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Turbulence attenuation in simultaneously
heated and cooled annular flows at

supercritical pressure
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2629 JB Delft, The Netherlands
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first published online 28 June 2016)

Heated or cooled fluids at supercritical pressure show large variations in thermophysical
properties, such as the density, dynamic viscosity and molecular Prandtl number,
which strongly influence turbulence characteristics. To investigate this, direct
numerical simulations were performed of a turbulent flow at supercritical pressure
(CO2 at 8 MPa) in an annulus with a hot inner wall and a cold outer wall. The
pseudo-critical temperature lies close to the inner wall, which results in strong
thermophysical property variations in that region. The turbulent shear stress and
the turbulent intensities significantly decrease near the hot inner wall, but increase
near the cold outer wall, which can be partially attributed to the mean dynamic
viscosity and density stratification. This leads to decreased production of turbulent
kinetic energy near the inner wall and vice versa near the outer wall. However, by
analysing a transport equation for the coherent streak flank strength, it was found
that thermophysical property fluctuations significantly affect streak evolution. Near
the hot wall, thermal expansion and buoyancy tend to decrease streak coherence,
while the viscosity gradient that exists across the streaks interacts with mean shear
to act as either a source or a sink in the evolution equation for the coherent streak
flank strength. The formation of streamwise vortices on the other hand is hindered
by the torque that is the result of the kinetic energy and density gradients. Near
the cold wall, the results are reversed, i.e. the coherent streak flank strength and the
streamwise vortices are enhanced due to the variable density and dynamic viscosity.
The results show that not only the mean stratification but also the large instantaneous
thermophysical property variations that occur in heated or cooled fluids at supercritical
pressure have a significant effect on turbulent structures that are responsible for the
self-regeneration process in near-wall turbulence. Thus, instantaneous density and
dynamic viscosity fluctuations are responsible for decreased (or increased) turbulent
motions in heated (or cooled) fluids at supercritical pressure.

Key words: turbulent flows, turbulence simulation
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FIGURE 1. Non-dimensionalized thermophysical properties of carbon dioxide at 8 MPa
as a function of non-dimensional temperature; Tpc = 307.7 K. The properties have been
obtained from the equation of state by Kunz, Klimeck & Jaeschke (2007) and equations
from Fenghour, Wakeham & Vesovic (1998) and Vesovic et al. (1990). The properties
have been non-dimensionalized such that they vary around unity, purely for illustrative
purposes. The horizontal axis represents a temperature difference of 12 K.

1. Introduction
In many industrial processes that involve heat transfer and turbulent flows,

significant temperature (or pressure) gradients can lead to large thermophysical
property variations. This is especially the case when fluids at supercritical pressure
are heated or cooled across the pseudo-critical point. Heated or cooled fluids at
such pressures can be found in refrigeration applications, during fuel combustion
in rocket engines and in supercritical power cycles. When a fluid at supercritical
pressure is heated, it transitions from a fluid with liquid-like properties to a fluid
with gas-like properties. The temperature about which this transition occurs is called
the pseudo-critical temperature Tpc, which is defined as the temperature for which the
specific heat capacity has its maximum value. Close to the pseudo-critical temperature,
the thermophysical properties vary sharply with temperature, as is shown in figure 1.

It is known that the thermophysical property variations that occur in heated turbulent
fluids at supercritical pressure may lead to relaminarization of the flow, which will
result in deteriorated heat transfer. Kurganov & Kaptil’ny (1992) associated the
deteriorated heat transfer with changes in the velocity and shear stress profiles, which
occur as a consequence of buoyancy forces in flows with a mean negative pressure
gradient (mixed convection flows). However, heat transfer deterioration may also
occur as a result of acceleration of the bulk flow with negligible buoyancy effects
(see e.g. Shiralkar & Griffith 1970; Jackson 2013). Yoo (2013) extensively reviewed
heat transfer to fluids at supercritical pressure. That review showed that it is difficult
(if not impossible) to predict heat transfer deterioration in fluids at supercritical
pressure accurately while using turbulence modelling or Nusselt-number relations.

In order to understand how the thermophysical property variations of a fluid at
supercritical pressure affect heat transfer, it is important to understand how the flow,
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and turbulence in particular, are affected by thermophysical property variations. This
is not yet fully understood. However, such knowledge will help in the design of better
heat transfer models, such as Nusselt-number relations and turbulence models.

To investigate the effect of thermophysical property variations on turbulent flow
characteristics, Bae, Yoo & Choi (2005) and Bae, Yoo & McEligot (2008) simulated
heat transfer to supercritical carbon dioxide (sCO2) at 8 MPa in a pipe and annular
geometry, respectively. Bae et al. (2005) reported significantly decreased vortical
motions near the heated surface. This is an important observation, as streamwise
vortices are an integral part of the self-regenerating process of near-wall turbulence
(see e.g. Hamilton, Kim & Waleffe 1995; Waleffe 1997). Bae et al. (2008) found
that velocity profiles and shear stress profiles are significantly affected by acceleration
and the combined effect of buoyancy and a negative streamwise pressure gradient;
such findings are qualitatively in line with the experiments by Kurganov & Kaptil’ny
(1992).

More recently, Zonta, Marchioli & Soldati (2012) and Lee et al. (2013) showed the
effect of variable dynamic viscosity, representative of a fluid at subcritical pressure,
on a channel flow and a boundary layer flow. They found that the variation in
viscosity causes the turbulence intensities to diminish. More specifically, Zonta et al.
(2012) report that the streak characteristics are altered due to the variation in viscosity.
Strong variations of dynamic viscosity and thermal expansion coefficient were shown
to have a large impact on momentum and heat transfer in stably stratified channel
flows (Zonta, Marchioli & Soldati 2012; Zonta 2013). High-viscosity regions dampen
the turbulent intensities, whereas low-viscosity regions enhance the intensities. In
the same study, a temperature-dependent thermal expansion coefficient was found
to have the opposite effect. Unstable density stratification in a horizontal channel
flow configuration was found to significantly increase momentum and heat transfer by
Zonta & Soldati (2014). These studies show that the nonlinear thermophysical property
relations for the thermophysical properties (non-Oberbeck–Boussinesq conditions) may
have a profound effect on flow statistics and flow structures. It is also interesting to
note here that Patel et al. (2015) found that the stability of streaks is significantly
affected by mean density and viscosity stratification. These findings are important,
as streaks not only contribute greatly to the turbulent shear stress (Willmarth & Lu
1972), but also are an integral part of the self-regenerating process of near-wall
turbulence.

In this paper, we will investigate how the variable thermophysical properties of
a heated (or cooled) fluid at supercritical pressure affect turbulent motions in a
qualitative as well as a quantitative manner. Firstly, we are interested in what the
influence of a mean density and dynamic viscosity variation is on the flow field.
Secondly, we would like to investigate how instantaneous density and dynamic
viscosity fluctuations affect the turbulent motions, and, more specifically, turbulent
structures such as the near-wall streaks and streamwise vortices, which are important
to the self-regeneration of turbulence in the near-wall region. Lastly, we want to
investigate the role of variable Prandtl number with respect to the generation of
turbulent structures, as it determines the magnitude of the thermal fluctuations and
therefore the thermophysical property fluctuations.

To this end, we will show results from direct numerical simulations (DNS) of
simultaneously heated and cooled turbulent supercritical fluids flowing upwards in an
annular geometry at a Reynolds number of 8000. A schematic of the investigated
geometry is shown in figure 2. The temperature crosses the pseudo-critical point
within the flow field. The inner wall of the annular geometry is kept at a high
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FIGURE 2. The annular geometry of the simulations. The inner and outer wall radii
(Rin and Rout), the length L and the inner and outer wall temperatures (Thot and Tcold) are
shown.

temperature, while the outer wall is kept at a low temperature. In this manner,
a statistically fully developed temperature and flow profile can be obtained. This
allows us to focus on local variable thermophysical properties effects on turbulence,
because effects such as a growing thermal boundary layer and mean streamwise flow
acceleration will not be present.

The governing equations and numerical methods of the DNS are presented in
§ 2. In § 3, we will discuss the effect of the mean density and viscosity profiles of
supercritical carbon dioxide (sCO2) on mean flow statistics first. Thereafter we will
show the influence of the instantaneous density and dynamic viscosity variations on
turbulent structures. Finally, we present a summary of the most important conclusions
in § 4. At the end of this work, three appendices can be found. In appendix A, mesh
generation and enthalpy power spectra are presented. In appendix B, numerical code
validations are shown. Appendix C outlines several derivations that are used in this
work.

