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The Impact of the Spectral Tail
on the Evolution of the Kurtosis
of Random Seas
We perform simulations of random seas based on narrow-banded spectra with directional
spreading. Our wavefields are spatially homogeneous and nonstationary in time. We trun-
cate the spectral tail for the initial conditions at different cutoff wavenumbers to assess the
impact of the spectral tail on the kurtosis and spectral evolution. We consider two cases
based on truncation of the wavenumber tail at |k|/kp = 2.4 and |k|/kp = 6. Our simulations
indicate that the peak kurtosis value increases if the tail is truncated at |k|/kp = 2.4 rather
than |k|/kp = 6. For the case with a wavenumber cutoff at |k|/kp = 2.4, augmented kurtosis
is accompanied by comparatively more aggressive spectral changes including redevelop-
ment of the spectral tail. Similar trends are observed for the case with a wavenumber
cutoff at |k|/kp = 6, but the spectral changes are less substantial. Thus, the spectral tail
appears to play an important role in a form of spectral equilibrium that reduces spectral
changes and decreases the peak kurtosis value. Our findings suggest that care should be
taken when truncating the spectral tail for the purpose of simulations/experiments. We
also find that the equation of Fedele (2015, “On the Kurtosis of Deep-Water Gravity
Waves,” J. Fluid Mech., 782, pp. 25–36) provides an excellent estimate of the peak kurtosis
value. However, the bandwidth parameter must account for the spectral tail to provide
accurate estimates of the peak kurtosis. [DOI: 10.1115/1.4055480]
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1 Introduction
Rogue wave occurrence in random seas and the evolution of free-

surface kurtosis remain active areas of research. Dispersive focus-
ing based on wave components with different frequencies and direc-
tions can result in the formation of extreme waves (see, for example,
Fedele et al. [1]). Nonlinear interactions between wave components
can also alter the dispersive characteristics of a wave field, allowing
for self-focusing (Janssen [2]). The relative importance of nonlinear
interactions in the formation of rogue waves has been a focus of pre-
vious studies with comprehensive reviews [3–6].
In the context of random seas, a deviation from Gaussian statis-

tics indicates the presence of nonlinear interactions. The kurtosis of
the free surface, Kur=〈η4〉/〈η2〉2, has received particular
attention, as an indicator of nonlinear interactions and rogue wave
occurrence (see, e.g., Mori and Janssen [7]). Here, η denotes the
free-surface elevation and the angled brackets denote a statistical
average. The excess kurtosis, denoted as C4, quantifies the deviation
from Gaussian statistics:

C4 =
〈η4〉
3〈η2〉2 − 1 (1)

yielding C4= 0 for a Gaussian process, associated with linear seas.
The excess kurtosis C4 is comprised of dynamic (Cd

4 ) and bound
(Cb

4) contributions such that C4 = Cd
4 + Cb

4, where the dynamic con-
tribution accounts for the buildup of phase correlation and the
bound contribution accounts for the presence of bound harmonics
(see, e.g., Refs. [8,9] for a more detailed discussion on bound har-
monics). Dynamics excess kurtosis values of Cd

4 > 0 and Cd
4 < 0

are, respectively, indicative of focusing and defocusing due to non-
linear interactions.
An analytical solution for dynamic kurtosis (Cd

4 ) has been pre-
sented by Fedele [10], based on narrow-band directional waves
with a Gaussian-type spectrum. The initial condition is based on
Gaussian statistics, Cd

4 (t0) = 0, with random component phases
and amplitudes. Fedele [10] assumes that the wave field is spatially
homogeneous and nonstationary in time. The analysis of this
problem originates from Janssen [2], providing an expression for
the dynamic excess kurtosis of weakly nonlinear unidirectional
seas. Reference [7] extended the work of Ref. [2] based on the
assumption of narrow-bandedness. References [11,12] considered
the role of directional effects. Fedele [10] provides an expression
for dynamic kurtosis in the directional case, based on:

dCd
4 (τ)
dτ

= BFI2
dJ
dτ

(2)

Here, τ represents nondimensional time, τ= ν2ω0t, where ν is the
spectral width and ω0= 2π/T0 is the characteristic frequency
based on the characteristic wave period T0. The Benjamin–Feir
index (BFI) is given by:

BFI =
μ

��
2

√

ν
(3)

based on the wave steepness μ= k0σ, where k0 is the characteristic
wavenumber and σ is the standard deviation of the free surface, σ2=
〈η2〉. Note that the definition in Eq. (3) is a factor of

��
2

√
smaller

than the one used in some other studies, e.g., Onorato et al. [13].
The function J(τ, R) in (2) depends on the short-crestedness param-
eter R:

R =
1
2
σ2θ
ν2

(4)

1Corresponding author.
Contributed by the Ocean, Offshore, and Arctic Engineering Division of ASME for

publication in the JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING.
Manuscript received March 25, 2022; final manuscript received August 26, 2022;
published online October 3, 2022. Assoc. Editor: Nilanjan Saha.

