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Abstract
Real geotechnical data from a typical site might be characterized as MUSIC-X (i.e., multivariate, uncertain, unique, sparse,

incomplete, and potentially corrupted, with X denoting spatial/temporal variability). One of the key challenges in develop-
ing site-specific statistical models for multiple geotechnical properties (i.e., multivariate) is missing (or incomplete) values
from different tests at various depths/locations. This raises a critical question in geotechnical site investigations: how to re-
cover the missing values in real geotechnical datasets from available measurements by leveraging the underlying structure
of geotechnical datasets? Since different geotechnical properties are not only correlated among different properties, but also
auto-correlated across different depths, this suggests that a simple underlying structure with only a limited number of impor-
tant features/patterns might exist for multivariate geotechnical datasets. Leveraging on this observation, this study proposes
a novel, data-driven method for predicting missing values by low-rank matrix completion. The proposed method exploits the
auto- and cross-correlation structures of different test data. Missing values are then recovered using a singular value threshold-
ing algorithm, and a k-fold cross-validation strategy is employed to determine the level of measurement noise. The method is
illustrated and validated using a real geotechnical dataset. The results indicate that the proposed method can provide reliable
predictions.

Key words: geotechnical site characterization, low-rank matrix, incomplete data, MUSIC-X, matrix completion

Résumé
Les données géotechniques réelles d’un site typique peuvent être caractérisées comme MUSIC-X (c.-à-d. multivariées, incer-

taines, uniques, clairsemées, incomplètes et potentiellement corrompues, X dénotant une variabilité spatiale et temporelle).
L’un des principaux défis dans le développement de modèles statistiques spécifiques au site pour plusieurs propriétés géotech-
niques (c’est-à-dire multivariées) est que des valeurs manquantes (ou incomplètes) proviennent de différents essais à diverses
profondeurs ou emplacements. Cela soulève une question cruciale dans les investigations géotechniques sur site : comment
récupérer les valeurs manquantes dans les ensembles de données géotechniques réels à partir des mesures disponibles en
exploitant la structure sous-jacente de ces ensembles de données? Étant donné que les différentes propriétés géotechniques
sont non seulement corrélées entre elles, mais aussi autocorrélées à différentes profondeurs, cela suggère qu’une structure
sous-jacente simple, composée d’un nombre limité de caractéristiques ou de motifs importants, pourrait exister pour les en-
sembles de données géotechniques multivariées. S’appuyant sur cette observation, cette étude propose une méthode innovante
basée sur les données pour prédire les valeurs manquantes par complétion de matrice à faible rang. La méthode proposée ex-
ploite les structures d’autocorrélation et de corrélation croisée de différentes données d’essai. Les valeurs manquantes sont
ensuite récupérées à l’aide d’un algorithme de seuillage des valeurs singulières, et une stratégie de validation croisée en k
plis est utilisée pour déterminer le niveau de bruit de mesure. La méthode est illustrée et validée à l’aide d’un jeu de données
géotechniques réelles. Les résultats montrent que la méthode proposée fournit des prédictions fiables.

Mots-clés : caractérisation géotechnique du site, matrice à faible rang, données incomplètes, MUSIC-X, complétion de matrice

1. Introduction
In geotechnical engineering practice, it is common that dif-

ferent types of field or laboratory tests are conducted dur-

ing a site investigation program to identify the engineering
properties of soils or rocks at different depths and locations
(e.g., Ching and Phoon 2014). However, due to budget and/or
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Fig. 1. Illustration of incomplete multivariate geotechnical dataset.

Table 1. Geotechnical site investigation data for a site in Onsøy, Norway (after Lacasse and Lunne 1982).

Depth LL PI LI σ′
vo/Pa σ′

p/Pa su St Bq qt qtu

1.00 56.20 20.00 1.54 0.06 0.85 0.12 6 0.16 29.11 25.57

1.90 50.20 18.10 1.82 0.12 0.60 0.11 14 0.24 17.69 14.58

3.50 59.90 30.50 0.93 0.22 0.48 0.11 15 0.30 10.52 8.41

5.20 56.80 22.90 1.07 0.32 0.45 0.12 7 0.35 7.70 6.11

7.60 66.30 31.50 0.87 0.47 0.54 0.11 14 0.47 5.89 4.25

9.50 65.10 29.60 0.97 0.58 0.15 12 0.41 6.19 4.74

10.80 74.40 36.10 0.81 0.65 0.84 0.16 9 0.46 5.93 4.31

13.40 71.40 35.80 0.87 0.81 1.05 0.19 0.47 5.95 4.24

16.30 72.70 34.70 0.76 0.99 0.99 0.24 0.55 6.13 3.88

Note: LL, liquid limit; PI, plasticity index; LI, liquidity index; σ′
vo, vertical effective stress; σ′

p, effective pre-consolidation stress; Pa, atmo-
spheric pressure; su, undrained shear strength; St, sensitivity; Bq, pore pressure ratio; qt, normalized cone tip resistance; qtu, effective cone
tip resistance.

technical constraints, test data from a specific site are often
sparse and incomplete. The test data are sparse because dif-
ferent tests are only performed at limited depths/locations.
This also leads to an incomplete dataset due to missing val-
ues from certain tests at some depths (e.g., Phoon et al.
2024), as illustrated in Fig. 1. Consider, for example, Table 1,
which presents geotechnical site investigation data obtained
from a site in Onsøy, Norway (Lacasse and Lunne 1982). The
columns in Table 1 represent different soil properties (e.g.,
liquid limit, plasticity index, …, effective cone tip resistance),
and the rows represent measurement data from each test
at different depths (e.g., 1.0 m, 1.9 m, …, 16.3 m). It can
be observed from Table 1 that measurements for some tests
(e.g., pre-consolidation stress and sensitivity) are missing at
certain depths, as shown by red shadows in the cells. The
presence of missing data makes such a limited geotechni-
cal dataset even less informative and more difficult to an-

alyze, posing a significant challenge in developing reliable
statistical models (e.g., multivariate probability distribution
functions or transformation models) for geotechnical proper-
ties at a typical site.

Phoon et al. (2019) described the geotechnical site investi-
gation data as MUSIC-X (multivariate, uncertain and unique,
sparse, incomplete, and potentially corrupted with “X” de-
noting the spatial/temporal dimension). Ching and Phoon
(2019) proposed a Gibbs sampler approach to address incom-
plete geotechnical data by simulating missing values with
consideration of the auto- and cross-correlation of differ-
ent test data. In their method, the auto-correlation of dif-
ferent test data is modeled using the same stationary ran-
dom field, implying that different geotechnical properties
share the same auto-correlation structure. In addition, their
approach requires the pre-estimation of site-specific auto-
correlation structures as input. However, real geotechnical
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data are often non-stationary and non-Gaussian (e.g., ex-
hibiting complex multimodal distributions), and different
geotechnical properties may have significantly different auto-
correlation structures. Furthermore, it is notoriously chal-
lenging to reliably estimate the auto- and cross-correlation
parameters from sparse site-specific measurements. The au-
tocorrelation parameters are particularly difficult to esti-
mate in the horizontal direction (Ching et al. 2018). Guan
and Wang (2021) proposed a Bayesian compressive sampling-
based method for constructing a joint probability distribu-
tion of cross-correlated geotechnical properties from sparse
site-specific measurements. Although their method is non-
parametric, it was developed based on the assumption of
independent measurement data along depth, i.e., the auto-
correlation of each property is ignored. More recently, Mu et
al. (2024) utilized the multivariate Gaussian copula to model
the cross-correlation among different geotechnical proper-
ties, and employed the nearest correlation matrix and boot-
strapping techniques to address the non-positive definiteness
problem of the cross-correlation matrix. Despite these ad-
vancements, dealing with missing values from sparse site-
specific measurements remains a challenging task due to the
various assumptions in existing methods that real geotechni-
cal data may not satisfy. Such leap of faith assumptions that
are not informed by data should be kept to a minimum.

