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Summary

To maximize resource utilization, wind turbines are densely arranged within wind farms,
resulting in wake-induced losses that impact power output and revenue generation. To
address these effects, wind farm control strategies have been developed to coordinate turbine
operations, reducing power losses and alleviating fatigue loads on turbines. This thesis
investigates yaw-based active wake control—a wake redirection approach that deliberately
misaligns turbines with incoming wind flow—to boost power production for downstream
turbines.

The current state-of-the-art wind farm controllers rely on pre-optimized values stored in
look-up tables, which are derived from model-based approaches under steady conditions.
However, these controllers become suboptimal when site conditions such as changing at-
mospheric factors or offline turbines are encountered. To address this limitation, this thesis
developed a real-time model-based controller that adapts to off-design conditions, enabling
a more effective wake-steering strategy and accessing the realistic power production poten-
tial of wind farm control. Accordingly, the overall objective of this thesis was formalized
as:

”To develop and evaluate the performance of a real-time wake steering wind farm con-
troller that addresses the operational and environmental challenges specific to large-scale
wind farms.”

More specifically, this thesis addressed four key sub-research questions through scientific
arguments. First, it examined the use of wind turbine sensor data to capture heterogeneous
wind conditions, enabling engineering wake models to account for neighboring wind farm
effects and reducing model error from 10% to 6%. The second sub-question focused on
developing an optimization strategy based on wake interactions that remain computation-
ally efficient as the number of turbines increases. The developed distributed framework
maintained a difference of less than 0.4% compared to the centralized method. Addition-
ally, the third question explored the calibration of wake model parameters to maintain the
controller’s adaptability to dynamic, real-time environmental conditions. A closed-loop
approach demonstrated an average power gain of 1.23%, outperforming the 1.19% gain
achieved by the open-loop method. Lastly, the thesis assesses the effect of incorporating
offline turbines into the wake steering strategy by addressing the fourth research question
concerning their influence on optimal set points.

The research enhances the application of wake steering strategies by advancing model-based
closed-loop control, enabling the integration of real-time site conditions for realistic power
gains. Leveraging on-site data proved effective for dynamically capturing flow heterogene-
ity and adjusting wake model parameters, significantly improving wind farm flow power
predictions. Future research should further explore incorporating wind direction variability
to further improve the accuracy of wind farm models and optimize cluster formation in
distributed optimization setups.
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Chapter 1

Introduction

1.1. Renewable response to climate crisis

Climate change is an undeniable reality, predominantly driven by human activities. Since the
dawn of the Industrial Revolution in the early 1900s, our planet has experienced a rapid and
unprecedented rise in temperature. The impact of the climate crisis extends far beyond rising
temperatures. It also encompasses environmental disruptions such as worsening droughts
and floods, and the accelerated melting of glaciers and ice sheets. The fundamental driver
of global average temperature increase is the accumulation of greenhouse gases, including
CO2, in the Earth’s atmosphere. These gases trap solar heat, leading to a progressive rise
in global temperatures. Human activities, including deforestation and the burning of fossil
fuels, are the primary sources of these greenhouse gas emissions. Consequently, there is a
clear and critical link between human actions and the ongoing rise in global temperatures.

An important number related to climate science and policy is the 1.5◦C climate threshold.
By definition, it represents heating of the global surface by 1.5◦C higher than pre-industrial
temperatures. That’s also the level of global warming that world leaders from 195 nations
promised in the Paris Agreement to try to keep the long-term temperature rise below [1].
Before the Paris Climate Agreement, the world was on a trajectory toward a catastrophic
4◦C temperature rise by the end of the century. However, thanks to the policies and pledges
enacted post-Paris Agreement, the potential warming could be curtailed to around 2 to
2.4◦C. Yet, as depicted in Figure 1.1, achieving the crucial 1.5◦C target demands far more
drastic and immediate actions. This underscores the critical need for intensified global
efforts to mitigate climate change and secure a sustainable future.

Global warming above the critical threshold of 1.5◦C has already impacted between 20%
and 40% of the global population across various regions as early as the decade 2006 −
2015 [2]. A species that faces extinction due to a temperature rise exceeding 1.5◦C will
remain extinct even if future efforts manage to reverse the effects. Fortunately, the change
seems to be on the horizon as many countries recognize the gravity of the situation and
strive towards net-zero greenhouse gas emissions. Recently, approximately 145 countries—–
including major emitters such as China, the European Union, the USA, and India—have
pledged to implement net-zero targets. These commitments signal a critical shift toward

1
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Figure 1.1.: Projected warming levels and historical greenhouse gas emissions under various
climate action scenarios. Emissions are measured in gigatons of carbon dioxide equivalent
(GtCO2e) [1].

addressing climate change, aiming to mitigate its irreversible effects on both biodiversity
and human populations.

Renewable energy is one of the most effective tools the human race has against climate
change. However, establishing a renewable energy ecosystem is not straightforward, but
the benefits are enormous. Low-emission renewable sources—such as solar, wind, hydro
and nuclear power— have the potential to reduce or replace the reliance on fossil fuels
for powering homes and businesses. Achieving a substantial boost in the renewable sector
necessitates collaborative efforts between the public and private sectors, with governments
playing a central role in fostering a supportive environment.

1.2. Wind Energy: An emerging energy resource

The kinetic energy available in the Earth’s Atmospheric Boundary Layer (ABL) is sufficient to
meet the current and future energy demands of the world [3]. Wind energy, a fast-growing
renewable resource, harnesses this kinetic energy through the movement of air masses and
holds the potential to combat global climate change. However, to avoid the critical warming
threshold of 1.5◦C, rapid implementation is essential [4].

The advantages of wind energy extend beyond environmental benefits. Nations have em-
braced wind power generation as a strategy to reduce energy imports, achieve economic
and political independence, and enhance national security 1. As a result, the past decade
has witnessed tremendous growth in wind energy, with annual capacity increasing signif-
icantly. Projections indicate that by 2030, wind energy capacity will surge to four times its
2020 levels, and by 2050, it could increase by as much as fifteen times [6].

1The transition to wind energy is fostering new international collaborations across both academic and political
spheres. Initiatives such as the European Academy of Wind Energy exemplify academic partnerships, while
political and economic alliances, like the North Seas Energy Cooperation (NSEC), illustrate the growing political
commitment to wind energy development [5].

Master of Science Thesis V. Rajoria



Introduction 3

Wind energy has the potential to become a major source of net-zero-emission energy, given
the Earth’s abundant wind resources [7]. However, significant obstacles hinder its widespread
adoption. Economically, the high initial capital required for wind energy projects is a barrier,
alongside issues like price volatility, transmission limitations, regulatory uncertainties, and
restricted access to financing. Technically, one of the primary challenges is integrating wind
energy into existing power grids to ensure a reliable power supply, despite fluctuations
in wind availability. Moreover, spatial limitations and the need to balance land use with
environmental protection further complicate wind farm development. Addressing these ob-
stacles is crucial for wind energy to play a transformative role in the global transition to a
sustainable energy future.

A major goal for the wind sector is to design cost-effective turbines that maximize energy
capture from wind. However, the energy capture is limited by what is called the Betz limit,
implying that a horizontal-axis wind turbine cannot extract more than 59 % of the energy
contained in a wind stream [8]. Over the years, the advancement of wind turbines driven
by a combination of strong engineering and a fierce entrepreneurial spirit has resulted in
modern turbines that can extract energy order of 40-50 % of kinetic energy. Although wind
turbines have sufficiently high energy conversion efficiency, both industry and academia
have shifted their focus towards placing wind turbines in clusters to tackle the challenges
of limited space and lower Levelised Cost of Energy (LCOE). This clustering can impact the
overall performance of individual turbines due to factors like wake effects.

When placed together, the wake developed from upstream turbines impacts the performance
of the downstream turbines as illustrated in Figure 1.2. A wake airflow region is defined by
a reduction in velocity and an increase in Turbulence Intensity (TI) [9]. This results in lower
energy extraction for downstream turbines and accumulation of greater fatigue loads with
time [9]. At the wind farm level, wake effects can lead to power production losses of up to
54% [10] and annual revenue reductions of approximately 25% [11].

Addressing efficiency losses due to wake interactions is crucial for making wind energy
economically viable. Two primary strategies are commonly studied to enhance wind farm
power production. The first strategy is layout optimization, which involves determining the
optimal sitting of turbines to maximize the annual energy production of the wind farm. Al-
though extensive academic research exists on wind farm layout optimization, its industrial
application remains limited2 due to operational constraints such as wiring costs, mainte-
nance requirements, and challenging terrain properties. The second approach to mitigate
revenue losses caused by wake effects is wind farm flow control, which is also the primary
focus of this thesis and is discussed in detail in the following section.

1.3. Wind farm flow control

A wind farm flow control strategy aims to maximize overall wind farm power rather than
optimizing individual turbine performance. The power output of a wind turbine can be ad-
justed conventionally by altering the generator’s torque, blade pitch angle, and nacelle yaw
alignment. Figure 1.3 provides a visual representation of the control variables and major
components within a typical wind turbine. By intentionally reducing the power of upstream

2Many large-scale operational offshore wind farms, such as Anholt, Walney, Thanet, Centrica Lincs, Bard1, and
Horns Rev2, employ staggered array layouts with sufficient spacing between turbines in the dominant wind
direction.

Master of Science Thesis V. Rajoria
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Figure 1.2.: Wake visualization in the Horns Rev offshore wind farm located in Denmark.
The wakes are visible as vapour trails, clearly showing that a wind turbine can be the wake
of multiple turbines resulting in a cumulative reduction in wind speed. Photographer:
Christian Steiness (February 12th, 2008) [12].

turbines through adjustments in one or more Degree of Freedom (DOF), the strategy en-
hances the power output of downstream, waked turbines. In essence, the control settings of
individual turbines are modified to achieve a global objective, such as power maximization.
This approach mitigates wake losses and achieves higher overall power generation.

The three primary strategies for wind farm flow control are axial induction control, wake
redirection control, and wake mixing [14]. Axial induction control, often called wake mitiga-
tion, operates by adjusting blade pitch and generator torque to reduce the rotor’s efficiency
and influence the resulting velocity deficit in the wake. Wake redirection control, or wake
displacement, involves deliberately misaligning the turbine with the incoming flow through
yaw DOF (the focus of this thesis, see Section 1.7) or individual blade pitch adjustments [15].
Figure 1.4 visualizes the concept of wake redirection. Finally, wake mixing control dynam-
ically varies the thrust coefficient to break down the wake structure and enhance mixing
with the free-stream flow, achieved through either individual pitch control [16] or collective
pitch variation [17]. Table 1.1 provides a broad overview of the key challenges and insights
from both experimental and numerical evaluations for each strategy, as documented in the
literature.

For wake control design and evaluation, researchers commonly utilize model-based ap-
proaches. These approaches leverage wind farm flow models to simulate aerodynamics
and determine optimized control set points. The wind farm flow models can range from
simplified, analytical-based engineering models to high-fidelity Computational Fluid Dy-
namics (CFD) simulations. The power output from the wind farm model is dependent on
the wake recovery properties, which then change with the atmospheric condition and hence
with time. Consequently, a key challenge for model-based controllers is adapting the models
to reflect real-time atmospheric changes. Detailed discussions on wind farm flow models
and their types are covered in Section 1.4.

3More information about Siemens-Gamesa’s Wake Adapt solution: https://www.siemensgamesa.com/global/

en/home/press-releases/191126-siemens-gamesa-wake-adapt-en.html

Master of Science Thesis V. Rajoria
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Figure 1.3.: Control variables and major components inside a horizontal-axis wind turbine.
Wind farm flow control strategies optimize wind farm power by adjusting generator
torque, blade pitch angle, and nacelle yaw alignment [13].

Figure 1.4.: Visual representation of static wake redirectional control. Turbine 1 is intention-
ally misaligned with the incoming horizontal wind flow, deflecting the wake and exposing
Turbine 2 to higher wind speeds and increased power output [18].

