
Usage of Static Analysis Tools in the
Integrated Development Environment

Master’s Thesis

Tim van der Lippe

Usage of Static Analysis Tools in the
Integrated Development Environment

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Tim van der Lippe

Software Engineering Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

© 2018 Tim van der Lippe.

Usage of Static Analysis Tools in the
Integrated Development Environment

Author: Tim van der Lippe
Student id: 4289439
Email: T.J.vanderLippe@student.tudelft.nl

Abstract

Developers make use of automation to perform repetitive and potentially error-
prone tasks. One such automation can be categorised as static analysis, which aims
to analyse program properties. The particular focus of this investigation are so-called
ASATs (Automatic Static Analysis Tools). These ASATs are readily available for
many programming languages and can be used to check coding style guidelines, el-
ements of functional correctness and maintainability related issues. Previous studies
on static analysis involved qualitative developer interviews and quantitative repository
mining studies. This thesis uses automated telemetry to carry out a field study within
the Integrated Development Environment (IDE), to obtain fine-grained data on devel-
oper behavior with regard to the actual use of ASATs. In addition, we have carried
out a survey to validate the observed patterns. The field study is based on the Eclipse
and IntelliJ plugin WatchDog, for which we elaborate upon an extensive investigation
of static analysis observation techniques in the IDEs. Based on the quantitative data,
we conclude the majority of all observed static analysis IDE events originate from
few categories of warnings. Moreover, most of the warnings are resolved within one
minute, with warnings related to type resolution being resolved the quickest. Devel-
opers corroborate these findings, but also confirm perceptions of earlier research that
warnings contain large numbers of false positives. Based on both datapoints, we en-
vision a data-driven future of static analysis tooling to optimize for usefulness for the
developer rather than absolute correctness of tool implementations.

Thesis Committee:

Chair: Dr. A.E. Zaidman, Faculty EEMCS, TU Delft
University co-supervisor: M. Beller, Faculty EEMCS, TU Delft
Committee Member: Prof. Dr. A. van Deursen, Faculty EEMCS, TU Delft
Committee Member: Prof. Dr. C. Witteveen, Faculty EEMCS, TU Delft

T.J.vanderLippe@student.tudelft.nl

Preface

This master thesis is the final project of my university career at the Delft university of
Technology. Over the years, I have been able to acquire the necessary knowledge and
experience to be fully prepared for my future career. Along the way, the many colleagues I
met later also became my friends. First of all, I want to thank Andy Zaidman for his support
and guidance during this final chapter. We have successfully worked together throughout
the years on both educational and managerial challenges, which was my motivation to keep
on collaborating for my thesis. While the process has not been easy, I am very grateful for
the listening ears of my friends and family, which helped me to complete this project, and
study as a whole, with success. I also want to thank my study and SERG colleagues for
the interesting discussions, with special thanks to Moritz Beller for his critical reviews and
discussions as part of our work on WatchDog. To that end, the previous work on WatchDog
was also fundamental to the work elaborated upon in this thesis, for which I thank everyone
who previously contributed to the project. Lastly, I am grateful to be a member of the
Polymer team, of which my team members have remained supportive and in particular
helped me distribute our survey to their acquaintances.

Tim van der Lippe
Delft, the Netherlands

June 25, 2018

iii

Contents

Preface iii

Contents v

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Research Questions . 2
1.2 Chapter overview . 4

2 Related work 5
2.1 Static Analysis . 5
2.2 Integrated Development Environment . 6
2.3 Static analysis in the IDE . 7

3 Automated telemetry 9
3.1 Modes of observation . 9
3.2 Automated tool options . 11
3.3 Analysis existing tools . 12
3.4 Existing tools pros and cons . 13
3.5 Final choice . 14

4 Static analysis in editors 15
4.1 Code Inspection with IntelliJ IDEA . 15
4.2 IMarkers in Eclipse . 21
4.3 Lowest common denominator implementation 24
4.4 Static analysis IDE extensions . 25
4.5 Summary . 26

v

CONTENTS

5 Classification of warnings 29
5.1 Possible code references . 29
5.2 Classification of warnings . 31
5.3 Summary . 38

6 Telemetry results 39
6.1 Data retrieval . 39
6.2 Statistics . 40
6.3 Summary . 54

7 Developer perception 57
7.1 Survey design . 57
7.2 Survey results . 58
7.3 Summary . 66

8 Discussion 67
8.1 Results overview . 67
8.2 Threats to validity . 69

9 Conclusion and future work 71
9.1 Conclusion . 71
9.2 Future static analysis tooling . 72

Bibliography 77

A Glossary 85

vi

List of Figures

2.1 Before and after of invoking a developer action on a dead code warning 7

3.1 A tooltip above a static analysis warning in Rider 10
3.2 The Inspection tool window in IntelliJ IDEA 11
3.3 The Problem Details view in Eclipse . 11

4.1 File tree view in IntelliJ IDEA highlighting a compilation error in Launcher.scala 16
4.2 Retrieve all ProblemDescriptors from the GlobalInspectionContext 18
4.3 Manually run the DaemonCodeAnalyzer on a file 18
4.4 Manually run each InspectionTool on a file with the InspectionEngine 19
4.5 Example file with several issues . 19
4.6 Editor warnings as shown in IntelliJ IDEA . 20
4.7 Attach an IResourceChangeListener to the workspace 21
4.8 Visual graph representation of the difference between xCxDxE and xCDxEx . . 22
4.9 Example diff between two static analysis warning snapshots 23
4.10 Example of two method definitions which produce equivalent static analysis

warning snapshots . 23
4.11 Sequence of warnings generated in IntelliJ . 24
4.12 Usage of the in-memory cache in the implementation of the callbacks defined

by MarkupModelListener to generate Eclipse-equivalent snapshots 25

5.1 Constant warnings as defined in IntelliJ and Eclipse 30
5.2 Dynamic warnings as defined in IntelliJ and Eclipse 30
5.3 Several code snippets with their corresponding dynamic static analysis warning

containing references or names from the code 31
5.4 Two patterns with their corresponding concrete instantiations of the warnings . 34
5.5 Pseudocode of the data-structure creation algorithm 35
5.6 Pseudocode of the classification algorithm . 35
5.7 Message pattern that compiles to a regular expression representing an always-

accepting automata . 38
5.8 Transformation of a message pattern into a regular expression built in WatchDog 38

vii

LIST OF FIGURES

6.1 Top warning category frequency trend line plot 44
6.2 Fraction of warnings resolved . 45
6.3 Code snippet that would generate a warning from category 6 45
6.4 Code snippet that would generate an unused.assignment warning on line 1 when

writing code top to bottom . 45
6.5 Lifetime distribution for warnings resolved in the same developer session . . . 47
6.6 Lifetime distribution for warnings clustered by top categories as defined in Sec-

tion 6.2.2 . 48
6.7 Lifetime of the 25 most frequent warning categories 49
6.8 Lifetime grouped by programming experience 51
6.9 Lifetime for the users with the most number of events 52
6.10 Bash script to obtain relative position of class declaration in Java files 54
6.11 Heatmap of all created and removed warnings relative to the file length 55
6.12 Heatmap of all warnings in file snapshots, relative to the file length 55
6.13 Heatmap of all class declarations, relative to the Java file length 55

7.1 Fractions of chosen resource combinations. Indices are listed in Table 7.2 . . . 62
7.2 Distribution of respondents on how often they use a method to ignore a warning.

Indices are listed in Table 7.4 . 64

viii

List of Tables

6.1 Number of users for each programming experience category 41
6.2 Number of events for each programming experience category 41
6.3 The 25 categories with most frequent warning creation and resolution 43
6.4 Average number of events per user grouped by their programming experience . 46
6.5 p-value from the Dunn-test for each pairwise combination of programming ex-

perience subset . 50

7.1 Tools used by respondents and their classification 60
7.2 Resources listed that can be used to resolve warnings 62
7.3 Combinations of using Question-Answer websites and/or using Static analysis

tool documentation for developers not relying on a search engine 62
7.4 Options listed that can be used to ignore warnings 64

ix

Chapter 1

Introduction

As software projects grow, Software Engineering practices have to be adopted to ensure high
quality software can be built [53]. The practice of Software Engineering becomes more and
more crucial when software is used in critical systems for society such as medical surgeries
[66], autonomous vehicles [17, 65] and (online) banking systems [26]. Failures in these
systems can have and have had lethal consequences [37]. The challenges of ensuring that
critical societal systems do not result in loss of life (such as fault tolerance, failure cascading
and security) are known for quite some time [36]. Solutions and precautionary methods
include clear software specifications as well as formal verification of these specifications.

While system failures can have lethal consequences, there are also non-life-threatening
software failures with large consequences. Examples include widespread outages of social
media platforms preventing citizens to communicate [28, 46], but also singular incidents
with devastating effects such as loss of property for individuals [34]. Small bugs can be the
cause of such failures which have a much larger impact.

To prevent bugs from having a large impact, multiple approaches have been proposed.
One approach to reduce the overall impact of a bug is an auto-recovery system that can
be used to rollback a faulty program to the last known healthy state [54]. However, while
mitigation can be successful, prevention of the bug is more desirable. Thoroughly testing a
software product can prevent failures, as improper testing has been shown to be disastrous
for large systems [18]. Besides testing, the practice of static analysis is also used to de-
tect bugs by analyzing the source code to alert developers of software failures before they
occur [4]. Facebook uses static analysis to prevent new employees unfamiliar with C++
to make common (yet detrimental) mistakes [13]. Other popular open source projects like
Chromium are regularly audited for security issues using static analysis tools [32].

Previous research has focused on observing and interviewing developers regarding their
usage of static analysis tools [31], including a large study on tool configuration and warning
evolution over a sequence of commits [8, 67]. However, a behavioral study on the usage
of static analysis tools in the Integrated Development Environment (IDE) has not been con-
ducted. Given the evolution between commits, we want to obtain more fire-grained data by
analyzing how developers deal with warnings while working on their software project.

1

1. INTRODUCTION

1.1 Research Questions

To learn more about the behavior and usage of static analysis tools in the IDE, the following
research questions (combined with their respective motivation) are the basis of this master
thesis:

RQ1 What steps are required to monitor static analysis warnings occurrences in the
IDE?

To be able to answer any question regarding behavior and usage of static analysis
tools, we need to obtain the required information from the IDE. Therefore, we need
to investigate how we can instrument an IDE to be able to listen to the warning oc-
currences and discover any potential complicating factors of the chosen approach.

RQ1.1 What steps are required to monitor external static analysis plugins that
augment an IDE?
Not only the IDE, but also other static analysis plugins issue static analysis
warnings. To be able to integrate additional plugins alongside the core IDE, we
need to also monitor external plugin messages.

RQ2 What is the relative frequency between static analysis warning categories?

Static analysis tools are used for a variety of use-cases. To that end, we hypothesize
that static analysis warnings from one category are more frequently occurring than
other categories, as developers prioritize failures in one category over another. We
are interested in the distribution of warning categories, whether several categories are
dominant or if the overall distribution is largely uniform.

RQ2.1 Do experienced developers have lower warning frequency?
Besides the relative frequency between categories, we are also interested in the
relative frequency between developers. Here, we want to know whether the pro-
gramming experience of developers is influential in the total warning frequency.

RQ3 What is the lifetime of a static analysis warning?

Static analysis warnings are shown to the developer to incentivize them to resolve a
particular issue. The end goal of a warning is therefore the resolution of the warning.
Therefore, the lifetime of a warning is interesting to understand how developers react
to these warnings. Here, we assume that a shorter resolution time indicates that the
warning was more easy and/or more important to resolve.

RQ3.1 Do experienced developers resolve warnings quicker?
Besides overall lifetime, we are interested in the effect of programming experi-
ence on the lifetime. We anticipate to find a difference in lifetime, as we think
experience indicates that developers have more knowledge on how to tackle
these warnings.

2

1.1. Research Questions

RQ3.2 Do developers with a lot of warnings resolve these warnings quicker?
While experience is a factor, another viewing angle is the lifetime compared
to actual frequency. It might be the case that developers who see very few
warnings also take a long time to resolve them, while developers who see a lot
of warnings also solve them much quicker. Or vice versa: developers who see a
lot of warnings are overwhelmed and are disinclined to resolve any warning at
all.

RQ4 Are there differences between sections of a file in terms of created or resolved
warning frequency?

Not only the frequency, but the location of a warning can also be a factor in terms
of resolution frequency. If a warning is in a section that is not regularly viewed by
a developer, chances are this warning is unlikely to be resolved at all. Therefore, we
would like to know if particular sections of a file (categories of) warnings are more
frequently occurring than other sections.

RQ4.1 Are there differences between sections of a file in terms of unresolved warn-
ing frequency?
With successful resolution, the developer not only was aware of the warning,
but was also able to apply an appropriate fix. For all warnings that have not
been resolved (yet), the location of the warning could be an indicator for why
the warning is not resolved.

For example, imports are declared at the top of the file. Any unused imports
warnings are usually not in view when a developer is working on a particular
piece of code, so could be unaware of the existence of these warnings.

RQ5 How do developers perceive the usefulness of static analysis warnings?

Besides a quantative analysis, we are interested in the qualitative view of developers
on static analysis tools. Questions will focus on usability as well as appliance of
general practices.

RQ5.1 How do developers try to resolve a particular static analysis warning?
We would like to know what approach developers take to resolve warnings.
This data-point augments our observations with the motivations for and way of
resolving these warnings.

RQ5.2 Does the usage of static analysis tools deter developers from contributing
to a project?
Together with the general practices, we would like to know the impact of tools
being used to influence contribution efforts of developers. In here, we want to
know if adoption of static analysis tools is perceived as a roadblock to contribu-
tions or not.

3

1. INTRODUCTION

1.2 Chapter overview

This master thesis should be placed in the appropriate research context. To that end, Chapter
2 elaborates on previous research, their findings and interesting results that provide a ba-
sis for this work. The first step of analyzing behavior is deciding the mode of observation.
Chapter 3 lists several options and explains the final decision on tool choice. The implemen-
tation of the tool in the two IDEs IntelliJ Idea and Eclipse, explained in Chapter 4, answers
research question RQ1. As a result of a lack of detailed API, Chapter 5 expands on the
implementation by introducing a classification algorithm for static analysis warnings. By
classifying warnings, we lose detailed information, which has implications for answering
research question RQ1.1.

Research questions RQ2 through RQ4 are answered by the results analysis based on the
obtained telemetry, listed in Chapter 6. Chapter 7 answers research question RQ5 based on
the responses to a survey we published. Based on our findings, we list several threats to va-
lidity and we propose several improvements to both research and industry implementations
of the IDEs and static analysis tools in Chapter 8.

4

Chapter 2

Related work

This master thesis should be placed in the context of related work performed on static anal-
ysis and editors. This chapter therefore includes two sections for both topics as well as a
section that elaborates on the combination of these two topics.

2.1 Static Analysis

Static analysis is the practice of analyzing the structure of a program, with the goal of
obtaining certain properties of that program [23]. Analyses can be run on different repre-
sentations of the program: the Abstract Syntax Tree (AST) [71], the call graph of functions
with their calling dependencies [6] or the control flow graph of a single function [41]. The
properties that can be obtained include type checking to ensure correctness of a program
on compile time [16], performing optimizations based on a class hierarchy analysis [21] or
finding potential security issues [43]. While static analysis can obtain a variety of properties
of a program, the practice remains undecidable and therefore prohibits static analysis from
perfectly predicting the outcome without running the program [40].

One application of static analysis is in an Automated Static Analysis Tool (ASAT),
which can be used for different purposes [31]. A common use-case is the automation of
tasks that would otherwise be fully manual. By automating such tasks, developers not only
save time, but the risk of missing potential issues is also lower. A concrete example is
the automation of checking for missing license headers in open source projects in order to
prevent code being published without a license [70]. Another example is that static analysis
is also used to enforce consistency of code style across developers in the same development
team [8, 31].

ASATs are run in multiple development contexts. Vassallo et al. define three contexts:
continuous integration, code review, and local programming [68]. Running ASATs in a
Continuous integration (CI) build can lead to a reduction in total number of warnings in a
project [67]. During code review, the ASATs results obtained from a CI build are an impor-
tant factor for integrators when they need to decide whether or not to accept a contribution
[27]. Lastly, ASATs are integrated into the local programming context via command line
interface (CLI) [10] as well as in their Integrated Development Environment (IDE) [31].

5

2. RELATED WORK

2.2 Integrated Development Environment

An IDE is an application that contains a variety of tools to assist developers, while offer-
ing document editing capabilities. Early research on software development discovered the
need for unification of and streamlining on software tools to improve the productivity of
developers [12]. Over time, IDEs evolved into a one-stop-shop with support for language
features such as syntax highlighting, autocompletion, documentation-on-hover and quick
navigation using reference resolution [51, 69]. Moreover, the language workbench Spoofax
has been developed to program these language features using Domain Specific Languages
(DSLs) [33]. Kats and Visser developed Spoofax as they realized that successful adoption
of a programming language largely depends on the external support for this language. Over
time language features like syntax highlighting became a prerequisite for adoption of the
programming language. However, since implementing these features is a time-consuming
task, using the DSLs available in Spoofax allows for faster development as solutions for
common subproblems are provided by the DSL codegenerator. To that end, IDE features
became a vital part of the current software engineering process.

Based on the PopularitY of Programming Language (PYPL) index, the most popu-
lar IDEs are Visual Studio1, Eclipse2, Android Studio3 (based on IntelliJ), Netbeans4 and
IntelliJ5 [15]. Some of these IDEs have a dedicated marketplace for extensions, for example
the Eclipse Marketplace6 or the Visual Studio Code marketplace7. The marketplaces con-
tain a wide variety of extensions that can enhance the functionality of the editor. Examples
include improved editor autocompletion for import paths8,9 or the ability to debug a running
application in a web browser10. Extensions became such an integral part of the ecosystem
that curated lists are available that list the most popular/useful extensions for an editor11,12.

Previous research has been conducted to obtain quantatitive data on how developers use
the IDE to execute automated tests [7], perform debugging activities [62] and which views
of an IDE are commonly used [47]. Murphy et al. found out that in Eclipse the package
explorer view is most commonly used to navigate to code of interest [47]. The package
explorer is the view that displays the folder structure, Java package structure as well as the
project dependencies. Other commonly used views are the console, search and problems
view. The problems view is the view that shows all static analysis warnings that exist in the
currently opened project, which was used by 95% of the developers.

1https://www.visualstudio.com/
2https://projects.eclipse.org/
3https://developer.android.com/studio/
4https://netbeans.org/
5https://www.jetbrains.com/idea/
6https://marketplace.eclipse.org/
7https://marketplace.visualstudio.com/
8https://marketplace.visualstudio.com/items?itemName=christian-kohler.path-intelli

sense
9https://atom.io/packages/autocomplete-module-import

10https://marketplace.visualstudio.com/items?itemName=msjsdiag.debugger-for-chrome
11https://github.com/viatsko/awesome-vscode
12https://github.com/mehcode/awesome-atom

6

https://www.visualstudio.com/
https://projects.eclipse.org/
https://developer.android.com/studio/
https://netbeans.org/
https://www.jetbrains.com/idea/
https://marketplace.eclipse.org/
https://marketplace.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=christian-kohler.path-intellisense
https://marketplace.visualstudio.com/items?itemName=christian-kohler.path-intellisense
https://atom.io/packages/autocomplete-module-import
https://marketplace.visualstudio.com/items?itemName=msjsdiag.debugger-for-chrome
https://github.com/viatsko/awesome-vscode
https://github.com/mehcode/awesome-atom

2.3. Static analysis in the IDE

Listing 2.1: Dead code detection on the second if -statement

i f (t e x t == n u l l) {
t e x t = " " ;

}
i f (text != null) {

System . o u t . p r i n t l n (t e x t) ;
} e l s e {

System . o u t . p r i n t l n (" Text i s n u l l ! ") ;
}

Listing 2.2: Refactored solution after invoking the developer action in IntelliJ

i f (t e x t == n u l l) {
t e x t = " " ;

}

System . o u t . p r i n t l n (t e x t) ;

Figure 2.1: Before and after of invoking a developer action on a dead code warning

2.3 Static analysis in the IDE

There are multiple ways how static analyses (warnings) are integrated in the IDE. IntelliJ
Idea by default ships with integrated static analyses such as dead code detection and finding
probable bugs [30]. Any issues that are detected are shown in the editor with appropriate
developer actions. For example, given a if -statement which is always true, the correspond-
ing developer action is to delete the condition. Figure 2.1 shows the before and after of
invoking the developer action on the if -statement condition.

Besides the default analyses, there are many IDE extensions that integrate ASATs into
the editor. SpotBugs13 (formerly known as FindBugs14) is an open source ASAT. While
ASATs can be used during code reviews [50], Johnson et al. found that integration of Find-
Bugs into the IDE is an important factor for the successful application of static analysis
[31]. By warning the developer as soon as possible, issues can be found and resolved more
quickly, possibly even automatically. In general, the longer it takes in the software engi-
neering development lifecycle to mitigate/resolve a problem, the more expensive it becomes
[64].