Phoon et al. (2022b) argued that the primary goal of “data-
centric geotechnics” is to prioritize a “data-first” agenda in
practice. This goal can only be achieved through the devel-
opment and implementation of purely data-driven methods
capable of handling real-world geotechnical data with vary-
ing, or even unknown statistical characteristics (e.g., station-
ary or non-stationary; Gaussian or non-Gaussian). Since differ-
ent test data are usually cross-correlated and auto-correlated
at different depths, multivariate geotechnical datasets may
have a simple underlying structure, i.e., with only a lim-
ited number of important features/patterns (e.g., Phoon et al.
2022a; Guan et al. 2024). This offers a promising alternative
to recover the missing value in geotechnical datasets from all
available measurements by leveraging the underlying struc-
ture of geotechnical datasets. To explore this alternative, this
study proposes a novel, data-driven method for recovering
missing values from all available measurements of different
tests. In the proposed method, the auto- and cross-correlation
structures of different test data are exploited using a low-rank
modeling approach. In the proposed approach, a multivari-
ate geotechnical dataset (e.g., Table 1) is represented as a low-
rank matrix for exploiting its low-rank structure. The low-
rank structure of a dataset or matrix means that the original
complete data matrix, M, can be well-approximated by a ma-
trix with a much lower rank than M, in which the number
of independent rows or columns (i.e., the rank of a matrix)
is less than the number of all rows or columns. Leveraging
the underlying low-rank structure of geotechnical datasets
offers a promising alternative to predict missing data based
on the available observations. In this study, missing values
are proposed to be recovered from all measurements using a
low-rank matrix completion method called the singular value
thresholding (SVT) algorithm (Cai et al. 2010). To account for
measurement noise in geotechnical datasets, a k-fold cross-

validation strategy is proposed to determine the most prob-
able noise level. Additionally, bootstrapping is adopted to
quantify uncertainty in the prediction of the missing entries.
The proposed approach is non-parametric and data-driven,
and it does not require assumptions of Gaussian distribution
or stationary random fields, making it directly applicable to
real-world geotechnical data.

The remainder of this manuscript is organized as follows:
Section 2 introduces the low-rank structure of geotechnical
datasets. Section 3 proposes a method for recovering missing
geotechnical data using the SVT algorithm, followed by a k-
fold cross-validation strategy for determining the most prob-
able level of measurement noise in Section 4. Section 5 de-
tails the implementation procedure of the proposed method.
Quantification of uncertainty in the prediction by bootstrap-
ping is described in Section 6. Section 7 demonstrates the
method using a real geotechnical dataset, and concluding re-
marks are provided in Section 8.

2. Low-rank structure of multivariate
geotechnical datasets

It is well-recognized that many real-world multivariate
datasets often exhibit a low-rank structure or characteristics
(e.g., Lingala et al. 2011; Liu et al. 2013; Tang et al. 2014;
Nguyen et al. 2019). For instance, a multivariate data ma-
trix (e.g., Table 1) can frequently be approximated by a ma-
trix with a much lower rank than the original matrix. In
other words, only a limited number of independent rows or
columns (i.e., important patterns or features of the original
datasets) are sufficient to capture the main information of
the original datasets. Because rows or columns of the original
datasets are usually highly cross-correlated, low-dimensional
structures, or patterns, often emerge in the original datasets.
For example, images typically have a low-rank structure be-
cause the pixel values in an image are often highly corre-
lated, indicating redundant information in the original im-
age. This suggests that only a relatively small number of un-
derlying patterns or features is required to properly repre-
sent the original image. Similarly, in geotechnical site inves-
tigations, geotechnical properties estimated from different
tests are usually cross-correlated among properties and auto-
correlated along depths, resulting in a low-rank structure for
geotechnical datasets.

The basic idea of low-rank modeling is to represent a
geotechnical data matrix as a summation of a limited number
of components, ordered by their importance. Only the most
important components are selected and retained to preserve
the majority of the information from the original dataset.
Singular value decomposition (SVD) is a widely used method
for low-rank modeling (e.g., Candès and Tao 2010), as it can
capture the essential features of the original matrix and ap-
proximate the matrix as a summation of a limited number of
rank-one matrices (components), as illustrated in Fig. 2. Let a
matrix M with a dimension of n × m represent a geotechnical
dataset with a number, m, of geotechnical properties, each of
which is measured at n different locations or depths. An SVD
of the matrix M provides a unique matrix decomposition,
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Fig. 2. Low-rank approximation of a multivariate geotechnical data matrix, (M). SVD, singular value decomposition.
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Table 2. Geotechnical site investigation data for a site in Beauharnois, Quebec, Canada (after Ching and Phoon
2014).

Depth σ′
vo σ′

p OCR LL PI LI St su,VST Remolded su,VST su(mob)

5.24 87.37 92.83 1.06 51.00 29.00 1.52 70.49 38.23 0.54 35.22

5.76 90.88 91.66 1.01 58.00 35.00 1.51 69.05 31.98 0.46 28.16

6.47 94.78 95.17 1.00 66.00 41.00 1.29 38.05 29.25 0.77 24.66

7.11 98.69 99.47 1.01 62.00 36.00 1.56 81.29 44.08 0.54 38.52

7.69 102.59 103.37 1.01 68.00 43.00 1.23 42.98 40.18 0.93 33.40

8.36 106.49 107.66 1.01 68.00 42.00 1.29 93.72 37.45 0.40 31.34

8.89 109.61 111.17 1.01 62.00 36.00 1.31 57.84 44.47 0.77 38.86

9.41 112.73 115.07 1.02 55.00 30.00 0.93 33.71 63.58 1.89 58.14

9.92 116.24 118.19 1.02 57.00 25.00 0.84 22.50 56.56 2.51 53.78

10.36 118.97 121.70 1.02 44.00 22.00 1.23 63.02 58.90 0.93 57.38

10.88 122.48 125.60 1.03 58.00 33.00 1.18 52.17 48.76 0.93 43.58

11.96 130.67 133.01 1.02 51.00 25.00 0.88 32.27 60.85 1.89 57.86

Note: σ′
vo, vertical effective stress; σ′

p, effective pre-consolidation stress; OCR, over-consolidation ratio; LL, liquid limit; PI, plasticity index; LI, liquidity
index; St, sensitivity; su,VST, undrained shear strength obtained from vane shear test; su(mob), mobilized undrained shear strength.

expressed as (e.g., Stewart 1993):

M = U� VT(1)

where an n × n matrix U and an m × m matrix V are unitary
matrices; � is an n × m rectangular diagonal matrix with non-
negative real numbers on the diagonal. The columns of U,
u1, u2, . . . , un are called left singular vectors of M, while the
columns of V, v1, v2, . . . , vm are called right singular vectors of
M. The diagonal elements of �, s1, s2, …, sp are called singular
values, where p is the minimal value of n and m, p = min {n,
m}. The singular values are listed in descending order (i.e.,
from the largest to the smallest, s1 ≥ s2 ≥ … ≥ sp). In SVD,
M can be represented as a linear combination of p rank-one
matrices generated by an outer products of the left and right
singular vectors, as shown in Fig. 2a (e.g., Stewart 1993):

M =
p∑

i=1

siuiv
T
i(2)

where ui and vi are the i-th left and right singular vec-
tors of M, respectively; uiv

T
i represents the i-th rank-one ma-

trix/component; si is the corresponding weight coefficient or
scaling factor. Because M is a linear summation of p rank-one
matrices, M has a rank of p.

SVD provides interpretable insights about the auto- and
cross-correlation structures of the geotechnical datasets. The
left singular vectors capture patterns across rows (i.e., depth
in this study) for the dominant latent modes in the data,
while the right singular vectors correspond to patterns across
columns, i.e., the cross-correlation among different geotech-
nical variables (e.g., Wall et al. 2003; Jolliffe and Cadima 2016).
Essentially, SVD transfers the original geotechnical matrix
into a new coordinate system generated by the singular vec-
tors of M. The singular values, s1, s2, …, sp indicate the scaling
factors along each dimension of the new coordinate system.
The larger the singular value, the more important the cor-
responding dimension (component) is for representing pat-

terns of the geotechnical dataset. Since different geotechnical
properties are usually cross-correlated and measurements of
each geotechnical property are auto-correlated along depths,
only a limited number of components with significantly large
weight coefficients are required to capture the main patterns
of the original data matrix. Then, only the first r most impor-
tant components with significantly large weights are needed
for approximating the original data matrix, as shown in Fig.
2b. In other words, the data matrix, M with a rank of p, is
approximated using a matrix M̃ with a much lower rank, r
(r < p), as illustrated in Fig. 2c:

M ≈ M̃ = Ũ�̃
(
Ṽ

)T =
r∑

i=1

siuivT
i(3)

where an n × r matrix, Ũ = [
u1, u2, . . . , ur

]
contains the top

r left singular vectors; an m × r matrix, Ṽ = [
v1, v2, . . . , vr

]
contains the top r right singular vectors; �̃ is a r × r
square diagonal matrix includes the top r singular values,
s1, s2, …, sr.

