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CHAPTER 1

THE EXTENSION PROBLEM

§ 1.1 Introduction

Given two groups A and B, then a group G containing a normal
subgroup A’ 2 A such that G/A’ 2 B, is called an extension of A
by B (A’ and A may be identified for a fixed isomorphism between
them). The direct product A ® B constitutes an extension of A by
B for arbitrary groups A and B.

The problem to find for given groups A and B all extensions G in
this sense was first posed by O. Hélder [11]. In a later article [12],
he developed a method for the construction of all possible extensions
G for finite groups A and B and he applied it to find all groups
of a certain given order. Hélder also derived conditions under which
G possesses a subgroup isomorphic to B ([12], p. 329). Extensions
that have this property are called splitting (§ 1.4).

O. Schreier made a large contribution towards the development of
the extension theory in his articles [15] and [16]. He considered
extensions of arbitrary groups A and B and expressed the problem
of finding all extensions of A by B in terms of so-called factor
systems (§ 1.2) and of systems of automorphisms of A satisfying
specified conditions. In time the problem became known as the
Holder-Schreier extension problem.

R. Baer has vastly contributed to the literature of the extension
theory. In [1] he pointed out that with every extension of A by B
corresponds in a particular way a homomorphism (the so-called
associated homomorphism) of B into the factor group ® *(A) of the
group of all automorphisms of A modulo the normal subgroup of all
inner automorphisms of A. Conversely, he proved by means of a
counter example that if A is non-commutative, then an arbitrary
given homomorphism of B into 9*(A) need not be associated with
some extension of A by B. If A is abelian, however, then each
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homomorphism of B into the automorphism group [ (A) of A is
associated with some extension of A by B. The description of all
extensions of A by B by means of factor systems and homo-
morphisms of B into 3 * (A) is therefore reduced to the case where
A is abelian. In the sequel this restriction on A will always be
assumed.

Eilenberg and MacLane [6] established the connection between
the Ext group (§ 3.1) and certain groups of homomorphisms.

The problem may be approached along two distinct lines: by
means of factor systems (§ 1.2) or by means of cohomology groups
(§ 1.3).

The concept of a group extension can be generalized by means of
quasi-groups. G is called a quasi-group if it is closed under a binary
operation, if it has an identity element e and if each element g€ G
has a unique inverse g—1! in G. (e.g. Hausmann and Ore [10]). Such
a generalization is made in § 2.1 where also the notion of a factor
system is generalized to that of a quasi factor system. In chapter 11
some properties of quasi factor systems are being studied and a few
special classes of quasi factor systems are introduced. In chapter III
a generalization of the classical Ext group is made and the structure
of this generalized group is studied using inter alia some results
obtained in chapter II.

§ 1.2 Factor systems

We shall always take the operation in an abelian group to be
addition. In view of this convention, we consider any extension G of
an abelian group A to be additive even if G is non-commutative.

Every element g of a given extension G of the abelian group
A by B induces an automorphism in A through the mapping
a—> —g + a+ g for all ae A. Elements of the same coset of A in
G induce the same automorphism in A. The elements of A itself
induce the identity automorphism in A. To each coset of A in G an
element of @ (A) is associated in this way. The mapping is a
homomorphism and by G/A 2 B we now have a homomorphism
0:B—> (A), called the associated homomorphism of the extension
G. The homomorphism mapping every element of B onto the identity
element of A (A), will always be denoted by 6,. We shall refer to
0, as the trivial homomorphism.
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If we choose for every ze B a representative g(#) in the cor-
responding coset of A in G (g(¢) = 0), then g(#) + g(@) lies in
the same coset of A in G as g(z£), i.e. g(#) + ¢g(B) = g(=B) +
+ f(=,8) where f(#,8)e A. The set of all elements f(z,2) with «
and £ running through B and the representatives g(#) fixed,
satisfies the condition

f(2,¢) = f(s,2) = O for all zeB (1.2.1)
and by the associative law in G we have
f(28,7) + (= B)} (»0) = KaBy) + KB.2) (1.2.2)

for all «,8,7e¢B. A function f: B XX B—> A satisfying conditions
(1.2.1) and (1.2.2) is called a (B, A,/)-factor system.

Conversely, given an abelian group A {0,a,b,c,...| and an
arbitrary group B }¢,#,8,7, .../, a homomorphism /:B — 2A(A)
and a (B,A,/)-factor system f, then the set G = B X A forms
a group under the operation

(za) + (8.b) = (®B.a(B9) + b + f(=A).  (1.2.3)

The set of all elements of the form (¢, a) is a subgroup A’'C G
and A’ 2 A under the mapping a <—> (¢,a). G is an extension
of A by B with / as associated homomorphism (See [15]). We
say G is defined by the extension system (0, f).

Let F(B, A,0) denote the set of all possible (B, A,{)-factor
systems. Define an operation in F(B,A,{) as follows:

(4 @) (2 B) = H=B) + gl B). (1.2.4)

The commutative law in A implies the closure of F(B,A,/)
under this operation and the associative law holds in F(B, A, /)
by force of its wvalidity in A. The factor system f, with
fo(2,8) = O for all #,BeB is the identity element in F(B, A, ). If
feF(B,A,0), then also —f defined by (—f)(»,8) = —f(«,8) for
all «,3eB, therefore F(B,A,!) is an abelian group.

Two extensions G; and G, of A by B are called equivalent,
G; ~ G,, if there exists an isomorphism between them leaving both
A and B invariant. Equivalent extensions have the same associated
homomorphism. If G; and G, are equivalent extensions of A by B
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determined by the extension systems (@, f) and (6, g) resp., then
there exists a function o: B—> A such that

w(e = 0 (1.2.5)
and
h(z,B) = f(=B) — g(=B) = 3w(:¢)$(130) + @(B) — w(xB) (1.26)
for all «,2eB. A factor system h for which there exists a func-
tion o: B—> A satisfying (1.2.5) and (1.2.6) is called a trans-
formation system. The set T(B, A, 6) of all (B, A, )-trans-
formation systems is a subgroup of F(B, A, #). From (1.2.6) it
follows that the factor systems of equivalent extensions of A by B
with associated homomorphism ¢ belong to the same coset of
T(B, A, 0) in F(B, A, 6). Therefore, the non-equivalent extensions
of an abelian group A by an arbitrary group B with associated
homomorphism @ correspond in a one-one way with the elements of
the group

Ext(B,A,%) — F(B,A,/)/T(B,A.0). (1.2.7)

We call Ext(B, A, §) the group of extensions of A by B with
associated homomorphism 6. Note that Ext(B, A, 6) is abelian.

§ 1.3 Cohomology groups

The notion of the group Ext(B, A, §) defined in § 1.2 may also
be developed as follows:

If B denotes the cartesian product of n copies of an arbitrary
group B and A is an abelian group, then every function f: B»—> A
is called an n-dimensional cochain. In particular, the zero-dimen-
sional cochains are the elements of A. The set of ail n-dimensional
cochains is an abelian group C°(B, A) after introduction of the
following operation:

(f 4+ 6) (2,2, o 2) = (2,20 . 20) + 65 (2,25 0 0 o 20)

In particular C0(B, A) = A.

Let :B - A (A) be a fixed homomorphism. Then with every
n-dimensional cochain f we associate an (n - 1)-dimensional
cochain 8f, called the coboundary of f and defined by:
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(Bf)(%l"zz'-..,xn-;-]):f(xz,..., Zn+])+

+k§l(—1)kf(x1,---,xk-—x.kaxkﬂ, u-,%n+1)+

+ (=1 ey, ) | (% 4 19) (1.3.1)
From this definition it follows directly that
ofy + £) = of + o, (1.3.2)

so that the mapping f—3f is a homomorphism of Cr(B,A) into
Ca+1D (B, A). It can also be proved that
3(2f) = 0. (1.3.3)

An n-dimensional cochain with zero coboundary is called a
cocycle. The n-dimensional cocycles form a subgroup Z»(B, A, 6)
of C»(B, A).

Consider on the other hand, for n > 0, the n-dimensional cochains
that are coboundaries of some (n — 1)-dimensional cochains. They
form by virtue of (1.3.2) a subgroup D»(B, A, 0) of C»(B, A).
Do(B, A, ) = 0 by definition.

By (1.3.3) we have D»(B,A,)) C Z~ (B, A,)).
The group H*(B,A)) = Z"(B.AJ) puB A (1.3.4)

is called the n-th cohomology group of B over A relative to 6.
The coboundary of the two-dimensional cochain f(,,2,) is given by
OF) (2, 2y, 23) = By, 25) — (22, 2) + f(t), 2p%5) — 3f(11'“2)z (239).
ie. f is a cocycle if and only if
f(oy 29, 23) + | f(2), ) { (250) = (2, 2y 23) + Ky, 25), .. if £ € F(B, A, 0).
Therefore Z%?(B,A,9) = F(B,A/)).

On the other hand, f(#,,) eD?(B,A,/) if and only if
there exists a one~dimensional cochain w(#) such that f(x,,«,) =
= fa(m) | () + olw) — elua), ie. if fe T (B,A,0).

Thus DB, A,%) = T(B,A,Y).
Hence H%B, A,/) = Ext (B, A,0).
§ 1.4 Splitting extensions

If A and B are subgroups of an arbitrary group G such that each
g € G may be written in the form g = ab with a€ A, be B, then
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we say G is generated by A and B and write G = {A, B}. If

then we call G the direct product of A and B and write G = A ® B.
If both A and B are abelian, we call G the direct sum of A and B
and write G = A ® B. When conditions (c) and (d) hold for the
subgroups A and B but (a) and (b) are not satisfied, we call G a
semi-direct product of A and B.

If G is a group containing an abelian subgroup A and a subgroup
B such that conditions (a), (c) and (d) are satisfied, then we call
G a splitting extension of A by B. Thus, a splitting extension is a
direct or certain semi-direct product.

An extension Gof A {0,a,b,c,...} by B {¢,a B, 7y, ...} with
extension system (6, fy) is splitting for every 4, (1.4.1)
because the subgroup A’ of all elements of the form (¢, a) and the
subgroup B’ of all elements of the form (a, 0)satisfy conditions (a),
(c) and (d).

If G is an extension of A by B with extension system (0, f), then
G is splitting if and only if £ € T (B, A, 9). (14.2)

Suppose G is splitting.

Then G contains a subgroup B’ & B; let o/ - a under this
isomorphism. Suppose »:B —> A is an arbitrary function with
o(¢) = 0. Choose as representative of the coset of A in G cor-~
responding to « € B the element o’ + w(a) for all « € B. Then, by
the definition of f we have:

@ 4 w(@) 4 B + wPB) =2 4+ B + w(@B) + f(«,5) for all z,Se B.
e fzf) = —alaf) — B + o) + & + «(@),
= {a(0)|(3) + «(B) — (=), ie. fe T (B.A.)

Conversely, suppose f¢ T (B, A, 9).

Thus if G and G, are determined by the extension systems (4, f)
and (0, f,) resp., then G and G are equivalent.

Therefore G is splitting by (1.4.1).

Clearly, the non-equivalent splitting extensions of A by B stand
in a one-one correspondence with the distinct homomorphisms of B

into A (A).
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§ 1.5 Central extensions

G is called a central extension of A by B if A lies in the centre
of G. If G is a central extension of B by an arbitrary group B, then
all automorphisms a - — g +a + g, g€ G of A are equal to the
identity automorphism, i.e. G has 0, as associated homomorphism.
Suppose, conversely, that G is an extension of A {0, a,b,c, ...} by
an arbitrary group B {e, a, B, v, ...} with extension system (6, f),

fe E(B, A, 6y). With A” as in § 1.2, we have
A" € Z(G),

because

(@) + (B,b) = (B.a + b + (e, B))
all (c,a) e A’, (B,b) € G, i.e.

