
 
 

Delft University of Technology

Measuring imperfections of water quality sensors in water distribution networks

Winter, Casper de; Palleti, Venkata Reddy; Worm, Daniel; Kooij, Robert

DOI
10.1088/1361-6501/ab1eeb
Publication date
2019
Document Version
Final published version
Published in
Measurement Science and Technology

Citation (APA)
Winter, C. D., Palleti, V. R., Worm, D., & Kooij, R. (2019). Measuring imperfections of water quality sensors
in water distribution networks. Measurement Science and Technology, 30(9), 1-11. Article 095101.
https://doi.org/10.1088/1361-6501/ab1eeb

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1088/1361-6501/ab1eeb
https://doi.org/10.1088/1361-6501/ab1eeb


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Measurement Science and Technology

PAPER

Measuring imperfections of water quality sensors in water distribution
networks
To cite this article: Casper de Winter et al 2019 Meas. Sci. Technol. 30 095101

 

View the article online for updates and enhancements.

This content was downloaded from IP address 145.94.74.150 on 03/04/2020 at 08:12

https://doi.org/10.1088/1361-6501/ab1eeb


1 © 2019 IOP Publishing Ltd  Printed in the UK

1.  Introduction

Water distribution networks (WDNs) are a critical infrastruc­
ture, providing clean, safe drinking water to billions of people 
around the world. There are several threats to a WDN which 
can be divided into physical disruptions and chemical disrup­
tions. Physical disruptions, such as leaking pipelines, failing 
pumps or intentional attacks on the network itself, will have 
a big economical impact but are not considered a serious risk 

to human beings. The biggest threat to a population comes 
from intentional or accidental chemical contamination within 
the water network, see for instance [7]. In order to protect 
the public from such intrusions, it is necessary to monitor the 
quality of the drinking water in a WDN effectively and effi­
ciently, by deploying appropriate sensors. Most sensors are 
based upon a small range of chemical and physical param­
eters, such as pH, ORP and turbidity. However, the use of sen­
sors for these traditional water quality parameters, has several 
limitations. In particular, electrochemical sensors demand 
frequent maintenance and calibration, see [16]. One of the 
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Abstract
Water distribution networks (WDNs) are critical to provide safe, clean drinking water 
around the globe. However, they are susceptible to accidental or deliberate contamination, 
potentially resulting in poisoned water, many fatalities and large economic consequences. 
In order to protect against such intrusions, an efficient sensor network should be placed in 
a WDN. Finding the optimal placement for water quality sensors is a challenging problem. 
Several sensor placement strategies have been proposed, but the vast majority of these 
strategies rely on the assumption that the sensors are perfect. In this paper we provide 
evidence for the imperfection of water quality sensors, by conducting measurements in an 
operational environment. We investigate the imperfection of four types of water quality 
sensors being employed in actual WDNs for the purpose of contamination detection. We 
describe experiments conducted at the WaDi testbed, a realistic water distribution facility at 
the Singapore University of Technology and Design. Through these experiments we study the 
imperfection, sensitivity and degradation of the water quality sensors, under normal conditions 
(water flow without contaminants present) as well as under attack conditions. It is shown that 
several aspects of sensor imperfection do occur, including missing values, inexplicable jumps 
and drifting.

Keywords: water distribution networks, water quality, sensors, contamination detection, 
imperfect sensors, experiments, testbed
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challenges with using water quality sensors is to find a proper 
placement for the sensors. Several sensor placement strategies 
have been proposed, see for instance [17] and [11]. However, 
most of these strategies rely on the assumption that the sensors 
are perfect, i.e. they detect a contamination with a probability 
of 1. The number of papers that take imperfection of sensors 
into account for the sensor placement problem in WDNs, is 
quite limited. For instance, a very recent survey paper, see [8], 
only mentions one paper, namely [4], that considers sensor 
imperfection, from a list of 18 papers. Likewise, the survey 
paper [15], only mentions three papers, [2, 19], and again [4], 
out of a list of 23 papers that deal with imperfect sensors. At 
the same time, it is known [2, 5], that the imperfection of sen­
sors has an impact on the optimal sensor placement.