Master of Science Thesis V. Rajoria
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Strategy Practical Considerations Experimental Results

Axial Induction

• A reduction in thrust force
results in lower turbulent
mixing, impacting wake
recovery and thus reduc-
ing expected power in-
creases [19].

• Minimal to no improve-
ments seen in annual en-
ergy production in wind
tunnel and field experi-
ments [20, 21].

Yaw-Misalignment

• The complex response of
wakes to yaw misalign-
ment and the influence of
atmospheric conditions on
wake shape in yaw are less
extensively studied [14].

• Demonstrated increase
in power production
in simulation studies
[22, 23], wind tunnel
experiments [24], field
experiments [25], and
also industrial products
(e.g., Siemens-Gamesa
Renewable Energy, Wake
Adapt3).

Wake-Mixing

• Rapid fluctuations in
thrust force can signifi-
cantly impact blade and
actuator loads, necessitat-
ing careful implementa-
tion.

• Showed potential for in-
creased power production
in wind tunnel tests [26],
but is yet to be tested in
the field.

Table 1.1.: Key challenges and main experimental outcomes associated with three primary
wind farm flow control strategies: Axial Induction, Yaw-Misalignment, and Wake-Mixing.

Master of Science Thesis V. Rajoria
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In a state-of-the-art wind farm control, a steady-state wind farm model is used to compute
optimized control set-points under quasi-steady wind conditions. The pre-optimized con-
trol set-points are then stored in look-up tables and referenced in real-time operations to
maintain efficient performance. However, this open-loop approach can become sub-optimal
when actual site conditions diverge from those used to generate the look-up table. For
instance, if individual turbines go offline for maintenance, the controller cannot adapt dy-
namically, potentially diminishing the effectiveness of the control strategy under varying
turbine availability.

In contrast, a closed-loop approach allows for real-time optimization, adapting to evolving
conditions within the wind farm. A schematic of this control loop is shown in Figure 1.5.
Here, real-time wind farm measurements are continuously fed into a model adaptation block
that updates wake model parameters, such as the wake recovery factor and wake deflection.
Tuning the wind farm model with the on-site measurement allows for continuous alignment
between the modeled and actual wind farm flow physics. Data assimilation methods, such
as the Ensemble Kalman Filter (EnKF), can be employed for time-based parameter estimation
[27]. Overall the closed-loop system constantly utilizes on-site wind data to optimize turbine
yaw angles, providing adaptive set-points to maximize energy production.

A study by Doekemeijer et al. (2020) examined both open-loop and closed-loop controllers
based on steady-state models for wind farm control [13]. Firstly, the open-loop approach was
tested in a field experiment involving a six-turbine onshore wind farm, aiming to evaluate
its efficacy in wake steering. The absence of terrain effects and flow dynamics in the steady-
state model led to suboptimal yaw adjustments, sometimes resulting in erroneous turbine
misalignment and reduced energy gains. By contrast, the closed-loop approach showed a
1.4% average increase in power production for the same six-turbine setup when tested in
high-fidelity simulations under time-varying inflow conditions. Benefiting from its capacity
to adapt the wind farm model with real-time measurements leading to a more accurate rep-
resentation of wind farm behavior. However, the study was limited to a six-turbine setup and
did not explore the closed-loop controller’s performance under operational changes, such as
turbine downtime. This thesis aims to extend the controller’s application to large offshore
wind farms, addressing both environmental and operational variations in real-world site
conditions.

1.4. Wind farm flow models

Wake steering wind farm control strategy, has demonstrated superior performance com-
pared to conventional greedy operations, where each turbine maximizes its energy capture
without considering downstream effects [25]. However, its effectiveness in identifying the
optimal yaw misalignment set-point for wind turbines is closely tied to the accuracy of wind
farm models in capturing wake interactions. These interactions are influenced by variables
such as wind speed, wind direction, TI, atmospheric stability, and other flow characteristics
[28]. Modern control algorithms predominantly rely on steady, time-averaged wind farm
flow models like FLOw Redirection and Induction in Steady State (FLORIS) for real-time
operations to determine optimal yaw angles. In contrast, medium and high-fidelity flow
models are typically used to validate control algorithms before experimental field deploy-
ment. Figure 1.7 lists some of the most common wind farm models used by researchers for
various applications.

Master of Science Thesis V. Rajoria
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Figure 1.5.: A closed-loop wind farm control approach. Wind farm measurements are con-
tinuously fed into a model adaptation block that updates the wake model parameters.
This ensures the model remains accurate and reflective of the real-time conditions within
the wind farm. The wind farm model with updated model parameters is then used to
optimize control set-points which are then fed back to the wind farm.

A wind farm flow model typically involves two main elements: the flow model and the
turbine model (as shown in Figure 1.7). These elements can be classified based on their
complexity, and this classification is further discussed below.

1. Flow Models (Describe the flow field in the computational domain): The dynamic
behavior of a flow, such as the wake in a wind farm, is generally governed by the
unsteady three-dimensional (3D) Navier-Stokes equations (NS). These mathematical
equations can be solved using CFD, which employs algorithms and numerical analy-
ses to address nonlinear infinite-dimensional systems. Most high-fidelity simulation
models use Large Eddy Simulations (LES) that employs a coarser mesh to resolve the
large eddies and approximates the smaller-scale eddies with sub-grid models. The
high-fidelity models have a computational cost ranging from a few days to weeks,
making them far from suitable for real-time application. Unlike high-fidelity models,
which solve the full NS equations, medium-fidelity models employ various approxima-
tion techniques. The use of time averaging and two-dimensional fluid dynamics are
prevalent ways in medium-fidelity models to reduce complexity for control optimiza-
tion. Finally, low-fidelity models, also known as parametric, kinematic, or engineering
wake models, are frequently utilized in online optimization due to their minimal com-
putational demands. These cost-effective models rely on the conservation principles of
momentum and mass within a control volume [29], methodologies and assumptions
inherent in the parametric models are shown in Figure 1.6.

2. Turbine Models: (Describe the aerodynamic force interaction between the flow and
turbine structure) The simplest turbine model is the Actuator Disk Model (ADM),

Master of Science Thesis V. Rajoria
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Figure 1.6.: Control volume analysis, using integral relations from fluid mechanics, used for
calculating momentum conservation in parametric wind speed deficit models [18].

which represents the wind turbine blades as a thin rotating disk. The actuator disk
theory considers the force acting on the disk due to the wind to be uniformly dis-
tributed, the thrust force FT can be computed using Equation 1.1. Where the disk
area A, air density ρ, thrust coefficient CT , and the effective velocity U at the rotor
computed using the flow model are used.

FT =
1
2

ρACTU2 (1.1)

An alternative approach involves modeling each wind turbine blade individually using
an Actuator Line Model (ALM), which offers a more detailed depiction of the rotor
compared to the ADM. In ALM, thrust forces are distributed radially along each blade,
and the forces acting on the flow are calculated based on the local lift and drag polar
of the airfoil. For an even higher level of complexity, the dimensionality of the ALM
can be extended in the chord-wise direction to create Actuator Surface Model (ASM),
which models the turbine as surfaces. However, due to their high complexity and
computational demands, ASM are rarely used in real-time applications.

In summary, flow models, particularly low-fidelity ones, use empirical expressions to de-
scribe the velocity field under given inflow conditions. This velocity field serves as input to
turbine models, which estimate the turbine’s power capture and the forces exerted on the
flow. Moreover, turbine models can be extended to predict structural loads on the turbine,
encompassing fatigue loads, extreme loading, and vibrational modes. A comprehensive ex-
ample of an advanced turbine model is FAST, developed by the National Renewable Energy
Laboratory (NREL), which employs the principle of virtual power to simulate wind turbine
aeroelastic multibody dynamics [30].
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Figure 1.7.: Overview of common wind farm models: FLORIS [31], FLORIDyn [32], WFSim
[33], FarmFlow [34], SP-Wind [35], and SOWFA [36]. These models are organized by their
level of fidelity, from simplified parametric models to complex CFD simulations. Time-
dependency varies, with some models assuming static conditions, and others allowing
real-time response to fluctuating wind dynamics. Additionally, turbulence intensity is
represented with increasing sophistication across models, from basic parametric inputs
to LES-based approaches, capturing a wide range of atmospheric effects. Each model’s
approach to these factors impacts its application in wind farm control and optimization.
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1.5. Yaw misalignment optimization

The optimal yaw misalignment angles for maximizing wind farm power output are influ-
enced by wind speed, wind direction, TI, and the state of the ABL. The computed control
actions are applied to the current state of the wind farm, and a new optimization prob-
lem is resolved at each subsequent time step. As the size of the wind farm increases, the
possible combinations of yaw misalignment angles for each time step grow exponentially,
making brute-force optimization impractical. Consequently, researchers have addressed this
challenge by employing more sophisticated optimization algorithms, both gradient-based
[37, 38] and gradient-free [39, 40], to determine the optimal yaw angles for maximum power
gain.

The use of non-linear, non-convex optimization methods with continuous or finely dis-
cretized yaw angles presents several challenges. Firstly, in practice, measurements of wind
direction, wind speed, and turbine angles come with significant uncertainties. Therefore,
assuming that a wind farm can achieve precise yaw angles as desired by the wind farm
operator for specific wind conditions is unrealistic [41]. This practical limitation necessitates
a more coarse approach to yaw angle optimization. Secondly, while current optimization
methods may be suitable for wind farm control that rely on pre-optimized yaw angles, the
growing trend towards real-time control and the increasing scale of wind farms demand
optimization methods that can efficiently scale with the number of turbines.

One such simplified algorithm, developed by Stanley et al. [42], operates on the premise
that the optimized yaw angle for a specific turbine is independent of the yaw angles of
downstream turbines affected by its wake. This algorithm first sorts turbines based on the
wind direction and then evaluates each turbine sequentially, testing yaw angles in a Boolean
manner—either yawed at a predefined angle (e.g., 20◦) or not yawed at all. This Boolean
approach significantly reduces computational costs, allowing the optimization problem to
scale linearly with the number of turbines. When applied to real-world irregular wind
turbine layouts, the algorithm demonstrated only a 0.6% difference in power gain compared
to more complex gradient-based methods [42].

The Boolean yaw angle method can be further enhanced by incorporating multiple discrete
yaw angles and conducting successive passes with refined yaw settings. This approach is
known as the Serial Refine method [43] and is illustrated in Figure 1.8. In this method,
each turbine is tested individually across a predefined set of yaw angles, and the angle that
maximizes total farm power is selected. This thesis (detailed in Section 1.7) will prioritize
the Serial Refine method as the primary optimization algorithm and explore ways of further
improving it.

1.6. Wind farm aerodynamics: A multi-scale problem

Achieving efficient flow control in wind farms necessitates the use of models capable of
delivering reliable, robust, real-time, and efficient predictions of power output and wake
evolution across the entire wind farm. Wind farm aerodynamics involves complex, multi-
scale interactions between fluid and structural elements. As illustrated in Figure 1.9, key
interactions include those between the ABL formed by surface friction, wind flow patterns
influenced by orography, and the turbulent boundary layer on wind turbine blades. To
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Figure 1.8.: The Serial Refine algorithm begins by sorting turbines from upstream to down-
stream based on wind direction. It sequentially adjusts each turbine’s yaw angle, selecting
from a set of N discrete angles to maximize the wind farm’s total power output. After the
initial pass, a second pass refines the selected yaw angles for further optimization. In the
figure, the yaw angles [0, 15, 25] degrees are tested in the first pass. The angle resulting in
maximum power is then refined in the second pass.

Figure 1.9.: Illustration of various multi-scale phenomena that place due to interaction of
wind farm with the atmospheric boundary condition [14].

accurately predict wind farm power, a model must account for these multi-scale phenom-
ena, especially in large wind farm clusters where interactions with the ABL are particularly
complex.

