, thereby increasing the NOx contribution to the total
ATR. This reduces the magnitude of the NOx ATRRP, thereby reducing the contribution to total ATRRP
σ. The negligible observed change in ATRRP σ in the first phase shows that the positive CO2 and
negative NOx contribution to the uncertainty balance each other out.

In the first phase, the ambient temperature below the cruise altitudes of 8.5 km, according to ISA
relations, is above 235 Kelvin. According to the contrail formation criteria, this is not sufficiently cold for
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persistent contrail formation to occur. This explains the contrail contribution to the ATR remaining zero.
Persistent contrail formation to take place as cruise altitude increases above 8.5 km, in the second and
third the phases of the Pareto front. As the ambient temperature continues to decrease, the probability
of ice supersaturation and hence of persistent contrail formations rises. The cruise altitude increase
also increases the contrail radiative forcing factor from 1 to 1.2, driving the growth in contrail ATR from
0 to approximately 60% of the total ATR.

In the third phase of the Pareto front, between ATR values of 23.1 and 25.5mK, a steepening of the
slope of the Pareto front is observed in Figure 7.4. This coincides with the cruise altitude surpassing
9.3 km. Past this altitude, the contrail forcing factor becomes correlated with the forcing factor defined
at level 3 (at hcr = 10.5km), in addition to that at level 2 (at hcr = 9.3km). As the DOC-optimized
aircraft has a cruise altitude of 10km, it is likewise strongly correlated with the forcing factor at level
3. This signifies that past cruise altitude of 9.3 km, ATR uncertainty becomes correlated to a higher
degree with that of the DOC-optimized aircraft, and the uncertainty in the ATRRP of the design solution
reduces at a faster rate with increasing ATR. A takeaway here is that the shape of the Pareto front is
very dependant on the formulation of uncertainties, specifically of that of the forcing factors. This is a
limitation of the overall uncertainty characterisation methodology.

The cruise Mach sees a steep increase in the first phase between 10.9 mK and 12.2 mK, from Mach
6.3 to Mach 7.0, as shown in Figure 7.7. The driver behind this change is the increase in flight altitude,
which increases the speed at which optimum L/D is achieved. Increasing the cruise Mach number
additionally causes increase in SFC due to loss in net thrust, adding to the observed growth in fuel
consumption mass and CO2 contribution. Throughout the rest of the Pareto front, Mach 7.0 remains
constant. Another direct consequence of flying faster is the decrease in block time, being the main
driver of the DOC. This impact can be read from the steep rise in DOC for ATR below 15 mK from the
ATR and DOC Pareto front presented in Figure 7.3.

Figure 7.6: Change in operational design variable values for the Pareto-optimal set of designs from the ATR & DOC multi-
objective optimization

Engine Design Variables
In the first phase, between 10.9 mK to 12.2 mK, the OPR and turbine inlet temperature TT4 see signif-
icant increases, as shown in Figure 7.7. The OPR increases from 37.8 to 44.1, and the TT4 increases
from 1450 to 1510 K. As a consequence, the pressure and temperature ahead of the combustor, p4
and T4 both increase. This drives the increase in NOx emission index and contributes to the observed
reduction in NOx ATRRP. Additionally, the increase in OPR serves to increase the thermal and hence
total efficiency of the turbofan (from 29.8 to 31.0 %). This compensates for the increase in SFC due to
larger cruise Mach and altitudes, and limits both the CO2 ATR its contribution to the ATRRP σ in this
initial phase.

Conversely, a reduction in BPR is observed in the first phase (between 10.9 mK to 12.2 mK), from
9.95 to 7.61, as shown in Figure 7.7. The BPR decrease drives the loss in propulsive efficiency (from
74.5 to 72.1 %), decreasing the slope of the hot exhaust air mixing line, and hence also the probability
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of contrail formation. However as the ambient conditions for contrail formation are not met in this phase,
hence the change in BPR has no impact on contrail ATR contribution, and hence the ATRRP σ also
remains relatively unchanged. In the second and third phase of the ATR- and DOC- Pareto front (from
12.2 mK and above), the engine parameters see little change.

Figure 7.7: Change in operational design variable values for the Pareto-optimal set of designs from the ATR & DOC multi-
objective optimization

Airframe Design Variables
The observed trends in the airframe design variables are displayed in Figure 7.8. A significant decrease
in wing loading from 6.09 to 5.74 kN/m2, in aspect ratio from 12 to 10, and in CL,max from 2.8 to 2.71,
are observed observed in the initial phase of the ATR- and DOC- Pareto front, between 10.9 and 12.2
mK. These changes are likely a consequence of the increase in cruise Mach number, as was observed
in Figure 7.6, hence requiring more sweep back. Higher sweep in turn reduces the allowed aspect ratio.
The larger sweep back angle additionally reduces reduction in the allowable maximum lift coefficient,
CL,max.

Figure 7.8: Change in operational design variable values for the Pareto-optimal set of designs from the ATR & DOC multi-
objective optimization

The question remains whether at a given ATR, the ATRRP σ can further be reduced. This justifies
the next stage of the uncertainty investigation, where a robustness based optimization is performed to
find the Pareto-optimal solutions for minimal ATR and ATRRP σ.
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7.3. Robustness-Based Optimization Results
The RBDO is carried out using the NSGA-II, to find the Pareto optimal front in the trade-off between ATR
and ATRRP. This serves to answer the question of what aircraft design modification can be made to
improve the robustness of the climate-optimized aircraft design. The optimizer parameters are specified
in Table 5.2. The population was initialized using the Pareto set of design solutions belonging to the ATR-
and DOC- multi-objective deterministic optimization, as given in Figure 7.3. The algorithm was allowed
to iterate over 15 generations, for a population size of 50. The Pareto front to which the population
converges to is compared to the initialized population in Figure 7.9. The blue line is indicative of the
initial population, and the orange line is indicative of the robust Pareto optimal set of solutions.

Figure 7.9: Pareto frontier set of robust climate-optimized solutions

From Figure 7.9, it is observed that the Pareto front belonging to the initialized set of solutions clearly
coincides with the Pareto front belonging to the robust-optimized design points. Hence, it is evident
that the GA was not capable of finding design solutions that provide improvement from a robustness
perspective compared to the ATR- and DOC- Pareto optimal design solutions. The advancement in
the Pareto front takes place at the extremes of the front. The first extreme of the robust Pareto front
corresponds to the climate-optimal solution, while the second corresponds to the minimal ATRRP σ
solution, which is identical to the minimal DOC- solution. This is to be expected, as the solution prov-
ing least uncertainty in climate impact reduction potential with respect to the cost-optimal aircraft is
the cost-optimized aircraft itself. The change in aircraft design between the initialized and robustness-
optimized sets are presented, with respect to operational, engine, and airframe design variables, in
7.10a, 7.10b, and in 7.10c, respectively. Due to negligible change in objective value change through-
out the robustness-based optimization, the change in design variable values is likewise very small. The
full set of objective function and design variable values for the robust-optimal Pareto set are provided
in Table C.