The aim of this paper is to provide evidence for the imper­
fection of water quality sensors, by conducting measurements 
in an operational environment. Therefore we have conducted 
a number of experiments at the WaDi (WaterDistribution) 
testbed, a realistic water distribution facility at iTrust, the 
Centre for Research in Cyber Security6 at the Singapore 
University of Technology and Design. WaDi, and the two 
other cyber-physical testbeds at iTrust, SWat (secure water 
treatment) and EPIC (electric power intelligent control), are 
scaled-down replicas of real-life cyber physical systems con­
taining all the elements of real-life infrastructures. The data 
generated at these testbeds is made available on iTrusts web­
site, which anyone can request for their research and educa­
tion purposes. According to [1], the iTrusts datasets form the 
only openly shared data for research and education, in the 
context of cyber-physical systems.

Through our experiments conducted at WaDi we have 
studied the imperfection, sensitivity and degradation of the 
water quality sensors. Experiments were conducted under 
both normal conditions (water flow without contaminants pre­
sent) and attack conditions. For the attack scenario, three dif­
ferent contaminants were considered, a sodium hypochlorite 
solution, an ammonia solution and a hydrogen chloride solu­
tion. The attack scenarios were performed for different values 
of water flow rate, dosing rate and dosing duration. Although 
we focus on sensor imperfection related to chemical prop­
erties in this paper, imperfection can also reflect the impact 
of cyber attacks. For instance, in 2015, the US States ICS-
CERT (industrial control systems cyber emergency response 
team) received and responded to 295 incidents [9]. The Water 
Sector account for 8.5% of these incidents. Therefore sensor 

imperfection could also be a result of a hacked sensor, which 
communicates spoofed data to the system.

The rest of this paper is organized as follows. In section 2 
we describe the WaDi testbed in detail as well as the contami­
nants selected for the experiments. In section 3 we describe 
the three types of experiments we designed as well as their 
results. Finally we conclude in section 4.

2. The WaDi testbed

An overview of the WaDi testbed will be given in section 2.1. 
Next, more details on the contaminants and sensors used in 
our research will be given in section 2.2.

2.1.  Overview of the testbed

The WaDi testbed is a small real-life water distribution net­
work with tanks, pipes, valves, pumps, and sensors. As we 
are mostly interested in the sensors and their location in the 
network, the focus of this overview will be on those sensors. 
Figure 1 shows the overview of the WaDi testbed. The direc­
tions in this figure show the flow of water from one stage to 
another stage. The complete overview of the WaDi testbed is 
given in figure A1 in the appendix. WaDi contains a total of 
four water quality sensors. The same type of sensors are used 
by public utilities [6]. Each sensor consists of multiple probes 
measuring four different parameters, each of which gives an 
indication of the water quality. These parameters are conduc­
tivity, turbidity, pH and ORP. We did not measure the water 
temperature. According to [14] temperature is usually con­
stant if measured in short periods of time, although it changes 
with the seasons. Figure  2 shows a picture of a part of the 
WaDi testbed.

The WaDi testbed consists of three stages, namely, primary 
grid (Stage: S1) consisting of two raw water tanks, secondary 
grid (Stage: S2) consisting of two elevated reservoir tanks and 
the return water grid (Stage: S3). Further, Stage S2 is divided 
into sections S2A and S2B. A more detailed overview of the 
testbed is given in the appendix, figure A1. Water flows in the 
representation of figure A1 in the appendix, from the top left 
corner in a clockwise direction back to the top left corner. The 
water takes the following route:

	 1.	�The two raw water tanks represent reservoirs in a city, 
and these tanks are fed by two different sources. One 
source is the Singaporean public water distribution 
network, providing tap water. The second source is the 

Figure 1.  An overview of the WaDi testbed.

6 https://itrust.sutd.edu.sg/
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WaDi testbed itself, providing cleaned return water that 
has traveled through the WaDi pipelines before. From 
these sources, the water passes a first water quality 
sensor (P1) (see figure A1), upon entering the first raw 
water tank. The task of this sensor is to decide whether 
the quality of the water is high enough. If the quality 
does not meet a preset threshold, the raw water tanks will 
be drained directly.

	 2.	�After the raw water tanks, water is pumped to the two 
elevated reservoirs which represent elevated tanks in a 
real-world scenario. From these tanks, the water flows 
further through the system. The amount of water which 
exits these elevated reservoirs is equal to the required 
water demand by the consumer tanks described in step 
4. After the reservoirs, the water first passes sensor P2A 
after which contaminants can be injected into the pipe, 
both from an organic and an inorganic tank.