Engineering wake models, such as FLORIS, typically evaluate the dominant wake character-
istics but often neglect mesoscale effects like blockage and wind farm wakes. The blockage
effect has demonstrated a reduction in wind speed by approximately 2 to 4% in field exper-
iments due to wind flowing around the wind farm rather than through it [44]. Meanwhile,
wakes developing behind entire wind farm can extend over long distances—sometimes more
than 50 km—and impact downwind wind farms [45]. If these large-scale phenomena and
other complex interactions were accounted for in models, they would result in different
power predictions and optimized yaw set points. Therefore, it is essential to augment the
typically assumed uniform ambient flow in wake models with a heterogeneous background
flow to account for the unmodeled physics and improve the accuracy of wake models. A
simulation performed with heterogeneous flow inputs of wind speed, wind direction, and
TI to FLORIS, as illustrated in Figure 1.10, could result in a 2% error reduction in total wind
farm power output as compared to a case with homogeneous inputs [46].
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Figure 1.10.: A FLORIS simulation incorporating heterogeneous flow conditions, which re-
sults in varying wind speeds, wind directions, and turbulence intensities across the wind
farm, rather than assuming a uniform wind field [46].

Coupling mesoscale effects with engineering models can be achieved through several ap-
proaches: enhancing existing models with additional numerical capabilities (upscaling mi-
croscale code), augmenting the resolved model with parametric corrections using data (down-
scaling mesoscale code), or simulating wind farm and ABL interactions separately (coupled
approach). For instance, the wake model can be upscaled to include the blockage effect us-
ing induction zone models [47, 48]. However, this alone offers an incomplete representation
of heterogeneous flow, necessitating additional models to account for terrain effects, local
acceleration, and gravity waves. The coupled approach typically involves the use of realistic
and computationally intensive CFD simulations or atmospheric codes like the Weather Re-
search and Forecasting (WRF) model for simulating weather patterns, which renders them
unsuitable for real-time optimization. This thesis focuses on (detailed in Section 1.7) lever-
aging commonly available measurements, such as Supervisory Control and Data Acquisi-
tion (SCADA) data, to introduce heterogeneous flow fields and address unmodeled effects
more practically and efficiently.

1.7. This Thesis

Current model-based wake steering control methods have shown promising results in en-
hancing wind farm power production [25]. However, these approaches often assume a ho-
mogeneous flow across the wind farm, both spatially and temporally—an assumption that
is frequently inaccurate, especially for large wind farm clusters under development. A
literature review conducted in this thesis highlights the limitations of this assumption in
representing real-world conditions. To advance wind farm control and validate algorithms
under more realistic scenarios, this thesis has set the following objective:

Thesis Objective: To develop and evaluate the performance of a real-time wake steer-
ing wind farm controller that addresses the operational and environmental challenges
specific to large-scale wind farms.
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In contrast to the model-free approach, a wake model leverages prior knowledge of under-
lying physics to make a well-informed, quick prediction of power output. The rapid com-
putational speed of low-fidelity wake models comes at the expense of assuming a steady
and uniform flow field. For static wake redirection strategies, where yaw angles remain
fixed for a period allowing the flow to advect through the wind farm and stabilize to a
quasi-stationary state, the steady flow assumption is reasonable. However, the flow field is
often far from uniform, especially in large wind farms, due to mesoscale effects like block-
age and wind farm wakes. With this consideration, the first contribution involves creating a
heterogeneous flow background to better capture these complexities.

Contribution 1: What strategy can be employed to adapt current engineering wake
models to account for the heterogeneous wind flow conditions?

The Serial Refine method, used for optimizing yaw misalignment values of individual tur-
bines in a wind farm to maximize power gains, operates approximately ten times faster
than traditional gradient-based algorithms- [43]. By employing coarse yaw angle values
for refinement, this method achieves both speed and practicality for industrial applications.
However, as the wind energy sector rapidly expands, wind farm clusters are increasing in
size, necessitating even faster optimization algorithms to support real-time control for large
wind farms (e.g., those with more than 100 turbines). Consequently, the second contribu-
tion of this thesis focuses on rigorously testing and enhancing the Serial Refine method to
future-proof it against the growing demands of the wind energy sector.

Contribution 2: Which optimization method should be employed to handle real-time
yaw optimization in large wind farms efficiently?

The closed-loop controller can adapted to include a heterogeneous parameter estimation
block, as illustrated in Figure 1.11. In this adapted framework, available measurements
are leveraged to learn the spatial variations in wind patterns across the wind farm. These
learned patterns are then used to update the wind farm flow model, enabling it to better
capture site-specific heterogeneity. The four main components of this framework are:

1. Wind Farm Flow Model: A simplified, computationally efficient model that predicts
the wake effects within the wind farm.

2. Model Adaptation: A system that continuously updates the parameters of the wind
farm model using real-time data, to adjust for changing site conditions.

3. Heterogeneous Parameter Estimation: A module that identifies parameters and ad-
justs the flow field to ensure the model remains accurate under heterogeneous condi-
tions.

4. Optimizer: An algorithm that determines the optimal yaw misalignment angles for
the turbines to maximize power production based on the current state and flow pre-
dictions.

A sensitivity study by Howland et al. on wind farm power production revealed that vary-
ing the wake model parameters frequently over time leads to diminished wake steering
performance [49]. Building on these findings, this thesis proposes a wind farm control ap-
proach with decoupled model adaptation and yaw misalignment update steps. The third
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Figure 1.11.: A closed-loop model-based control framework with separate update time
steps for state estimation and optimal yaw-misalignment blocks. The optimal yaw-
misalignment update is denoted by a solid line, while model parameter updates are indi-
cated by dotted lines.

contribution of this thesis is to evaluate the performance and effectiveness of this decoupled
approach through an analysis of real-time wake model parameter adjustments on overall
power production efficiency.

Contribution 3: How does the adaptive tuning of wake model parameters impact the
effectiveness of wind farm control compared to the use of static wake model parame-
ters?

In a wind farm, one or more wind turbines may be temporarily decommissioned for preven-
tive or corrective maintenance. This leads to alterations in site conditions that a wind farm
controller utilizing offline optimized yaw angles does not account for. The shutdown of a
turbine results in variations in the interactions between the operational turbines compared
to a scenario where all turbines are functioning. The extent of this variation is contingent
upon the location of the offline turbine. The fourth contribution of this thesis is to evaluate
a wind farm architecture that incorporates the status of offline turbines when generating
optimal yaw set points, in contrast to a model that does not consider such factors.

Contribution 4: How significant is the difference in power gain when offline turbines
are included in the optimization of yaw-misalignment angles by the wind farm con-
troller?
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1.8. Thesis Outline

This thesis comprises several contributions aimed at advancing wind farm control strategies
for enhanced operational efficiency and energy generation. The outline of this thesis is
structured as follows:

Chapter 2: Wind Farm Site and SCADA Data

This chapter introduces the wind farm site, detailing its geographical and operational
characteristics. It also presents the SCADA data collected from the turbines, emphasiz-
ing the importance of this data for subsequent analyses. The preprocessing methods
applied to ensure data quality and reliability are outlined, along with techniques for
estimating ambient conditions within the wind farm.

Chapter 3: Validation study for wind farm model

In this chapter, the focus shifts to the engineering wake model FLORIS. A qualitative
comparison is conducted between the model outputs and SCADA data to validate its
accuracy. The chapter further explores calibration methodologies, particularly under
heterogeneous inflow conditions, and discusses model tuning to optimize performance
based on the wake expansion factor.

Chapter 4: Performance evaluation of wind farm control designs

This chapter presents a series of test cases designed to evaluate the effectiveness of
various control designs. It begins with an analysis of the impact of heterogeneous con-
ditions on wake steering. Following this, the influence of model adaptation on control
performance is examined. The chapter concludes with a discussion of a distributed
optimization case and a detailed analysis of offline turbine scenarios, highlighting the
implications for overall power generation and control efficiency.

Chapter 5: Conclusion and Recommendations

The final chapter synthesizes the findings from previous chapters, reflecting on the
contributions made to the field of wind farm control. It offers concluding remarks
on the overall impact of the research, alongside recommendations for future studies
aimed at refining control methodologies and enhancing the performance of wind farm
systems.
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Chapter 2

Wind farm site and SCADA data

This chapter provides an in-depth overview of the wind farm site and the SCADA data used
for analysis. Section 2.1 begins with a description of the large-scale offshore wind farm cho-
sen for testing the wind farm controller, focusing on the spatial arrangement of turbines and
the impact of neighboring wind farms. In Section 2.2, the details of the wind farm’s SCADA
data, recorded over a year, are discussed, focusing on wind speed, direction, and power
measurements. Section 2.3 outlines the preprocessing steps applied to the data, including
filtering and outlier detection to ensure the accuracy of subsequent analyses. Finally, the
chapter concludes with the methodology used to estimate ambient wind conditions, such as
wind speed, wind direction, and TI, from the preprocessed SCADA data in Section 2.4.

2.1. Wind farm Site

To test the wind farm controller a large-scale operational offshore wind farm site is chosen.
The selected wind farm site has more than 50 turbines with an average spacing between
the turbines being around five to ten times the rotor diameter. Figure 2.1 shows a visual
representation of the wind farm site along with neighboring wind farms1. The presence of
neighboring wind farms results in a significant impact on the performance of the test wind
farm for easterly and westerly winds. In contrast, winds approaching from the south or
north exhibit minimal to no wake effect from adjacent wind farms on the test site.

2.2. Wind farm data

The SCADA data for the wind farm was recorded for a period of 1 year and is available as a
statistical average of 10 minutes. The recorded SCADA data values include wind speed, wind
direction, and power values of each turbine at a particular time step. The standard deviation
of wind speed and wind direction within each 10-minute time interval is also available. The
data was collected under the normal operating conditions of the turbines in the wind farm.

1The representation of the wind farm site is just to give a visual idea to readers about the approximate surround-
ings of the wind farm site, the number of turbines, and the location of these turbines differs significantly from
the actual wind farm site and is to be kept confidential.
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Figure 2.1.: Approximate representation of wind farm site on which the designed control
strategy is tested. The target wind farm site is surrounded by the neighboring wind farms
on the east and west.

Therefore, these data points cannot validate the power gain and yaw-setpoints obtained
by using the wake-steering strategy. Furthermore, the recorded data also do not provide
readings of TI at the farm site. Therefore, an estimation of TI is done in the preprocessing
step and is discussed in Section 2.3.

2.3. Preprocessing of data

Sensor measurements at each wind turbine, stored within the SCADA data, offer a discrete
representation of wind conditions across the wind farm. These historical data points are
used to provide inputs for the wind farm controller, facilitating the estimation of wake model
parameters and capturing heterogeneous wind conditions. However, before utilizing this
historical dataset, a preprocessing step is essential to ensure data quality. This step primarily
involves identifying and removing data points that may be inaccurate due to factors such as
sensor noise, equipment malfunctions, or turbine downtime.

The preprocessing steps outlined by Doekemeijer et al. [50] are followed for filtering the data.
Furthermore, the SCADA data analysis is conducted using NREL’s FLORIS-Based Analysis
for SCADA Data (FLASC) library. The data filtration process includes the following steps:

• Identifying numerical inconsistencies: Power and wind speed measurements from
turbine sensors are evaluated to detect numerical anomalies. Data points with zero,
negative, or unphysical values are excluded. Specifically, wind speed values exceeding
50 m/s and power values above 30 MW are considered unphysical and removed from
the dataset.

• Outlier detection based on performance: Data points showing performance signifi-
cantly deviating from the turbine’s nominal power curve are classified as outliers and
removed. This process is iterative, where after each removal, the mean power curve is
estimated, bounds are applied to the curve, and data points outside these bounds are
excluded.
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• Managing inter-turbine faults: Turbine measurements are marked as invalid if any
upstream turbine, influencing it through wake interactions, is identified as faulty. A
wind farm model identifies affected turbines by observing changes in downstream
power values when upstream turbines are toggled on and off. Tracking inter-turbine
faults ensures that both upstream and downstream turbines are operating under nor-
mal conditions, allowing for fair comparisons during validation studies.