Journal of Offshore Mechanics and Arctic Engineering DECEMBER 2022, Vol. 144 / 061702-1
Copyright © 2022 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/offshorem

echanics/article-pdf/144/6/061702/6940885/om
ae_144_6_061702.pdf by Bibliotheek Tu D

elft user on 03 January 2023

mailto:ton.vandenbremer@eng.ox.ac.uk
mailto:thomas.adcock@eng.ox.ac.uk
https://crossmark.crossref.org/dialog/?doi=10.1115/1.4055480&domain=pdf&date_stamp=2022-10-03


Here, σθ is the angular width of the spectrum, which quantifies the
directional spreading of the waves. Fedele [10] calculates the
angular width σθ based on the spreading function of the spectrum,
D(θ):

σθ =

����������������π/2
0 θ2D(θ)dθ�π/2
0 D(θ)dθ

√√√√ (5)

by using the short-crestedness parameter R and nondimensional
time τ, Fedele [10] found the expression:

dJ
dτ

= 2Im
1���������������

1 − 2iτ + 3τ2
√ �������������������

1 + 2iRτ + 3R2τ2
√

( )
(6)

required to evaluate (2). Here, Im(x) denotes the imaginary part of x.
Figure 1 shows the evolution in kurtosis predicted for a range of R
values. As can be seen, the peak kurtosis value is significantly
impacted by the value of R, suggesting a strong dependency on
the bandwidth and spreading of the waves, as well as the steepness.
Previous studies have investigated the evolution of kurtosis for

random seas, including the experiments of Onorato et al. [13] as
well as the higher-order spectral (HOS) and modified nonlinear
Schrödinger (MNLS) simulations of Toffoli et al. [14] and Xiao
et al. [15]. In this study, we perform random seas simulations
using the MNLS equation of Trulsen et al. [16] based on an exact
linear dispersion operator. Our simulations are based on the
sea-state parameters used in Experiment B of Onorato et al. [13],
a case also considered by Toffoli et al. [14] and Xiao et al. [15].
Thus, we compare our results with those of previous studies. We
note that the experiments of Onorato et al. [13] are based on
wave fields, which are inhomogeneous in space but stationary in
time for a given location. In contrast, our simulations are based
on a spatially homogeneous random sea, which is nonstationary
in time, as simulated by Xiao et al. [15] and Toffoli et al. [14].
However, for narrow-banded seas with low directional spreading,
mapping between space and time can be performed with the
group velocity, although we note this is an extra approximation.
Toffoli et al. [14] performed MNLS simulations of both types (spa-
tially homogeneous and nonstationary as well as spatially inhomo-
genous and stationary) and found that the kurtosis curves agreed
well for the narrow-banded case considered in this study. Thus,
we use the experimental results of Onorato et al. [13] in our compar-
isons. Our investigation focuses on the impact of the spectral tail on
kurtosis evolution, exploring the role of the tail in establishing a
form spectral equilibrium that reduces the peak kurtosis.
The concept of spectral equilibrium has been considered by pre-

vious studies. Nonequilibrium sea states are characterized by com-
paratively rapid spectral changes that eventually slow down as the

sea state moves toward a better representation of equilibrium for
the given conditions. As discussed in Ref. [17], wave–current inter-
actions, sudden changes in bathymetry, and meteorological condi-
tions are all possible causes of nonequilibrium, provoking the
occurrence of rapid spectral changes (see, e.g., Refs. [18–20]).
The investigation of Barratt et al. [21] showed that steep wave
groups formed under nonequilibrium conditions may exhibit aug-
mented kinematics and a prolonged lifespan—the presence of a
fully developed spectral tail was found to reduce the nonlinear fea-
tures of the wave groups. Physical mechanisms that may impact the
development of the spectral tail have also been identified by previ-
ous studies. Background currents have been shown to possibly sup-
press the development of the spectral tail [22]. Ice sheets also tend
to dissipate the energy associated with high-wavenumber compo-
nents in the spectral tail [23,24]. Simulations based on initial
spectra that do not include a fully developed tail also tend to
exhibit rapid spectral evolution in the early stages (see, e.g., Res.
[15,25]). Our simulations are focused on the impact of the spectral
tail on the evolution of random seas initialized with Gaussian
statistics.
As discussed earlier, it is possible for the wave spectrum to be

curtailed in nature. However, a more common engineering issue
is where the spectrum is curtailed in a laboratory setting due to
bandwidth limitations of wavemakers. If waves are made in the
lab, which do not reflect the reality in the ocean, this needs to be
understood as otherwise we will incorrectly estimate loads on off-
shore structures from model tests.
To help understand, this perform simulations based on