2. Computational details
2.1. Governing equations

We assume that the heated supercritical CO2 flow under investigation may be
considered to be in local thermodynamic equilibrium. This assumption is valid for
length scales Λ that are larger than the correlation length scale ξ that is associated
with density fluctuations that arise due to variations in the number of molecules
in a given volume. Under the assumption that Λ > ξ , the fluid state is described
by the hydrodynamic conservation equations for a low-Mach-number fluid (Zappoli,
Beysens & Garrabos 2015). Experiments that were performed by Nishikawa & Tanaka
(1995) in order to calculate ξ in supercritical CO2 suggest that this assumption is
reasonable. Furthermore, we aim to investigate heated supercritical CO2 flows at
8 MPa, which is substantially higher than the pressure at the critical point (7.4 MPa).
Therefore, the low-Mach-number approximation of the Navier–Stokes equations is
numerically solved to simulate heated and/or cooled flows at supercritical pressure
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in cylindrical geometries. The low-Mach-number approximation has previously been
used to simulate such flows by Bae et al. (2005, 2008), Nemati et al. (2015) and
Patel et al. (2015). In the low-Mach-number limit of the Navier–Stokes equations,
the effect of acoustic waves on the solution is neglected. The pressure is decomposed
into a thermodynamic part p0(t) and a hydrodynamic part phy(t). The fluctuations
of the hydrodynamic pressure are assumed to be very small compared to the
thermodynamic pressure, so that all thermophysical property variations due to
hydrodynamic pressure fluctuations can be neglected. Therefore, all thermophysical
properties can be evaluated as a function of the enthalpy only. Well above the critical
pressure, the speed of sound shows a minimum at the pseudo-critical temperature.
For sCO2 at 8 MPa, the minimum value of the speed of sound is 179 m s−1. Thus
when considering bulk velocities of 1 m s−1, the Mach number is even less than
0.01, which validates the use of the low-Mach-number approximation.

Using dyadic notation and denoting a vector with a bold symbol, while denoting
a second-order tensor with a capital bold symbol, the governing equations for
conservation of mass, momentum and enthalpy in non-dimensional form read

∂tρ +∇ · ρu= 0, (2.1)

∂t(ρu)+∇ · (ρuu)=−∇phy + Fr−1ρ ẑ+ Re−1∇ · 2µS, (2.2)
where

S ≡ 1
2(∇u+ (∇u)T)− 1

3(∇ · u)I (2.3)
and

∂t(ρh)+∇ · ρuh= (Re Prh)
−1∇ · k∇T, (2.4)

in which ρ is the density, u the velocity, Fr the Froude number, ẑ the streamwise
unit vector, Re the Reynolds number, µ the dynamic viscosity, S the deviatoric
stress tensor, I the identity tensor, h the enthalpy, Prh the reference Prandtl number
based on a ratio of an enthalpy difference and a temperature difference, k the thermal
conductivity and T the temperature. All variables in the equations presented above are
scaled with bulk quantities, i.e. the spatial coordinates are scaled with the hydraulic
diameter Do

h, the velocity with the bulk streamwise velocity wo
b, and the time with

Do
h/w

o
b. The superscript o denotes a dimensional quantity. All thermophysical properties

were scaled with their respective values at the pseudo-critical point, i.e. ρ = ρo/ρo
pc

and µ = µo/µo
pc, where the subscript pc denotes a property at the pseudo-critical

temperature. The hydrodynamic pressure is therefore scaled with ρo
pcw

o
b

2. Both the
enthalpy and the temperature have been non-dimensionalized such that 0 6 h 6 1 and
0 6 T 6 1, i.e.

h= ho − ho
cold

1ho
, T = To − To

cold

1To
, (2.5a,b)

where To
cold represents the lowest possible temperature in the system and where ho

cold
equals ho(To

cold); 1T = To
hot − To

cold, where To
hot is the highest possible temperature;

and similarly, 1ho= ho(To
hot)− ho(To

cold). By scaling the conservation equations in this
manner, the Reynolds, Prandtl and Froude numbers are defined as

Re≡ ρ
o
pcw

o
bDo

h

µo
pc

, Prh ≡
µo

pc1ho

ko
pc1To

, Fr≡ wo
b

2

goDo
h
, (2.6a−c)

where go represents the magnitude of the gravitational vector, go = 9.81 m s−2,
ρo

pc = 4.75× 102 kg m−3, µo
pc = 3.37× 10−5 Pa s and kpc = 9.04× 10−2 W m−1 K−1;

see Kunz et al. (2007) and equations from Vesovic et al. (1990) and Fenghour et al.
(1998).
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2.2. Numerical methods

To obtain a solution for the momentum ρu = (ρu, ρv, ρw)T, which represent the
radial, circumferential and streamwise directions, respectively, and for the values
of ρh, equations (2.2) and (2.4) are numerically integrated using a second-order
Adams–Bashford explicit time integration scheme. Any derivatives with respect
to the radial direction are discretized using a sixth-order staggered compact finite
difference scheme that is outlined in Boersma (2011a). Derivatives with respect
to the circumferential direction and streamwise direction are calculated using a
pseudo-spectral method. After a solution is obtained for ρh, the predictor method
outlined by Najm, Wyckoff & Knio (1998) is used to calculate h. The density,
dynamic viscosity, thermal conductivity and temperature are calculated at each time
step using a third-order spline interpolation along an isobar, as a function of the
enthalpy h. Tabulated values of T , ρ, µ and k have been pre-computed using the
Helmholtz equation of state by Kunz et al. (2007) and the equations by Vesovic
et al. (1990) and Fenghour et al. (1998), which are included in the NIST standard
reference database (Lemmon, Huber & McLinden 2013). A pressure correction
scheme based on the projection method (McMurtry et al. 1986) is used to ensure
continuity, equation (2.1).

The numerical methods described above were previously used to simulate
incompressible turbulent flows with constant thermophysical properties in a pipe
geometry (Boersma 2011b) and in an annular geometry (Boersma & Breugem 2011).
The code was successfully validated for turbulent flows with variable dynamic
viscosity and density, which was described by Patel et al. (2015). Because the effect
of buoyancy is also studied in the present study, an extra validation study is included
in appendix B.

2.3. Case descriptions
In total, five cases have been simulated. The simulation parameters are summarized in
table 1. In case I, all thermophysical properties are constant, which is representative
of a turbulent fluid at subcritical pressure and at low heating (or cooling) rates. In
cases II and III, the thermophysical properties correspond to those of CO2 at 8 MPa.
Upward mixed convection (the combination of both forced and free convection)
effects are considered only in case III; all other cases are forced convection. Cases
IV and V are cases with artificial thermophysical property behaviour, which are
used to isolate either ρ or µ specific characteristics or effects. In these cases, all
properties are constant, except for the density (case IV) or the dynamic viscosity and
thermal conductivity (case V). The molecular Prandtl number Pr=µcp/k is equal to
2.85 in the reference case (I) and the variable density (IV) and viscosity (V) cases,
which is equal to the reference Prandtl number Prh in the sCO2 cases. In case V,
the thermal conductivity varies in the same way as the dynamic viscosity in order to
keep the molecular Prandtl number constant. By doing so, the thermal length scales
are of similar magnitude for cases I, IV and V. It can therefore be expected that
the magnitude of thermophysical property variations is similar in cases IV and V.
The molecular Prandtl number only varies in the sCO2 cases. The inner wall of the
annulus (r = Rin = 0.5) is kept at a constant temperature of 323 K, while the outer
wall (r = Rout = 1.0) is kept at a lower temperature of 303 K. By simultaneously
heating and cooling the fluid, a statistically fully developed turbulent flow can be
realized. The bulk Reynolds number is kept constant at 8000. The friction Reynolds
numbers at the inner wall and the outer wall, Reτ ,in and Reτ ,out, are listed in table 1.
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Case Properties Reτ ,in Reτ ,out Pr=µcp/k Flow condition Fr−1 Nr ×Nθ ×Nz

I Constant 276 264 Pr= 2.85 Forced 0 192× 480× 512
II CO2 at 8 MPa 275 220 Pr= 1.6–14 Forced 0 256× 768× 768
III CO2 at 8 MPa 310 221 Pr= 1.6–14 Mixed −0.1 256× 768× 768
IV Variable ρ 185 345 Pr= 2.85 Forced 0 192× 480× 512
V Variable µ 375 180 Pr= 2.85 Forced 0 192× 480× 512

TABLE 1. Summary of DNS considered at Reb = 8000. The reference Prandtl number
Prh equals 2.85 in all cases; and Reτ ,in = (Rout − Rin)/δν,in.

Case (1r)+in (r1θ)+in (1z)+in (1r)+out (r1θ)+out (1z)+out

I 0.55–2.24 3.60 8.60 0.53–2.10 7.22 8.19
II 0.42–1.65 2.25 5.71 0.30–1.32 3.60 4.50
III 0.50–1.97 2.51 6.40 0.33–1.33 3.62 4.62
IV 0.36–1.45 2.37 3.03 0.69–2.75 8.90 11.3
V 0.75–3.00 4.91 11.7 0.34–1.35 4.40 5.27

TABLE 2. Summary of the mesh size with respect to the viscous length scale
δν,in =µw,in/(ρw,inuτ ,in) near the inner wall and the outer wall, δν,out.

Case 1r/ηB r1θ/ηB 1z/ηB

I 0.57–1.20 1.12–7.00 4.00–8.71
II 0.24–1.75 1.20–7.10 1.69–9.70
III 0.22–1.75 0.60–6.60 1.48–8.40
IV 0.31–1.38 2.00–10.6 4.67–12.5
V 0.20–1.12 2.20–5.40 3.80–12.7

TABLE 3. Summary of the mesh size with respect to the Batchelor length scale ηB =
ηK/
√

Pr, where ηK represents the Kolmogorov length scale. The listed values correspond
to the whole computational domain.