The initial filtering process enabled the identification of valid and invalid data points for
each timestep in the historical SCADA dataset. Data points classified as outliers or contain-
ing numerical inconsistencies were marked as invalid. To ensure accurate estimation of
ambient wind conditions from SCADA data, timesteps with more than 10% invalid turbine
sensor readings were excluded from the dataset. As depicted in Figure 2.2, the proportion
of retained data depends on the maximum allowable percentage of invalid turbine sensor
readings per time step. A higher retention of data is achieved when fewer valid turbine data
points are required for the analysis.

Further analysis of the dataset revealed significant spatial variability in wind direction across
the wind farm, which may be attributed to the local atmospheric conditions influencing the
flow patterns. Given that this thesis primarily focuses on the impact of heterogeneous wind
speed conditions only, it is essential to identify and remove timesteps exhibiting excessive
deviations in wind direction across the turbines. Such deviations may arise from sensor
faults or the occurrence of transient wind gusts. Figure 2.3 presents the standard deviation
of wind direction across the dataset, illustrating the relationship between data retention per-
centage and the selected standard deviation threshold. A threshold value of 5◦ was selected,
as this higher limit facilitates greater data retention while still effectively identifying extreme
deviations. Detailed reasoning for selecting the 5◦ threshold can be found in Appendix B.

2.4. Estimation of Ambient Conditions

The filtered SCADA data is utilized to estimate the freestream wind speed, wind direction,
and TI experienced by the wind farm at each time step. Freestream, or reference wind
conditions, represent the characteristics of undisturbed airflow before interacting with the
turbines. Due to the wake effects influencing wind speed measurements at downstream tur-
bines, only upstream turbines are employed to derive the reference wind speed. In contrast,
the reference wind direction is determined by averaging the readings from all turbines. The
farm model then uses the freestream values to initialize flow field calculations.

The freestream wind direction is estimated first to determine the upstream turbines for each
timestep. Using FLASC utilities, turbines positioned upstream—-relative to the calculated
wind direction and potential wake effects—are identified. The turbine layout is rotated, and
the wake region is calculated using a specified wake slope to pinpoint turbines unaffected
by wake interactions, classifying them as operating in freestream conditions. Wind speed
and turbulence intensity (TI) values are subsequently derived from these upstream turbines
to establish accurate reference conditions for the wind farm model.

Turbulence intensity is estimated from SCADA data by calculating the ratio of the wind speed
standard deviation (u′) to the mean wind speed (U), as shown in Equation 2.1. This method
contrasts with the met mast approach, which typically yields more accurate results by cap-
turing detailed turbulence data at a fixed, high-resolution point. The variation of TI with
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Figure 2.2.: Percentage of data retained based on the maximum allowable number of invalid
turbine sensor readings. For a maximum allowable threshold of 10% invalid points, ap-
proximately 40% of the data is retained
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Figure 2.3.: Relationship between wind direction variability and data retention percentage.
Lower standard deviation values correspond to lower data retention. For a threshold of
5◦, approximately 80% of the filtered data is retained.
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Figure 2.4.: Turbulence intensity as a function of wind direction, showing higher turbulence
in directions where neighboring wind farms are present. The trend line, obtained from
spline interpolation, represents a simplified relationship between turbulence intensity and
wind direction, with turbulence intensity assumed to remain constant for wind speeds.

wind speed and wind direction was analyzed, revealing that TI remained nearly constant
for wind speeds within the partial load region, while significant variation was observed
with changing wind direction. Figure 2.4 plots TI with wind direction and reveals higher
TI values in directions where neighboring wind farms are located. A smooth trend line,
created via spline interpolation on 10 evenly spaced data points, was applied to represent TI
variation, assuming constancy with wind speed. This interpolation approach simplifies the
analysis and retains essential patterns in the data.

TI =
u′

U
(2.1)

Figure 2.5 presents the distribution of wind speed, wind direction, and TI at the wind farm
site, based on filtered SCADA data. The wind predominantly originates from the south-
westerly direction, with a concentration of occurrences in that sector. The wind speed dis-
tribution is well-characterized by a Weibull distribution, with a shape parameter k of 2.80
and a scale parameter c of 10.59 m/s, indicating a moderate spread in wind speed and a
tendency for speeds to cluster around the scale value. Similarly, the turbulence intensity is
described by a Weibull distribution with a shape parameter k of 2.75 and a scale parameter
c of 0.058.
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Figure 2.5.: Overview of wind farm site data analysis using filtered SCADA data. The
wind rose illustrates the predominant wind direction originating from the south-west.
Furthermore, the distribution of wind speed and turbulence intensity is modeled using
Weibull distribution. For wind speed, the scale parameter is determined to be 10.6 m/s,
while the turbulence intensity is characterized by a scale parameter of 0.058.
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Chapter 3

Validation study for wind farm
model

A closed-loop wind farm control algorithm utilizes surrogate models to determine the op-
timal control policy. The surrogate models based on empirical equations, also known as
engineering models, typically take 10 milliseconds to 1 second for a single model evalua-
tion. Due to their computational efficiency, these engineering wake models are well-suited
for real-time control applications. This thesis employs FLORIS, a steady-state control-oriented
wake model. However, like other low-fidelity models, the wake profile predicted by FLORIS
is subject to various assumptions, resulting in inherent discrepancies when compared to
on-site measurements. To improve accuracy, several calibration steps are necessary. This
chapter first provides a brief theoretical overview of FLORIS in Section 3.1. Subsequently, the
validation methodology is outlined in Section 3.2. Section 3.3 discusses the impact of hav-
ing a heterogenous inflow model superimposed with FLORIS simulation. Finally, Section 3.4
details further enhancements to the wake model through parameter tuning based on field
measurements.

3.1. FLORIS - Engineering Wake Model

FLORIS maintained by the NREL and developed by Delft University of Technology (TUDelft),
University of Colorado Boulder (CU Boulder), and NREL provides a performance-focused plat-
form for wind farm models by combining several submodels. For a particular wind farm
topology and chosen wind farm submodels FLORIS mainly require the control setting of each
turbine and reference atmospheric conditions as input. For these given input parameters a
3D time-averaged flow field is generated as output along with averaged turbine quantities
such as rotor averaged wind speed and turbine power capture. An example of the flow field
for a wind farm is shown in Figure 3.1. The four main components of the FLORIS are:

1. Wake Deficit Model (describes the time-average wake behind the turbine): One of
the earliest and simplest wake deficit models, the Jensen model [51], characterized
the wake structure as resembling a top-hat profile. However, subsequent observations
revealed that the long-term mean velocity deficit in the far wake follows a Gaussian
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Figure 3.1.: FLORIS simulation of a wind farm featuring two NREL 5MW turbines, using
the empirical Gaussian wake model. The visualizations display both the horizontal and
cross-stream planes, clearly illustrating the Gaussian wake profile and its impact on the
downstream flow field.

distribution. The most widely used wake model in FLORIS is the Gaussian velocity
model, developed from the work of Bastankhah and Porté-Agel et al. [52], were user-
defined parameters govern the span-wise spread of the gaussian profile.

2. Turbulence Model (represents the turbulence in the wake): The TI within the wake
of a wind turbine is influenced by both the ambient turbulence and the turbulence
generated by the rotor. While the ambient TI is an input parameter for FLORIS, the
rotor-induced turbulence is determined through a turbulence model. The most widely
used model, proposed by Crespo and Hernández et al. [53], calculates the turbine-
induced turbulence using analytical equations derived from experimental data and
numerical simulations.

3. Wake Combination Model (combines wake in the flow field): In wind farms, wakes
may partially overlap or mix before reaching downstream turbines. In such cases,
wake combination models are employed to estimate the wind speed deficit at the farm
level. First, each turbine’s wake recovery is approximated independently, later the
wake combinations models superimpose the individual wakes using a mathematical
framework. A commonly used method is the Sum Of Squares Freestream Superposi-
tion (SOSFS), which combines wakes by summing the squares of their respective deficits
[54].

4. Wake Deflection Model (accounts for deflection of wake centerline due to yawing
and tilting): In wake steering scenarios, a wake deflection model is necessary in ad-
dition to the velocity deficit model to accurately represent the flow behavior behind a
turbine with yaw misalignment. Building on the work of Bastankhah and Porté-Agel
et al. [52], initial deflection angle θ resulting from yaw misalignment (γ) is described
by Equation 3.1, where CT denotes the thrust coefficient.

θ ≈ 0.3γ

cos(γ)

(
1 −

√
1 − CT cos(γ)

)
(3.1)

In this thesis, empirical Gaussian wake deficit and wake deflection submodels, based on the
work of Bastankhah and Porté-Agel et al. [52], are utilized alongside a SOSFS wake sum-
mation model from Katic et al. [54] and the turbulence model from Crespo and Hernández
[53]. FLORIS ”empirical” model features a Gaussian wake shape profile but differs from other
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models in its approach to defining wake width and deflection equations. While the math-
ematical structure remains unchanged, the terms are reorganized to facilitate easier tuning
and data fitting. Consequently, velocity deficit at any point (x, y, z) is given by:

u
U∞

= 1−C · exp

(
−
(y − δy)2

2σ2
y

− (z − zh − δz)2

2σ2
z

)
, C =

1
8σ2

0D

(
1 −

√
1 −

σy0σz0CT

σyσz

)
(3.2)

In the equation, C represents the scaling factor for the Gaussian curve, while the parameters
σ and δ define the wake width and wake deflection in the respective directions. The values
σy0 and σz0 correspond to the wake width at the turbine location (x = 0), which differs from
other Gaussian models in FLORIS, where these variables are defined at the end of the near
wake or the beginning of the far wake region. For a more comprehensive explanation of
the parameters used in the velocity deficit equation, readers are referred to [55]. Addition-
ally, Section 3.4 provides an in-depth discussion of the key tunable parameters within the
empirical Gaussian wake deficit model in FLORIS.

3.2. Qualitative Comparison of FLORIS with SCADA Data

The accuracy of a model-based wind farm controller is sensitive to the precision of the wind
farm model. Ensuring that the model is simulated under wind conditions consistent with
those during the collection of historical data is essential. This alignment is achieved by
first validating the model, and, if required, performing a calibration study. Typically, this
process involves comparing the turbine power captured from historical data with the power
predicted by the wake model.

This thesis utilizes an Energy Ratio (R) matrix, following the methodology of Doekemeijer
et al. [50], to evaluate the FLORIS model against the available SCADA data. For each wind
direction bin, the R is defined as the ratio between the power captured by the turbine of in-
terest and the average power produced by upstream, unwaked turbines. When multiple test
turbines are involved, the average power of the test turbines is used. The R for test turbine(s)
is computed using Equation 3.3, where Ptest

k and Pref
k denote the kth power measurements of

the test and reference turbines, respectively, for wind direction bin ϕi.

R = R(ϕi) =
∑N

k=1 Ptest
k (ϕi)

∑N
k=1 Pref

k (ϕi)
(3.3)

In wind farm flow modeling, both temporal and spatial variations in wind direction should
ideally be accounted for to improve alignment with measurements. Historical data averages
temporal wind direction variability over 10-minute intervals, but instantaneous data during
the same period would encompass multiple wind directions. Similarly, averaging reference
wind direction measurements across all turbines neglects the spatial variability experienced
by turbines in different locations within the wind farm. During validation studies, wind
direction variability can be partially addressed by binning wind directions. However, using
a large bin width may lead to inaccurate predictions of wake deficit width and position,
which is problematic for developing effective wake steering control strategies. Conversely,
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too small a bin width may fail to capture the inherent uncertainty in SCADA measurements
and wind direction variability. Thus, for the R analyses a wind direction bin width of 3◦ is
taken and considered optimal.

Additionally, uncertainty in wind direction may also result from noise and the yaw con-
troller’s delayed response to changes in wind direction. The uncertainty affects the SCADA
power measurements, leading to the distribution of wake losses over a wider range of wind
directions. To account for wind direction uncertainty, multiple simulations are conducted
for each specified wind direction within the wind farm model. The spread of sampled wind
direction points is determined by the standard deviation parameter, with a weighted aver-
age computed using a Gaussian distribution to represent the uncertainty1. This approach
was initially proposed by Gaumond et al. [56] and later refined by Doekemeijer et al. [50],
who used a Gaussian distribution with a standard deviation (σwd) of 3◦ to model wind di-
rection uncertainty. In this thesis, a similar method was employed for R analysis; however,
the Gaussian distribution was applied to the power output in post-processing to reduce
computational time.