G is a central extension of A by B if and only i} it has 6, as
associated homomorphism. {(15,1)

Conrad [4] illustrated the relationship between central extensions
and bilinear mappings, defined as follows:

If A is an abelian group and B an arbitrary group, then a mapping
g: B X B = A is called bilinear if for all =, (2,7¢ B

(2,b) 4 (¢,a) for

g2, ») = glx2) + g(B,7)

gle By) = gl P) + g(=,7).
For a bilinear mapping g: B )X B — A and arbitrary 2 ¢ B
we have

and

gla,2) = g(ze,2) = g, 2) + g(e 2)
or g(s,2) = 0. Similarly g(#,¢) = 0 for all e B.
Moreover, g(=£,7) + g(«£)
= g(=.7) + g(B.%) + g(=.F)
= g(«,By) + g(3,), since A is abelian.
ie. ge F(B,A/0,).

Every bilinear mapping of B X B into A is a (B, A, 6,)-[actor
system. (1:5.2)

Conversely, Conrad [4] proved that if a (B, A, 4,)-factor system
f is linear in one variable, then it is bilinear.

Under certain conditions, the group F(B, A, 6,) is splitting. In
order to prove this, we define:

If for a given fe F(B, A, §) we have that f(«, 8) = [(B, a)
(resp. f(a, B) = —£(B, a)) for all a, B€ B, then f is called sym-

metric (resp. skew-symmetric).
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The set P(B, A, 0) of all symmetric (B, A, 0)-factor systems as
well as the set Q(B, A, 0) of all skew-symmetric (B, A, §)-factor
systems are subgroups of F(B, A, §).

Conrad [3] proved that if

ta)y A[2] = 0,

(b) B is abelian,
then every fe Q(B, A, ) is bilinear. By (1.5.2) he thus proved
that in this case, Q(B, A, 6,) is the set of all bilinear skew-sym-

metric mappings of B X B into A.
Assume that we have in addition to conditions (a) and (b), also

(c) A = 2A,
and let fe F(B, A,0,). Define:

p:BXB > A; p(e, B) = 3[f(a,B) + £(B, a)]
and q:BXB > A; q(a. 8) = 3[f(a. B) — E(B )].

It is readily shown that p,q € F(B, A, 6,). Clearly p is symmetric,
q skew-symmetric and

f=p+q. (.1:5:3)

Moreover, this representation of f as the sum of a symmetric and
a skew-symmetric function is unique. Therefore

F(B, A, 6,) = P(B, A, 6,) © Q(B, A, 4). (1.5.4)

Furthermore, if fe T(B, A, ,), then there exists a function
o:B —> A such that f(e, 8) = o(a) + o(B) — o(af) =

= w(B) + o(a) — o(Ba) = £(B, a) for all & B € B.

i.e. T(B, A, 90) g p(B, A, 0()). (1.5.5)

All abelian extensions are of course central extensions. Suppose
B is abelian and let G be an extension of A by B with extension
system (6, f), f€ F(B,A,0;). Then for arbitrary («,a), (3,b) € G,

we have

(e;a) + (B,b) = («a+ B, a+b+ f(a,B))
and (B,b) + (a, a) (B+ e b+a+ £B a)),

i.e. G is abelian if and only if f(a, 8) = £(B, a) for all «, B € B, that
is if fe P(B, A, dy).
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An extension G of A by an abelian group B with extension
system (0, f) is abelian if and only if f is symmetric. (1.5.6)

A group is called locally cyclic if all of its finitely generated
subgroups are cyclic (e.g. the groups Ry and C(p =°)).

If B is locally cyclic, then an extension G of A by B is abelian
if and only if G has the trivial homomorphism as associated homo-
morphism. 1) (1.5.7)

If G is abelian, then it has 6, as associated homomorphism by
{1.5.).

Conversely, Loonstra [14] proved that if B is cyclic and G has
extension system (6, ), then f is symmetric, thus G is abelian.

If B is locally cyclic, then there exists a cyclic subgroup C € B
containing any two given elements «g, B, € B. The method applied
by Loonstra [14] is now applicable in proving that f(e, ) = (8, «)
for all a, B € C, in particular f(ay, Bg) = f(Bo, ag). Since «ay, By € B
are arbitrary, f(a, ) = f(B, a) for all «, B € B.

i.e. G is abelian.

To conclude this survey of the relationship between central ex-
tensions and bilinear mappings, we mention that Conrad [4] proved
the following:

Assume groups A and B satisfy conditions (a) — (c) of this
paragraph and that f€ F(B, A, 6) is bilinear. Let f = p + q be the
representation (1.5.3) and suppose G and H are the extensions of
A by B with extension systems (6, f) and (6, q) resp. Then G
and H are equivalent. If, moreover, f is symmetric, then q = f, and

G~H=A®B.

1) This result with B cyclic was proved by Baer [1].




CHAPTER II

QUASI FACTOR SYSTEMS

§ 2.1 Introduction

In this paragraph, we generalize the notion of a factor system.
To this end, we consider an abelian group A {0,a,b,c, ...}, an
arbitrary group B {e¢ a B8,y,...} and a fixed homomorphism
0:B —> HN(A).Let f: B X B = A be an arbitrary [unction only
satisfying condition (1.2.1). Consider the set G = B X A with
operation (1.2.3) using f as defined above.

It follows that for any (2,a), (3,b), (7,¢c) €G,
{(z,a) + (B,b)} + (».c) = [(x,a) + §(B.b) + (».0){] +
+ (6 f#8.9) + i B 09) — Bl By) — KR.9)
i.e. the operation (1.2.3) in G is associative if and only if
f(23,7) + (= B)} (0 — f(=By) — f(B.2) = 0, (2.1.1)

thus if and only if fis a (B, A, #)-factor system.

It is our aim to point out how a generalization of the concept of
an extension of A by B as defined in chapter I results if we sacrifice
the associativity of the operation (1.2.3) by replacing (2.1.1) by a
pair of weaker conditions. Consider a fixed subgroup C C A.

DEFINITION 1:

A [unction f:B X B—> A satisfying the conditions (1.2.1) and
also

fxB,7) + {6z B) | (4) — K. B7) — K(B2)eC (2.1.2)
and {fz—%a)} (x7Y%) = f 27 (2.1.3)
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for all a, B, y€ B, is called a (B, A, 0; C)-quasi [actor system.

We note that every (B, A, 6)-factor system is a (B, A, ¢; C)-
quasi factor system for arbitrary C C A. The set F(B, A, ; C) of
all (B, A, 6; C)-quasi factor systems is an abelian group under the
operation

t + &) («B) = (2B + £(«03) for all 2,5¢B
and F(B,A,%) € F(B,A,/; C).

If fe F(B, A, 6; C), then the set G = B X A is closed under the
operation (1.2.3) and (e, 0) is the identity element of G while

— (za) = (2~ —alf)=! — iz )20~
= (2=, — a2 =" — fa,2~).

We show that G may be considered as an “‘extension” (henceforth
called a quasi-group extension) of A by B. If we denote the subset
of G consisting of all elements of the form (e, a) by A’, then the
mapping a —> (¢, a) establishes an isomorphism A 2 A’. Further-
more, we divide G into mutually disjunct classes by the rule:

(a,a) and (B,b) belong to the same class if and only if
@ — /3 (2.1.4)

Since (a,a) + A’ = (o, b) + A’ for all a,be A, we denote the
class to which (a, a) belongs by (a,a) + A’ (= A’ + (a,a)). The
set of all such classes is denoted by G/A’.

Making use of the fact that (2.1.4) is a regular partition, we
define an operation in G/A’ as follows:

{(z,a) + A’} (B, b)+ A'{ = (z,a) + (5,b) + A"

The mapping ¢: G/A', = B i(za)+ A"l L = z is readily
seen to be an isomorphism. Since we now have A = A’ and
G/A" 2 B, we call G a quasi-group extension of A by B.

A convenient concept was introduced by Garrison [9] who called
an element c of a quasi-group H centre associative in H if x(cy)
= (xc)y for all x,ye€ H. Left associative and right associative
elements are defined similarly.

The elements of A’ are centre, left and right associative
in G, (2:1.5)

The notion of an associated homomorphism for quasi-group
extensions is introduced in the same way as for group extensions
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(§ 1.2). In the present case, G has ¢ as associated homomorphism,
since for arbitrary (e, b) € A’ and all (a,a) € G we have

— (2,a) + (¢,b) + (,a) (Applying (2.1.5.))
= (27!, —a(2l) =" — {fla=",2) { (#0) ) + (2,b(20) + a)
= (&, b(«9)).

Suppose, conversely, that G is a quasi-group with the following
properties:

(a) G contains an abelian subgroup A.

(b) The elements of A are left, centre and right associative

in G.

(¢} {(—g+a)+(g+b)}+ (—g+ec)=(—g+a)+
+ {(g +b) +(—g+c)} for all ge G; a,b,c€ A,

(d) (—h—g)+at+(g+h)=—h+(—gt+a+tg)+
+ h forall g, he G; ae A.

(e) There exists an epimorphism ¢: G —> B with K(¢) = A.

Then it is readily shown that with this quasi-group extension G
of A by B, a homomorphism 6: B—> ¥ (A) is associated as well as
a (B, A, ¢; C)-quasi factor system f, where C CA denotes the
associator group of G.

In the present chapter, we shall be concerned with the construction
of factor systems; we shall deduce a few properties of quasi factor
systems in general and we shall introduce some special types of
quasi factor systems. In the next chapter, the results obtained will
be applied to investigate the structure of the group of all quasi-group
extensions.

It will be convenient to make the following convention:

Let A {0,a,b,c,...} be an abelian group with a subgroup
C, B {e, @ B,7, ...} an arbitrary group and 6: B-—> A (A) a fixed
homomorphism. This system will henceforth be refered to as the
general extension system {B, A, ¢; C}.

If in the general extension system {B, A, 6; C}, we define
A(Bf) = {a|a€ A and ay = a for all y € B4}, (2.1.6)
then A(B#) is a subgroup of A. This subgroup plays an important
role in the sequel.
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§ 2.2 The construction of factor systems

In the general extension system {B, A, #; C}, the problem of
constructing all possible (B, A, ¢; C)-quasi factor systems arises.
Viljoen [17] gave methods of construction for certain special cases.
In what follows, methods of construction will be developed for the
case

(a) B = C(n), A an abelian group, C = 0 and § arbitrary,
(b) B = V4, A an abelian group with A[2] = 0, C = 0 and ¢
to be specified.

(a) Suppose in this case # is generated by 1 —> a.

DEFINITION 2:

If for a given function f: B X B—> A we have [or the [ixed

elementsr, s, t € B that
f(r +s,t) + {f(r,s)}at = f(r,s +t) + f(s, t), then we call
(r,s,t) a (C, £, 6)-system and write (r,s, t) € (C, £, 6).

Note that if f satisfies the condition (1.2.1), then (r,s,t) € (C,f,0)
for all r, s, t € B if and only if f€ F(B, A, 9).

Any function f: B X B —> A can be represented by a n X n
matrix M = (m“) over A with m__ = f(r,s). By (1.2.1), a
necessary condition that f € F(B, A, ¢) is that the first row and first
column of M contain only zero's. After the remainder of the second
row has been chosen in some way or other, the matrix can be
completed inductively by means of (1.2.2), i.e. in such a way that
the condition

(r,1,t) € (C, £ 6) forallr,te B (2.2.1)
holds. In order that f € E(B,A, 6), however, it is necessary that
(r,s,t) e (C, £ 6) forallr,s, te B. (2.2.2)

The following lemma states the conditions under which (2.2.1)
implies (2.2.2).

LEMMA 1:

Let in the general extension system {B, A, §; C}, B = C(n) and
0 be induced by 1 > a. If C = 0 and f: B X B—> A is any given
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[unction, then (r,s,t) € (C,f,0) for all r,s,t€ Bif (r,1,t) € (C,£6)
for all r, t € B.

PROOF:

Suppose (r, k, t) e (C,f,0) for all r,te B and some fixed ke B.
Then we prove (r.k 4+ 1,t) € (C.f,9) for all r,te B. We have

@ (+klLte(Cll=—>
fir+k—+ Lt)+ i+ k1)t = fe+k 1 4 t) 4+ K1,0),

() (ck1)e(CEH) —=>
f(r + k. 1) + 3f(r,k)%x = f(r,k + 1) + f(k.1),

() (nkt+1)e (Cho ——
fr kot 4+ 1) 4 {Er, k) 2+ = e,k 4+ e+ 1)+ Fkt + 1),

(iv) (kLoe(CLl) —=>
f(k -+ 1,6) + § f(k, 1 2t = f(k, 1 4+ 1) + £(1, ¢).