	 3.	�From that point onwards, the water can take two routes to 
the consumer tanks, via a gravity feed or via the booster 
pump stations. It is possible to regulate which of these 
routes is used by closing certain valves. The gravity feed 
contains another water quality sensor (P2B). The con­
taminants which were inserted into the system at the end 
of step 2, can be detected by sensor P2B. Due to this, the 
booster station valve was always closed in our research. 
The gravity feed also includes a draining option after 
sensor P2B, for situations in which the toxic water should 
be drained immediately. More details on the part of the 
testbed from the injection of a contaminant to sensor P2B 
will be given in section 2.2.

	 4.	�After the gravity feed, or the booster pumps, the water 
will reach the consumer tanks. The amount of water 
going to each consumer tank, and thus the flow through 
the system, can be regulated beforehand. The required 
demand of each consumer tank can be changed every 
5 min, emulating to some extent, dynamic demand.

	 5.	�Finally, the water coming through the consumer tanks 
will reach the return water system. In this last part, the 

water can be cleaned in order for it to return to the start of 
the process. Here the final sensor P3 is located, which is 
used to check if the water is clean enough to return to the 
first part of the system.

2.2.  Contaminants and sensors

Contaminants can be inserted into the WaDi testbed after 
the elevated reservoirs between sensors P2A and P2B. After 
a small section of pipes, these contaminants can be detected 
by sensor P2B. Sensors further downstream in the network, 
notably sensor P3, cannot easily detect those contaminants 
as they will be largely diluted after passing through the con­
sumer tanks. In this section, it will be explained how contami­
nants can be inserted and in what way a sensor can detect 
contaminants.

When a liquid is placed in the contamination tanks, it can 
be pumped into the network with a chosen flow rate and for 
a chosen duration. The dosing pumps present at the WaDi 
testbed can pump a contaminant into the pipes with a max­
imum dosing rate of 0.59 liters per hour. Figure 3 shows a pic­
ture of the dosing tanks and pumps. The contaminated water 
will then flow through some pipes to sensor P2B.

In our research, we used three different solutions as con­
taminant: sodium hypochlorite, hydrogen chloride and 
ammonia. Their pH levels were approximately 12, 12.5 and 2 
respectively. According to environmental public health regu­
lations, the pH levels of these solutions are outside the healthy 
range of drinking water [13].

Information on the length and diameter of the pipes 
between the contamination point and the sensor P2B, is given 
in table 1. It is also good to note there are eleven 90 degrees 
bends present in this section  of pipes. The effect of these 
bends are ignored for simplicity reasons. The total volume 
of the pipes between the point of injection and the sensor is 
10.659 dm3  =  10.659 l. As the flow rate in these pipes is con­
tinuously measured, it can be calculated how long it should 

Figure 2.  Picture of part of the WaDi testbed.
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take for sensor P2B to detect the contamination after the injec­
tion of a contaminant. If the flow rate is for example 0.1 liter 
per second, it is expected that the contaminant reaches sensor 
P2B after 106.59 s.

For each water quality parameter, the healthy range for 
drinking water is shown in table  2. Conductivity sensors 
measure the ability of a liquid to conduct electricity. This value 
changes when more ions are present in the water. Turbidity 
readings are optical measurements of the diffraction of light 
in the water and relate to the particle load in the water. pH is 
an indication of how acidic or basic a liquid is. ORP (oxida­
tion reduction potential) is used as a measure of disinfection 
potential which is related to how long bacteria can stay alive 
in that liquid. The units of conductivity, turbidity and ORP are 
mS/cm (milliSiemens per centimeter), NTU (nephelometric 
turbidity unit) and mV (millivolt) respectively. The measure 
pH is unitless. Table 2 also shows an estimation of the four 
parameters in normal tap water.

The sensors in the WaDi testbed are programmed in such 
a way that an alarm is raised when the measured value of the 
sensor is outside of this healthy range. Furthermore, as P2A 
and P2B are located close to each other, an alarm is also raised 
if the difference between the readings of P2A and P2B is too 
large.

The sensors used in the testbed have a lifetime of approxi­
mately one year. Maintenance, for example calibration of the 
sensors, should be done every couple of months [6]. In this 
calibration, it is checked for each of the four parameters with 
several standard solutions whether or not the performance of 
the sensors is still sufficiently good.

3.  Experiments and results

We designed three different experiments to investigate the 
imperfection of sensors and the way contaminants are being 
detected. First, the WaDi testbed was put into operation for 
multiple days to check how sensors behaved in the long run 
and to get an initial idea on imperfection. Second, the per­
formance of the sensors was evaluated by comparing known 
levels of standard solutions with the sensor readings several 
times. Finally, contaminants were added into the network to 
see how the sensor performed in detecting the contamination. 
The experiments and their results are presented in sections 3.1, 
3.3 and 3.4, respectively. In section  3.2 we investigate the 
impact of the sensors sampling rate.