Once the data is grouped in bins of 3◦, the R for a specific bin is determined by averaging
effectively over a wind speed range. For instance, the R at 150◦ is calculated by averaging
all measurements where the ambient wind direction falls between 148.5◦ and 151.5◦, and
the freestream wind speed lies within the 4 to 11 m/s range. The wind speed range was
capped at 11 m/s because, at higher wind speeds, all turbines typically operate at rated
power, resulting in an R of 1, which contributes minimally to model validation efforts.

The R signifies a test turbine’s power production reduction caused by wake losses within
a specific wind direction bin. For an upstream turbine under uniform inflow conditions,
a wake model simulation would yield an R of one. However, in reality, this value can
differ significantly due to the presence of heterogeneous conditions. Figure 3.2 presents
benchmark R plots where no calibration steps have been applied. These plots are generated
for a particular turbine across the full range of wind directions. Initially, a comparison
between FLORIS predictions and SCADA data is made for an upstream turbine, as shown in
Figure 3.2b. The selected upstream turbine is notably affected by a neighboring wind farm,
particularly in the wind direction sector from southwest to northwest. A clear discrepancy is
observed between the FLORIS model, assuming uniform inflow, and the SCADA data for the
wind direction range of 200◦ to 300◦. In contrast, FLORIS predictions align more closely with
SCADA data when evaluating a turbine located in the middle of the wind farm, as illustrated
in Figure 3.2b. This turbine is consistently influenced by wakes from upstream turbines
for all wind directions. The notable impact of heterogeneous conditions on the upstream
turbine, compared to the weaker effect on the downstream turbine, is used in Section 3.3 for
the development of a strategy to account for heterogeneity in the FLORIS model.

3.3. Calibration with Heterogenous Inflow

The previous section outlined the challenges encountered when using SCADA data for vali-
dation study with an engineering model that lacks representation of wind inflow dynamics.
In practice, wind conditions measured by unwaked turbines are averaged to create uniform

1For instance, if analyzing a wind direction of 150 degrees and the wind direction sample points are set to
[−2,−1, 0, 1, 2] × standard deviation of 3◦, the simulations will generate cases for 144, 147, 150, 153, and 156
degrees.
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(a) Benchmark evaluation before calibration for upstream turbine
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Figure 3.2.: Energy ratio plots for a specific turbine, derived from FLORIS simulations and
SCADA wind farm measurements, are presented. (a) For an upstream turbine, the uncal-
ibrated FLORIS simulation, assuming homogeneous inflow, exhibits a significant discrep-
ancy with SCADA data, particularly in areas where a neighboring wind farm influences
the inflow. (b) In contrast, the FLORIS simulations align more closely with SCADA data
for a turbine located within a wake region, despite the absence of heterogeneous flow
modeling in the FLORIS framework.
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inputs for the wind farm flow model. However, turbine wind speed sensors often detect
variability within the wind farm due to the two-way interaction between the wind farm
and the ABL, as well as wind farm wake effects originating from neighboring farms. This
leads to a heterogeneous background flow, particularly in large offshore wind farms. The
key question now is how to incorporate this heterogeneity into FLORIS to enhance validation
studies.

Section 1.6 briefly introduced three approaches for incorporating heterogeneity into engi-
neering models: upscaling microscale codes, downscaling mesoscale codes, and the coupled
approach. Due to the limited availability of submodels for upscaling low-fidelity wake mod-
els and the additional computational cost associated with the coupled approach, downscal-
ing mesoscale models presents a more practical option for real-time wind farm controllers.
Instead of relying on external simulations, the process of accounting for heterogeneous flows
can be simplified by learning the variability in wind conditions at discrete points through
sensors installed at each wind turbine. This localized learning can then be extended to the
entire flow domain using interpolation and extrapolation techniques. Furthermore, leverag-
ing SCADA data to model heterogeneity eliminates the need for individual models to capture
the physical effects of terrain, roughness, sea state, blockage, and wind farm wake interac-
tions.

Braunbehrens et al. in [57] utilized operational data to model two-dimensional heterogeneous
background flows, which are then superimposed onto the uniform flow field generated by
low-fidelity models such as FLORIS. This method parameterizes the heterogeneous flow by
discretizing it with a 2D mesh, where the value at any generic point is obtained through
interpolation of the nodal values. Each nodal point contains a set of parameters typically
corresponding to discrete values of wind speed, wind direction, and TI at that specific loca-
tion within the farm domain. An optimality criterion, based on field power measurements,
is employed to determine the parameters at each nodal point. Once these values are estab-
lished, a heterogeneous flow map can be generated for a range of wind directions. For more
details related to finding flow conditions at a node refer to [57].

The method discussed above can correct the baseline FLORIS model by incorporating miss-
ing physics, thus improving its accuracy relative to measurements [57]. However, deter-
mining the correction parameters across the grid using optimization is computationally ex-
pensive due to the numerous iterations involving the farm flow model. To mitigate this,
the learned heterogeneity can be simplified by focusing solely on heterogeneous inflow
conditions, thereby accounting for the two primary effects: blockage and wind farm wake
effects. This simplification can also be justified by referencing Section 3.2 where the impact
of heterogeneity was found to be more severe for upstream turbines than for turbines in the
wake.

A downscaling mesoscale approach, initially developed by Doekmeijer et al. [50], and further
applied in this thesis, utilizes SCADA data to learn heterogeneous inflow conditions. This
strategy specifically leverages the normalized R from upstream turbines to capture wind
speed variability. The learning process is carried out for wind direction steps of 3◦ and
with a bin width of 7◦. Larger bin size is chosen to reduce the risk of overfitting, as the
heterogeneity being modeled reflects large-scale effects that change gradually. Wind speed
factors are derived from the R by employing the power-velocity relationship in the partial
load region (P ∝ U3). The speed-up factors calculated at the upstream turbine locations
for each wind direction are then extended upstream to propagate the wind gradient across
the farm. The resulting heterogeneous wind flow map initializes flow field calculations in
FLORIS. As a result, grid points are assigned varying initial wind speed values rather than
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uniform conditions, leading to differences in power production when compared to uniform
inflow conditions.

Figure 3.3 presents the R plots for the same test turbines shown in Figure 3.2, with the flow
field now simulated under heterogeneous inflow conditions. The alignment between FLORIS
and SCADA data shows qualitative improvement, especially for the upstream turbine affected
by the neighboring wind farm, as seen in Figure 3.3a. A quantitative comparison is provided
in the following section.

3.4. Model Tuning

In FLORIS, the wind farm flow is described through wake model parameters, which rep-
resent physical phenomena such as wake recovery, wake expansion, and wake deflection.
By default, the parameters for the Gaussian-Curl-Hybrid (GCH) wake model in FLORIS are
derived from pre-run LES [58]. However, in practice, these wake model parameters are in-
fluenced by atmospheric conditions and terrain roughness, which vary based on the wind
farm’s location and the time of the recorded measurements [59]. As a result, the default
wake model parameters may result in significant discrepancies between SCADA data and
FLORIS predictions if not calibrated for a specific site and time.

The primary focus of this thesis is on the model parameters associated with the empirical
Gaussian wake deficit model. However, a similar approach could be applied to adjust a
broader set of parameters across different sub-models. The empirical Gaussian wake model
retains the mathematical framework of the GCH model while reducing the number of free
parameters and minimizing interactions among them. Each parameter is specifically associ-
ated with a single model effect, simplifying tunning and data fitting. As a result, this model
achieves a speed improvement of 2 to 3 times compared to the traditional GCH model [31].

In the empirical Gaussian model, the tunable parameters—specifically, the wake expansion
rate (k), breakpoint (b), smoothing length (d), and initial wake width (σ0D)—are used to
characterize the wake width in the lateral (σy) and vertical (σz) directions [60]. The wake
expansion remains constant over a specified distance, expressed in rotor diameters. Users
can define multiple breakpoints, each with an associated wake expansion rate, resulting
in a piecewise constant wake expansion. To prevent abrupt transitions in wake width, a
smoothing length d, also measured in rotor diameters, can be applied to the initial wake
width σ0D.

A sensitivity analysis of the GCH model parameters was conducted by van Beek et al. [61] to
identify both highly influential and non-influential parameters by evaluating the model’s ac-
curacy. The study employed the Sobol method, which decomposed the model’s AEP output
into multiple components, each associated with a specific parameter. The analysis revealed
that half of the parameters contributed to approximately 79% of the variance in the output,
suggesting that the submodel was overparameterized. Additionally, significant second-order
sensitivities were found, indicating strong interactions between the parameters.

The Sobol study showed that primary sensitivity lies in ka, a term used to calculate wake
expansion, for a GCH model. However, no sensitivity study exists for the empirical Gaus-
sian model. Owing to the partial overlap between the two models a calibration study is
performed for the first index of the k. The wake expansion factor has a default literature

Master of Science Thesis V. Rajoria



Model Tuning 30

0 50 100 150 200 250 300 350
Wind Direction [°]

0.4

0.6

0.8

1.0

En
er

gy
 R

at
io

 [-
]

SCADA
FLORIS

(a) Evaluation with heterogenous calibration for upstream turbine

0 50 100 150 200 250 300 350
Wind Direction [°]

0.6

0.8

1.0

En
er

gy
 R

at
io

 [-
] SCADA
FLORIS

(b) Evaluation with heterogenous calibration for waked turbine

Figure 3.3.: Heterogeneous inflow calibration improves baseline model accuracy for up-
stream and waked turbines. SCADA data is utilized to learn and incorporate wind speed
variability at upstream turbine locations. (a) Evaluates the calibrated model against en-
ergy ratio values for an upstream turbine under heterogeneous conditions. (b) Shows a
similar comparison for a waked turbine. Both plots demonstrate the improved perfor-
mance of the model when heterogeneity is considered.
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Figure 3.4.: The plot shows the total error across the wind farm for varying values of the
wake expansion rate (k) used in the empirical Gaussian wake model. The optimal ex-
pansion rate is found to be k = 0.018, which minimizes the farm error to 6%, slightly
improving model accuracy compared to the default value of k = 0.023. Analysis indicates
that further increases in k result in diminishing accuracy.

recommended value of 0.023 in FLORIS and is varied from 0.010 to 0.040 for calibration stud-
ies.

The farm error, as defined by the Equation 3.4, is employed to guide the selection of model
parameters. This error is calculated by summing the turbine errors across the wind farm,
where the turbine error represents the absolute difference between the R outputs from SCADA
data and FLORIS predictions over a range of wind directions. Figure 3.4 illustrates the farm
error for varying values of the wake expansion rate. The minimum farm error, 6 %, occurs
when the wake expansion rate (k) is set to 0.018.

Farm Error =
1
n

N

∑
i

Turbine Error (3.4)

where Turbine Error =
1
M

M

∑
j

∣∣∣Rj
SCADA − Rj

FLORIS

∣∣∣
The farm error metric also enables quantification of the impact of running the FLORIS model
under heterogeneous conditions versus uniform conditions. A reduction in farm error from
10% to 6.2% indicates the significant influence of the neighboring wind farm, enhancing
the alignment of FLORIS predictions with SCADA data under heterogeneous conditions.
Further tuning of the wake model parameters reduces this error from 6.2% to 6%, highlight-
ing the additional accuracy achieved by calibrating the model to reflect site-specific wake
behavior.
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Chapter 4

Performance evaluation of wind
farm control designs

Wake steering – a prominent method of wake mitigation – can be implemented either
through a static look-up table-based open-loop approach or real-time model-based closed-
loop algorithms. Yaw angles in the look-up table approach are generated for a set of wind
conditions thereby omitting actual observed on-site conditions such as heterogeneous flow
and offline or derated turbines. Yet it is a common approach employed in industry due
to its cost effectiveness and simplicity. On the other hand, a closed-loop approach adjusts
the optimal yaw set points dynamically by leveraging real-time operational data thereby
incorporating the operational state of each turbine. The goal of this chapter is to analyze
the sensitivity of wind farm power production to the wind farm controller design when
employing wake steering control.