JONSWAP spectra truncated at different wavenumbers to alter
the bandwidth and prominence of the spectral tail. We monitor
the consequent kurtosis evolution and explain the trends based on
the spectral evolution we observe. Finally, we calculate approxi-
mate R values and compare our results to Eq. (2) to assess the
extent of the agreement.

2 Numerical Details
We perform random-sea MNLS simulations based on Rayleigh

distributed component amplitudes with a uniform phase distribu-
tion. We consider two distinct cases, each with a different cutoff
wavenumber for the spectral tail. Each case has been simulated a
total of 20 times with a new random seed generated for each
instance. Our analysis of the spectral evolution is based on ensem-
ble averaging of the resultant spectra over the following 150 wave
periods.

2.1 Initial Conditions. We define the variance density spec-
trum S(ω, θ) as the product of a frequency spectrum F(ω) and a
spreading function D(θ), where ω represents the angular frequency
and θ represents the direction of the wave component:

F(ω, θ) = S(ω)D(θ) (7)

Following Onorato et al. [13], we use the JONSWAP formulation as
the frequency spectrum:

F(ω) =
αg2

ω5
exp

[
−
5
4

(
ω

ωp

)−4]
γ exp [−(ω−ωp)2/(2σ2ω2

p)] (8)

where ω is the angular frequency and ωp is the peak frequency, α is
the Phillips parameter, γ is the peak enhancement factor, and the
parameter σ is frequency dependent: σ= 0.07 for ω≤ωp and σ=
0.09 for ω>ωp. We use the cosine-squared spreading function:

D(θ) =
2
Θ
cos2

(
πθ

Θ

)
for |θ| ≤ Θ/2

0 for |θ| > Θ/2

⎧⎨
⎩ (9)

where θ is the wave propagation direction and Θ is the directional
spreading width of the cosine-squared function. We note the

Fig. 1 Dynamic excess kurtosis normalized by the square of the
Benjamin–Feir index (C4

d/BFI
2) as a function of nondimensional

time (τ= ν2ω0t) for different values of R, based on Fedele [10]
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relationship between σθ in (5) and Θ in (9), given by:

σθ = Θ
�������
π2 − 6
12π2

√
(10)

The products of (8) and (9) yield the variance density spectrum in
the (ω, θ) coordinate system. The corresponding wavenumber spec-
trum in (kx, ky) can be calculated with the Jacobian: Ŝ(kx, ky) =
(1/k)(dω/dk)S(ω, θ) =(g2/(2ω3))S(ω, θ), where k is the wavenum-
ber vector k = (kx, ky), and we have used the deep-water dispersion
relationship.
To perform random-sea simulations, we require Rayleigh distrib-

uted component amplitudes, ai, with expected values, μi, that are
consistent with the defined wavenumber spectrum, Ŝ(k). The
expected amplitude for component ki follows from the wavenumber
spectrum:

μi =
�������
2Ŝ(ki)

√
(11)

Thus, the scale parameter of the Rayleigh distribution is given by�����
2/π

√
μi, and we generate the random amplitude, ai, for component

ki using:

ai =
�����
2/π

√
μi

��������
−2 ln χ

√
(12)

where χ is a uniformly distributed random variable within the range
[0, 1] and ln is the natural logarithm. A random phase offset φi is
also generated for each wavenumber component ki in the range
[0, 2π]. We compute the linear surface elevation at each point in
space x = (x, y) as a superposition of the components:

ηL(x, t) =
∑
i

ai cos (ki · x − ωit + φi) (13)

using the deep-water linear dispersion relationship ωi =
�����
g|ki|

√
to

calculate the component frequencies. For the MNLS simulations,
we calculate the initial complex envelope B(x, t0) using the linear
surface elevation ηL and the corresponding Hilbert transform ηHL
[26]:

B(x, t0) = {ηL + iηHL } exp (− i[k0 · x − ω0t0]) (14)

where k0 and ω0 represent the characteristic wavenumber and fre-
quency of the carrier wave.
The parameters used in this study are listed in Table 1. We use a

peak enhancement factor (γ) of 6.0. The spectral peak of the
JONSWAP, in terms of angular frequency (ωp) and wavenumber
(kp), are both listed in Table 1 (note that ωp and kp are not simply
related by the linear dispersion relation due to the presence of a
Jacobian). The characteristic time and length scales associated
with kp are also listed in Table 3. We use a directional spreading
width (Θ) of 12 deg, based on the spreading function defined in
Eq. (9), the same value as mentioned in Ref. [15]. Our significant
wave height (Hs) of 11.2 m corresponds to a wave steepness (ɛ=
kpHs/2) of 0.16. As calculated by Fedele [10], the parameters
listed in Table 1 correspond to a BFI (=μ

��
2

√
/ν) of 0.78, where

μ = ɛ/2 and ν is a measure of spectral bandwidth.
We use an exponential low-pass filter to truncate the tail of the

spectrum following [15]:

Ω(|k|/kp, β1, β2) = exp

(
−
[ |k|
β1kp

]β2 )
(15)

We consider two test cases labeled case ST and case LT, where
“ST” refers to a short tail and “LT” refers to a long tail for the spec-
trum. β1 and β2 values are listed in Table 2 together with the corre-
sponding cutoff wavenumbers. Case ST and LT feature truncation
of the spectral tail at approximately |k|/kp = 2.4 and |k|/kp = 6,
respectively, based on the β1 and β2 listed in Table 2. The resultant
initial conditions are shown in Fig. 3(a) for case ST and Fig. 4(a) for
case LT. We note that approximately 21% of the total energy for
case LT is associated with wavenumber components with
|k|/kp > 2.4.

2.2 MNLS Simulations. We perform our random-sea simula-
tions using the MNLS equation of Trulsen et al. [16], a modified
version of the Trulsen and Dysthe [27] equation:

∂B
∂t

+ LB +
1
2
iω0k

2
0 |B|2B +

3
2
ω0k0|B|2 ∂B∂x

+
1
4
ω0k0B

2 ∂B
∗

∂x
+ ik0

∂ϕ
∂x

B = 0 (16)

Here, B* denotes the conjugate of the complex envelope and ϕ
denotes the mean flow potential. The carrier wave is aligned with
the x-axis, k0 = (k0, 0), so that k0 in (16) represents the carrier wave-
number, and the characteristic frequency ω0 is related to the carrier
wavenumber k0 by the deep-water linear dispersion relationship,
ω0 =

����
gk0

√
. The dispersion operator L in (16) is based on a pseudo-

differential operator that preserves the exact linear dispersion rela-
tionship, as explained by Trulsen et al. [16]:

LB =
1
4π2

∫∞
−∞

i[ω(k0 + μ) − ω0] exp (iμ · (x − y))B(y, t)dydμ

(17)

Here, μ = (λ, μ) is the modulation wavenumber. Direct numerical
evaluation of Ref. (17) avoids expansion and truncation of the
linear dispersion relation, increasing the bandwidth limits of the
MNLS equation and improving the resolution of four-wave interac-
tions while reducing energy leakage (see Refs. [28] and [29] for a
discussion on MNLS energy leakage), with almost no additional
computational cost. Barratt and Adcock [30], building on Refs.
[31,32], performed a detailed comparison of the exact and truncated
versions of the dispersion operator for focused wave groups. The
MNLS equation in (17) is subject to free surface and bottom bound-
ary conditions, as well as continuity for the mean flow potential ϕ:

∂ϕ
∂z

=
ω0

2
∂
∂x

|B|2 at z = 0 (18)

Table 1 Sea-state parameters

γ ωp kp Θ Hs ɛ

6.0 0.5257 s−1 0.02796 m−1 12 deg 11.2 m 0.16

Table 3 Discretization parameters

Characteristic scales Wavelength (λ0) 225 m
Wave period (T0) 12.0 s

Numerical domain Length (L) 30.72 km
Width (W) 20.48 km

Discretization Nx= 2049, Δx= 15 m
Ny= 1025, Δy= 20 m
Nt= 4501, Δt= 0.4 s

Table 2 Low-pass filter parameters for spectral tail truncation

Case β1 β2 Cutoff wavenumber

ST 2.4 20 |k|/kp = 2.4
LT 6 35 |k|/kp = 6
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∂ϕ
∂z

= 0 at z = −∞ (19)

