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Multidisciplinary Design Optimization (MDO) can aid designers to improve already
mature design solutions, as well as to explore innovative, complex engineering products. It
is a methodology, complete with mathematical formulations, that assists in the optimization
of a complex product, whilst considering and exploiting discipline interactions. Although
the first MDO applications have been developed decades ago, this discipline is not yet fully
exploited within industry. One of the main reasons is the lack of understanding due to
the inherent complexity of the discipline itself and the lack of awareness of existing MDO
technologies, software and implementation strategies. This paper introduces a potential
measure to lower the accessibility level of MDO: an MDO advisory system supported by
knowledge-based technologies. This MDO advisory system will enable the user to first
specify an MDO problem and it will return a ranked list of suitable MDO architectures,
based on the characteristics of the specified problem, to the user. Additionally, the advisory
system will support the user during the implementation of the suggested optimization
approach by providing (links to) specific documentation and, most of all, take care of some
of the software intensive operations required to integrate the selected architecture in a
commercial MDO framework. This paper provides an overall discussion of the envisioned
advisory system and focuses on the knowledge-based technologies, and the implications of
their implementation. These technologies make up the backbone of the envisioned advisory
system, including a domain-specific ontology for MDO and a reasoning engine to provide
the required reasoning capabilities for advice. Preliminary results include an ontology to
enable the use of monolithic and distributed MDO architectures/problems and an extension
of the reasoning functionalities of an open-source reasoner. Finally, a combination of a rule
engine and query mechanism is proposed to support the use of rules on top of the ontology.

I. Introduction

Although MDO has been around for several decades, the implementation of MDO within industry still
is limited, today. In 2002, Belie1 highlighted the non-technical barriers to MDO in the aerospace industry.
The first barrier is the inherent complexity of the MDO discipline, not just in terms of its mathematical
formulation, but also in terms of the required organization, people, data and data management. Other
practical barriers addressed by Belie1 concern the working culture of engineers and the confidence in using
MDO and trusting its results. In 2006 a European-U.S. Multidisciplinary Optimization Colloquium was held
in Göttingen, Germany, attended by nearly seventy professionals from academia, industry and government.
The event was summarized in a paper by Agte et al.,2 which highlights the MDO shortcomings identified
during the event and the potential directions for future research that were identified by the MDO experts.
Agte et al.2 identified that the acceptance of MDO in industry is hampered by barriers that are present
at technical, organizational, cultural and educational level. Agte et al.2 specifically mention the need for
engineers who understand the concepts and methods of MDO.

One way of overcoming the educational barrier in industry is, of course, education in MDO. However,
re-education of a significant number of engineers that have to apply MDO can be difficult to enforce. Another
solution is to provide assistance to these engineers in the application of MDO. Assistance can, for example,
be provided by handbooks, or, more effectively, by some sort of dedicated MDO advisory systems.
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Nowadays, most of the applications of optimization is supported by dedicated software tools, also referred
to as MDO frameworks. These MDO frameworks are software integration systems where a user can compose
an optimization problem, by coupling different tools in a certain way and specifying the discipline interactions,
as well as the optimization algorithm and its options. The framework acts as a manager between the
disciplines, the optimization problem and the mathematical computations performed by the algorithm to
optimize the solution to a problem. However, it leaves the burden of defining the most convenient MDO
implementation to the expert user and does not provide any advisory functionality. Ideally, an advisory
system could be integrated in such software tools.

In their discussion of MDO framework requirements, Kodiyalam and Sobieszczanski-Sobieski3 were the
first to present the need for an optimization advisor:

“...and most importantly, an optimization advisor that can appropriately recommend the opti-
mization algorithm or a combination of algorithms (hybrid optimization plan) to be used for
solution of the user problem.”3

In addition, they state that the MDO framework should:

“Provide support to easy description and set up of MDO problems using formal, decomposition
based MDO methods such as Global Sensitivity Equations (GSE) based optimization, CO [Col-
laborative Optimization], and BLISS [Bilevel Integrated System Synthesis].”3

Indeed, advisory functionalities are rarely present in modern day MDO frameworks and when present, the
advice is limited to suggestions on the type of algorithm (e.g. gradient-based or evolutionary) that should be
used.3–7 However, the algorithm does not define the way disciplines are coupled in an optimization problem,
which variables are exchanged between disciplines or which constraints are applied to a discipline. This type
of information is defined by the MDO architecture. Currently, no advisory system exists that assists with
the selection and implementation of MDO architectures.