The manner in which robustness improvement was expected to be attained was through trading off
ATR of species having small ATRRP uncertainty, such as CO 2, with components presenting larger
uncertainty in ATRRP, such as contrails and NOx. The larger uncertainty in temperature response of
NOx and contrails is verified in their respective ATRRP 90% likelihood ranges presented in Table 7.5.
Having greater contribution towards total ATR from species having high uncertainty would signify that
the ATRRP of those components is smaller, and hence the overall ATTRP uncertainty is reduced. It
would have been expected for the ATR contributions of both contrails and NOx to be increased simul-
taneously as their respective ATR contribution increase is correlated, whilst the CO2 ATR contribution
is inversely correlated, especially for total ATR values greater than 12.2 mK. These correlations are
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(a) Operational Design Variables

(b) Engine Design Variables

(c) Airframe Design Variables

Figure 7.10: Change in design variable values for the robust Pareto-optimal population compared to the ATR & DOC multi-
objective optimization set of solutions
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shown in Figure 7.5. It is evident however that the optimizer was not able to achieve this robustness
improvement.

7.3.1. Optimal Solution Selection
The question of what aircraft design changes would give most optimal trade off of ATR reduction po-
tential and robustness is now looked into. Ro order select an optimal solution from the array of Pareto
optimal solutions, the GRA and TOPSIS methods are implemented. This is due to their simplicity, ap-
plicability, and lower number of required user inputs [77]. Both methods suggest that the ideal solution
is found at the extremes of the Pareto front, i.e. at the corresponding single-objective optimization so-
lutions for minimal ATR and DOC. This is shown in 7.11a and 7.11b. This is plausible since the Pareto
front is concave, as can be observed in Figure 7.9. This signifies that the nearest distance to the ideal
point, being the combination of the best value of each objective in the set of Pareto solutions, is at the
extremes points.

When using the TOPSIS method, a range of weights are assigned, representing the relative impor-
tance of the climate impact objective over the robustness objective. (a) shows that for weights of 0.7
and above, the ATR-optimized design solution results as the optimal design. For relative weights of 0.6
and below, the minimal σ solution, corresponding to the DOC-optimized design point, is optimal. Hence
for equal preference of criteria, minimal σ solution is favorable. When using the GRA method, the ATR-
optimized design solution results as the optimal solution, as shown in (b). It can be inferred that the
there is no design solution to the multi-objective optimization problem that would give a more optimal
trade-off between ATR and ATTRP σ than the single-objective optimization solutions for minimal ATR
and DOC.

(a) TOPSIS method (b) GRA method

Figure 7.11: Selection of optimal solutions from Pareto set using TOPSIS and GRA methods

In order to choose optimal solutions it was instead decided to further investigate performance an
array of design points from the robust Pareto set of solutions. These points correspond to the midpoint
and endpoints of the three phases of the Pareto front, as identified in Figure 7.4. The performance
indicators of the optimized design at various stages of the Pareto front, utilizing the climate- and cost-
optimized solutions as references, are laid out in Table 7.6. The table furthermore presents the changes
in design variables values. It was shown that the robustness-optimized set of solutions did not show any
meaningful change with respect to the set of solutions belonging to the ATR- & DOC- Pareto optimal set
of solutions. Hence the discussion of the change in operational, engine, and airframe design variable
values across the ATR- & DOC- Pareto optimal set of solutions presented in Section 7.2.1 directly
applies to the values presented here for the array of robust solutions.

For the array of solutions, the objective functions values are furthermore traded off against the
operating costs. The optimality of the trade-off between ATR, ATRRP σ, and DOC is quantified making
use of the GRC metric. The greater the value of GRC, the closer the solution is to the ideal, defined
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as the point having the minimal value found for each objective out of the complete set of solutions.
As shown in Table 7.6, from the array of robust solutions, the GRC is highest for the robust solution
# 1, at ATR=12.2 mK. Compared to the climate-optimized aircraft, this design point comprises of an
increase in cruise altitude to 8.5 km, where contrail formation just start occur. Cruise Mach and OPR
are additionally increased to 0.69 and 43.3, respectively. This drives marginal increase in CO2, and
NOx ATR, while significantly reducing the block time and hence cutting the operating costs by 8.6 %.

Table 7.6: Change in objective function value, operating cost, design variables, and aircraft design performance indicators of
selection of solutions from the robust climate-optimal Pareto of solutions

Climate-
optimized
solution

Robust Solutions Cost-
optimized
solution#1 #2 #3 #4

Objective
Function Values

Total ATR[mK] 10.9 12.2 17.3 23.1 24.4 25.4
ATRRPσ 25.0 24.8 16.8 9.31 4.45 0

Operating Cost
Trade-Off

DOC[USD/pax · nm] 0.140 0.128 0.127 0.128 0.127 0.126
GRC 0.0385 0.0443 0.0429 0.0418 0.0420 0.448

Design
Variables

Cruise h [km] 7.54 8.56 8.93 9.32 9.60 9.98
Cruise M 0.600 0.689 0.700 0.691 0.699 0.700
BPR 10.7 7.35 7.81 7.44 7.17 7.00
OPR 45.7 43.3 47.5 47.4 47.5 44.3
TT4 [K] 1479 1500 1517 1510 1511 1530
W/S [kN/m2] 6.06 5.70 5.76 5.56 5.73 5.65
AR 11.6 9.70 10.3 11.1 10.5 11.1
CL,max 2.8 2.72 2.71 2.72 2.72 2.80

Performance
Indicators

MTWO [metric tons] 66.6 66.1 66.2 65.7 65.8 65.4
OEM [metric tons] 35.9 34.8 35.5 35.2 35.1 34.9
S[m2] 108 112 113 112 113 114
(L/D)cr 18.2 17.0 17.6 18.1 18.0 18.5
(T/W )TO 0.316 0.311 0.312 0.311 0.309 0.295
TSFCcr[10

−5kg/(Ns)] 1.44 1.60 1.57 1.57 1.59 1.61
NAC, max 16635 15280 15168 15360 15281 15315

7.3.2. Separate GA Run using 40 Generations
A separate RBDO was conducted, utilizing the NSGA-II utilizing the same parameters as indicated in
Table 5.2. However, the generation size was increased from 15 to 40. Contrary to current RBDO results,
improvement in robustness was observed. Although robustness change is very small in magnitude,
comparatively significant changes were observed in design variable values, which are hence worth
discussing. However, the algorithm did not converge after 15 generations as was proven for the current
RBDO results (as verified in Figure 6.4. The hyper volume showed linear increase throughout the entire
span of the algorithm iterations. Larger number of generations the NSGA-II would be required in order
to present converged results, which however would fall outside the time frame of this research. Since
convergence was not fully achieved, a qualitative, rather than quantitative, description of the results is
provided in this subsection.