From (i) and (ii) follows
fr+k+1,¢t) + {fr.k+ 1)}
= f(r+k 1+1t)+ £1,¢t) + {f(r, k) }ar+1 — {f(k, 1) }at
= f(r, k4 14¢t) + £k t+ 1)+ £(1;t) = {E(k 1}a (by (iii))
= (nk+1+1) + Kk + L.t} (by (iv])),
ie. (r,k+1,t)e (C, £ 0) for all r, te B.
ie. (r,s,t) e (C £ 0) forallr,s, teB.

THEOREM 1:

Let in the general extension system {B, A, §; C}, B = C(n)and ¢
be induced by 1> a. If C = 0 and f: B X B—> A satisfies the
conditions:

(i) f(r,0) = £(0,r) = O for all reB,
@ (e =3 0,
fr + 1,5) = f(r. 1 4 s) + £(1,5) — $f(r, 1)]°

forr=1...n—2s=1,..,n—1,

then fe F(B, A, 0).
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PROOQOF:

By definition (r,1,s) € (C, f,0) forr = 0,1, ..., n —2 and all
s€ B.
Furthermore (n—1,1,s) € (C, f, §) for all s¢ B if and only if
{f(n—1,1)}es = f(n—1,1+s) + £(1,s) for all se B. (a)
But (n—2,1,s+ 1) € (C,f 0)——>
flh=1,5 + 1)+ {f(n—2,1)}ar Tt =
= fn—2;5+2) + £(l,s+1)
and (n—2,1,1) ¢ (C, f, 0) ——>
fn—1,1) + ftn—2,1)}a = H{n—=2,2) + £(1,1).

Thus (a) becomes:

(f(n—2,2)}e + (£(1, 1)}e* = f(n—2,s +2) + £(1,s +1) +
+ £(1, s). (b)

But (n—3,1,s+2)¢ (C,£0) >
fn—2,s+2) +{f(n—3,1)}as™® = f(n—3,5s+3) -+
== E(l.8 1 2)

and (n—3,1,2)¢ (C, £, 0) ——>
f

fin—2,2) + {f(n— 31)}a2 = f(n—3,3) + £(1,2).

Now (b) becomes

{f(n—3,3)}es + {£(1,2)}as + {£(1,1)}a°
= f(n—3,s+3) + £f(l,s+2) + £f(1,s+ 1) + £(1, s). (c)

Proceeding in this way, we finally have:

:"i‘f(1,i)$as: f(l,s+n—1) + ...+ f(1, s+ 1) + f(1,s) =

i=

n-1
=S f(1,i) for all s € B. (d)
=l

But (d) is satisfied for all s € B by the definition of f.
ie. (r,1,s) € (C, £ 0) forall r,se B.

Applying Lemma 1 we have

(r,s,t) € (C, £, 0) forallr,s, te B.
ie. fe F(B, A, 0).
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REMARK:

Under the stated conditions, theorem 1 yields all possible
(B, A, 6)-factor systems. To prove this, we consider an arbitrary
fe F(B, A, 0). Then f satisfies conditions (i) and (iii) by the

definition of a factor system.

Furthermore, we have

£(2,1) + {£(1,1)}a = §
£(3,1) + {£(1,2)}a = K

fln—1,1) + {f(1,n—2)}a= f(1,n—1) + f(n—2,1).
(f(l,n—1)}a = f(n—1,1).

n—1 n—1

ie. {3 £(1i)}e + 3 £(1,i).

Thus f satisfies condition (ii) also and can therefore be con-
structed in the way described in theorem 1.

(b) Suppose A is an abelian group with A[2] = 0.

Let R = {r} ¥ C(2) and S = {s} X C(2), thus R® S X V,.
(2.2.3)

Denote by o the automorphism a —>-—a for all a€ A, and consider

the homomorphisms:

¢:R>A(A); 1p = @
and ¢:S—>NA(A); sy = «
Denote the homomorphisms of V, into 3 (A) generated by the
pairs (g, 09), (0o, ¢) and (¢, ¢) byy, (i = 0,1, 2) resp..
The following three theorems give a method of construction of all
possible (Vy, A, 0 )-factor systems (i = 0,1, 2). The proofs are

very similar and we only prove theorem 2(c). If for the function

f: V4 X Vy—> A we have f(x,0) = £(0,x) = O for all x € V,, then

THEOREM 2(a):

fe F(Va4 A, 8p)<=>(1) f(r,s) = (s, 1)

(2) f(c,r + 8)= Kz + s, 1)
(3) f(s,r +s) = f(r + s, 8)
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r,s) + f(r, v+ s)
15 2. 8) - b5 4§ 8)
(6) f(r +s,r+s) = f(r,r + s)+ f(s,r+5s)

—_—

THEOREM 2(b):

fe F(Vy A, 60;)<—>(1) f(r,£) + f(r,s) + f(r,r+5s) =0
(2) f(r,r) = f(r + s, 1) + £(s, 1)
(3) £(s o)+ £ls;r+s) = 0
(4) £+ s,8) = £(r, s)
(5) f(r +s,r+5s) = f(x+ s,r) + f(r+s,s)
(6) f(r,s) + f(r +s,r) =0
(7) f(s,s) = 0
THEOREM 2(c):
fe F(Vg A, 05)<=>(1) f(r,r) =0
(2) f(s,s) =0
(3)E(E 8) +HEHEx1+8) = 0
(4) f(r + s, r) = £(s, 1)
(5) f(s,.x~ts) +f(s;r) = O
(6) f(x + s,8) = f(r,8)
(7) tr s, t)=F E(x +s,8) =

+ f(r+s,r+s) =0
PROOF:

Suppose fe F(Vy, A, 6,).
(1) and (2): Since (r,r, 1), (s,s,s)€ (0,f 6,) in the notation of

Definition 2, we have

—f(r,r) = f(r,r) and — £(s, s) = £(s, s).

ie. f(r,r) = f(s,s) = 0 since A[2] = 0.
(3): f(r,r +s) + f(r,s) = 0 for (r,r,s) € (0, f 6,).
(4)s {8,.x; ) € 40 L, 0p) =—="> flr+ s 1) —TF(s; 1) = O
(5): By (s,s,r) € (0, £ 65), we have

f(s,r+5s) + £(s,x) =0

(6): (r,s,s)¢€ (0, £85),ie f(r+s,8) —f(r,s) =0
(7): =f(r +s,r+s8) =i+ s s8)+ Hr+ s.1),

because (r +s,r + s,r) € (0, £, 6,).
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Conversely, suppose the function f satisfies the conditions
(1) — (7). We now show that (x,y,z) € (0,f,0,) for all x,y,z€ V4
and thus that fe F(Vy A, 05). We note that (x,y,z) € (0, £ 6,)
if either x = 0,y = Qorz = 0.

(r,r,r) € (0, f 6,) by (1).
(r,r,s) € (0, £ 05) by (1) and (3).
(r,r,r +s) € (0, £ 65) by (1) and (3).
(r,s, r)€ (0,1 0,):
f(r,s) + f(r,r +s) = f(r+ s,r) —f(s,r) by (3) and (4),
ie f(r+s,r) —f(r,s) = f(r,r + s) + f(s, ).
(r,s,s) € (0, f 05) by (2) and (6).
(r,s,r +s)e (0, f 65):
f(r+s,r+s) + f(r,s) =
— ,8) —f(r +s,r) + f(r +s,s) by (6) and (7)

f(s, 2 8) by (5).
(r.r s r) € {0, £ 82):
f(r,s) + E(r,r+s) =
ie. f(s,r) —f(r,r + s)
(r,r +s,8)€ (0, £ 65):

)

—f(r,r + ;

—f(r +s,r) + f(s,r) by (3) and (4),
= f(r,s) + f(r + s, ).

= f(r,s) by (3)
= f(r + s,s) by (6).
(r,r+s,r+s)e(0,f0,):
f(r+s,r+s) = —f(r+s,r) —f(r+s,s) by (7)
= —f(s,r) — f(r,s) by (4) and (6)
= f(s,r+s) + f(r,r + s) by (3) and (5).
(s,r.r) € (0, £ 65) by (4).
(s,r,s) € (0, £ 65):
f(r <+ s, 8)— B, 8) = £(s,
ie: f(r + s, 8)—£(s,
(s, &, == 8) € (0; £, 85):
fies,0% s) + #Hi+ & &)
= f(r,8) + tlz, r=8) by (3). (
ie. f(r+s,r+s) + f(sr) =f
(s,s,r) € (0, £ 05): by (5).

€
S

(r +s,8) + £(s, ) —f(r + s, 1)
) and (7),
r,r + s) by (6).

— ™

(s,s,s)€ (0, £ 6,) by (2).

(s,s,r +s)e€ (0, £ 05) by (5)

(s,r+s,r)e (0F6,)
—f(s,r + s)
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(s,r +s,8)€ (0,f05):
f(r,s) —f(r +s,8) = f(s,r + s) + (s, r) by (5) and (6),
ie f(r,s) —f(s,r +s) = f(s,r) + f(r +s,5).
(s,r+s,r+s)e (0,f0,):
f(r,r +s) + f(s,r +s) = —f(r,s) —f(s,r) by (3)and (5)
—#(r+ s, 8) —H(r+s 1)
by (4) and (6)

I

(r+sr,r)e (0, £ 6,) by (4).
(r +s,r,8)€ (01 0,) by (2), (6) and (7)
(r+sr,r+s)e(0f0,):
f(s,r +s) + f(r +s,r) = 0 Dby (4) and (5)
= f(r+s,8) + f(r,r + s)

(88 1) € (0. 5:05):
f(rF s v b s) F fls.2) = 8o+ 8¢+ 5) + Elx+s1) by (4)
= —f(r + s,s) by (7).
(=%, 5,8) € (0,%:.05) 2by (6)-
(r+s,s,r+s)e(0f6,):
f(e.0 + s5) +f(r+s8) = HeFs ) s 48),
(See the case (r + s, r,r +s) € (0, £ 65)).

(r+sr+s,1)e(0f0,) by (7).
(r+s,r+s,s)e (01 0,) by (7).
(r+sr+sr+s)e (0 f0,) trivially.

This proves the theorem.

§ 2.3 A relation between quasi factor systems and factor systems

At the beginning of this chapter, we introduced the concept of a
quasi factor system and then gave a method for the construction of
such systems in some special cases. In this paragraph, we point out
some relations existing between quasi factor systems in general and
factor systems.

We start off with the general extension system {B, A, §; C} and
suppose

CcA((Bg). (23.1)
If ¢ € B and we define ¢ as follows
y:A/C>A/C; (a+C)y = ay +C,
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then ¢ €3 (A/C) because of (2.3.1). The mapping
%:BO>A(A/C)iyx =y
is a homomorphism and induces the homomorphism
0:B>N (A/C); al = afy.
If we define the group

F*(B,A,9;C) = {fiffe F(B, A, ;C) and
f(a, B) € C for all «, 8 € B},
then E*(B, A, 9; C) € F(B, A, §; C). We can now prove

THEOREM 3:
F(B, A, ¢;C)/F*(B, A, 6;C) 2 F(B,A/C,¥).

PROOQOF:

Let f¢ F(B, A, 6; C).
Define f: B X B> A/C; f(a, 8) = f(a, B) + C. (2.3.2)
Then T(a, e) = T(s, a«) = C for all € B and

f(ap.y) + {f(a B)} (v0)
= Hap,v) + {fa B)}(y0) + C
= He By) +£(B.y) +C
(a, By) + £E(B,y) foralle, B,y € B

ie fe F(B,A/C,0).