While most warnings that are generated have an automated fix that can be applied to re-
solve the warning (also known as refactoring [24]) this is not always the case. This problem

13https://spotbugs.github.io/
14http://findbugs.sourceforge.net/

7

https://spotbugs.github.io/
http://findbugs.sourceforge.net/

2. RELATED WORK

mostly stems of the inability to implement perfect refactoring techniques which do not alter
the program behavior [45]. The original definition of refactoring was coined by Opdyke
which defined a refactoring as behavior-preserving when the program before and after the
refactoring produces the same output given the same input set [49]. A previous exploration
on the behavior-preservingness of refactorings implemented in the IDEs Eclipse, JRRT and
Netbeans has shown that implementations differ and sometimes produce invalid refactorings
[60].

8

Chapter 3

Automated telemetry

To be able to gather statistics of the usage and occurrence frequency of static analysis warn-
ings in editors, either a manual analysis must be performed or a tool that gathers automated
telemetry must be developed. This chapter elaborates upon the various options and has
a deep dive into the multiple ways of implementation and basis of an tool for automated
telemetry.

3.1 Modes of observation

Babbie defines several modes of observation for social research, including experiments,
survey research, field research, unobtrusive research and evaluation research [5]. Of these
modes of observation, several modes are not usable for this thesis.

Firstly, evaluation research focuses on evaluating the results of a social intervention. In
other words, given a social intervention in a society, what are the changes to this society
and do they match the intended results? Since we want to observe the real-world practices
of software developers, we have no intention to change their behavior via the means of a
social intervention. Evaluation research is therefore not applicable for us.

Similarly, social experiments consist of letting experiment subjects perform a particular
action and observe any effects of this action on the subjects. This is almost equivalent to
evaluation research with the distinction that social experiments are not targeted to a specific
expected result. In other words, while evaluation research expects a certain result, social
experiment are not concerned with a desired effect.

In contrast to the former two options, unobtrusive research more closely matches the
desired research method. For unobtrusive research, existing statistics must be available.
Babbie provides several examples, including inspecting the radio dial settings when a car is
at the repair shop, to be able to determine the popularity of various radio stations. By count-
ing radio dial settings, car drivers (the subjects in this research) are unknowingly surveyed
for their radio station choice and are therefore not influenced by knowing they are being
surveyed. While this is desirable for our research, there are no existing statistics available
for research. We must therefore implement the statistics gathering process ourselves, to be
able to draw conclusions in a similar manner to unobtrusive research.

9

3. AUTOMATED TELEMETRY

Figure 3.1: A tooltip above a static analysis warning in Rider1

The last two active ways of obtaining statistics are survey research and field research. In
both research types subjects are aware of the existence of an observer, which is the explicit
difference with unobtrusive research. However, the presence and influence of the observer
can be limited to reduce the influence of "the problem of reactivity" [5]. Reactivity means
that subjects modify their behavior if they are aware of the existence of an observer. This
problem is most prevalent in survey research, where subjects might answer questions for
what they expect the researchers are looking for. Moreover, the behavior of subjects can be
influenced if they are simply aware of any observance at all, even if the researcher has not
performed any action or changed the social setting [58]. Even if the researchers’ intent to
perform an action to induce a social effect, the effect might be an artifact of the researchers
performing the research, rather than the desired result of the action. This effect is also
known as the Hawthorne Effect [1].

3.1.1 Static Analysis Warnings Observation

Given the described modes of observation, we are looking for a measure to observe de-
velopers, while preventing our research to influence their behavior. To that end, observing
developers in a controlled environment with manual inspection of the static analysis output
is undesirable. Manual analysis requires analyzing the tooltips of generated warnings (an
example is shown in Figure 3.1) or the full "Static Analysis" perspective (which is shown
in Figures 3.2 and 3.3), which would interrupt the developer workflow and influence their
behavior. Therefore, we need a field study to silently observe characteristics while the de-
veloper resides in their own environment, to minimize both the realization of developers
they are being observed and to maintain their own working environment.

All in all, we have to investigate the possibility of an automated method to gather statis-
tics of static analysis warnings. This automated telemetry tool should be a silent observer,
installed in the developer workflow and be able to gather any interesting characteristics.
Once we have a corpus of existing characteristics, we can use the method of unobtrusive
research to deduce behavior of our developer subjects. Afterwards, we can extend our re-
search findings with a developer survey to ask for targeted clarification of our findings.

1Source: https://blog.jetbrains.com/dotnet/2017/08/30/getting-started-rider-unity/
2Source: https://blog.jetbrains.com/idea/2016/05/intellij-idea-2016-2-eap

-162-426-1-is-out/
3Source: https://wiki.eclipse.org/CDT/designs/StaticAnalysis

10

https://blog.jetbrains.com/dotnet/2017/08/30/getting-started-rider-unity/
https://blog.jetbrains.com/idea/2016/05/intellij-idea-2016-2-eap-162-426-1-is-out/
https://blog.jetbrains.com/idea/2016/05/intellij-idea-2016-2-eap-162-426-1-is-out/
https://wiki.eclipse.org/CDT/designs/StaticAnalysis

3.2. Automated tool options

Figure 3.2: The Inspection tool window in IntelliJ IDEA2

Figure 3.3: The Problem Details view in Eclipse3

3.2 Automated tool options

Our chosen mode of observation for the static analysis warnings is field research. To that
end, we need an automated tool that can silently observe the developers behavior. Investi-
gating potential ready-made solutions for such a statistics analysis tool resulted in no tools
capable of tracking static analysis warnings. This left us with two options:

1. Develop a new tool from scratch
The first possibility is to develop a new tool from scratch. This option provides full
freedom in the implementation, the architecture design and flexibility in the develop-
ment process.

2. Adapt an existing tool
Another option is to adapt an existing static analysis tool and implement the necessary
extensions to also be able to gather statistics on static analysis warnings.

There are positive and negative aspects to both options. The dilemma between start-
ing from scratch or adapting an existing tool is also prevalent in the migration from legacy

11

3. AUTOMATED TELEMETRY

systems to a newer version [14]. An existing system poses architectural challenges on the
new functionality, for which limitations can be removed by starting fresh. By starting from
scratch, the developers can have a full focus on implementing the analysis as-is, without
the need to consider an existing architecture. In contrast, adapting an existing tool means
that certain aspects are already implemented. (Obviously a requirement for adaptation of
a tool is the existence of such a tool) For example the data storage, networking capabili-
ties and overall dataflow design have been thought out. While an existing architecture is
nice, there could be unspecified assumptions that could slow down or completely prohibit
implementing the required extension.

One other aspect to consider is the need of participants that will use the tool to gather the
data. To be able to analyze data, users must use the tool to generate this data. Starting from
scratch means that potential users have to be convinced to participate by installing the tool.
Instead, an existing tool that already has users can be updated to use the new observation
features. Updating an existing tool imposes a significantly lower barrier for users than going
through installation and learning a new tool.

The choice of the automated telemetry tool is therefore two-sided: the technical aspects
of the implementation and the social aspects in terms of users. Given the time-constraints
of the master thesis combined with the technical skills of the authors, the technical aspects
can be resolved in less time than the social aspects of user recruitment. As such, we made
the assumption that, to be able to analyze a substantial amount of data, adapting an existing
system would eventually result in the most useful and diverse data.

3.3 Analysis existing tools

Searching source code hosting websites such as GitHub4 for editor plugins capable of statis-
tics tracking gave us the following results:

• Code::Stats5

Code::Stats is a small, programming experience gathering and open-source6 service.
The various editor plugin implementations listen for keystrokes and assign experience
points for the amount of code the developer typed. While the software is open-source,
the gathered data is stored on a server maintained by the authors and is available
through a REST API7.

• WakaTime8

WakaTime is a proprietary, yet open-source9, Software As A Service (SAAS) solu-
tion for time tracking development by users. It offers an interactive dashboard to
monitor the development hours over time, including possible filters by programming

4https://github.com
5https://codestats.net/
6https://github.com/code-stats
7https://codestats.net/api-docs
8https://wakatime.com/
9https://github.com/wakatime

12

https://github.com
https://codestats.net/
https://github.com/code-stats
https://codestats.net/api-docs
https://wakatime.com/
https://github.com/wakatime

3.4. Existing tools pros and cons

language, project and usage of a versioning system. Just like with Code::Stats is the
software of WakaTime open-source, but requires a REST API10 to access all charac-
teristics.

• WatchDog11

WatchDog is an open-source12 editor plugin for IntelliJ Idea13 and Eclipse14 devel-
oped by SERG-Delft, led by Moritz Beller (co-supervisor of this thesis) [7]. WatchDog
keeps track of editor events such as keystrokes, test runs and debug events. The gen-
erated data of WatchDog is stored in a MongoDB15 instance accessible to research
members of SERG-Delft.

3.4 Existing tools pros and cons

There are several influencing factors for choosing an existing tool. First of all, there should
be sufficient infrastructure available to allow new features to be added. This infrastructure
includes ease of deployment for the authors, to be able to make updates on the data gathering
process. Moreover, the generated data should be easily accessible to the authors. Based on
these factors, the following conclusions were made regarding the list of existing tools.

Code::Stats is focused on translating the number of keystrokes to approximate program-
ming experience. While keeping tracking of keystrokes can be easily expanded to also track
static analysis warnings, there is an explicit focus on programming experience. We expect
that the maintainers of Code::Stats will likely be reluctant to support other functionality,
which would complicate the introduction of static analysis features. Therefore, we decided
to not expand upon Code::Stats as it would be unlikely to land the required features to obtain
the data.

Development of WakaTime requires approval by the company maintaining the SAAS
solution. This means that, before we as researchers are able to analyze the data, we would
need to go through an approval cycle with the authors, update all corresponding plugins
and then convince users to allow our application from querying the REST API. Given the
time constraints of this thesis and the risk of potential rejection of product updates in con-
junction with the existing need of convincing existing users to allow us access to their data,
WakaTime is not a viable option.

WatchDog is a TU-Delft hosted solution, which means that the authors can publish
updates and receive data more easily than a proprietary solution like WakaTime. There is
existing infrastructure for tracking of events with corresponding networking and database
storage capabilities. However, there has not been active development on WatchDog for 1,5
years. This could potentially be problematic in terms of discovering maintenance problems
while working on expanding the feature set.

10https://wakatime.com/developers
11https://testroots.org/testroots_watchdog.html
12https://github.com/testRoots/watchdog/
13https://www.jetbrains.com/idea/
14https://www.eclipse.org/
15https://www.mongodb.com/

13

https://wakatime.com/developers
https://testroots.org/testroots_watchdog.html
https://github.com/testRoots/watchdog/
https://www.jetbrains.com/idea/
https://www.eclipse.org/
https://www.mongodb.com/

3. AUTOMATED TELEMETRY

3.5 Final choice

Overall, WatchDog is both developed by SERG-Delft and has sufficient existing infrastruc-
ture and users to built upon. The other two tools are proprietary and expose greater risk in
terms of feature acceptance and gaining access to the gathered users data. While WatchDog
has not seen active development for a while, these technical challenges are easier to over-
come than the political challenges of convincing businesses of implementing the research
functionality.

14

Chapter 4

Static analysis in editors

The implementation of the static analysis tracking in WatchDog requires two editor-specific
implementations: IntelliJ IDEA and Eclipse. These two editors are already supported by
WatchDog and have hundreds of users per editor [9]. The overall programming models
are different in each editor, which requires custom solutions for each editor. This section
describes the thought process and implementation details of the editor plugins. In the end,
the capabilities of each editor have an impact on the fidelity of the gathered data that can be
analyzed by the authors.

4.1 Code Inspection with IntelliJ IDEA

JetBrains uses the concept of Code Inspection: "IntelliJ IDEA features robust, fast, and
flexible static code analysis. It detects the language and runtime errors, suggests corrections
and improvements before you even compile." [63] Code Inspections are integrated in the
application in multiple ways. While editing source code, potential warnings and compila-
tion errors are shown in the text editor, see Figure 3.1. Developers can quickly navigate
between these warnings to resolve any possible issue in a timely manner. Secondly, any
compilation error is also shown in the project file tree view. Figure 4.1 shows how a compi-
lation error in Launcher.scala produces a red squiggly underline on the file and all its parent
directories. Since there is no compilation error in the core directory, this directory does not
have a red underline. Using these highlights, developers can find non-compiling files in a
large project. Lastly, developers can execute the full set of available code inspections in
the Analyze submenu with bulk mode1. All discovered issues or warnings are shown in the
Inspections Result Tool Window, as shown in Figure 3.2.

1https://www.jetbrains.com/help/idea/running-inspections.html
2Source: https://blog.jetbrains.com/scala/2017/06/26/intellij-idea-scala-plugi

n-2017-1-3-simplified-project-view-scalatest-selection-by-regexp-improved-akka-sup
port/

15

https://www.jetbrains.com/help/idea/running-inspections.html
https://blog.jetbrains.com/scala/2017/06/26/intellij-idea-scala-plugin-2017-1-3-simplified-project-view-scalatest-selection-by-regexp-improved-akka-support/
https://blog.jetbrains.com/scala/2017/06/26/intellij-idea-scala-plugin-2017-1-3-simplified-project-view-scalatest-selection-by-regexp-improved-akka-support/
https://blog.jetbrains.com/scala/2017/06/26/intellij-idea-scala-plugin-2017-1-3-simplified-project-view-scalatest-selection-by-regexp-improved-akka-support/

4. STATIC ANALYSIS IN EDITORS

Figure 4.1: File tree view in IntelliJ IDEA highlighting a compilation error in
Launcher.scala2

4.1.1 Internal implementation

While there is extensive documentation on how developers can use the code inspections,
there is no documentation on the internal implementation of the editor. This required exten-
sive research by us to determine how these features are implemented.

The features described in the previous section are all based on the DaemonCodeAna-
lyzer3. This Daemon runs in the background to run all registered inspections retrieved from
InspectionToolRegistrar4. Each InspectionTool can be independently run and is either Lo-
cal or Global. LocalInspectionTools5 are tools that take 1 file as input, to compute potential
issues. In contrast, GlobalInspectionTools6 runs on an AnalysisScope with a GlobalInspec-
tionContext. These classes contain the required traversal techniques to process multiple files
at once. The traversal techniques are based on the Visitor pattern [25].

Both types of tools return a list of ProblemDescriptor7 objects which describe the issues
that have been found, which PsiElement they are tied to in the Abstract Syntax Tree (AST)
and whether they can be automatically fixed using a QuickFix8. The ProblemDescriptors are
of interest for the static analysis statistics gathering, as they indicate the found problems and
are also shown to the developer in the editor. To create a ProblemDescriptor, the inspection

3https://github.com/JetBrains/intellij-community/blob/b205caf9f3/platform/analysi
s-api/src/com/intellij/codeInsight/daemon/DaemonCodeAnalyzer.java

4https://github.com/JetBrains/intellij-community/blob/40fb7c49db/platform/analysi
s-impl/src/com/intellij/codeInspection/ex/InspectionToolRegistrar.java

5https://github.com/JetBrains/intellij-community/blob/40fb7c49db/platform/analysi
s-api/src/com/intellij/codeInspection/LocalInspectionTool.java

6https://github.com/JetBrains/intellij-community/blob/40fb7c49db/platform/analysi
s-api/src/com/intellij/codeInspection/GlobalInspectionTool.java

7https://github.com/JetBrains/intellij-community/blob/e674d7047c/platform/analysis
-api/src/com/intellij/codeInspection/ProblemDescriptor.java

8https://github.com/JetBrains/intellij-community/blob/e674d7047c/platform/analysis
-api/src/com/intellij/codeInspection/QuickFix.java

16

https://github.com/JetBrains/intellij-community/blob/b205caf9f3/platform/analysis-api/src/com/intellij/codeInsight/daemon/DaemonCodeAnalyzer.java
https://github.com/JetBrains/intellij-community/blob/b205caf9f3/platform/analysis-api/src/com/intellij/codeInsight/daemon/DaemonCodeAnalyzer.java
https://github.com/JetBrains/intellij-community/blob/40fb7c49db/platform/analysis-impl/src/com/intellij/codeInspection/ex/InspectionToolRegistrar.java
https://github.com/JetBrains/intellij-community/blob/40fb7c49db/platform/analysis-impl/src/com/intellij/codeInspection/ex/InspectionToolRegistrar.java
https://github.com/JetBrains/intellij-community/blob/40fb7c49db/platform/analysis-api/src/com/intellij/codeInspection/LocalInspectionTool.java
https://github.com/JetBrains/intellij-community/blob/40fb7c49db/platform/analysis-api/src/com/intellij/codeInspection/LocalInspectionTool.java
https://github.com/JetBrains/intellij-community/blob/40fb7c49db/platform/analysis-api/src/com/intellij/codeInspection/GlobalInspectionTool.java
https://github.com/JetBrains/intellij-community/blob/40fb7c49db/platform/analysis-api/src/com/intellij/codeInspection/GlobalInspectionTool.java
https://github.com/JetBrains/intellij-community/blob/e674d7047c/platform/analysis-api/src/com/intellij/codeInspection/ProblemDescriptor.java
https://github.com/JetBrains/intellij-community/blob/e674d7047c/platform/analysis-api/src/com/intellij/codeInspection/ProblemDescriptor.java
https://github.com/JetBrains/intellij-community/blob/e674d7047c/platform/analysis-api/src/com/intellij/codeInspection/QuickFix.java
https://github.com/JetBrains/intellij-community/blob/e674d7047c/platform/analysis-api/src/com/intellij/codeInspection/QuickFix.java

4.1. Code Inspection with IntelliJ IDEA

tools use the InspectionManager9.
However, the classes described thus far do not allow for external actors to attach lis-

teners to be notified whenever an issue is detected. This means that it is not possible to
be notified whenever each of these API’s is invoked and it is not possible to know which
ProblemDescriptors are created. To be able to retrieve the issues, a different method had to
be developed.

4.1.2 Searching for an API hook

There are multiple possibilities for pro-actively retrieving the generated issues. This would
mean that in reaction to a pre-defined event, the tool could request the current state of gen-
erated issues. To be able to investigate possibilities, we searched for all usage occurrences
of ProblemDescriptor throughout the editor source code.

GlobalInspectionContext

The first attempt was to use the GlobalInspectionContext to retrieve any issues that are as-
sociated with this context. To recall, the context is used in GlobalInspectionTools, which
they traverse and based on the AST can report issues. The reason this seemed to be a fruitful
attempt was that the context exposed a method called getPresentationOrNull, which returns
an InspectionToolPresentation that in turn implements getProblemDescriptors. The snip-
pet in Listing 4.2 shows the API usage of this approach. However, the problem with this
approach is the inability to retrieve the GlobalInspectionContext that was actually used by
the DaemonCodeAnalyzer. This meant that using this approach on a new GlobalInspection-
Context always returns an empty problems list.

codeAnalyzer.runMainPasses

Since the original context was unavailable, another option was to re-run the DaemonCode-
Analyzer to retrieve the raw output. This would be possible with the runMainPasses method
which can run on a document to get back a list of HighlightInfo. The full snippet is shown in
Listing 4.3. While HightlighInfo does not contain the same information as ProblemDescrip-
tor, it still stores the textual output which developers read in the tooltips and the Inspection
Results window. As the snippet shows, this approach requires the existence of a reference to
the psiFile and editor. Invocation of runMainPasses should therefore happen in a callback
that is invoked whenever an editor is created.

Contrary to our expectations, runMainPasses always returns an empty list when in-
voked. Extensive research of the implementation of runMainPasses10 and a similar-looking
method runPasses11 were not fruitful. Given the non-existence of source code documenta-

9https://github.com/JetBrains/intellij-community/blob/e674d7047c/platform/analysis
-api/src/com/intellij/codeInspection/InspectionManager.java

10https://github.com/JetBrains/intellij-community/blob/62ce2234ba/platform/lang-imp
l/src/com/intellij/codeInsight/daemon/impl/DaemonCodeAnalyzerImpl.java#L230-L282

11https://github.com/JetBrains/intellij-community/blob/62ce2234ba/platform/lang-imp
l/src/com/intellij/codeInsight/daemon/impl/DaemonCodeAnalyzerImpl.java#L292-L399

17

https://github.com/JetBrains/intellij-community/blob/e674d7047c/platform/analysis-api/src/com/intellij/codeInspection/InspectionManager.java
https://github.com/JetBrains/intellij-community/blob/e674d7047c/platform/analysis-api/src/com/intellij/codeInspection/InspectionManager.java
https://github.com/JetBrains/intellij-community/blob/62ce2234ba/platform/lang-impl/src/com/intellij/codeInsight/daemon/impl/DaemonCodeAnalyzerImpl.java#L230-L282
https://github.com/JetBrains/intellij-community/blob/62ce2234ba/platform/lang-impl/src/com/intellij/codeInsight/daemon/impl/DaemonCodeAnalyzerImpl.java#L230-L282
https://github.com/JetBrains/intellij-community/blob/62ce2234ba/platform/lang-impl/src/com/intellij/codeInsight/daemon/impl/DaemonCodeAnalyzerImpl.java#L292-L399
https://github.com/JetBrains/intellij-community/blob/62ce2234ba/platform/lang-impl/src/com/intellij/codeInsight/daemon/impl/DaemonCodeAnalyzerImpl.java#L292-L399

4. STATIC ANALYSIS IN EDITORS

final InspectionManagerEx instance =
(InspectionManagerEx) InspectionManager.getInstance(project);

GlobalInspectionContextImpl context =
(GlobalInspectionContextImpl) instance.createNewGlobalContext(true);

final List<InspectionToolWrapper> inspectionToolWrappers =
InspectionToolRegistrar.getInstance().get();

final List<CommonProblemDescriptor> problems = inspectionToolWrappers.stream()
.flatMap(wrapper -> {

final InspectionToolPresentation presentationOrNull =
context.getPresentationOrNull(wrapper);

if (presentationOrNull == null) {
return Stream.empty();

}

return presentationOrNull.getProblemDescriptors().stream();
})
.collect(Collectors.toList());

Figure 4.2: Retrieve all ProblemDescriptors from the GlobalInspectionContext

final DaemonCodeAnalyzerImpl codeAnalyzer = (DaemonCodeAnalyzerImpl)
DaemonCodeAnalyzerImpl.getInstance(project);

final List<HighlightInfo> highlightInfos = codeAnalyzer.runMainPasses(
psiFile, editor.getDocument(), new EmptyProgressIndicator());

Figure 4.3: Manually run the DaemonCodeAnalyzer on a file

tion, it is unclear what the original intention of the API implementers is nor what require-
ments are imposed on the state of the application. The function is not pure, as it relies on
the side-effect of registered highlighters. It is unclear how external developers can initiate
this state such that runMainPasses returns the corresponding warnings. This rendered this
approach useless for our intent.