Consider, for example, a complete geotechnical dataset
from Beauharnois, Quebec, Canada, obtained from the
CLAY/10/7490 database (Ching and Phoon 2014), as shown in
Table 2. This dataset can be treated as a matrix with a dimen-
sion of 12 × 11. Then, SVD is performed for this matrix. The
ordered singular values of this matrix or the weight coeffi-
cients of components are shown in Fig. 3. It is observed from
this figure that the first several singular values are signifi-
cantly larger than the remaining ones. In SVD, relative energy
is often adopted to evaluate the significance of the singular
values in capturing the variability of a data matrix, which is
defined as the proportion of the total variability captured by
the first q singular values (e.g., Chatterjee 2000):

Eq = s2
1 + s2

2 + · · · + s2
q

s2
1 + s2

2 + · · · + s2
p

(4)
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Fig. 3. Singular values of the geotechnical data matrix for the site in Beauharnois, Quebec, Canada.

Using eq. 4, the relative energy for the first four singular
values is calculated as, E4 = 96.4%. This means that keep-
ing just the first four singular values may capture approxi-
mately 96.4% variability of this geotechnical dataset. There-
fore, the first four components can be used to effectively
approximate the original complete dataset. In other words,
the rank of this matrix is about four. The first four domi-
nant left singular vectors, representing key spatial patterns
along depth for different properties, are shown in Fig. 4. The
low-rank structure of geotechnical datasets suggests a pres-
ence of redundant information in the datasets because many
data points are dependent or highly correlated. This redun-
dancy allows for an effective prediction of missing data based
on the available observations, as described in the following
section.

3. Missing data prediction using
low-rank matrix completion method

In geotechnical engineering practice, it is common that
certain tests are not conducted at every depth, due to the de-
structive nature of some tests and some practical constraints
such as high cost (e.g., expensive and time-consuming triax-
ial tests). This results in incomplete geotechnical datasets.
This leads to a problem of how to recover the original com-
plete data matrix, M, with n rows and m columns, when
only a portion of the entries are observed. In general, if
each entry in the data matrix is independent or uncorre-
lated, recovering the missing values is impossible. However,
when the matrix has an underlying simple structure, or more
specifically, when it is low-rank or approximately low-rank
(i.e., the matrix can be represented by only a limited num-

Fig. 4. First four dominant left singular vectors for the
geotechnical data matrix.

ber of important components), it becomes possible to accu-
rately predict the missing data by leveraging the low-rank
structure.
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One of the well-known applications of matrix comple-
tion/recovery is the one-million-dollar Netflix challenge
(e.g., Piotte and Chabbert 2009; Feuerverger et al. 2012;
Gomez-Uribe and Hunt 2015). In Netflix, users have the op-
portunity to rate movies, which can be summarized in a ma-
trix form, where the rows represent users, the columns rep-
resent movies, and the entries indicate the ratings. However,
users typically rate only a limited number of movies, lead-
ing to an incomplete matrix with very limited observed en-
tries. The challenge is to recover this incomplete matrix so
that Netflix can efficiently recommend movies to individual
users. The user ratings matrix typically has an approximately
low-rank structure because the variability in ratings can be
captured by only a few latent factors or features (e.g., genres,
actors, or themes). Similar challenges arise in predicting mu-
sical preferences for Apple Inc. and customer preferences for
Amazon.com.

The basic idea behind low-rank matrix completion for
incomplete geotechnical datasets is to impute the missing
values of different tests in a manner that aligns with the low-
rank approximation of the observed measurements. Math-
ematically, the challenge is to determine a complete data
matrix with the lowest possible rank, denoted as X, that cor-
responds to the measurements. This can be formulated as an
optimization problem below (e.g., Candès and Recht 2008):

minimize rank(X)

subject to Xi,j = Mi,j (i, j) ∈ �

(5)

where Mi, j represents the observed measurements at the
i-th row and j-th column of the incomplete data matrix; �

indicates the set of locations corresponding to the observed
entries, i.e., (i, j) ∈ �; Xi, j is the entry at the i-th row and j-th
column of the matrix, X. The physical meaning of eq. 5 is that
it finds the simplest underlying structure that can adequately
explain the observed data. However, the minimization of
matrix rank is nonconvex and generally impossible to solve
as its solution usually requires an intractable combinatorial
search. Recent developments in matrix completion (e.g.,
Candès and Recht 2008; Candès and Plan 2010; Candès
and Tao 2010) suggest that the solution to the matrix rank
minimization problem, as expressed in eq. 5, can be relaxed
to a nuclear norm minimization problem. This approach
is computationally tractable via convex optimization and
typically results in the lowest possible rank:

minimize ‖X‖∗

subject to Xi,j = Mi,j (i, j) ∈ �

(6)

where ‖·‖∗ represents the nuclear norm of a matrix, which
is the sum of singular values of a matrix.

In geotechnical engineering practice, measurements from
different tests, i.e., observed entries in the matrix, often con-
tain noise. Exactly or closely fitting to the significantly noisy
geotechnical measurement data can lead to an over-fitting
problem and be less generalizable, i.e., the model performs
well on the observed entries but poorly on missing or un-
seen entries. To overcome this issue, entries from a recovered

low-rank matrix shall not correspond exactly to the measured
data points. Consequently, instead of enforcing a strict equal-
ity constraint, a measurement error term is introduced to the
eq. 6:

minimize ‖X‖∗

subject to

√ ∑
(i, j)∈�

(
Xi,j − Mi,j

)2

√ ∑
(i, j)∈�

Mi,j
2

≤ ε

(7)

where ε indicates the level of measurement noise. In this
study, eq. 7 is solved using a SVT algorithm (Cai et al. 2010).

3.1. Singular value thresholding algorithm
The SVT algorithm is an efficient method for matrix

completion. The basic idea of the SVT algorithm is to pro-
gressively build up the low-rank structure of the estimated
complete data matrix by iteratively adding corrections to
the matrix estimate and shrinking the singular values. It
starts with an initial iteration matrix and then adaptively
applies SVD to the matrix and shrinks its singular values
by a certain threshold. The iteration matrix defines how
the next iteration is based on the current approximation.
At each iteration, the iteration matrix is updated by adding
the difference between the observed entries and current
estimates of the complete geotechnical data matrix. The
thresholding of singular values encourages the solution to
have low rank by removing small singular values, which
correspond to noise or trivial components. This involves sub-
tracting a fixed value (i.e., a threshold) from each singular
value in the matrix by the soft-thresholding operator, Dτ (•),
which performs the SVD for the t-th iteration matrix Yt, Yt

= U� VT and modifies the singular values by applying the
shrinkage (e.g., Combettes and Wajs 2005):

Dτ (Yt ) = USτ (�) VT

Sτ (�i,i ) =
{

�i,i − τ if �i,i > τ

0 otherwise

(8)

where τ is the pre-determined threshold parameter; �i,i is the
i-th diagonal entry in �. The physical meaning of the iteration
matrix is to build a balance between the observed data and
the assumption of low-rank structure, updated at each step
to converge toward the simplest model that still fits the avail-
able information. When no prior information is available for
the missing entries, it is recommended to start with a zero
matrix because it ensures the model starts from an unbiased
state (e.g., Cai et al. 2010). For the complete geotechnical data
matrix estimate at the t-th iteration, Xt, it can be obtained as:

Xt = Dτ (Yt )(9)

At each iteration, the difference (or residual) is calculated
between the observed entries in an incomplete data matrix,
M′ and the corresponding entries in the current estimate

C
an

. G
eo

te
ch

. J
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

B
ib

lio
th

ee
k 

T
U

 D
el

ft
 o

n 
07

/3
0/

25

http://dx.doi.org/10.1139/cgj-2024-0781


Canadian Science Publishing

8 Can. Geotech. J. 62: 1–20 (2025) | dx.doi.org/10.1139/cgj-2024-0781

(e.g., t-th estimate, Xt). Mathematically, for the observed en-
tries (i, j) ∈ �, the corresponding difference, Ri, j can be calcu-
lated as:

Ri,j = Mi,j − (Xt )i,j(10)

where (Xt)i, j indicates the entry at the i-th row and the j-th
column of the matrix Xt. This correction is added back to
the current iteration matrix so that the next iteration of the
geotechnical data matrix estimate will better approximate
the observed values (Cai et al. 2010):

Yt+1 = Yt + δP�(M′ − Xt )(11)

where δ represents the step size that controls the amount of
adjustment made to the matrix in each iteration; P� (·) is the
projection operation that retains the observed entries within
the measurements domain, � and sets the remaining entries
to zero:

P�(M′ − Xt ) =
{

Ri,j if (i, j) ∈ �

0 otherwise
(12)

The update step can be viewed as gradually refining the ma-
trix. The residual indicates how well the current estimate Xt

matches the observed entries in M′. Adding this residual back
helps to reduce the difference between Xt and M′ in the sub-
sequent iterations. Since M′ is an incomplete data matrix, up-
dating only at the observed entries ensures the progressive in-
corporation of the known information, while the unobserved
entries are predicted by the low-rank assumption and filled in
during SVT. The iteration process continues until the differ-
ence, or the error, is smaller than a pre-specified level. Such
difference can be quantitatively calculated as, ‖ P� (Xt − M′)
‖2/ ‖ P� (M′) ‖2, where ‖·‖2 indicates the L2-norm, which is cal-
culated as the square root of the sum of the squared vector
or matrix values.