Many MDO architectures exist in literature, which are well summarized by Martins and Lambe.8 Also,
there are many examples in literature that discuss the way to formulate a given problem, such that a specific
MDO architecture can be used.9–19 However, in industry, there is often not the flexibility to change the
definition of a given problem. Hence, an architecture suited to the problem at hand should be selected
and not vice versa. In such cases, advice on the suitability of architectures based on the definition of the
problem at hand can be utmost beneficial. Moreover, an advisory system for architectures could guide the
user through the implementation of a selected architecture, based on its formal definition. The integration
and set-up of the architecture inside an optimization workflow can be a cumbersome process that requires a
lot of software intensive operations and manual programming.

In addition to aiding in the selection of an appropriate algorithm, some examples in literature can be found
that determine when to switch between algorithms. For example, in an article by Arora and Baenziger from
1986,20 a method using heuristics is described to determine when to switch when a combination of algorithms
is selected to solve an optimization problem. Carchrae and Beck21 describe a form of machine learning to
determine, according to the behavior of an optimization problem, when to switch to another algorithm.
Balachandran and Gero22 present a method to select an algorithm suitable for the optimization problem.
The selection criteria in this application are represented by “if-then-rules”, as is illustrated by an example:22

If
and
and
then
and

all the variables are of continuous type
all the constraints are linear
the objective function is linear
conclude that the model is linear programming
execute linear programming algorithm

Lee and Kim23 present a knowledge-based expert system as a pre- and post-processor for engineering
optimization. The paper describes more advanced requirements and features of an expert system than what
has actually been implemented. The implemented pre-processor uses past experience from a knowledge base
to select suitable input data, such as the bounds on design variables or settings for the implemented genetic
algorithm. The post-processor aids in the selection of a single, final design point out of a set of Pareto
optimal solutions based on metrics derived from experience that has been stored in a knowledge base. The
limitations are also illustrated by the authors: “The knowledge on controlling the optimization process as a
step of reasoning is a typical architecture that needs to be investigated.”23
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Based on the need from industry to select an MDO architecture for a given problem formulation and the
lack of understanding of the available MDO architectures, we propose an innovative MDO advisory system.
To our knowledge, there is no system that is able to assist the user in the selection of a suitable MDO
architecture for the problem at hand, in the appropriate definition of the optimization problem and in the
integration of the MDO architecture in an executable workflow. The proposed MDO advisory system is
presented in Section II.

When considering the need for an advisory system for optimization algorithms and MDO architectures,
it is important to note that Wolpert and Macready developed the so-called No Free Lunch Theorem for
optimization.25,26 This theorem states that there is no single way of solving an optimization problem that
performs best on all optimization problems. An optimization algorithm that performs better than average for
a certain class of problems, will perform worse than average on another class of problems. Indeed, there are
classes of problems that are intrinsically harder to solve with certain algorithms.27 Hence, an optimization
advisory system that can determine the most suitable algorithm and MDO architectures, for a problem at
hand, can provide a significant advantage to the user, both in terms of optimization time and optimization
results.

II. Overview of the MDO advisory system

The intrinsic complexity of MDO problems and the lack of understanding of MDO yield that the MDO
discipline is not yet fully exploited. We propose an advisory system to support non-MDO-experts, both in
industry and in academia, in the application of MDO, thereby lowering the accessibility level of MDO. The
proposed MDO advisory system should have three main functionalities:

1. Advise.

It should allow users, i.e. engineers who are not necessarily experts in MDO, to describe the
problem at hand, with additional selection criteria (e.g. speed, accuracy, number and type of
design variables, number and types of constraints, inputs and outputs of the disciplines, required
feasibility at every iteration, involved software tools) and receive a ranked list of suitable MDO
architectures in return (e.g. 1. IDF; 2. MDF; 3. SAND). Selection will be done by reasoning
on the knowledge contained in the knowledge base, based on the problem description and the
selection criteria.

2. Formalize.

The advisor should interactively assist the user with the formalization of the selected architecture.
This can be done by means of a template that is derived from the formal definition of the MDO
architectures in the knowledge base.

3. Integrate.

The advisory system will translate the formalized MDO architecture into an executable workflow,
that can be automatically implemented inside an MDO framework.

In order to provide the user with the necessary information related to a certain MDO architecture, the
advisor will also provide (links to) scientific documentation. Moreover, based on the actual execution and
selections from the user, the knowledge base can also be automatically enriched through machine learning.
The MDO advisory system is graphically illustrated in Fig. 1.
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Figure 1. Graphical representation of MDO advisory system.
Top left illustrates an MDO problem. The central knowledge base (KB) (structured by ontologies) helps with
making the decision about what architecture/algorithm to use. The advisory system can help to construct
architectures based on the knowledge in the KB. The architecture that is constructed is then automatically
formalized in a workflow in an MDO framework. This workflow should be executable by the click of a button.
Results in terms of performance of the MDO advisor and execution of the workflow are communicated back
to the knowledge base.