After 40 generations, the Pareto front showed improvement in the robustness dimension (ATRRP
σ), ranging from 4 to 6 % for ATR values larger than 12.2 mK. The ATR component of less uncertain
species such as CO2 are traded off for ATR components of more uncertain species such as contrails,
thereby obtaining robustness improvement. CO2 ATR, proportional to fuel consumption, was reduced
by the optimizer by significantly reducing cruise Mach from 0.695 to 0.638 (thereby reducing the SFC),
and in addition choosing significantly larger values of CL,max and AR. The latter changes reduce the
lift induced drag and hence fuel consumption at the low velocities. The increase in contrail and NOx
ATR was attained by increasing marginally the cruise altitude by less than 0.1 km for the Pareto set of
solutions, thereby increasing the species forcing factors. Additionally, selecting larger BPR (from 7.5
to 9.4), specifically in ATR ranges between 12.2 and 15.5 mK, increases the propulsive efficiency and
probability of contrail formation.

The improvement in robustness, however, comes at a price. Deterioration in the operating cost is
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observed for the Pareto set of solutions giving the reported robustness improvement, with the DOC
increasing by approximately 7 %. Hence the increase in DOC is- marginally greater than the increase
in robustness. Moreover, with DOC being a primary design objective for aircraft designers, the price
for the small gain in robustness would not be justified.

7.4. Sensitivity Analysis Results
The sensitivity analysis results are subdivided into GSA and LSA results, presented in Section 7.4.1
and Section 7.4.2 respectively.

7.4.1. Global Sensitivity Results
The GSA looks at identifying and quantifying the impact of main sources of uncertainty towards the
ATRRP variability of the climate-optimized aircraft design and the selected robust design solutions
defined in Table 7.6. The two-step approach is used for the GSA in order to limit the required compu-
tational cost. The key uncertain climate impact model parameters using the Morris method are identi-
fied, after which their contribution towards the output variance are quantified using the Sobol method.
The number of repetitions r for the Morris analysis is set to 100. For the 10 most influential parame-
ters, the Sobol analysis is carried out using a Monte Carlo sample size n of 1024, thereby requiring
n(10 + 2) = 12288 climate model evaluations. Running the GSA on the full set of parameters would re-
quire n(32+ 2) = 34816 model evaluations, hence the computational cost is reduced by approximately
75% by utilizing the two-step approach. The GSA results showing the Morris rank, µ∗ and Sobol first
and total sensitivity indices for all scenarios are presented in Figure 7.12.

The GSA results of all design solutions show that the Morris rank, represented by µ∗, is indicative
of total and first order ranks of Sobol indices. For the climate-optimized aircraft design solution, the
contrail radiative efficiency AAIC is shown to be the single predominant source of uncertainty. Other
parameters having contribution are the altitude-dependent contrail radiative efficiencies RFAIC

Lref
(h), at

altitude levels 2 and 3 (h = 7.5km, h = 10.5km), as well as the contrail efficacy, fAIC and radiative
forcing due to doubling of atmospheric CO2 concentration compared to pre-industrial times, RF2xCO2

.
These contributions however are comparatively very small, as the sum of their ST and S1 are less than
10 % percent of that of the sum of all sensitivity indices.

The robust solution # 1 displays near identical GSA results as the climate optimized aircraft. The
added contributions towards the ATR due to CO2 and NOx emissions for the robust solution # 1 hence
do not show any change in the input parameters’ relative importance towards the ATRRP uncertainty.
This again reflects how NOx and CO2 input parameter importance is far outweighed by the contrail
terms.

At robust solution # 2 (ATR = 17.3 mK), the contrail radiative efficiency prevails as one of the main
influential parameters. However, relative to the rest of the parameters, the forcing factor at altitudes
levels 2 and 3 show to have growing influence. This is explained by the fact that unlike the climate
optimized aircraft, the robust aircraft is flying at an altitude where persistent contrails are formed, and
hence the forcing factor at altitude levels 2 and 3 directly affect the variability in the contrail ATR term.

For robust solution # 3 (ATR = 23.1mK) and # 4 (ATR = 24.4mK), the growth in relative impor-
tance of contrail forcing factors at levels 2 and 3 is continued. Whilst the sensitivity index of contrail
radiative efficiency AAIC is now smaller than the contrail forcing factors, it remains an important source
of uncertainty. The difference between total and first order indices of the contrail radiative efficiency,
representing the degree of interaction with other parameters, is close to 50 % of the ST, whilst in prior
solutions was negligible. Relative importance of interaction effects, with other terms involved in the con-
trail ATR computation, such as forcing factors and efficacy, are more significant compared to previous
robsut solutions.

7.4.2. Local Sensitivity Analysis
In the second stage of the sensitivity analysis, a local sensitivity analysis is carried out to measure the
impact of different future global CO2 concentration scenarios (RCPs) on the ATRRP. Table 7.7 gives the
change in ATR for the DOC- and ATR- optimized designs, the resultant ATRRP computed for various
RCPs, and the ATRRP when normalized by the ATR of the DOC-optimized aircraft design.
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(a) Climate-optimized Solution, ATR = 10.9 mK, σ = 25.0 (b) Robust Solution 1, ATR = 12.2 mK, σ = 24.8

(c) Robust Solution 2, ATR = 17.3 mK, σ = 16.9 (d) Robust Solution 3, ATR = 23.1 mK, σ = 9.31

(e) Robust Solution 4, ATR = 24.4 mK, σ = 4.45

Figure 7.12: Global Sensitivity Analysis Results using the Morris method and the Sobol variance based method
showing the most influential uncertain parameters with respects to the ATRRP σ for the different robust climate-
optimized aircraft designs
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Table 7.7: Change in ATR and ATRRP for different averafe global atmospheric CO2 concentration scenarios

Representative CO2
Concentration
Pathway (RCP)

ATR (DOC-optimized)
[mK]

ATR (climate-optimized)
[mK]

ATRRP
[mK]

ATRRP
(Normalised)

ATRRP σ
(Normalised)

Constant CO2 0.0255 0.0109 0.0146 0.569 25.1
RCP 2.6 0.0246 0.0101 0.0145 0.559 26.0
RCP 4.5 0.0223 0.0145 0.0146 0.654 28.5
RCP 6.5 0.0218 0.0146 0.0146 0.672 29.3
RCP 8.0 0.0196 0.00534 0.0147 0.746 32.5

Although absolute change in ATTRP stays constant, variation future projected global atmospheric
CO2 concentration χCO2,0 decreases the CO2 contribution to the total ATR for both the DOC- and
climate- optimized aircrafts by up to 50% compared to the constant CO2 scenario. This is shown in
Table 7.7. Although this is a considerable sensitivity, the absolute ATRRP experiences a negligible
change of 1.5 %. This is due to since CO2 contribution remaining roughly the same for both aircraft
designs. However, normalising the ATRRP gives a more notable increase of 33.5 %. The normalised
ATRRP σ, likewise, increases by a similar order of magnitude. The scenario uncertainty, hence, largely
influences the estimation of the relative ATRRP for a given climate-optimized aircraft design, as well
as the relative variability due to lack scientific level of understanding.