∇2ϕ = 0 for −∞ < z < 0 (20)

We incorporate the boundary conditions (18) and (19), directly into
the MNLS equation (16), using the continuity condition for the
mean flow (20), as done with the fourth-order envelope equation
of Janssen [33]. A single governing equation is, thus, obtained:

∂B
∂t

+ LB +
1
2
iω0k

2
0 |B|2B +

3
2
ω0k0|B|2 ∂B∂x

+
1
4
ω0k0B

2 ∂B
∗

∂x
+ ik0BF −1

{
ikx
|k|F

{
ω0

2
∂
∂x

|B|2
}}

= 0

(21)

whereF denotes a 2D Fourier transform in x and y andF −1 denotes
the inverse operation. The expression in (21) is based on the eval-
uation of the bottom boundary condition (19) at z=−∞ and is,
therefore, a deep-water equation. Thus, we obtain the initial
complex envelope using (14), and the envelope is marched
forward in time with (21). We discretize and numerically solve
Eq. (21) using a split-step algorithm. We use spectral methods to
evaluate the linear dispersion operator LB in (17), and we use
fourth-order finite differencing with symmetric stencils for the
spatial derivatives in the nonlinear terms. Time marching is

performed with the classic fourth-order Runge-Kutta scheme. The
details of the discretization are listed in Table 3, including the
length (L) and width (W) of the domain. The number of grid
points in the x direction and y direction are listed, denoted as Nx

and Ny respectively, together with the corresponding grid spacings,
Δx and Δy. The size of the domain ensures 136 characteristic wave-
lengths (λ0) in the x-direction and 91λ0 in the y direction, where λ0=
2π/k0. The characteristic length scales of the wave envelope can be
approximated with:

Λx =
2π
kw

, Λy =
2π
k0σθ

(22)

based on the characteristic length scales for the wavenumber (k0),
bandwidth (kw), and spreading parameter (ς0). Dimensionless
metrics for grid resolution, in the x and y directions can, thus, be
defined as follows:

nx =
Λx

Δx
, ny =

Λy

Δy
(23)

which approximately represent the number of grid points spanning
the length scale of the wave envelope in the x and y directions. On
the basis of the initial conditions, we use the peak of the wavenum-
ber spectrum, k0= 0.02796 m−1, and we use Eq. (5) to obtain
σθ = 0.04 rad. We estimate the bandwidth kw for case ST and case
LT using the spectral half-width and obtain kw= 0.004 m−1. Com-
bined with the grid resolution listed in Table 3, we obtain nx≈
105 and ny≈ 281. The simulations are time marched for a total of
150 wave periods (T0), where T0= 2π/ω0, with a timestep (Δt) of
0.4 s. By using the group velocity of the wave envelope as the char-
acteristic velocity, we calculate a Courant–Friedrichs–Lewy condi-
tion of 0.25 for our MNLS simulations, based on the discretization
parameters listed in Table 3. To assess the diffusivity of our simu-
lations, we have considered the conserved quantity I2 [34]:

I2 =
∑
i,j

|B(xi, y j)|2 (24)

typically associated with energy conservation. We found the quan-
tity I2 to be conserved within 1% of the initial value over the entire
duration of all our simulations, indicating permissibly low levels of
diffusivity. We find that the |B|2 ∂B/∂x term in (16) is particularly
prone to causing simulation divergence. Thus, we apply spectral fil-
tering to eliminate high-frequency contributions from this term—
we set all components above |k|/kp = 5 to zero when calculating
|B|2 ∂B/∂x.

2.3 Spectral Parameters. We analyze the spectral evolution
of case ST and Case LT using statistical parameters to characterize
the spectral peak, bandwidth, and directional spreading. Our selec-
tion of the spectral parameters is largely based on the review by
Serio et al. [35]. For each simulation, we perform a two-
dimensional discrete Fourier transform (in x and y) on the surface
elevation once per wave period and use the result to calculate the

Fig. 2 Kurtosis evolution for case ST (red/higher line with error
bar) and Case LT (blue/lower line with error bar) compared
against other studies, including (△) the experiments of Onorato
et al. [13]. The shaded gray bands represent 95% confidence
intervals. The simulation results of Xiao et al. [15] are shown:
(−−−) MNLS and (——) HOS as well as the simulation results
of Toffoli et al. [14]: (©) MNLS and (+) HOS. All the results are
based on JONSWAP spectra (γ=6) with steepness ɛ=0.16 and
a Benjamin–Feir index (BFI) of 0.78 based on the definition in
Eq. (3).