3.2. Data preprocessing
Geotechnical data from different tests typically have vary-

ing magnitudes, and the scale of different test data can sig-
nificantly influence the results of matrix completion, because
SVD is highly sensitive to the scale of the data (e.g., Akritas
and Malaschonok 2004). If the features in the dataset have
remarkably different scales, the singular values and corre-
sponding vectors will be disproportionately influenced by the
larger-scale features, even if they are not inherently more im-
portant to the remaining data. Therefore, it is critical to pre-
process the datasets to convert the different test data into a
common scale. In this study, z-score normalization is used for
data processing, which is a well-known technique in machine
learning for handling datasets with different ranges or units
(e.g., Larsen and Marx 2005). By applying z-score normaliza-
tion, the measurements from different tests in the data ma-
trix are scaled to have a mean of zero and a standard deviation
of one.

3.3. SVT implementation procedure
The implementation procedure of SVT for multivariate

geotechnical datasets is summarized below:
Step 1: obtain multivariate geotechnical datasets and store

these data as an incomplete data matrix, M′ with a dimension
of n × m where some entries are missing.

Step 2: Convert the measurements of each test in M′ to a
common scale using the z-score normalization technique.

Step 3: Initialize the iteration matrix, Y0 = 0 (a zero matrix
with a dimension of n × m) and determine the threshold, τ,
step size, δ and stopping criteria, ε.

Step 4: Obtain the first iteration matrix, Y1 = δP� (M′ − Y0)
and set the iteration counter, t = 1.

Step 5: Obtain the original complete matrix estimate, Xt =
Dτ (Yt)

Step 6: Update the iteration matrix, Yt + 1 = Yt + δP� (M′ −
Xt).

Step 7: Calculate the difference between the observed en-
tries in an incomplete data matrix, M′ and the corresponding
entries in the current estimate, ‖ P� (Xt − M′) ‖2/ ‖ P� (M′) ‖2.
If the difference is smaller than the pre-specified measure-
ment level, ε, stop the algorithm. Otherwise, set t = t + 1 and
return to Step 5.

As suggested by Cai et al. (2010), τ can be set as τ = 5
√

n × m
to ensure that the complete matrix estimate has the small-
est possible rank, while step size, δ and stopping criteria,
ε can be taken as a small value (e.g., δ = 0.1; ε = 10−4). It
should be noted that the stopping criteria, ε reflects the level
of measurement noise, and geotechnical measurements un-
avoidably contain significant noise. Therefore, it may not be
appropriate to simply adopt a small value for ε as recom-
mended by literature or image processing (e.g., Candes et al.
2013). When substantial prior knowledge is available about
the measurement noise, ε can be selected based on engineer-
ing experience or judgment. However, in many other cases,
such information is usually not available, and thus a k-fold
cross-validation strategy is proposed in this study for select-
ing the most probable measurement noise level, as illustrated
in the following section.

4. k-fold cross-validation strategy for
determining measurement noise

Geotechnical measurement error may be induced by vari-
ous factors, such as equipment inaccuracies, procedural in-
consistencies, and random testing errors (e.g., Orchant et
al. 1988; Phoon and Kulhawy 1999). Equipment-related ef-
fects can arise from inaccuracies in measuring devices and
systems (e.g., calibration issues), while sampling and pro-
cedural errors may stem from disturbed samples or im-
proper handling. Additionally, random testing errors refer
to other unaccounted factors due to random factors, such as
slight variations in soil samples, uncontrollable environmen-
tal factors, or unavoidable noise in the measurement system.
When ε is taken as a small value (e.g., ε = 10−4), it implies
that the model exactly or closely fits the observed measure-
ments. Since the measurements contain significant noise, the
model captures not only the underlying pattern but also the
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Fig. 5. k-fold cross-validation strategy for determining the most probable level of measurement noise.

measurement noise. As a result, the model becomes overly
complex and learns noise-specific patterns that do not gener-
alize to unobserved data, leading to overfitting and poor pre-
diction performance for missing data. To address this issue,
a k-fold cross-validation strategy is developed in this study to
select the most probable level of measurement noise.

The k-fold cross-validation strategy is widely used to assess
the performance of a model in machine learning (e.g., Bengio
et al. 2017). The idea is to split the dataset into k (e.g., k = 8)
equal parts (folds), and then the model is developed using k−1
folds and the remaining fold for validation. This process is re-
peated k times for each fold, leading to performances of the
model for the k different input scenarios. This helps to obtain
a more robust prediction of the model’s performance than a
single input scenario. This strategy is adopted in this study to
select the most probable measurement noise level for incom-
plete geotechnical data matrix completion. The general idea
of the proposed method is to systematically train and validate
the model using different subsets of the geotechnical data to
obtain a robust evaluation of the model performance for dif-
ferent potential levels of measurement noise (i.e., different ε

values). After that, the most probable or optimal measure-
ment noise level is the one that minimizes the prediction
error because it strikes the best balance between properly
fitting the observed measurements and avoiding overfitting
to noise. The procedure of the k-fold cross-validation for the

most probable measurements noise determination is shown
in Fig. 5.

5. Implementation procedure of the
proposed method

The procedure for implementing the proposed method
mainly contains three modules: (1) preprocessing of a
geotechnical dataset, (2) selection of the most probable level
of measurement noise, and (3) prediction of missing values.
Each module is described in detail below.

In Module 1, measurements of different m tests are trans-
formed to a common scale using z-score normalization, and
geotechnical datasets are stored in an incomplete data ma-
trix, M′ with a dimension of n × m. Consider, for example,
the measurement data of the j-th geotechnical test at the i-th
depth, Mi, j (i.e., the i-th row and the j-th column of the data
matrix) after the z-score normalization:

M′
i,j = Mi,j − μj

σj
(13)

where M′
i, j represents the normalized measurement of Mi, j;

μj, and σj are the sample mean and standard deviation of all
measurements for the j-th geotechnical test.

C
an

. G
eo

te
ch

. J
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

B
ib

lio
th

ee
k 

T
U

 D
el

ft
 o

n 
07

/3
0/

25

http://dx.doi.org/10.1139/cgj-2024-0781


Canadian Science Publishing

10 Can. Geotech. J. 62: 1–20 (2025) | dx.doi.org/10.1139/cgj-2024-0781

Fig. 6. Bootstrapping-based quantification of uncertainty in the recovered missing data.

In Module 2, observed measurements are equally divided
into k (e.g., k = 8) equal parts (folds), and then the perfor-
mance of the model with different possible levels of mea-
surement noise (e.g., ε = 0.01, 0.02,…, 0.5) is evaluated using
k-fold cross-validation following the procedure described in
Section 3.3.

In Module 3, the missing entries in the incomplete geotech-
nical data matrix, M′ are predicted using the SVT algorithm
and the selected ε value. Then, the recovered data are con-
verted back to the original data space by applying the inverse
transformation, Xm, n = X′

m, nσn + μn, where X′
m, n and Xm, n

represent the recovered data and corresponding value in the
original space at the m-th row and the n-th column of the data
matrix, respectively; μn and σn are the sample mean and stan-
dard deviation of measurements for the n-th geotechnical test
parameters.

6. Uncertainty quantification by
bootstrapping

The uncertainty in the prediction from the proposed
method may be quantified by bootstrapping. Bootstrapping
is a powerful statistical resampling technique commonly
used to quantify uncertainty in an estimate of a property or
variable of interest through multiple subsets from a single
dataset (e.g., Carey 2004). The basic idea of bootstrapping-
based uncertainty quantification is illustrated in Fig. 6. In
bootstrapping, a large number of subsets of measurements,
i.e., bootstrap samples, are generated by repeatedly sampling
from the observed data with replacement. Each subset is
then used to predict the missing data using the SVT algo-
rithm. Based on the predictions, the distribution of the es-

timator can be obtained. In addition, to quantify the un-
certainty in the selection of measurement error, ε, the ε

value is also determined repeatedly based on the remaining
measurements in each bootstrap iteration, rather than using
the k-fold cross-validation strategy described above. Specifi-
cally, for each bootstrapping iteration, the available measure-
ments are divided into two groups: bootstrap sample (e.g.,
90% of the available measurements) used as the input for
missing entries prediction and remaining sample (e.g., 10%
of the available measurements) used for ε selection. The steps
for bootstrapping-based uncertainty quantification are as fol-
lows:

Step 1: For a given geotechnical incomplete data matrix,
M′, generate a new set of samples drawing Mb data points
from M′ (e.g., 90% of the available measurements), leading to
a new incomplete data matrix, D.