The question remains of how variation in global atmospheric CO2 concentration scenario would
affect the RBDO results, given the RBDO was performed assuming using a constant atmospheric
concentration. It was shown here that a reduction in atmospheric CO2 concentration considerably
reduces the estimated CO2 ATR. It would also signify that aircraft design changes that lead to changes
in CO2 emissions, now have smaller relative impact on the ATR. To be recalled is the fact that the
expected manner in which the RBDO would find robustness improvement is by trading off a portion of
low-uncertainty CO2 ATR for more uncertain NOx or contrail ATR. Therefore the loss in sensitivity of
ATR to CO2 emission due to the increase in global atmospheric CO2 concentration would not help the
achieve this improvement in robustness. Hence the RBDO results are expected to remain unchanged
with respect to those observed in this study.





8
Conclusions and Discussion

8.1. Conclusions
The objective of this research was to evaluate the robustness of the climate optimized medium-range
single aisle turbofan aircraft design by identifying and quantifying the aircraft emission and climate
modelling uncertainties and evaluating their impacts on the Multidisciplinary Design Optimization study.
This was successgully carried out by answering the research question and respective sub-question,
which for clarity are re-stated below along with the found outcomes.

1. Based on present day level of scientific understanding, what is the uncertainty in ATRRP of the
climate optimized aircraft design?

(a) What is the 90% likelihood range in the normalized ATRRP of the climate optimized aircraft
design?

The development of a summary of best estimates and probabilistic description of uncertain pa-
rameters of the Linear Climate Model (LCM) based on the present day level of scientific under-
standing was first carried out. Scientific uncertainty is identified for the carbon impulse response
function parameters, species radiative efficiencies, the NOx and contrail altitude forcing factors,
methane perturbation lifetime, and species efficacies. Uncertainty analysis is implemented using
Monte Carlo simulations, showing that the variability in the ATRRP is significant, having a 90%
likelihood ranging between 17.2 and 98.9 % of cost optimized aircraft ATR as computed in the
deterministic case.

(b) What is the confidence interval of the emission species normalized ATRRP for the climate
optimized aircraft design?

The ATTRP uncertainty is predominantly largest for the contrails, having a 90% likelihood range
for the ATRRP spanning from 11.9% to 95.2 % of cost optimized aircraft ATR as computed in the
deterministic case. ATRRP of NOx and CO2 additionally have significant uncertainties, although
being an order of magnitude smaller than that of contrails. The size of the uncertainty range is
driven by the absolute magnitude of the ATRRP of the species.

(c) How does the confidence interval in ATRRP vary throughout the different Pareto-optimal
aircraft designs in the trade-off between ATR and DOC?

Uncertainty analysis is carried out on the set of Pareto-optimal aircraft design solutions belonging
to the trade-off between ATR and DOC. For initial ATR increase of 10.9, 12.2 mK, negligible
change in ATRRP uncertainty is observed. For ATR values above 12.2 mK, the ATR increase
coincides with increase in the contrail ATR, which in turn is shown to linearly correlate with the
ATRRP σ decrease.

2. What aircraft design modifications can be made to improve the robustness of the climate opti-
mized aircraft design?

59
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(a) For the set of Pareto optimal solutions of themultidisciplinary optimization of ATR andATRRP
standard deviation, what is the relationship between design variable values and of ATRRP
variability?

A heuristic approach using a genetic algorithm was implemented for the robustness-based opti-
mization. Compared to the design solutions belonging to ATR- and DOC- Pareto optimal set, the
RBDO was not capable of finding design solutions that provide improvement from a robustness
perspective. Hence, the design variables of the RBDO solutions likewise comparatively did not
differ substantially. The ATR increase is shown to be linearly correlated with the ATRRP σ de-
crease, when operating conditions allow for contrail formation, namely at cruise altitudes above
8.5 km. The growing forcing factor and probability of formation of contrails with increasing cruise
altitude drives the increase in ATR and decrease in ATTRRP σ. At cruise altitudes below 8.5 km,
the ATR increase is caused by increases in NOx and CO2 emissions, both driven by increases in
cruise Mach, OPR, and TT4. However this is shown to have negligible influence on the overall
variability in ATRRP .

(b) What robust design solutions would provide optimal performance when further traded off
with DOC?

An array of solutions reflecting different decision maker preferences in the trade-off between cli-
mate impact and robustness are identified. When further trading off performance of the solutions
with operating costs, the robust solution having ATR of 12.2 mK is found most optimal. Compared
to the climate-optimized aircraft, this design point comprises of an increase in cruise altitude to 8.5
km, where contrail formation just start occur. Cruise Mach and OPR are additionally increased to
0.69 and 43.3, respectively.

3. What are the most relevant sources of uncertainty to the performance of the climate optimized
aircraft design?

(a) What is the composition percentage of the variance in ATR reduction attributed to the differ-
ent uncertain inputs?

A GSA was firstly implemented to quantify the apportion of ATRRP σ variance according to the
climate impact model input parameters for the set of robust Pareto optimal points. The uncertain
parameters showing largest influence on the output variability are the contrail-related radiaitive
efficiency and forcing factors. For all analysed robust solutions, the proportion of first and total
order sensitivity indices due to these parameters is more than 90 %.

(b) What is the sensitivity to variation in average global atmospheric CO2 concentration projec-
tions within the year 2100?

An LSA is performed to analyse the impact of scenario uncertainty in the background CO2 concen-
tration level on the ATRRP of the climate-optimized design. Although absolute change in ATTRP
stays constant, future global atmospheric CO2 concentration projections decrease the CO2 con-
tribution to the total ATR for both the DOC- and climate- optimized aircrafts by up to 50% with
respect to the constant global atmospheric CO2 concentration scenario.

8.2. Discussion
This section looks to answer the question of to what extent one can safely apply the conclusions from
this study for future conceptual aircraft design endeavors. In addition, the question of what research
efforts are to be undertaken in order increase the confidence in results is resolved by providing re-
search recommendations. Firstly, the limitations of the linear climate model (LCM) used in the study
is assessed, which is followed by the limitations of the uncertainty characterisation method. Lastly, a
discussion on the sources of scientific uncertainty that require most research effort are discussed.
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8.2.1. Linear Climate Model Development
In order to evaluate the results obtained in this study, one must highlight the inaccuracies currently
existing in the methodology used for computing the RF response due to contrails. As the GSA demon-
strated, the terms associated with the contrail RF estimation have largest influence on the uncertainty
on the performance. Hence the development of a more accurate contrail RF estimation is required in
order to increase confidence in future climate optimization design study results.

The inaccuracy pertains to the formulation of the radiative efficiency parameter, AAIC , and forcing
factor parameter, sAIC , inside the LCM used to compute the contrail RF. AAIC currently is derived from
the report by Lee et al. (2021) [37], which expresses the average global RF of global aviation due
to linear contrails and cirrus cloudiness arising from them, per unit distance travelled [37]. The LCM
used in the current study however requires AAIC to be expressed per unit of linear contrail coverage
instead of distance travelled, since the term is multiplied by the computed total linear contrail distance
of the aircraft operation. Consequently, the forcing factor must characterise the deviation of the globally
averaged RF per unit of linear contrail coverage as function of altitude. In the current formulation, as
derived from the data obtained by Radel and Shine (2008) [56], the normalization is performed using
the flown distance as function of altitude.