The mapping
®: F(B, A, 0; C) > F(B,A/C,0); f& = f (f defined by (2.3.2))

is clearly a homomorphism. That ¢ is even an epimorphism is seen
as follows:

Let fe F(B, A/C, 5) and choose fixed representatives a in the
cosets of C in A, d(a, B) € f(a, B), taking O as the representative
of C. Since {f(a—1, a)}(a—10) =f(a, a—1) for all € B, we have

{a(e1, @)} (e10) — d(a, 1) € C forall € B
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and we are therefore able to select the representatives a so as to
satisfy

{a(a 1, @)} (a10) = a(a,a 1) foralla€c B (2.3.3)
We now define a function
£:BX B> A; f(a,f) = a(a, B) for all o, B B.
Then f(a, &) = f(e,a) = 0 for all a € B and

f(apB, v) + {f(a B} (v0) — F(a. By) — £(B,y) + C
= a(af.y) + {a(a B}(y0) — &(a. By) —a(B.y) + C
= C
since fe¢ F(B, A/C, 0). Furthermore,
{f(a1, @)} (a10) = f(a, 1) for all a € B by (2.3.3).
ie.fe F(B,A,0;C) and fo = [

Denote the identity element of F(B, A/C, ) by f,,
ie. fg(a,f) = C for all o, B€ B. To prove that K(®) =
= F*(B,A,0;C), we first note that f& = f, for all
fe F*(B, A, 6; C). If conversely f& = f;, then

f(a, B) + C = fy(a, B) = C for all a, B¢ B.
ie. f(a, B) € C for all «, B € B.
ie. fe F*(B, A, 0;C).

This proves the theorem.

§ 2.4 Splitting criteria

In this paragraph, we impose the restriction C = 0 on the general
extension system {B, A, #; C} and deduce properties of factor
systems which are applied in chapter III to investigate the structure
of certain groups of extensions.

If fe F(B, A, 0) and G is an extension of A by B with extension
system (0, f), then G is splitting if and only if f is a transformation
system (See 1.4.2)). Therefore, it is convenient to have necessary
and sufficient conditions that a given f€¢ F(B, A, §) is a transfor-
mation system.
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We treat the cases (a) and (b) of § 2.2.

(a) In this section, we need a concept given by

DEFINITION 3:

I} « € N (A), then an element of the form a + aa + aa? + ...+
+ aer—1; a € A, n a positive integer, is called an n-a-norm of A.

We denote the set of all n-a-norms of A by N(n, «). Note that
N(n, ) is a subgroup of A.

Returning to the special case of the general extension system
{B, A, 6; C} under consideration, we suppose 6 is induced by 1 —> g,
i.e. B» = &. We then prove

THEOREM 4:

fe¢ T(B,A,0) if and only if 'S £(1,i) € N(n, ).

i=1

PROOF:

Let fe T(B, A, 0).
Then there exists a function v : B - A with »(0) = 0, and
f(r,s) = {o(r)}Bs + 0(s) — w(r + s) forall r,s€ B.

In particular:

f(l,l) == {m(l)}ﬁ +(n(1)— (.)(2)
f(1,2) = {u)(l)},82+(:)(2)— w(3)

ie. S HLi) = o(l) + {w(1))8 + {o(1)}B2 + ...+

+ {o(1)}p
€ N(n, g8).

Conversely, suppose f€ F(B, A, 6) such that

n—1
3 f(1,i) = a+aB+...+ap1, acA (24.1)

i=n
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m(l) = a
0(2) = a+af —(1,1)
........... k _1 e
o(k) = 3 {ap — £(1,i)}

i=0

n—1
o(n—1) =a+aB+...+ap—2 — 3 f(1,i) + f(1,n—1)
i=1

= f(l,n—1) —ap~1 by (2.4.1).

We now show that indeed f€ T(B, A, 0):
In the first place:

£(1,1) ag +a—o(2)
{o(1)}B + (1) —(2).

(1l

In general, if

£(1,j) = {o(1)}Bi + o(j) — o(l + j) for all j such that
1 £ j<s =< n— 2, then since

ale +1) = % {2 — L)

i=0
we have
s 81
f(1,s) =3 ap — 3 £(1,i) — (s + 1)
i=0 =l

— 3 afi—'3 [{w(1)}8 + oli) — ofi+1)] — (s + 1)

i=0 i=1

= {o(1)}B + o(s) —o(s +1).

Also

f(1,n—1) = a1+ uw(n—1)
= {w(l)}ﬁ"_1+a)(n—1).

Thus
£(1,i) = {o(1)}Bi + 0(i) — (1 +i),i=0,1,..., ¢y SN, (8

23




If now
f(s,i) = {w(s)}Bi + w(i) — o(s+1i) fori =10,1,...n— 1
and fixed s such that 1 < s < n— 2, then applying (1.2.2)

we have:
{o)S}ﬁ‘*'1+m(i+1)—w(i+s+1)
f(s +1,i) g o(l)} Bt + o(i) —o(i+1)
—{w s)}B t1—{u(1)}p'+ {o(s + 1)}
:{ms+1},8‘ w')—w(l+s+1).
Thus f(i, j) = {e(i)}B + o(j) — (i +j) for all i, j ¢ B.
ie. fe T(B, A, ¥6).

—~—

(b) Let V4 be defined by (2.2.3). We then prove

LEMMA 5:

fe F(Vy, A, 0)) —=> f is symmetric.

PROOEF :

By (1.2.2) we have:

F(r.r) = E(r,r+s) 4+ E(r.s) (2.4.2)
f(r+s,t) + f(s,r) = f(r, 1) (2.4.3)
f(r + s,r) + £(r,s) = f(r,r + s) + f(s, r) (2.4.4)
Eir +1s,5) + s 2y = Hs e+ 8) + EEs) (2.4.5)

From (2.4.2) and (2.4.3) follows:
f(r,r +s) + f(r,s) —f(r +s,r) —f(s,r) = 0 (2.4.6)
and by (2.4.4) and (2.4.6) we have
2{f(r,s) —f(s,r)} = 0,
thus
E(r, s) = f(s;r)

since A[2] = 0. Substituting in (2.4.6) we find
fw & +8) = $r=ks, )

and finally, by (2.4.5) we have
f(r = s, 8) = (s, r+ 8):
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Thus f is symmetric.

With the homomorphisms 6, (i = 0, 1, 2) defined as in § 2.2(b),
we prove

THEOREM 5:
(1) feT(Ved, b)<=—> f(r,x), ( s) € 2A.
(2) feT(Vy A 0) <=> f(r,r)e¢
(3) E(V4 A, 0:) = T(Vy A, 6,).

PROOQOF:

(1) Suppose fe T(Vy, A, 0y).
Then there exists a function o : V4 —> A with «(0) = 0
and such that
f(r,r) = 20(r) € 2A

and f(s,s) = 2w(s) € 2A.

Conversely, if fe F(Vy A, 6,) and f(r,r), f(s,s)€2A, we
prove that fe T(Vy A, 0y). In addition to the relations (2.4.2),
(2.4.3) and (2.4.4), we shall also need

By +5.8) -+ k£ 8) = £(8,8) (2.4.7)
and f(r+s,c+s)+Ers) =Frzr) +Esr+s). (24.8)

Suppose f(r,r) = 2a )

f(s,s) = 2a’ | 54 SR,

We then define a function v : V4 —> A as follows:

»(0)

o(r)

w(S)
(r

[0]

i
‘.'Dmo

+s) o(r) + o(s) — f(r, s).

From this definition it follows at once that
f(r,r) = 2a = o(r) + o(r)
f(s,s) = 2a’ = o(s) + w(s)
f(r,s) = o(r) + o(s) —o(r + s),
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and by Lemma 5
f(S,I‘) . m(S) = m([‘) —a)(r I S).
From (2.4.2) we deduce that

Biyr+s) = Hrr)—F(r:.s)
= 20)([‘) —(u(r) —U)(S) + m(r s S)
= w(r) =+ m(l‘ == S) —a)(S)
and by Lemma 5

f(r+s1) = o(t +s) + o(r) —o(s).

Applying (2.4.7) we have

f(r +s,8) = f£(s,s) —£(r, s)
.= Zw(S)—w(r)—m(S) = m(l‘"‘S)
= o)(r+S) +w(s)—m(r),

and again by Lemma 5

f(sr+8) = w(s) T olr+ s) —w(r).

Finally, from (2.4.8) it follows that
@+ s.o+8 = Hi o) s e 4 8h=—F(2.8)
\ 20(r)
= o(s) + o(r +s) —o(r)
b ] s} % wilit 8
- 2(:)(1’ o= S)
which proves that fe€ T (Vy, A, 0,).

(2) The proof of this part of the theorem is similar to that of the
first part. We note in this case that by (1.2.2) we have
— (s, s) = f(s,s)

ie. 2f(s,s) = 0
ie. f(s,s) = 0 since A[2] = 0.

If furthermore we have f(r,r) = 2a, then we define o : V4 —> A

for this case as follows:

w(O) =0

m(r) = &

o(s) = a’ (a’ an arbitrary fixed element)
o(r +s) = —o(r) + o(s) —Er,s).
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We now proceed exactly as in the previous case to show that
feT(Vy A, 0y), using the relation (1.2.2).

(3) If fe F(Vy A, 6,), then we have by (1.2.2)
that
f(r,r) = f(s,s) = 0.

To show that fe T(Vy, A, 0,), select arbitrary fixed a, a’€ A
and define a function o : V4 —> A as follows:

w(r) = B
w(s) = a’
o(r+s) = —o(r) + o(s) —f(r,s)

From (1.2.2) we gather that:

— f(r,r) = f(r,r + s) + £(r, s). (2.
f(r+ s, r) — f(s,r) = f(r, ). (2
f(r +s,5) — f(r,s) = (s, s). (2.
—f{(s, 5) = £(s,. v s) ¥+ £(s,1)- (2‘1 12
f(r +s,r4+s) + £r,s) = E(x;z) + £(s, ¢+ s). (2
f(s,r) —f(r+s,1t) = f(r + s, v+ 8) + £(z, 8). (2.

(

By means of the definition of » and the relations (2.4.9) — (2.4.14

we readily prove that f€ T(Vy, A, 6,).

§ 2.5 Isolated quasi factor systems:

Our study of the structural properties of the group Ext(B, A, §; C)
in the general extension system {B, A, 6; C} (see chapter III) will
be facilitated by any knowledge concerning its structure in some
special cases of the general extension system. In the previous para-
graphs of this chapter, the ground has been prepared for this
approach.

A second line of approach is to keep the variables in the general
extension system {B, A,§; C} as general as possible and to impose
restrictions on the (B, A, §; C)-quasi factor systems so as to get
information about the structure of some subgroup of Ext(B, A, ¢;C).
With a view to this, we define some special types of quasi factor
systems in the present paragraph.
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We recall that in § 2.3 the restriction

f(a,B) € C for all «, B€ B (2.5:1)

was imposed on f € F(B, A, ¢; C). This condition is sharpened if we
define functions f : B X B —- A satisfying for fixed ¢ ¢ C depending

on f the conditions
f(e, ) = 0 if a=¢ or B = ¢
= e, if @ 4¢ and B + e. (2.5.2)

A function f:B X B—> A satisfying (2.5.2) for some fixed
c€ C C A(BF) is clearly a (B, A, 6; C)-quasi factor system. Fur-
thermore, the set F** (B, A,0; C) of all such quasi factor systems is
a subgroup of F(B, A, 6;C). If fe F(B, A, 6; C), we denote the

expression
f(af, v) + {£(a B)}(v0) — E(e, By) — £(B. 7)
by a(f; a, 8, 7).
Every fe¢ F**(B, A, 6; C) has the property (*):

If aF¢e B+e y+Fe then
a(l e, B, y) = 0 if (af e and By = ¢ or
{af e and By = ¢
al it By e and a3 5+ e

R ey if By #* ¢ and af = e.

1 Sl

We call a (B, A, §; C)-quasi factor system f with the property(*)
for some fixed c € C an isolated (B, A, §; C)-quasi factor system
with isolation ¢, The set I(B, A, 6; C) of all isolated (B, A, §; C)-
quasi factor systems is a subgroup of F(B, A, 6; C).

Every (B, A, 6)-factor system is isolated with isolation 0 and this
fact justifies the generalization from F** (B, A,0;C) to I(B, A, 6;C).