InspectionEngine.runInspectionOnFile

At this point it became clear that retrieving the warnings by means of obtaining the previous
output, using one of the classes described above, would not work. Besides the Daemon-
CodeAnalyzer, another class related to running inspections is the InspectionEngine12. This
class exposes the method runInspectionOnFile, which requires similar parameters to the
ones used in the previous approaches. Listing 4.4 shows the usage of this API, which relies
on the variables declared in the Listing 4.2.

12https://github.com/JetBrains/intellij-community/blob/62ce2234ba/platform/analysi
s-impl/src/com/intellij/codeInspection/InspectionEngine.java

18

https://github.com/JetBrains/intellij-community/blob/62ce2234ba/platform/analysis-impl/src/com/intellij/codeInspection/InspectionEngine.java
https://github.com/JetBrains/intellij-community/blob/62ce2234ba/platform/analysis-impl/src/com/intellij/codeInspection/InspectionEngine.java

4.1. Code Inspection with IntelliJ IDEA

final List<ProblemDescriptor> problems = inspectionToolWrappers.stream()
.flatMap(wrapper ->

InspectionEngine.runInspectionOnFile(file, wrapper, context).stream())
.collect(Collectors.toList());

Figure 4.4: Manually run each InspectionTool on a file with the InspectionEngine

1 import java.util.List;
2

3 public class Foo {
4 public static void main(String[] args) {
5 if (!!false) {
6

7 }
8 }
9 }

Figure 4.5: Example file with several issues

This approach successfully returned some issues for the example file shown in Listing
4.5. In this example, line 1 has an unused import, the expression on line 5 a double negation
and the full if-statement on lines 5 through 7 is empty. These three warnings are detected
by IntelliJ IDEA, where the unused import has gray text (it is a weak warning) while the
latter two have a yellow background, as shown in Figure 4.6. However, closer inspection of
the returned issues showed that only the yellow highlighted warnings were returned by the
API. Weak warnings, such as the unused import and duplicate code detection, could not be
retrieved.

Secondly, the large number of existing inspections resulted in a long computation time
of runInspectionOnFile. On the example file, one single iteration took several seconds.
During this time, the User Interface of IntelliJ is unresponsive, which is intrusive to devel-
opers using the plugin. Attempts to move the invocations to a background thread13 resulted
in Exceptions regarding "invalid Thread access". Invocations of runInspectionOnFile are
only allowed in the UI thread, which would significantly impact the developer experience.
This method would therefore be intrusive to the subjects that have WatchDog installed. Not
only would the input delay be undesirable, it also introduces the problem of reactivity (as
explained in Section 3.1) and thus influence our research results.

13http://www.jetbrains.org/intellij/sdk/docs/basics/architectural_overview/general_
threading_rules.html#background-processes-and-processcanceledexception

19

http://www.jetbrains.org/intellij/sdk/docs/basics/architectural_overview/general_threading_rules.html#background-processes-and-processcanceledexception
http://www.jetbrains.org/intellij/sdk/docs/basics/architectural_overview/general_threading_rules.html#background-processes-and-processcanceledexception

4. STATIC ANALYSIS IN EDITORS

Figure 4.6: Editor warnings as shown in IntelliJ IDEA

MarkupModel.getAllHighlighters()

After reaching out to JetBrains14, explaining the unsuccessful attempts thus far, one IntelliJ
engineer pointed out the existence of an API to retrieve all warnings shown to the user. This
API consists of obtaining the MarkupModel15 representation of the document via Docu-
mentMarkupModel.forDocument(document, project, true). The model is the in-memory
representation of all warnings, for which MarkupModel.getAllHighlighters() returns all
RangeHighlighters which represent both the weak warnings as well as the more promi-
nent yellow highlighted warnings. RangeHighlighters represent the warnings shown, but
have a more limited API than ProblemDescriptors.

To be able to retrieve the warning, RangeHighlighter.getErrorStripeTooltip() returns an
HighlightInfo16 which has a severity, textual description and quickfixes. The textual de-
scription is the serialized user-friendly format representing the original ProblemDescriptor.
However, for a consumer interested in static analysis statistics gathering, the textual de-
scription poses challenges, which limit the usability and overall value of the data.

Conclusion

Concluding, the internal Code Inspection implementation in IntelliJ does not expose an API
hook for external listeners. Only the in-memory representation of the warnings exposed
sufficient amount of data for the use-case. However, the HighlightInfo class exposes only a
textual description, which impacts the overall usability of the data and future data analysis.
For more information about this impact, see Chapter 5.

14https://intellij-support.jetbrains.com/hc/en-us/community/posts/115000759224-Obtai
n-Inspection-output-for-a-given-file

15https://github.com/JetBrains/intellij-community/blob/cebd5236a3/platform/editor-u
i-api/src/com/intellij/openapi/editor/markup/MarkupModel.java

16https://github.com/JetBrains/intellij-community/blob/master/platform/analysis-imp
l/src/com/intellij/codeInsight/daemon/impl/HighlightInfo.java

20

https://intellij-support.jetbrains.com/hc/en-us/community/posts/115000759224-Obtain-Inspection-output-for-a-given-file
https://intellij-support.jetbrains.com/hc/en-us/community/posts/115000759224-Obtain-Inspection-output-for-a-given-file
https://github.com/JetBrains/intellij-community/blob/cebd5236a3/platform/editor-ui-api/src/com/intellij/openapi/editor/markup/MarkupModel.java
https://github.com/JetBrains/intellij-community/blob/cebd5236a3/platform/editor-ui-api/src/com/intellij/openapi/editor/markup/MarkupModel.java
https://github.com/JetBrains/intellij-community/blob/master/platform/analysis-impl/src/com/intellij/codeInsight/daemon/impl/HighlightInfo.java
https://github.com/JetBrains/intellij-community/blob/master/platform/analysis-impl/src/com/intellij/codeInsight/daemon/impl/HighlightInfo.java

4.2. IMarkers in Eclipse

IWorkspace workspace = ResourcesPlugin.getWorkspace();
IResourceChangeListener markupModelListener =

new EclipseMarkupModelListener();
workspace.addResourceChangeListener(markupModelListener,

IResourceChangeEvent.POST_BUILD);

Figure 4.7: Attach an IResourceChangeListener to the workspace

4.2 IMarkers in Eclipse

Using the knowledge obtained from the investigation of Code Inspections in IntelliJ, search-
ing for similar capabilities in Eclipse was a lot easier. Eclipse uses the notion of Resource
Markers17. To be able to gather markers in a file, any Resource implements the method
findMarkers. For example, file.findMarkers(IMarker.PROBLEM, true, 0) returns all (static
analysis) issues in the file.

To be able to listen to resource changes, Listing 4.7 shows how the EclipseMarkup-
ModelListener in WatchDog is attached to a workspace. Every time the user saves a file and
invokes a build, the IResourceChangeListener18 is invoked. In the callback of the listener,
a delta of all changed files is provided. Using the Visitor pattern, a IResourceDeltaVisitor19

can iterate through all changed files and then invoke findMarkers on each resource.
At this point, we obtained a list of current warnings that exist in the resource. However,

unlike the IntelliJ implementation, we are not notified when markers are removed. This
means that we have to keep track of all changes ourselves, by comparing these snapshots of
markers and performing a diffing algorithm on these lists.

4.2.1 Diffing algorithm

The abstract problem of efficiently computing a diff of markers in Eclipse is the Longest
common subsequence problem. Implementations for this problem are included in programs
such as Unix diff 20 and git diff 21. The implementation in WatchDog Eclipse is inspired by
the O(ND) algorithm introduced by Myers [48].

This algorithm is based on an edit-graph, in which modifications are represented as
horizontal or vertical movement, while equivalent characters are diagonal steps through the
graph. Figure 4.8 shows how the difference between source string xCxDxE and target string
xCDxEx is visually represented. In this case, a horizontal edge indicates the deletion of a
character in the source string, while a vertical edge indicates the addition of a character in

17https://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Fgu
ide%2FresAdv_markers.htm

18https://github.com/eclipse/eclipse.platform.resources/blob/79b63f480a/bundles/org
.eclipse.core.resources/src/org/eclipse/core/resources/IResourceChangeListener.java

19https://github.com/eclipse/eclipse.platform.resources/blob/79b63f480a/bundles/org
.eclipse.core.resources/src/org/eclipse/core/resources/IResourceDeltaVisitor.java

20hunt1976algorithm
21https://git-scm.com/docs/git-diff

21

https://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Fguide%2FresAdv_markers.htm
https://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Fguide%2FresAdv_markers.htm
https://github.com/eclipse/eclipse.platform.resources/blob/79b63f480a/bundles/org.eclipse.core.resources/src/org/eclipse/core/resources/IResourceChangeListener.java
https://github.com/eclipse/eclipse.platform.resources/blob/79b63f480a/bundles/org.eclipse.core.resources/src/org/eclipse/core/resources/IResourceChangeListener.java
https://github.com/eclipse/eclipse.platform.resources/blob/79b63f480a/bundles/org.eclipse.core.resources/src/org/eclipse/core/resources/IResourceDeltaVisitor.java
https://github.com/eclipse/eclipse.platform.resources/blob/79b63f480a/bundles/org.eclipse.core.resources/src/org/eclipse/core/resources/IResourceDeltaVisitor.java
hunt1976algorithm
https://git-scm.com/docs/git-diff

4. STATIC ANALYSIS IN EDITORS

Figure 4.8: Visual graph representation of the difference between xCxDxE and xCDxEx22

the target string. The diff between the two strings is therefore -x on position 3 and +x after
position 6.

In WatchDog, instead of using characters in single positions, the textual representation
of a static analysis warning is used to compute the diff. For example, the diff from the
warnings shown in Figure 4.9 is the removal of the warnings Unused import java.util.List
and Duplicate field "Bar", while the warning Unused local variable "local2" has been in-
troduced. The implicating factor of this approach is the inability to detect unique warning
changes.

In Figure 4.10, both listings will produce the warning Unused parameter "local1". How-
ever, the original warning of the parameter in function1 has been resolved, while instead the
warning has been introduced on the parameter in function2. Since Eclipse produces warn-
ings in snapshots, both snapshots will have the same textual warning. The diffing algorithm
will therefore not detect these changes, as a result of not having an API in Eclipse which
exposes the required information. This limitation is therefore a direct result of the lack of
API, in a similar fashion to the lack of API in IntelliJ, as described in Section 4.1.2.

22Source: https://epxx.co/artigos/diff_en.html

22

https://epxx.co/artigos/diff_en.html

4.2. IMarkers in Eclipse

Listing 4.1: Static analysis warning snapshot before

Unused i m p o r t j a v a . u t i l . L i s t .
Unused i m p o r t j a v a . u t i l . S e t .
D u p l i c a t e f i e l d " foo " .
D u p l i c a t e f i e l d " Bar " .
Unused l o c a l v a r i a b l e " l o c a l " .

Listing 4.2: Static analysis warning snapshot after

Unused i m p o r t j a v a . u t i l . S e t .
D u p l i c a t e f i e l d " foo " .
Unused l o c a l v a r i a b l e " l o c a l " .
Unused l o c a l v a r i a b l e " l o c a l 2 " .

Figure 4.9: Example diff between two static analysis warning snapshots

Listing 4.3: Initial definition of two Java methods with an unused local variable

public static void function1(String local1) {}
public static void function2() {}

Listing 4.4: Second definition of two Java methods with an unused local variable

public static String function1(String local1) {
return local1 + local1;

}
public static void function2(String local1) {}

Figure 4.10: Example of two method definitions which produce equivalent static analysis
warning snapshots

23

4. STATIC ANALYSIS IN EDITORS

Added warn ing " Unused i m p o r t j a v a . u t i l . L i s t . "
Added warn ing " Unused i m p o r t j a v a . u t i l . S e t . "
Removed warn ing " Unused i m p o r t j a v a . u t i l . L i s t . "
Added warn ing " Unused i m p o r t j a v a . u t i l . L i s t . "
Removed warn ing " Unused i m p o r t j a v a . u t i l . S e t . "

Figure 4.11: Sequence of warnings generated in IntelliJ

4.3 Lowest common denominator implementation

To eliminate the variable of editor choice in the data analysis, the implementation used in
each editor is based on the lowest common denominator between the implementations of
the editors. As a result of this approach, the frequency of warnings in IntelliJ is artificially
delayed to match the frequency of warnings in Eclipse. In other words: while IntelliJ pro-
vides real time updates when a developer types, Eclipse only provides this information after
every build, which happens when the developer saves a file. The warnings in IntelliJ are
therefore gathered over time and after a file is saved, the snapshot is calculated.

The sequence of generated and removed warnings is stored between file saves. Given
the sequence of events in Figure 4.11, the end-result that is processed is 1 generated warning
"Unused import java.util.List", since the first "List" and the "Set" warning are both removed
before the file was saved. This approach is in line with the fidelity of the API in Eclipse,
which will produce one snapshot consisting of "Unused import java.util.List" at the moment
of saving the file. The implementation in WatchDog is shown in Figure 4.12. Here, gen-
eratedWarnings and removedWarnings are Sets which are processed and cleared after the
file is saved. While insertion, lookup and removal are normally O(N) in a Collection, the
backing implementation in WatchDog is a HashSet, which has constant time performance
for collection modification and traversal23.

By using the lowest common denominator, an editor implementation must be adapted
to the other editor implementations. In our case, this mostly involved adapting the IntelliJ
implementation to maintain equivalent behavior to the Eclipse implementation. To make
sure the performance impact is minimal, the in-memory cache is backed by an efficient
Collection. While the computational time impact is low, this adapter does require additional
memory and is therefore not without cost. Moreover, it introduces an extra indirection for
developers of WatchDog, which has an impact on the overall maintainability.

Secondly, while IntelliJ allows for high fidelity of static analysis monitoring, we now
make explicit use of a less granular approach. This has an impact on the overall utility of
the generated data, which could have been more fine-grained if we would only use IntelliJ.

23https://docs.oracle.com/javase/8/docs/api/java/util/HashSet.html
24https://github.com/JetBrains/intellij-community/blob/7fd2dc58fa/platform/editor-u

i-ex/src/com/intellij/openapi/editor/impl/event/MarkupModelListener.java

24

https://docs.oracle.com/javase/8/docs/api/java/util/HashSet.html
https://github.com/JetBrains/intellij-community/blob/7fd2dc58fa/platform/editor-ui-ex/src/com/intellij/openapi/editor/impl/event/MarkupModelListener.java
https://github.com/JetBrains/intellij-community/blob/7fd2dc58fa/platform/editor-ui-ex/src/com/intellij/openapi/editor/impl/event/MarkupModelListener.java

4.4. Static analysis IDE extensions

@Override
public void afterAdded(@NotNull RangeHighlighterEx rangeHighlighterEx) {

this.generatedWarnings.add(rangeHighlighterEx);
}

@Override
public void beforeRemoved(@NotNull RangeHighlighterEx rangeHighlighterEx) {

// Only process a deletion if we hadn't encountered this marker
// in this session before. If we did encounter it, remove returns
// `true` and the warning is not saved as removed.
if (!this.generatedWarnings.remove(rangeHighlighterEx)) {

this.removedWarnings.add(rangeHighlighterEx);
}

}

Figure 4.12: Usage of the in-memory cache in the implementation of the callbacks defined
by MarkupModelListener24to generate Eclipse-equivalent snapshots

4.4 Static analysis IDE extensions

While we wanted to obtain a basic set of warnings generated by the IDEs, there are also
various other Static Analysis plugins that can report warnings in the IDEs as well. Popular
plugins include FindBugs25, SonarLint26 and CheckStyle27. Based on the popularity of the
available IntelliJ plugins28 (metrics gathered in 2018), we started with an investigation into
the CheckStyle plugin. CheckStyle was the most popular plugin with almost 1,5 million
downloads, while FindBugs had near 700 thousand downloads and SonarLint nearing half
a million.

An important aspect to keep in mind while investigating these plugins is that the IDE
plugins (that are accessible by any IDE plugin, such as WatchDog) are different than the
actual static analysis projects. In the case of CheckStyle, the CheckStyle Eclipse plugin29

is in a different package than the core CheckStyle implementation30. Moreover, while the
Eclipse plugin is maintained by the CheckStyle team, the equivalent IntelliJ plugin31 is
maintained by a community member. Since the plugin is maintained separately and poten-
tially by a different person, it could be possible that not all capabilities of the core imple-
mentation are available through the plugin API. However, we are not aware of any concrete
problems of the plugins we analyzed.

25http://findbugs.sourceforge.net/downloads.html
26https://www.sonarlint.org/
27http://checkstyle.sourceforge.net/index.html#Active_Tools
28http://plugins.jetbrains.com/search?correctionAllowed=true&pr=&orderBy=downloads&

tags=Inspection&tags=Tools+integration&search=
29https://github.com/checkstyle/eclipse-cs
30https://github.com/checkstyle/checkstyle
31https://github.com/jshiell/checkstyle-idea/

25

http://findbugs.sourceforge.net/downloads.html
https://www.sonarlint.org/
http://checkstyle.sourceforge.net/index.html#Active_Tools
http://plugins.jetbrains.com/search?correctionAllowed=true&pr=&orderBy=downloads&tags=Inspection&tags=Tools+integration&search=
http://plugins.jetbrains.com/search?correctionAllowed=true&pr=&orderBy=downloads&tags=Inspection&tags=Tools+integration&search=
https://github.com/checkstyle/eclipse-cs
https://github.com/checkstyle/checkstyle
https://github.com/jshiell/checkstyle-idea/

4. STATIC ANALYSIS IN EDITORS

An initial investigation of the architecture of the CheckStyle plugins uncovered that the
IntelliJ plugin dynamically loads the CheckStyle core implementation. Practically speak-
ing, this means that the implementation of CheckStyle is not accessible by WatchDog via
the Java classpath. This posed an additional challenge, as obtaining information from
CheckStyle became significantly harder. We started debugging and instrumenting CheckStyle
in an example project with two source files both generating numerous Static Analysis warn-
ings. The debugging sessions focused on stepping through the implementation and to un-
derstand how CheckStyle initializes and loads the logic for its analyses. Alongside the
debugging session, reading through the source code of the project was necessary to get an
overall view of the project and particular classes to look out for.

It quickly became clear that the implementation of CheckStyle was difficult to grasp
from a bird’s-eye point-of-view. Inspection of the public API of CheckStyle did not show
any possibility for instrumentation of the inner-workings of the check-implementations.
(The check-implementations are the concrete instances that contain the logic of determining
whether a warning should be issued for the provided code structure.)

Eventually, after stepping through the main-entrypoint (the Checker32 class), the map
that we are looking for appeared to exist in the PackageObjectFactory33. This private Map
contains for each check that is loaded the location in the jar where the class resides. For
every package (in other words sets of similar static analysis checks), there is one mes-
sages.properties that contains all textual descriptions of the checks. The layout is equivalent
to the ones used in the IDEs and can therefore be processed in the same fashion as we did
before.

All in all, the debugging session took several days, which led us to the realization that
the existing static analysis plugins are not written with monitoring capabilities in mind.
Our expectation is that the other plugins such as SonarLint and FindBugs have the same
kind of characteristics. The factors of difficult-to-debug implementation combined with the
lack of API-capabilities for our use-case resulted in the integration taking a lot longer than
expected.

4.5 Summary

Normally the internal implementation is a minor detail (it is a means to obtain the required
data), but in this research the availability (or lack thereof) of an API has an impact on the
overall outcome. Since there is a discrepancy between the Eclipse and IntelliJ APIs and
the lack of exposure of the required objects, the usability of the available data is limited.
Moreover, as a result of the discrepancy, the implementation in each editor is based on
the lowest common denominator, which reduces the potential fidelity of the data. Lastly,
additional work is required for each static analysis IDE extension, to be able to understand
its implementation to be able to observe its behavior.