The streamwise length Lz of the annular geometry equals 8Dh. Note that, in all cases,
with the exception of case III, the value of wo

bDo
h is fixed as (µo

pc/ρ
o
pc)Reb m2 s−1.

For case III, Fr−1 = 0.1, which results in wo
b = 8.2 cm s−1 and Do

h = 6.9 mm s−1.
The grid spacings, with respect to both the viscous length scale δν and the Batchelor

scale ηB=ηK/
√

Pr (the smallest spatial scale of the temperature field), are summarized
in tables 2 and 3. The grid spacings are comparable to those of both Zonta et al.
(2012) and Lee et al. (2013). For reasons of readability, further details regarding the
mesh, such as wall-normal cell width and power spectra of the enthalpy fluctuations,
are shown in appendix A.

3. Results
Our aim in this section is to investigate the effect of variables ρ and µ of a fluid

at supercritical pressure on the turbulent flow field. When discussing the results, the
emphasis will therefore be on the sCO2 cases (cases II and III) in comparison with
results of the reference case (case I). We will first discuss the property variations both
qualitatively and quantitatively. Thereafter, we will investigate the effect of the mean
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FIGURE 3. (Colour online) Instantaneous cross-sectional visualization of thermophysical
properties for the supercritical fluid cases (II and III). The upper third shows the Prandtl
number, the lower left part the dynamic viscosity and lower right the density.

property variation on the velocity statistics, such as first- and second-order moments,
as well as the production of the turbulent kinetic energy. Subsequently, we will
investigate the effect of instantaneous property fluctuations on the turbulent motions
of the fluid. To that end, we will look at near-wall streaks, as well as streamwise
vortices and how they are affected by the thermophysical property fluctuations.

3.1. Mean thermophysical property statistics
In all simulated cases, the inner wall was kept at a higher temperature than the outer
wall, which means that there is a mean radial enthalpy gradient inside the flow. As
such, the fluid is of low density and low dynamic viscosity near the inner wall and
vice versa near the outer wall, in the sCO2 cases (II and III). Figure 3(a) shows
instantaneous values of the Prandtl number, the density and the dynamic viscosity
in the forced convection sCO2 case (II). Near the walls, low-density/low-dynamic-
viscosity fluid is mixed in with high-density/high-dynamic-viscosity fluid due to the
turbulent motions of the fluid. The Prandtl number is largest at the pseudo-critical
temperature. Temperatures close to the pseudo-critical point can be found near the
inner wall.

Because there is a mean radial enthalpy profile, there are also mean density and
dynamic viscosity profiles. The mean density and dynamic viscosity profiles as well as
the mean Prandtl-number profiles of the forced convection sCO2 case (II) are shown in
figure 4(a,b). The mean variation of the thermophysical properties is most significant
close to the inner wall (y+ < 20), where the flow is heated, and near the outer wall,
where the flow is cooled. The mean property variation further away from the wall
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FIGURE 4. Radial profiles of mean properties and property fluctuations in the forced
convection sCO2 case (II). Black lines indicate forced convection sCO2 results. Grey lines
indicate results from the variable density (IV) and dynamic viscosity (V) cases. The
constant grey line in the top panels represents the constant density in cases I and V or
the constant viscosity in cases I and IV.

(y+ > 50) is very small, however. The mean variation of the properties in the mixed
convection sCO2 case (III) is very similar to these results. Note that, in the reference
case (I), all thermophysical properties are equal to unity.

Figure 4(c,d) shows the root-mean-square (r.m.s.) profiles of the property fluctuations.
The strongest fluctuations occur close to the walls, especially for y+ < 20. The
fluctuations are much stronger near the hot inner wall of the annulus than near the
outer wall of the annulus. This observation can be attributed to the fact that the
pseudo-critical point lies close to the inner wall. The average Prandtl number is
much higher in the forced convection sCO2 case (II) than it is in the variable density
(IV) and dynamic viscosity (V) cases for approximately y+ > 5. Large values of
the molecular Prandtl number cause large enthalpy fluctuations (see e.g. Kawamura
et al. 1998) and therefore locally steep enthalpy gradients, which in turn lead to
locally steep thermophysical property gradients. This explains why the thermophysical
property fluctuation intensities are much larger in the forced convection sCO2 case
(II) than they are in the variable density (IV) and dynamic viscosity (V) cases. The
largest normalized thermophysical property fluctuation intensity is 22 % (=ρrms/ρ) for
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FIGURE 5. Mean velocity profiles of (a) the variable density and viscosity cases (IV
and V, respectively) and (b) the forced and mixed convection sCO2 cases (II and III,
respectively). The grey lines represent results from the reference case (I).

the density and 18 % (= µrms/µ) for the dynamic viscosity in the forced convection
sCO2 case (II). For the variable viscosity case (V) the largest value of µrms/µ= 14 %,
while for the variable density case (IV) the largest value of ρrms/ρ = 10 %. The
thermophysical property variations of the mixed convection sCO2 case (III) are very
similar to that of the forced convection sCO2 case (II) and are not shown here.

3.2. Mean velocity statistics
In the previous section we described the variation of the thermophysical properties ρ
and µ in terms of the mean radial profiles and the r.m.s. values of the thermophysical
property fluctuations. In this section we will describe how the mean radial thermophy-
sical property variations modulate the turbulent flow using classical mean flow
quantities, such as mean velocity and turbulent stress profiles.

3.2.1. Velocity profiles
Figure 5(a,b) shows the mean radial streamwise velocity profiles w(r), where ( )

denotes a time-averaged mean quantity. In all variable property cases, the maximum
of w(r) shifts towards the hot wall and increases in magnitude, when compared with
the velocity profile of the reference case (I). This is a consequence of both the lower
mean density and dynamic viscosity values near the hot wall (vice versa near the outer
wall), since both the variable density (IV) and the variable dynamic viscosity (V) cases
show this behaviour. The combination of a radial mean density profile and a non-zero
Froude number (and thus a non-zero gravitational force) in the mixed convection case
(III) causes the maximum of w(r) to move even closer to the hot inner wall. The mean
strain rate ∂rw(r) is increased in the immediate vicinity of the hot wall and decreased
near the cold wall in all cases, except for the variable density case (IV).

3.2.2. Turbulent shear stress
To investigate the shifts in velocity profiles, the shear stress profiles can be analysed.

The total shear stress τ tot
rz may be written as the sum of the viscous stresses, a
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fluctuating viscosity stress term and the turbulent stress:

τ tot
rz = Re−1µ∂rw+ Re−1µ′S′rw − ρũ′′w′′. (3.1)

Note that, in this equation, ( )′ represents a fluctuation with respect to a Reynolds
average and ( )′′ stands for a fluctuating quantity with respect to a density-weighted
mean (or Favre average) (̃ ). From (3.1), it is clear that the viscous shear stress
scales with µ, while the turbulent shear stress scales with ρ. In all cases with
variable dynamic viscosity (II, III and V), the fluctuating dynamic viscosity stress
term was observed to be negligible, when compared to the other shear stresses, which
is in line with Zonta et al. (2012) and Lee et al. (2013) and it will therefore not be
discussed. By integrating the time-averaged streamwise component of the momentum
equation in the radial direction from Rin to r, an analytical expression for the total
shear stress may be obtained, assuming that the mean flow is steady state and thus
that the mean streamwise pressure gradient is balanced by the shear stress at the inner
and outer wall and the gravitational force acting on the flow (Petukhov & Polyakov
1988):

τ tot
rz (r)= Rinτin + (r2 − R2

in)∂zp/2+ Fr−1
∫ r

Rin

ρ(r)r dr, (3.2)

where τin is the shear stress at the inner wall. The mean streamwise pressure gradient
∂zp may be written as

∂zp/2= Routτout − Rinτin

R2
out − R2

in
+ Fr−1

R2
out − R2

in

∫ Rout

Rin

ρ(r)r dr. (3.3)

Equations (3.2) and (3.3) show that the total shear stress profile is dependent on
the mean dynamic viscosity profile, because τin = µ∂rw|r=Rin and τout = µ∂rw|r=Rout ,
as well as the effect of a mean radial density stratification in combination with the
gravitational force.

The buoyancy neutral streamwise pressure gradient (which can be obtained by
setting Fr−1= 0 in (3.3)) can be used to define a velocity scale that is convenient for
analysing shear stress profiles in annular geometries (Boersma & Breugem 2011):

u∗ =
(

1
2ρpcDh

Routτout − Rinτin

R2
out − R2

in

)1/2

. (3.4)

This velocity scale can be thought of as a weighted average of the friction velocities
at the inner wall and the outer wall of the annulus. Figure 6(a–d) shows the total
shear stress, as well as the turbulent shear stress of all four variable property cases.