If G is a quasi-group extension of A by B with extension system
(6,f) and feI(B, A, 0; C) has isolation ¢, then we call G an
isolated quasi-group extension of A by B with isolation c. A group
extension G of A by B may therefore be considered to have
isolation 0.

In § 3.3 we discuss a structural property of the group of all
isolated quasi-group extensions in the general extension system

{B, A, ¢; C}.
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CHAPTER III

THE GROUP OF EXTENSIONS

§ 3.1 Introduction

If g he F(B,A, 0;C) in the general extension system {B, A, ¢; C},
then the extension systems (4, g) and (#, h) determine quasi-group
extensions G and H of A by B, both with associated homomorphism
0 (see § 2.1). If in addition g—h e T(B, A, 6), then there exists a
function o : B—> A with o(e) = 0 and such that

(g—h)(a B) = {w(a)}(BO) + o(B) — w(ap)
for all «, B € B. Consider the mapping
¢:G—>H; (e,a)eg = (a,a + o(a)).

The mapping is “onto’” because for arbitrary (a,a) € H we have
(e,a — w(a))¢ = (e, a). Since

{(e;a) + (B.b)}¢ = (ap,a(B0) + b+ g(a B))e

= (ep.a(pd) + b+ g(a p) +
+ o(aB))
(ap, a(Bd) + b+ {o(a)}(B0) +
+o(B) + h(a B)).
= (a, & = u)(a)) <t (,3, b + m(ﬂ))
= (a,a)p + (B, b)e

and (a,a)¢ = (¢ 0) if and only if @« = ¢, a = 0, we see ¢ is an
isomorphism. Obviously ¢ leaves both A and B element-wise
invariant and so G and H are equivalent in the sense of § 1.2. Sup-
pose conversely that two quasi-group extensions G and H of A by
B with extension systems (6,g) and (6,h) resp., g.h€ F(B,A,0;C),
are equivalent. Then there exists an isomorphism ¢ : G = H leaving
both A and B invariant. Thus for arbitrary (e, a) € G we have

I
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(v a)p = {(,0) + (e,2)}p = (. 0)¢ + (¢, a)
= (e o(a)) + (e a) say, o(a) € A
= (@, a+ o(a)).

Collecting all w(e) with (e, a) running through G, we have a
function o : B— A with the property v (e) = 0. We have, moreover,
for arbitrary (e, a), (8, b) € G that

{{a;a) + (B.b)}o= (ap,a(B0) + b + g(a, B))¢
= (ap,a(B0) + b+ g(a B) + w(aB)). (3.1.1)

But since ¢ is an isomorphism,

{(e;a) +(B.b)}¢= (a,a)e + (B.b)y
= (a,a <t o)(a)) 1 (ﬁ,b -} m(,B )
= (aB,a(B0) + {o(a)}(B) + b+ o(B) +
+ h(a, B)). (3.1.2)

(3.1.1) and (3.1.2) represent the same element of H and thus
g(a, B) + o(aB) = {o(a)}(B0) + o(B) + h(e, B) for all a, g€ B.
iie.g—heT(B, A, 0).

Two quasi-group extensions G and H of A by B with extension
systems (0,g) and (0,h) resp. are equivalent if and only if
g—heT(B A, 0).

We thus denote by

Ext(B, A, 9;C) = F(B,A,9;C)/T(B, A, 0) (3.1.3)
the group of all non-equivalent C-quasi-group extensions of A by B

with respect to the associated homomorphism 6.
We note the following trivial structural properties of

Ext(B. A; 05 C)s
(i) If in the general extension system {B, A, f; C} we have
C;i <C; <A,
then
Ext(B, A, 9; C;) C Ext(B, A, 9; Cy). (3.1.4)

(ii) IfC=C; N C, for C; < A, Cy < A, then since

F(B,A, 0;:C) = F(B,A,0:C,) N F(B, A, 0:Cy), we have
Ext(B, A, 6; C) =
= Ext(B, A, 6; C;) N Ext(B, A, ¢; Cs). (3.1.5)
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(iii) C can always be embedded in Ext(B, A, 8; C) if C c A(B4).

PROOP:

Define a mapping

¢: F**(B, A, 0; C)=> C; fy = ¢, with F**(B, A, 6; C) as

defined in § 2.5 and c  the isolation of f.

¢ is clearly an isomorphism.

We also have F**(B, A, 9; C)N T(B, A,0) = f, for suppose
fe F**(B, A, 4; C) andf(a,ﬁ) =c#0foras s BFelfaste
B & &, aff # ¢ we then have

a(f e, B, B71) = c(pO)—1 £ 0.
ie. fisnot a (B, A, #)-factor system.
Thus if f, ge F**(B, A, 6; C), then f—ge T(B, A, 0) if and
only if f = g.
ie. F**(B, A, 0; C) is isomorphic with a subgroup of
Ext(B, A, 0; C).
In the special case C = 0, we have
Ext(B, A, 0) = F(B,A,0)/T(B, A, 0) (3.1.6)

which denotes the group of all group extensions of A by B with
associated homomorphism 6. Thus

Ext(B, A, §) CExt(B, A, 6; C) for arbitrary C < A.

The group
Ext(B, A, 6,) = F(B, A, 69)/T (B, A,0,) (3.1.7)

is by (1.5.1) the group of all non-equivalent central group extensions
of A by B. Eilenberg and MacLane [7] denoted this group by
Extcent(B, A).

If B is abelian, then T(B, A, 6,) €P(B, A, 6,) by (1.5.5) and
Ext(B,A) = P(B, A, 6,)/T(B, A, 6,) (3.1.8)
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denotes by (1.5.6) the group of all non-equivalent abelian group
extensions of A by B.

Thus Ext(B, A) CExt(B, A, 0,).

If B is locally cyclic, then we have by (1.5.7) that
Ext(B, A) = Ext(B, A, 6,). (3.1.9)

Structural properties of the group Ext(B, A) have been studied
amongst others by Baer [1], [2], Eilenberg and MacLane [6].
Under the conditions (a), (b) and (c) of § 1.5 we have
F(B, A, 00)/T(B, A, 0y) X P(B, A, 0)/T(B, A, 6,) ©
D Q(B, A, b,),

or

Ext(B, A, 6,) = Ext(B, A) ® Q(B, A, 6;). (3.1.10)

In all cases where in addition Ext(B, A) = 0 we thus have

Ext(B, A, 6,) = Q(B, A, 6,).

§ 3.2 Extensions by cyclic groups

Every extension G of an arbitrary group A by a free group B is
splitting. (Kurosh [13]). If therefore B = C(oo) in the general
extension system {B, A, 6; C}, then

Ext(B, A, §) = 0.

The only element of Ext(B, A) in this case is a class of groups
equivalent to the direct sum A © B. If § = 6, then all the extensions
of A by B with # as associated homomorphism are semi-direct
products dependent on 4 (See § 1.4).

We now turn to the case where B is a finite cyclic group C(n).
Suppose 6 is induced by 1>« and let A(Bf) and N(n, «) be
defined as in (2.1.6) and definition 3 resp.. We prove

THEOREM 61):

Ext(B, A, 0) & A(Bf)/N(n, «).

1) This result was obtained in different ways by Baer [1] and Eilenberg [5].
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PROQF:
Let fe E(B, A, 0).

Then (‘ nE_If(l,i); a = "El £(1,i) by the remark of § 2.2.

\ i=1 i=1

ie. S £(1,1) ¢ A(Bo).

i=1
Consider the mapping

»: F(B, A, 0)—> A(Bo); fo = '3 (E(1, i).

i=1

Then ® is not only a homomorphism but even an epimorphism,
because for a given a€ A(Bf) we can construct an fe F(B, A, 9)
with £ ® = a as follows:

(i) £(r,0) =£(0,r) =0forr=0,1,..., n—1,
(i) £(1;1)=af(1,i) =0 fori=2v:un—1
(iii) f(r+1,8) =f(r,1 +s) + £(1,s) — {f(r, 1) }e¢
forr=1,.:,0—2; 9= 1,,, ,a=1,
That f is indeed a (B, A, 6)-factor system, follows from theorem 1.
We also have by theorem 4 that
{T(B,A,0)}® = N(n, a).

This proves the theorem.

COROLLARY:

Ext(B, A) = A/nA.

PROOF:

By (3.1.9), Ext(B, A) = Ext(B, A, 0,) while
A(Bfy) = A(e) = A and N(n,¢) = nA.




§ 3.3 The group of isolated quasi-group extensions
In the general extension system {B, A, §; C}
Ext(B, A, 6; C(i)) = I(B,A,6; C)/T(B, A, 6) (3:3.1)

is the group of all non-equivalent isolated C-quasi-group extensions
of A by B with associated homomorphism 6 (see § 2.5). Clearly

Ext(B, A, 4) € Ext(B, A, ¢; C(i)) € Ext(B, A, ¢; C)
for arbitrary C. If C CA(B6) in the general extension system
{B, A, 0; C}, then we prove
THEOREM 7:

Ext(B, &, §; C(i) )/Ext(B, A, ) =.:C.

PROOF:

Let fe I(B, A, 6; C) has isolation c. The mapping
o:1(B,A6;C)>C; fo =c¢

is clearly a homomorphism. On the other hand, if c ¢ C is fixed, we
consider the function f: B X B—> A defined by

(i) f(e,a) = f(a,e) = Oforallae B
(ii) f(e, B) = ¢ for alla £ ¢, B £ e
Thus fe F**(B,A,6;C) (see § 2.5) and therefore f ¢ I(B, A, 4;C)

with isolation ¢ so that f ® = c. Consequently @ is an epimorphism.

Obviously K(®) = F(B, A, 6).
ie I(B,A,0;C)/F(B,A,0) & C

and thus
I(B,A,6;,C)/T(B, A, 0)/F(B, A, 0)/T(BA,¢) xC,

which proves the theorem.

COROLLARY:
If Ext(B, A, ) = 0, then Ext(B, A, ¢; C(i)) & C.

§ 3.4 On the divisibility of the group of extensions

If A is an additively written group and n is a natural number such
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that the equation nx = a is solvable in A for arbitrary a € A, then
we say A is divisible by n and write nA = A. If C < A and the
equation nx = c € C is solvable in C whenever it is solvable in A,
then we call C a pure subgroup of A.

In the next two theorems the conditions in the general extension
system {B, A, 6; C} will be outlined under which a divisibility
property of A (resp. B) is inherited by a certain group of extensions
of A by B.

Suppose now that for a fixed natural number n

nA = A (3.4.1)
in the general extension system {B, A,d; C} and

C is a pure subgroup of A (34.2)
while  A[n] = 0. (3:4,3)

We then prove

THEOREM 8:
Ext(B, A, 6; C) = nExt(B, A, 6; C).

PROOF:
It is trivially true that
nExt(B, A, 6; C) € Ext(B, A, 6; C).
It only remains to prove that
F(B, A, 6;C) € nF(B, A, §; C). (3.4.4)
Suppose therefore f€ F(B, A, ¢; C).
Then by (3.4.1), the equation
f(a, B) = nx (3.4.5)

is solvable for all «, B€ B. For given «p, o€ B, the solution
g(ag, Bg) of (3.4.5) is even unique, for suppose g’(ag, By) also
satisfies (3.4.5). Then

ng (e, Bo) = ng’(ap, Bo)-
ie. n{g(ag, Bo) —g’(ap. Bo)} = 0
and thus g (ag, Bo) = g’ (ag, Bo) by (3.4.3).
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Collecting the solutions g(a, 8) of (3.4.5) with « and B8 running
through B, we have a function g: B X B—> A which is a
(B, A, 6; C)-quasi factor system, for

1° ng(e, @) = f(e,a) = 0 and thus g(e, «) = O for all « € B by
the uniqueness of the solution of nx = 0.

Similarly g(e, ¢) = 0 for all e € B.