32https://github.com/checkstyle/checkstyle/blob/e9fac97cdd/src/main/java/com/puppycr
awl/tools/checkstyle/Checker.java

33https://github.com/checkstyle/checkstyle/blob/489ce031e8/src/main/java/com/puppyc
rawl/tools/checkstyle/PackageObjectFactory.java#L97-L98

26

https://github.com/checkstyle/checkstyle/blob/e9fac97cdd/src/main/java/com/puppycrawl/tools/checkstyle/Checker.java
https://github.com/checkstyle/checkstyle/blob/e9fac97cdd/src/main/java/com/puppycrawl/tools/checkstyle/Checker.java
https://github.com/checkstyle/checkstyle/blob/489ce031e8/src/main/java/com/puppycrawl/tools/checkstyle/PackageObjectFactory.java#L97-L98
https://github.com/checkstyle/checkstyle/blob/489ce031e8/src/main/java/com/puppycrawl/tools/checkstyle/PackageObjectFactory.java#L97-L98

4.5. Summary

For future work, adding the necessary API hooks in the editor implementations is a first
step to obtain more granular data. However, even though both editor implementations are
open-source, improving the APIs requires extra time, as the maintainers of each implemen-
tation have to be convinced. Our expectation is that the architecture of the editors allow for
these extensions, but the communication with the maintainers will require additional time.
For this thesis the additional time is infeasible, but with careful planning it is possible to
incorporate this in future work.

RQ1: IDEs do not expose a high-level API to monitor generated static analysis
warnings in the editor. Currently, observance of the internal in-memory cache is the
only option. Future extensions to the IDEs can improve integration and increase the
utility of obtained static analysis warning data.

External static analysis libraries incorporated in IDE extensions are not developed with
the use-case of monitoring in mind. While the most popular plugin (CheckStyle) is inte-
grated into WatchDog, several others are not. Integrating other plugins is expected to be
time-intensive and requires appropriate exposure of the plugins inner workings to observe
their behavior.

RQ1.1: External static analysis plugins and tools are not written with monitoring
in mind. Integration requires extensive engineering effort and deep knowledge of the
inner workings of the static analysis tools themselves.

27

Chapter 5

Classification of warnings

Our own analysis of static analysis warnings will be based on real-world data retrieved
from developer activities. Static analysis warning messages frequently include references
to code. To make sure the privacy of developers is guaranteed, we have to anonymize this
data in such a way that it is still useful for us. This chapter describes the necessary steps to
perform the anonymization as well as other technical challenges that have an impact on the
research results.

5.1 Possible code references

Before we discuss the anonymization process, we first need to introduce examples of privacy-
sensitive static analysis warnings. There are two categories of warnings: constant and dy-
namic warnings. In the case of constant warnings, the warning for a given static analysis
category is the same for every occurrence of that warning. Figure 5.1 shows several constant
warnings as defined in IntelliJ1 and Eclipse2. Since constant warnings do not contain any
user-provided input, processing such warnings would not have an impact on the privacy of
developers.

In contrast, dynamic warnings do contain user-provided input. The majority of the
warnings defined in IntelliJ and Eclipse contain user-provided input. Both IDEs use similar
implementations of constructing a concrete warning based on a dynamic pattern. While
IntelliJ3 relies on the JDK implementation of MessageFormat4, Eclipse implements its own
version of the formatting function5. Nonetheless, both implementations are based on the

1https://github.com/JetBrains/intellij-community/blob/2444cc9165/platform/platfor
m-resources-en/src/messages/InspectionsBundle.properties

2https://github.com/eclipse/eclipse.jdt.core/blob/efc9b650d8590a5670b5897ab6f8c0f
b0db2799d/org.eclipse.jdt.core/compiler/org/eclipse/jdt/internal/compiler/problem/mes
sages.properties

3https://github.com/JetBrains/intellij-community/blob/a5d8116251/platform/util-rt/
src/com/intellij/BundleBase.java#L61-L68

4https://docs.oracle.com/javase/9/docs/api/java/text/MessageFormat.html
5https://github.com/eclipse/eclipse.jdt.core/blob/efc9b650d8/org.eclipse.jdt.core/c

ompiler/org/eclipse/jdt/internal/compiler/problem/DefaultProblemFactory.java#L138-L204

29

https://github.com/JetBrains/intellij-community/blob/2444cc9165/platform/platform-resources-en/src/messages/InspectionsBundle.properties
https://github.com/JetBrains/intellij-community/blob/2444cc9165/platform/platform-resources-en/src/messages/InspectionsBundle.properties
https://github.com/eclipse/eclipse.jdt.core/blob/efc9b650d8590a5670b5897ab6f8c0fb0db2799d/org.eclipse.jdt.core/compiler/org/eclipse/jdt/internal/compiler/problem/messages.properties
https://github.com/eclipse/eclipse.jdt.core/blob/efc9b650d8590a5670b5897ab6f8c0fb0db2799d/org.eclipse.jdt.core/compiler/org/eclipse/jdt/internal/compiler/problem/messages.properties
https://github.com/eclipse/eclipse.jdt.core/blob/efc9b650d8590a5670b5897ab6f8c0fb0db2799d/org.eclipse.jdt.core/compiler/org/eclipse/jdt/internal/compiler/problem/messages.properties
https://github.com/JetBrains/intellij-community/blob/a5d8116251/platform/util-rt/src/com/intellij/BundleBase.java#L61-L68
https://github.com/JetBrains/intellij-community/blob/a5d8116251/platform/util-rt/src/com/intellij/BundleBase.java#L61-L68
https://docs.oracle.com/javase/9/docs/api/java/text/MessageFormat.html
https://github.com/eclipse/eclipse.jdt.core/blob/efc9b650d8/org.eclipse.jdt.core/compiler/org/eclipse/jdt/internal/compiler/problem/DefaultProblemFactory.java#L138-L204
https://github.com/eclipse/eclipse.jdt.core/blob/efc9b650d8/org.eclipse.jdt.core/compiler/org/eclipse/jdt/internal/compiler/problem/DefaultProblemFactory.java#L138-L204

5. CLASSIFICATION OF WARNINGS

Rep lace wi th a n u l l check

P a s s i n g <code > n u l l < / code > argument t o p a r a m e t e r a n n o t a t e d as @NotNull

A l l i m p l e m e n t a t i o n s o f t h i s method a r e empty

S t r i n g c o n s t a n t i s e x c e e d i n g t h e l i m i t o f 65535 b y t e s o f UTF8 e n c o d i n g

Empty b l o c k s h o u l d be documented

Nu l l compar i son a lways y i e l d s f a l s e : t h i s e x p r e s s i o n c a n n o t be n u l l

Figure 5.1: Constant warnings as defined in IntelliJ and Eclipse

{0} name <code ># r e f < / code > doesn ' ' t match r e g e x ' ' { 1 } ' ' # l o c

Method has {0 , cho i ce , 1# usage | 2 # { 0 , number } u s a g e s } b u t t h e y a r e n o t

r e a c h a b l e from e n t r y p o i n t s .

<html ><body > D u p l i c a t e s t r i n g l i t e r a l found in
{0} </ body > </ html >

The t y p e p a r a m e t e r {0} i s h i d i n g t h e t y p e {1}

The f i e l d { 0 } . { 1 } i s d e p r e c a t e d

Unneces sa ry c a s t from {0} t o { 1 } . I t i s a l r e a d y c o m p a t i b l e wi th t h e

argument t y p e {2}

Figure 5.2: Dynamic warnings as defined in IntelliJ and Eclipse

same principle: dynamic parts in a pattern are enclosed by {\d+} where \d+ matches 1
or more digits. IntelliJ also supports inline references and code snippets with #loc and
<code>#ref</code> respectively. Several dynamic warnings are shown in Figure 5.2.

The possible values that are substituted in the messages include names of classes, meth-
ods, types, fields, etcetera. Figure 5.3 shows several code snippets with their corresponding
static analysis warning with references to the code in the snippets. While the listed examples
are harmless, real-world usages will very likely contain sensitive information. For example,
an "Unused field"-warning being generated on a field named password can expose crucial
security-sensitive credentials. For our research, we are only interested in the occurrence of
the "Unused field" and are not interested in the actual content of the warning. Therefore,
we have to anonymize these messages to their category, rather than collecting the warnings
verbatim.

30

5.2. Classification of warnings

Listing 5.1: The type parameter Foo is hiding the type Foo

p u b l i c c l a s s Foo {}
p u b l i c c l a s s Bar <Foo> {}

Listing 5.2: Unnecessary cast from String to String

S t r i n g foo = (String) new String();

Listing 5.3: Boolean method ‘method’ is always inverted

p u b l i c s t a t i c b o o l e a n method () {
r e t u r n f a l s e ;

}

p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {
b o o l e a n c a l l 1 = ! method () ;
b o o l e a n c a l l 2 = ! method () ;

}

Figure 5.3: Several code snippets with their corresponding dynamic static analysis warning
containing references or names from the code

5.2 Classification of warnings

To be able to anonymize the warnings and categorize the warnings, we have to implement
a classification algorithm that, given a concrete static analysis warning, returns the original
message pattern this message was based on. The process consists of two steps:

1. Collect all message patterns that can be used to report static analysis warnings.

2. Based on the message patterns, write a classification algorithm that can iterate through
the list of patterns and perform matches to determine what the original pattern was.

5.2.1 Collection of message patterns

There are various options for achieving step 1. First of all, we could construct our own pat-
terns based on observations of the warnings generated on our own code. This might seem
like a simple (yet time-intensive) solution (as the code we write will generate warnings that
other developers more likely encounter as well), but there are actually numerous problems
with this approach. It is highly unlikely that we will be able to obtain all existing patterns
by writing code ourselves and observe what warnings are generated. There is a very high

31

5. CLASSIFICATION OF WARNINGS

chance that the warnings that we encounter are only a small subset of the total set of warn-
ings, for which we do not know beforehand how large this set is. Secondly, even if we
would be able to obtain an exhaustive list, we would need to update the list for every new
warning we observe. This is maintenance-wise a very intensive task and updating the list
used in the plugin would mostly be on an ad-hoc basis.

Instead, we should investigate how IDEs and other plugins load their messages and how
we can obtain these messages as well. This means that we need to understand how the
IDEs and plugins are implemented and then reconstruct the required minimal functionality
for our use-case. This is a significantly more difficult problem, as we are now dependent
on understanding the source-code of large-scale IDEs and popular plugins, but if we can
make it work we will be more resilient against future changes in the IDEs and plugins. The
following sections elaborate on the process of obtaining the message patterns in both the
IDEs and an other plugin.

Collecting IDE message patterns

As pointed out in Section 5.1, both IntelliJ and Eclipse define the message patterns in .prop-
erties fields. These files are loaded using a ResourceBundle6 which is essentially a map of
String to String. Every message pattern has as key a unique value (in the case of IntelliJ a
dot-separated String, in the case of Eclipse an int) and its corresponding value can be re-
trieved using getString. For our collection process, we need to construct these bundles and
iterate through all key-value pairs to continue processing.

IntelliJ has two separate bundles with static analysis warning messages. The first bundle
is the messages.InspectionsBundle bundle, which contains the messages shown in Figure 5.1
and 5.2. Besides this bundle, com.siyeh.InspectionGadgetsBundle7 also contains messages
that are used in the InspectionGadgets package. It is unclear what the difference between
the two packages is, but InspectionGadgets defines a large number of inspections in the
com/siyeh package8. We must therefore load both bundles to be able to classify potential
static analysis warnings.

Eclipse has only one bundle, however this bundle is localized. This means that loading
the bundle for org/eclipse/jdt/internal/compiler/problem/messages.properties will not work,
as the localization of the IDE is integrated into the file name. In other words, depending on
the localization selected by the developer, the location of the bundle is different. Instead of
reading the file directly, we have to use an API in Eclipse which exposes the information. To
that end, we can use DefaultProblemFactory.loadMessageTemplates(Locale)9 that returns a
HashtableOfInt10 which has an almost equivalent API to a ResourceBundle.

6https://docs.oracle.com/javase/9/docs/api/java/util/ResourceBundle.html
7https://github.com/JetBrains/intellij-community/blob/2444cc9165/plugins/Inspection

Gadgets/InspectionGadgetsAnalysis/src/com/siyeh/InspectionGadgetsBundle.properties
8https://github.com/JetBrains/intellij-community/tree/2444cc9165/plugins/Inspection

Gadgets/src/com/siyeh/ig
9https://github.com/eclipse/eclipse.jdt.core/blob/efc9b650d8/org.eclipse.jdt.core/c

ompiler/org/eclipse/jdt/internal/compiler/problem/DefaultProblemFactory.java#L213-L242
10https://github.com/eclipse/eclipse.jdt.core/blob/efc9b650d8/org.eclipse.jdt.core/c

ompiler/org/eclipse/jdt/internal/compiler/util/HashtableOfInt.java

32

https://docs.oracle.com/javase/9/docs/api/java/util/ResourceBundle.html
https://github.com/JetBrains/intellij-community/blob/2444cc9165/plugins/InspectionGadgets/InspectionGadgetsAnalysis/src/com/siyeh/InspectionGadgetsBundle.properties
https://github.com/JetBrains/intellij-community/blob/2444cc9165/plugins/InspectionGadgets/InspectionGadgetsAnalysis/src/com/siyeh/InspectionGadgetsBundle.properties
https://github.com/JetBrains/intellij-community/tree/2444cc9165/plugins/InspectionGadgets/src/com/siyeh/ig
https://github.com/JetBrains/intellij-community/tree/2444cc9165/plugins/InspectionGadgets/src/com/siyeh/ig
https://github.com/eclipse/eclipse.jdt.core/blob/efc9b650d8/org.eclipse.jdt.core/compiler/org/eclipse/jdt/internal/compiler/problem/DefaultProblemFactory.java#L213-L242
https://github.com/eclipse/eclipse.jdt.core/blob/efc9b650d8/org.eclipse.jdt.core/compiler/org/eclipse/jdt/internal/compiler/problem/DefaultProblemFactory.java#L213-L242
https://github.com/eclipse/eclipse.jdt.core/blob/efc9b650d8/org.eclipse.jdt.core/compiler/org/eclipse/jdt/internal/compiler/util/HashtableOfInt.java
https://github.com/eclipse/eclipse.jdt.core/blob/efc9b650d8/org.eclipse.jdt.core/compiler/org/eclipse/jdt/internal/compiler/util/HashtableOfInt.java

5.2. Classification of warnings

Collecting other Static Analysis plugin message patterns

As pointed out in Section 4.4, the dynamic loading of CheckStyle in IntelliJ complicates
the logic further, as the classes that we needed to obtain the paths to the resources were not
reachable by the same ClassLoader. As such, we actually need two separate ClassLoaders
to first obtain all the classes and then use the second loader to obtain the resources. Com-
plications like having multiple ClassLoaders significantly impact the integration of other
Static Analysis plugins. For future research, if extending the scope of the field research be-
yond multiple Static Analysis plugins is desired, development time investments should be
carefully weighed against improved analyses. That is why, instead of incorporating multiple
plugin classifiers, we focused on just to get CheckStyle to work.

Summary

Based on our experience of collecting the message patterns, it became apparent that integra-
tion with IDEs is straightforward. However, integration with other plugins is significantly
more difficult to be able to collect the patterns. Especially the storage pattern of the mes-
sages (using the standard messages.properties) is a factor for integration. If a plugin uses
this standard, integration is a lot simpler than if they would use a custom implementation.

5.2.2 Classification algorithm

The classification algorithm should, given a concrete version of a static analysis warning,
return the category a warning is from. Based on the collection of message patterns, we
have a large list of key-value pairs for which the key is the category and the value the
MessageFormat-string. We must search this collection efficiently with the concrete instance
of the warning to obtain the classification in a performant manner.

Multiple datastructures

As pointed out in Section 5.1, there are two different categories of warnings: constant and
dynamic. As a result of this distinction, we can treat warnings of the two categories in two
different ways. First of all, the constant warnings can be matched one to one, given the
concrete version of the warning. In other words, we simply have to search for the warning
that is exactly the same as the concrete version and return the key, rather than having to do
any matching procedures. However, for dynamic warnings we can not do that and we are
forced to implement a matching procedure.

Since these warnings can be treated differently, storing the two versions separately can
result in a performance improvement. All constant warnings can be stored in a hash table
such as a HashMap11, which has read access of O(1), to obtain the key for that warning. If
the warning is not constant, the value retrieved from the Map is empty. Consequently, for
dynamic warnings we have to search through a List of patterns to match on the warning. As
soon as we match on a pattern, we can assume that the warning originates from that pattern.

11https://docs.oracle.com/javase/9/docs/api/java/util/HashMap.html

33

https://docs.oracle.com/javase/9/docs/api/java/util/HashMap.html

5. CLASSIFICATION OF WARNINGS

Listing 5.4: Two similar patterns based on the messages defined in IntelliJ12

P r o c e s s i n g d u p l i c a t e p r o p e r t y key : . +

P r o c e s s i n g d u p l i c a t e p r o p e r t y key : . +

Listing 5.5: Two concrete instantiations based on the two message patterns

P r o c e s s i n g d u p l i c a t e p r o p e r t y key : foo

P r o c e s s i n g d u p l i c a t e p r o p e r t y key : foo

Figure 5.4: Two patterns with their corresponding concrete instantiations of the warnings

To prevent incorrect matches on substrings of warnings, the List can be ordered on
most-specific patterns first. An example of two patterns with their corresponding concrete
instantiations of the warnings is shown in Figure 5.4. In these examples, we must prevent
matching the first pattern on the longer instantiation, as the first pattern is a substring of
the second pattern. In practice, we did not observe any concrete issues where messages are
substrings of other messages and thus this might only be a theoretical shortcoming.

Putting it all together, the full algorithm is shown in Figure 5.6. Given the correct con-
struction of the constant messages map and the list of patterns, the algorithm retrieves the
warning in either data-structure. Creation of these data-structures is shown in Figure 5.5.
Note that one nuance had to be introduced regarding the transformation into a regular ex-
pression. The presumption of the classification algorithm is that if the warning pattern does
not exist in the dynamicMessages list, the category is "unknown". However, if the transfor-
mation from a message pattern to a regular expression results in a regular expression with an
automata that always accepts, this pattern will always match. To prevent misclassifying all
warnings (for which the data-structures do not contain a pattern), these regular expressions
should not be included in the list. For more information, see Section 5.2.3.

12Source: https://github.com/JetBrains/intellij-community/blob/1c4ecdf108/platform/p
latform-resources-en/src/messages/InspectionsBundle.properties#L594-L596

34

https://github.com/JetBrains/intellij-community/blob/1c4ecdf108/platform/platform-resources-en/src/messages/InspectionsBundle.properties#L594-L596
https://github.com/JetBrains/intellij-community/blob/1c4ecdf108/platform/platform-resources-en/src/messages/InspectionsBundle.properties#L594-L596

5.2. Classification of warnings

Data: A list of warning categories and the corresponding message patterns
Result: The two data-structures storing the warning categories

constantMessages←Map();
dynamicMessages← List();
for [category, pattern] ∈ inputList do

if containsDynamicParts(pattern) then
regex← transformPatternIntoRegex(pattern);
if ¬ (automata from regex always accepts) then

dynamicMessages.push([regex, category])
end

else
constantMessages[pattern]← category

end
end
sortOnPatternLengthDescending(dynamicMessages);
return (constantMessages, dynamicMessages)

Figure 5.5: Pseudocode of the data-structure creation algorithm

Data: A concrete instantiation of a warning, a map of constant messages and a
list of tuples of regular expressions and categories of dynamic messages

Result: The corresponding category of the warning

if warning ∈ constantMessages then
return constantMessages[warning]

end
for [regex, category] ∈ dynamicMessages do

if regex matches warning then
return category

end
end
return "unknown"

Figure 5.6: Pseudocode of the classification algorithm

35

5. CLASSIFICATION OF WARNINGS

5.2.3 Missing classifications

As shown in the classification algorithm, when a particular message originates from a mes-
sage pattern that is not included in the data-structures, the category is "unknown". This
section lists several examples of message patterns WatchDog currently misses.

Patterns included in IDE plugins

As described in Section 5.2.1, integration of the plugins of community-maintained
static analysis tools is time-intensive. If a developer has such a plugin installed and
the messages are not processed by WatchDog, the classification will fail. However,
not only community-maintained plugins are missing, but also official IDE plugins.
One example is the Plugin Development Environment plugin for Eclipse. This plugin
defines numerous messages13 which are used in the development environment built
by the Eclipse team.

An example of such a message is the detection of invalid references in the plugin
XML-configuration files. These files can reference classes as defined in the devel-
opment plugin. If the class does not exist, the plugin will issue a warning in the
plugin.xml file. These warning messages are thus not related to implementation code,
but configuration code instead.

Classification of messages that are part of an extension plugin for the IDE are thus
missing and have to be integrated for every extension plugin that exists, in a similar
fashion for community-maintained plugins.

Patterns as defined in source code

There are also instances of static analysis warning messages being constructred di-
rectly in the source code of the IDE or static analysis tool. An example is the
DataFlowInspection built into IntelliJ, where various dataflow-related messages are
directly put into the source code14.

Detection and/or extraction of these messages can not be automated. Instead, to be
able to classify the messages, we would need to construct a curated list of messages
manually extracted from the source code. However, as pointed out in Section 5.2.1
this is a maintenance-intensive and error-prone task. The omission of these message
patterns is therefore a known limitation without appropriate solution.