The first implication of this incorrect formulation of the parameters is that the radiative efficiency
parameter AAIC is underestimated. The second implication is that the forcing factor is greatly overesti-
mated at altitudes where deviation of RF response from the global average is positive, and is underes-
timated in regions where the opposite holds true. This is the case because the deviation from globally
averaged RF per flown kilometre with altitude is mainly due to variation in persistent contrail formation
probability, rather than change in radiative transfer properties. In light of the aforementioned source
of inaccuracy in the contrail RF estimation method, it is recommended for contrail radiative efficiency,
AAIC and forcing factor sAIC(h) to both be evaluated as function of contrail coverage distance, instead
of the total distance flown.

8.2.2. Uncertainty Characterisation Methodology Recommendation
The employed uncertainty characterisation method aims at accurately identifying and quantifying the
uncertainties incorporated in the usage of the LCM for the forwards looking climate impact assessment.
The accuracy of this method however will have implications on the overall validity of the method. Some
of the identified shortcomings of the current uncertainty characterisation method are discussed here.

The first concern with regards to the current uncertainty characterisation is related to the formulation
of the RF computation within the LCM, previously discussed in Section 8.2.1. As suggested, a radiative
efficiency parameter that is normalised by the linear contrail distance would require its uncertainty to
likewise reflect only the radiative response to the presence of contrails cirrus. This would only include
uncertainty in the radiative transfer scheme and the in-homogeneity of ice clouds within the grid box
as implemented in the GCMs [37]. The uncertainty regarding the derived contrail cover would need to
be imposed on the 3 criteria used for determination of formation of persistent contrails at each phase
of the flight profile. The first criteria is the Schmidt-Appleman criteria, requiring the exhaust air to
reach saturation with respect to water vapour in the mixing process in order for contrail formation to
occur. Secondly, the ambient static temperature is required to be below 235 Kelvin. Lastly, for contrail
formation to persist, the mixed exhaust must have a relative humidity with respect to ice of more than
100%, i.e. supersaturation. Application of this contrail prediction model is believed to be limited by
its reliance on accurate input data [13]. To quantify the uncertainty, a recommendable method would
be to assign probabilistic description to the contrail formation prediction model inputs. These firstly
include the engine propulsive efficiency η, used to determine the mixing line of exhaust for the Schmidt-
Applmena criteria. Secondly are the combustion parameters: emission index of water EIH2O, specific
combustion heat of jet fuel, Q, again required to determine the Schmidt-Appleman criteria. Thirdly are
the atmospheric conditions predicted via ISA relations namely the total pressure p and temperature Ta.
Lastly, the relative humidity RH, which currently is assumed constant.

The second shortcoming of the uncertainty characterisation method is the fact that currently it is only
aimed to quantify the degree of scientific and scenario uncertainty within the input parameters of the
LCM. However the degree of modelling uncertainty is not taken into consideration. This relates to the
impact of inexact modelling approach for estimating the climate impacts. LCMs replicate the globally
averaged results of the Global Climate Models (GCMs) on which they are based. As only first-order
effects are captured, they greatly simplify the physics and chemistry of aircraft-induced climate change.
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Effects of varying background concentrations, latitude and longitude, timing, and interaction with other
pollutants not measured [65]. Hence additional modelling uncertainty is to be considered, and lack
thereof suggests that the current quantified uncertainty in ATRRP of the climate optimized aircraft may
be underestimated.

In terms of the uncertainty characterisation methodology use to ”

8.2.3. Future Uncertainty Reduction Work
A benefit of the GSA carried out in this study is that it identifies what the most influential uncertain
parameters are. This gives an indication of where further reduction in scientific level of understanding
can give most additional confidence in climate impact aircraft optimization, and hence communicate
the areas in which further research is needed.

The radiative efficiency and forcing factor parameters, in the manner they are currently implemented
in the LCM, are identified as having largest impact to uncertainty. Hence those parameters are primarily
discussed. The sources of uncertainty of radiative efficiency is connected with the upper tropospheric
water budget and contrail prediction scheme, and secondly with the radiative response to the presence
of contrail and cirrus cloudiness. The sources of uncertainty related to the former, as identified in the
report by Lee et al. (2021) [37], are as follows:

• Knowledge of the ambient conditions where contrails are observed, due to the low vertical res-
olution of the satellite imaging. This leads to poor ability to statistically predict supersaturation
conditions.

• Ice crystal number of young contrails being dependant on the level of water supersaturation and
soot emissions.

• The adjustment of natural clouds due to the presence of persistent contrails.
• Dependence of contrail cirrus RF estimate on the initial contrail ice crystal radii and cross sectional
areas.

The sources of uncertainty related to the radiative response to the presence of contrails are [37]:

• Uncertainty in the radiation scheme within the GCMs
• Effect of the overlap contrail-cloud and contrail-contrail overlap on the RF response [60]
• The estimation within GCMs of the RF due to very small ice crystals (< 5µm)

These sources of uncertainty are common also to contrail forcing factor uncertainty. However the
the computation of contrail cover by Radel & Shine (2008) to derive the forcing factor does not utilize
the full process-based simulation of the micro-physical processes and contrail spreading as utilized in
study by Lee et al. (2021) to derive the AIC radiative efficiency [56]. Instead, only the probability of
ice supersaturation is used to predict contrail formation, which is then multiplied by a normalization
factor so that it yields the observed cover from available satellite measurements. Hence an important
additional uncertainty comes into play, related to the sparseness of the satellite measurements[56]. To
reduce this source of uncertainty, the computation of contrail formation as function of altitude requires
to be evaluated using the same process-based simulation approach as utilised by Lee et al. (2021)
[37].

Lastly we discuss NOx. Whilst the GSA suggested that NOx components to have negligible impact
to output uncertainty, the Morris analysis still included their impacts in the top 10 parameter rank. The
current uncertainty estimates are based on study by Lee et al. (2021), where variability due to inter-
model differences of numerous GCMs, as well as differing global emission inventories are quantified
[37]. For the forward-looking climate impact analysis in this study however, it should only be required
that the uncertainties of the NOx terms evaluate the inter-model differences of the GCMs. In order to
quantify the uncertainty in the NOx emissions, it would be necessary assign a separate probabilistic
description to the NASA ECCP semi-empirical analytical model used to estimate the NOx EI. This would
call for the need of an experimental study of the predictive performance of the model, as function of
altitude, specific humidity, and thrust setting.

Future CO2 Atmospheric Concentration Scenario The results from the LSA (Section 7.4) gave
indication that the scenario uncertainty pertaining to the future atmospheric CO2 concentration has a
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significant impact on the estimated contribution by CO2 on the total ATR of the aircraft design. Hence
for a potential aircraft where climate impact is minimized via carbon emission reduction, the sensitivity
due to this scenario uncertainty is very significant. This calls for the need to develop a ’most likely
scenario’ together with an uncertainty range of the atmospheric CO2 concentration at every year until
the year 2120. A manner to do this by defining a most likely scenario and a likelihood range with use
of an expert elicitation methods, for the inputs for the different assessment modules within the GCMs,
used to estimate the RCPs. The modules are model representations of the global economy, energy
systems, and agriculture and land use [45]. For example, an input for the global economy module
would be the predicted growth in passenger kilometers in transport or space conditioning for buildings
[9]. Although being a very complex endeavor, this would allow designers to have a more confident idea
of the magnitude in which the scenario uncertainty impacts the estimated CO2 temperature response
of the proposed aircraft design.