For a machine to apply expert knowledge, a knowledge base is required, to organize, capture, formalize
and store the disperse knowledge on MDO and MDO architectures. This knowledge base should also contain
rules on the applicability of certain architectures and optimization algorithms to problems of a specific
nature. Besides classical textbooks on optimization, such as those by Vanderplaats,28 Papalambros and
Wilde29 or Keane and Nair,30 several scientific papers are available to extract the necessary knowledge for
the knowledge of the advisory system, such as the paper by Martins and Lambe8 on the classification of
MDO architectures, the papers by Perez, Liu and Behdinan,31 Tedford and Martins,32 Yi, Shin and Park33

and Kodiyalam and Sobieszczanski-Sobieski3 on benchmarking MDO architectures.
The main components of a knowledge-based expert system are a domain-specific ontology and a reasoning

engine, which form the backbone of the proposed MDO advisory system. The knowledge base of the MDO
advisory system must be structured in such a way that a machine can reason on the stored knowledge and
new knowledge can be easily added. Therefore, these two components will need to be developed before the
actual MDO advisory system can be implemented and tested. Structuring of the knowledge base can be done
through a dedicated ontology. The initial development of such a domain-specific ontology will be discussed
in Section III. The reasoning engine is required to make choices according to the inputs provided by the
user for the problem at hand and the knowledge stored in the knowledge base. Details on the implications
of using ontologies and the reasoning engine will be discussed in Section IV.

4 of 18

American Institute of Aeronautics and Astronautics



III. Domain-specific ontology for MDO

An ontology is a formal representation of domain knowledge, based on a set of concepts. Ontologies
provide a formal, shared vocabulary, that can be used to model types of objects or concepts, their properties
and the relationships between them. Using an ontology, knowledge within a certain domain (e.g. diseases
and medication, or aircraft parts) can be modeled in a human-readable format that is also suited for machine
reasoning. This way, ontologies can structure the knowledge in a knowledge base and the definition of the
concepts and their relations can be used to reason on data that is contained in the knowledge base. For
example, an ontology that describes types of aircraft can structure a knowledge base of aircraft types. The
aircraft (e.g. a Boeing 737 and an Airbus A320 as conventional, single-aisle aircraft) that are added to
this knowledge base form the data. These aircraft are instantiations (Boeing 737 and Airbus A320) of the
classes (conventional and single-aisle) defined in the ontology. These instantiations are called individuals.
Individuals are related via properties to instances of other classes. These properties are defined as the
relations between these classes in the ontology. E.g. a conventional aircraft (class) has a number of engines
(property) of the type jet-engine (class) or of the type propeller engine (class).

Formal MDO or optimization ontologies do not exist. However, the conceptualization of the MDO
domain by Sobieszczanski-Sobieski,34 the categories derived by Giesing and Barthelemy,35 the specification
language for MDO by Tosserams et al.36 or the classification by Martins and Lambe8 can provide the basis
for an MDO ontology. The latter, in particular, forms an excellent basis for modeling MDO architectures.
The extensive survey of MDO architectures by Martins and Lambe8 lists several common architectures, all
formalized using a unified description. It also includes a classification based on the problem formulation and
decomposition strategy used, and discusses the strengths and weaknesses of the architectures. The focus
is primarily on methods that solve MDO problems with a single objective function and continuous design
variables. An optimization ontology was previously developed in the iProd project,37 with contributions
from the authors of this paper. The iProd optimization ontology can be adapted and used for the knowledge
base of the optimization advisory system proposed here.

For the proposed MDO advisory system, the Web-Ontology Language version 2.0, known as OWL 2.0,38

is used to model the ontology. This W3C standard38 can be used to represent knowledge with machine
understandable semantics. In OWL 2.0, the properties that relate classes are called object properties. Other
properties are: datatype properties, which represent, for instance, integer values or boolean values, and
annotation properties, which can, for instance, be used to comment on classes or to describe units.

An OWL ontology was chosen to define the semantic structure of the knowledge base, because it allows
modelling logic that could not be expressed using simple XML or other conventional database schemas. This
logic allows for reasoning, which will be discussed in Section IV. Moreover, ontologies are flexible and the
possibility to use reasoners removes the need for complex queries to retrieve knowledge from the knowledge
base.