Patterns that compile to always-accepting automata

As explained in Section 5.2.2 the data-structure creation algorithm in Figure 5.5 has to
filter out patterns that would compile to always-accepting automata. This, to prevent
a "catch-all"-situation were all unknown messages would be incorrectly classified un-
der this category. However, this does means that patterns such as the one shown in

13https://github.com/eclipse/eclipse.pde.ui/blob/69fd0ac8fe/ui/org.eclipse.pde.core/
src/org/eclipse/pde/internal/core/pderesources.properties

14https://github.com/JetBrains/intellij-community/blob/3a95eeee9d/java/java-analysi
s-impl/src/com/intellij/codeInspection/dataFlow/DataFlowInspectionBase.java#L491-L510

36

https://github.com/eclipse/eclipse.pde.ui/blob/69fd0ac8fe/ui/org.eclipse.pde.core/src/org/eclipse/pde/internal/core/pderesources.properties
https://github.com/eclipse/eclipse.pde.ui/blob/69fd0ac8fe/ui/org.eclipse.pde.core/src/org/eclipse/pde/internal/core/pderesources.properties
https://github.com/JetBrains/intellij-community/blob/3a95eeee9d/java/java-analysis-impl/src/com/intellij/codeInspection/dataFlow/DataFlowInspectionBase.java#L491-L510
https://github.com/JetBrains/intellij-community/blob/3a95eeee9d/java/java-analysis-impl/src/com/intellij/codeInspection/dataFlow/DataFlowInspectionBase.java#L491-L510

5.2. Classification of warnings

Figure 5.7 will not be matched. Currently this pattern compiles to .+ which matches
everything. In the future, a more sophisticated transformation algorithm can be used
to compile message patterns in the equivalent regular expressions. However, this re-
quires parsing and recursive traversal through the pattern, as there can be an arbitrary
deep level of nesting. The current compilation (shown in Figure 5.8) is sufficient for
nearly all message patterns with a handful of exceptions. Implementing such a parser
and traversal is time-intensive and the benefits will be marginal, yet required to obtain
a perfect one-to-one translation to the correct regular expression.

Maintenance of locations of message patterns in IDEs/plugins

While previously stated that manual maintenance of all possible message patterns is
infeasible; the automatic generation of patterns is not maintenance-free. It is unlikely
the IDEs or plugins change the location of the message pattern files, yet it can happen
in the future. This would thus require updating the source code of WatchDog to be
able to handle the new location as well. However, maintenance of the location poses a
significantly lower cost, as it is merely an update of 1 string in the source code, rather
than a large list of message patterns.

Localization of message patterns

One feature of the retrieval of message patterns using ResourceBundle is the auto-
matic inclusion of localization. To do so, one can create multiple files with the names
including their respective localization. Close inspection of the source code of Eclipse
and IntelliJ did not show any actual usage of this localization pattern. Both IDE
frameworks show support for the feature, but do not ship the localized properties
files. However, CheckStyle does make use of this pattern15. WatchDog has been
instructed to handle the localized messages, however we have not verified that this
works for developers not developing in an English development environment.

Changes during development

Lastly, changes to any of the configuration of both the IDEs and the plugins while
WatchDog is loaded are not reflected. This means that changing the locale or version
of a plugin does not refresh the internal data-structures of WatchDog used for the
classification. The problem is in most cases hypothetical, as IDEs enforce reloading
the program after installing an update to a plugin. Yet, the CheckStyle IntelliJ plugin
allows for changing the loaded CheckStyle version. This means that any messages
generated up to the next time the IDE is started could potentially be misclassified.
Again, this would only be the case if the message is added in the newly loaded version
or if a message pattern would be updated. Given the very rare occassions and the
complexity of implementing this behavior, solving this issue is left for future work.

15https://github.com/checkstyle/checkstyle/tree/e018b2d662/src/main/resources/com/p
uppycrawl/tools/checkstyle

16Source: https://github.com/JetBrains/intellij-community/blob/1c4ecdf108/platform/p
latform-resources-en/src/messages/InspectionsBundle.properties#L283

37

https://github.com/checkstyle/checkstyle/tree/e018b2d662/src/main/resources/com/puppycrawl/tools/checkstyle
https://github.com/checkstyle/checkstyle/tree/e018b2d662/src/main/resources/com/puppycrawl/tools/checkstyle
https://github.com/JetBrains/intellij-community/blob/1c4ecdf108/platform/platform-resources-en/src/messages/InspectionsBundle.properties#L283
https://github.com/JetBrains/intellij-community/blob/1c4ecdf108/platform/platform-resources-en/src/messages/InspectionsBundle.properties#L283

5. CLASSIFICATION OF WARNINGS

{0 , cho i ce , 0 # | 1 # (1 i t em) | 2 # ({ 0 , number , i n t e g e r } i t e m s) }

Figure 5.7: Message pattern that compiles to a regular expression representing an always-
accepting automata16

f i n a l S t r i n g r e g e x = message
. r e p l a c e A l l (" ' ' ' " , " ' ")
. r e p l a c e A l l (" ' ' " , " ' ")
. r e p l a c e A l l (" \ \ (" , " \ \ \ \ (")
. r e p l a c e A l l (" \ \) " , " \ \ \ \) ")
. r e p l a c e A l l (" \ \ [" , " \ \ \ \ [")
. r e p l a c e A l l (" < code >[^ <]+ </ code >" , " ' [^ '] + ' ")
/ / Per fo rm t h e n e x t r e p l a c e twice , a s t h e r e can be
/ / n e s t e d b r a c k e t s . I t i s pe r fo rmed twice , a s t h e r e
/ / were no messages i n E c l i p s e and I n t e l l i J t h a t had
/ / more t h a n two l e v e l s o f n e s t i n g .
. r e p l a c e A l l (" \ \ { [^ { }] + } " , " . + ")
. r e p l a c e A l l (" \ \ { [^ { }] + } " , " . + ")
. r e p l a c e A l l (" \ \ { } " , " \ \ \ \ { } ")
. r e p l a c e A l l (" # l o c " , " ")
. r e p l a c e A l l (" # r e f " , " ") ;

Figure 5.8: Transformation of a message pattern into a regular expression built in WatchDog

5.3 Summary

As a result of a lack of an API that exposes the required information, we only have access
to the textual static analysis warning messages. To anonymize the data obtained from real-
world development activity, we have to classify messages based on their original pattern.
This problem consists of two phases: collecting the message patterns and then developing
a classification algorithm that can match on these patterns. Collection of messages poses
several limitations as a result of the abstraction based on human-friendly textual messages.
Overall, the classification is a necessary step to use the real-world data, but it lowers the
utility of the obtained data.

38

Chapter 6

Telemetry results

In this chapter, we will elaborate on how we retrieve the telemetry results, after which we
will compute statistics and deduce patterns based on this data.

6.1 Data retrieval

As explained in the previous chapters, the work in WatchDog is the basis for the data col-
lection. We are tracking the following characteristics:

• Static analysis warning created

For every warning that is generated and shown in the user interface, we create 1
event. This events contains information including timestamp, ip address, line number,
IDE type, WatchDog user ID, WatchDog project ID, WatchDog session ID, warning
category classification (if known) and document information including hashed file
name and total number of lines.

• Static analysis warning removed

This event contains all information that a warning creation event contains, with the
addition of a time diff. This diff is the number of seconds since its creation time (if
known in this session) or -1 if it removes a warning that was already present before
opening the file in the IDE.

• Static analysis warnings file snapshot

A snapshot contains a list of warnings that exist in the document at the moment of
taking the snapshot. The gathered information is the same as for the warning creation
event.

All tracked information is sent periodically, as well as at the moment of closing the IDE,
to the WatchDog Ruby server. The Ruby server processes the information and inserts it into
the MongoDB database.

39

6. TELEMETRY RESULTS

Previous data analyses of the data gathered by WatchDog were using an analysis pipeline
based on processing Comma Separated Values (CSV) data with R1 [62]. However, the anal-
ysis pipeline was no longer usable for us, as the R scripts were undocumented and not
maintained since the previous research project. This meant that the inner workings of the
R scripts were unknown to us and figuring out how the analyses were implemented proved
to be too difficult. To that end, we wrote a new data analysis pipeline based on the Python
Jupyter Notebook2 [35]. The choice for using Python and Jupyter Notebook is based on
the fact that there are numerous widely-used Python packages suitable for Data Science
analyses [11]. To visualize data statistics, Matplotlib can be used to generate graphs such
as histograms, heatmaps and boxplots [29]. Data manipulation and processing can be done
using NumPy to, for example, construct the histogram data needed to visualize with Mat-
plotlib [2].

The Jupyter Notebook contains a list of Python data manipulation and visualization
scripts, separated and grouped by a particular data characteristic. As input data, it uses the
BSON3 exports from the MongoDB database. Every day, the server generates a BSON
snapshot of all tables in the database. For our analysis, we require both the user and events
table exports. We download the latest available snapshot and then run the Jupyter Notebook
scripts, including reading in the data using the Python bson package4.

6.2 Statistics

This section includes all statistics that are computed using the Jupyter Notebook. Each
subsection provides a general overview and a deeper analysis of each result.

6.2.1 General statistics and user demographics

The data that we analyzed has been gathered from May 9th 2018 up to June 20th 2018.
In this time, we have obtained 61538 static analysis events, of which 37045 were static
analysis creation events and 24493 static analysis removal events. Additionally, we have
obtained 9689 snapshot events, including a total of 20077 warnings. Of the total of 9689
snapshot events, 3097 events contain zero warnings. Therefore, 68.04% of the opened files
contains at least 1 snapshot warnings, with an average of 3.05 unresolved warnings per file.

RQ4.1: 68.04% of the files contain at least 1 unresolved warning, with an average
of 3.05 unresolved warnings per file.

1https://www.r-project.org/
2https://jupyter.org/
3http://bsonspec.org/
4https://pypi.org/project/bson/

40

https://www.r-project.org/
https://jupyter.org/
http://bsonspec.org/
https://pypi.org/project/bson/

6.2. Statistics

Programming experience Number of users
> 10 years 3
7-10 years 1
3-6 years 12
1-2 years 12
< 1 year 23

N/A 31

Table 6.1: Number of users for each programming experience category

Programming experience Number of events
> 10 years 287
7-10 years 3068
3-6 years 1519
1-2 years 8864
< 1 year 7658

N/A 2224

Table 6.2: Number of events for each programming experience category

The events are generated by 81 users with a total observed development time of 2421.15
hours, which amounts to 1.37 years of work based on the average annual hours worked per
worker5. Table 6.1 contains an overview of the number of users with a particular program-
mer experience. If a user did not want to provide us this information, their programming
experience is N/A. Additionally, the total number of events per programming experience
category is shown is in Table 6.2.

6.2.2 Static analysis warning categories

The very first data analysis focuses on the different warning categories and their corre-
sponding frequencies. The analysis relies on the successful classification of the warnings,
as described in Chapter 5. In total, 13.25% of all warnings could not be classified. Next
to that, there are only 7 observed CheckStyle warnings. Despite being the largest static
analysis IDE plugin in terms of installations in the Eclipse and IntelliJ marketplace, we
have observed barely any warning. It might be possible that our 81 users all do not use the
CheckStyle plugin, albeit the odds of that happening is low. Another explanation could be
that the integration with WatchDog is not working as intended. However, extensive testing
on our side has not shown such issues. Since we do have 13.25% warnings that could not
be classified, it could be that a fraction of them originate from CheckStyle. However, as we
have no access to the original messages, we are not able to deduce what is going wrong in
the classification process.

5https://data.oecd.org/chart/5cEg

41

https://data.oecd.org/chart/5cEg

6. TELEMETRY RESULTS

RQ2: Despite the large popularity of the CheckStyle IDE plugin, the fraction of
observed CheckStyle warnings is close to zero.

Table 6.3 lists the 25 categories with the most frequent warning creation and resolution
actions. Based on the corresponding frequencies, we can see that a few categories generate
a significant number of events, while other warnings are occurring much less frequently.
Consequently, we plot the exponential trend line of the frequencies in Figure 6.1. As ex-
pected, the occurrences largely follow an exponential trend, with an R-squared factor of
0.904. Moreover, the most frequent categories are largely related to type resolution and
import management. This indicates that both import statements and the type system are the
primary responsibles for the static analysis warnings developers see in their IDE.

RQ2: Warning categories frequencies show an exponential distribution, with the
top categories focused on type resolution (category indices 1, 2, 6, 7, 8, 11, 12, 16, 19,
21, 22, 23, 24, 25 from Table 6.3), import management (categories 4, 5, 13) and unused
declarations/tokens (categories 9, 14, 15).

If we then plot the percentage of warnings resolved as part of the observed warnings that
are created, we obtain the results shown in Figure 6.2. Of the top 25 warning categories, for
23 categories the majority of the warnings in the category are resolved.

One interesting outlier is warning category 6. This warning is actually a compiler error
shown in Eclipse whenever a method invocation on an object references to a method that is
not defined in that class. Figure 6.3 shows an example of a code snippet that would generate
such a warning. Since compilation errors preventing a project from being built, it is unclear
why we have very few observed resolutions in this warning category. Our suspicion is
that these warnings are generated on methods from objects defined that should be defined
in a project dependency that is missing. Resolving these kinds of warnings can be done
by reimporting a project to fix the dependency resolution. Reimporting a project will not
generate a warning resolution event, as during the process the editor can not open files in
the project. This means that WatchDog can not actively monitor the project files and thus
miss the resolution event.

Some warnings are resolved almost always, particularly the unused.assignment and lo-
cal variables is not used warnings. One scenario we can think of that would result in these
warnings to regularly pop up during development is based on the assumption that develop-
ers regularly write code top to bottom. For example, given the code in Listing 6.4 being
written down top to bottom, the developer would first write the line with the assignment
to the String value. Afterwards, the developers writes the line with the return statement.
Before the developer wrote the second line, the assignment was unused. However, directly
after writing the second line, the assignment was used and the warning is "resolved".

In this scenario, while the warning is created and resolved quickly, the developer might
not have actively been aware of the warning, as it was simply resolved by writing the second
line of code. While technically the assignment was unused in between writing the first and

42

6.2. Statistics

Index Warning category Frequency
1 {0} cannot be resolved to a type 13558
2 {0} is a raw type. References to generic type {1} should be parameterized 6710
3 The serializable class {0} does not declare a static final serialVersionUID

field of type long
4747

4 The import {0} is never used 4592
5 The import {0} cannot be resolved 4195
6 The method {1}({2}) is undefined for the type {0} 2457
7 {0} cannot be resolved 2186
8 {0} cannot be resolved to a variable 2067
9 The value of the local variable {0} is not used 1348
10 Syntax error, insert "{0}" to complete {1} 1185
11 Type safety: The method {0}({1}) belongs to the raw type {2}. Refer-

ences to generic type {3} should be parameterized
1102

12 {0} cannot be resolved or is not a field 809
13 unused.import.statement 641
14 The value of the field {0}.{1} is not used 483
15 inspection.unused.assignment.problem.descriptor1 386
16 The method {1}({2}) from the type {0} refers to the missing type {3} 364
17 Resource leak: ”{0}” is never closed 337
18 inspection.javadoc.method.problem.missing.tag.description 333
19 Unhandled exception type {0} 292
20 Syntax error on token "{0}", delete this token 286
21 The method {1}({2}) in the type {0} is not applicable for the arguments

({3})
266

22 Type mismatch: cannot convert from {0} to {1} 246
23 Duplicate local variable {0} 204
24 The type {0} is deprecated 195
25 The method {0}({1}) of type {2} must override or implement a supertype

method
194

Table 6.3: The 25 categories with most frequent warning creation and resolution

43

6. TELEMETRY RESULTS

Figure 6.1: Top warning category frequency trend line plot

second line, the developer did not react explicitly to the warning. In terms of usefulness
for the developer, this would be equivalent to not generating the warning at all. A high
frequency and resolution rate could therefore possibly indicate that the warning category is
less useful for the developer.

RQ2: Of the 25 most frequent warning categories, 23 categories are resolved a
majority of the time. Possibly, frequent warnings that are (almost) always resolved
provide little value to the developer.

Influence of programming experience on the category frequency

If we take programming experience into account for computing the average number of
events per user, we end up with the results in Table 6.4. However, the number of users
per programming experience is too low (see Table 6.1) for performing a statistical test, as
these tests require at least 30 datapoints per category. This is primarily the effect of de-
velopers unwilling to disclose their programming experience, as this was optional in the

44

6.2. Statistics

Figure 6.2: Fraction of warnings resolved

public class Foo {

public static void main(String[] args) {
new Bar().foo();

}

class Bar {}
}

Figure 6.3: Code snippet that would generate a warning from category 6

String value = store.getValue();
return value.substring(value.length() - 1);

Figure 6.4: Code snippet that would generate an unused.assignment warning on line 1 when
writing code top to bottom

45

6. TELEMETRY RESULTS

Programming experience Average number of events per user
> 10 years 95.67
7-10 years 3068.0
3-6 years 126.58
1-2 years 738.67
< 1 year 332.96
N/A 71.74

Table 6.4: Average number of events per user grouped by their programming experience

WatchDog user registration. To reach conclusive results, data of more developers who are
willing to disclose their programming experience is required.

RQ2.1: We are not able to confirm nor deny that there is a difference in warning
frequency when taking into account programming experience, as the number of devel-
opers willing to disclose their programming experience is too low.

6.2.3 Lifetime of a warning

The lifetime of a warning is measured for all warnings that are removed when the warning
is also created in the same session. Of the 23620 warnings that are resolved, a mere 873 are
not created in the same session. This means that 96.44% of the warnings that are resolved
are also introduced in the same developer session. For all warnings that are resolved in
the same session, Figure 6.5 shows the time distribution in seconds between the 5th and
95th percentile. Here, we can observe that a majority of the warnings are resolved within 1
minute. Moreover, the 25th, 50th and 75th percentile are all within the first 6 minutes, with
a long tail of warnings that took longer to resolve. The maximum recorded lifetime of a
warning is 246310 seconds, which is not included in the figure for readability’s sake. This
large number likely means the developer left open their editor for a very long time, probably
during the night as well.

RQ3: Of all warnings that are resolved, 96.44% were introduced in the same ses-
sion by the developer. Most of the warnings are resolved within 6 minutes, with a
median of 50 seconds.

Lifetime of the most frequent categories

Categorizing the lifetime for each type of warning results in the time distributions shown in
Figure 6.7. Based on these results, we can conclude that the lifetime of a particular warning
category can be very different per category. Most of the warnings are resolved quickly, but

46

6.2. Statistics

Figure 6.5: Lifetime distribution for warnings resolved in the same developer session

there are instances where warnings regularly remain for a long period of time. Examples
include missing Javadoc tags, fields being unused or potential NullPointerExceptions.

When we cluster the lifetime of the top categories focused on type resolution, unused
declarations/tokens and import management as listed in Section 6.2.2, we obtain the life-
time distributions shown in Figure 6.6. Similarly to the number of categories related to
type resolution and import management, these high level categories are also resolved much
quicker than the warnings from unused declarations/tokens. Overall, warnings related to
types are resolved the quickest, which is probably related to type checking errors prevent-
ing a project being built. Developers are therefore incentivized to resolve such warnings
quicker, as the application can not be run while they are present.

One other interesting category is the unused.import.statement category. This category is
resolved all the time (see Figure 6.5), but the time it takes to resolve can be extremely long
(see Figure 6.7). One possible explanation could be that, while the warning is important
for developers, they only resolve them at a set point in time. For example, the developer
resolves such warnings just before creating a git commit. It is possible to use this resolution
strategy, because a program can run fine with extraneous imports, in contrast to the type
checking issues. However, for code hygiene purposes, developers are inclined to resolve
the unused import warnings before they publish their changes.

RQ3: The lifetime of a warning is dependent on the warning category. Warnings
related to type resolution and import management are resolved the quickest.

47

6. TELEMETRY RESULTS

Figure 6.6: Lifetime distribution for warnings clustered by top categories as defined in
Section 6.2.2

Influence of programming experience on the lifetime

Even though few users provided their programming experience, we have obtained large
numbers of events, which allows us to perform statistical analyses on the dataset. Figure
6.8 shows the lifetime distribution for each programming experience subset. However, a
prerequisite for many of the statistical tests is that the dataset is normally distributed. Per-
forming the D’Agostino and Pearson’s omnibus test for normality [20] showed none of the
subsets nor the overall dataset had a normal distribution, as the p-values approximated or
were equal to zero. Moreover, since the events are from different observations, correlation
tests can not be performed unless sampling is used. Even then, the amount of events and
the mode of sampling would introduced discrepancies in the comparisons.

One of the few tests that can be performed is the Kruskal-Wallis H-test [38]. This test
can be used to compare the median of different populations where the null-hypothesis states
the population median are equal. Calculating the Kruskal-Wallis H statistic for the program-
ming experience subsets, disregarding the subset N/A, results in a H statistic of 2625.49 and
a p-value approximating zero. We can therefore reject the null-hypothesis and conclude that
the median of the populations are statistically significantly different. However, we can not
conclude how they are related nor what the correlation is between the lifetime and the years
programming experience.

To be able to differentiate between the sub-groups, we have to run a post-hoc test.
We can use the Dunn-test to investigate which sub-groups are (dis-)similar [22]. The null
hypothesis of the Dunn-test is "that the probability of observing a randomly selected value
from the first group that is larger than a randomly selected value from the second group
equals one half" - Alexis Dinno, author of the R package dunn.test 6.