In all variable property cases, except for the mixed convection case (III), the total
shear stress profiles are shifted, when compared with the shear stress in the reference
case (I), which is in line with the mean streamwise velocity results. In all cases, the
magnitude of the wall shear stress is smaller at the inner wall, but is larger at the outer
wall, when comparing these results with the reference case (I). In the variable viscosity
case (V, see figure 6d), the wall shear stress magnitude is smaller due to the lower
mean dynamic viscosity at the inner wall, even though the magnitude of the mean
strain rate is larger (see inset in figure 5a), when compared with the reference case.
The reverse is true for the outer wall. The variable density case (IV, see figure 6c) can
be explained as follows. As the variable density has no direct effect on the viscous
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FIGURE 6. Total and turbulent stress in (a,b) the forced and mixed convection sCO2 cases
(cases II and III) and (c,d) the variable density and variable viscosity cases (cases IV
and V). Grey lines indicate results from the reference case (I). Continuous lines represent
the total shear stress, while dashed lines denote the turbulent shear stress. The turbulent
shear stress is normalized in the same manner as the total shear stress.

stresses, the changes in the total shear stress profile must be explained by analysing
the turbulent shear stress; as the turbulent shear stress magnitude is smaller near the
inner wall region (when compared to the reference case), less high-momentum fluid
is transported from the bulk towards the inner wall, resulting in a smaller mean strain
rate magnitude (see the inset of figure 5a) and thus a smaller wall shear stress at
the inner wall. The reverse of this argument holds for the outer wall, i.e. due to the
fact that the turbulent shear stress is larger in the variable density case (IV) when
compared to that of the reference case (I), more high-speed momentum is transported
towards the outer wall, which thereby increases the magnitude of the outer wall mean
strain rate and thus the magnitude of the shear stress at the outer wall. The effects of
the variable viscosity and density on the shear stress profiles combine in the forced
convection case (II, see figure 6(a)), which simply results in a larger shift of the
total shear stress profile, when compared with the variable density (IV) and dynamic
viscosity (V) cases. It is interesting to note here that the effect of the variable viscosity
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FIGURE 7. Comparison of the turbulent intensities between the reference case (I) and the
sCO2 forced (II) and mixed (III) convection cases.

on mean strain rate magnitude in this case is slightly stronger than that of the density
effect (see inset in figure 5b). In the mixed convection sCO2 case (III, see figure 6b),
the interplay between the shear stress at the walls, the mean negative streamwise
pressure gradient and the gravitational force does not shift, but rather distorts, the
total shear stress profile. In all cases, it is clearly visible that the turbulent shear
stress changes in accordance with the total shear stress profile, as the magnitude of
the turbulent shear stress is bounded by that of the total shear stress. These results
show that the mean profiles of both the dynamic viscosity and the density change the
magnitude and shape of the turbulent shear stress. As a result, the velocity magnitude
increases in a region with less shear stress and decreases in a region with higher shear
stress.

3.2.3. Turbulent intensities
The previous section showed that the turbulent shear stress is appreciably affected

by the mean dynamic viscosity and density stratification. Here, we will investigate
the turbulent motions further. The turbulent intensities u′′2, v′′2 and w′′2 as well as
the turbulent kinetic energy k = 1

2(u′′ · u′′) are shown in figure 7. Near the inner
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wall, for y+ > 10, the magnitude of the streamwise fluctuations w′′2 in the forced
convection sCO2 case (II, see figure 7a) shows a large decrease when compared to the
reference case (I). Closer to the wall, i.e. y+< 10, there is almost no change. Similar
behaviour is observed for the other fluctuations (u′′2 and v′′2). The decrease in the
magnitude of the turbulent intensities is even more apparent near the inner wall in
the mixed convection case (III, see figure 7c). While in absolute value the decrease is
most apparent in the streamwise motions, it should be noted that, relatively, the other
motions are substantially affected as well. Consequently, the specific turbulent kinetic
energy, which is primarily determined by the streamwise velocity fluctuations, has
decreased as well. The outer wall regions in both cases (II and III, see figure 7(b,d)
show the exact opposite of what happens near the inner wall. Here, the turbulent
intensities and thus the kinetic energy have increased. Especially the wall-normal and
circumferential motions have increased in magnitude, while the streamwise velocities
have only increased slightly in magnitude.

The fact that all the turbulent intensities and the turbulent kinetic energy are
appreciably affected in the same manner by sCO2 thermophysical properties suggests
that the turbulent flow can relaminarize near a heated surface, or become more
turbulent near a cooled wall, in both forced convection and buoyancy-opposed mixed
convection conditions. The decrease (or increase) in intensities may however come
from different effects, such as changes in local Reynolds number, production of
turbulent kinetic energy, or changes to turbulent structures. This will be discussed in
the subsequent sections.

3.2.4. Local Reynolds-number effect
As a result of the mean density and dynamic viscosity profiles, the ratio of inertial

stress magnitude to the viscous stress magnitude has changed. A Reynolds number can
be defined that is representative of this ratio locally (Zonta et al. 2012). By ‘local’, we
refer to either the heated side of the flow or the cooled side. We define the following
local mean densities:

ρhot = 2
R2

z − R2
in

∫ Rz

Rin

ρ(r)r dr and ρcold = 2
R2

out − R2
z

∫ Rout

Rz

ρ(r)r dr, (3.5a,b)

where Rz is the radial location where the total mean shear stress is zero. The local
mean viscosities and velocities are obtained by replacing the density with the dynamic
viscosity or streamwise velocity, respectively, in (3.5). The local mean density and
dynamic viscosity can be used to define a local Reynolds number, or ratio of
convective stress to viscous stress:

Rehot = ρhot whot Dhot

µhot
and Recold = ρcoldwcoldDcold

µcold
, (3.6a,b)

where Dhot = 2(Rz − Rin) and Dcold = 2(Rout − Rz). The local Reynolds numbers are
shown for the different cases in table 4. In all variable thermophysical property cases,
the local Reynolds number near the hot wall is decreased, while the Reynolds numbers
near the cold wall are increased compared to the constant property reference case (I).
If we compare the turbulent shear stress of the forced convection case (II) to that of
the reference case (I), there is a maximum decrease of 43 % near the hot wall. The
change in the local Reynolds number, however, shows a decrease of 22 %. For the
outer wall, the increase in turbulent shear stress is matched somewhat better by the
increase in local Reynolds number. The mixed convection case (III) shows a similar
trend. These results show that the changes in ratio of the inertial stress to the viscous
stress are not sufficient in order to fully explain turbulence attenuation. This suggests
that thermophysical property variations have an effect on turbulence as well.
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FIGURE 8. Production of turbulent kinetic energy in the reference case (I), forced sCO2
convection case (II) and mixed sCO2 convection case (III).

Case Description Rehot Recold max((τ − τ ref )/τ ref )

I Reference 3600 (0 %) 4400 (0 %) 0 %
II Forced convection sCO2 2802 (−22 %) 5055 (+15 %) −43 %(hot), +23 %(cold)
III Mixed convection sCO2 1860 (−48 %) 5911 (+34 %) −65 %(hot), +28 %(cold)
IV Variable density 3046 (−15 %) 5700 (+30 %)
V Variable viscosity 3043 (−15 %) 5900 (+34 %)

TABLE 4. Local Reynolds numbers for the simulated cases. In the last column τ

denotes the turbulent shear stress ρũ′′w′′.

3.2.5. Production of turbulent kinetic energy
The shift in turbulent shear stresses and the increase of magnitude of the strain rate

near the inner wall (and decrease near the outer wall) that were described earlier for
the sCO2 cases lead to changes in the production of turbulent kinetic energy, which
may be written as Pk=−ρ(ũ′′w′′)∂rw̃. Figures 8(a) and 8(b) shows Pk near the inner
and outer wall regions, respectively. From these results, it is clear that, while the mean
strain rate ∂rw̃ may increase due to the low dynamic viscosity near the hot inner wall
(and decrease near the cold outer wall due to high dynamic viscosity), the decrease
in the magnitude of the turbulent shear stress is in fact of higher importance to the
production of turbulent kinetic energy.

3.3. Structures
While the previous section showed that the turbulent motions are affected by the
mean dynamic viscosity and density stratification, it did not show whether the variable
thermophysical property fluctuations can influence the turbulent motions of the fluid.
It has been shown that near-wall turbulence may be regarded as a self-regenerating
process, consisting of the formation of streamwise vortices and near-wall streaks as
well as their instabilities (Waleffe 1997; Jimenez & Pinelli 1999; Schoppa & Hussain
2002). A flow may relaminarize if this self-regenerating process is disrupted (Jimenez
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& Pinelli 1999; Kim 2011). We will investigate here how near-wall streaks, which
are largely responsible for w′′2, and streamwise vortices, which contribute to u′′2 and
v′′

2, are affected by the fluctuations in thermophysical properties.
In the simulations with variable density, the momentum ρu is a conserved quantity.

Furthermore, the density is continuous (as opposed to multiphase liquid flows, in
which the density is discrete, for example). Therefore, to investigate structures that
are relevant in the self-regenerating process, we chose to include the density in
the mathematical description of a structure. To analyse streaks, we will look at
(ρw)′ < 0, which for instance was also done by Duan, Beekman & Martin (2011).
Similarly, we will use the definition χz= (∇×ρu)z= r−1(∂r(rρv)− ∂θ(ρu)) to analyse
streamwise vortices. To distinguish from the classical vorticity ω = ∇ × u, we will
call χ ≡∇× ρu the momentum vorticity.