The preliminary version of this MDO ontology is based on the four monolithic MDO architectures de-
scribed by Martins and Lambe,8 namely: “All at once” (AAO), “Simultaneous Analysis and Design” (SAND),
“Individual Disciplinary Feasible” (IDF) and “Multidisciplinary Feasible” (MDF), and three distributed
MDO architectures, namely: “Collaborative Optimization” (CO), “Bi-Level Integrated Systems Synthesis”
(BLISS) and “Concurrent Subspace Optimization” (CSSO). To model these architectures, several classes for
the problem components are modelled and relations between these classes (object properties) are added to
create the necessary restrictions. An overview of the classes for monolithic architectures in the ontology is
presented in Fig. 2.
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Figure 2. Draft MDO ontology for monolithic architectures.

In Fig. 2, all classes that are necessary to completely model the four monolithic architectures are shown.
It can be observed that not all classes are detailed to subclasses representative for a specific architecture.
The reason is that this is only required in case a more specific description is required. In the case the general
description of a class is sufficient to represent the concept within a certain architecture, then this more
specific description is not necessary and the concept is shared between different architectures. For example,
MDFDisciplinaryCouplingVariables class represents the disciplinary coupling variables in MDF. The coupling
variables of one discipline are a function of the design variables and coupling variables of other disciplines,
whereas in the AAO and SAND architecture the disciplinary coupling variables are “simple variables” and
not a function of any other variable. Hence, a more specific class is required for MDF, whereas the existing
class is sufficient for AAO and SAND. Similarly, for IDF, disciplinary coupling variables are a function of
design variables and variable copies (also called target-variables), thus another subclass is required to model
the IDF disciplinary coupling variables. The four monolithic architectures included in the current ontology
are also modelled as separate classes. The object properties that are connected to the individual architectures
make up the actual definition of the architecture. To illustrate this, the definition of the MDF architecture
according to Martins and Lambe8 is used as an example.
The optimization problem is defined by Martins and Lambe8 as:

minimize f0 (x,y (x,y))

with respect to x

subject to c0 (x,y (x,y)) ≥ 0

ci

(
x0,xi,yi

(
x0,xi,yj ̸=i

))
≥ 0 for i = 1, ..., N

(1)
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where: x0 shared design variables

xi disciplinary design variables

yi disciplinary coupling variables

c0 shared design constraints

ci disciplinary design constraints

The MDF architecture from Martins and Lambe8 is presented in Fig. 3 for three disciplines and a Gauss-
Seidel multidisciplinary analysis.

Figure 3. Representation of the MDF architecture with a Gauss-Seidel multidisciplinary analysis by Martins
and Lambe.8

The MDF architecture is formalized in the MDO ontology according to the following translation:

• optimizeWithRespectToVariable - The problem should be optimized with respect to these variables.

• isFunctionOfVariable - Something is a function of this variable.

• hasOptimizationObjective - The problem has this objective statement, which can be a combination
of shared and disciplinary objective functions.

• hasSharedObjectiveFunction - The objective statement contains this function definition of the shared
objective (only 1 allowed).

• hasDisciplinaryObjectiveFunction (Not applicable for the MDF architecture) - The objective state-
ment contains these function definitions of the disciplinary objectives.

• hasInequalityConstraint - The problem has these inequality constraints.

• hasEqualityConstraint (Not applicable for the MDF architecture) - The problem has these equality
constraints.

A visualization of the ontology classes is presented in Fig. 4 as a graph-diagram, where the MDF
architecture is presented with its object properties. This figure provides a more detailed view of the MDF
class from Fig. 2, where only a class - subclass representation was presented and no relations between classes
were shown.
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MDFDisciplinaryCouplingVariables

DisciplinaryCouplingVariables
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SharedDesignVariables
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Figure 4. Description of the MDF architecture in the MDO ontology.