A
Literature Overview of Linear Climate

Model Uncertainty

Best estimates and likelihood ranges according to different sources in scientific literature are sum-
marised in this chapter. Values for the emission indices are given in Table A.1. Values for carbon
dioxide impulse response function parameters are given in Table A.3. Values of parameters related to
NOx-induced RF response are given in Table A.2. Values of parameters related to RF of short lived
emission species, namely H2O, CO, SO4, and contrails, are summarised in Table A.4. Lastly, the
values of species efficacy parameter for all emission species are provided in Table A.5.

Table A.1: Best estimates and likelihood range of the Emission Index (EI) of various emission species

Parameter Best Estimate Uncertainty
Interval Source Distribution

Source

EI (CO2)
[kg/kg fuel]

3.16 [3.148,3.173] Barrett et al. (2010) Barrett et al. (2010)
3.155 N/A Kim et al. (2007) N/A
3.16 Within 1 % Lee et al. (2021) Lee et al. (2021)

EI (NOx)
[kg/kg fuel]

Analytical expression
(NASA’s ECCP program) +- 15 % Lukachko (1997) Lukachko (1997)

EI (Water Vapour)
[kg/kg fuel]

1.247 N/A Kim et al. (2007) N/A
1.238 N/A Eyers et al. (2004) N/A
1.231 [1.197,1.258] Barrett et al. (2010) Barrett et al. (2010)

EI (Soot)
[g/kg(fuel)]

0.025 [0.01, 0.1] Lee et al. (2010) Lee et al. (2010)
0.03 [0.01, 0.07] Lee et al. (2021) Barrett et al. (2010)

EI (S02)
[g/kg(fuel)]

0.2 N/A IPCC (1999) N/A
0.8 [0.6,1.0] Lee et al. (2010) Lee et al. (2010)
1.176 [0.752,1.592] Wilkerson et al. (2010) Barrett et al. (2010)
1.2 [1.1,1.5] Lee et al. (2021) Barrett et al. (2010)

Table A.2: Best estimates and 90 % likelihood range of the radiative forcing response of NOx

Parameter Best Estimate 90% Likelihood
Range Source Distribution Source

CO2 Radiative
Forcing [Wm−2]

LinClim SCM Normal: +- 20% Sausen-
Schumann (2000)

Sausen-
Schumann (2000)

Average of three
SCMs (including LinCLim) Normal: +- 15% Lee et al. (2021) Lee et al. (2021)

Table A.3: Best estimates and 90 % likelihood range of the radiative forcing response of Carbon Dioxide
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Parameter Best
Estimate

90% Likelihood
Range Source Distribution

Source

Radiative efficiency
(NOx-O3S)
[mWm−2/(Tg(NOx))]

10.1 lognormal:
[32%-314%] Sausen et al. (2005) Lee et al. (2009)

7.64 lognormal:
[64%-155%] Lee et al. (2021) Lee et al. (2021)

Radiative efficiency
(NOx-Long term O3S)
[mWm−2/(Tg(NOx))]

-0.121 lognormal:
[32%-314%] Marais et al. (2008) Lee et al. (2009)

-0.200 lognormal:
[70%-188%] Lee et al. (2021) Lee et al. (2021)

Radiative efficiency
(NOx-CH4)
[mWm−2/(Tg(NOx))]

-0.513 lognormal:
[16.7%-600%] Marais et al. (2008) Lee et al. (2009)

-0.401 lognormal:
[70%-188%] Lee et al. (2021) Lee et al. (2021)

Radiative efficiency
(NOx-SWV)
[Wm−2/(Tg(NOx))]

-0.0710 lognormal:
[70%-188%] Lee et al. (2021) Lee et al. (2021)

Methane Perturbation
Time (years)

12 normal: +-15% IPCC (2007) IPCC (2007)
11.07 N/A Marais et al. (2008) N/A

Correlation Factor
(Short term -Long term NOx RF)

-0.5 N/A Dallara (2011) N/A
-0.7 N/A Lee et al. (2021) N/A

Table A.4: Best estimates and 90 % likelihood range of the radiative forcing response of short lived emission species

Parameter Best
Estimate

90% Likelihood
Range Source Distribution Source

Radiative efficiency
(Statospheric H2O)
[mWm−2/(Tg(H2O))]

0.00743 lognormal:
[13.8%,724%] IPCC (1999) Lee et al. (2009)

0.00520 normal:
[40%,160%] Lee et al. (2021) Lee et al. (2021)

Radiative efficiency
(Sulphate)
[mWm−2/(Tg(SO4))]

-100 lognormal:
[16.5%,610%] IPCC (1999) Lee et al. (2009)

-19.9 lognormal:
[10.6%, 425%] Lee et al. (2021) Lee et al. (2021)

Radiative efficiency
(Soot)
[mWm−2/(Tg(CO))]

50.0 lognormal:
[16.5%,610%] IPCC (1999) Lee et al. (2009)

101 lognormal:
[35.1%, 256%] Lee et al. (2021) Lee et al. (2021)

Radiative efficiency
(Contrail cirrus)
[Wm−2/km(AIC)]

1.19× 10−12 lognormal:
[37.9%,263.4%] Lee et al. (2009) Lee et al. (2009)

1.82× 10−12 normal:
[29.%,169.7%] Lee et al. (2021) Lee et al. (2021)
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Table A.5: Best estimates and Likelihood Range of Species Efficacy Values

Best
Estimate

90% Likelihood
Range Source Distribution

Source

fCO2 1 normal:
[+-5 %]

Ponater et al.
(2008)

Lee et al.
(2021)

fO3S 1.37 66 % likelihood range:
+-30%

Ponater et al.
(2008)

Grewe & Stenke
(2008)

fO3L 1.18 66 % likelihood range:
+-30%

Lee et al.
(2021)

Grewe & Stenke
(2008)

fCH4 1.18 66 % likelihood range:
+-10%

Ponater et al.
(2008)

Grewe & Stenke
(2008)

fH2O 1.14 66 % likelihood range:
+-30%

Ponater et al.
(2008)

Grewe & Stenke
(2008)

fSO4
0.9 normal:

[0.412,1.39]
IPCC
(2007)

IPCC
(2007)

1 N/A Lee et al.
(2021) N/A

fCO 0.7 lognormal:
[0.212,2.31]

IPCC
(2007)

IPCC
(2007)

1 N/A Lee et al.
(2021) N/A

fAIC 0.59 66 % likelihood range:
+-10%

Ponater et al.
(2008)

Grewe & Stenke
(2008)

0.42 normal: +-40% Lee et al.
(2021)

Lee et al.
(2021)