Fig. 3 Contour plots of the ensemble-averaged variance density spectrum S(kx, ky) for case ST featuring truncation
of the spectral tail in the vicinity of |k|/kp = 2.4: (a) t/T0=0, (b) t/T0=50, and (c) t/T0=100. The contour levels are log-
arithmic, ranging from 1×10−5 to 1×10−2.
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variance density spectrum in terms of wavenumber S(kx, ky, t) based
on a Cartesian coordinate system:

S(kx, ky, t) =
1
2
|η̂(kx, ky, t)|2 (25)

where η̂ represents the Fourier components of the surface elevation.
Arithmetic averaging over the ensemble (Ni= 20) at time t yields
the ensemble-averaged spectrum S(kx, ky, t):

S(kx, ky, t) =
1
Ni

∑Ni

i

Si(kx, ky, t) (26)

Converting to a polar coordinate system with the use of a Jacobian,
S(k, θ, t) = kS(kx, ky, t), we characterize the directional spreading of
the ensemble-averaged variance density spectrum:

ς(t) =

������������������∑
j θ

2
j S(kj, θj, t)∑
j S(kj, θj, t)

√√√√ (27)

Here, k represents the magnitude of the component wavenumber |k|
for convenience of notation. To characterize the spectral peak and
the bandwidth, we calculate the frequency spectrum S(f , θ, t) =
J S(k, θ, t), where J = 4π

����
k/g

√
. Integration over θ yields the omni-

directional frequency spectrum S(f , t) used to estimate the peak fre-
quency:

f p(t) =

∑
j fj[S(fj, t) ]

4∑
j [S(fj, t)]

4 (28)

based on the omnidirectional frequency spectrum raised to the
fourth power, as recommended by Young [36]. We also estimate
the bandwidth based on the omnidirectional frequency spectrum,
using the peakedness parameter introduced by Goda [37]:

Qp(t) =
2

m2
0

∫∞
0
f [S(f , t) ] 2df (29)

where

m0 =
∫∞
0
S(f , t0)df (30)

We use the trapezoidal method to perform the numerical integration
in Eq. (29) based on unequal point spacing. Our estimate of spectral
bandwidth (ν) relates inversely to the peakedness parameter Qp:

ν(t) =
1��
π

√
Qp

(31)

consistent with the bandwidth metric used by Serio et al. [35] to cal-
culate the Benjamin–Feir index (BFI). We also use ν in (31) as our
bandwidth metric when calculating the BFI. The spectral parame-
ters defined in Eqs. (27), (28), and (31) thus form the basis of our
spectral evolution analysis.

3 Results and Discussion
We analyze the kurtosis evolution for case ST and case LT and

explain the observations based on the spectral evolution, using
contour plots of the ensemble-averaged spectra as well as the
parameters defined in Eqs. (27), (28), and (31). Finally, we
compare the simulation results for kurtosis with the theory of
Fedele [10], and we briefly discuss the selection of an appropriate
bandwidth parameter to characterize each case.

3.1 Kurtosis Evolution. The evolution of kurtosis for our
MNLS simulations is shown in Fig. 2, including both dynamic
and bound contributions up to the third order. The shaded gray
bands represent 95% confidence intervals for the ensemble-
averaged MNLS results. The experimental results of Onorato
et al. [13] are also shown. Both Toffoli et al. [14] and Xiao et al.
[15] performed similar simulations to those in this study, using
the MNLS equation as well as a HOS code, and the results are
depicted in Fig. 2. As discussed in Sec. 1, the results of Onorato
et al. [13] are based on waves propagating along a tank. We
perform space/time mapping with the group velocity for the pur-
poses of comparing our simulation results to the experiments of
Onorato et al. [13]. The x-axis in Fig. 2 shows the corresponding
spatial x/λ0 or temporal t/(2T0) parameter with kurtosis shown on
the y-axis (excluding the contribution of bound harmonics). Here,
λ0 and T0 represent the characteristic wavelength and wave
period, respectively. We see good agreement between the MNLS
simulations results of Toffoli et al. [14], Xiao et al. [15], and case
ST of this study. A peak kurtosis value of 3.89 is observed for
case ST, and agreement between the MNLS simulations appears
to be particularly good in the vicinity of the peak. Similar to case
ST of this study, the MNLS simulations of both Toffoli et al. [14]
and Xiao et al. [15] effectively truncated the wavenumber spectrum
of the surface elevation at |k|/kp = 2, by limiting the modulation
wavenumber of the envelope to |μ|/kp ≤ 1. Here, μ = (λ, μ) is the
modulation wavenumber defined relative to the wavenumber of
the carrier wave, k = (kp, 0). Thus, Fig. 2 also serves to verify our
simulations. The HOS results of Toffoli et al. [14] and Xiao et al.
[15] differ, however, from the MNLS results for case ST and
agree better with the MNLS results for case LT as well as the exper-
imental results of Onorato et al. [13]. Case LT is based upon a spec-
tral tail truncated at |k|/kp = 6 and, thus, features a more prominent
spectral tail. Likewise, the experiments of Onorato et al. [13] and
the HOS simulations of Toffoli et al. [14] and Xiao et al. [15] all
included a fully developed spectral tail in the initial conditions.
Thus, the differences between case ST and case LT appear to be
the result of the spectral tail, and the findings are consistent other
studies. Case LT, in this study, reaches a peak kurtosis value of
3.52, approximately 10% lower than the peak kurtosis value for
case ST. Inclusion of the spectral tail up to |k|/kp = 6 in the
initial conditions, thus, appears to reduce the peak kurtosis value,
while artificial truncation of the spectral tail at |k|/kp = 2.4 aug-
ments the peak kurtosis value. The relatively good agreement
between case LT and the experiments/HOS results also suggests