A series of test cases are conducted to assess the choice of optimization algorithm, adaptive
wake model parameter, and wind farm model with heterogeneous inflow on power produc-
tion. Later a separate study is done to quantify the effect of incorporating offline turbines
in wind farm controller design. Table 4.1 provides a summary of the test cases and out-
lines the key characteristics of each scenario. Case NA represents an open-loop approach,
using constant wake model parameters and uniform inflow conditions. In contrast, the re-
maining cases incorporate wind speed heterogeneity, with NO1 and NO2 differing in their
optimization strategies. While NW2 employs a controller design with adaptive wake model
parameters. Section 4.1 investigates the impact of including heterogeneous conditions in
FLORIS by comparing the NA and NO1 cases. Section 4.2 updates the wake model parame-
ters based on atmospheric conditions and compares these results with a case using constant
wake model parameters. Section 4.3 explores a computationally efficient yaw-set point op-
timization method for wake-redirectional wind farm control. Lastly, Section 4.4 investigates
open-loop versus closed-loop control performance for offline turbine cases.

4.1. Effect of heterogenous condition on wake steering

The analysis focuses on utilizing the wind farm model output to evaluate the sensitivity of
power production and, consequently, compare controller design choices. The FLORIS wake
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Case Wake model
parameter Optimization Heterogenous

inflow

Constant Adaptive Central Distributed Wind speed

NA - - -
NO1 - -
NO2 - -
NW2 - -

Table 4.1.: Overview of simulated test cases for wind farm controller designs, each dif-
ferentiated by wake model parameter settings, optimization algorithm type, and inflow
conditions.

Case Baseline Power Optimized Power Gain %

NA 1.000 1.015 1.49 %
NO1 0.983 0.997 1.44 %
NO2 0.983 0.996 1.39 %
NW2 0.986 0.998 1.23 %

Table 4.2.: Power values and percentage gain for each case, corresponding to wind farm
controller design, normalized with respect to baseline power of Case NA.

model uses initial flow field conditions obtained from SCADA data and optimized yaw angles
from the control algorithm as inputs to calculate the power output of each turbine, thereby
determining the total wind farm power. However, further use of medium or high-fidelity
simulations is required to validate energy gains values reported before the found yaw-set
points can be used for on-site experiments.

The power gain simulations for the test cases are performed by associating each 10-minute
average SCADA time-step with specific wind speed and wind direction bins. Turbulence
intensity is assumed constant with respect to wind direction, as detailed in Section 2.4.
Although wind farm controllers dynamically respond to changing wind conditions, a static
binning approach is applied in the analysis since the comparison spans year-long energy
production across different test cases. Based on the wind rose diagram (Figure 2.5), a wind
direction range from 0◦ to 360◦ and wind speed range from 4 to 20 m/s are selected. A bin
width of 3◦ for wind direction and 1 m/s for wind speed is applied. The chosen bin widths
provide a balance between capturing detailed variations in wind conditions and maintaining
computational efficiency for long-term energy production analysis.

Case NA was simulated with a wind farm controller using a constant wake model parameter
value and uniform inflow conditions. For each wind direction, upstream turbine wind speed
measurements were averaged to determine freestream conditions. The ambient condition
values were then binned, and the corresponding yaw-misalignment angles were obtained
by iteratively running the Serial Refine optimizer on the wind farm model. To calculate
total energy, the power values were adjusted by the frequency of each wind condition and
summed. The power gain percentage was then determined by comparing the optimized
power output with the baseline power from the greedy control strategy.

Even though the wind conditions were binned, running an optimizer using a centralized
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Case Baseline Power Optimized Power Gain %

NA (yaw angles varying with wind speed) 1.000 1.015 1.51
NA (yaw angles constant with wind speed) 1.000 1.0149 1.49

Table 4.3.: Power values and percentage gain for Case NA under two conditions: yaw angles
varying and constant with wind speed. The power values are normalised with respect to
baseline power of Case NA.

scheme of optimization for large wind farms requires a computational time of hours to
days. The results from the initial implementation of test Case NA were critically analyzed
to make assumptions that would help reduce some computational burden. The following
assumptions were made:

• Optimize yaw angles only for wind speeds 4 to 11 m/s: Figure 4.1 shows the variation
of power gain with wind speed for a particular wind direction. The graph indicates
the maximum amount of power gains obtained in the partial load region and after 11
m/s the gains start declining towards zero as all the turbines achieve a rated power.

• Energy gains only calculated for wind direction 165◦ to 345◦: Figure 4.2 shows the
variation of power gain with wind direction for a particular wind speed. A sym-
metricity can be observed in the graph which occurs due to the layout of the wind
farm therefore the analyses of the test cases were restricted from wind direction 165◦

to 345◦, which is also the region where the maximum data lies.

• Yaw-misalignment angles are only dependent on wind direction: The test Case NA
was re-run by assuming the yaw-set points only vary with wind direction and not with
wind speed. The power gain values obtained are shown in Table 4.3, the difference in
energy production gain by restricting the variation of yaw-set points only with wind
direction was found to be only 0.02%.

Building on the aforementioned assumptions, the test cases listed in Table 4.2 are run over
a wind speed range of 4 m/s to 20 m/s and a wind direction interval of 165◦ to 345◦. The
optimization process is applied to wind speeds between 4 m/s and 11 m/s. Since yaw angles
were determined to depend solely on wind direction, the same yaw set points are used for
both cases NA and NO1. However, the FLORIS model produces different flow field outputs
and hence the power gain values for these cases, as NO1 incorporates spatial variations in
wind speed, unlike the uniform inflow conditions in case NA.

Given the proximity of the test wind farm to neighboring wind farms, particularly for cer-
tain wind directions, a FLORIS model assuming uniform inflow is expected to produce power
outputs distinct from a model accounting for heterogeneous wind speeds. The influence of
nearby wind farms can be further visualized by plotting the energy ratios of upstream tur-
bines for particular wind directions, as illustrated in Figure 4.3. For a wind direction of 180◦,
the neighboring wind farm’s wake has a negligible effect, with the R remaining close to one.
An R value of 1 indicates no loss in power production due to wake effects, which is expected
for upstream turbines unless the flow is heterogeneous. However, for wind directions of
225◦ and 270◦, a drop in energy ratios for certain upstream turbines is observed, indicating
variations in the inflow conditions experienced. The reduced inflow wind speeds lead to
diminished power generation of turbines, which, in turn, impacts the overall power produc-
tion. This variation is quantified in test cases NA and NO1, with the associated energy gain
values of 1.49% and 1.44% respectively. This underscores the importance of using flow field
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Figure 4.1.: Variation of power gain with wind speed for a specific wind direction, illustrating
maximum power gains in the partial load region (4 to 11 m/s) and a decline in gains
beyond this range as turbines reach rated power. The region from 4 to 11 m/s highlights
the wind speed of interest, where optimization is conducted for all test cases.

models that closely resemble actual wind farm sites, as reliance on simplified models could
lead to an overestimation of power gain values from wake steering strategies.

4.2. Influence of wake model parameter update

Over time, variations in surface heat flux lead to changes in ABL characteristics, such as
wind speed, wind direction, atmospheric stability, shear, and turbulence. In a wind farm,
the recovery of turbine wakes and hence the degree of interaction between turbines are
influenced by atmospheric stability [59]. Wind farm models typically account for changes
in atmospheric stability through a wake recovery factor, indicating that the wake expansion
factor should adjust in response to varying wind conditions. The real-time functionality of a
closed-loop control system can be leveraged to dynamically update wake model parameters
based on current wind conditions.

4.2.1. Effect of diurnal cycle

The ABL can be classified into stable or unstable regimes based on the velocity gradient
caused by either suppressed or enhanced vertical air movement. During the daytime, solar
radiation heats the air from below, causing it to rise, leading to an unstable or convective
boundary layer. This regime is characterized by increased mixing, higher turbulent kinetic
energy, and consequently, faster wake recovery [62]. In contrast, at night, when outgoing
radiation cools the air near the surface, air density increases close to the ground, forming
a stable boundary layer. This stable regime is marked by enhanced shear in both wind
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Figure 4.2.: Variation of power gain with wind direction at a particular wind speed, high-
lighting the symmetric behavior observed due to the wind farm layout, with analyses
restricted to the wind direction range of 165◦ to 345◦.
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(a) Energy ratio of upstream turbines for 180◦ wind direction.
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(b) Energy ratio of upstream turbines for 225◦ wind direction.
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(c) Energy ratio of upstream turbines for 270◦ wind direction.

Figure 4.3.: Energy ratios of upstream turbines for various wind directions. (a) Energy ratio
for a wind direction of 180◦, indicating minimal impact from neighboring wind farms. (b)
The energy ratio for 225◦ shows a noticeable drop for specific turbines, highlighting the
effect of reduced wind speeds. (c) The energy ratio for 270◦ further illustrates maximum
variations in inflow conditions, contributing to diminished power generation of upstream
turbines.
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Figure 4.4.: Classification of SCADA data into day and night conditions based on solar al-
titude, using the recorded timestamp and geographic coordinates. The left plot shows
the variation in wind speed data, while the right plot illustrates the corresponding wind
direction data, providing insights into the atmospheric conditions during the measure-
ments.

speed and direction, resulting in slower wake recovery and more pronounced wake inter-
actions [63]. An adaptive wake model parameter can thus be used to reflect these diurnal
variations.

In addition to wind conditions, the SCADA data also recorded the time the measurements
were taken. By using this timestamp and the latitude and longitude of the wind farm
location, the solar altitude can be calculated to determine whether the data corresponds to
day or night conditions. Figure 4.4 illustrates the classification of the dataset into day or
night based on the specified coordinates and time. The wake expansion factor of the wind
farm model can then be optimized separately for day and night conditions, using the farm
error–a metric that quantifies the difference between FLORIS and SCADA data R output–as
outlined in 3.4. Figure 4.5 displays the farm error for both day and night datasets across
various wake expansion factors. Although a difference in farm error is observed between
the two datasets, the minimum farm error is achieved at the same wake expansion factor
for both, suggesting that the magnitude of turbulence may have a greater impact on wake
recovery dynamics than the diurnal transitions in atmospheric stability for the selected test
site.

4.2.2. Effect of nearby wind farms

Wind direction sectors with reduced incoming velocity due to the wake effects from neigh-
boring wind farms experience more pronounced wake-induced power losses. In addition
to addressing inflow heterogeneity, this effect can be incorporated into FLORIS simulations
by adjusting the wake expansion factor accordingly. Instead of calibrating the wake model
parameters over time, they are tuned based on wind direction. Figure 4.6 illustrates the
variation in the wake expansion factor across different wind directions. This variation is
determined by examining the tuning of the wake model parameters at intervals of 10◦, 20◦,
and 30◦ for changes in wind direction. The final profiles for the wake expansion factor are
obtained by averaging the results from these three tuning intervals. In sectors where SCADA
data indicates significant wake losses due to the influence of nearby wind farms, a higher
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Figure 4.5.: Farm error for different wake expansion factors during day and night condi-
tions. The plot demonstrates that the minimum farm error occurs at the same wake
expansion factor for both datasets, suggesting that wake recovery dynamics may be more
significantly affected by turbulence magnitude than by changes in atmospheric stability
between day and night.

wake expansion factor is observed. Refer to Appendix C for adaptive wake expansion plots
corresponding to varying update intervals.

The impact of tuning the wake expansion factor based on wind direction is quantified in
Case NW1. A wake expansion factor of 0.011 is applied for wind directions between 165◦

and 210◦, while a higher value of 0.025 is used for wind directions between 210◦ and 345◦.
The optimal yaw-misalignment angles are dynamically adjusted with changing wake ex-
pansion factor values, implementing a closed-loop approach to control the wind farm flow.
Case NW1 yields a realistic average power gain of 1.23% within the wind direction range of
165◦ to 345◦ by adapting the FLORIS model to better reflect actual site conditions.