3.1.  Long runs

The first experiment is a simple procedure in which the WaDi 
testbed is put into operation for a couple of days such that 
water is continuously flowing through the system and a large 
amount of sensor data is being collected. Our main focus is on 
the sensor data of P2A and P2B as these are very close to each 
other. The same water that passes P2A will reach P2B within 
a couple of minutes, depending on the flow rate. Therefore, 
it is expected that the long run sensor data for the two sen­
sors is similar, or at least highly correlated. Another point of 
interest is finding indications of imperfection in the resulting 
time series.

Two different long runs are being considered. The first one 
consists of data of four days and the second one of almost 
three days. We will refer to them as LR1 and LR2 respec­
tively. Both long runs were separated by several weeks. In fig­
ures 4(a) and (b), the conductivity and pH levels over time of 
LR1 are being shown. In each figure, the red line represents 
the time series of sensor P2A, while the the times series of 
P2B is represented by a blue line.

Upon a visual inspection of figures  4(a) and (b) it is 
obvious that there is quite a large gap between the time series 
for the two sensors. This should not be the case as no con­
taminant was added for the described experiment. Such devia­
tions could lead to a lot of false alarms, in case the threshold 
for the difference between the two time series is set too low. 
In the next subsection we give a possible explanation for the 
observed gap. Apart from the gap between the two time series, 
some other observations can be made. There is an inexplicable 

Figure 3.  Contamination tanks with the dosing pumps on top.

Table 1.  Measurements on the pipes between the injection point 
and sensor P2B which could detect the contaminant.

From injection point 
to branching point

From branching 
point to sensor

Length (m) 5.24 1.08
Inner diameter (cm) 5.080 0.635
Volume (dm3) 10.625 0.034

Table 2.  Ranges of the sensor parameters for which the quality is 
considered to be sufficient, together with the normal reading of tap 
water.

Healthy range
Normal 
tap water

Conductivity (mS cm−1) 0–0.32 0.15–0.20
Turbidity (NTU) 0–4 0–0.5
pH 6.5–9.5 7.5–8
ORP (mV) −500 to 500 300–500

Meas. Sci. Technol. 30 (2019) 095101



C de Winter et al

5

jump present in the P2B time series of conductivity, in which 
the conductivity level suddenly increased with 0.021. Also 
this jump can cause the sensor to raise an alarm in real WDNs 
even though no contaminant was present in the system. A 
missing value was present close to the end in the P2A time 
series of pH in figure 4(b). This missing value is probably due 
to measurement or communication errors. In total, there were 
two inexplicable jumps and four time periods with missing 
values in all collected data. The longest time period in which a 
sensor reading was missing, was a period of almost two min­
utes in the P2B time series of turbidity. A final observation is 
that while the conductivity levels easily fit within the healthy 
range, the pH level according to P2A is close to the upper 
bound (pH  =9.5).

In figures  5(a) and (b), two LR2 time series of, respec­
tively, pH and turbidity, are given. If the sensors are working 
accurately, it is expected that the time series of sensors P2A 
and P2B should be approximately the same with a slight delay 
because the same water passes both sensors. Again, figure 5(b) 
exhibits a gap between the two time series, where the differ­
ence between the signals for turbidity is very large, and also 
outside the healthy range. We will apply Pearson’s correlation 
coefficient, see [12], to quantify the correlation between the 
two time series. For this, the time it takes for water to travel 
from sensor P2A to P2B has to be taken into account. In LR1, 
the average flow rate was 313 liters per hour and in LR2 it 

was 630 liters per hour. Using these values and the volume of 
the pipelines in between the two sensors, it can be calculated 
that the water should reach P2B in approximately two minutes 
and one minute in LR1 and LR2, respectively. Furthermore, as 
outliers can have a large impact on the correlation, the missing 
values were replaced with the last correctly measured value. 
The time series with a sudden large jump are split in two time 
series in order to evaluate the correlation before and after the 
permanent increase.

It is expected that the sensor readings of P2A and P2B 
show a high correlation. The highest correlation was found 
with the conductivity time series of LR1 before the jump 
which was shown in figure 4(a). After the jump, the correla­
tion was much lower (0.995 versus 0.652). The correlation of 
the other conductivity time series was just below 0.9 and all 
pH and ORP time series were highly correlated with values 
higher than 0.9.