An evolution equation can be derived for the momentum vorticity by taking the
curl of (2.2). The complete derivation can be found in appendix C. The result can be
written as

∂tχ = −∇× l+ Re−1∇ ·µ∇ω
+Fr−1∇× ρ ẑ−∇× (ψρu+K∇ρ)
+Re−1∇ · (2∇µ× S), (3.7)

in which l ≡ χ × u is the Lamb vector, ψ ≡ ∇ · u the divergence of the velocity
and K ≡ (u · u)/2 the kinetic energy. This equation clearly shows the contributions
of the variable thermophysical properties, as the second line is equal to zero in
constant-density flows, whereas the last term is equal to zero in constant-viscosity
flows. For this reason, this equation will form the basis of our analysis of near-wall
streak evolution and the generation of streamwise vortices. The physical interpretation
of each term in (3.7) will be discussed for streaks and streamwise vortices separately,
after an observational analysis is made first, in the following sections.

3.3.1. Generation of near-wall streaks
The variations in thermophysical properties in the sCO2 cases (II and III) are found

to have a clear effect on the streaks. Figure 9 shows the streaks near both the hot
inner wall and the cold outer wall for the reference case (I) and the sCO2 cases
(II and III). The magnitude |(ρw)′| of the streaks at the hot inner wall is reduced in
the forced convection case (II, see figure 9b) when compared to the reference case
(I, see figure 9a); |(ρw)′| is further decreased in the mixed convection case (III, see
figure 9c). The reverse, however, is true for the cold wall: |(ρw)′| is increased in the
forced convection (II, see figure 9e) and mixed convection (III, see figure 9f ) cases.
The streaks also look slightly more disorganized in the forced convection case (II).
This is even more so for the mixed convection case (III). As the ejections of streaks is
largely responsible for the existence of the turbulent shear stress (Corino & Brodkey
1969), the results described above are consistent with our earlier observations in
§ 3.2.2, where we observed that the magnitude of the turbulent shear stress decreases
near the inner wall, and increases near the outer wall as a result of the variable
thermophysical properties.

To investigate the effect of variable thermophysical properties on the streaks in a
quantitative manner, we will extract instantaneous density and dynamic viscosity data
from individual streak realizations in a manner that is similar to the method described
by Schoppa & Hussain (2002):

(i) The location of local minima of (ρw)′, with respect to the circumferential
direction, denoted as θ0, are identified at constant y+.
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FIGURE 9. Visualization of the streaks defined as (ρw)′ < 0 near the hot (a–c) and
cold (d–f ) near-wall region (y+= 5). Darker shades indicate larger values of |(ρw)′|. The
direction of the flow is upwards. Only a part of the complete circumference is shown for
the cold outer wall region.
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FIGURE 10. Conditionally averaged profiles of the density and dynamic viscosity across
a streak at y+ = 10. The dashed vertical lines represent the edges of the streak where
r−1∂θ (ρw)′ = 0.

(ii) Data near the minima for different time instances are stored.
(iii) Data from the entire length of the streak and for different time instances are

superimposed on each other, so that the minima of (ρw)′ are located at the same
coordinate r−1(θ − θ0).

(iv) By averaging the data, average thermophysical properties of a streak are acquired.
(v) Any quantity (· · ·) that has been averaged according to the above described

procedure will be denoted as 〈(· · ·)〉.
Figure 10(a,b) shows the result of the conditional averaging (streak extraction)

procedure near the inner wall and the outer wall region, respectively, in the forced
convection case (II). Just as streamwise vortices redistribute mean shear to create
momentum streaks, they redistribute the mean density and dynamic viscosity profile,
which in turn exist because of mean heat transfer from the hot inner wall to the
cold outer wall. Therefore, streaks consist of low-density and low-dynamic-viscosity
fluid, near the hot inner wall. This is consistent with observations by Cheng & Ng
(1982). The exact opposite is the case for the streaks near the cold outer wall (i.e.
streaks have a high density and high dynamic viscosity). The thermophysical property
gradients across the streaks are the physical interpretation of the thermophysical
property fluctuations that were shown earlier in figure 4(c). The effect of these
property gradients on the generation of streaks will subsequently be discussed.

Jimenez & Pinelli (1999) investigated the evolution of streaks in a minimal box
geometry by first deriving a parameter representative of streaks and subsequently
deriving a transport equation for that parameter. Jimenez & Pinelli (1999) showed by
artificially damping a source term in their streak evolution equation that turbulence
can be suppressed or even completely quenched. In the current study, streaks depend
mostly on the radial and circumferential coordinates r and θ and they are coherent
in the streamwise coordinate z. In this study, however, streaks are not as well defined
as they are in Jimenez & Pinelli (1999), because the annulus in this study is not a
minimal box. We will therefore define the streak parameter as the conditional average
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〈· · ·〉 of the radial component of the momentum vorticity χ :

〈χr〉 =
〈
r−1∂θ(ρw)− ∂z(ρv)

〉= 〈r−1∂θ(ρw)′ − ∂z(ρv)
′〉≈ 〈r−1∂θ(ρw)′〉, (3.8)

where we have used that ∂θ(ρw) = 0. Therefore 〈χr〉 may be thought of as the
streamwise coherent streak flank strength and it is conceptually and physically close
to the streak parameter that was defined by Jimenez & Pinelli (1999). After applying
the conditional averaging operator 〈· · ·〉 to (3.7), an evolution equation for the
streamwise coherent streak flank strength is obtained. The end result is written as:

∂t〈χr〉 = −〈(∇ · l)r〉 + Re−1〈(∇ ·µ∇ω)r〉
+ (r Fr)−1〈∂θρ〉 − 〈(∇×K∇ρ)r〉 − 〈(∇×ψρu)r〉
+Re−1〈(∇ · 2∇µ× S)r〉. (3.9)

We have assumed here that the operator 〈· · ·〉 is linear. It is clear that, for
incompressible flows without variable thermophysical properties, all but the terms
on the first line will be zero. Thus, the first line represents the evolution of streaks
under constant thermophysical property conditions and it is the cylindrical counterpart
to the streak evolution equation that is presented by Jimenez & Pinelli (1999). These
first terms represent sources of the generation of streaks and diffusion of streaks,
respectively. The terms on the second line all represent effects that may arise due
to density gradients. The first term represents buoyancy, the second term involves
a torque between kinetic energy and density gradients, while the third term is
representative of thermal expansion effects, since, by (2.1), ψ =∇ ·u can be rewritten
as ψ = υ−1Dtυ, where υ is the specific volume. The last term in the equation marks
the effect of viscosity gradients on the evolution of streaks.

This equation, however, may not be suited to quantify the effects of variable
density and dynamic viscosity on the streak evolution with respect to the wall-normal
distance, because all terms will vanish after circumferential averaging. Therefore, we
multiply (3.9) with 〈χr〉 and subsequently average it with respect to the circumferential
direction over an interval that is equal to Rin1θ

+ = 100 and is centred on the streak
centre. This interval is close to the spanwise length of the minimal box that was
used by Jimenez & Pinelli (1999). The result is an evolution equation of what is in
essence the magnitude of the streamwise coherent streak flank strength:

∂t〈χr〉2/2 = − 〈χr〉〈(∇ · l)r〉︸ ︷︷ ︸
sources

+ Re−1〈(∇ ·µ∇ω)r〉︸ ︷︷ ︸
diffusion and dissipation

+ Fr−1〈χr〉r−1〈∂θρ〉︸ ︷︷ ︸
buoyancy

− 〈χr〉〈(∇×K∇ρ)r〉︸ ︷︷ ︸
torque

− 〈χr〉〈(∇×ψρu)r〉︸ ︷︷ ︸
thermal expansion

+ Re−1〈χr〉〈(∇ · 2∇µ× S)r〉︸ ︷︷ ︸
viscosity gradient

, (3.10)

where (· · ·) represents an average with respect to the circumferential direction. We
will use this equation not only to determine the magnitude of the variable properties
effects on the evolution of streaks, but also to investigate where exactly such effects
are important, with respect to the wall-normal distance. By multiplying (3.9) with 〈χr〉,
we have changed the meaning of the second term: it now represents the combined
effects of diffusion and dissipation.
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FIGURE 11. Budgets of the coherent streak flank strength B(〈χr〉2/2), equation (3.10),
in the reference case (I), the forced convection sCO2 case (II) and the mixed convection
sCO2 case (III). The results have been scaled with bulk quantities.