Figure 4.7a presents a comparison between Case NW1, where the wake expansion factor
adapts to wind direction, and Case NO1, which applies a constant factor of 0.018 across
all directions. Case NW1 demonstrates increased power gains in wind sectors with min-
imal neighboring farm influence, highlighting the benefits of an adaptive approach over
a constant wake model parameter. For wind directions between 210◦ and 345◦, however,
the higher wake expansion factor in Case NW1 reduces power gain from 1.53% to 0.93%,
illustrating the effect of greater wake spreading and intensified turbine interactions.

Further, Figure 4.7b illustrates the difference in performance between the open-loop and
closed-loop approaches by comparing the power gain values. The open-loop approach ap-
plies pre-optimized yaw angles from Case NO1, where a constant wake model parameter
was used in the initial optimization. These yaw angles are then tested in a FLORIS simulation,
where the wake model parameter is varied based on wind direction to assess the resulting
power gain. As these angles are not adjusted for changes in site conditions, they result in
suboptimal performance due to a lack of responsiveness to variations in the wake expansion
factor. In contrast, the closed-loop approach updates yaw angles based on the wake expan-
sion factor, leading to higher overall power gains. Specifically, the closed-loop control yields
a 1.23% power gain, whereas the open-loop configuration achieves only 1.19%.
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Figure 4.6.: Variation of the wake expansion factor across different wind directions, high-
lighting the adjustments made in response to wake-induced power losses from neighbor-
ing wind farms. Sectors with significant wake losses indicate a higher wake expansion
factor, demonstrating the impact of inflow heterogeneity on wind farm performance.

4.3. Distributed Optimization Case

An optimization problem for wind farms is often formulated using a global approach, where
all turbines within the wind farm are considered as part of the design space. As the size of
wind farms increases, this centralized optimization approach faces significant computational
challenges due to the larger flow domains involved. To address this issue, a decentralized
or distributed framework can be employed, which divides the wind farm into nearly in-
dependent sets of turbines, known as clusters or wind farm subsets. In each cluster of
turbines, a wake redirection control aims to optimize the yaw-set points among the turbines
to minimize power losses due to wake effects.

Wind farms can be segmented into clusters based on wake interactions between turbines,
but these groupings are dynamic and vary with operational conditions. A robust strategy
is thus essential to identify turbines within the same cluster. Annoni et al. [64] proposed
a method for classifying turbine subsets. For a given wind direction, upstream turbines
experiencing free-stream velocity are termed ’lead turbines’. Turbines impacted by the wake
of lead turbines are grouped into the same cluster. The wake interaction between lead and
downstream turbines is quantified by weights, which depend on the wake overlap area and
the distance between the turbines. A gradient-based Sequential Least Squares Programming
Optimizer (SLSQP), is then used to maximize the power gains of each subset. The algorithm
developed provided similar power gain as compared to centralized approach with a fraction
of computational time [64].

In this thesis, the turbine clustering method introduced by Annoni et al. [64] is adapted
to integrate with the FLORIS framework. The procedure starts by identifying the lead or
the upstream turbines based on the given wind direction. Next, turbines affected by the
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(a) Power gain comparison between constant
and adaptive wake expansion factor.
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Figure 4.7.: Power gain comparison for cases with different wake expansion factor strategies.
(a) Case NW1, which adapts the wake expansion factor based on wind direction, achieves
greater power gains in areas with minimal neighboring farm influence compared to the
constant factor used in Case NO1. (b) The comparison between open-loop and closed-loop
methods shows that closed-loop control provides a 1.23% power gain by dynamically
adjusting yaw angles according to wake conditions, while open-loop control achieves a
1.19% gain.

lead turbine’s wake are identified by observing variations in downstream turbine power
when the lead turbine is alternately switched on and off. This process enables the entire
wind farm to be divided into clusters, with each cluster comprising the lead turbine and
the affected downstream turbines. Subsequently, a serial refine optimization is performed
for each cluster, after which the results are combined to yield the final yaw misalignment
angles.

Subset identification is relatively straightforward for cardinal wind directions, such as 270◦,
since turbines typically do not belong to multiple clusters. In contrast, for ordinal wind
directions like 225◦, a turbine may receive multiple optimized yaw angle values due to its
presence in more than one cluster. Convergence to a single yaw angle per turbine can be
achieved by further iterating the yaw angles of those turbines present in multiple clusters
until a consensus is reached [64]. However, these additional iterations are omitted within
the designed distributed optimization framework, and the maximum yaw angle is selected
for turbines in overlapping clusters. This choice is made because higher yaw angles gen-
erally induce more substantial wake redirection, enhancing the potential for power gain in
downstream turbines. Figure 4.8 shows the difference in power gain values for centralized
and distributed approaches, a good match can be seen particularly for cardinal wind direc-
tions, with the error always being less than 0.4%. Please refer to Appendix A for a detailed
verification study of the developed distributed optimization method.

Cases NA and NO1 employ the serial refine optimization algorithm, to determine yaw-set
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(a) Power gain values for centralized and distributed optimization approaches across wind
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(b) Difference in power gain values between centralized and distributed approaches, show-
ing deviation across wind directions. The dotted vertical lines mark the cardinal wind
directions [90◦, 180◦, 270◦]

Figure 4.8.: Comparison of power gains achieved using centralized and distributed control
strategies, with (a) depicting power gain values for each method and (b) illustrating the
difference in power gain between them. Results indicate strong consistency, especially in
cardinal wind directions, with discrepancies remaining always under 0.4%,
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Figure 4.9.: Wind farm divided into upstream, waked, and downstream turbine groups for
a wind direction of 0◦. Turbines from each subset are randomly deactivated to simulate
offline conditions and assess the controller’s performance. The proportion of turbines
deactivated represents the designated offline capacity of the wind farm.

points for each simulated wind condition. These cases utilize a centralized optimization
approach, meaning they repeatedly simulate the entire flow field to test discrete yaw angle
values for each turbine. For large offshore wind farms, this method requires approximately
10 to 15 minutes to reach an optimal solution, rendering it impractical for real-time control
applications. In contrast, Case NO2 employs a distributed approach, dividing the test wind
farm into smaller clusters. The clustering significantly reduces computation time to about
one-seventh to one-tenth of that required by the centralized method, however, also results
in a slight reduction in the accuracy of the optimum solution. Table 4.2 shows the power
gain values for centralized Case NO1 at 1.44% and decentralized Case NO2 at 1.39% under
identical wind conditions.

4.4. Controller design for offline turbines

The performance of a wind farm is closely tied to the amount of energy it generates, which
directly impacts revenue for its owner. Frequent failures of wind turbine components, lead-
ing to turbine shutdowns for maintenance, pose a challenge to the growth of the wind energy
sector. Implementing a wind farm control system that dynamically adjusts to on-site condi-
tions, such as the presence of offline turbines, can enhance power generation and increase
overall revenue.

The power output data from each turbine, as recorded in the SCADA system, can be utilized
to identify offline turbines. However, in order to test a range of scenarios, each involving
different combinations of turbines being deactivated, a structured methodology is devel-
oped. For a given wind direction, the wind farm is categorized into three subsets: upstream,
waked, and downstream. A sample wind farm, as illustrated in Figure 4.9, is divided into
three groups for a wind direction of 180◦. Turbines are randomly selected from each sub-
set and deactivated to evaluate the performance of the designed wind farm controllers. The
number of deactivated turbines is determined by the proportion of the wind farm designated
as offline.
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The performance of open-loop and closed-loop wind farm control algorithms was evalu-
ated by comparing power gains in scenarios involving offline turbines. In the open-loop
approach, pre-optimized yaw angles are used, and the controller does not account for of-
fline turbines, meaning the yaw set points remain unchanged regardless of turbine status.
In contrast, the closed-loop approach recalculates yaw angles at each update step, factoring
in the offline turbines during optimization. This distinction between the two methods leads
to varying power gains, as demonstrated for different wind directions in Figure 4.10. The
power gain is calculated concerning baseline power produced by wind farms with offline
turbines.

Figure 4.10 highlights three regions, each representing a different percentage of the wind
farm offline. The leftmost region corresponds to approximately 1% of turbines offline in
a large wind farm with more than 50 turbines, while the middle and right regions repre-
sent 5% and 10% offline, respectively. The overall trend shows that the closed-loop control
consistently outperforms the open-loop control, achieving higher power gains. This perfor-
mance difference becomes more pronounced as the percentage of offline turbines increases.
Additionally, deactivating downstream turbines has a greater impact on power gain differ-
ences than deactivating upstream or waked turbines. This occurs because, in the closed-
loop method, the yaw angles are adjusted to reflect the new turbine positions, whereas the
open-loop method continues to assign yaw angles as though downstream turbines remain
active.

Further in Figure 4.10, a dependency on wind direction can also be seen when comparing
results for open and closed-loop approaches in offline turbine scenarios. The three wind
directions considered in the analysis result in distinct flow characteristics due to the wind
farm layout. For instance, the 180◦ wind direction experiences the highest wake losses due
to deep arrays formed by the turbine layout, resulting in a higher power gain percentage
as compared to 225◦ and 270◦ wind direction. Deactivating a turbine that is significantly
affected by multiple wake interactions would lead to a smaller difference in the yaw set-
point values derived from open-loop and closed-loop approaches. This is because the up-
stream turbine would maintain a higher yaw misalignment angle, even if the distance to the
downstream turbine increases. This hypothesis may explain the minimal difference between
open-loop and closed-loop approaches when 1% of the wind farm is offline for a wind di-
rection of 180◦. In contrast, a higher percentage of offline turbines typically results in a more
significant difference in yaw set points, with the 225◦ wind direction exhibiting the largest
observed variation on average.

These results emphasize the effectiveness of closed-loop control strategies in optimizing
wind farm performance, particularly in scenarios with offline turbines. By dynamically
adjusting yaw set points based on real-time conditions, closed-loop approaches demonstrate
the ability to mitigate wake losses and enhance power generation.
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Figure 4.10.: Performance comparison of open-loop and closed-loop control strategies across
different wind directions and offline turbine scenarios. The plots represent power gains
for three wind directions—(a) 180◦, (b) 225◦, and (c) 270◦—with marked regions showing
different percentages of offline turbines (1%, 5%, and 10%, left-to-right). Closed-loop
control outperforms open-loop control, with the power difference most pronounced at
225◦. This difference is driven by the more adaptive yaw angle adjustments in closed-loop
control, particularly as the percentage of offline turbines increases.

Master of Science Thesis V. Rajoria



Chapter 5

Conclusion and Recommendation

5.1. Conclusion

The objective of this thesis, outlined in Section 1.7, was to ”To develop and evaluate the
performance of a real-time wake steering wind farm controller that addresses the operational
and environmental challenges specific to large-scale wind farms.”.

Overall, this research advanced the practical application of the wake steering strategy in
commercial wind farms by maturing the model-based closed-loop control. The designed
control architecture enables the wind farm model to incorporate real-time on-site condi-
tions, leading to more accurate power gain estimation. The thesis contributes to the ongoing
development of closed-loop control, strengthening its case against open-loop control sys-
tems, all without requiring additional hardware or incurring extra costs—relying solely on
software modifications.

More precisely, four research questions were derived from the thesis objective, as described
in Section 1.7, and several scientific arguments were subsequently presented to address these
research questions.

What strategy can be employed to adapt current engineering wake models to account
for the heterogeneous wind flow conditions?