Fig. 4 Contour plots of the ensemble-averaged variance density spectrum S(kx, ky) for case LT featuring truncation
of the spectral tail in the vicinity of |k|/kp = 6: (a) t/T0=0, (b) t/T0=50, and (c) t/T0=100. The contour levels are loga-
rithmic, ranging from 1×10−5 to 1× 10−2.
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that the MNLS equation provides better kurtosis estimates if the
spectral tail is included, despite the narrow-bandwidth limitations
of the equation.

3.2 Spectral Evolution. To clarify the trends in kurtosis
observed in the previous section, we have analyzed the evolution of
the ensemble-averaged variance density spectrum, S(kx, ky), for case
ST and case LT with the results shown in Figs. 3 and 4, respectively.
Thewavenumbers kx and ky have been normalized by the characteristic
wavenumber k0= 0.02796 m−1, the initial spectral peak listed
in Table 1. The contour plots in each figure are shown at times: (a)
t/T0= 0; (b) t/T0= 50; and (c) t/T0= 100. Note that the contour
levels are logarithmically distributed. As shown in Fig. 3(a), case
ST features a narrow-banded spectrum with truncation of the tail in
the vicinity of |k|/kp = 2.4. Figures 3(b) and 3(c) reveal the rapid
broadening of the spectrum, which occurs during the simulation—
the truncated tail partially redevelops and the directional spreading
increases. Similar features are apparent for case LT, shown in Fig. 4.
Case LT features a more prominent spectral tail for the initial condi-
tions since truncation is performed in the vicinity of |k|/kp = 6.
However, rapid broadening of the spectrum over time is also observed
for case LT, although less directional spreading is apparent in Figs.
4(b) and 4(c) than the corresponding plots in Fig. 3. The differences
in spectral evolution between case ST and case LT are best captured
by the statistical parameters defined in (27), (28), and (31).
Figure 5 shows the evolution of the ensemble-averaged spectral

parameters for case ST and case LT. The spectral bandwidth param-
eter ν, defined in (31), is shown in Fig. 5(a). The spreading param-
eter ς, defined in (27), is shown in Fig. 5(b). The peak frequency fp,
defined in (28), is shown in Fig. 5(c). All of the parameters have
been normalized by their initial value, at time t0. Figure 5(a)
shows that both case ST and case LT exhibit an increase in spectral
bandwidth; however, the increase in ν/ν0 is more rapid for case ST
and the final value of 1.85 exceeds the final value of 1.48 for case
LT by approximately 25%. Similarly, the spreading parameter in
Fig. 5(b) also exhibits an increase in ς/ς0 for both cases—the
values are similar toward the start and end of the simulations;
however, case ST exhibits a more rapid increase in between.
Finally, Fig. 5(c) demonstrates a reduction in the peak frequency
for both cases, consistent with the downshift of the spectral peak
observed in other studies (see, e.g., [36,37]). The frequency down-
shift is also observed to occur more rapidly for case ST than case
LT, and the final value of 0.903 for case ST is approximately 4%
lower than the final value of 0.935 observed for case LT. Thus,
all the spectral parameters indicate that the spectral changes for
case ST occur more rapidly and are more pronounced than those
of case LT. Inclusion of a more prominent spectral tail in case LT
thus appears to reduces the spectral changes observed during the
simulations. Truncation of the spectral tail close to the spectral
peak in case ST conversely augments the spectral changes, which
occur during the simulations. Thus, the spectral tail appears to

play an important role in establishing the spectral equilibrium of
the sea state and care should be taken when truncating the tail in
a simulation or laboratory setting. The kurtosis results shown in
Fig. 2 indicate that the rapid spectral changes in case ST augment
the peak kurtosis value, relative to case LT, demonstrating the
importance of the tail in determining the peak kurtosis.