In contrast to these results of pH, ORP and conductivity, the 
turbidity time series hardly showed any correlation. The corre­
lation between the time series of P2A and P2B were  −0.0914 
and 0.2931 for LR1 and LR2, respectively. This is a clear 
indication that the turbidity sensor is quite unstable. As can 
be seen in figure 5(b), the turbidity sensor will often raise a 
false alarm due to the large number of peaks. Therefore, the 
turbidity sensors will not be trusted by operators and might be 
ignored when a real contaminant passes that sensor.

Figure 4.  Two time series of sensor readings of P2A (red) and P2B (blue) in LR1. (a) Conductivity levels over time in LR1. (b) pH levels 
over time in LR1.

Figure 5.  Two time series of sensor readings of P2A (red) and P2B (blue) in LR2. (a) pH levels over time in LR2. (b) Turbidity levels over 
time in LR2.

Meas. Sci. Technol. 30 (2019) 095101
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So, using these long runs, the first evidence of sensor 
imperfection is found, through the occurrence of measure­
ment or communication errors, inexplicable jumps and insta­
bility in some readings.

3.2.  Impact of sampling rate

In our experiments the sensors have been sampled every 
second. This rate was chosen because the testbed was pri­
marily designed to study the impact of cyber attacks on this 
critical infrastructure. Detection methods for cyber attacks 
typically operate at these sampling rates, or even higher. In 
this subsection we show that for our experiment the impact 
of lowering the sampling rate is small. Figures 6 and 7, show 
conductivity and pH, respectively, for LR1, when sampling 
every 180 and 600 s. As expected, lower sampling rate leads 
to smoother curves.

Table 3 shows the impact of the sampling rate on the cor­
relations between sensors values at P2A and P2B, for conduc­
tivity and pH. It is clear that the sampling rate has little impact 
on the correlation. Finally, according to [3], typical sampling 
rates in operational water systems are once per minute and 
lower.

3.3.  Standard solutions

In section 2.2, it was mentioned that the performance or acc­
uracy of the sensors should be checked every couple of months 
using some standard solutions and that the sensors should 
be calibrated if necessary. This procedure can be illustrated 
with an example. Suppose we have a standard solution with a 
known pH level of 7. A sensor which is put into a sample of 
this liquid should measure a pH of 7. If this measured value is 
not 7 but 5 or 8.5, the sensor must be recalibrated such that it 
will give the accurate value. This calibration should be done 
every three months according to the calibration software. Most 
of the parameters measured at a sensor were calibrated using 
a two-point calibration and thus with two standard solutions.

This calibration was done at the WaDi testbed before and 
in between several other experiments. It became clear that 
a parameter for a sensor could become unreliable very fast. 
For example, the ORP value of sensor P2A was showing 530 
instead of 430 within a week after a calibration. Therefore, 
experiments were done to formally show this inaccuracy or 

Figure 6.  Conductivity in LR1 experiment for different sampling rates (P2A (red) and P2B (blue)). (a) Sampling rate-180 s. (b) Sampling 
rate-600 s.

Figure 7.  pH in LR1 experiment for different sampling rates (P2A (red) and P2B (blue)). (a) Sampling rate-180 s. (b) Sampling rate-600 s.

Table 3.  Correlation coefficients for Conductivity and pH at 
different sampling rates.

Parameter 1 60 180 600

Conductivity 0.7272 0.7275 0.7281 0.7293
pH 0.9062 0.9208 0.9254 0.9342

Table 4.  The performance of the pH sensors over some time.

Standard solution: pH  =10.01

Sensor P1 P2A P2B P3

Last checked August 10 August 29 August 29 July 28
September 7 — 9.68 10.05 —
September 13 12.31 9.79 9.95 9.82
September 19 12.71 9.93 10.12 10.09
September 25 12.98 10.10 10.31 10.15

Meas. Sci. Technol. 30 (2019) 095101
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instability over time and to find evidence for sensor degrada­
tion or drifting. During these experiments, the sensors were 
not calibrated and the readings were tested every couple of 
days for all parameters and sensors to check how far each 
sensor reading was off. Before the start of the experiments, 
sensors P2A and P2B were checked and, if necessary, cali­
brated approximately a month after the other two sensors were 
last checked.

In table 4, the results for all four sensors for the standard 
solution with a pH level of 10.01 over time are shown. The 
first time, on September 7, P2A and P2B were the only sen­
sors which were being checked. After September 7, the acc­
uracy of all sensors was checked every six days.