The budgets of (3.10), B(〈χr〉2/2), are shown for the reference case (I, in grey
lines) and the forced convection and mixed convection sCO2 cases (II and III, in black
lines) in figure 11. Near the inner wall (see figure 11a), the magnitude of the regular
sources in the sCO2 cases is clearly smaller than that of the reference case (I). While
the sources are balanced by only diffusion and dissipation in the reference case (I), it
is clear that, in the sCO2 forced convection case (II), the sources are also balanced
by thermal expansion, a kinetic energy gradient and density gradient torque and a
viscosity gradient shear interaction near the inner wall. In the mixed convection case
(III) (see figure 11c), the sources are balanced by the effect of buoyancy as well. The
kinetic energy gradient and density gradient torque has a modest, yet positive effect
on the coherent flank strength near the inner wall. The thermal expansion has clearly
a negative impact on the coherent streak flank strength, while the effect of viscosity
gradient shear interaction has a very small, yet positive effect (near y+ = 8) close to
the inner wall. The influence of the thermal expansion has the largest influence.
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Near the outer wall (see figure 11b,d), the variable properties have a negligible
effect, which is logical as the property variations are much smaller near the outer wall
than near the inner wall. At the outer wall, the viscosity gradient shear interaction
acts as a sink term close to the outer wall, and as a source term further away from
it. The thermal expansion and buoyancy effects are positive. The kinetic energy and
density gradient torque has the smallest contribution to the coherent streak flank
strength near the outer wall or y+ < 10. The thermal expansion and buoyancy terms
have opposite signs at the outer wall when compared with the inner wall. This can
be explained as follows. The thermophysical property gradients across the streaks and
high-speed fluid regions near the outer wall are of opposite sign when compared to
the thermophysical property gradients across the streaks and high-speed fluid regions
near the inner wall, as was shown in figure 10. From (3.10) it follows then that the
variable thermophysical property effects on the coherent streak flank strength should
be of opposite sign as well. These results for the budgets of the coherent streak flank
strength indicate that the variable thermophysical properties have a significant effect
on the formation of streaks. The most prominent variable thermophysical properties
effects are thermal expansion and the kinetic energy gradient and density gradient
torque.

While (3.10) allowed us to quantify the effect of the variable thermophysical
properties on the generation of streaks, it is interesting to investigate the meaning
of (3.10) further. The effect of the buoyancy term in the mixed convection case (III)
can be interpreted as follows. As streaks and high-speed fluid regions are formed
by the streamwise advection of a streamwise vortex, they naturally have different
densities, as was explained before (see also figure 10). Because a streak has a low
density near the hot inner wall, the magnitude of the gravitational force that acts on it
is smaller than the magnitude of the same force acting on a high-speed, high-density
region. As a result, both the streaks, as well as the high-speed fluid regions, will
be weakened. For example, |(ρw)′| will be smaller when compared to the forced
convection case (II). At the cold outer wall, the opposite is true; the streaks have
a high density, which results in a larger gravitational force on them, while the
high-speed regions have a low density, which results in a smaller gravitational force
acting on them. Therefore, the streaks and high-speed regions are enhanced near
the cold outer wall (|(ρw)′| is enlarged by the gravitational force). The combination
of density differences that exist across the streaks and the high-speed regions and
the downward-pointing gravitational force acts in such a way that it counteracts the
shear between the streak and high-speed region near the hot wall, while it enforces
it near the cold wall. As streaks are weakened near the hot wall and enhanced near
the cold wall, it can be said that the gravitational force has a stabilizing effect on
the flow field near the hot wall and a destabilizing effect near the cold wall in the
present configuration. This also became clear from examining the attenuated turbulent
intensities in figure 7(c,d).

The term containing the divergence of the velocity (ψ = ∇ · u = r−1∂r(ru) +
r−1∂θv + ∂zw) in (3.10) suggests that the thermal expansion across the streaks and
high-speed regions may be different. Figure 12 shows the divergence of the velocity at
y+ = 5 and y+ = 10 with iso-lines of high-speed momentum superimposed. At y+ = 5
areas of positive thermal expansion coincide with high-speed momentum regions.
However, this connection between thermal expansion and high-speed momentum
does not seem to exist further away from the hot inner wall at y+ = 10. Instead,
both negative and positive values of ψ can be find across a high-speed region. This
observation can be tested by calculating the expected value of ψ conditioned on the
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FIGURE 12. (Colour online) Contour plots of ∇ ·u in the (θ, z) plane in the forced sCO2
case (II). The white lines indicate iso-lines of (ρw)′ > 0.2.
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FIGURE 13. Expected value of ∇ · u conditioned on (ρw)′ in the forced convection sCO2
case (II) at y+ = 5 and y+ = 10.

fluctuating streamwise momentum (variable conditioning was also used by Wang et al.
(2012)). The results for y+ = 5 and y+ = 10 are shown in figure 13. At y+ = 5, the
observation that areas of positive thermal expansion coincide with high-momentum
fluid is indeed true. However, further away from the hot wall, this relation no longer
exists. At y+ = 10, the instantaneous values of ψ in figure 12 are large compared to
the expected value of ψ shown in figure 13. Therefore, areas of both positive and
negative ψ and can be found at a streak or a high-speed fluid region. The thermal
expansion term in (3.10) can be interpreted as the effect that a high-speed fluid
region or streak may consist of both positively and negatively expanding regions,
which interfere with the coherence or the formation of streaks.

The effect of the viscosity gradient shear interaction was earlier shown to act as a
source term close to the hot inner wall. Thus (∇ · 〈∇µ × S〉)r can be expanded as
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FIGURE 14. Part of 〈χr〉(∇ · 〈∇µ× S〉)r that is determined by viscosity gradient
fluctuations in the forced convection sCO2 case (II). Letters refer to (3.11).

(see Bladel 2007):

〈χr〉〈(∇ ·∇µ× S)r〉 =
〈χr〉

r

〈
∂
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)〉
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(
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r
∂µ

∂θ

)〉
︸ ︷︷ ︸

D

. (3.11)

Closer investigation of these terms shows that the viscosity gradient shear interaction
term is mostly determined by terms containing r−1∂θµ and ∂zµ – more specifically,
terms A and B in (3.11). This is shown in figure 14. In other words, the viscosity
gradient shear interaction term is determined by dynamic viscosity fluctuations, instead
of the mean radial dynamic viscosity profile.

3.3.2. Generation of streamwise vortical motions
Figure 15 shows instantaneous values of the streamwise momentum vorticity, χz,

for the reference, forced convection sCO2 (II) and mixed convection sCO2 (III) cases.
Streamwise momentum vorticity is clearly visible at both the inner wall and the
outer wall in the reference case (I), while the streamwise momentum vorticity is
much less apparent in the forced convection sCO2 case (II) near the inner wall. The
streamwise momentum vorticity magnitude is not visibly decreased in the mixed
convection case (III) near the inner wall. Both sCO2 cases, however, show increased
momentum vorticity near the outer wall, compared to the reference case (I). The
decrease of streamwise momentum vorticity near the inner wall suggests diminished
wall-normal and circumferential motion. Vice versa, an increase of momentum
vorticity suggests enhanced wall-normal and circumferential motion. The observations
of the streamwise momentum vorticity attenuation in the forced convection and mixed
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FIGURE 15. (Colour online) Cross-sectional visualization of the instantaneous streamwise
momentum vorticity in the reference case (I), forced convection sCO2 case (II) and mixed
convection sCO2 case (III).

convection sCO2 cases (II and III) are therefore consistent with our observations of the
turbulent intensities in figure 7. The r.m.s. values of streamwise momentum vorticity,
χz = r−1(∂r(rρv) − ∂θ(ρu)), near the inner (figure 16a) and outer wall (figure 16b)
reveal that the streamwise momentum vorticity has substantially decreased as a result
of the property variations of the supercritical fluid near the inner wall and that it has
increased near the outer wall. Near the inner wall, the difference between the inner
wall in the forced convection sCO2 (II) and the mixed convection sCO2 (III) cases is
negligible. Near the outer wall, however, the streamwise momentum vortices appear
to be spatially slightly larger in the mixed convection sCO2 case (III) than they are
in the forced convection sCO2 case (II). The magnitude of the streamwise momentum
vortices looks unaltered near the outer wall between the forced convection and mixed
convection sCO2 cases (II and III).

As before with the generation of streaks, we will use the evolution equation
for momentum vorticity to investigate how variable thermophysical properties
affect streamwise vortices. This equation is obtained by multiplying the streamwise
component of (3.7) with χz. The result is written as

∂t(χ 2
z /2) = − χz(∇× l)z︸ ︷︷ ︸

sources

+ Re−1
(∇ · χzµ∇ωz

)︸ ︷︷ ︸
diffusion

− Re−1∇χz · ∇ωz︸ ︷︷ ︸
dissipation

− χz(∇×ψρu)z︸ ︷︷ ︸
thermal expansion

− χz(∇K ×∇ρ)z︸ ︷︷ ︸
torque

+ Re−1χz (∇ · 2∇µ× S)z︸ ︷︷ ︸
viscosity gradient shear interaction

, (3.12)
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FIGURE 16. R.m.s. values of the streamwise momentum vorticity in the near-wall regions
in the reference case (I), forced convection sCO2 case (II) and mixed convection sCO2
case (III).

where the first line represents sources, diffusion and dissipation of streamwise
momentum vorticity, the second line represents the effects of variable density in
the form of thermal expansion and a kinetic energy gradient and density gradient
torque and where the third line represents the effect of variable dynamic viscosity
shear interaction, as before. The buoyancy term is not shown here, because
Fr−1(∇ × ρ ẑ)z = 0, which suggests that the streamwise momentum vortices are
not directly affected by buoyancy. This is also supported by the r.m.s. values of the
streamwise momentum vorticity near the inner wall in figure 16.