Step 2: Repeat this process Nb times (e.g., Nb = 10 000) and
create Nb bootstrap samples, D1, D2,…, DNb

Step 3: Predict the missing entries for each bootstrap sam-
ple using the SVT algorithm. In this step, the SVT algorithm
is repeatedly used to predict the missing data using various ε

values, and the error between predicted and true values for
the remaining (e.g., 10%) measurements is calculated for each
ε scenario. Then, the ε value that results in the lowest pre-
diction error is selected as the most probable measurement
noise level.

Step 4: Repeat the process for each bootstrap sample, lead-
ing to Nb estimates for each missing entry.

Step 5: Calculate the statistical properties of interest (e.g.,
mean, variance, or confidence interval) for each missing en-
try based on the Nb bootstrap estimates.

In the following section, the proposed method is demon-
strated and validated using a real geotechnical dataset.
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Table 3. The incomplete geotechnical data matrix with 12 missing values.

Depth σ′
vo σ′

p OCR LL PI LI St su,VST Remolded su,VST su(mob)

5.24 87.37 M1,3 1.06 51.00 29.00 1.52 70.49 38.23 0.54 35.22

5.76 90.88 91.66 1.01 58.00 35.00 1.51 69.05 31.98 0.46 28.16

6.47 94.78 95.17 1.00 66.00 41.00 1.29 38.05 29.25 0.77 24.66

7.11 98.69 99.47 1.01 62.00 36.00 1.56 81.29 44.08 M4,10 38.52

7.69 102.59 103.37 1.01 68.00 43.00 1.23 42.98 40.18 0.93 M5,11

8.36 106.49 107.66 1.01 M6,5 42.00 1.29 93.72 37.45 0.40 31.34

8.89 109.61 111.17 1.01 62.00 36.00 M7,7 57.84 44.47 0.77 38.86

9.41 112.73 115.07 1.02 55.00 30.00 0.93 33.71 63.58 1.89 M8,11

9.92 116.24 118.19 1.02 57.00 25.00 0.84 22.50 56.56 2.51 M9,11

10.36 118.97 121.70 M10,4 44.00 M10,6 1.23 63.02 M10,9 0.93 M10,11

10.88 122.48 125.60 1.03 58.00 33.00 1.18 52.17 M11,9 0.93 43.58

11.96 130.67 133.01 1.02 51.00 25.00 0.88 32.27 60.85 1.89 57.86

Note: σ′
vo, vertical effective stress; σ′

p, effective pre-consolidation stress; OCR, over-consolidation ratio; LL, liquid limit; PI, plasticity index; LI, liquidity
index; St, sensitivity; su,VST, undrained shear strength obtained from vane shear test; su(mob), mobilized undrained shear strength.

7. Real geotechnical data from
Beauharnois, Quebec, Canada

The proposed method developed in this study is used to
recover the incomplete geotechnical datasets obtained from
Beauharnois, Quebec, Canada, as shown in Table 2. This
geotechnical dataset includes 10 different geotechnical prop-
erties (i.e., vertical effective stress, effective pre-consolidation
stress, …, undrained shear strength), and each test is con-
ducted at 12 different depths (i.e., 5.24 m, 5.76 m, …, 11.96 m).
Then, this dataset is treated as a matrix with a dimension of
12 × 11 (10 geotechnical properties plus one additional col-
umn for depth). To mimic the missing data in engineering
practice, Nm = 12 measurements from different tests are ran-
domly removed, except for the data on depth and vertical ef-
fective stress, which are typically available. This results in the
incomplete data matrix shown in Table 3. The missing values
are highlighted by red shadings in Table 3.

7.1. Prediction of missing values using the
proposed method

In Module 1, z-score normalization is used to transform
each measurement of different geotechnical properties to a
common scale. For example, the fifth geotechnical property
(i.e., liquid limit (LL)) has a total number of 11 measurements,
and the sample mean, μ5 and standard deviation, σ5 of these
measurements are calculated as 57.5 and 7.0, respectively,
and then each measurement of LL is normalized using eq. 13.
For instance, the measurement at the depth of 5.24 m, M1,5 =
51, is normalized to the corresponding value as M′

1,5 = (51 −
57.5) /7.0 = −0.93. This procedure is repeated for each mea-
surement, ensuring that the measurements of each geotech-
nical property have a mean of zero and a standard deviation
of one.

In Module 2, the observed measurements of different
geotechnical properties except for the vertical effective stress
are equally divided into k = 8 equal parts (folds), i.e., each fold
contains 12 measurements of different geotechnical proper-
ties. Then, the performance of the model is evaluated with

different possible levels of measurement noise, ε = 0.01, 0.02,
…, 0.5 using k-fold cross-validation. For a given fold i, i = 1,
2,…, 8, the model is trained using the remaining data except
those from the i-th fold. In other words, the data in the i-th
fold are predicted from the remaining measurements using
the SVT algorithm for a given ε. The mean relative error (MRE)
is used to quantitatively compare the recovered values with
the true ones for a given fold. It is defined as the average of
the absolute differences between predicted and actual values,
divided by the actual values:

MRE = 1
n

n∑
i=1

∣∣∣∣ ŷi − yi

yi

∣∣∣∣ × 100%(14)

where ŷi is the i-th predicted data; yi is the i-th original data;
n is the number of observations for a given fold. This process
is repeated for each of the 8 folds, leading to 8 MREs for a
given measurement noise level. After that, a similar proce-
dure is repeatedly conducted for different levels of measure-
ment noise, and the results are summarized in Fig. 7. The
figure shows MREs with a mean plus/minus one standard de-
viation error bar as a function of the level of measurement
noise, ε. It can be observed from this figure that, in general,
MRE firstly decreases with increasing ε and then starts to rise.
When ε is small, it indicates that the model exactly or closely
fits the training data, leading to the high risk of over-fitting.
As ε is slightly increased, the model starts to reduce the im-
pact of noise or overfitting, which initially improves its per-
formance on validation data. However, when ε exceeds 0.27,
the MRE begins to increase, indicating that the model has
become too simple to capture the underlying pattern of the
dataset. The point of ε = 0.27 yields the lowest mean MRE,
where the model has the best generalization to new or un-
seen data (e.g., Giagkiozis and Fleming 2014). At this optimal
point, the model is neither too complex (avoiding overfitting)
nor too simple (avoiding underfitting). Using the k-fold cross-
validation strategy, the most probable level of measurement
noise is selected as ε = 0.27.
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Fig. 7. Cross-validation estimate of mean relative error (MRE) with mean plus/minus one standard deviation error bar as a
function of the level of measurement noise, ε (the optimal value is the one with the minimal mean value of MRE).

In Module 3, the missing entries in the incomplete geotech-
nical data matrix, M′ are recovered using the SVT algorithm.
The input parameters are determined as τ = 5

√
n × m = 57,

δ = 0.1 and ε = 0.27. Following the procedure described in
Section 3.2, the 12 missing entries are recovered, as shown
in the third column of Table 4. For comparison, the original
data are shown in the second column of Table 4. It can be ob-
served that the predicted values are generally consistent with
the true ones, and the MRE of the 12 predicted values is cal-
culated as 13.3%. The prediction process takes only a few sec-
onds on a personal computer equipped with an Intel� Core™
i7-6700 3.4 GHz CPU and 16.0 GB RAM, demonstrating the
high computational efficiency of the proposed method. These
results indicate that the proposed method can efficiently pro-
vide reasonable estimates of missing values from available
observations.

In addition, the uncertainty in the predictions from the
proposed method is quantified by bootstrapping. In boot-
strapping, a large number of (Nb = 10 000) bootstrap samples
are generated by repeatedly drawing 108 data points from the
original incomplete data matrix (90% of the available mea-
surements), leading to 10,000 new incomplete data matrices,
D1, D2,…, D10 000. Then, the original 12 missing entries of
each bootstrap sample are predicted using the SVT algorithm,
leading to 10 000 estimates for each missing entry. For exam-
ple, the histogram of bootstrap estimates for the mobilized
undrained shear strength, su(mob) at a depth of 7.69 m is shown
in Fig. 8, with a mean value of 30.92 and a standard deviation
of 1.98. The mean values, standard deviations and 95% confi-
dence interval of the 12 missing data points are summarized

in the Table 4. The MRE of the predicted mean values is calcu-
lated as 13.8%. It is observed that five out of twelve true data
points (41.6%) fall within the 95% confidence interval, sug-
gesting that the uncertainty may be slightly underestimated.