2° f(aB, y) + {f(a, B)}(y0) — f(a, By) — £(B. ¥)
= ng(apB.y) + {ng(a, B)}(y#) — ng(a, By) — ng(B, y)
= n[g(aB, y) + {g(a B)}(y0) — g(a, By) — g(B. )]

But f(ap, v) + {f(a, )} (v0) — f(a, By) — £(B.y) € C

and therefore

g(aB, y) + {g(a, B)}(y0) — g(a By) — g(B.y) € C by (3.4.2).

3° n[{g(a1,a)}(e—10)] = ng(a,a—1) since {f(a=1,a)}(a—10) =
= f(a,a 1) forall a€ B

and by (3.4.3) we have
{g(la=1,a)}(a10) = g(e,a1) for all e € B.
i.e. f =ngenF(B,A,2#;C),

which proves (3.4.4) and thus completes the proof of the theorem.
We next consider an abelian group B = {0,a,b,c, ...} and
prove

LEMMA 9:

If fe¢ P(B, A, 6,) then
2f(a,b) — £(2a,2b) = f(a,a) + f(b,b) — f(a+ b, a+b) for
alla, be B.

PROOEF:
From (1.2.2) it follows that for all a, be B
1° f(a+b,a+Db)+ f(a,b) = f(a,a + 2b) + f(b,a + b).
2° f(2a,2b) + f(a,a) = f(a,a + 2b) + f(a, 2b).
3° f(a+b,b) + f(a,b) = f(a, 2b) + £(b, b).
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Thus

2f(a, b) — f(2a, 2b)
= 2f(a,b) + f(a,a) — f(a,a + 2b) — f(a, 2b) by 2°
= f(a,b) + f(b,a+b) — f(a+ b, a+b) + f(a,a) — f(a, 2b)
by 1°
= f(a,a) + f(b,b) — f(a, + b, a + b) by 3° and the symmetry
of f.

THEOREM 9:
If2B =B (3.4.6)
and B[2] = 0, (3.4.7)
then

2Ext(B, A) = Ext(B, A).

PROOF:

Consider an arbitrary f + T(B, A, 6,) € Ext(B, A).
We then prove that the equation

2{x + T(B, A, 0y)} = £+ T(B, A, 6,) (3.4.8)
is solvable in Ext(B, A).

For given a, b € B, suppose that by (3.4.6)
a=2randb = 2s (3.4.9)

and define a function
g:BXB—>A;g(a,b) = f(r,s) foralla,be B

(r and s as defined by (3.4.9)).

By (3.4.7), r and s and consequently g(a, b) are uniquely de-
fined. Moreover, g€ P(B, A, 6,) for

1° g(a,0) = f(r,0) = 0 and also g(0,a) = 0 for all a € B.

2° g(a-+b,c) +g(a,b)
= f(r+s,t) + f(r,s) wherea = 2r, b = 25, ¢ = 2t.
= f(r,s=Ft) 4 £(s, )
= g(a,b+c) + g(b,c) for all a,b, ce B.
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We now prove that x =

g satisfies (3.4.8).

Suppose that for arbitrary a, b€ B we have r and s as defined in
(3.4.9). Then
2g(a,b) — f(a,b) = 2f(r,s) — £(2r, 2s)

f(r,r) + f(s,8) —f(r +s,r+ s)
by Lemma 9

m(a) + w(b) —w(a =+ b),

where o : B =~ A is defined by

o(a) = f(r,r) for all a€ B.
ie.2g—feT(B, A, 4,)

which proves that x = g satisfies (3.4.8).

§ 3.5 The influence of homomorphisms in the general extension
system {B, A, 0; C}

Suppose ¢:B—>B’ is an epimorphism with B in the general
extension system {B, A, §; C}. Then the following question arises:
What can be said of the group Ext(B’, A, §”; C) where ¢’ is related
to 0 in some way? A similar question may be asked if ¢ is an epi-
morphism of A to A’.
Firstly, we discuss the case
(a) ¢:B—>B":
We assume K(¢) C K(0). (3.5.1)
Then ¢’: B’ > A (A); o0 = af with a«€ a'¢—1 is a homomor-
phism. The uniqueness of &0’ for a given o is guarenteed by
(3.5.1). Let

F'(B,A,6;C) = {f|/fe F(B,A,0;C) with aj — as, By — B, € K(¢)
==>f(a;, B1) = f(az B2)}.
Then F’(B, A, 6; C) < F(B, A, 0; C).

Furthermore, for every fe T (B, A, §) there exists a function
w, + B—>- A with the properties (1.2.5) and (1.2.6).

With this notation, we define the group
T(B, A,0) = {f|ffe T(B, A, 9)

and a; —ay € K(¢) => o ((a1) = o, (a2)}.
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We now prove

THEOREM 10:
Ext(B’. A, 0; C) £ F(B, A, ¢; C)/T'(B, A, 6).

PROOF:

Consider any fe F(B’, A, ¢’; C) and define a function
f:BXB—>A; (e, B) = f(ag, By). (35.2)

Then ¥ € F'(B, A, 6; C), for

1° F(e, @) = f(&', ap) = 0 and similarly F(a, &) = 0
for all e € B,

2° f(af,y) + {F(a, B)}(y0) —F(a, By) —F(B. y)
= [(apBe ve) +{f(ap, Be)} (yel') —E(ap, Beve) —E(Be vo)
€ C,

3° {F(a1,a)}(a10) = {f(a1g, ap)}(a1¢f") = f(ap. a1¢)
= (e, a1) for all a € B.
Also if @ — ay, B; — B2 € K(gp), then
F(ay, B1) = Heye, Bre) = fasp, Ba¢) = F(ay, B2).

If we define

v :F(B,A 6, C)>F(B A§C),; fy =F
(F" defined as in (3.5.2)), then ¢ is clearly a homomorphism, even
an epimorphism, for let g’ € F/(B, A, 6; C) and put

g:B X B —>A; g(,8) = g(aB)acr¢g—l, Bep¢ L

Then g(o/, B’) € A is unique for given a’, g’ € B’ by the definition
of F'(B, A, 6;C).

Furthermore g€ F(B’, A, ¢’; C), for

(i) g(s', d) = g’(s, a) = 0= g'(a,e) = g(a', e), a€ag1
for all «’ € B’.




(i) gl y) + {g(a, ')} (y0') — g(o, B'Y') —g(B.7)
= g'(af.y) + {g'(a. B)}(v0) — g'(a. By) — g’ (B, y) Where
a€ad'p—1, Be Bl and ye€ yp L.
€ Cforalld, g,y €B.

(iii) {g(a=1, o)} (" 10") = {g'(a1, @) } (a10)
a€adyl, a1 € a_ltp_l
= g(aa) =g(«, 1)
for all o’ € B'.
Clearly g¢ = ¢
We now prove that {T(B’, A, ¢")} v+ = T’(B, A, 9).

Let fe T(B, A, ¢).

Iffy = P, then F'(a, B) = f(ay, By) =
= {o; (ap)}(Be0') + o (Bg) — w(apfe)
= {o(a)}(BO) + o(B) —w(aB),
where o : B—- A is defined by w(a) = o (ag).
ie. £eT(B, A,09).

Furthermore, if ay — as € K(¢), then

m(al) — a)f(altp) = mf(azgo) = u)(ag), and so

feT (B A 0).
On the other hand, if g"€ T’(B, A, 6) and g is any original of g’
under ¢, then we have

gla, p') = 9'(04 B) with a € o/¢g—1, B € By
= (o, } 40) +o, (8) — o, (o)
= {w( HEY) + o(B') — o(dB),
where o : B”—> A is defined by w(a’) = o (a), a€ a1
The uniqueness of w(a’) for a given o’ is guarenteed by the
definition of T’ (B, A, 0).
ie.ge T(B"A, ¢).

This proves the theorem.
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We now turn to the case

(b) ¢:A—>A"

Our first object is to construct in a natural way a homomorphism |
0" : B> A (A’) related to 6 in some sense. To this end we define
A(B#) asin (2.1.5) and we also assume

K(¢) €A(B9). (3.5.3)

For a given ¢ € B we define a mapping
Yt Al>-A’ a"y = agg,acay L. (3:54)

(3.5.3) guarentees that the image of a’ under 4’ is unique and it
is readily seen that
(a" + b)Y = a’y + b’y for arbitrary a’, b’ ¢ A’.

If a’ £ b’ for a’, b’€ A’ and a€ a'y—1, be b'y—1, then we have
a — b is not an element of K(¢).

By (3.5.3) it follows that (a —b) ¢ is not an element of
K(¢) for any ¢ € Bé.
ie.ay o= blgpora L £ by

Therefore v'e y (A’) if A’ is finite. In the case where A’ is in-
finite, we still have to show that every element of A’ is the image
of some element of A’ under’.

Consider, therefore, an arbitrary a’ € A’ and suppose a€ a’¢—1.

Then
(ag~lo)y = a".
Thus ¢ A (A’) in all cases.

Define a mapping

6*: B0 — A (A"); L0* = ¢ (Y defined by (3.54)).
Then 6* is a homomorphism and we attain our object, mentioned
at the beginning of this section, by defining the homomorphism:

0': B> A(A"); ab’ = abf™.

At this stage, we need




DEFINITION 4:

If for fe F(B,A 0;C) in the general extension system
{B, A, 6; C} there exists a [unction o : B—> A with v(e) = 0 such
that

f(a, B) — {o(a) } (BO) — w(B) + w(ap) € C,

then f is called a (B, A, 0; C)-quasi transformation system.
If we denote the group of all (B, A, 6; C)-quasi transformation
systems by T (B, A, ¢; C), then it is clear that

TBA R C T(B A CJC B(B. A &C).

We now prove

THEOREM 11:

Ext(B, A%, ¢') = F(B, A, 6; K(¢))/T(B, A, 0; K(y)).

PROOF:
Consider an arbitrary f€ E(B, A, #; K(¢)) and define
: BXB—>A" (e, ) = {Ha B)}e. ({315.5)
Then "¢ F(B, A’, 0’) because

e (e, a) = {f(e, )} = 0 and similarly f’(a, ¢) = 0 for
alla € B,

2° F(af, y) + {F(a. B)}(v0") — F(a By) — F(B.¥)
= [£(aB, y) + {f(a B)}(y0) — f(a By) — £(B.¥) ¢
= 0 since fe F(B, A, 6; K(¢)).

Define a mapping

x: F(B,A,0;K(¢))—> F(B,A’,¢’); fx = ¥ (f’ defined by (3.5.5)).

Then X is clearly a homomorphism. That X is even an epimorphism
may be shown as follows:
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Select fixed representatives in the cosets of K(¢) in A with r(a’)
in the coset corresponding to a’ under the isomorphism
A/K(¢) 2 A’, and in particular r(0’) = 0. Furthermore, since

[{r(g’ (a1, a)) } (a1 0) ] = {g'(a™1, @) } (a20"),

we can choose the representatives r(a’) so as to satisfy

[{r(g'(a=1,a))}(«=10)]¢ = {g'(a 1, a)}](a10),
a€ B. (3.5.6)

Then for any given g’ € F(B, A, §’) we define:
g: BXB—>A; g(a, ) = r(g'(a, B)).

Thus ge E(B, A, 6; K(¢)), for

12 g(a, &) = r(g’(e e)) = 0 and similarly
g(e,a) = 0 for all e € B.

zr [g(aB, y) + {g(a, B)}(v0) — g(a, By) — g(B.¥)]¢
[r(g’(aB, y)) + r{(g'(«. B)) (v0)} +

+ k—r(g'(a By)) — x(g’(B.v)) e k€ K(p).

g’(aB, y) + {g'(a, B)} (v0') — g’'(a, By) — g'(B.v)

0,
glaB, y) + {g(a, B)}(y0) — g(a, By) — g(B. v) € K(¢).

3° {g(a—1, )} (a10)
[r{g’ (a1, a)}] (a—10)
r[{g’ (a1, a) } (a—10")]
r{g’ (e a=1)}

g(e, a1) for all a € B.

Il

I

thu

n

(I

I

Also gx= ¢'.

We now prove that {T (B, A, §; K(¢))}x= T(B, A”, ¢"). (3.5.7)

Suppose to this end that f€ T(B, A, 6; K(¢)).
i.e. There exists a function o : B—> A with w(¢) = 0 and such that

F(a, B) — {o(a) }(BO) — o(B) + o(aB) € K(y).