3.3 Comparison With Theory. We compare our ensemble-
averaged kurtosis results with the solution of Fedele [10], with the
results shown in Fig. 6. The kurtosis curves for both cases ST and
LT are shown, expressed as dynamic excess kurtosis, see (1), normal-
ized by the square of the Benjamin–Feir index, see (3). The kurtosis
curves have been plotted against nondimensional time, τ= ν2ω0t,
based on the spectral bandwidth (ν) and the characteristic frequency
(ω0). Our calculation of the shortcrestedness parameter R is based on
(4) using the angular width in (5). The dashed line in Fig. 6, calcu-
lated by Fedele [10], bases the bandwidth parameter ν on the spectral
half-width and, thus yieldsR= 0.032with the same curve for case ST
and case LT (since the spectral half-width is not altered by truncation
of the tail). The solid (R= 0.022) and dotted (R= 0.052) lines in
Fig. 6 are based on the bandwidth parameter in (31), which does
account for truncation of the spectral tail. As can be seen, the kurtosis
curves based on (31) provide better agreement with the simulation
results, compared with the curve based on the spectral half-width.

Fig. 5 Evolution of ensemble-averaged spectral parameters for case ST (red line (higher in (a,b), lower in
(c)) and case LT (blue line (lower in (a,b), higher in (c)): (a) spectral bandwidth ν defined in (31), (b) spread-
ing parameter ς defined in (27), and (c) peak frequency fp defined in (28)

Fig. 6 Kurtosis evolution for case ST (red line (peaks earlier and
lower)) and case LT (blue line (peaks later and higher)) compared
against the solution of Fedele [10] based on different bandwidth
parameters: (dashed, −−−) bandwidth based on spectral half-
width for both case ST and case LT yields R=0.031; (dotted, ·· ·
· · ·) bandwidth based on (31) for case ST yields R=0.052;
(solid, ——) bandwidth based on (31) for case LT yields R=
0.022. The shaded gray bands represent 95% confidence inter-
vals for the ensemble-averaged results.
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We note that the peak kurtosis value is particularly well predicted,
although the long-term behavior differs—the kurtosis decline after
the peak occurs faster for the simulations than predicted by the the-
oretical results. Thus, we find that Fedele [10] provides an excellent
estimate for the peak kurtosis value in our simulations. However, the
bandwidth parameter νmust account for the spectral tail to accurately
predict the kurtosis peak. We find that the bandwidth parameter in
(31), based on the peakedness parameter of Goda [37], appears to
be suitable for this purpose, consistent with the recommendations
of Serio et al. [35].

4 Conclusion
Our findings indicate that artificial truncation of the spectral tail

augments the peak kurtosis value of a random sea initialized with
Gaussian statistics. Truncation of the tail results in more aggressive
spectral changes during the simulation, characterized by spectral
broadening in terms of bandwidth and spreading as well as down-
shifting of the spectral peak as shown in Fig. 6. The spectral tail
is also observed to redevelop during the course of the simulation.
Thus, the spectral tail appears to play an important role in establish-
ing a form of spectral equilibrium that reduces spectral changes and
decreases the peak kurtosis value. We find that the MNLS equation
of Trulsen et al. [16] can be used to estimate the peak kurtosis value,
by including the spectral tail in the initial conditions, despite the
bandwidth limits of the equation.
This article strongly indicates that suppression of the high-

frequency components can lead to an increase number of large
waves. This is of most practical importance in the laboratory. In
many laboratory experiments, we wish to replicate open ocean con-
ditions. However, the bandwidth limitations of wave paddle means
that a full broad banded spectrum cannot be generated. As sug-
gested by the results in this article, this could lead to an increased
number of rogue waves and an overestimate of the extreme loads
recorded in model tests. This issue will be most significant for
steep sea states. However, more research is needed on this topic
to determine clear practical rules for industry. Currently, however,
it is not possible to provide exact criteria and can only encourage
those conducting experiments in severe directional seas to be cau-
tious in interpreting results.
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