In order to evaluate whether or not a sensor still gives accu­
rate readings, we allow for an arbitrary, five percent margin. If 
the readings are within 5% of the known value of the standard 
solution, the performance of the sensor is still considered to 
be sufficient. For the standard solution with pH level of 10.01, 
the sensor reading should be roughly between 9.5 and 10.5. It 
can be seen in table 4 that all sensor readings are still within 
this range except for sensor P1. The readings of this sensor 
are between 12 and 13. For the other standard solution with a 
known pH level of 7, this sensor also shows readings that are 
too high. This means that the pH sensor of P1 is unreliable 
after just a month and needs to be recalibrated.

Even though the other three sensors are within the right 
range, they all show some upwards slope. These pH sensors 
are all slowly drifting away from the right value which can 
also cause problems in the long-term. When sensors are pro­
grammed to raise an alarm when a sensor reading is outside 
a certain range, drifting can lead to false positives or even to 
non-detections of attacks. Non-detections can for example 
occur when a sensor reading of pH drifts towards the max­
imum value within the healthy range when the quality of the 
tap water is in fact still in the middle of this healthy range. 
An acidic attack causes a large decrease in the pH value such 

that the sensor reading is close to the minimum threshold of 
the healthy range, while the actual pH value is below this 
threshold, being harmful for humans.

For sensor P2A, the readings over time for conductivity, 
ORP and turbidity are shown in table  5. ORP is the only 
parameter for which only one standard solution was available.

A downwards drifting pattern was found for the ORP 
reading. This was the case for all four sensors. The conduc­
tivity readings were more stable but in general a bit too high for 
the second standard solution compared to the value of 0.447. 
We suspect that this is mainly due to the fact that conductivity 
was checked every time, but the last time it was calibrated was 
more than half a year ago. The values around 0.5 were prob­
ably tolerated in combination with the good sensor readings 
of the other ‘  <  0.1’ standard solution. The turbidity readings 
were, just as we concluded in section 3.1, very unstable.

Finally, table 6 shows for each sensor and parameter which 
readings were still correct (+) after a month and which were 
inaccurate (−). A plus-minus sign means that the sensor 
reading was still stable and within or close to the five percent 
range for most of the evaluations or that it was unable to form 
a conclusion with just three or four data points.

As all conductivity readings were somewhat too high, a ± 
sign was given for all of them as the last calibration happened 
more than six months ago and a formal conclusion can there­
fore not be drawn. Remember that according to the guidelines, 
the sensors should be calibrated every three months. After one 
month, only two ORP and three pH readings were still accu­
rate and the turbidity readings were unstable and inaccurate 
for most sensors. As the considered sensors are almost a year 
old and thus close to the end of their lifetime, the results lead to 
clear conclusions. Maintenance or calibration should happen 
more often than currently recommended because the sensors 
are drifting quite fast. As we suspect that the performance of 
the sensors is better in the beginning of their lifetime, sensor 
degradation appears to have occurred. Thus, we have found 
more evidence for sensor imperfection.

3.4.  Adding contaminants

Three different liquids were used in our research as a con­
taminant and added into the WaDi testbed: a sodium hypo­
chlorite solution (Hypo), an ammonia solution (Ammonia) 
and a hydrogen chloride solution (HCl). Our main objective 
when adding these contaminants into the water network was 
to see which sensor parameters could detect the contamina­
tions, the time needed to detect a contamination and how long 

Table 5.  The sensor readings of sensor P2A over time for 
conductivity, ORP and turbidity.

P2A
Std. solution 
value

Conductivity ORP Turbidity

<0.1 0.447 430 0.1 20

September 7 0.066 0.514 425 2.7 37.0
September 13 0.059 0.590 421 6.7 28.8
September 19 0.055 0.505 420 7.8 21.8
September 25 0.057 0.587 412 8.1 47.4

Table 6.  A summary of all sensors and parameters which shows 
which sensor readings were still accurate (+), inaccurate (−) or 
indeterminable (±) after a month.

Conductivity ORP pH Turbidity

P1 ± − − −
P2A ± + + −
P2B ± + + ±
P3 ± − + −

Table 7.  Different values of flow rate, dosing rate and dosing 
duration used.

Water flow rate Dosing rate

Dosing  
duration 
(min)

High ±950 liters per hour 0.472 liters per hour 5
Medium ±600 liters per hour 0.354 liters per hour —
Low ±300 liters per hour 0.236 liters per hour 2
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the contaminant stayed in the pipelines. Besides that, we focus 
on the effects of factors such as flow rate, dosing rate, dosing 
duration and the type of contaminant, on the detection.