If now ” = fy then

Fla,B) = {f(a, B)}e

=[{o(a)}(B0) e + {o(B)}o — {w(apB) }o

= [{o(a)}e]( 180 ) + {o(B)}e—{o(aB)}¢

= {'(a)}(BE) + o' (B) — o'(aB) for all « B¢ B,

where o’ : B—> A’ is defined by o’(a) = {w(a) }¢ for all a € B.
ie. e T(B, A", ¢).

[l

If, conversely, g’€ T(B, A’, §’), then there exists a function
o: B—> A’ with o’(¢) = 0’ and such that
g’ (a B) = {o'(a)}(BO) + o' (B) — o’'(apB) for all «, B € B.

= ’

Suppose gx = ¢’.
i.e. For all «, € B we have {g(a, 8)}¢ = g’(a B).

Thus,
{g(a B)}p—{o'(a) }(B0") — o' (B) + o'(apf) = O. (3.5.8)
Define v : B—> A; v(a) = r{o’(a)}.

Then (3.5.8) becomes

[g(a B) — {w(a)}(BO) —w(B) + o(aB)]e = O
ie. gla B) —{o(a)}(B0) —o(B) T o(ap) € K(p)

and thus
ge T(B, A, 0; K(y)).

This proves (3.5.7) and the theorem follows.

§ 3.6 Direct products

We have in the case where all groups considered are abelian that
Ext(B, 3* A) & 3* Ext(B, A), (3.6.1)
A A '

(Fuchs [8]). We are now interested in the possible existence of

an analogy of (3.6.1) in the general extension system {B, A, 6; C}.

Suppose, therefore, that A = P® Q where P and Q are B §-

admissable subgroups of A. Let furthermore P’ < P, Q" < Q and
put C = P’® Q’". We then prove
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THEOREM 12:
Ext (B,P®Q,0;C) & Ext(B,P,¢:P’) ® Ext(B,Q, ¢; Q).

PROOF:
Consider arbitrary (f, g) € F(B,P,0; P’) ©® F(B,Q, 6;: Q")

and define
h:BXB—>A; h(e, 8) = f(a, B) + g(a, B). (3:6.2)

Then he F(B, A, 6; C), for

e h(a,a) = f(s,a) T g(e,a) = 0 and also h(a,s) =0
for all a € B.

2° h(aB,y) + {h(e, B)}(y8) — h(a, By) —h(B, )

f(eB, y) + {f(a. B)}(v0) — f(a, By) — £(B. v)

+ gl y) + {g(a B)}(y0) —g(a By) — g(B.7)
€ C,

since f¢ F(B, P, ¢; P’) and g¢ F(B, Q, 9; Q’).

3% {h(a—t, @)} (a1 0)
= {f(a—1, a) + gla—, a)} (a1 0)
{f(e=1, @)} (a1 0) +{g(a=, a)} (a1 0)
f(a,a1) + g(a, a1)
h(a, 1) for all « € B.

Il

Il

Il

I

If we define a mapping

¢:F(B,P,g;P’) ©F(B,Q,6;,Q) > F(B,A,0;C); (f,g)d = h,
(h defined by (3.6.2)), then @ is clearly a homomorphism.

To prove that ¢ is an epimorphism, we consider an arbitrary
he F(B, A, 0; C). Then since A = P ©® Q, we have that for all
a, B€ B, h(a, B) can be uniquely written in the form

h(a, B) = hy(e, B) + hg (a B) (3.6.3)
with hy(a, B) € Pand h (e 8) € Q.

Collecting all h, (a, ) (resp. hq (a, )) with a and B run-
ning through B, we have a function h,:B X B—>P (resp.
ha: B X B—> Q) and we prove that

h,€ F(B,P,0; P") and h_ ¢ F(B, Q 0; Q). (3.6.4)
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(i) h(e,a) = hy(e,a) + hy(e, @) = 0 and by the uniqueness of
the form (3.6.3), h,(e, a) = hq (e, @) = O for all a€ B.
Similarly hy(e, ¢) = hq (a,e) = 0 for all @€ B.

h(aB, y) + {h(a, B)}(y0) —h(a, By) —h(B, )
a f

—_
[
(=¥

~

hn(aﬁv Y) + {hl)( )}(Ye) . hp(a’vIBY) - hP(B’Y)
h_(aB.y) + (b ()} (y8) —h (a By) —h_(B.7)
e C.

+

Again by the uniqueness of (3.6.3), we have
hy(aB, y) + {hy(a B)}(y0) —hy(a, By) —hy(B, v) € P’ and
h_(af.y) + (b (« )} (v0) —h,(a By) —h (B.7) € Q.
(iii) {h(e=1, a)}(a"16)
= {hy(a1,a) + hq(a_l,a)} (a1 0)
= (hy(at, )} (&1 0) + {h(a, a)} (1 0).

Furthermore, h(a, a=1) = hy(a, a—1) + hq(a, 1),
Since {h(a=1,a)}(a=16) = h(a, «1) and by the uniqueness of
the form (3.6.3), we have
{h,(¢—1, @) }(a=10) = hy(a, a—1) and
(h, (e, @)} (a10) = h (o a=)
for all a € B.

This proves (3.6.4) and since (h,, & = h, we find that @
is indeed an epimorphism. We still have to show that

(T(B,P,¢) ® T(B,Q 0)} & = T(B.A ¢). (365)

If therefore (f, g) e T(B,P,0) © T(B,Q,0), then there exist
functions o;: B—> P and o B> Q with o, (¢) = wg(s) =0
and such that if (f, g) & = h, then

h(a, B) = f(e B) + g(a B)
= {ufa) + o ()}(86) + o B) + o (8) — oyef) — u_(af)
= {a)(a)}(ﬁa) 1z w(,@) — w(aﬁ) for all a, B € B,
where o : B—> A is defined by v(a) = o (a) + o (a) for all « € B.

ie. he T(B, A, 0).
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Conversely, if he T(B, A, ) and (f, g) is an arbitrary original
of h under ®, then by definition
f(a, B) + g(a, B) = h(e B)
= {o(a)}(B0) + o(B) — w(ap)
for all «, B € B where v : B—> A has the property o(e) = 0.

Since A = P © Q, we may express »(a) uniquely in the form
o(a) = ou(a) + (uq((x), wp(a) € P, o, () €Q (3.6.6)
for all « € B.

Then o,(e) = o)q(e) = 0 and moreover

f(a. B) + gla. B) = {op(a)}(BO) + wp(B) — wp(ap)
+ {uy (@)} (BO) + o (B) — o_(aB)
for all o, B € B.

By the uniqueness of the form (3.6.3) we now have
f(“'ﬁ) == {(’)P(a)}(lga) . "’D(IB)_ “’n("‘:e) and
g(a,ﬁ) = {wq(a)}(ﬁa) -+ u)q(ﬁ) —_ u)q(aﬁ) for all a, B€ B
which proves (3.6.5) and thereby the theorem.

REMARK:

Theorem 12 is directly extendable to the case where A is the
direct sum of a finite number of components, since the proof is
entirely general.

Furthermore, if A and B are abelian groups and B = 3 B;, then
A
Ext(3B,,A) 2 3 Ext (B, A) (3.6.7)
p

%
(Fuchs [8]). If we consider non-abelian extensions of A by B how-

ever, then (3.6.7) has no direct analogy as can be illustrated by the
following counter example:

Let A = C(c0), B; = C(3) and B, = C(2),
ie. B, ®By, X C(6). A(A) 2 C(2) and denote by « the automor-
phism n—> —n for all n€ A. Consider the homomorphisms

6:C(6)—> A(A); 10 =aand ¢: C(2)—> A(A): l¢ = a.
Then by theorem 6 we have
Ext(B, © B,, A, 0) = 0. (3.6.8)
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On the other hand
Ext(By, A, 6y) © Ext(B,, A, ¢) 2 A/3A 2C(3). (3.6.9)

Comparing (3.6.8) and (3.6.9) we conclude that in general, with
¢ induced by 6" and 6”, Ext(B’ @ B”, A, §) and
Ext(B’, A, ¢’) © Ext(B”, A, 0")

are not isomorphic.

The question arises under what conditions imposed on the
general extension system {B, A, §; C}, a generalization of (3.6.7) is
possible. We now illustrate that such generalizations are indeed
possible. Consider an abelian group A with A[2] = 0 and let V4
and the homomorphisms ¢ (i = 0, 1, 2) be as defined in § 2.2. We

then prove

THEOREM 13:

(1) Ext(Vg4 A, 60)) € Ext(R, A, 0y) @ Ext(S, A, 6,).
(2) Ext(V4 A, 0,) X Ext(R, A, 6,)© Ext(S, A, y).
(3) Ext(Vg4 A, 0,) X Ext(R, A, ¢) ® Ext(S, A, y).

PROOF:

(1) By Lemma 5 we have that
fe F(Vy A, 6,) ——> [is symmetric.

Thus every extension of A by V, having an extension system
(6o, ) with fe F(Vy, A, 6,), is abelian.

ie. Ext(Vy, A, 6,) Ext(Vy, A)

Ext(R, A) @ Ext(S, A) by (3.6.7)

Ext(R, A, 0,) © Ext(S, A, 6,) since R and
S are cyclic.

imle

(2) By theorem 6 and its corollary, we have

Ext(S, A, y) X A(Sy)/N(2,a) = 0 since A[2] = 0 and
Ext(R, A, 0,) = A/2A.

On the other hand, if we define a mapping
¢ :F(Vy, A 0,) > A; fo = f(r, 1),
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then ¢ is not only a homomorphism but even an epimorphism.
For arbitrary a € A we namely define a function

f: V4 X Vy—> A as follows:

f(x,0) = £(0,x) = 0 forall xe Vy,,

f(s,s) = f(r,s) = f(r +s,5) = f(r + s, 1) =

= e+ 5¢+8 =0,
f(s,r) = f(r,r) = a,
f(s,r +s) = f(e,r +s) = —a.

Then fe F(Vy, A, 0;) by theorem 2b and, moreover, f® = a.
Furthermore,

{T(Vy A, 6,)}® = 2A by theorem 5.
ie. F(Vg A, 0,)/T(Vy A, 6;) X A/2A.

(3) By theorem 6 and since A[2] = 0, we have
Ext(R, A, ¢) ® Ext(S, A, y) = 0.

Also, by theorem 5 we have

F(V4, A, 02) = T(V4, A, 02)
ie. EXt(V4, A, 62) = 0.

This proves the theorem.

§ 3.7. Subdirect products

In this paragraph we show that an analogy of property (3.6.7)

holds for a special class of subdirect products B = ;(Bi in the
i=1
general extension system {B, A, ¢; C}.

We treat the case n = 2 though our method is completely
general. Suppose B’ = {e,a,8,v,...}, B” = {e,a,b,c,...} and
G = {e.x,y,2, ...} while 2:B"—> G and x:B” - G are epimor-
phisms. We also suppose that

B’ (resp. B”) is a splitting extension of K(a) (resp. K(n))
by G. (3;7.1.)

The set B = {(a,a)|a€ B’, a€ B” with a2 = ap} with opera-
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tion (a,a)(B,b) = (afB, ab) is a subdirect product of B” and B”.
Let 6*:G—> A (A) be an arbitrary fixed homomorphism and
define the homomorphisms

0:B > A(A); (a,2)f = arb* = apb™.

go:B’ — ?L(A), ap = arf”.

y:B”" > A(A); ay = apl*.