Distributed architectures can be defined in a similar manner as was demonstrated for monolithic archi-
tectures, using MDF. However, the ontology that was used for single level architectures is not completely
suited to model distributed architectures. Therefore, some additional classes and relations have to be added.
The resulting ontology that can model both the monolithic and the three distributed architectures (CO,
BLISS and CSSO) is shown in Fig. 5 and Fig. 6. These pictures illustrates the additional classes that
had to be added to the ontology for monolithic architectures to cover CO, BLISS and CSSO. These classes
(SubProblem and SubProlemObjective for all multilevel and some specific classes for the different multilevel
problem statements) are necessary to account for the fact that the optimization problem is now decomposed
into several levels. The relationship between the subproblem optimizations and the system level optimiza-
tion, and the exchanged information between these levels, is added through additional object properties.
This is illustrated below for the definition of the CO architecture according to Martins and Lambe,8 similar
to the method followed for MDF.
The optimization problem for CO is defined by Martins and Lambe,8 for the system level subproblem, as:

minimize f0 (x0, x̂1, ..., x̂N , ŷ)

with respect to x0, x̂1, ..., x̂N , ŷ

subject to c0 (x0, x̂1, ..., x̂N , ŷ) ≥ 0

J ∗
i = ||x̂0i − x0||22 + ||x̂i − xi||22 +

∣∣∣∣ŷi − yi

(
x̂0i,xi, ŷj ̸=i

)∣∣∣∣2
2
= 0 for i = 1, ..., N

(2)

And for the discipline subproblems as:

minimize J i

(
x̂0i,xi,yi

(
x̂0i,xi, ŷj ̸=i

))
with respect to x̂0i,xi

subject to ci
(
x̂0i,xi,yi

(
x̂0i,xi, ŷj ̸=i

))
≥ 0

(3)

where: x0 shared design variables

x̂0i shared design variable copies passed to and manipulated by discipline i

xi disciplinary design variables

x̂i disciplinary design variable copies passed to the system subproblem

yi disciplinary coupling variables

ŷi disciplinary coupling variable copies

c0 shared design constraints

ci disciplinary design constraints

J ∗
i interdisciplinary compatibility constraint
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Figure 5. Draft MDO ontology for monolithic and distributed architectures - part 1.

9 of 18

American Institute of Aeronautics and Astronautics



Figure 6. Draft MDO ontology for monolithic and distributed architectures - part 2.
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The CO architecture according to the representation by Martins and Lambe is presented in Fig. 7.

Figure 7. Representation of the CO architecture by Martins and Lambe.8

The CO architecture is formalized in the MDO ontology according to the following translation:

• optimizeWithRespectToVariable - The problem should be optimized with respect to these variables.

• isFunctionOfVariable - Something is a function of this variable.

• hasOptimizationObjective - The problem has this objective statement, which can be a combination
of shared and disciplinary objective functions.

• hasSharedObjectiveFunction - The objective statement contains this function definition of the shared
objective (only 1 allowed).

• hasDisciplinaryObjectiveFunction - The (subproblem) objective statement contains these function
definitions of the disciplinary objectives.

• representsDisciplinarySubpropblemObjective - Relates the CO interdisciplinary compatibility
constraint to the objectives of the disciplinary subproblems.

• hasInequalityConstraint - The problem has these inequality constraints.

• hasEqualityConstraint - The problem has these equality constraints.

• hasSubProblem - The problem has this/these disciplinary subproblem(s).

• hasSubProblemObjective - The subproblem has this objective statement.

A visualization of the ontology classes is presented in Fig. 8 as a graph-diagram, where the CO archi-
tecture is presented with its object properties. This figure provides a more detailed view of the CO class
from Fig. 5 and Fig. 6, where only a class - subclass representation was presented and no relations between
classes were shown.

The ontological representations of BLISS and CSSO are less trivial. Care has to be taken to make
sure that the discipline subproblems are properly linked to the system subproblem in the definition of the
classes and object properties relating the classes to each other. The relation hasSubProblem connects the
disciplinary subproblems to the system level subproblem, but does not represent exchanged information.
This already shows that the ontological representation of the monolithic architectures is much more uniform
than the ones of multilevel architectures, as every multilevel architecture requires additional extensions to
the ontology. The choice of using ontologies to structure the knowledge base implies that certain additions
must be made to the chosen, open-source, reasoner.
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Figure 8. Description of the CO architecture in the MDO ontology.

IV. Reasoning Engine

The ontology can be used to structure the knowledge base and when individuals (instantiations of the
classes) are added to this knowledge base, the knowledge base is populated. Because of the relations between
classes that are defined in the ontology, it is possible to derive extra information about the individual. This
can be done using a semantic reasoner, or reasoning engine. A reasoner is a software program that infers
so-called logical consequences.

The object properties can be used to infer to which class a certain instance (individual) belongs. For
example, a constraint, that has certain properties, can be inferred to belong to a certain, more specific,
category of constraints (e.g. consistency constraints). Thus the reasoner could deduce what type of constraint
is defined, without the user of the framework knowing which type he defined or having to define this explicitly.