The budgets B(χ 2
z /2) of (3.12) are shown in figure 17 for the reference case (I)

and the sCO2 cases (II and III). Near the inner wall (figure 17a,c), in both the forced
convection and the mixed convection sCO2 cases (II and III), the contribution of the
regular sources is smaller than it is in the reference case, except for a small region
between y+= 8 and y+= 23 for the forced convection case and between y+= 10 and
y+ = 18 for the mixed convection case. Near the outer wall, however (figure 17b,d),
the contribution of the regular sources is larger for all y+. The viscosity gradient shear
interaction has a negligible effect on the formation of streamwise momentum vortices.
The effect of thermal expansion is more significant than the variable viscosity effect,
but only marginally. Both the variable viscosity and thermal expansion terms act as
sink terms. The torque created by the kinetic energy and density gradients, however,
has a significant effect, as it is larger than the combined effects of diffusion and
dissipation near the inner wall in both the forced convection case (II) and the mixed
convection case (III). This is not the case near the outer wall, where it is smaller, yet
still substantial compared to regular sources. The torque acts as a sink near the inner
wall, but as a source near the outer wall. The changes in the regular sources in the
sCO2 cases (II and III) compared to the reference case (I) combined with the effects
of the torque explains why the r.m.s. values of the streamwise momentum vortices of
figure 16 are smaller in the sCO2 cases (II and III) near the inner wall and larger near
the outer wall. The fact that the regular sources are larger near the outer wall in the
mixed convection case (III) than in the forced convection case (II) is consistent with
the r.m.s. values near the outer wall as well.
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FIGURE 17. Budgets of the streamwise vorticity B(χ 2
z /2), equation (3.12). Black lines

are used for the forced convection (II) and mixed convection (III) sCO2 cases, while grey
lines are reserved for the reference case (I).

The torque effect can be further clarified by looking at figure 18. In this figure,
a typical ejection of low-speed, low-density fluid near the hot inner wall is shown.
This ejection generates a region of negative streamwise momentum vorticity χ−z and
a region of positive streamwise momentum vorticity χ+z , which have been marked by
black iso-lines superimposed on the vector field (ρu, ρv)T in figure 18(a). The iso-
contours of the kinetic energy and the density, shown in figure 18(b), are clearly not
parallel, which indicates that −∇K×∇ρ=∇ρ×∇K is non-zero. Figure 18(c) shows
the kinetic energy and density gradient vectors. In the inner part of the mushroom-like
structure (region A and A′), the torque acts to create a region of positive streamwise
momentum vorticity near A and a region of negative streamwise momentum vorticity
near A′ (see figure 18d). At the top of the mushroom-like structure (region B and B′),
the opposite occurs: the torque acts to create negative streamwise vorticity near B′ and
positive streamwise vorticity near B. Therefore, the torque between the kinetic energy
gradient and the density gradient both counteracts as well as aids the streamwise
momentum vorticity generated by the unstable low-speed region. It is clear that the
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FIGURE 18. (Colour online) Four depictions of the same burst of a low-speed, low-density
region near the inner wall in the wall-normal plane. (a) The momentum vector field
(not all vectors are shown). The solid contour lines indicate positive streamwise vorticity,
while the dashed contour lines indicate negative streamwise momentum vorticity. (b) The
iso-density lines (black) and the iso-kinetic energy lines (white). (c) The gradient vectors
(not to scale) of the kinetic energy (white) and the density (black). (d) The locations of
positive and negative streamwise vorticity that are induced by the kinetic energy gradient
and density gradient torque.

kinetic energy and density gradient vectors are almost parallel at the top, yet almost
perpendicular to each other inside the mushroom-like structure. Thus, the magnitude
of the torque is much smaller at the top near B and B′ (as parallel gradients of the
kinetic energy and density result in ∇ρ ×∇K = 0) than the magnitude of the torque
near the inner part near A and A′ (where ∇ρ and ∇K make an almost 90◦ angle).
The net result is that the torque acts as a sink term to the formation of streamwise
momentum vorticity near a hot inner wall, which was also shown in figure 17. At the
cold outer wall, high-density fluid is ejected instead of low-density fluid. This means
that, for a similar mushroom-like structure near the outer wall, the density gradient
vector is of opposite sign when compared to the same vector near the inner wall.
Therefore, near the outer wall, the kinetic energy gradient and density gradient torque
acts as a source term for the formation of streamwise momentum vorticity on average,
which can also be seen in figure 17. From the direction of the density gradient vector
near the inner part of the mushroom-like structure it is clear that both ∂rρ as well as
r−1∂θρ are important here, which shows that the density fluctuations are important to
the generation of streamwise vortices and thus in the turbulence attenuation that may
occur in heated or cooled turbulent flows at supercritical pressure.
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3.4. Molecular Prandtl-number effect
In the previous discussion, it has become clear that thermophysical property
fluctuations that occur as a result of the self-regenerating process play an important
role in the generation of streaks and streamwise momentum vorticity. In this section,
we will investigate how variable property effects scale between the forced convection
sCO2 case (II), the variable density case (IV) and the variable dynamic viscosity case
(V). The magnitude of the thermophysical property fluctuations is only determined by
the magnitude of the enthalpy fluctuations (under the low-Mach-number approximation
assumption), which are in turn determined by the Reynolds number and the molecular
Prandtl number. The variable thermophysical property effects on the generation of
streaks and streamwise momentum vorticity should then be determined by the Prandtl
number as well. In turbulent flows, gradients of fluctuations are typically larger then
gradients of mean quantities (see e.g. Tennekes & Lumley 1972). Following Tennekes
& Lumley (1972), we will choose U to be a reference velocity scale and λ to be the
Taylor micro-scale. The gradient of a velocity fluctuation then is O(U /λ). Then, if
λth is the thermal energy analogue of λ and R the reference density scale, it follows
for density gradient fluctuations that

∇ρ ∝O
(

R

λth

)
=O

(
R

λ

λ

λth

)
=O

(
R

λ

√
Pr
)
. (3.13)

We used here that λ/λth=
√

Pr (see Batchelor 1959). Similar arguments can be made
for the divergence of the velocity:

∇ · u∝O
(

U

λth

)
=O

(
U

λ

λ

λth

)
=O

(
U

λ

√
Pr
)
. (3.14)

A similar estimate can be made for viscosity gradient fluctuations, but since the
variable density effects are of greater importance to the generation of streaks and
streamwise momentum vorticity, we will focus on the variable density effects only.
The scaling estimates (3.13) and (3.14) suggest that, if R (or U ) and λ are kept
constant under different conditions, then any property gradient term in (3.10) and
(3.12) should scale with

√
Pr. Qualitatively, this suggests that the magnitude of the

variable property effects between the sCO2 forced convection case (II) and the variable
density (IV) or dynamic viscosity case (V) scale with a factor of γ ≡ (Pr forced

/Prref )1/2,
if λ remains the same (which is reasonable because the local Reynolds numbers are
very similar). Note that Pr forced refers to the average molecular Prandtl number in
case II (which varies from 1.6 to 12), while Prref refers to the molecular Prandtl
number in cases I, IV and V (which is equal to 2.85). Figure 19 shows the factor γ
as a function of the wall distance. The profile of γ suggests that the variable property
effects of the sCO2 case (II) should be smaller than those of the variable density and
dynamic viscosity cases for y+ < 5 and vice versa for y+ > 5.

Figure 20 shows again the thermal expansion term and the kinetic energy gradient
and density gradient torque of (3.10), but now for both the sCO2 case (II) and the
variable density (IV) case. The region where the thermal expansion effect in the
variable density case (IV) is larger than that of the sCO2 forced convection sCO2

case (II) is found for y+< 6, which is close to the point where Pr forced =Pr ref . It can
be seen that the thermal expansion effect in the forced convection sCO2 case shows
a sudden increase near y+ = 10, when compared with the variable density case (IV).
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FIGURE 19. The factor γ ≡ (Pr forced
/Prref )1/2 as a function of the inner wall distance.

The vertical dotted line denotes the position where Pr forced = Prref .
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FIGURE 20. Comparison of the thermal expansion term (a) and kinetic energy gradient
and density gradient torque (b) in (3.10) between the sCO2 forced convection case (II) and
the constant molecular Pr cases (grey lines). The vertical dotted line denotes the position
where Pr forced = Prref .

This is logical according to estimate (3.14), as γ strongly increases around y+ = 10
(see figure 19), with respect to the wall-normal distance. The physical interpretation
is that, due to the increase of the Prandtl number with y+, the thermal fluctuations
will increase with y+ in the forced convection sCO2 case when compared to the
variable density case (IV), which results in the sudden increase in the magnitude of
the thermal expansion term.

The kinetic energy gradient and density gradient torque shows a similar trend as the
thermal expansion term. The torque is smaller in the forced convection sCO2 case (II)
for y+ < 4.3 than it is in the variable density case (IV). For y+ > 5, the torque effect
is much larger in the sCO2 case (II). Near y+ = 10, the torque is slightly negative in
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FIGURE 21. Comparison of the kinetic energy gradient and density gradient torque
equation (3.12) between the sCO2 forced convection case (black lines) and the variable
density case (grey lines). The vertical dotted line denotes the position where Pr forced =
Prref .

the variable density case (IV), while in the forced convection sCO2 case it is slightly
positive: this difference cannot be explained by the scaling estimate (3.13).