B
Sensitivity Index Value and Confidence

Intervals

Climate-Optimal Solution, ATR = 10.9 mK

Table B.1: Top 10 most influential parameters for climate optimized Solution, with respective Morris elementary effect, first and
total order Sobol Sensitivity Indices, and 90 % confidence intervals of estimates

Parameter Morris µ∗ Morris µ∗ Conf S1 S1 Conf ST ST Conf
AAIC 8.92e-3 3.13e-4 9.54e-4 2.79e-3 1.22e-3 1.79e-4
fAIC 2.18e-3 1.25e-4 7.94e-1 7.94e-2 8.30e-1 7.08e-2
AIC altitude forcing 3 2.09e-3 2.46e-4 1.44e-3 3.50e-3 1.46e-3 1.54e-4
AIC altitude forcing 2 1.52e-3 1.30e-4 6.32e-4 2.42e-3 7.71e-4 1.49e-4
RF2xCO2 1.40e-3 8.24e-5 2.14e-2 1.54e-2 2.86e-2 4.85e-3
AIC altitude forcing 4 6.20e-4 5.03e-5 9.46e-2 2.67e-2 1.05e-1 1.92e-2
O3S altitude forcing 2 4.38e-4 3.11e-5 4.12e-3 6.17e-3 4.68e-3 7.02e-4
CH4 altitude forcing 2 3.65e-4 2.05e-5 8.44e-4 2.20e-3 4.60e-4 7.18e-5
fO3S 3.41e-4 3.11e-5 4.54e-2 1.97e-2 5.51e-2 6.94e-3
AO3S 2.91e-4 2.44e-5 1.61e-2 1.22e-2 2.15e-2 2.47e-3

Robust Solution #1, ATR = 12.2 mK

Table B.2: Top 10 most influential parameters for robust solution at ATR=12.2 mK, with respective Morris elementary effect, first
and total order Sobol Sensitivity Indices, and 90 % confidence intervals of estimates

Parameter Morris µ∗ Morris µ∗ Conf S1 S1 Conf ST ST Conf
AAIC 8.68e-3 2.85e-4 4.11e-4 1.69e-3 3.18e-4 3.53e-5
fAIC 2.27e-3 1.28e-4 7.99e-1 8.10e-2 8.35e-1 7.08e-2
AIC altitude forcing 3 1.99e-3 1.30e-4 4.48e-4 1.59e-3 4.45e-4 4.98e-5
AIC altitude forcing 2 1.47e-3 1.02e-4 3.31e-4 1.92e-3 4.35e-4 5.01e-5
RF2xCO2 1.33e-3 8.51e-5 2.11e-2 1.24e-2 2.90e-2 4.46e-3
AIC altitude forcing 4 5.90e-4 4.23e-5 9.09e-2 2.60e-2 1.01e-1 1.70e-2
O3S altitude forcing 2 2.57e-4 9.58e-6 3.54e-3 5.53e-3 4.01e-3 6.19e-4
CH4 altitude forcing 2 2.04e-4 1.81e-5 5.04e-4 2.52e-3 8.41e-4 1.97e-4
fO3S 1.91e-4 1.62e-5 4.57e-2 2.35e-2 5.55e-2 7.16e-3
AO3S 1.76e-4 1.23e-5 1.49e-2 1.13e-2 2.02e-2 2.39e-3
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Robust Solution #2, ATR = 17.3 mK

Table B.3: Top 10 most influential parameters for robust solution at ATR=17.3 mK, with respective Morris elementary effect, first
and total order Sobol Sensitivity Indices, and 90 % confidence intervals of estimates

Parameter Morris µ∗ Morris µ∗ Conf S1 S1 Conf ST ST Conf
AAIC 5.59e-3 1.72e-4 6.22e-4 1.96e-3 5.61e-4 5.21e-5
AIC altitude forcing 3 2.03e-3 1.77e-4 6.43e-1 7.35e-2 7.03e-1 6.88e-2
AIC altitude forcing 2 1.70e-3 1.63e-4 9.93e-5 1.60e-3 2.81e-4 4.94e-5
fAIC 1.33e-3 8.22e-5 7.71e-4 2.64e-3 1.16e-3 1.31e-4
RF2xCO2 8.13e-4 5.37e-5 6.84e-2 2.81e-2 9.55e-2 1.62e-2
AIC altitude forcing 4 2.94e-4 2.30e-5 1.91e-1 4.73e-2 2.18e-1 3.64e-2
O3S altitude forcing 2 2.24e-4 1.54e-5 2.19e-3 4.59e-3 2.40e-3 3.90e-4
AO3L 2.21e-4 8.66e-6 -4.48e-4 2.91e-3 1.52e-3 3.03e-4
fsoot 1.51e-4 1.21e-5 3.69e-2 1.58e-2 4.64e-2 6.28e-3
CH4 altitude forcing 4 1.34e-4 7.18e-6 1.11e-2 1.18e-2 1.67e-2 2.06e-3

Robust Solution #3, ATR = 23.1 mK

Table B.4: Top 10 most influential parameters for robust solution at ATR=23.1 mK, with respective Morris elementary effect, first
and total order Sobol Sensitivity Indices, and 90 % confidence intervals of estimates

Parameter Morris µ∗ Morris µ∗ Conf S1 S1 Conf ST ST Conf
AIC altitude forcing 2 1.77e-3 1.43e-4 2.24e-4 1.60e-3 3.30e-4 4.44e-5
AIC altitude forcing 3 1.70e-3 1.33e-4 1.53e-1 4.85e-2 2.74e-1 4.08e-2
AAIC 1.67e-3 1.32e-4 -1.71e-3 2.18e-3 6.02e-4 8.68e-5
fAIC 4.01e-4 3.48e-5 -8.44e-4 2.00e-3 5.51e-4 6.52e-5
RF2xCO2 2.63e-4 2.49e-5 2.76e-3 4.72e-3 2.50e-3 3.30e-4
O3S altitude forcing 4 1.92e-4 1.34e-5 3.46e-3 4.80e-3 2.83e-3 3.80e-4
O3S altitude forcing 3 1.86e-4 1.13e-5 2.52e-1 4.86e-2 3.26e-1 4.10e-2
CH4 altitude forcing 3 1.17e-4 7.77e-6 4.04e-1 9.34e-2 4.55e-1 7.39e-2
CH4 altitude forcing 4 1.13e-4 7.09e-6 8.14e-3 1.43e-2 1.82e-2 2.68e-3
AO3L 8.29e-5 8.50e-6 4.30e-3 7.56e-3 6.95e-3 9.76e-4

Robust Solution #4, ATR = 24.4 mK

Table B.5: Top 10 most influential parameters for robust solution at ATR=23.1 mK, with respective Morris elementary effect, first
and total order Sobol Sensitivity Indices, and 90 % confidence intervals of estimates