6https://cran.r-project.org/web/packages/dunn.test/dunn.test.pdf

48

https://cran.r-project.org/web/packages/dunn.test/dunn.test.pdf

6.2. Statistics

Figure 6.7: Lifetime of the 25 most frequent warning categories

49

6. TELEMETRY RESULTS

7-10 years 3-6 years 1-2 years <1 years
>10 years 0.00274 0.00000 0.01027 0.15841
7-10 years - 0.00000 0.13906 0.00000
3-6 years - - 0.00000 0.00000
1-2 years - - - 0.00001

Table 6.5: p-value from the Dunn-test for each pairwise combination of programming ex-
perience subset

Table 6.5 shows, for each pairwise combination of programming experience subset, the
p-value outcome of the Dunn-test. For all p-values <0.025, we can reject the null hypothesis
and thus conclude that the subsets are dissimilar. Therefore, subsets 1-2 years and 7-10 years
are similar as well as the subsets <1 years and >10 years. There is no correlation between
the programming experience and whether two subsets are similar. If there would be, we
would expect subsets close to each other (e.g. 7-10 years and 3-6 years) to be similar and
subsets with a larger discrepancy in terms of years to be more dissimilar.

RQ3.1: We can conclude that the different programming experience subsets do not
have a median equal for all subsets. A post-hoc analysis based on the Dunn-test shows
that two combinations of subsets are similar, but there is no correlation with the years
of programming experience and the lifetime.

Warning frequency versus lifetime

Lastly, we are interested in the effect of the warning frequency on the lifetime of a warning.
An ordered list of the developers with the most number of events and their corresponding
distribution of the lifetime is shown in Figure 6.9. Based on the boxplot distributions de-
picted in the Figure, we suspect that there is no correlation between warning frequency and
lifetime.

RQ3.2: Warning frequency does not appear to have a significant impact on the
lifetime of a warning.

50

6.2. Statistics

Figure 6.8: Lifetime grouped by programming experience

51

6. TELEMETRY RESULTS

Figure 6.9: Lifetime for the users with the most number of events

52

6.2. Statistics

6.2.4 Position in file and frequency

The position of a warning in a file is measured at the moment the warning is created or
removed. At that time, we calculate both the line the warning is on, as well as the total
length of the document. Additionally, for all file snapshots, the line number is stored for
each warning and the total length of the document is stored once per snapshot.

The heatmap in Figure 6.11 is based on all created and resolved warnings, while the
heatmap based on the snapshots is shown in Figure 6.12. Since snapshots contain all warn-
ings that exist when a file is opened, we can therefore draw the conclusion that these warn-
ings remained unresolved in a previous development session. As such, the top heatmap con-
tains data about developer activity regarding (resolved) warnings, while the bottom heatmap
is about potentially stale (unresolved) warnings.

An initial observation based on this distinction is the difference in occurrence frequency
at the start and end of a file. There is almost no development activity in these parts of a file,
while the snapshots show a non-trivial amount of warnings exist there.

RQ4: There are little to no occurrences of warning creation and resolution at the
direct start and end of a file.

There also appears to be a high frequency of warnings in both unresolved warnings in
sections in the range of 0.35 and 0.5 of a file.

RQ4 and RQ4.1: The sections of a file with the highest frequency of unresolved
warnings are in the range of 0.35 and 0.5 relative to the file length.

Based on this range, we had the suspicion that these sections include the class declara-
tion and/or field declarations in Java files. To confirm or deny this hypothesis, we performed
an analysis on the position of the class declaration relative to the file length of a Java file.
The Bash script to obtain the relative position of a class declaration in a Java file is shown
in Figure 6.10. We ran this script on open source projects including: Mockito7, JUnit58,
JUnit49, ElasticSearch10, JPacman-framework11, WatchDog12 and RxJava13. The script
analyzed a total of 10007 Java files producing the heatmap shown in Figure 6.13. When
comparing to the warnings in the snapshots to the class declarations, we see that they both
have a high frequency of occurrence in the same sections. Moreover, the sections in the
range of 0.15 and 0.25 frequently have the class declaration as well. Warnings in Java files
could therefore be likely either directly on the class declaration or shortly thereafter.

7https://github.com/mockito/mockito
8https://github.com/junit-team/junit5
9https://github.com/junit-team/junit4

10https://github.com/elastic/elasticsearch
11https://github.com/SERG-Delft/jpacman-framework
12https://github.com/TestRoots/WatchDog
13https://github.com/ReactiveX/RxJava

53

https://github.com/mockito/mockito
https://github.com/junit-team/junit5
https://github.com/junit-team/junit4
https://github.com/elastic/elasticsearch
https://github.com/SERG-Delft/jpacman-framework
https://github.com/TestRoots/WatchDog
https://github.com/ReactiveX/RxJava

6. TELEMETRY RESULTS

#!/usr/bin/env bash
grep -nrE "^((public|protected|private))?class " --include=*.java . \

| while read -r line ; do
fileName=$(echo $line | grep -ohP ".+:" | cut -d : -f 1)
lineNumber=$(echo $line | grep -ohP ":(\d+):" | cut -d : -f 2)
numberOfLinesInFile=$(cat $fileName | wc -l)
relativePosition=$(bc <<<"scale=2; $lineNumber / $numberOfLinesInFile")
printf $relativePosition,

done
Force newline for easier copy-pasting into Python histogram computation
echo

Figure 6.10: Bash script to obtain relative position of class declaration in Java files

RQ4 and RQ4.1: There is a correlation between the relative position of a Java class
declaration and the position of unresolved warnings in a file.

6.3 Summary

To be able to analyze the telemetry data, we wrote a new data analysis pipeline in Python.
We have found that there is an exponential distribution in terms of frequency for the static
analysis warning categories. Of the top 25 categories, most of the categories are related to
type resolution, unused declarations/tokens and import management. We could not confirm
nor deny an effect of the programming experience of the developer on the frequency of cat-
egories. Warnings are resolved fairly quickly, with a median of 50 seconds, with warnings
related to type resolution are resolved the quickest. Programming experience and warn-
ing frequency appear to be uncorrelated to the expected lifetime of a warning. Lastly, we
also found a correlation between the position of a Java class declaration in the file and the
positions of the highest frequencies of unresolved warnings in a file.

54

6.3. Summary

Figure 6.11: Heatmap of all created and removed warnings relative to the file length

Figure 6.12: Heatmap of all warnings in file snapshots, relative to the file length

Figure 6.13: Heatmap of all class declarations, relative to the Java file length

55

Chapter 7

Developer perception

To complement the quantitative data we obtained from the field research study, we con-
ducted a survey among software developers regarding their opinion and experiences on
static analysis tools.

7.1 Survey design

The survey focused on several topics where each section was a separate page of the sur-
vey and focused on a specific topic. First of, general characteristics of the developer were
requested, including programming experience, whether they were also part of the field re-
search study and the company they are employed. Next to that, developers were asked in
which cases they use static analysis tools. The third section contained questions regarding
resolution of and strategy of resolution for static analysis warnings. Questions regarding
the configuration of tools were part of the fourth section. Lastly, several statements were
given and the developers were asked to provide their (dis-)agreement. The last page also
included a field to list static analysis tools they used (usable as guidance for future work)
and a general remark input field.

There was one branching point in the survey before the first section, as we asked de-
velopers if they were a registered WatchDog user. If a developer responded yes, they were
asked for the user and project identifiers. If the answer was no, several of the characteristics
that are included in the WatchDog user registration were asked in this survey. Using these
characteristics, we can potentially cross-correlate the quantitative results with the qualitative
answers of these developers.

The survey was filled in several times by us, to ensure the flow and branching point
was correct. After launching the major update of WatchDog, we also published our survey
on the internet. To that end, we sent out 4 tweets spanning over separate days, as well as
a Facebook and a LinkedIn post. Next to that, we have spread the survey link in multiple
group chats of Bachelor and Master Computer Science students from Delft University of
Technology as well as a group chat of one Google team. Lastly, we have asked several of
our company contacts to spread the survey in their respective company.

57

7. DEVELOPER PERCEPTION

7.1.1 Open question classification

Our survey contains one question regarding the usage of static analysis tools. To be able
to classify the tools, we used the open card sorting technique as previously used by Spruit
which they also used to classify open ended survey questions [61, 62]. At first, all an-
swers were normalized such that case-sensitivity and general wording was uniform across
all answers. For example, IntelliJ, Intellij, Intellij IDEA and intellij were all normalized
to the official name IntelliJ Idea. Then, we grouped the tools after which we formulated
a classification name. To improve the validity of this classification, we asked an external
student to, given the pre-defined categories, perform another classification. The given task
was to classify each tool in the pre-defined category, after which we discussed any potential
discrepancies.

7.2 Survey results

Based on the survey responses, we will now dive deeper in the results.

7.2.1 Respondent demographics and general statistics

In total, 61 developers responded to our survey, of which none were also part of our field
research study. Of all respondents, 22 developers (36%) listed their company, of which 7 are
employed at Google and 3 were student or staff member at Delft University of Technology.
Other companies include LinkedIn, ASML and Oracle. As expected by our dissemination
strategy, there are multiple respondents from the same company from the companies for
which we posted the survey link in the chat rooms, rather than the generic social media
posts. This effect is largely in-line with previous research on response rates of web-based
research surveys, where personalization and having personal contact with a respondent re-
sults in overall higher response rates [19].

A majority of the respondents has more than 3 years experience in software develop-
ment, 47.5% has 3-6 years, 23.0% 7-10 years and 24.6% >10 years programming experi-
ence. 1.6% has less than 1 year experience and 3.3% 1-2 years.

An overview of all static analysis tools that the respondents provided to the open ques-
tion is shown in Table 7.1. A total of 68.9% respondents provided at least one static analysis
tool. The tools were classified as described in Section 7.1.1. Overall, we had the same clas-
sifications, but there were 3 points of discussion:

• Resharper:

Resharper is an extension to the Visual Studio Code IDE. To that end, the external
student did not classify Resharper as an IDE, but as a Functional Bug Finder. To-
gether, we consulted the documentation of Resharper and concluded that Resharper
not only featured a bug finder, but also code editing techniques commonly found in an
IDE. We thus resolved this classification by concluding Resharper was more an IDE,
based on the fact that its features were not limited to only finding functional bugs.

58

7.2. Survey results

• Detekt:

The external student initially classified this as a tool collection. This was based on a
search using a search engine for which the first result was a Wikipedia page stating
the tool was deprecated1. However, extending our search query by appending "static
analysis" provided the first result as the static analysis tool for Kotlin2. Based on
the other answers provided and the context of the open question, we resolved this
classification as the latter rather than the former.

• SonarQube:

Lastly, we had a discussion regarding the meaning of tool collection and Functional
Bug Finder. We classified SonarQube as a tool collection, while the external student
classified SonarQube as a bug finder. The definition of a tool collection was initially
unclear to the student. Since SonarQube contained not only a bug finder but also other
quality metrics, we resolved this conflict by concluding that the most appropriate
classification was the most general one, in this case the tool collection. Classifying
SonarQube as just a bug finder would disregard the other features.

Of the 41 respondents, 25 (60,98%) respondents indicated they use at least 1 linter. We
also asked developers whether their project uses static analysis tools to enforce a uniform
code style, which is one of the purposes of a linter, for which 78.7% indicated they do. Sim-
ilarly, 21,95% of the respondents listed a functional bug finder, whereas 63.9% answered
the closed question that they use static analysis tools to find functional bugs. While the
percentages to the closed question are very similar, we do not know where the discrepancy
for the open question answers comes from. Since not all participants answered the open
question, we attribute the difference to the willingness to answer a closed yes/no-question
rather than an open-ended question.

Lastly, only 34.15% of the respondents answered that they use an IDE as static analysis
tool. We were surprised by the low percentage of respondents, as we expect developers
to make use of an IDE more often. One potential explanation is that developers did not
consider the built-in static analysis tools of an IDE when they answered the question.

RQ5: Most developers use a linter to enforce a uniform code style. Functional bug
finders and tool collections are used less often. Only 34.15% explicitly mentioned the
use of an IDE for static analysis purposes.

7.2.2 Resolving static analysis warnings

Respondents were asked for their estimate of how long it would take them to resolve one
static analysis warning. The time-scale was in seconds, minutes, hours, days and more than
a week. Of all respondents, 88.5% expects warnings to resolve in less than an hour: 39.3%

1https://en.wikipedia.org/wiki/Detekt
2https://github.com/arturbosch/detekt

59

https://en.wikipedia.org/wiki/Detekt
https://github.com/arturbosch/detekt

7. DEVELOPER PERCEPTION

Tool Nr. of respondents using Classification
ESLint 10 Linter
CheckStyle 9 Linter
IntelliJ Idea 8 IDE
SonarQube 7 Tool collection
TSLint 7 Linter
FindBugs 6 Functional Bug Finder
TypeScript Compiler 6 Compiler
PMD 4 Functional Bug Finder
Polymer Linter 4 Linter
Closure Compiler 3 Compiler
PHPStorm 2 IDE
PyCharm 2 IDE
ReSharper 2 IDE
SonarLint 2 Linter
SpotBugs 2 Functional Bug Finder
Brakeman 1 Security Vulnerability Finder
Clang Analyzer 1 Functional Bug Finder
Clang-format 1 Formatter
Rust-Clippy 1 Linter
Codesniffer 1 Linter
Coverity 1 Security Vulnerability Finder
CPPCheck 1 Functional Bug Finder
Detekt 1 Linter
Eclipse IDE 1 IDE
Gofmt 1 Formatter
GoLint 1 Linter
Haskell Compiler 1 Compiler
In-house tools 1 Tool collection
KTLint 1 Linter
PEP8 1 Style guide
PyLint 1 Linter
Robocop 1 Linter
Rustfmt 1 Formatter
ScalaStyle 1 Linter
Visual Studio Code 1 IDE

Table 7.1: Tools used by respondents and their classification

60

7.2. Survey results

estimates resolution takes a couple of seconds and 49.2% a couple of minutes. The amount
of respondents answering a couple of hours and more than a week was equivalent: 4.9%.
Lastly, a couple of days is only estimated by 1.6%. Overall, the estimations of developers
is largely in-line with the time distributions from WatchDog (Section 6.2.3).

RQ5.1: In correspondence to the quantitative data, most developers also estimate
warning resolution takes less than an hour.

The interesting distribution in the resolution times is that developers rarely estimate
resolution takes a couple of days. As such, developers either expect to resolve warnings on
the same day or it would take them weeks. Our quantitative data (Section 6.2.3) once again
confirms this estimation, where in a majority of the cases warnings are resolved in the same
developer session.

RQ5.1: Most of the time, developers estimate resolution of warnings happens
within a day, likely in the same developer session.

When asked about the how often the developer uses the tooling supplied by an IDE
to automatically resolve static analysis warnings, the responses were more mixed. 19.7%
responded always, 42.6% often and 14.8% sometimes, 11.5% seldom and 8.2% never. 2
respondents (3.3%) indicated that they were not aware of the functionality being available
to them in the IDE.

RQ5.1: Almost all developers were aware of automatic refactoring techniques in-
tegrated in an IDE and a majority of the developers uses these techniques often.

Based on the resolution, we also asked developers how often they need to look up a
static analysis warning message on the internet for clarification. 4.9% indicated always,
11.5% often, 39.3% sometimes, 42.6% seldom and the remaining 1.6% never. In general,
developers appear to be able to resolve warnings on their own without consulting the in-
ternet for additional help. Moreover, the chosen answers are roughly the same across the
different programming experience subsets. This means that most warnings are resolvable
either based on the text or based on experience of previously resolving a particular warning.
However, most developers rely on the internet for additional help from time to time.

RQ5.1: Most developer resolve static analysis in a majority of the cases with-
out consulting internet for clarification, irrespective of their programming experience.
However, from time to time they require external help to resolve a warning.

61

7. DEVELOPER PERCEPTION

1 (The first result of) a search engine
2 Question-Answer websites (e.g., StackOverflow)
3 Static analysis tool documentation
4 Static analysis tool issue tracker/mailing list
5 Static analysis tool source code.

Table 7.2: Resources listed that can be used to resolve warnings

Figure 7.1: Fractions of chosen resource combinations. Indices are listed in Table 7.2

Relies on Question-Answer websites
Yes No

Relies on documentation
Yes 2 4

No 3 0

Table 7.3: Combinations of using Question-Answer websites and/or using Static analysis
tool documentation for developers not relying on a search engine

As a continuation of the previous question, we also asked developers for a list of re-
sources whether they consult them when resolving a warning. The listed resources are
shown Table 7.2. For all 49 (84.5%) respondents that answered they are using "(The first
result of) a search engine", the chosen resource combinations are displayed in a Sankey di-
agram in Figure 7.1. The diagram shows the fractions of respondents that answered yes/no
in a green/red flow respectively. Moreover, the inter-dependencies between choices can be
deduced, as for example everyone who answered no to resources 3 and 4 also answered
no to resource 5. For those that do not rely on a search engine, there were only two tools
that were chosen: Question-Answer websites and Static analysis tool documentation. This
indicates that issue trackers and source code are not consulted without also using a search
engine. Table 7.3 shows these four chosen combinations. In total, 3 respondents did not
choose any of the options, presumably not using any of the provided resources.

62

7.2. Survey results

The distribution of yes/no-answers when the respondent indicated they use a search
engine, shows that mailing lists and source code are rarely consulted. Moreover, if one of
the two resources is consulted, the previous options of Question-Answer websites and tool
documentation are consulted as well. None of the developers that does not consult a search
engine relied on the mailing list and source code.

RQ5.1: Developers heavily rely on search engine results, Question-Answer web-
sites and static analysis tools documentation. Question-Answer websites and documen-
tation are rarely consulted without a search engine. Mailing lists and source code are
usually consulted when other resources are also consulted.

7.2.3 Configuring static analysis tools

Besides resolution, configuration of static analysis tools can also be used to tune and hide
static analysis warnings. Firstly, we asked respondents what kind of configuration options
they employ. Half of the respondents (50.8%) answered they use the default configuration
with small updates, 29.5% the default configuration and 19.7% a custom defined configura-
tion. This finding is similar to the findings from Beller et al., whom found commonly only
one rule in the configuration files of open source repositories has been changed compared
to the default configuration [8].

RQ5: Developers say they use the default configuration of tooling or a slightly-
customized version. This complements previous findings on tool configuration files of
open source repositories performed by Beller et al..

Then we asked more specifically how individual warnings are ignored. The options
we gave the respondents are listed in Table 7.4. The corresponding answer distributions
are shown in Figure 7.2. It appears that half of the developers never change their IDE
configuration. Moreover, only 8 developers indicated they change their IDE configuration
(more than) often. In contrast, more than half of the developers answered they sometimes
(or more frequently) alter source code to ignore warnings.

RQ5: Developers change their IDE configuration rarely and resort more often to
alter source code to ignore warnings.

Since source code alterations are applied by a large majority of the developers, we
were also interested in their experience with false positives/negatives. We asked developers
"How often do you encounter a false positive/negative reported by a static analysis tool?"
with time-scale options of "1 in {10, 100, 1000, >1000}" or never.

Responses were largely uniform, with "1 in 100" being chosen more often and "never"
by only 1 developer: 23% every 10 warnings, 34.4% every 100, 24.6% every 1000 and

63

7. DEVELOPER PERCEPTION

1 In the source code (e.g. @SuppressWarnings)
2 Remove checks from the project configuration
3 Remove checks from the IDE configuration

Table 7.4: Options listed that can be used to ignore warnings

Figure 7.2: Distribution of respondents on how often they use a method to ignore a warning.
Indices are listed in Table 7.4

16.4% once in >1000 warnings. Almost all developers therefore regularly and often have
to deal with inaccuracies of static analysis tools. One respondent also pointed out that they
even encounter false positives more often than 1 in 10. The Java project this developer was
working in was applying nullability analyses on existing source code. The analyses often
erroneously flagged values as nullable while in practice they would be not. This anecdote
points out the difficult challenges of approximations in certain static analyses.

RQ5: Almost all developers have encountered and still regularly do encounter false
positives/negatives in static analysis tools. Some static analyses can be wrong very
frequently as they try to approximate the actual program behavior.

In conjunction with reducing warning numbers by ignoring them, van Graafeiland found
that active monitoring of static analysis warnings on Continuous Integration (CI) also leads
to a reduction in warnings. Therefore, we asked developers whether they actively run static
analysis tools on CI and, if so, whether they let the build fail when a warning has been

64

7.2. Survey results

introduced. Two-thirds of the developers (65.6%) indicated that they run static analysis
tools on CI, of which about half (56.3% of 65.6%) also let the build fail.

RQ5: Usage of static analysis tools on Continuous Integration is common among
developers. In half of the cases the build is configured to fail on static analysis tool
warnings.

7.2.4 Feasibility and general perception

The very last section of our survey contained several statements regarding the feasibility and
general perception of static analysis tools. Each statement was accompanied by a five-level
Likert scale [42] ranging from "Strongly agree" to "Strongly disagree".

The first statement was focused on the static analysis plugin integration into the IDE:
"A static analysis tool plugin distracts me from the task at hand during my development
time". We wanted to know whether developers are discouraged to integrate these plugins
into their IDE, as the continuous stream of warnings could overwhelm them or distract
them from their work. However, developers overwhelmingy responded that they are either
neutral (26.2%) or in disagreement: 39.3% disagreed and 26.2% strongly disagreed with
this statement. Only 4.9% agreed and 3.3% strongly agreed with this statement.

RQ5: Developers point out they generally do not feel distracted after installing a
static analysis tool plugin in their IDE.