The effect of the kinetic energy gradient and density gradient torque on streamwise
vorticity is shown in figure 21. The region where the kinetic energy gradient and
density gradient torque is larger in the variable density case (IV) than it is in the
forced convection sCO2 (II) case is found for y+ < 8.6. Before, we assumed that
λ would be constant between the cases. However, if we assume that this does not
hold for the momentum vorticity length scales, the scaling estimate (3.13) suggests
that the effect of the kinetic energy gradient and density gradient torque in the
forced convection sCO2 case (II) to that of the variable density case (IV) scales as
(λIV/λII)γ . This suggests that the spatial scales of the streamwise momentum vorticity
are different between the sCO2 (II and III) and variable density (IV) cases.

While the scaling arguments that were made above should be seen as a qualitative
analysis, it is reasonable to assume that the variable Prandtl number of fluids at
supercritical pressure has a clear effect on the evolution of turbulent structures,
through the magnitude of the variation of the density gradients.

4. Conclusions
In this paper, we have investigated by means of DNS the effect of variable

thermophysical properties of supercritical fluids on a turbulent annular flow that is
heated at the inner wall and cooled at the outer wall. Near the inner wall, the fluid
has a low density and dynamic viscosity and vice versa at the outer wall. Owing to
the fact that the two walls are kept at different temperatures, a mean radial dynamic
viscosity and density profile exists. Large density and viscosity variations were found
near the inner wall.

While looking at classical turbulent statistics, it was found that the mean velocity
profiles, turbulent shear stresses and turbulent intensities were significantly affected
by the mean variation in dynamic viscosity and density. The differences in mean
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strain rate and turbulent shear stresses lead to a decreased production of turbulent
kinetic energy near the hot inner wall and an enhanced production near the outer
wall. However, these observations did not show if the variable properties have a
direct influence on turbulent motions. To investigate further, turbulent structures were
analysed in detail.

As streamwise momentum vortices interact with the mean velocity to create
streaks, they also interact with the mean density and mean dynamic viscosity. As
a result, low-speed streaks near the hot wall have a low density and dynamic
viscosity, compared to the high-speed fluid that surrounds them. Both positive and
negative thermal expansion regions existing within the streaks were found to have
a negative impact on the coherence of the streaks. The dynamic viscosity gradient
across the streaks was observed to act as a source term very close to the inner
wall and to be negligible when compared to variable density effects. Buoyancy acts
to counteract the shear between low-density momentum streaks and high-density,
high-speed regions in buoyancy-opposed flow. The opposite holds for the cold outer
wall, as the thermophysical property gradients across the streaks are of opposite
sign compared to the gradients across the streaks near the inner wall. The density
and dynamic viscosity fluctuations therefore influence the streamwise momentum
fluctuations directly.

The streamwise vorticity was found to be negligibly affected by the dynamic
viscosity fluctuations and thermal expansion. However, the torque between the kinetic
energy gradient and the density gradient was found to act as a very large sink term
near the inner wall and as a source term near the outer wall. It was shown that
streamwise momentum vorticity, created by the instability of a low-speed region, is
counteracted or enhanced by this torque. Both the radial density gradient as well as the
circumferential density gradient were found to be important; the density and dynamic
viscosity fluctuations therefore also influence the wall-normal and circumferential
turbulent motions of the fluid.

As both streaks and streamwise vortices are important to the self-regenerating
near-wall cycle, it is feasible that a complete disruption of this cycle, and thus
relaminarization, may occur as a result of thermal expansion, a viscosity gradient
shear interaction, buoyancy as well as a kinetic energy gradient and density gradient
torque in heated supercritical fluids. In other words, local thermophysical property
variations can be responsible for decreased or increased turbulent motions in heated
or cooled fluids at supercritical pressure.
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Appendix A. Mesh generation and enthalpy power spectra
The wall-normal mesh size is calculated according to

1r(n)= 1
0.65

(
1/8
N
+ 6

n4

N5
− 12

n3

N4
+ 6

n2

N3

)
, (A 1)
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FIGURE 22. (a) Wall-normal mesh width and (b) radial distance versus grid point number
according to (A 1) for N = 256.

10–2

10–4

10–6

10–8

100

10–2

10–4

10–6

10–8

100

10010–110–210–3 10010–110–210–3

A
B

(a) (b)

FIGURE 23. (a) Streamwise and (b) circumferential power spectra of enthalpy fluctuations.
Curve A corresponds to the location where hrms is largest, and curve B refers to the
location where Pr is largest.

where 1r is the wall-normal size, n the grid number and N the total number of grid
points in the wall-normal direction. This leads to a modest stretching of the cells, as
can be seen in figure 22(a,b). Power spectra of the enthalpy fluctuations are shown
in figure 23(a,b) for the streamwise and circumferential directions, respectively, at
two different points (A and B) in the forced convection sCO2 case. Point A refers
to the wall-normal location where the enthalpy fluctuations are the largest (near the
hot wall), while point B corresponds to the wall-normal location where the mean
molecular Prandtl number has its maximum. At point A at least six decades are
resolved, while at point B at least three decades are resolved. There is a small
build-up of energy at the highest wavenumbers, which is assumed to be too small to
affect the results in this paper. As the momentum scales are larger than the thermal
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scales for Prandtl numbers larger than unity, the mesh can be considered to be
sufficient to resolve all momentum scales.

Appendix B. Validation of buoyancy influence

Because the effect of buoyancy is also studied in the present study, the code was
also validated against two experiments by Carr, Connor & Buhr (1973). In these
experiments, denoted as N10 and N12, upward-flowing air (at a bulk Reynolds number
of 5300) is heated in a pipe at atmospheric pressure. The same system was simulated
using the code on a mesh with 128× 256× 256 grid points and a domain length of
six hydraulic diameters. Mean velocity and temperature measurements are compared
with the results from the DNS in figure 24(a) and the turbulent heat flux is compared
in figure 24(b). The results validate the code, since there is good agreement between
the DNS results and the measured experimental data.

Appendix C. Derivation of the momentum vorticity evolution equation

Here, we will show how the derivation of the evolution equation of the momentum
vorticity can be derived. We will use various vector and tensor identities that can be
found in Bladel (2007) or Gurtin, Fried & Anand (2010). In such identities, f will
denote a scalar, a and b vectors, and T a second-order tensor. Furthermore, we will
define χ ≡∇× ρu, ω≡∇× u, K = (u · u)/2, l= χ × u and ψ ≡∇ · u.

Taking the curl of the Navier–Stokes equations for momentum in conservative form
yields the following terms:

∇× ∂ρu
∂t︸ ︷︷ ︸

I

+∇×∇ · (ρuu)︸ ︷︷ ︸
II

=−∇×∇p︸ ︷︷ ︸
III

+∇× ρg︸ ︷︷ ︸
IV

+∇×∇ · 2µS︸ ︷︷ ︸
V

. (C 1)
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The third term (III) equals 0, as it is the curl of a gradient. The other terms can be
rewritten as follows. First,

I: ∇× ∂ρu
∂t
= ∂(∇× ρu)

∂t
= ∂χ
∂t
. (C 2)

Using the differential dyadic identity ∇ · (ab)= (∇ · a)b+ (a · ∇)b, we can write

II: ∇×∇ · (ρuu)=∇× ((∇ · u)ρu)︸ ︷︷ ︸
IIA

+∇× (u · ∇ρu)︸ ︷︷ ︸
IIB

, (C 3)

and then, from the vector identity ∇(a · b)= a×∇× b+ b×∇× a+ b · ∇a+ a · ∇b,
IIB can be rewritten as

IIB: u · ∇ρu=∇(ρu · u)− ρu · ∇u− u× (∇× ρu)− ρu× (∇× u). (C 4)

Using the same vector identity as before to rewrite u ·∇u, together with the identities
for χ and ω, yields

IIB: u · ∇ρu=∇(ρu · u)− ρ∇
(u · u

2

)
+ ρu×ω− u× χ − ρu×ω. (C 5)

Noting that the curl of a gradient equals zero, we may write

∇× (u · ∇ρu)=−∇× ρ∇
(u · u

2

)
−∇× u× χ . (C 6)

Thus, with (C 3) and (C 6) and noting that ∇× ρ∇K =−∇×K∇ρ, term II becomes

II: ∇×∇ · (ρuu)=−∇× u× χ +∇× (ρψu)−∇× ρ∇K. (C 7)

Finally, using the identity ∇× (∇ · T )=∇ · (∇× T T), term V can be rewritten as

V: ∇× (∇ · 2µS)=∇ · (∇× 2µST)=∇ · (∇× 2µS). (C 8)

With the identity ∇× f T =∇f × T + f∇× T , we can now write

∇ · (∇× 2µS)=∇ · (2∇µ× S)+∇ · 2µ(∇× S). (C 9)

Noting that S = 1
2(∇u)+ 1

2(∇u)T − 1
3(∇ · u)I , the last term here can be simplified

further using the identities ∇× (∇a)= 0, ∇× (∇a)T=∇(∇× a) and ∇ · (∇× f I)= 0:

∇ · 2µ(∇× S)=∇ ·µ∇ω. (C 10)

Collecting all terms gives

∂χ

∂t
= −∇× l+∇ ·µ∇ω
+∇× ρg−∇× (ψρu+K∇ρ)
+∇ · (2∇µ× S), (C 11)

which is the equation that is used in § 3.3.
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