The formalization of the domain knowledge, inside the ontology, and the reasoning engine allow the
MDO advisor to behave as a domain expert. It could advise the user to use a type of architecture, that
matches the problem description. By extending the reasoner’s capabilities, it could also infer to what extent
a certain problem definition inside the MDO framework matches the architecture formalizations contained
in the knowledge base. Therefore, a ranked list of the most suitable architectures could be returned, in
combination with suggestions for what to change to match a certain architecture.

Using reasoning, one can for example infer that an instance of one class is also an instance of another
more specific class, if it satisfies the conditions of the latter class. These conditions were defined using the
object and datatype properties in the ontology. For reasoning, these conditions must be made “necessary
and sufficient” in the OWL ontology to allow for the inference of logical consequences. This defines that
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something that matches these conditions is equivalent to the more specific class. For example, the class “old
aircraft,” a subclass of aircraft, can be defined as being equivalent to an aircraft that is at least 20 years old.
The class “old aircraft” has the “necessary and sufficient conditions” that something must be an aircraft and
at least 20 years old, to be an old aircraft.

Next to the “necessary and sufficient conditions,” “necessary conditions” exist as well. However, “nec-
essary conditions” mean that an instance of a class must have the properties that are defined for this class.
Thus an old aircraft is an aircraft older than 20 years. For example, when the conditions for the old aircraft
are “necessary conditions,” an aircraft that is 30 years old, cannot be inferred to be an old aircraft. On the
contrary, when the conditions are “necessary and sufficient,” it could be an old aircraft, because it at least
satisfies the condition for equivalence (necessary and sufficient). This is illustrated below:

Consider the definition of an old aircraft as an aircraft that is at least 20 years or older and has
red paint: (where ≡ and ∧ stand for “is equivalent to” and “and”, respectively)

old aircraft ≡ aircraft ∧ hasAge ≥ 20 years ∧ hasColor ‘‘red’’

Now consider an aircraft (aircraft1) that is 30 years old and has the color “red”:

aircraft1 = aircraft ∧ hasAge = 30 years ∧ hasColor ‘‘red’’

A human being would typically say that aircraft1 is an old aircraft, since it is older than twenty
years and has red paint. A reasoner would act differently depending on whether the condi-
tion aircraft ∧ hasAge ≥ 20 years is a “necessary condition” or a “necessary and sufficient
condition”:

necessary : aircraft1 = aircraft ∧ hasAge = 30 years ∧ hasColor ‘‘red’’

necessary and sufficient : aircraft1 = old aircraft

According to these conditions, a reasoner would deduce that an instance whose properties exactly match
the “necessary and sufficient conditions” of a certain class, is a member of this class. However, this is not
as simple for OWL ontologies and reasoners. OWL ontologies and OWL reasoners use the Open World
Assumption (OWA).39 This means that something that cannot be deduced from the knowledge in the
knowledge base is unknown, whereas the Closed World Assumption (CWA) implies that anything that is
unknown is false (not true). This difference is illustrated below, for the case of the old aircraft:

Consider the old aircraft, with the necessary and sufficient condition of being an aircraft that
is at least 20 years or older and does not have the color red:

old aircraft ≡ aircraft ∧ hasAge ≥ 20 years ∧ not hasColor “red”

Now consider an aircraft (aircraft2) that is 30 years old:

aircraft2 = aircraft ∧ hasAge = 30 years

A human being would typically say that aircraft2 is an old aircraft, since it is older than twenty
years, but we do not know whether it is red or not. There is a difference between the OWA and
CWA for the answer of a reasoner, though:

CWA : aircraft2 = old aircraft

OWA : aircraft2 = ‘‘I do not know whether this is an old aircraft’’

In the OWA, the reasoner does not know whether this is an old aircraft, since this aircraft could have
the color “red”. We did not specify explicitly that it is not red, so the reasoner cannot assume that it is not
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red. For the CWA, the reasoner would assume that it is not red. (Everything that is unknown, is false.)
Therefore, because of the fact that we cannot deduce that there is no additional information about this
aircraft, we do not know whether it is an old aircraft in the case of the OWA. Next to this, there is another
consequence of the OWA, as is illustrated below:

Consider a large aircraft, with the necessary and sufficient condition of being an aircraft that
has 4 engines:

large aircraft ≡ aircraft ∧ hasEngines = 4 engines

Now consider an aircraft (aircraft3) that has four engines:

aircraft3 = aircraft ∧ hasEngine engine1 ∧ hasEngine engine2 ∧ hasEngine engine3 ∧
hasEngine engine4

A human being would typically say that this is a large aircraft, since it has four engines. Again,
there is a difference between the OWA and CWA for the answer of a reasoner:

CWA : aircraft3 = large aircraft

OWA : aircraft3 = ‘‘I do not know whether this is a large aircraft’’

The OWL reasoner does not know whether the engines are different. For example, engine1 could be
the same individual as engine2. We need to specify explicitly that these engines are different. Therefore,
all individuals must be explicitly made unique. Luckily, this can be done in OWL using the “unique name
assumption” which makes all individuals different.