In view of Chapter 3, it is evident that the simulation of a wind farm under uniform inflow
conditions exhibited significant discrepancies compared to historical SCADA data, which can
be attributed to inaccuracies in the model. Notably, the error associated with the farm model
lacking the physics of heterogeneity was particularly pronounced, as the test wind farm is
substantially affected by the neighboring wind farm’s operations. One effective approach
identified from the literature was the use of wind farm sensors to estimate discretized values
for heterogeneous parameters, which proved to be both efficient and computationally fast.
This method eliminates the necessity of running extra simulations to integrate mesoscale
models, offering a streamlined solution for capturing heterogeneity without compromising
real-time performance. The incorporation of heterogeneity based on upstream turbine sen-
sor readings reduced overall farm error from 10% to 6%, with a more pronounced decrease
observed for the upstream turbines.
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Which optimization method should be employed to handle real-time yaw optimization in
large wind farms efficiently?

In Chapter 4, this thesis introduced a distributed optimization framework, integrated with
the FLORIS model, to solve the non-convex objective function aimed at maximizing over-
all wind farm power production. Results showed that the distributed algorithm achieved
power gains comparable to the centralized optimization approach while significantly re-
ducing computational costs, with an average difference in power gain values consistently
below 0.4%. The high computational demand of the centralized method makes it imprac-
tical for real-time optimization in large-scale wind farms, further supporting the suitability
of the distributed approach. However, the reliance on uniform inflow for turbine subset
generation constrains the applicability of this approach in spatially varying flow conditions,
highlighting the need for future integration of spatial flow variations.

How does the adaptive tuning of wake model parameters impact the effectiveness of
wind farm control compared to the use of static wake model parameters?

In Chapter 4, Section 4.2, the findings emphasize the necessity of adaptive tuning of wake
model parameters to align FLORIS with site-conditions and thereby output realistic value
of power gain. Specifically, adaptive tuning resulted in an average power gain of 1.23%,
compared to 1.44% achieved with a constant model parameter. When the wake model was
tuned using the entire dataset, an optimal constant value of the wake expansion factor of
0.018 was identified. However, when the wake model was adjusted based on wind direction,
sectors impacted by neighboring wind farms experienced a decrease in power gain due to
increased wake spreading. Further, the pre-optimized yaw angles derived from the open-
loop approach, were sub-optimal for adaptive wake conditions, yielding a power gain of
1.19%, in contrast to the closed-loop adaptive approach, which achieved 1.23%.

How significant is the difference in power gain when offline turbines are included in the
optimization of yaw-misalignment angles by the wind farm controller?

The results in Chapter 4 demonstrate that including offline turbines in the optimization pro-
cess for yaw-misalignment angles enhances power gain. By factoring in the operational sta-
tus of offline turbines, the closed-loop control strategy allows for more precise adjustments
to yaw angles, leading to a reduction in wake losses for active turbines. Specifically, power
gains increase more prominently in scenarios with higher percentages of offline turbines,
highlighting the effectiveness of adaptive control. Notably, the power gains are most pro-
nounced at a wind direction of 225◦, where adaptive yaw angle adjustments yield substantial
improvements. This underscores the critical role of real-time data in optimizing wind farm
performance, emphasizing that incorporating offline turbine conditions into control strate-
gies can enhance energy production and revenue generation for wind farm operators.

5.2. Recommendations

This thesis contributes to the development of wake steering-based wind farm control algo-
rithms, demonstrating the potential benefits of incorporating real-time, site-specific condi-
tions into control strategies. The use of SCADA data is an attractive approach to dynamically
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determine flow heterogeneity, wake model parameters, and offline turbines to improve the
prediction of wind farm flow. Nonetheless, the practical implementation of closed-loop
control systems at an industrial scale continues to face challenges, leaving several research
questions open for further exploration. Building on the findings of this work, several rec-
ommendations for future research can be proposed.

Heterogeneous effects in wind farm model

Firstly, a persistent question in the literature is, ”How can spatial heterogeneity be effectively
incorporated into wind farm models?” While the approach of learning heterogeneity from
SCADA data has proven effective, existing surrogate models often lack robust methods to
fully integrate these effects. Thus, future research should focus on the following areas:

• Optimization of Parameter Learning Locations: Future studies should investigate the
optimal locations for learning heterogeneous parameters and how they can be gener-
alized across the wind farm. In this thesis, data from the upstream turbine were used,
and the parameters were extrapolated upstream. Further exploration is needed to
assess the benefits of using all turbines as data sources, extending the learned parame-
ters both upstream and downstream, or applying a grid-based approach for parameter
learning.

• Incorporating Wind Direction Variability: Although significant research has been
devoted to integrating heterogeneous wind speed into wind farm models, there is
limited attention to wind direction variability. Since optimal yaw misalignment angles
are largely influenced by wind direction, incorporating heterogeneous wind direction
effects into wake models could substantially impact yaw set points and consequently
improve power gains.

• Incorporation of Turbulence Intensity Variations: Turbulence intensity (TI) plays a
crucial role in wake recovery and turbine interaction within wind farms. Including
spatial variation in TI could further enhance wind farm model predictions, improving
the alignment between modeled and on-site measurements.

Optimization algorithm for wind farm control

Distributed optimization has garnered increasing attention in wind farm control due to
its computational efficiency compared to centralized methods. However, several key areas
warrant further investigation to advance the algorithm:

• Cluster Formation and Wake Interaction: One of the primary challenges in distributed
optimization lies in forming clusters that accurately capture wake interactions between
turbines. While this is relatively straightforward for cardinal wind directions and ho-
mogeneous inflow, future research should explore methodologies to incorporate het-
erogeneous wind conditions, particularly wind direction variability, into the clustering
process.

• Handling Overlapping Clusters: Once clusters are established, another challenge
arises when individual turbines fall within multiple clusters. Addressing this issue
requires a consensus mechanism for turbines in overlapping regions. Future research
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may focus on approaches such as imposing additional constraints on the optimization
function or utilizing weighted averaging to reconcile the values across clusters.

• Offline cluster formation and dynamic regrouping: To enhance real-time operation,
clusters can be pre-formed offline, saving computational time during actual wind farm
control. In cases where certain turbines go offline, only the affected clusters and their
neighboring clusters could be re-grouped dynamically, allowing the distributed ap-
proach to adapt and accommodate the offline turbines.

Tuning of wake model parameter

The tuning of wake model parameters remains a critical area of research for enhancing wind
farm control strategies. Future studies could explore the following aspects:

• Optimization Metrics: Current literature varies in its approach to determining the
optimized wake model parameter. Future research should investigate the effect of
using different optimization metrics, such as power versus energy ratio, or the use of
absolute difference, mean square error, or root mean square error. Additionally, the
choice of turbines for optimization—whether to include all turbines or only those in
the wake—may significantly influence the results and should be examined further.

• Incorporating Uncertainty in FLORIS: The uncertainty FLORIS model allows for in-
corporating variability in wind direction, offering improved alignment with SCADA
data. Future research could focus on quantifying the impact of using the FLORIS un-
certainty model on annual energy production values.
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Appendix A

Distributed optimization
framework for wind farms

The developed distributed framework algorithm introduces specific assumptions aimed at
improving computational efficiency. One of the primary assumptions is that in cases where
turbines are assigned to multiple clusters, consensus on the yaw set point is achieved by
simply selecting the higher value among the turbines in overlapping clusters. This is in con-
trast to the state-of-the-art approaches in the literature, which typically impose consensus
constraints directly within the optimization problem. These constraints enable turbine-to-
turbine message passing, ensuring more precise coordination among turbines within the
wind farm. While this approach improves accuracy, it tends to increase computational com-
plexity.

To benchmark the performance of the developed framework, it is compared with the state-
of-the-art approach used in a study involving the Princess Amalia wind farm, which consists
of 60 turbines modeled using the NREL 5 MW turbine [65]. In this study, the wind farm
operates under a wind speed of 8 m/s with a turbulence intensity of 10%. The literature
method models the wind farm as a graph where turbines are represented as nodes, and
wakes are the directed edges between them. The optimization problem maximizes power
production while considering wake interactions by applying a consensus constraint, ensur-
ing that turbines influenced by upstream wakes agree on the yaw angles of the turbines
upstream. This consensus is achieved using a Proximal Point Dual Algorithm (ProxPDA),
which iteratively solves the optimization problem, updating both the yaw angles and dual
variables through message passing between turbines. This method is computationally ro-
bust but comes with increased complexity compared to the simplified framework proposed
in this study.

The results obtained from simulations for a wind direction of 230◦ indicate that the cluster-
ing from the proposed method closely aligns with the clusters generated by the method in
the literature, as depicted in Figure A.1. In the proposed approach, the centralized optimiza-
tion yielded a power gain of 10.85%, while the distributed approach achieved a power gain
of 10.67%. This results in a minimal power difference value of 0.18% for a computational
time reduction from 470 seconds to 106 seconds when using a distributed approach instead
of a centralized one. In a study concerning the ProxPDA algorithm an identical power gain
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Figure A.1.: Princess Amalia wind farm with 60 turbines is divided into clusters based on
upstream turbines. The clusters identified for 230◦ wind direction are shown in Figure.
The left figure presents cluster analysis from a previous study [65] while figure in right
shows the cluster analysis developed in this thesis for the same wind direction.

difference of 0.2% is obtained to what is developed in the thesis. However, since the cluster
obtained from the distributed approach is run in parallel as compared to serial in this study,
a computation time of just 2 seconds is obtained [65]. Finally Figure A.2 contrasts the flow
field with no yaw misalignment with the flow field where the yaw angles derived from the
distributed approach result in the redirection of wakes.

Figure A.2.: Flow field analysis for wind direction of 230◦. The figure on the left illustrates
the flow field with no yaw misalignment, showcasing the wakes aligned directly down-
stream of the turbines. The figure on the right depicts the flow field where yaw angles
derived from the distributed approach result in optimizing the interaction among turbines
for enhanced power production.
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Appendix B

Spatial variation of wind direction

The 4.0 version of FLORIS used in this study does not have inbuilt capabilities to simulate
wind direction heterogeneity, a feature present in the earlier versions of FLORIS. In FLORIS
2.3, the heterogeneous wind direction was incorporated by rotating the grid points to repli-
cate the effect of changing wind direction, velocity deficit was then calculated behind each
turbine [46]. However, this method could not accommodate highly dynamic wind direction
changes, as extreme variations could distort the grid points to overlap. Since the FLASC tool
employed for SCADA data analysis is only compatible with FLORIS 4.0 and higher, hetero-
geneity in wind direction was not modeled in the farm simulations used in this study.

Before conducting the validation study to compare FLORIS simulations to SCADA data, it
was essential to identify instances where turbines exhibited substantial wind direction spa-
tial variability by examining standard deviations. The spatial variations could be attributed
to interactions between the wind farm and atmospheric conditions or potential sensor mea-
surement errors. Due to the difficulty in pinpointing the exact source of these fluctuations,
timesteps with high standard deviations were excluded from further analysis.

There is sensitivity regarding the selection of the maximum allowable standard deviation
for spatial variation in wind direction. Ideally, a smaller threshold should be used, but this
leads to a substantial reduction in data size. A smaller sample size within each bin increases
uncertainty due to inadequate averaging. Figure B.1 illustrates both the relationship between
farm error and the maximum wind direction standard deviation, as well as the change in
data size as the allowable standard deviation varies. At a low standard deviation of 3◦,
significant data reduction results in higher farm error. The error reaches its minimum at 5◦,
but further increases in the allowable standard deviation do not reduce the error despite a
larger data set. Therefore, a cut-off threshold of 5◦ standard deviation was applied.
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Figure B.1.: Farm error as a function of the maximum allowable standard deviation in wind
direction and the corresponding change in data size. A standard deviation of 3◦ leads to
significant data reduction and increased farm error. The error is minimized at 5◦, beyond
which further increases in the allowable standard deviation result in no additional error
reduction, despite a larger data set.
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Appendix C

Adaptive wake expansion factor
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Figure C.1.: Variation of the wake expansion factor across wind direction range, demon-
strating the influence of neighboring wind farms. The subfigures show wake expansion
factors tuned at intervals of 10◦ (top left), 20◦ (top right), and 30◦ (bottom left), along
with the averaged results (bottom right). All graphs exhibit a consistent trend, indicating
an increase in the wake expansion factor for directions where the impact of neighboring
wind farms is significant, reflecting the enhanced wake-induced power losses.
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