Multiple experiments were performed for each contami­
nant. The liquid was added into the network in a different set­
ting every time, i.e. a different combination of the water flow 
rate, the dosing rate and the dosing duration. The different set­
tings for each experiment can be found in table 7. Recall that 
the maximum dosing rate for the contamination pumps is 0.59 
liters per hour. The maximum flow rate for the water through 
the gravity feed of the WaDi testbed is 1000 liters per hour. 
Only two dosing durations were used as the supply of these 
contaminants was limited.

As a contaminant is inserted between sensors P2A and 
P2B, sensor P2B should be able to detect the contamination. 
Figure  8 shows the time series of the four sensor readings 
of P2B when Ammonia is added. The time series of sensor 
P2A is also added to the picture as a benchmark. Ammonia 
was added five times in these figures, each time in a different 

setting. In each setting, the water flow rate was high. The 
combination (Dosing rate, dosing duration) was (low, low), 
(medium, low), (high, low), (low, high) and (medium, high) 
for settings one to five respectively.

The most remarkable result can be found in the turbidity 
levels in figure  8(c). All other three time series show clear 
peaks when the contaminant is inserted and the influence of 
the dosing rate and dosing duration is very clear. Take for 
example the conductivity readings of figure 8(a). The higher 
the dose, the higher the peak and the longer the duration, the 
wider the peak. These findings are the same for all three con­
taminants. In these figures, the flow rate was high each time. 
When less normal water was flowing through the pipelines per 
hour, the peaks were somewhat higher.

So, the turbidity sensors are not able to detect Ammonia. 
In table 8, a summary is presented for all three contaminants 

Figure 8.  Time series of the four sensor readings of P2A (red) and P2B (blue) over time when Ammonia is added into the network, with 
different settings for dosing rate and duration. (a) Conductivity levels over time. (b) pH levels over time. (c) Turbidity levels over time. (d) 
ORP levels over time.

Table 8.  Parameters that reacted (+) to each of the contaminants. 
The arrow shows if it is a positive peak or a negative peak. A minus 
sign means that the sensor parameter was unable to detect the 
contamination and the plus-minus sign shows that there were some 
peaks present, but not as clear as with the other parameters.

Conductivity Turbidity pH ORP

Hypo + (↑) − + (↑) ± (↑)
Ammo + (↑) − + (↑) + (↓)
HCl + (↑) − + (↓) + (↑)

Table 9.  An overview of the detection times of contaminants in the 
WaDi testbed for different flow rates.

Stable flow rate

Expected  
detection  
time (s)

Observed  
detection  
time (s)

High flow 
rate

960 liters per hour 40 49

Medium 
flow rate

610 liters per hour 63 67

Low flow 
rate

312 Liters per hour 123 111
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showing which parameters can detect a certain contaminant 
and if the sensor reading increases or decreases.

As can be seen in table 8, turbidity is not able to detect any 
of the three contaminants. The turbidity sensor measures the 
diffraction of light in the water which means that a reading 
states something about the particle load in the water. As all 
three considered contaminants are transparent liquids, none 
of these make the contaminated water turbid. However, the 
resulting time series of these experiments showed again that 
the turbidity sensor readings are quite unstable as was also 
shown in the previous sections. Conductivity, pH and ORP 
all showed some peaks when the contaminant was added. The 
peaks in the ORP time series when Hypo was added were not 
as clear as the ones of conductivity and pH such that ORP 
alone is not enough to detect that contaminant.

Finally, we are interested in the time it takes for a contami­
nant to reach the sensor and how long the contaminant remains 
visible in the water. Using the calculated volume between the 
point of injection and sensor P2B in section 2.2 and the meas­
ured flow rate, the expected detection time in seconds can be 
calculated. This formula is shown in equation (1).

Expected detection time in seconds =
Volume of pipelines (dm3)

Flow rate (dm3 s−1)
.

� (1)

The volume of the pipelines is 10.659 dm3 and three dif­
ferent flow rates were used in our research. In table  9, the 
average flow rate in the three settings is shown. With each 
flow rate, the expected detection time can be calculated. This 
value is compared with the average observed detection time of 
the added contaminant. This observed detection time is based 
on the first observation after contaminant was added for which 
the sensor readings differ more than 5% from the mean of 
the previous 100 observation points. For this, the well-known 
CUSUM method is used [10]. So, not on the range or differ­
ence between the sensor reading of P2A and P2B as it was 
described in section 2.2. This was chosen due to the instability 
and inaccuracy of the time series as observed in section 3.1.