There is, however, another problem for the reasoner with the OWA in the above example, even if we use
the “unique name assumption”. We did not specify explicitly that aircraft3 has no other engines, and it
needs to have exactly 4 engines to be a large aircraft. There might be other engines of which the reasoner
does not know that they belong, or do not belong to this aircraft. The restriction that was imposed on the
large aircraft is a “cardinality restriction”, in this case the “exact cardinality”. Changing it to a “minimum
cardinality restriction” would solve this issue, since any aircraft that has at least 4 unique engines is a large
aircraft:

The large aircraft, with the necessary and sufficient condition of being an aircraft that has at
least 4 engines:

large aircraft ≡ aircraft ∧ hasEngines ≥ 4 engines

OWA : aircraft3 = large aircraft

Reasoners, such as the Hermit Reasoner 1.3.840 that was chosen in this research, are capable of deducing
the logical consequences of these necessary and sufficient conditions when individuals are unique. However,
certain cases may exist when we only want to deduce logical consequences for instantiations that exactly
match the necessary and sufficient conditions of a given class:

old aircraft ≡ aircraft ∧ hasAge ≥ 20 years ∧ hasColor ‘‘red’’

Now consider an aircraft (aircraft4) that is 30 years old and has red and white colors:

aircraft4 = aircraft ∧ hasAge = 30 years ∧ hasColor ‘‘red’’ ∧ hasColor ‘‘white’’

A reasoner using the OWA in OWL would say that this is an old aircraft, and would return
aircraft4 if we asked it for all old aircraft.

OWL reasoner : aircraft4 = old aircraft
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Additionally, if we define a white aircraft in the same ontology:
white aircraft ≡ aircraft ∧ hasColor ‘‘white’’

A reasoner using the OWA in OWL would say that aircraft4 is a white aircraft.

OWL reasoner : aircraft4 = white aircraft

This becomes problematic when we only want aircraft that have only red paint and are older than 20
years. To have this exact reasoning, everything that is not true about an individual must be expressed.
However, this can become prohibitive when a lot of individuals and classes exist. Alternatively, queries could
be used to search for information matching a pattern inside the knowledge base. Yet, the order of execution
for these queries is fixed and therefore it is difficult to have query patterns that are interdependent on each
other’s results.

The exact reasoning is required for the MDO advisory system to determine whether a problem that has
been defined completely matches with, for example, the formal definition of MDF in the MDO ontology.
Without having this exact reasoning, also problems that have slightly more characteristics than MDF could
be reasoned to be MDF. In the advisory system it is important to know what these “other” characteristics
are, to either give a different advice to the user, or question the user on whether this characteristic could
be dropped from the problem definition. Additionally, it is important in the formalization and integration
steps, because the MDO advisor should assist in the implementation of the problem as it was defined by the
user.

Therefore, the reasoner used in this research is extended with functionalities to determine whether an
individual exactly matches the described “necessary and sufficient conditions”. We assume that things that
are not defined for an individual are not true, “closing the world” of the data. That is, we assume that the
aircraft that is 30 year old and has red paint does not have any other paint color. The Hermit Reasoner
1.3.840 was chosen, because it performed well in initial tests for inferencing logical consequences in an open
world and because it is open-source and can therefore easily be extended.

Because of the OWA, the reasoner is also not able to determine whether certain cardinality restrictions
occurring in the properties of classes are met, as was illustrated earlier. Therefore, the reasoner is also
extended with the ability to check whether cardinality restrictions are met. Here, we also assume that
things that are not defined for an individual are not true when we check for minimum, exact and maximum
cardinalities. I.e. we assume that aircraft3 has no other engines.

Through these modifications, the reasoner is able to determine what type of architecture is being defined
and the advisory system can be told to assist in the construction of this architecture, based on the formal
definition in the knowledge base. However, the advisory functionality must also be supported when an
architecture is not yet defined and the user seeks advice on how to structure his problem, based on higher
level characteristics.