By (3.7.1), it is possible to choose representatives in the cosets
of K(2) in B’ (resp. K(x) in B”) in the following special way: if
we denote the representative of the coset to which a (resp. a)

belongs by « (resp. @), then
af = a.B (resp. ab = a.b).
In particular, ¢ (resp. e) is the representative of K(z) (resp.
K(z)). We now construct a subdirect sum F(B’, A, ¢ C) +

+ F(B”,A,y;C): for a given fe F(B, A, ¢; C) we define a

~

function f': G X G —> A with
P(x,y) = f(a, B) where a€ x2~1, € yr—L. (3.7.2)
Thus
i F(e,y) = f(e, @) = 0 and similarly f'(y,e) = 0
where a € y» —1 for all ye G.
2° Fxy,z) + {F(x,y)}(z6)
f(a.,y) + {f(a B)}(yp) where a€ x2—1, B€yrl,
vy€za1
f(a, B.y) + (B, y) (modulo C)
Fix, yz) + f'(y,z) forall x,y,z€ G.
30 (Pl x)} (107
= {f(a1, a)}(a—1p) where @€ x 11
fa, a—1)
= f’(x,x 1) for all xe G.

ie. ¢ F(G, A, 0:C).

Il

I

The mapping
»F(BA ¢ C)=>F(G, A, 0%C); £ = [ (F defined by (3.7.2))
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is an epimorphism. To prove this, we define for an arbitrary
"¢ F(G, A, 0*; C) a function
f:B" X B"> A; f(a, ) = F'(ar, B2).
Then
(1) f(e,«) = f'(e,ar) = 0 and similarly f(a, ) = 0 for all
a€ B
(2)  Hapy) + {Ea B)}(ye)
F(arpBror) + {E(arBr)}(y20%)
= '(an, Lryr) + F(Br, ¥2) (modulo C)
= f(a By) + KB v).
(3) {f(a=1, @) }(a1¢) = {F'(a12, a2 ) } (a—12.0%)
= f'(ar e 14)
= f(a,a1) for all a€ B’

ie. fe F(B', A, ¢ C) and fa = F.

In an exactly similar manner an epimorphism
p:E(B”, A, y;C)>F(G, A, 6*:C)

is defined. Let

S = {(fg)|fe F(B, A, ¢C), ge F(B”, A, ¢;C) and f1 = gu}.
Then we have a subdirect sum S = F(B’, A,¢;C) + F(B”,A, ¢; C).

To establish an epimorphism of F(B, A, 6; C) onto S, we proceed
as follows:
For arbitrary h € F(B, A, 0; C) we define
f:B" X B> A; f(e8) = h[(e, &), (8,b)]; a€arp1,
be prp—L (3.7.3)
Since

(i) f(e,8) = h[(e,e), (B.b)] = 0; be Bau—1 and similarly
£(B,e) = 0 for all Be B,

(i) E(af,y) + {E(a B)}(ve)

=h[(aB, a.b), (y,c)] + {h[e &), (8,b)]}(y.c)0
=h[(aa), (By.b.c)] + h[(8.b), (v.c)] (modulo C)
= f(a, By) + E(B,y) for all a, B, y€ B’,
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(iii)  {E(a=1, &)} (a1¢)
= [h{(a—1,a1), (a,a)}] (a1, a—1)0 where a€ arp™1,
ie. a=l€ a—1ap—1.
= h{(a &), (a=1,a71)}
= f(a, o 1) for all € B,
" we have fe F(B/, A, ¢; C).

Similarly, for
g:B” X B” > A; g(a,b) = h[(a,a), (8,b)]; a€ apr—1,
B € bur-1 {37 4)
we have ge F(B”, A, y; C).

Moreover, f7 = gpu, thus (f, g) € S.

With f, g and h as above, we show that ¢ : F(B, A, §; C)—>S;
h¢ = (f, g) is an epimorphism. For arbitrary (f, g) € S we define
h:B X B—> A; h[(e,2a), (8b)] = f(a, 8) + g(a,b) —

— f(a, B). (3.7.5)
Then we have
(a)  h[(ee), (B.b)] = f(e, B) + gle,b) — E(e, B) = 0.
Similarly, h[ (B8, b), (e,e)] = 0 for all (B, b) € B.
(b)  h[(ap.ab), (v.c)] + {h[(a a), (B b)]}(y.c)0
= (B, y) + g(ab,c)— (.8, 7) + {f(a B)}(v¢) +
{g(a,b)}(cy) — {£(a, B)}(ve).
f(a, By) + gla,bc) — (e, B.y) + h[(8,b), (v, c].
— (B, y) (modulo C)
= h[(a a), (By.bc)] + h[(B.b), (y.¢)].
(c) [h{(a—1,a1), (x,a)}] (a1, a1)0
= {f(a71, ) }(a—1¢) + {g(a—1,a)}(a 1Y) —
— (o, @)} (aTy)
= f(e,a1) + g(a,a1) — f(a, a—1)
= h{(e,a), (e t,a1)} for all (a, a) € B.
ie. he F(B, A, 0;C), and ho = (f, g).
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Finally we show that

{T(B,A, 0)}e = T(B, A ¢ + T(B”, A, vy). (3.7.6)
If he T(B, A, 0), then there exists a function

o:B—>A; (¢, e) = 0 and such that

h[ (e a), (8.b)] = {o(a,a)}(B.b)8 + w(B,b) — w(ap, ab) for
all (a,a), (B, b) € B.If then f = ho is defined by (3.7.3), we have |

f(a, B) = h[(a,a), (8. b)]
= [o(a,a)](8,b)0 + w(B,b) —u(ap, a.b)
= {o'(a)}(B¢) + o' (B) — o' (ap) for all a,f € B’,
where o' (¢) = w(a, ).

ie. fe T(B,A,v¢).
Similarly g€ T(B”, A, ¢) for g defined by (3.7.4).
ie. ho = (£, g)eT(B, A ¢) + T(B”, A v¢).
If conversely (f g)eT(B A ¢) + T(B” A, v¢), then there

exist functions o :B’—- A and o B” — A such that f(e, ) =
= {o,(@)}(Be) + o, () — oy (af) for all o, f € B’ and g(a, b) =
= {wg(a)}(bzp) + wg(b) — mg(ab) for all a,be B”. Thus for
h:B X B—> A defined by (3.7.5), we have:
h[(aa), (B, b)]= {o,(a) + o _(a) — & (a)}(B,b)0
+ {0 (B) + o (b) — o, (B))
— {o(aB) + o_(ab) — v (a.B)}
= {o(a a)} (B, b)0 + (B, b) — w(ap, ab)
for all (e, a), (B, b) € B where
o(a,a) = o, (a) + o (a) — w ).
ie. he T(B, A, 6).

This proves (3.7.6) and we have thus proved

THEOREM 14:
Ext(B’ X B”, A, 0;C) 2 Ext(B’, A, C) + Ext(B” A, y;C).
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SAMENVATTING

Het begrip groepsuitbreiding G van een abelse groep A door een
groep B wordt in dit proefschrift gegeneraliseerd door te veronder-
stellen dat G een quasi-groep is, die aan bepaalde eisen voldoet.
Het begrip factorstelsel wordt eveneens gegeneraliseerd en wel tot
dat van quasi-factorstelsel (§ 2.1). Het blijkt dat het probleem, om
bij een gegeven abelse groep A en een willekeurige groep B alle
quasi-groepuitbreidingen G van A door B te vinden, kan worden
herleid tot de vraag om alle homomorfismen van B in de automor-
fismengroep van A en om alle quasi-factorstelsels van B X B in A
te bepalen. Het Holder-Schreier uitbreidingsprobleem is dus een
bijzonder geval van het quasi-groepuitbreidingsprobleem.

Er worden constructies van factorstelsels gegeven in twee spe-
ciale gevallen (§ 2.2), waarbij tevens nodige en voldoende voor-
waarden worden afgeleid opdat een gegeven factorstelsel een
transformatiestelsel is (§ 2.4).

Als C een ondergroep is van een abelse groep A en B een wille-
keurige groep, terwijl § een homomorfisme van B in de automor-
fismengroep van A is, dan is Ext(B, A, §; C) de groep van alle
niet-equivalente C-quasi-groepuitbreidingen van A door B met ge-
associéerde homomorfisme 6 (§ 3.1). De groep Ext(B, A, ) van
alle groepsuitbreidingen van A door B met geassociéerde homo-
morfisme 6 blijkt een ondergroep te zijn van Ext(B, A, ¢; C) voor
willekeurige C.

In Hoofdstuk III wordt een onderzoek ingesteld naar de invloed
die bepaalde eigenschappen van A, B, C en 6§ op de structuur van
Ext(B, A, 0; C) uitoefenen. Vervolgens worden structurele eigen-
schappen van bepaalde ondergroepen van Ext(B, A, #; C) bestu-
deerd.

ol
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STELLINGEN

I

Gebruik makende van de notatie in dit proefschrift veronder-~
stellen we, dat f€ F(C(n), C(cc), ). Indien de uitbreiding G van
C(co) door C(n) wordt bepaald door middel van het uit-
breidingssysteem (6, f), dan is G cyclisch dan en slechts dan,

n—1
als 3 f(1,i) =1 (mod n).
=l

II

De in dit proefschrift ingevoerde klasse van quasigroepen is het
meest algemene algebraische systeem waarvoor een uitbreidings-
theorie van een abelse groep A door een groep B langs de lijnen
van de Hélder-Schreier theorie nog kan worden doorgevoerd.

111

Het is voor de quasigroepuitbreidingstheorie van abelse groepen
van belang om de existentie te onderzoeken van groepen (eventueel
gedeeltelijk geordend) met voorgeschreven automorfismengroep.

v

Stelt G een quasigroep voor en zijn L, C en R de verzamelingen
van de resp. links-, centraal- en rechts-associatieve elementen van
G, dan zijn L, C en R semigroepen.

Vv

Er bestaan commutatieve quasigroepen met elementen, die cen-
traalassociatief, doch niet linksassociatief zijn.

G. N. Garrison, Quasi-groups, Ann. of Math. 41 (1940)
p. 479.

Vi

De door McCoy bewezen stelling, dat een commutatieve ring R
regulair is, dan en slechts dan, als elk ideaal in R met zijn radikaal
samenvalt, kan worden gegeneraliseerd voor niet-commutatieve
ringen.

N. H. McCoy, Rings and Ideals, The Mathematical Asso-
ciation of America, Baltimore (1948) p. 148.

A. P. ]J. van der Walt, Bydrae tot die nie-kommutatiewe
ideaalteorie, Proefschrift, Potchefstroom (1963) p. 23.




Vil

De restklassenring van de gehele getallen modulo n is een zg.
von Neumann-ring dan en slechts dan als de Mobiusfunctie u vol-
doet aan de voorwaarde p(n) == 0,n > 1.

VIII

In zijn “Partially ordered algebraic systems” (Oxford 1963;
p. 19, (f)) spreekt L. Fuchs de volgende stelling uit: ,,Zij de onder-
groep C op grond van zijn in G geinduceerde gedeeltelijke ordening
een gerichte groep, dan is C dan en slechts dan convex, als uit c€ C
en c1 <x < c volgt, dat x € C". De voorwaarde, dat C gericht
zou moeten zijn, is overbodig.

IX
uy + u; + uy ... zij een reeks van reéle getallen, waarvan de
partiéle sommen s, voldoen aan s, = 0(n) voor n —» oo (t con-

stant, 0 < t < 1), terwijl s,, —s,—>c als m—> oo, n—> oo en
m/n—>2. (2en c zijn constanten met 2 positief). Als k een con-
stante is met k > t en s de n-de Cesaro-som van de orde k voor-
stelt, dan geldt s® —s® —>c als m en n—> oo, terwijl m/n—>2.

X

De beschouwing, die A. Dinghas wijdt aan het complexe getal
z = oo, is aanvechtbaar.
A. Dinghas, Vorlesungen iiber Funktionentheorie, Springer-

Verlag (1961) § 4, p. 8.

XI

Gezien het grote aantal studiemislukkingen onder eerstejaars-~
studenten aan Zuid-Afrikaanse universiteiten, verdient het, met het
oog op een verbetering van het studierendement, aanbeveling om
een onderzoek in te stellen naar de toelatingseisen, en wel in dié
zin, dat het jaarlijkse aantal afstuderenden niet vermindert.

XII

Het bijzondere beleggingspatroon in Zuid-Afrika kan in grote
mate worden toegeschreven aan geschiedkundige factoren.

XIII

Van medisch standpunt bekeken is het gevaar van een bacterio-
logische oorlogsvoering veel groter dan dat van een aanval met
chemische wapens.