The difference between the observed and expected detec­
tion time is quite interesting. When the flow rate is high, the 
expected time is too low and when the flow rate is low, the 
expected time is too high. The average observed detection 
time for all different flow rates is very stable as the variance 
is quite small. The detection of contaminants when the flow 
rate was high was for example always close to 50 s. There was 
hardly any difference in the detection times for the different 
contaminants or different dosing rates.

We are not able to give a solid explanation for this difference 
between the observed and expected detection time. It is pos­
sible that the measured flow rate is not correct as this flow rate 

was only measured in one point of the pipelines. We leave clar­
ification of this issue for future research. Furthermore, figure 8 
also shows that after adding of contaminants was stopped, 
most sensor readings quickly return to their old values.

4.  Conclusion

Through the experiments performed on the WaDi testbed 
we have found strong evidence for sensor imperfection. 
Failing to detect a contaminant can occur as missing values 
were observed in the data series. Besides that, the sensor 
readings are quite unstable as inexplicable peaks and jumps 
in the sensor readings were found and the sensors become 
inaccurate and unreliable within several weeks after cali­
bration, due to drifting. Especially the sensor readings for 
turbidity are very unstable. Still, all added contaminants 
are detected by at least two sensor parameters. After the 
contaminant is added, the sensor readings quickly increase 
or decrease to a new static level. This means that when 
the sensor misses this initial change due to measurement 
errors, the contaminant will possibly not be immediately 
detected. Furthermore, low flow rates and high contaminant 
dosing rates result in higher peaks of the sensor readings, 
which may increase the probability of detecting a contami­
nant. This implies that the probability for a sensor to detect 
a contaminant depends on the effect of dilution. Sensors 
which are placed further away from the source of contami­
nation, might only observe small peaks due to branching 
and dilution effects.

Finally, the data of the experiments on the WaDi testbed 
indicate that many false positives occurred. A sensor can 
measure a rapid change in a certain parameter and there­
fore raise an alarm when no contaminants are being added. 
Due to the large number of false positives and the fact that a 
water network will not be shut down for each positive sensor 
reading, it is possible that even when a contaminant is added 
and the sensor is detecting something, it can be considered as 
a false positive by the system or by employees. This can result 
in a non-detection even when it was detected. The occurrence 
of false positives should therefore also be taken into account 
in further research.

Our qualitative study has shown the imperfection of 
water quality sensors in an operational network. Methods 
for optimal sensor placement for water distribution, need 
quantitative values for this imperfection as input. For future 
research we will design and conduct experiments that allow 
us to quantify the imperfection of water quality sensors. For 
future experiments we will also use sensors which are not 
based upon electro-chemical principals, such as the refractive 
index, see [18].
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Appendix

Table A2.  LR2 correlation coefficients.

Conductivity (2A)
Turbid­
ity (2A) pH(2A) ORP (2A)

Conduc­
tivity (2B)

Turbid­
ity (2B) pH(2B) ORP (2B)

Conductivity (2A) — 0.2650 −0.5870 0.5496 −0.6682 0.3527 −0.6503 0.6324
Turbidity (2A) — — −0.2122 0.1583 0.0670 0.2931 −0.1885 0.2176
pH(2A) — — — −0.9838 0.6115 −0.4429 0.9534 −0.9694
ORP (2A) — — — — −0.6093 0.4467 −0.9542 0.9754
Conductivity (2B) — — — — — −0.2626 0.6917 −0.6402
Turbidity (2B) — — — — — — −0.4774 0.4855
pH(2B) — — — — — — — −0.9794

Figure A1.  An overview of the WaDi testbed. The four sensors are presented with purple crosses.

Table A1.  LR1 correlation coefficients.

Conductivity  
(2A)

Turbidity 
(2A) pH(2A) ORP (2A)

Conductivity 
(2B)

Turbidity 
(2B) pH(2B) ORP (2B)

Conductivity (2A) — 0.1925 −0.9452 0.9282 0.7272 0.2471 −0.8092 0.7797
Turbidity (2A) — — −0.2093 0.2508 0.2988 −0.0914 −0.2058 0.2241
pH(2A) — — — −0.9599 −0.8216 −0.2312 0.9062 −0.8831
ORP (2A) — — — — 0.8219 0.2377 −0.8946 0.9228
Conductivity (2B) — — — — — 0.0988 −0.8662 0.8773
Turbidity (2B) — — — — — — −0.2222 0.2302
pH(2B) — — — — — — — −0.9585
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