A. Rule Based Functionalities

The ranked list of suitable architectures for a specific problem can also be based on other aspects that are
defined with the problem, such as the types of variables, the need for feasibility when the optimization is
stopped prematurely, the availability of gradient information from external software or time constraints. One
way of supporting the advisory functionality, based on higher level characteristics, is by including rule based
advice. The rule based advice is implemented through the use of the Semantic Web Rule Language (SWRL),
which can be modeled inside an OWL ontology. Thus, SWRL can use OWL class expressions. SWRL can be
used to model rules that cannot (or not easily) be modeled through restrictions in the ontology, for example
to assert something when a condition is met. An example of such a SWRL rule is shown below, to derive
that if there is an aircraft a and this aircraft has passengers y and z and these passengers are different,
then this means that these passengers are fellow travelers on the same aircraft. (Note that the relation
differentFrom is included in OWL and supported by SWRL)

Aircraft(?a) ∧ hasPassenger(?a, ?y) ∧ hasPassenger(?a, ?z) ∧ differentFrom(?y, ?z)

→ fellowTraveller(?y, ?z)

However, SWRL, being modelled in OWL ontologies, is restricted by the same open world assumption.
Hence, rules that try to enumerate individuals are not always possible (similarly to the examples for OWL)
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and negation as failure (used to derive not p, i.e. that p is assumed not to hold, from failure to derive
p) is not supported. Only when something is explicitly stated as not being an instance of a certain class,
it can be asserted that this individual is not an instance of that class. To overcome these limitations, and
switch to a closed world for the data, the SWRL rules are used in combination with the SPARQL Protocol
and RDF Query Language (SPARQL). SPARQL is a semantic query language for graph databases, that
can retrieve and manipulate data stored in the Resource Description Framework (RDF) format. This is the
same format as is used to store OWL ontologies. The world of the data is thus restricted to the information
that is contained in the data (knowledge) base and SPARQL can be used to query these data.

The reason behind combining both technologies is that SWRL rules can be used in combination with the
restriction in the OWL ontology to derive (assert) new facts using the semantic reasoner. SPARQL queries
can be used to handle conflicts between these rules, by retrieving potentially conflicting information from
the knowledge base and then defining what to do when certain conflicting information has been retrieved
(launching another SPARQL query to modify/delete data in the knowledge base). The reason of not using
SPARQL queries for the first step lies in the fact that the execution of SWRL rules can be explained by the
reasoner and that the derived information is less sensitive to the order in which the rules are fired. In the
case of SPARQL queries, there is a fixed order in which the queries are executed.

V. Conclusions and Future Work

The MDO advisory system presented in this paper has three functionalities: to advise on the most
suitable MDO architecture for the problem at hand, to formalize the architecture for the problem in a proper
implementation and to integrate the formalized problem definition in an MDO framework. To provide these
functionalities, we make use of knowledge-based technologies; mainly a dedicated MDO ontology and a
reasoning engine. Because of the implementation of the domain-specific ontology for MDO, for monolithic
and distributed architectures, in OWL 2.0,38 modifications to the chosen reasoning engine were required.
These modifications are necessary to recognize user defined problems, match them to formalized architectures
and provide advice based on the characteristics of the user defined problem. It is also important that the
reasoning engine is able to determine which parts of a user defined problem match with the formalized
architectures and which parts do not. This could not be done with the unmodified reasoning engine. The
differences between user defined and formalized architectures are important as they may either trigger a
different advice to the user, or question the user on whether these characteristics could be dropped from
the problem definition. Moreover, the advisory system should integrate the complete problem that the user
defined and not just the part that was matched to a formalized architecture.

The MDO ontology can be used to store a problem definition, according to a formal representation that
can be reused in the actual implementation of the optimization problem and can easily be translated to other
systems. The incorporation of selection criteria such as: speed, accuracy, feasibility at all iterations, types
of variables, availability of gradients, etc. in the MDO ontology allows for selection rules to be triggered,
using the SWRL and SPARQL functionalities.

Testing will still need to be performed to verify the behavior of the backbone functionalities in an
integrated set-up on actual MDO problems. Additionally, a coupling to a simulation workflow manager
(MDO framework) will be made, to support the interactive construction of MDO workflows and to solve
the actual optimization problems. This will provide a means to test the usefulness of the advisory system’s
functionalities. Moreover, links to relative documentation will be added to the knowledge base. A feedback
coupling between the MDO framework and the advisor/knowledge base can provide the possibility to enrich
the knowledge base with information obtained during the optimization/simulation process and improve the
advisory system by means of machine learning. In addition to this, the system can be expanded to incorporate
the possibility to have user-defined architectures and let these be stored in the knowledge base.
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