7.2. Effect of ε
In this subsection, the proposed method is compared with

the existing SVT algorithm using a small ε value for geotech-
nical data matrix completion. In the traditional SVT algo-
rithm, a fixed ε value (e.g., ε = 10−4) is usually adopted for ma-
trix completion, meaning that measurement error is typically
ignored. Therefore, the input parameters are determined as
τ = 57, δ = 0.1, and ε = 10−4. Following the procedure de-
scribed in Section 3.2, the 12 missing entries are recovered, as
shown in the fourth column of Table 4. It can be observed
from Table 4 that the predicted values with ε = 0.27 are gen-
erally more accurate than those with ε = 10−4. The MRE cal-
culated for the scenario with ε = 10−4 is 14.6%, which is larger
than the MRE of 13.3% when considering the measurement
noise level. This result indicates that accounting for measure-
ment noise can improve prediction accuracy.

7.3. Effect of the number of missing data
In this subsection, the effect of the number of missing data

on the prediction accuracy are investigated. Four more sce-
narios of the number of missing data, Nm = 36 (missing ra-
tio = 27%), Nm = 48 (missing ratio = 36%), Nm = 60 (miss-
ing ratio = 45%), and Nm = 72 (missing ratio = 55%), are
considered in this subsection. The corresponding incomplete
data matrices for these different scenarios are illustrated
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Table 4. Reconstructed missing entries using different methods.

Missing entry
Original

value
Gaussian process

regression
SVT with k-fold
cross-validation

SVT with
ε = 10–4

Uncertainty quantification using bootstrapping

Mean Standard deviation 95% confidence interval

M1,3 92.83 88.76 103.77 110.63 105.79 4.43 [96.76, 114.76]

M4,10 0.54 0.93 0.51 0.47 0.58 0.08 [0.50, 0.81]

M5,11 33.40 33.44 29.71 29.87 30.92 1.98 [27.66, 35.54]

M6,5 68.00 61.28 59.52 58.22 59.39 2.04 [55.29, 63.29]

M7,7 1.31 1.16 1.23 1.30 1.24 0.04 [1.17, 1.33]

M8,11 58.14 40.02 43.52 43.83 43.70 3.20 [33.87, 50.63]

M9,11 53.78 42.47 44.69 44.21 44.84 3.87 [36.67, 48.72]

M10,4 1.02 1.02 1.03 1.02 1.03 0.01 [1.02, 1.04]

M10,6 22.00 27.74 29.68 29.19 29.81 2.01 [26.29, 34.35]

M10,9 58.90 57.72 51.81 48.83 50.21 2.75 [44.27, 55.03]

M10,11 57.38 44.56 46.52 42.98 44.26 3.02 [36.67, 48.72]

M11,9 48.76 59.25 50.63 49.00 50.24 2.22 [45.55, 54.35]

Mean relative
error

18.5% 13.3% 14.6% 13.8%

Note: SVT, singular value thresholding.

Fig. 8. Histogram of bootstrap estimates for the mobilized undrained shear strength at a depth of 7.69 m.

in Table 5. Following the procedure described in Section 5,
the missing data for each scenario are repeatedly recovered
using the SVT algorithm. Table 6 illustrates the complete
geotechnical data matrix reconstructed with different miss-
ing ratios, and the true values are shown in the brackets.
It can be observed from Table 6 that the predicted values
are generally consistent with the true ones. The MRE calcu-
lated for missing ratios of 27%, 36%, 45%, and 55% is 14.3%,
15.2%, 16.0%, and 23.0%, respectively. It is observed that the
MRE increases from 13.3% to 23.0% as the number of miss-

ing data increases from 12 to 72. When the missing ratio is
below 45%, the proposed method can provide reasonable pre-
dictions. However, as the missing ratio increases to 55%, the
available measurements become too limited, which may lead
to biased prediction results.

Furthermore, following the procedure described in Section
6, the uncertainty in predictions for different numbers of
missing data can be quantified by bootstrapping. For ex-
ample, the histograms of bootstrap estimates for su(mob) at
a depth of 7.69 m, corresponding to different numbers of
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Table 5. The incomplete geotechnical data matrix with different missing ratios.

Depth σ′
vo σ′

p OCR LL PI LI St su,VST Remolded su,VST su(mob)

5.24 87.37 1.06 51.00 29.00 1.52 38.23 0.54

5.76 90.88 91.66 1.01 58.00 35.00 1.51 31.98 0.46

6.47 94.78 95.17 1.00 66.00 41.00 1.29 29.25 24.66

7.11 98.69 99.47 1.01 62.00 36.00 1.56 44.08 38.52

7.69 102.59 103.37 68.00 43.00 1.23 40.18

8.36 106.49 107.66 42.00 1.29 93.72 37.45 31.34

8.89 109.61 1.01 62.00 36.00 57.84 44.47 0.77

9.41 112.73 1.02 55.00 30.00 0.93 33.71 63.58

9.92 116.24 118.19 1.02 25.00 22.50 56.56 2.51

10.36 118.97 121.70 44.00 1.23 63.02 0.93

10.88 122.48 125.60 1.03 58.00 33.00 1.18 52.17

11.96 130.67 133.01 25.00 0.88 60.85 57.86

(a) 27% missing data

Depth σ′
vo σ′

p OCR LL PI LI St su,VST Remolded su,VST su(mob)

5.24 87.37 1.06 51.00 0.54

5.76 90.88 91.66 1.01 58.00 35.00 1.51 31.98 0.46

6.47 94.78 95.17 1.00 66.00 41.00 1.29 29.25 24.66

7.11 98.69 99.47 1.01 62.00 36.00 1.56 44.08 38.52

7.69 102.59 68.00 43.00 40.18

8.36 106.49 107.66 42.00 1.29 93.72 37.45 31.34

8.89 109.61 1.01 62.00 57.84 44.47 0.77

9.41 112.73 1.02 55.00 30.00 0.93 33.71 63.58

9.92 116.24 1.02 25.00 22.50 56.56 2.51

10.36 118.97 121.70 44.00 63.02 0.93

10.88 122.48 125.60 1.18 52.17

11.96 130.67 133.01 0.88 60.85 57.86

(b) 36% missing data

Depth σ′
vo σ′

p OCR LL PI LI St su,VST Remolded su,VST su(mob)

5.24 87.37 1.06 51.00 0.54

5.76 90.88 91.66 58.00 35.00 31.98 0.46

6.47 94.78 95.17 66.00 41.00 1.29 29.25 24.66

7.11 98.69 99.47 1.01 62.00 36.00 1.56 44.08

7.69 102.59 43.00 40.18

8.36 106.49 107.66 93.72 31.34

8.89 109.61 1.01 62.00 57.84 44.47 0.77

9.41 112.73 30.00 0.93 33.71 63.58

9.92 116.24 1.02 25.00 56.56 2.51

10.36 118.97 44.00 63.02 0.93

10.88 122.48 125.60 1.18 52.17

11.96 130.67 133.01 0.88 60.85 57.86

(c) 45% missing data

Depth σ′
vo σ′

p OCR LL PI LI St su,VST Remolded su,VST su(mob)

5.24 87.37 1.06 51.00 0.54

5.76 90.88 91.66 58.00 31.98 0.46

6.47 94.78 95.17 41.00 1.29 29.25

7.11 98.69 99.47 1.01 62.00 36.00 1.56 44.08

7.69 102.59 43.00 40.18
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Table 5. (concluded).

Depth σ′
vo σ′

p OCR LL PI LI St su,VST Remolded su,VST su(mob)

8.36 106.49 107.66 93.72 31.34

8.89 109.61 1.01 57.84 44.47 0.77

9.41 112.73 63.58

9.92 116.24 1.02 25.00

10.36 118.97 63.02

10.88 122.48 1.18 52.17

11.96 130.67 133.01 0.88 60.85 57.86

(d) 55% missing data

Note: σ′
vo, vertical effective stress; σ′

p, effective pre-consolidation stress; OCR, over-consolidation ratio; LL, liquid limit; PI, plasticity index; LI,
liquidity index; St, sensitivity; su,VST, undrained shear strength obtained from vane shear test; su(mob), mobilized undrained shear strength.

Table 6. The recovered geotechnical data matrix (the values in the bracket indicate true ones).