Then we asked developer whether they think installation of a plugin can or does save
overall development time. Previous research has estimated the cost of a defect for each
phase in a project cycle [64]. The estimations by NASA indicate that the cost of a defect
increases exponentially over time. Catching potential functional defects while working in
the IDE, as generated from and shown by the static analysis tool plugin, therefore would be
a cost-saving measure. The majority of developers also perceive plugins as cost-saving in
terms of development time: 18.0% strongly agrees and 65.6% agrees. 13.1% is neutral and
a sheer 3.3% disagrees, while no one strongly disagrees.

RQ5: Similarly to the findings from previous research that catching issues early is
cost-saving, developers largely regard the installation of a static analysis tool plugin in
their IDE as a net benefit to their overall development time.

While installation could be beneficial, we were also wondering whether enforcement of
a (wide variety of) static analysis tool(s) in an open source project would defer developers
from contributing. The question focuses on open source projects, because such projects
normally do not have any specific team or company requirements for external developers.

65

7. DEVELOPER PERCEPTION

Contributions to and working with an open source project is usually on a voluntary basis,
with motivators like career advancement [39] or in general fun and enjoyment [59].

To investigate whether developers regard enforcement of static analysis tools as a bar-
rier for contributing, we posed the statement "I do not want to contribute to an (open source)
project which enforces zero static analysis tools warnings". Overall, developers generally
disagree with this statement: 14.8% strongly disagrees, 39.3% disagrees and 29.5% is neu-
tral. Only 13.1% agrees and 3.3% strongly agrees and would not consider to contribute to
an open source project that enforces static analysis tools.

RQ5.2: In general, developers do not consider enforcement of static analysis tools
as a barrier for contributing to an open source project.

Lastly, we wanted to know if there could be a relation between adoption of static anal-
ysis tools and writing tests for a project. On the statement "I will write fewer test cases if
I can rely on static analysis tools being used in my project", there were very mixed results.
While only 1 developer strongly agrees with this statement, the other options are largely
uniformly distributed: 26.2% agrees, 23% is neutral, 32.8% disagrees and 16.4% strongly
disagrees.

RQ5: There is no clear sentiment with respect to the adoption of static analysis
tools and writing tests.

7.3 Summary

We conducted a survey to obtain a deeper insight in the perception of developers on their
usage of static analysis tools. A majority of the developers indicated they use a linter and
functional bug finder. Time estimations of how long it takes to resolve a warning is in-line
with our quantative data: it takes less than an hour. Developers largely resolve warnings
without consulting the internet. However, if they need to do so, they consult a search en-
gine and Question-Answer websites. Removing warnings by adjusting the configuration of
tools happens rarely in the IDE and more commonly by altering source code. False posi-
tives/negatives remain an important issue for developers, but usage of static analysis tools is
still common on CI. Overall, developers regard the installation of static analysis tool plugins
in their IDE as beneficial and performance-enhancing. It is therefore also not a barrier for
contributing to an open source project.

66

Chapter 8

Discussion

This chapter includes a discussion with an overview of the research results. Then, we list
several threats to validity on our findings.

8.1 Results overview

The previous two chapters contained detailed results based on our two datasets: a field
research and a survey dataset. We would now like to give an overview of the results and
answer each individual research question.

RQ1: Monitor capabilities of the IDE and plugins
The very first question we asked was related to the implementation of our choice for the
mode of observation in the IDE. As such, the question was targeted towards the core engi-
neering problems rather than a scientific analysis of results. To our knowledge, no previous
work has implemented a static analysis observation framework. The closest related work is
the work of WatchDog with an analysis framework for test usage and debugging analysis
[7, 62]. Based on our experience, we can conclude that neither IDEs (RQ1) nor exter-
nal static analysis tool plugins (RQ1.1) do not offer a fine-grained yet high-level API for
static analysis observations. Chapter 4 explains our work of building a generic cross-editor
implementation with the few APIs that were available.

A possible improvement for use-cases like ours is to introduce a dedicated listener
framework for static analysis warning processes in the IDE. Such a listener framework
should allow observers to obtain detailed information such as originating analysis rule, the
dynamic data used in constructing the warning and fine-grained timing information for when
the warning was introduced. All these improvements will prevent measures such as the clas-
sification process (Chapter 5) to improve the utility of the data.

RQ2: Frequency of different static analysis warning categories
After we successfully retrieved the classified warnings, we analyzed the relative frequency
of warning categories. Table 6.3 shows the frequency of the top 25 categories, for which
Figure 6.1 contains the graph with a trendline. The distribution of warning categories is an
exponential distribution where few categories produce the majority of all observed warnings

67

8. DISCUSSION

(RQ2). Besides that, warnings in the top categories are in a majority of the time resolved
as well (Figure 6.2). We were not able to confirm nor deny an influence of programming
experience or overall warning frequency on the distribution of warning categories (RQ2.1).

From the top 25 warning categories, we could classify 17 categories into three high-level
categories we introduced: type resolution, unused declarations/tokens and import manage-
ment. Developers encounter type resolution warnings most frequently, which might be re-
lated to the problem of type errors preventing the compilation of a program. Other warnings
are related to code hygiene where developers pay most attention to unused declarations and
general issues with imports.

RQ3: Lifetime of a warning
Developers react to warnings quickly, as the median of the lifetime is 50 seconds (RQ3
and Figure 6.5). Similarly to the warning frequency, type resolution warnings are resolved
quickest as well (Figure 6.7). Next to that, we also observed a lot warnings taking consider-
ably longer to resolve, up to a day. Respondents to our survey estimated that they solve most
of the warnings in a couple of minutes. Developer perception therefore closely matches the
observed reality. Again, we could not confirm nor deny a correlation between developer
experience (RQ3.1) or warning frequency (RQ3.2) and the lifetime of a warning.

RQ4: Position of warnings in a file
A comparison of Java class declaration positions and the position of unresolved warnings
(Figures 6.12 and 6.13) shows that there is a correlation between the two (RQ4.1). The
warnings we observed were frequently near of just after a class declaration. However, the
positions of warnings that are resolved is more focused on the last part of the file (RQ4).
This indicates that there is a discrepancy (in terms of relative position in a file) between the
warnings that are generated and the warnings that are resolved. The position of a warning
is therefore a factor whether developers resolve a warning or not.

RQ5: Developer perception on static analysis tools
Developers indicate that they largely consider static analysis tools to be effective and time-
saving, yet false positives are still encountered frequently (RQ5). They are also aware of
automated refactoring techniques available in an IDE and a majority of the developer ac-
tively uses techniques to resolve warnings. Whenever developers encounter a warning they
are unsure how to resolve, most developers indicate they consult a search engine (RQ5.1
and Figure 7.1). Moreover, a search engine is most of the time a prerequisite for the consul-
tation of other resources such as tool documentation and issue trackers. Figure 7.2 shows
that developers tend to rarely change the configuration of static analysis tools and they rely
on the default configuration or a slightly customized version. The default options in a static
analysis tool are therefore influential for the behavior and perception of the tool, corroborat-
ing findings of Johnson et al. where developers indicated customizability is required when
they disagree with the (default) functionality.

Continuous Integration is used in conjunction with static analysis tools, although not
all developers actively monitor warnings by letting the build fail. Lastly, developers do not
perceive the adoption of static analysis tools in open source projects as a blocking issue for
them to publish contributions (RQ5.2).

68

8.2. Threats to validity

8.2 Threats to validity

In this section, we discuss limitations of the results of both datasets as well as the three
threats to validity as proposed by Perry et al.: construct validity, internal validity and
external validity [52].

Limitations: The limitations of the field research dataset largely revolve around the
mis-classification of static analysis warnings, as explained in Section 5.2.3. Since privacy of
the developer’s actions was a requirement for data collection, classification of the warnings
became a necessity. The impact of missing classifications was limited as 13.25% of all
warnings could not be classified.

Next to that, the field research results are based on the telemetry data obtained by
WatchDog. Since WatchDog is a plugin for Eclipse and IntelliJ, behavior of developers
using different IDEs/editors is not considered. From the list of static analysis tools provided
by our survey respondents we can deduce that the majority of respondents are familiar with
Java and frontend programming languages such as JavaScript and TypeScript. The analysis
of survey results and telemetry data might therefore not be applicable for developers largely
proficient with different languages.

Construct validity: our field research is based on the editor plugin WatchDog. In
Section 3.4 we explained our reasoning for choosing WatchDog over other open source
options. However, we also added our observation that WatchDog had not seen maintenance
work for 1,5 years. To that end, while extensive infrastructure including a Ruby server
and plugin client was well-tested from previous work ([7, 62]), we had to perform several
architectural and maintenance-related upgrade to the implementation. There is a risk of the
introduction of human errors during this upgrade process. To minimize this impact, we
relied on the existing test suite, accompanied by a large number of manual end-to-end tests
to confirm the upgrade works for both existing and new users.

All additional functionality used to be able to observe the output of static analysis tools
was accompanied by automated integration tests to verify its correctness. The integration
tests were written for the Eclipse part of the WatchDog plugin, but are not present in IntelliJ.
Most of the added implementation exists in the core artifact, which is thus tested by the
Eclipse test suite. While the IntelliJ-specific implementation is small, it is manually tested
using the editor-supplied editor sandbox.

The functionality in WatchDog is therefore also dependent on the implementation qual-
ity of the external tools. There could be issues in their implementation that would end up
with incorrect results. Moreover, as the IDE extensions can be maintained by different de-
velopers, differences in the core implementation and the plugin could become problematic.
However, given the widespread usage of the tools and IDEs that are used in this thesis, we
expect the impact of this to be minimal.

Lastly, the static analysis observations are only possible when the IDE is opened and
WatchDog is active. This means that changes performed outside the IDE are not considered.
It could be that a developer reacts to a warning shown in the IDE by executing an external
tool. As such, while the IDE was involved and incentivized the developer to perform an
action, WatchDog is unaware of this effect.

69

8. DISCUSSION

Internal validity: WatchDog can be installed by anyone, as we publicly share the plu-
gin on our website https://testroots.org/testroots_watchdog.html as well in the
public plugin repositories of Eclipse and IntelliJ. To that end, we do not control our partic-
ipation subjects. In our field research results we had to remove the data from two of our
subjects, as they both generated significantly more data than all other subjects combined.
These two users generated a total of 60647 events, which is roughly equivalent to the num-
ber of events (61538) of all other users combined. A closer inspection of their data showed
that they generated several large clusters of events within a second. We have been unable
to discover any potential issues with the internal implementation of WatchDog. This leads
us to believe they were using automated software, possibly code generation, which were
correctly caught by WatchDog. Since we are interested in the developer usage of static
analysis tools, rather than the effects of automated code generation, our analysis excludes
these events. Otherwise, the statistics such as the category analysis would be skewed to the
behavior of very small fraction of our complete subject population.

Our choice for mode of observation, explained in Section 3.1, has a potential impact on
the behavior of our subjects, also known as Hawthorne Effect [1]. The choice for a silent
observer in the form of an editor plugin was based on minimizing this risk. Developers were
incentivized to install the plugin on the editor plugin repositories as well as on the subreddit
/r/java1. To make sure developers understand the purpose of this silent observer, we had
to inform them of our research intents. We would otherwise disincentivize developers of
installing our plugins on the basis of privacy concerns and general lack of knowledge of its
intent. When WatchDog is active in the editor, there are very few clues for the developer to
realize the plugin is active. As such, while developers might initially be aware of the plugin
and change their behavior, over time we expect their behavior to closely match with their
normal real world programming behavior. Therefore, to minimize this threat we ran our
field study over an extended period of time.

External validity: Similarly to previous studies based on WatchDog, participants largely
stem from the Java community. Generalizing to the full programmer community is there-
fore limited, as other developer backgrounds can lead to different results. There are hints
for this in our survey responses, for which several respondents included compilers as static
analysis tools. Based on these options, we conclude that different programming languages
communities rely on different compiler features and can thus have fewer tools installed. If
a compiler for language A includes more static analysis features (for example the language
includes type checking) than language B, developers for language A do not have to rely on
a static analysis tool that detects potential type errors, while developers using language B
do. The factor of programming language thus influences the choice of tools and warnings
that can be shown to the developer.

1https://www.reddit.com/r/java/comments/8l8zl9/watchdog_an_intellij_and_eclipse_plu
gin_that_we/

70

https://testroots.org/testroots_watchdog.html
https://www.reddit.com/r/java/comments/8l8zl9/watchdog_an_intellij_and_eclipse_plugin_that_we/
https://www.reddit.com/r/java/comments/8l8zl9/watchdog_an_intellij_and_eclipse_plugin_that_we/

Chapter 9

Conclusion and future work

In this last chapter we will conclude our research findings and give a summary of this thesis.
Then, we propose a vision for future static analysis tooling and potential future work.

9.1 Conclusion

In this master thesis, we investigated several research questions related to the implemen-
tation of and observations on static analysis tools in the IDE. To be able to answer these
questions, we designed a field research study and sent out a survey. The field research
study is based on the IDE plugin WatchDog, which was previously also used to gather user
statistics and track their behavior in the IDE.

We performed an extensive analysis of various API endpoints in the IDE and explained
our reasoning for choosing to observe the textual representations of warnings shown to the
developer. Based on the lack of fidelity of the chosen API, we had to anonymize the warn-
ings to make sure we can observe real-world development activity without compromising
potential privacy-sensitive work of the developer.

The analysis of our telemetry results shows that, in a majority of the time, developers
encounter warnings from a small number of categories: the distribution of warning category
frequency is exponential. The top 25 categories are primarily related to type resolution,
unused declarations/tokens and import management and warnings introduced are resolved
in a majority of the time. Moreover, warnings are usually resolved in a relative short time,
with a median of 50 seconds, which developers estimated in our survey as well. Warnings
related to type resolution are resolved the quickest. We could not confirm nor deny an effect
of the programming experience on either the warning frequency, but it is not correlated to
the lifetime. We also found a correlation between the position of a Java class declaration
and the position of unresolved warnings in a file.

Our survey shows that developers make use of static analysis tools for enforcing style
conventions and finding functional bugs. Developers are aware of automated refactoring
techniques for resolving the static analysis warnings. When they are unsure how to solve
a warning, a majority consults a search engine or a Question-Answer website. Tools are
configured using the default configuration or a slightly customized version thereof and the

71

9. CONCLUSION AND FUTURE WORK

configuration is changed rarely. Overall, developers perceive static analysis tools as a cost-
saving measure and generally beneficial in their development process.

The prevalence of perceived false positives/negatives combined with the exponential
distribution of static analysis warning categories leads us to believe there are several oppor-
tunities to improve. In the next section, we will elaborate on a vision for the future of static
analysis tooling combined with potential future work.

9.2 Future static analysis tooling

Based on the findings of our field and survey research, we would now like to elaborate on a
vision of a potential future for static analysis tools. The vision largely includes changes to
the tools in terms of reporting to and working with the developer.

9.2.1 Problem of absolute correctness

Our observations in the field research show a strong exponential distribution of the unique
warning categories (Figure 6.1). A small set of warning categories produce the majority
of warnings shown to the developer. Combining this knowledge with the perception of
false positives/negatives (Section 7.2.3), we deduce that current static analysis tools have
shortcomings with regard to their reporting capabilities.

At the moment, static analysis tools approximate the behavior of the program to the
best of their abilities. The need for approximation is based on the inability to predict the
eventual program behavior (without running the program) as static analysis is undecidable
[40]. However, even seemingly simple analyses can produce a significant number of false
positives. A study of the efficacy of the static analysis tool FindBugs on the JDK, the open
source project Glassfish1 and Google internal projects showed a significant number of false
positives [3]. The authors note that improvements and refinements to FindBugs resolved
most of the issues, but that there are still cases where the tool is incapable of understanding
the developer’s intent.

To be able to battle false positives, tools need to become smarter on when to issue warn-
ings and when they should not. At the moment, tools report issues they can detect given a
strict set of constraints. The implementation of the Google Java Style guide2 in CheckStyle3

mentions several limitations for which the tool is incapable of reporting violations to the
style guide. As a result, given the implementation and limitation of the CheckStyle check,
the check will produce incorrect results given the constraints defined by the CheckStyle au-
thors. Even though the check is not perfect, the concept of approximation is not included in
the reporting of the warning.

1https://github.com/javaee/glassfish
2http://google.github.io/styleguide/javaguide.html
3http://checkstyle.sourceforge.net/google_style.html

72

https://github.com/javaee/glassfish
http://google.github.io/styleguide/javaguide.html
http://checkstyle.sourceforge.net/google_style.html

9.2. Future static analysis tooling

9.2.2 How to deal with incorrectness

Static analysis implementations are inherently limited to the design of the tools and the
scenarios they take into account. If an analysis is executed on a scenario that it did not
take into account or was not designed to able to deal with, the tool will generate a false
positive. In this case, the problem of incorrectness is passed on to the developer, who has
to investigate the supposed problem reported by the warning. The impending issue with
this approach is the potential dismissal of all warnings of a tool, based on the frequent
occurrence of false positives, if the developer regularly constructs scenarios the tool is not
able to work with [31]. Since static analysis tools are enhancements to guard a developer
from making (expensive) mistakes and not a strict requirement for the product behavior,
developers are inclined to either ignore the results or disable the tool as a whole [57].

To combat the potential risk of incorrectness resulting in dismissal by the developer,
Google developed Tricorder [56]. Tricorder is a platform enabling Google developers to
integrate various analyses into their workflow and introduces a feedback loop between tool
developers and their users. The Tricorder engineers employ a different definition of a false
positive (coined as "effective false positive"): a false positive is defined by the user, not
by the tool developer. Google engineers can dismiss warnings as "not useful", which can
then result in the analysis being disabled until the implementation of the analysis has been
improved. Moreover, analyses commonly are accompanied by automated fixes, which en-
gineers can invoke by clicking in the code review interface.

Learn from the past

Next to the incorrectness measures integrated in Tricorder, we propose other data-driven in-
tegrations in the warning reporting interfaces. Based on our findings of lifetime of warnings
(Figure 6.5), the frequency occurrences of different categories of warnings (Figure 6.3) and
their respective position in the file (Figure 6.11), we propose that tools integrate previous
data points of user behavior to determine whether a warning should be reported. By in-
cluding these data points, tools can increase the usefulness for the developers and reducing
the risk of incorrectness. This concept was also coined by Johnson et al. where developers
pointed out they would like to have "a form of temporary suppression" [31]. Given the sit-
uation of the uselessness of local variable is not used when writing code shown in Figure
6.4, the aspect of lifetime can be included when deciding whether to report this warning.
Instead of reporting at the moment of determining that the local variable is unused, the tool
should (based on the lifetime of a warning) wait with reporting. If, for example, the warn-
ing is usually either fixed within a couple of seconds or considerably longer, waiting for 10
seconds greatly reduces the risk of uselessness.

By learning from the past behavior of the developer, tools can selectively show warn-
ings that the developer cares about at that moment in time. Any warning that is resolved
during the waiting timeframe is therefore one false positive that has been prevented. (Note
that the notion of the false positive is not in terms of correctness, as the warning was cor-
rectly determined to exist. However, it is similar to the interpretation of Sadowski et al. in
which the developer determines what constitutes a false positive [56].) The selection pro-

73

9. CONCLUSION AND FUTURE WORK

cedure could take into account not only just the average lifetime, but also its category (with
corresponding lifetime and development context [68]), as well as position in the file.

One other note we have to make regarding the selection procedure is that tools should
not hide warnings indefinitely. In other words: given a specific user profile, warnings can
be selectively hidden. However, whenever a tool is invoked to report any potential warnings
(for example on a CI server to let the build fail, Section 7.2.3), it should include all warn-
ings. We envision the developer workflow to thus include a certain amount of development
during which reporting is selectively hidden. During a code review or compilation step (as
proposed by Sadowski et al. [56]), the full analysis is run which reports all errors. Moreover,
developers can force a tool to report all warnings in their IDE when they are preparing for a
code review, to fix any potential issue. Employing this workflow, the developer consciously
works with a static analysis tool at the moments they feel most comfortable using the tool.

9.2.3 Machine learning

The concrete implementation of such an approach can be built on top of a machine learn-
ing solution. Machine learning can be used to predict the outcome of a process based on
sufficient training data [55]. The training data in our case is the previous behavior of the de-
veloper. The parameters of the internal neural network consist of the various characteristics
that can be computed; and which are currently included in WatchDog.

Evaluation of this system should focus on the usefulness for the developer. Similarly to
the "not useful" provided in Tricorder, warnings shown in the IDE should include an option
to dismiss a particular warning. Based on the characteristics of the dismissed warning, the
neural network can be iteratively improved to prevent extensive dismissals by the developer.
In essence, the base-case for this approach is the current absolute correctness in tools: they
always report any warning. Over time, the network will selectively hide those warnings that
a developer did not care about as well as take more behavioral data into account. The end
result of the network would be the correct prediction of all warnings, such that the developer
rarely if ever dismisses a single warning.

However, we have to take into account the effect of overfitting by hiding too many
warnings, introducing "effective false negatives": the developer did actually care about the
warning, even though it was never shown to them. One potential countermeasure would
be the gradual increase in usefulness for every new occurrence of a warning that would be
hidden. In other words: the longer a warning remains hidden, the higher the chance it is
again shown to the developer.

9.2.4 Future work

With this vision, future work should be focused on both data gathering and data processing.
The current observation techniques should be implemented into a variety of editors, to ob-
tain a complete overview of development behavior independent of IDE choice. Moreover,
by implementing more observation techniques, a more detailed analysis on the impact of
language communities can be confirmed or denied. Besides an increased number of editors,

74

9.2. Future static analysis tooling

future work should also include a increase in participant population and overall duration of
the observations.