Parameter Morris µ∗ Morris µ∗ Conf S1 S1 Conf ST ST Conf
AIC altitude forcing 2 1.77e-3 1.43e-4 2.24e-4 1.60e-3 3.30e-4 4.44e-5
AIC altitude forcing 3 1.70e-3 1.33e-4 1.53e-1 4.85e-2 2.74e-1 4.08e-2
AAIC 1.67e-3 1.32e-4 -1.71e-3 2.18e-3 6.02e-4 8.68e-5
fAIC 4.01e-4 3.48e-5 -8.44e-4 2.00e-3 5.51e-4 6.52e-5
RF2xCO2 2.63e-4 2.49e-5 2.76e-3 4.72e-3 2.50e-3 3.30e-4
O3S altitude forcing 4 1.92e-4 1.34e-5 3.46e-3 4.80e-3 2.83e-3 3.80e-4
O3S altitude forcing 3 1.86e-4 1.13e-5 2.52e-1 4.86e-2 3.26e-1 4.10e-2
CH4 altitude forcing 3 1.17e-4 7.77e-6 4.04e-1 9.34e-2 4.55e-1 7.39e-2
CH4 altitude forcing 4 1.13e-4 7.09e-6 8.14e-3 1.43e-2 1.82e-2 2.68e-3
AO3L 8.29e-5 8.50e-6 4.30e-3 7.56e-3 6.95e-3 9.76e-4
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Table C.1: Objective function and design variable values of the Pareto optimal set of solutions of the robustness-based climate
optimization using 15 generations of the NSGA-II algorithm

ATR
[mK]

ATRRP
σ

CL,max WS AR BPR PRfan PRlpc PRhpc TT4 Cruise
h [m]

Cruise
M

11.2 23.2 2.8 6087 12.0 9.36 1.44 1.51 18.2 1452 7590 0.622
11.5 23.2 2.73 6087 10.9 9.36 1.44 1.51 18.2 1452 7590 0.628
12.1 23.2 2.72 5744 10.0 7.53 1.64 1.48 18.2 1514 8578 0.695
12.2 23.1 2.72 5750 9.70 7.35 1.65 1.43 18.3 1500 8564 0.689
12.4 22.7 2.72 5750 10.0 7.67 1.66 1.50 18.1 1518 8609 0.697
12.9 22.3 2.72 5800 10.2 7.36 1.70 1.51 18.3 1514 8633 0.683
12.9 22.0 2.72 5800 10.2 7.33 1.67 1.51 18.3 1511 8641 0.693
13.3 21.6 2.73 5694 10.3 7.46 1.67 1.50 18.9 1512 8661 0.695
13.4 21.4 2.72 5694 10.3 7.46 1.67 1.50 18.9 1512 8661 0.695
14.0 20.4 2.72 5689 10.0 7.21 1.67 1.46 18.1 1508 8712 0.695
14.5 19.8 2.72 5747 9.56 7.50 1.69 1.50 18.3 1518 8726 0.692
14.7 19.4 2.72 5800 10.0 7.53 1.63 1.53 18.6 1504 8761 0.694
14.8 19.2 2.72 5800 10.0 7.60 1.63 1.50 18.6 1504 8762 0.694
15.1 18.8 2.72 5732 9.83 7.49 1.63 1.58 18.1 1511 8786 0.692
15.6 18.0 2.72 5797 10.0 7.35 1.64 1.48 18.1 1511 8822 0.696
16.0 17.5 2.72 5757 10.0 7.60 1.69 1.40 18.1 1514 8845 0.697
16.4 17.1 2.72 5800 10.0 7.54 1.67 1.51 18.3 1504 8866 0.686
16.7 16.5 2.72 5783 10.2 7.33 1.67 1.48 18.3 1511 8896 0.695
16.8 16.3 2.73 5783 9.91 7.35 1.65 1.43 18.3 1500 8894 0.696
17.1 15.8 2.71 5757 10.3 7.21 1.66 1.46 18.9 1508 8927 0.697
17.3 15.7 2.71 5759 10.3 7.83 1.66 1.51 19.0 1518 8927 0.700
17.9 14.8 2.72 5732 10.6 7.72 1.62 1.43 18.6 1512 8987 0.675
18.0 14.7 2.72 5732 10.6 7.72 1.62 1.43 18.6 1512 8987 0.675
18.5 14.1 2.73 5766 10.7 7.17 1.71 1.45 18.4 1511 9016 0.697
18.5 14.0 2.73 5766 10.7 7.17 1.71 1.45 18.4 1511 9018 0.697
18.9 13.6 2.73 5810 10.1 7.17 1.71 1.48 18.3 1512 9040 0.676
18.9 13.4 2.72 5739 11.1 7.65 1.67 1.48 18.7 1512 9045 0.678
19.2 13.2 2.71 5747 9.79 7.56 1.68 1.46 17.9 1522 9047 0.700
19.6 12.6 2.72 5744 10.8 7.72 1.63 1.48 18.6 1511 9095 0.693
20.6 11.6 2.72 5759 10.3 7.56 1.68 1.46 19.0 1518 9136 0.700
21.4 11.0 2.72 5732 10.0 7.72 1.71 1.43 18.6 1512 9189 0.677
21.7 10.4 2.72 5739 11.1 7.52 1.67 1.50 18.7 1512 9234 0.685
22.2 10.2 2.72 5739 10.0 7.52 1.67 1.50 18.6 1504 9234 0.685
22.4 9.8 2.79 5755 11.1 7.49 1.67 1.50 19.0 1512 9269 0.697
22.6 9.5 2.72 5756 11.1 7.52 1.67 1.50 18.7 1512 9269 0.686
22.8 9.2 2.72 5747 10.9 7.50 1.66 1.46 18.4 1513 9292 0.698
23.1 8.7 2.72 5759 11.1 7.44 1.69 1.50 18.7 1511 9316 0.691
23.4 7.5 2.72 5726 10.9 7.36 1.71 1.48 18.0 1514 9394 0.690
23.6 6.7 2.71 5737 11.0 7.62 1.68 1.45 18.3 1511 9451 0.699
23.7 6.5 2.79 5755 10.0 7.53 1.67 1.48 18.2 1511 9446 0.698
23.8 5.7 2.79 5738 11.1 7.49 1.67 1.50 19.0 1512 9501 0.699
24.1 5.5 2.72 5620 10.0 7.52 1.67 1.50 18.7 1500 9519 0.688
24.2 5.0 2.71 5754 9.84 7.50 1.66 1.46 18.4 1513 9542 0.692
24.4 4.1 2.72 5731 10.5 7.17 1.66 1.59 18.0 1512 9604 0.699
24.7 3.7 2.72 5732 9.70 7.46 1.67 1.50 18.1 1499 9625 0.698
24.8 2.9 2.73 5766 10.7 7.17 1.71 1.45 18.4 1511 9698 0.704
24.9 2.1 2.72 5739 11.1 7.65 1.67 1.48 18.7 1512 9757 0.691
25.4 1.5 2.72 5727 10.2 7.33 1.67 1.51 18.3 1511 9785 0.704
25.5 0.6 2.72 5700 10.5 7.36 1.66 1.58 18.1 1513 9984 0.681
25.7 0.1 2.72 5756 10.4 7.50 1.66 1.58 18.1 1514 9978 0.708
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