Depth σ′
vo σ′

p OCR LL PI LI St su,VST Remolded su,VST su(mob)

5.24 87.37 103.82(92.83) 1.06 51.00 29.00 1.52 56.51(70.49) 38.23 0.54 35.51(35.22)

5.76 90.88 91.66 1.01 58.00 35.00 1.51 59.87(69.05) 31.98 0.46 28.87(28.16)

6.47 94.78 95.17 1.00 66.00 41.00 1.29 64.66(38.05) 29.25 0.69(0.77) 24.66

7.11 98.69 99.47 1.01 62.00 36.00 1.56 52.79(81.29) 44.08 0.92(0.54) 38.52

7.69 102.59 103.37 1(1.01) 68.00 43.00 1.23 63.12(42.98) 40.18 0.89(0.93) 31.46(33.4)

8.36 106.49 107.66 1.01(1.01) 60.69(68) 42.00 1.29 93.72 37.45 0.37(0.4) 31.34

8.89 109.61 109.77(111.17) 1.01 62.00 36.00 1.24(1.31) 57.84 44.47 0.77 36.55(38.86)

9.41 112.73 120.53(115.07) 1.02 55.00 30.00 0.93 33.71 63.58 1.75(1.89) 46.85(58.14)

9.92 116.24 118.19 1.02 57.41(57) 25.00 1.05(0.84) 22.50 56.56 2.51 48.65(53.78)

10.36 118.97 121.70 1.04(1.02) 44.00 30.72(22) 1.23 63.02 49.27(58.9) 0.93 44.7(57.38)

10.88 122.48 125.60 1.03 58.00 33.00 1.18 52.17 51.36(48.76) 1.24(0.93) 44.06(43.58)

11.96 130.67 133.01 1.02(1.02) 52.12(51) 25.00 0.88 34.33(32.27) 60.85 1.89(1.89) 57.86

(a) 27% missing data

Depth σ′
vo σ′

p OCR LL PI LI St su,VST Remolded su,VST su(mob)

5.24 87.37 101.64(92.83) 1.06 51.00 35.27(29) 1.37(1.52) 60.15(70.49) 40.5(38.23) 0.54 32.55(35.22)

5.76 90.88 91.66 1.01 58.00 35.00 1.51 56.39(69.05) 31.98 0.46 27.97(28.16)

6.47 94.78 95.17 1.00 66.00 41.00 1.29 63.93(38.05) 29.25 0.64(0.77) 24.66

7.11 98.69 99.47 1.01 62.00 36.00 1.56 52.53(81.29) 44.08 0.95(0.54) 38.52

7.69 102.59 102.4(103.37) 1(1.01) 68.00 43.00 1.36(1.23) 64.77(42.98) 40.18 0.76(0.93) 31.79(33.4)

8.36 106.49 107.66 1.02(1.01) 59.61(68) 42.00 1.29 93.72 37.45 0.33(0.4) 31.34

8.89 109.61 110.07(111.17) 1.01 62.00 37.86(36) 1.25(1.31) 57.84 44.47 0.77 37.02(38.86)

9.41 112.73 120.49(115.07) 1.02 55.00 30.00 0.93 33.71 63.58 1.73(1.89) 46.94(58.14)

9.92 116.24 118.53(118.19) 1.02 57.14(57) 25.00 1.05(0.84) 22.50 56.56 2.51 48.27(53.78)

10.36 118.97 121.70 1.04(1.02) 44.00 35.69(22) 1.05(1.23) 63.02 52.84(58.9) 0.93 45.48(57.38)

10.88 122.48 125.60 1.02(1.03) 56.48(58) 35.46(33) 1.18 52.17 52.27(48.76) 1.29(0.93) 44.87(43.58)

11.96 130.67 133.01 1.02(1.02) 52.62(51) 31.81(25) 0.88 44.23(32.27) 60.85 1.71(1.89) 57.86

(b) 36% missing data

Depth σ′
vo σ′

p OCR LL PI LI St su,VST Remolded su,VST su(mob)

5.24 87.37 94.49(92.83) 1.06 51.00 39.56(29) 1.18(1.52) 65.55(70.49) 37.94(38.23) 0.54 30.32(35.22)

5.76 90.88 91.66 1.04(1.01) 58.00 35.00 1.33(1.51) 70.21(69.05) 31.98 0.46 27.36(28.16)

6.47 94.78 95.17 1.02(1) 66.00 41.00 1.29 73.68(38.05) 29.25 0.56(0.77) 24.66

7.11 98.69 99.47 1.01 62.00 36.00 1.56 63.28(81.29) 44.08 1(0.54) 30.65(38.52)

7.69 102.59 102.01(103.37) 1.03(1.01) 58.27(68) 43.00 1.26(1.23) 72.03(42.98) 40.18 0.61(0.93) 32.44(33.4)

8.36 106.49 107.66 1.03(1.01) 57.7(68) 39.8(42) 1.25(1.29) 93.72 38.67(37.45) 0.59(0.4) 31.34

8.89 109.61 108.19(111.17) 1.01 62.00 35.5(36) 1.23(1.31) 57.84 44.47 0.77 36.72(38.86)
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Table 6. (concluded).

Depth σ′
vo σ′

p OCR LL PI LI St su,VST Remolded su,VST su(mob)

9.41 112.73 118.79(115.07) 1.02(1.02) 53.51(55) 30.00 0.93 33.71 63.58 1.78(1.89) 47.22(58.14)

9.92 116.24 120.58(118.19) 1.02 57.81(57) 25.00 1.02(0.84) 35.88(22.5) 56.56 2.51 47.7(53.78)

10.36 118.97 120.99(121.7) 1.04(1.02) 44.00 33.88(22) 0.98(1.23) 63.02 52.9(58.9) 0.93 45.95(57.38)

10.88 122.48 125.60 1.01(1.03) 55.75(58) 31.41(33) 1.18 52.17 54.87(48.76) 1.43(0.93) 45.99(43.58)

11.96 130.67 133.01 1.01(1.02) 51.21(51) 27.99(25) 0.88 48.88(32.27) 60.85 1.7(1.89) 57.86

(c) 45% missing data

Depth σ′
vo σ′

p OCR LL PI LI St su,VST Remolded su,VST su(mob)

5.24 87.37 94.25(92.83) 1.06 51.00 46.05(29) 1.21(1.52) 81.42(70.49) 28.46(38.23) 0.54 36.51(35.22)

5.76 90.88 91.66 1.03(1.01) 58.00 42.01(35) 1.42(1.51) 74.32(69.05) 31.98 0.46 37.16(28.16)

6.47 94.78 95.17 1.04(1) 55.61(66) 41.00 1.29 70.25(38.05) 29.25 0.54(0.77) 40.01(24.66)

7.11 98.69 99.47 1.01 62.00 36.00 1.56 63.14(81.29) 44.08 0.58(0.54) 41.73(38.52)

7.69 102.59 99.62(103.37) 1.03(1.01) 55.69(68) 43.00 1.26(1.23) 68.81(42.98) 40.18 0.56(0.93) 42.38(33.4)

8.36 106.49 107.66 1.04(1.01) 55.4(68) 36.49(42) 1.19(1.29) 93.72 46.44(37.45) 0.51(0.4) 31.34

8.89 109.61 105.46(111.17) 1.01 58.58(62) 34.83(36) 1.26(1.31) 57.84 44.47 0.77 50.45(38.86)

9.41 112.73 113.88(115.07) 1.02(1.02) 57.95(55) 32(30) 1.15(0.93) 66.22(33.71) 63.58 0.62(1.89) 46.98(58.14)

9.92 116.24 114.59(118.19) 1.02 59.31(57) 25.00 1.18(0.84) 62.22(22.5) 55.98(56.56) 0.64(2.51) 48.55(53.78)

10.36 118.97 113.63(121.7) 1.02(1.02) 57.48(44) 32.69(22) 1.13(1.23) 63.02 52.66(58.9) 0.63(0.93) 49.05(57.38)

10.88 122.48 114.56(125.6) 1.01(1.03) 58.34(58) 31.61(33) 1.18 52.17 54.09(48.76) 0.67(0.93) 53.32(43.58)

11.96 130.67 133.01 1.02(1.02) 55.95(51) 28.78(25) 0.88 59.41(32.27) 60.85 0.68(1.89) 57.86

(d) 55% missing data

Note: σ′
vo, vertical effective stress; σ′

p, effective pre-consolidation stress; OCR, over-consolidation ratio; LL, liquid limit; PI, plasticity index; LI, liquidity index;
St, sensitivity; su,VST, undrained shear strength obtained from vane shear test; su(mob), mobilized undrained shear strength.

missing data, are summarized in Fig. 9. The mean values of
the predicted su(mob) for missing ratios of 27%, 36%, 45%, and
55% are 32.02, 33.09, 33.11, and 42.42, respectively, while the
corresponding standard deviations are 2.91, 2.58, 3.72, and
5.85, respectively. It is observed that the standard deviation
increases from 1.98 to 5.85 as the number of missing data in-
creases from 12 to 72. This indicates a significant increase in
uncertainty as the number of missing data points rises. More-
over, when the missing ratio reaches 55%, the distribution
of bootstrap estimates becomes entirely biased compared to
other scenarios, suggesting that predictions with such a high
missing ratio may not be reliable.