For data processing, the chosen characteristics and processing method are crucial for ob-
taining good results. Future work should therefore investigate possible characteristics (with
potentially weights) and implementations, as well as a general feasibility and usefulness of
these factors for developers.

75

Bibliography

[1] John G Adair. The hawthorne effect: a reconsideration of the methodological artifact.
Journal of applied psychology, 69(2):334, 1984.

[2] David Ascher, Paul F Dubois, Konrad Hinsen, Jim Hugunin, Travis Oliphant, et al.
Numerical python, 2001.

[3] Nathaniel Ayewah, William Pugh, J. David Morgenthaler, John Penix, and YuQian
Zhou. Evaluating static analysis defect warnings on production software. In Pro-
ceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering, PASTE ’07, pages 1–8, New York, NY, USA,
2007. ACM. ISBN 978-1-59593-595-3. doi: 10.1145/1251535.1251536. URL
http://doi.acm.org/10.1145/1251535.1251536.

[4] Nathaniel Ayewah, David Hovemeyer, J David Morgenthaler, John Penix, and William
Pugh. Using static analysis to find bugs. IEEE software, 25(5), 2008.

[5] Earl Babbie. The practice of social research. Nelson Education, 2015.

[6] David F. Bacon and Peter F. Sweeney. Fast static analysis of c++ virtual function calls.
In Proceedings of the 11th ACM SIGPLAN Conference on Object-oriented Program-
ming, Systems, Languages, and Applications, OOPSLA ’96, pages 324–341, New
York, NY, USA, 1996. ACM. ISBN 0-89791-788-X. doi: 10.1145/236337.236371.
URL http://doi.acm.org/10.1145/236337.236371.

[7] Moritz Beller, Georgios Gousios, and Andy Zaidman. How (much) do developers
test? In Proceedings of the 37th International Conference on Software Engineering
(ICSE), pages 559–562. IEEE, 2015.

[8] Moritz Beller, Radjino Bholanath, Shane McIntosh, and Andy Zaidman. Analyzing
the state of static analysis: A large-scale evaluation in open source software. In Soft-
ware Analysis, Evolution, and Reengineering (SANER), 2016 IEEE 23rd International
Conference on, volume 1, pages 470–481. IEEE, 2016.

77

http://doi.acm.org/10.1145/1251535.1251536
http://doi.acm.org/10.1145/236337.236371

BIBLIOGRAPHY

[9] Moritz Beller, Igor Levaja, Annibale Panichella, Georgios Gousios, and Andy Zaid-
man. How to catch ’em all: Watchdog, a family of ide plug-ins to assess testing. In
3rd International Workshop on Software Engineering Research and Industrial Prac-
tice (SER&IP 2016), pages 53–56. IEEE, 2016.

[10] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles
Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. A few billion lines of
code later: using static analysis to find bugs in the real world. Communications of the
ACM, 53(2):66–75, 2010.

[11] Igor Bobriakov. Top 15 python libraries for data science in 2017. https:
//medium.com/activewizards-machine-learning-company/top-15-pyt
hon-libraries-for-data-science-in-in-2017-ab61b4f9b4a7, mar 2017.
Accessed May 15 2018.

[12] Barry W Boehm, Maria H Penedo, E Don Stuckle, Robert D Williams, Arthur B
Pyster, et al. A software development environment for improving productivity. In
Computer. Citeseer, 1984.

[13] Louis Brandy. Curiously Recurring C++ Bugs at Facebook. https://www.youtube.
com/watch?v=3MB2iiCkGxg, feb 2018.

[14] Michael L. Brodie and Michael Stonebraker. Legacy Information Systems Migration:
Gateways, Interfaces, and the Incremental Approach. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1995. ISBN 1-55860-330-1.

[15] Pierre Carbonnelle. Pypl popularity of programming language. http://pypl.githu
b.io/IDE.html, June 2018.

[16] Luca Cardelli. Type systems. ACM Computing Surveys, 28(1):263–264, 1996.

[17] HaiYang Chao, YongCan Cao, and YangQuan Chen. Autopilots for small unmanned
aerial vehicles: A survey. International Journal of Control, Automation and Systems,
8(1):36–44, Feb 2010. ISSN 2005-4092. doi: 10.1007/s12555-010-0105-z. URL
https://doi.org/10.1007/s12555-010-0105-z.

[18] Robert N Charette. Why software fails. Ieee Spectrum, 42(9):42–49, 2005.

[19] Colleen Cook, Fred Heath, and Russel L Thompson. A meta-analysis of response
rates in web-or internet-based surveys. Educational and psychological measurement,
60(6):821–836, 2000.

[20] Ralph B d’Agostino. An omnibus test of normality for moderate and large size sam-
ples. Biometrika, 58(2):341–348, 1971.

[21] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. In Mario Tokoro and Remo Pareschi,
editors, ECOOP’95 — Object-Oriented Programming, 9th European Conference,

78

https://medium.com/activewizards-machine-learning-company/top-15-python-libraries-for-data-science-in-in-2017-ab61b4f9b4a7
https://medium.com/activewizards-machine-learning-company/top-15-python-libraries-for-data-science-in-in-2017-ab61b4f9b4a7
https://medium.com/activewizards-machine-learning-company/top-15-python-libraries-for-data-science-in-in-2017-ab61b4f9b4a7
https://www.youtube.com/watch?v=3MB2iiCkGxg
https://www.youtube.com/watch?v=3MB2iiCkGxg
http://pypl.github.io/IDE.html
http://pypl.github.io/IDE.html
https://doi.org/10.1007/s12555-010-0105-z

Bibliography

Åarhus, Denmark, August 7–11, 1995, pages 77–101, Berlin, Heidelberg, 1995.
Springer Berlin Heidelberg. ISBN 978-3-540-49538-3.

[22] Olive Jean Dunn. Multiple comparisons among means. Journal of the American
Statistical Association, 56(293):52–64, 1961.

[23] Richard E Fairley. Tutorial: Static analysis and dynamic testing of computer software.
Computer, 11(4):14–23, 1978.

[24] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refactor-
ing: improving the design of existing code. Addison-Wesley Professional, 1999.

[25] Erich Gamma. Design patterns: elements of reusable object-oriented software. Pear-
son Education India, 1995.

[26] Samuel Gibbs. Warning signs for TSB’s IT meltdown were clear a year ago -
insider. https://www.theguardian.com/business/2018/apr/28/warning-sig
ns-for-tsbs-it-meltdown-were-clear-a-year-ago-insider, apr 2018. Ac-
cessed May 15 2018.

[27] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie Van Deursen.
Work practices and challenges in pull-based development: the integrator’s perspective.
In Proceedings of the 37th International Conference on Software Engineering-Volume
1, pages 358–368. IEEE Press, 2015.

[28] Brian Heater. Twitter is down again for some. https://techcrunch.com/2018/04/
20/twitter-is-down-again-for-some/, apr 2018. Accessed May 15 2018.

[29] John D Hunter. Matplotlib: A 2d graphics environment. Computing in science &
engineering, 9(3):90–95, 2007.

[30] Inc. JetBrains. Static code analysis. https://www.jetbrains.com/idea/docs/St
aticCodeAnalysis.pdf, June 2018.

[31] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. Why
don't software developers use static analysis tools to find bugs? In Proceedings
of the 2013 International Conference on Software Engineering, ICSE ’13, pages 672–
681, Piscataway, NJ, USA, 2013. IEEE Press. ISBN 978-1-4673-3076-3. URL http:
//dl.acm.org/citation.cfm?id=2486788.2486877.

[32] Andrey Karpov. Chromium: the Sixth Project Check and 250 Bugs. https://www.
viva64.com/en/b/0552/, jan 2018.

[33] Lennart C.L. Kats and Eelco Visser. The spoofax language workbench: Rules for
declarative specification of languages and ides. In Proceedings of the ACM Interna-
tional Conference on Object Oriented Programming Systems Languages and Appli-
cations, OOPSLA ’10, pages 444–463, New York, NY, USA, 2010. ACM. ISBN
978-1-4503-0203-6. doi: 10.1145/1869459.1869497. URL http://doi.acm.org/
10.1145/1869459.1869497.

79

https://www.theguardian.com/business/2018/apr/28/warning-signs-for-tsbs-it-meltdown-were-clear-a-year-ago-insider
https://www.theguardian.com/business/2018/apr/28/warning-signs-for-tsbs-it-meltdown-were-clear-a-year-ago-insider
https://techcrunch.com/2018/04/20/twitter-is-down-again-for-some/
https://techcrunch.com/2018/04/20/twitter-is-down-again-for-some/
https://www.jetbrains.com/idea/docs/StaticCodeAnalysis.pdf
https://www.jetbrains.com/idea/docs/StaticCodeAnalysis.pdf
http://dl.acm.org/citation.cfm?id=2486788.2486877
http://dl.acm.org/citation.cfm?id=2486788.2486877
https://www.viva64.com/en/b/0552/
https://www.viva64.com/en/b/0552/
http://doi.acm.org/10.1145/1869459.1869497
http://doi.acm.org/10.1145/1869459.1869497

BIBLIOGRAPHY

[34] Hope King. Woman’s home demolished after Google Maps error. http://money.
cnn.com/2016/03/25/technology/google-maps-house/index.html, mar 2016.
Accessed May 15 2018.

[35] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger, Matthias
Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Jason Grout, Sylvain
Corlay, et al. Jupyter notebooks-a publishing format for reproducible computational
workflows. In Proceedings of the 20th International Conference on Electronic Pub-
lishing, 2016.

[36] John C Knight. Safety critical systems: challenges and directions. In Software En-
gineering, 2002. ICSE 2002. Proceedings of the 24rd International Conference on,
pages 547–550. IEEE, 2002.

[37] Andrew J. Ko, Bryan Dosono, and Neeraja Duriseti. Thirty years of software problems
in the news. In Proceedings of the 7th International Workshop on Cooperative and
Human Aspects of Software Engineering, CHASE 2014, pages 32–39, New York, NY,
USA, 2014. ACM. ISBN 978-1-4503-2860-9. doi: 10.1145/2593702.2593719. URL
http://doi.acm.org/10.1145/2593702.2593719.

[38] William H Kruskal and W Allen Wallis. Use of ranks in one-criterion variance analy-
sis. Journal of the American statistical Association, 47(260):583–621, 1952.

[39] Karim R Lakhani and Robert G Wolf. Why hackers do what they do: Understanding
motivation and effort in free/open source software projects. Perspectives on Free and
Open Source Software, 2003.

[40] William Landi. Undecidability of static analysis. ACM Lett. Program. Lang. Syst., 1
(4):323–337, December 1992. ISSN 1057-4514. doi: 10.1145/161494.161501. URL
http://doi.acm.org/10.1145/161494.161501.

[41] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program
analysis & transformation. In Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-directed and Runtime Optimization, CGO
’04, pages 75–, Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-
2102-9. URL http://dl.acm.org/citation.cfm?id=977395.977673.

[42] Rensis Likert. A technique for the measurement of attitudes. Archives of psychology,
1932.

[43] Benjamin Livshits and Monica S. Lam. Finding security vulnerabilities in java appli-
cations with static analysis. In USENIX Security Symposium, 2005.

[44] Mark Masse. REST API Design Rulebook: Designing Consistent RESTful Web Service
Interfaces. " O’Reilly Media, Inc.", 2011.

[45] Tom Mens and Tom Tourwé. A survey of software refactoring. IEEE Transactions on
software engineering, 30(2):126–139, 2004.

80

http://money.cnn.com/2016/03/25/technology/google-maps-house/index.html
http://money.cnn.com/2016/03/25/technology/google-maps-house/index.html
http://doi.acm.org/10.1145/2593702.2593719
http://doi.acm.org/10.1145/161494.161501
http://dl.acm.org/citation.cfm?id=977395.977673

Bibliography

[46] Clark Mindock. Facebook down - latest updates: Social network stops working for
millions worldwide. https://www.independent.co.uk/life-style/gadgets-a
nd-tech/news/facebook-down-latest-updates-not-work-social-media-u
ser-accounts-posts-update-a8178611.html, jan 2018. Accessed May 15 2018.

[47] Gail C Murphy, Mik Kersten, and Leah Findlater. How are java software developers
using the elipse ide? IEEE software, 23(4):76–83, 2006.

[48] Eugene W Myers. Ano (nd) difference algorithm and its variations. Algorithmica, 1
(1-4):251–266, 1986.

[49] William F Opdyke. Refactoring object-oriented frameworks. PhD thesis, University
of Illinois at Urbana-Champaign, 1992.

[50] Sebastiano Panichella, Venera Arnaoudova, Massimiliano Di Penta, and Giuliano An-
toniol. Would static analysis tools help developers with code reviews? In 22nd
IEEE International Conference on Software Analysis, Evolution, and Reengineering,
SANER 2015, Montreal, QC, Canada, March 2-6, 2015, pages 161–170, 2015. doi:
10.1109/SANER.2015.7081826. URL https://doi.org/10.1109/SANER.2015.
7081826.

[51] Daniël Pelsmaeker. Portable editor services. Master’s thesis, Delft University
of Technology, 2018. URL http://resolver.tudelft.nl/uuid:c8b554de-bcb
6-4896-a9bf-c03cca37e344.

[52] Dewayne E Perry, Adam A Porter, and Lawrence G Votta. Empirical studies of soft-
ware engineering: a roadmap. In Proceedings of the conference on The future of
Software engineering, pages 345–355. ACM, 2000.

[53] Roger S Pressman. Software engineering: a practitioner’s approach. Palgrave
Macmillan, 2005.

[54] Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, and Yuanyuan Zhou. Rx: Treating
bugs as allergies—a safe method to survive software failures. In Proceedings of the
Twentieth ACM Symposium on Operating Systems Principles, SOSP ’05, pages 235–
248, New York, NY, USA, 2005. ACM. ISBN 1-59593-079-5. doi: 10.1145/1095810.
1095833. URL http://doi.acm.org/10.1145/1095810.1095833.

[55] J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

[56] Caitlin Sadowski, Jeffrey van Gogh, Ciera Jaspan, Emma Soederberg, and Collin Win-
ter. Tricorder: Building a program analysis ecosystem. In International Conference
on Software Engineering (ICSE), 2015.

[57] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and Ciera
Jaspan. Lessons from building static analysis tools at google. Commun. ACM, 61(4):
58–66, March 2018. ISSN 0001-0782. doi: 10.1145/3188720. URL http://doi.ac
m.org/10.1145/3188720.

81

https://www.independent.co.uk/life-style/gadgets-and-tech/news/facebook-down-latest-updates-not-work-social-media-user-accounts-posts-update-a8178611.html
https://www.independent.co.uk/life-style/gadgets-and-tech/news/facebook-down-latest-updates-not-work-social-media-user-accounts-posts-update-a8178611.html
https://www.independent.co.uk/life-style/gadgets-and-tech/news/facebook-down-latest-updates-not-work-social-media-user-accounts-posts-update-a8178611.html
https://doi.org/10.1109/SANER.2015.7081826
https://doi.org/10.1109/SANER.2015.7081826
http://resolver.tudelft.nl/uuid:c8b554de-bcb6-4896-a9bf-c03cca37e344
http://resolver.tudelft.nl/uuid:c8b554de-bcb6-4896-a9bf-c03cca37e344
http://doi.acm.org/10.1145/1095810.1095833
http://doi.acm.org/10.1145/3188720
http://doi.acm.org/10.1145/3188720

BIBLIOGRAPHY

[58] Morris S. Schwartz and Charlotte Green Schwartz. Problems in participant observa-
tion. American Journal of Sociology, 60(4):343–353, 1955. doi: 10.1086/221566.
URL https://doi.org/10.1086/221566.

[59] Sonali K Shah. Motivation, governance, and the viability of hybrid forms in open
source software development. Management science, 52(7):1000–1014, 2006.

[60] Gustavo Soares, Melina Mongiovi, and Rohit Gheyi. Identifying overly strong con-
ditions in refactoring implementations. In Software Maintenance (ICSM), 2011 27th
IEEE International Conference on, pages 173–182. IEEE, 2011.

[61] Donna Spencer. Card sorting: Designing usable categories. Rosenfeld Media, 2009.

[62] N Spruit. What programmers know about debugging and how they use their ide
debuggers. Master’s thesis, Delft University of Technology, 2016. URL http:
//resolver.tudelft.nl/uuid:bf3325ce-f246-4977-91bc-785f877347b8.

[63] JetBrains s.r.o. Code inspection. https://www.jetbrains.com/help/idea/code
-inspection.html, jan 2018.

[64] Jonette M Stecklein, Jim Dabney, Brandon Dick, Bill Haskins, Randy Lovell, and
Gregory Moroney. Error cost escalation through the project life cycle. Proceedings of
the 14th Annual International Symposium organized by the International Council on
Systems Engineering (INCOSE) Foundation, 2004.

[65] Jack Stilgoe. Machine learning, social learning and the governance of self-driving
cars. Social Studies of Science, 48(1):25–56, 2018. doi: 10.1177/0306312717741687.
URL https://doi.org/10.1177/0306312717741687. PMID: 29160165.

[66] Russell H Taylor, Arianna Menciassi, Gabor Fichtinger, Paolo Fiorini, and Paolo
Dario. Medical robotics and computer-integrated surgery. In Springer handbook of
robotics, pages 1657–1684. Springer, 2016.

[67] B. van Graafeiland. Static code analysis tools: Effects on development of open source
software. Master’s thesis, Delft University of Technology, 2016. URL http://reso
lver.tudelft.nl/uuid:b157de07-e5ce-4dba-8eae-154a0002a4f5.

[68] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian Proksch, Andy
Zaidman, and Harald C Gall. Context is king: The developer perspective on the usage
of static analysis tools. In 2018 IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pages 38–49. IEEE, 2018.

[69] J Wiegand et al. Eclipse: A platform for integrating development tools. IBM Systems
Journal, 43(2):371–383, 2004.

[70] Fiorella Zampetti, Simone Scalabrino, Rocco Oliveto, Gerardo Canfora, and Massim-
iliano Di Penta. How open source projects use static code analysis tools in continuous
integration pipelines. In Mining Software Repositories (MSR), 2017 IEEE/ACM 14th
International Conference on, pages 334–344. IEEE, 2017.

82

https://doi.org/10.1086/221566
http://resolver.tudelft.nl/uuid:bf3325ce-f246-4977-91bc-785f877347b8
http://resolver.tudelft.nl/uuid:bf3325ce-f246-4977-91bc-785f877347b8
https://www.jetbrains.com/help/idea/code-inspection.html
https://www.jetbrains.com/help/idea/code-inspection.html
https://doi.org/10.1177/0306312717741687
http://resolver.tudelft.nl/uuid:b157de07-e5ce-4dba-8eae-154a0002a4f5
http://resolver.tudelft.nl/uuid:b157de07-e5ce-4dba-8eae-154a0002a4f5

Bibliography

[71] Misha Zitser, Richard Lippmann, and Tim Leek. Testing static analysis tools us-
ing exploitable buffer overflows from open source code. In Proceedings of the 12th
ACM SIGSOFT Twelfth International Symposium on Foundations of Software Engi-
neering, SIGSOFT ’04/FSE-12, pages 97–106, New York, NY, USA, 2004. ACM.
ISBN 1-58113-855-5. doi: 10.1145/1029894.1029911. URL http://doi.acm.org/
10.1145/1029894.1029911.

83

http://doi.acm.org/10.1145/1029894.1029911
http://doi.acm.org/10.1145/1029894.1029911

Appendix A

Glossary

In this appendix we give an overview of frequently used terms and abbreviations.

BSON: "binary-encoded serialization of JSON-like documents" - http://bsonspec.org

ClassLoader: A class that is used to dynamically load code in a Java application https:
//docs.oracle.com/javase/10/docs/api/java/lang/ClassLoader.html

Continuous Integration (CI): Practice of regularly building an application automatically
to catch (integration) problems faster, usually by installing a clean setup on a external
server.

Eclipse: IDE developed by the Eclipse Foundation https://www.eclipse.org/downlo
ads/eclipse-packages/

IDE: Interactive Developer Environment which developers use to build applications with
assistance of tools to increase productivity

IntelliJ (Idea): IDE developed by JetBrains https://www.jetbrains.com/idea/

REST API: Architecture style to design web APIs accessible over HTTP [44]

85

http://bsonspec.org
https://docs.oracle.com/javase/10/docs/api/java/lang/ClassLoader.html
https://docs.oracle.com/javase/10/docs/api/java/lang/ClassLoader.html
https://www.eclipse.org/downloads/eclipse-packages/
https://www.eclipse.org/downloads/eclipse-packages/
https://www.jetbrains.com/idea/

	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Research Questions
	Chapter overview

	Related work
	Static Analysis
	Integrated Development Environment
	Static analysis in the IDE

	Automated telemetry
	Modes of observation
	Automated tool options
	Analysis existing tools
	Existing tools pros and cons
	Final choice

	Static analysis in editors
	Code Inspection with IntelliJ IDEA
	IMarkers in Eclipse
	Lowest common denominator implementation
	Static analysis IDE extensions
	Summary

	Classification of warnings
	Possible code references
	Classification of warnings
	Summary

	Telemetry results
	Data retrieval
	Statistics
	Summary

	Developer perception
	Survey design
	Survey results
	Summary

	Discussion
	Results overview
	Threats to validity

	 Conclusion and future work
	Conclusion
	Future static analysis tooling

	Bibliography
	Glossary