7.4. Comparison with the existing method
The proposed method is compared with Gaussian process

regression (GPR), a widely adopted approach for spatial
data prediction (e.g., Yoshida et al. 2021; Ching et al. 2023).
Following the recommendation by Yoshida et al. (2021), the
spatial trend is modeled as a stationary zero-mean Gaussian
random field, with a Gaussian covariance function used to
capture the auto-correlation along the depth direction. In
this comparison, the missing values of each soil property at
different depths are predicted independently using GPR. The
prediction results are presented in Table 4. The MRE obtained
using GPR is 18.5%, which is higher than that of the proposed
method, indicating the superior predictive performance of
the proposed method. Different geotechnical properties are
usually cross-correlated, and the proposed method has a
unique capability to leverage the cross-correlations among

different geotechnical properties to enhance the prediction
accuracy.

8. Synthetic data example
Synthetic geotechnical datasets are used to systematically

evaluate the performance of the proposed method under
various conditions. These include variations in the number
of geotechnical parameters, the degree of auto-correlation
along depth, and the level of cross-correlation among dif-
ferent soil properties. Incomplete synthetic datasets involv-
ing 20 geotechnical variables are simulated. The mean values
of different properties range from 0.1 to 10, and the coeffi-
cients of variation span from 0.2 to 0.4. In Scenario #1, a ver-
tical correlation length of 2 m and a cross-correlation coeffi-
cient of 0.7 are used to simulate the correlation along depth
and across properties. In Scenario #2, the vertical correlation
length is decreased to 0.5 m (with the cross-correlation coef-
ficient maintained at 0.7) to represent weak autocorrelation
along depth. In Scenario #3, the vertical correlation length re-
mains at 2 m, but the cross-correlation coefficient is reduced
to 0.3 to represent weak inter-property correlation. The in-
complete datasets for different scenarios are shown in Table
7. The proposed method is then used to recover the missing
values for different scenarios, as illustrated in Table 8. The
MRE between the original and reconstructed data for Sce-
nario #1, Scenario #2, and Scenario #3 is calculated as 17.4%,
21.7%, and 32.3%. Smaller vertical correlation implies weaker
correlation in soil properties along depth, providing reduced
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Fig. 9. Histograms of bootstrap estimates for the mobilized undrained shear strength at a depth of 7.69 m corresponding to
different amounts of missing data.

prediction accuracy, and thus the MRE of Scenario #2 is larger
than that of Scenario #1. On the other hand, when inter-
property correlation is weak, the reliability of the model nat-
urally decreases, leading to relatively high prediction error
for Scenario #3.

9. Conclusion
This study developed a novel method for recovering miss-

ing values in geotechnical datasets with measurements from
different tests. The auto- and cross-correlation structures of

multivariate geotechnical data are exploited using a low-
rank modeling approach in a purely data-driven manner.
The only assumption of the proposed method is that the
geotechnical datasets have an underlying low-rank structure,
which is typically the case for real-world geotechnical data.
By leveraging this low-rank structure, missing values can
be efficiently recovered from available measurements using
SVT algorithms. To account for measurement noise in the
dataset, a k-fold cross-validation strategy is employed to se-
lect the most probable level of noise for matrix comple-
tion, which can significantly reduce the risk of overfitting
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Table 7. The simulated geotechnical datasets with 30% random missing values.

Depth Property #1 #2 #3 #4 #5 #6 #7 #8 … #20

0 0.11 0.19 0.25 0.34 0.40 0.54 0.66 …

1 0.08 0.14 0.17 0.43 … 5.89

2 0.09 0.11 0.13 0.23 0.43 … 5.51

3 0.11 0.15 0.23 0.40 … 8.13

4 0.09 0.13 0.14 0.28 0.42 0.54 …

5 0.11 0.16 0.17 0.25 0.35 0.43 0.60 … 11.43

6 0.12 0.29 0.30 0.37 … 9.67

7 0.09 0.14 0.14 0.18 0.29 0.34 0.47 0.59 … 8.08

8 0.08 0.09 0.15 0.22 0.22 … 6.11

9 0.16 0.20 0.21 0.43 0.58 0.73 …

10 0.11 0.12 0.16 0.40 0.44 0.56 …

(a) Scenario #1

Depth Property #1 #2 #3 #4 #5 #6 #7 #8 … #20

0 0.13 0.24 0.27 0.30 0.54 0.60 0.78 …

1 0.05 0.12 0.17 0.53 … 7.43

2 0.08 0.10 0.16 0.19 0.45 … 5.70

3 0.12 0.21 0.26 0.47 … 10.78

4 0.10 0.15 0.20 0.39 0.52 0.59 …

5 0.09 0.10 0.14 0.13 0.27 0.23 0.39 … 5.28

6 0.15 0.26 0.33 0.35 … 14.04

7 0.10 0.15 0.17 0.22 0.28 0.41 0.48 0.53 … 13.08

8 0.12 0.14 0.26 0.34 0.37 … 10.02

9 0.12 0.16 0.23 0.40 0.35 0.51 …

10 0.10 0.11 0.10 0.28 0.44 0.46 …

(b) Scenario #2

Depth Property #1 #2 #3 #4 #5 #6 #7 #8 … #20

0 0.10 0.15 0.19 0.17 0.34 0.58 0.66 …

1 0.12 0.18 0.23 0.70 … 5.88

2 0.11 0.07 0.17 0.23 0.43 … 9.90

3 0.09 0.13 0.26 0.23 … 7.75

4 0.10 0.12 0.09 0.32 0.34 0.27 …

5 0.09 0.13 0.06 0.15 0.29 0.33 0.49 … 10.08

6 0.15 0.17 0.27 0.64 … 9.59

7 0.07 0.09 0.07 0.17 0.20 0.22 0.41 0.67 … 10.45

8 0.09 0.08 0.21 0.22 0.34 … 11.14

9 0.10 0.14 0.17 0.20 0.34 0.77 …

10 0.10 0.09 0.16 0.12 0.39 0.68 …

(c) Scenario #3

and improve the generalizability of the model. The effec-
tiveness of the proposed method was demonstrated and val-
idated using real geotechnical datasets. A sensitivity study
was also conducted to explore the effects of the number of
missing data. The results indicate that the proposed method
can provide reasonable predictions even with a high ratio
of missing data. In addition, the proposed method can be
combined with the bootstrapping technique to probabilisti-

cally predict the missing entries. An extremely high missing
data ratio might be observed in geotechnical data collected.
Therefore, integrating information from existing geotech-
nical databases is essential for further improving accuracy
of the prediction results. Future studies are needed to ex-
tend the proposed method to effectively incorporate and
leverage such databases (e.g., Ching and Phoon 2014; Otake
et al. 2025). The proposed method is directly applicable to
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Table 8. The recovered data using the proposed method

Scenario #1 Scenario #2 Scenario #3

Missing entry Original value Prediction Original value Prediction Original value Prediction

M7,1 1.57 1.51 1.57 1.08 1.15 1.17

M10,1 1.28 1.42 1.19 1.29 1.57 1.55

M1,2 2.55 1.73 2.89 2.56 0.71 2.14

M2,2 0.09 0.11 0.10 0.10 0.10 0.09

M4,2 0.11 0.13 0.15 0.14 0.08 0.10

M7,3 9.20 7.91 7.45 5.92 5.88 6.30

M9,3 0.18 0.21 0.21 0.20 0.20 0.21

M5,4 6.16 4.86 7.30 6.82 4.98 3.53

M7,4 0.69 0.76 0.83 0.80 1.04 0.54
...

...
...

...
...

...
...

M11,20 7.48 8.48 9.50 8.23 13.14 4.07

Mean relative error 17.4% 21.7% 32.3%

multilayered ground conditions (i.e., non-stationary data), as
its only underlying assumption is the presence of a low-rank
structure in the multivariate geotechnical database. This as-
sumption is valid for auto- and cross-correlated geotechni-
cal data typically observed in multilayered subsurface con-
ditions.
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